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1. Introduction

Partial Differential Equations (PDEs) with variable coefficients often arise in mathemat-
ical modelling of inhomogeneous media (e.g. functionally graded materials or materi-
als with damage induced inhomogeneity) in solid mechanics, electromagnetics, thermo-
conductivity, fluid flows trough porous media, and other areas of physics and engineering.

Generally, explicit fundamental solutions are not available if the PDE coefficients are
not constant, preventing reduction of Boundary Value Problems (BVPs) for such PDEs
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to explicit boundary integral equations to be effectively solved numerically. Nevertheless,
for a rather wide class of variable-coefficient PDEs it is possible to use instead an explicit
parametrix (Levi function) associated with a fundamental solution of corresponding frozen-
coefficient PDEs, and reduce BVPs for such PDEs in interior domains to systems of
Boundary-Domain Integral Equations (BDIEs) for further numerical solution of the latter,
see e.g. [2,4,15,20,16,17] and references therein.

Our main goal here is to show that the mixed problems with variable coefficients in
exterior domains can be reduced to some systems of BDIEs and investigate equivalence of
the reduction and invertibility of the corresponding boundary-domain integral operators
in the weighted Sobolev spaces (that are more suitable for exterior domains than the
standard Sobolev spaces). To do this, we extend to exterior domains and weighted spaces
the methods developed in [2] for interior domains and standard Sobolev (Bessel potential)
spaces.

The BDIE analysis heavily relies on the properties of the corresponding boundary
value problems. The variable-coefficient BVPs in bounded domains are well studied nowa-
days, see e.g. [12,9,14]. Employing the variational methods and Lax-Milgram lemma, the
uniqueness and solvability in the weighted Sobolev spaces for general divergent-form ellip-
tic equations in R™ were proved by [24,11] and for the Dirichlet and Neumann problems
for the Poisson equation in exterior domains with compact boundary by [22,8,13,7,6,23].
These methods are extended here to analysis of unique solvability of variable-coefficient
BVPs in exterior domains.

The analysis of the BDIEs is not only an interesting and challenging mathematical
problem on its own right but is also useful for the BDIE discretisation and numerical
solution to obtain by this way a numerical solution of the associated BVP. Although the
BDIE numerical applications are beyond the scope of this paper, they are the subject of
other publications, see e.g. [29,30,28,25,15,20,26,19,10].

The paper is arranged as follows. Section 2 describes some weighted Sobolev spaces, the
considered partial differential operator and the associated weak definition of the co-normal
derivative. Section 3 presents the boundary value problems, which unique solvability is
obtained in Section 8 (Appendix). Section 4 introduces parametrix and parametrix-based
volume and boundary potentials and describes their properties in the weighted Sobolev
spaces. In Section 5, the mixed BVP is reduced to four different segregated BDIE systems,
which equivalence to the mixed BVP is analyzed in Section 6. In Section 7, the Fredholm
properties and invertibility of the left hand side operators are proved in the appropriate
Sobolev spaces.

2. Basic Notations and Spaces

Let © = QT be an unbounded (exterior) open three-dimensional region of R? such that
QO =R? \ Q is a bounded open domain. For simplicity, we assume that the boundary
02 = 002~ is a simply connected, compact, infinitely smooth surface.

We consider below some boundary-domain integral equation systems associated with
a mixed BVP for the following scalar elliptic differential equation

3
Au(z) := A(z, 0z) u(z) = g 8?:- (a(;r:) aga(cx) ) = f(z), z€Q, (2.1)
i=1 " ‘

where v is an unknown function, while a(z) > 0 and f are given functions in Q.

In what follows, H®(2) = H5(Q2), H*(0Q) = H5(09) denote the Bessel potential
spaces (coinciding with the Sobolev—Slobodetski spaces if s > 0), Hy, = {g : ¢ €
H*(R3), supp g C 09Q}. For an open set Q, we, as usual, denote D(2) = Clomp(£)
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endowed with sequential continuity, D*(£2) is the Schwartz space of sequentially continuous
functionals on D(Q), while D(R) is the set of restrictions on  of functions from D(R?).
We also denote H*(S1) = {g: g € H*(S), supp g C S1}, H*(S1) = {rs,9: g€ H*(S)},
where S7 is a proper submanifold of a closed surface S and 7, is the restriction operator
on S7.

To make the boundary-value problems for (2.1) in infinite domains uniquely solvable,
we will use weighted Sobolev spaces (see e.g. [11,22,8,13,7,6,23]). Let 0; = 0y, := 0/0x;
(G=1,2,3), V =0y = (01, Orp» Ou3)- Let p(z) := (14 |z|?)"/? be the weight function,

La(phQ) == {g:p 'g € La()}
be the weighted Lebesgue space and 7—[1(9) be the weighted Sobolev (Beppo-Levi) space,

HU(Q) = {g € La(p 1;Q) : Vge Ly(V},
9l () = o™ gll70) + 1V9lZ,()- (22)

Using the corresponding property for the space Hl(Q), it is easy to prove that D(Q)
is dense in H*(Q), cf. [11, Theorem I1.1], [7, Theorem 2.2]. If Q is unbounded, then the
seminorm

9131 (2) = IV9llL, () (2.3)

is equivalent to the norm [|g||31(q) in HL(Q), see e.g. [6, Ch. XI, Part B, §1]. If Q~
is bounded, then #1(Q7) = HY(Q7). If Q' is a bounded subdomain of an unbounded
domain Q and g € H'(), then g € H'(€'). More general weighted spaces for unbounded
domains can be found e.g. in [1,23] and references therein.

Let us define as H'(€2) a completion of D(Q) in #'(R3), while H™1(Q) := [H'(Q)]*,
HH(Q) := [H'(Q)]* are the corresponding dual spaces and La(p; Q) := {g : pg € L2(Q)}.
Evidently Lo(p;€) C H™'(€). Any distribution ¢ € H () has a representation
g = Z?Zl 9;9; + ¢°, where g; € LQ(RS) and are zero outside €, ¢° € Lo(p; §2), cf.
ansatz (2.5.129) in [23]. This implies that D(Q) is dense in H~1(€2) and D(R?) is dense

in H™1(R3).
The operator A acting on u € H'(2) is well defined in the distributional sense for
a € Loo(Q2) as
(Au,v)q = —(aVu, Vo)g = —E(u,v) (2.4)
for any v € D(2), where
E(u,v) = / E(u,v)(z)dz, E(u,v)(z):= Vu(z)-a(z)Vu(z). (2.5)
Q

Since the bilinear functional £(u,v) : H'(Q) x H' — R is bounded, then by density of
D(Q) in H'(Q), the linear operator A : H'(Q) — H (), defined by expression (2.4) for
any v € H'(Q), is continuous and gives the weak form of the operator A from (2.1).

From the trace theorem (see, e.g., [12]) for u € H(Q) it follows that if u € H!(QF),
then fyi u € H? (09), where 'yi = 'yécﬂ are the trace operators on 92 from OF . We will
use ~yu for 'yiu if vTu = " u. We will use also notations uT for the traces ’yi u, when
this will cause no confusion.

Unless said otherwise we henceforth assume that there are some constants ag, a; such
that

a€ LOO(RB) and 0<ap<a(zx)<as <oo forae z€ R3. (2.6)
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For u € H(Q2) (as well as for u € H(Q)) the co-normal derivative operators adpu
on 99 may not exist in the classical (trace) sense. However for the linear operator A, we
introduce the space, cf. [§],

HYO(A) = {g e H' (Q): Ag € La(mi )}, NlglFnoqaiay = 9l ) + 1pAglZ,()-

If u € Hl’O(Q;A), one can correctly define the canonical co-normal derivative THu €
H_%(BQ) similar to, for example, [5, Lemma 3.2], [14, Lemma 4.3]) as

<T+u, w> = / [(Wflw)Au + E(u,vi_lw” dr Ywe H%(aﬁ), (2.7)
Q

where 71, H? (09Q) — HY(Q) is a bounded right inverse to the trace operator
AT HY Q) — H%((?Q). The symbol (g1, 92)9q denotes the duality brackets between
the spaces H? (092) and H%(aﬁ), coinciding with [;¢, 91(2)g2(x)dS if g1, 92 € L2(99Q).
The operator TF : #10(Q; 4) — H 2 (09) is continuous and gives the continuous exten-
sion on HI’O(Q; A) of the classical co-normal derivative operator adn, where 8, = n -V
and n = nT is normal vector on 9 directed outward the exterior domain . When a = 1,
we employ for T the notation TX, which is the continuous extension on Hl’O(Q; A) of
the classical normal derivative operator Op,.

Similar to the proofs available in [5, Lemma 3.4], [14, Lemma 4.3]) (see also [18] for
the spaces H*!(Q; A)), one can prove that for u € HY(Q; A) the first Green identity
holds in the form

<T+u,’y+v> :/[vAu+E(u,v)]dx VoeH (Q). (2.8)

aQ

Then for any functions u,v € HI’O(Q; A) we have the second Green identity,

/ [vAu — uA'U] dr = <T+u7 ’y+v>aﬂ — <T+v7 7+u>89 . (2.9)
Q

3. Boundary Value Problems
The mixed boundary value problem in an exterior domain €2 is defined as follows.
Find a function u € Hl’O(Q; A) satisfying the conditions
Au=f in Q, (3.1)
Yru=¢po on 9pQ,
Ty = Po on ONSQ,

where | L

wo € H2(0pQ), o € H 2(OnN), f € La(p; ). (3.4)
Here 0Q = 0pQ U OnQ, while 0pQ # @ and OyQ # @ are nonintersecting simply
connected sub—manifolds of 92 with an infinitely smooth boundary curve ¢ := 9pQ2 N
ONQY € C™.

IfONQ = @, i.e. OpQ = 012, then we arrive at the Dirichlet problem for u € Hl’O(Q; A),

Au=f in Q, (3.5)
yTu=¢y on 09, (3.6)



June 21, 2013 19:42 WSPC/INSTRUCTION FILE BDIEexter-aa-web-e

Analysis of Segregated BDIEs in Exterior Domains 5

where g € H%(aﬂ), f € La(p; ).
If 0pQ = @, i.e. ONQ = 0N in (3.1)-(3.4), then we arrive at the Neumann problem for
ue HVO(Q; A),

Au=f in Q, (3.7)
TTu=1y on 89, (3.8)

where g € H™2(8Q), f € La(p; Q).
Let us denote by

Apr e Hl’O(Q;A) — La(p; Q) x H
Ap + HYO(Q; A) — La(p; Q) x H? (89),
Ay HYO (5 A) = Lo(p; Q) x H

the left hand side operators of, respectively, the mixed BVP (3.1)-(3.3), the Dirichlet
BVP (3.5)-(3.6) and the Neumann BVP (3.7)-(3.8), which are evidently continuous. The
following assertion follows from Theorems 8.1, 8.3 and 8.6 proved in Appendix using
variational settings and the Lax-Milgram lemma. It is similar to the results of [24,11]
for a general divergent form elliptic equation in R" and of [8,13,7] for the Dirichlet and
Neumann problems for the Poisson equation in an exterior domain {2 with a compact
boundary.

Theorem 3.1. Under conditions (2.6) the mized, Dirichlet and Neumann homogeneous
problems are uniquely solvable in Hl’O(Q; A) and the corresponding inverse operators

N\»—l

ARf + La(pi ) x H? (9pQ) x H™ % (9n9) — HO(2; 4),
AL La(p; ) x H2 (09) — HYO(; A),
ARL: Lo(pi Q) x H™2(09) — HYO(2; A)

wh—A

are continuous.

4. Parametrix and Parametrix-Based Potentials
It is well known, cf. [15,2], that the function

-1

3
—, =,y €R", 4.1
Ira(y) |z 4] (1)

P(iﬂ,y) =

is a parametrix (Levi function) for the operator A(zx, d:), i.e.,

Az, 0z) P(z,y) = 0(z —y) + R(z,y), (4.2)
where 5
B T — Yi da(x) 3

The parametrix P(z,y) is related to a fundamental solution to the operator A(y, 0z) :=
a(y)Az with the “frozen” coefficient a(x) = a(y), and A(y,0z) P(z,y) = 0(x — y).
To obtain boundary-domain integral equations, we will consider the coefficient a such
that
aeCYR®) and pVa € Loo(R?). (4.4)
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Remark 4.1. One can check that if a satisfies (2.6) and the second condition in (4.4),
then [|gally1 (o) < Cillgllar (o), ll9/allur @) < C2ll9ll41 (@), where the constants Cy and

Cy are independent of g € H'(Q), i.e., a and 1/a are multipliers in the space H! ().

For any fixed y € Q and any ball B¢(y) centered at y with sufficiently small radius
€ > 0, we have R(.,y) € Lo(p; N\ Be(y)) and thus P(.,y) € H"(Q\Bc(y)) by (4.2).
Applying the second Green identity (2.9) in Q\Be(y) with v = P(y,-) and taking usual
limits as € — 0, cf. [21], we get the third Green identity,

u+Ru—V(TTu)+WhHtu) =PAu inQ (4.5)
for any u € H"0(Q; A). Here

Paly) = / P(z,y) g(z) dz, Rg(y) = / Rz,y)g(x)dz, yeR®,  (46)
Q Q

are, respectively, the parametrix-based volume Newton-type and remainder potentials,
while

Voly) = - / P(z,y) g(x)dSs, Waly) == / T P(e, y)lg(2) dSe,  (4.7)
o0 o0
y € R3\oQ,

are the parametrix-based surface single layer and double layer potentials. The Newton-
type and the remainder potential operators given by (4.6) for Q = R? will be denoted as
P and R, respectively. Recall that in the definition of W we assumed T = a(z) n(z) - Va,
where n = n™ is normal vector on 9Q directed outward the exterior domain €. Note
that if the integrands in (4.6), (4.7) and further on in the paper do not belong to Ly,
then the integrals should be understood as the corresponding duality forms (or limits of
these forms for the infinitely smooth functions, existing due to the function density in the
corresponding Sobolev spaces).

From definitions (4.1), (4.3), (4.6)-(4.7) one can obtain representations of the
parametrix-based potential operators in terms of their counterparts for a = 1 (i.e. as-
sociated with the Laplace operator A), which we equip with the subscript A, cf. [2],

3
1 1
Pg==Pag. Rg=—- > 0;[Palgdja), (4.8)
j=1
1 1
Vg=-"Vag, Wg=_Ws(ag). (4.9)

In addition to conditions (2.6), (4.4) on the coefficient a, we will sometimes also need
the condition
p?Aa € Loo(R?). (4.10)

Theorem 4.1. The following operators are continuous under the second condition in
(4.4),

HLR?) - H (R?), (4.11)
CHTHQ) = 1 (R?), (4.12)
Lo(p R = HU(RD), (4.13)
L HTE(00) — HL(Q), (4.14)
L H2(09) » HY(Q), (4.15)

4.14

S < 99

4.15
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while the following operators are continuous under the second condition in (4.4) and con-
dition (4.10),

P : Lo(p; Q) — HYO(R3; A), (4.16)
R :HY(Q) = HVO(Q; 4), (4.17)
Vi H™2(09) —» HYO(Q; A), (4.18)
W H?(0Q) — HYO(Q; A). (4.19)

Proof. Let ¢ € D(R3) ¢ H~1(R?). Then the Newton potential

PAo _I/R () 4y

T Jps |z — y|

evidently belongs to HI(RS) and solves the Poisson equation Av = ¢ in R3. On the
other hand, the Laplace operator from H!(R?) to H ™1 (R?) possesses a continuous inverse
operator A7 : H7H(R3) — H(R?), see e.g. [24, Theorem 1.2], [11, Theorem I11.2]. Thus
Pad = A™1¢, which due to the density of D(R3) in ’Hil(]Rg) gives a continuous extension
of Pa to the operator H~1(R?) — #!(R3). Then the first relation in (4.8) implies (4.11)
under condition (4.4), and thus (4.12) immediately follows.

To prove (4.16), let us denote by g the extension of a function g € La(p; Q) by zero
outside . Evidently § € La(p;R?) € H™H(R?) and Pog = P,§ € H'(R?). Taking into
account that

3
dia
APg=g-> 09; (fTPAg> ,
j=1

conditions (4.4) and (4.10) imply (4.16).
Let us prove the continuity of operators (4.14) and (4.18). For ¢ € C*°(0Q) let us
consider the single layer potential for the Laplace operator,

Vag= L / L 4(@)dr(),

Am Joq o —yl
which evidently belongs to #'(€2; A) and solves the Dirichlet problem
Av=0in Q, 7T = w on 90 (4.20)

for v € H(Q; A), where w = 4V, ¢. By Theorem 3.1, problem (4.20) is uniquely solvable
and its solution is delivered by a continuous operator @ : H%((BQ) — HYO(Q; A), e,
Vid = QvV,¢. Taking into account the continuity of the operator vV, : H_%(aQ) —
H%(OQ) and the density of C°°(9) in H_%(BQ)7 we arrive at the continuity of V, :
H™2 (99) — HL(Q; A). Then the first relation in (4.9) implies continuity of (4.14) under
conditions (4.4) and of (4.18) under conditions (4.4), (4.10). Continuity of (4.15) and
(4.19) is proved by a similar argument.

To prove continuity of (4.13), let us consider g € La(p~*; R3). Since the operator of
multiplication with d;a is continuous from Lo(p~ 5 R?) to La(R?) due to conditions (4.4),
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we have gdja € Lo (R3). The second relation in (4.8) gives

3
R) = a2 L o0 2 | s@osateran

yl
1 1
T dma(y) ;/1&3 { 3] yd g(x)0ja(x)dx
1 1
= dma(y) E/R" maj(g(x)aja ))dz = ZP[@ (99;a)](y)- (4.21)

To justify the Gauss divergence theorem employed in (4.21), one can introduce a sequence
of functions from D(R3) converging to g0ja in Lo(R?), which gradients will then converge
to the gradient of gdja in H~'(R®) and thus in H ! (R®). Then continuity of (4.11) implies
continuity of (4.13).

Let us prove continuity of (4.17). Since H!(Q) is continuously embedded in C
La(p~t;Q), then the continuity of the operator R : H(Q) — H(Q) is implied by (4.13).
For any g € H'(Q) we have,

3
ARg =Y 0y (adyR) = Va - VRg + aARg
k
— Va-VRg+d® {A (é)} Ry + 2aV <%> V(aRg) + A(aRg).  (4.22)

By the second relation in (4.8),

3
A(aRg) = Z 0; APa (g@ a) =—Vg-Va— gAa.
j=1
Then (4.22) along with conditions (4.4) and (4.10) imply continuity of the operator AR :
HY(Q) — La(p; Q) and thus of the operator (4.17). D

Let us introduce the following boundary integral (pseudodifferential) operators of the
direct values and of the co-normal derivatives of the single and double layer potentials:

/ P(z,y) g(z) dSe, (4.23)

Wo(w) = [ [T(.n(2).00) Pla.y)] g(z)dSs, (4.24)
S

W g(w) =~ [ [T(0.n(0).0,) Pla.)] g(z) s, (4.25)
S

L g(y) =T Wyly), (4.26)

where y € S.
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They can be also presented in terms of their counterparts for a = 1, i.e. associated
with the Laplace operator A, cf. [2],

1 1
Vg=-Vag, Wg=_Wslag), (4.27)
Wig=wl g+ el ()] (4.28)
g=Wag on \a D .
Lrg=1r (ag) + a2 1 Wi(ag) (4.29)
4 on \a A

where, as usual, the subscript A means that the corresponding surface potentials are based
on the harmonic fundamental solution P, (z,y) = —(47 |z —y|)~1. It is taken into account

that a and its first derivatives are continuous in R° and
Lg = L4 (ag) == £1(ag) = £ (ag) (4.30)

by the Lyapunov—Tauber theorem.

The mapping and jump properties of the operators (4.23)-(4.26) follow from relations
(4.27)-(4.29) and are described in details in [2]. Particularly, their jump relations are given
by the following theorem presented in [2, Theorem 3.3].

Theorem 4.2. Let g1 € H_%(S), and g2 € H%(S) and a € C1(R3). Then
Y Varly) = Vai ()

1
Y Waa(y) = F5 02(y) + We2(y),

1
TEVi(y) = £ 91(y) + W a1 (y),

2
where y € 0N2.
Taking trace and co-normal derivative of the third Green identity (4.5), we obtain,
1
§7+u + ’Y+Ru — VT u+ W'y+u = 7+77Au on 0, (4.31)
1
§T+u +TTRu - W, T u+ [,;'Q’y-"u =TTPAu on 9. (4.32)

For arbitrary functions u, f, ¥, ®, let us consider a more general “indirect” integral
relation, associated with (4.5),

u+Ru—VI+Wo=Pf in Q (4.33)
and prove for the weighted spaces the analog of [2, Lemma 4.1].
Lemma 4.1. Let u € H'(Q), f € La(p;Q), ¥ € H_%(aﬁ), [ONS H%(GQ) satisfy (4.33)
and conditions (4.4), (4.10) hold. Then u belongs to HY°(%; A) and is a solution of the
equation
Au=f in Q, (4.34)

while
VU —T )= W(@—~v4u)=0 in Q. (4.35)
Proof. First of all, rewriting (4.33) in the form u = Pf — Ru+ V¥ — W®, we conclude

by Theorem 4.1 that u € H?(€; A). Thus we can write the third Green identity (4.5) for
the function u.
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Subtracting (4.33) from the identity (4.5), we obtain
—VU* + W =P[Au— f] inQ, (4.36)
where ¥* := TTy — ¥, ®* := yTu — ®. Multiplying equality (4.36) by a(y) we get
—VAU™ + Wa(a®") = Pa[Au— f] in Q.

Applying the Laplace operator A to the last equation and taking into consideration
that the both functions in the left-hand side are harmonic surface potentials, while the
right-hand side function is the classical Newtonian volume potential, we arrive at equation
(4.34). Substituting (4.34) back into (4.36) leads to (4.35). D

The counterpart of [2, Lemma 4.2] for an unbounded domain  takes the following
form.

Lemma 4.2. Let conditions (4.4), (4.10) hold.

(i) If U* € H2(8Q) and VI* = 0 in Q, then U* = 0.

(i) If ®* € H%((?Q) and W®*(y) = 0 in Q, then ®*(x) = C/a(z), where C is a
constant. o

(i4i) Let Q) = S1USs, where S1 and Sy are nonempty nonintersecting simply connected
submanifolds of OQ with infinitely smooth boundaries. If U* € I;T*%(Sl), " ¢ f]%(SQ)
and VU*(y) — Wo*(y) =0 in Q, then ¥* =0 and ®* =0 on 9N.

Proof. The proofs of items (i) and (iii) coincide with the proofs of their counterparts for
interior domains in [2, Lemma 4.2].

To prove item (ii), we first remark that ®, = C' satisfies the equation W, ®, =0 in
the exterior domain © for any C' = const. (This follows from the first Green identity (2.8)
for the interior domain Q~ employed for v(z) = C, A = A, u = —1/(4w|z — y|) and for
any y € Q.) Let us check that there is no other solution of the equation in Q in H B (092).
By the Lyapunov-Tauber theorem, TXWA‘I)A = TAWaA®aA = 0 on 99, which implies
W, ®A = const in the interior domain 2~ due to the uniqueness up to a constant of the
solution of the Neumann problem in H! (27). Then the jump property of the double layer
potential gives ®, = const. Applying the second relation of (4.9) finalizes the proof of
item (ii). D

5. Segregated BDIEs for the Mixed Problem

Let us fix an extension ®g € H%(S) of the given function (g in the Dirichlet boundary
condition (3.2) from dp < to the whole of 92 and an extension ¥y € H™2 (S) of the given
function g in the Neumann boundary condition (3.3) from dn 2 to the whole of 9.

We will explore different possibilities of reducing BVP (3.1)-(3.3) to a system of
Boundary-Domain Integral Equations (BDIEs) and in all of them we represent in (4.5),
(4.31) and (4.32) the trace of the function v and in its co-normal derivative as

~ 1 ~ 1
Yru=®g+¢, peHZ(@ONQ); Tru=Wo+y, ¢eH 2(0pQ),

and will regard the new unknown functions ¢ and v as formally segregated of u. Thus we
will look for the triplet

U= (u,,0) " €Hi=H"O(QA) x H 2(0pQ) x H? (9x9)

C X o= HN(Q) x H 3 (0pQ) x H? (9yQ).
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BDIE system (M11). First, using equation (4.5) in 2, the restriction of equation (4.31)
on Opf, and the restriction of equation (4.32) on dN€2, we arrive at the BDIE system
(M11) of three equations for the triplet of unknowns, (u,, ¢),

u+Ru—Viyp+Wep = Fy in Q,
Topa {7+RU - V¢ + Ww} = raDQ*y"'Fo —¢o on 9pQ,

Fove {T+Ru W+ l:+<p} = 1oy 0T Fo— o on OnQ,

where
Fo:=Pf+VUyg—-—Woy in Q. (51)
We denote the matrix operator of the left hand side of the systems (M11) as
I+R -V w
M= TaD97+R —TopaV TopaW

+ / +
TastT R _TaNnW TastL

The notation (M11) and the corresponding superscripts mean that the system includes
the integral operators of the first kind both on the Dirichlet and Neumann parts of the
boundary. The other BDIE systems below are also denoted respectively.

BDIE system (M12). If we use equation (4.5) in £ and equation (4.31) on the whole
of 99, we arrive at the BDIE system (M12) of two equations for the triplet (u, ), ¢),

u+Ru—Vip+Wep = Fy in €,

1
5@+ YTRuU— Vi) + W =~vTFy —®g on 0.
The left hand side matrix operator of the system is

I+R -V w
M2 .=

1
TRV SI+W

BDIE system (M21). Using equation (4.5) in £ and equation (4.32) on the whole of
09, we arrive at the BDIE system (M21) of two equations for the triplet (u, ), ¢),

u+Ru—Vip+Wep = Fy in Q, (5.2)
%w + T " Ru-W'p+ L o =T Fy— Ty on 0. (5.3)
The left hand side matrix operator of the system is
I+R -V w

M= : 5.4
TTR %[—W’ i (54
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BDIE system (M22). Finally, using equation (4.5) in €, the restriction of equation
(4.32) on 9p 2, and the restriction of equation (4.31) on dn€2, we arrive for the triplet
(u, ¢, ¢) at the BDIE system (M22) of three equations of “almost” the second kind (up
to the spaces),

u+Ru—Viyp+Wep = Fy in Q,

1
51/) + T, {TJrRu -Wy+ £+Lp} = raDQ{TJrFO — \IIO} on JIpQ,

%tp +7h00 {’y+Ru -V + Wso} = TaNQ{'YJrFO - fbo} on  INQ.

The matrix operator of the left hand side of the system (M22) takes form

I+R -V w
1
M?2 = Topa TR Topa (5 I- W/) Topa ct
1
Tone 'y+R —Topna V Tayna (§I+W)

Remark 5.1. Note that the second relation in (4.8) means that if a = const outside
a bounded subdomain Q' C €, then the operator R acts only on the restriction Ty U
This implies that all the BDIE systems reduce in this case to the BDIEs over Q' and 99,
that are supplemented with the integral representations for « in Q\Q' given by the first
equations of the systems.

The systems (M11), (M12), (M21) and (M22) can be rewritten as
M*Py = FoP

where 7 denote their right hand sides and o, 8 = 1,2. If conditions (4.4) and (4.10)
hold, then due to the mapping properties of the potentials, FoB e pof ¢ YQB, while the
operators M H — F and M*P : X — Y*P are continuous for any «, 3 = 1,2. Here
we denoted

F'' = Y00, A) x H? (9pQ) x H™ 2 (9n ),
F'2 = #1500 A) x H? (99),

F2 = 1500 A) x H™2(0Q),

F22 .= 1100, A) x H2(8pQ) x H? (9x9),
Y= HY(Q) x H2 (9pQ) x H™ % (ANQ),

Y'2 .= HY(Q) x H? (89),

Y2 = HY(Q) x H ™2 (09),

Y22 .= HY(Q) x H™2 (8pQ) x H? (INQ)

6. Equivalence and Uniqueness Theorems
Let us first prove the equivalence theorems.
Theorem 6.1. Let go € H2(dpQ), 1o € H2(dnQ), f € La(p; Q) and let By € HZ (99)

and Vg € H_%(BQ) be some extensions of ¢o and g, respectively, and conditions (4.4),
(4.10) hold.
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(i) If a function u € HYO(; A) solves the BVP (3.1)-(3.3), then the triplet (u,v,¢),
where

N|=

=T u— T e ﬁ_%(ODQ), p=yTu—®y e H
solves the BDIE systems (M11), (M12), (M21) and (M22).
(i) If a triplet (u,, ) € HYO(Q; A) x flié(c’)DQ) X ﬁ%(aNQ) solves one of the BDIE

systems (M11), (M12) or (M22), then this solution is unique and solves all the sys-
tems, including (M21), while u solves BVP (3.1)-(3.3) and relations (6.1) hold.

(ONQY), (6.1)

Proof. Item (i) immediately follows from the deduction of the BDIE systems (M11),
(M12), (M21) and (M22).

Using the similarity of Lemma 4.1 and items (i, iii) of Lemma 4.2 to their counterparts,
Lemma 4.1 and Lemma 4.2(i, iii) in [2], for the bounded domain £, the proof of item (ii)
of the theorem follows word-for-word the corresponding proofs of Theorems 5.2, 5.6 and
5.12in [2]. i

The situation with uniqueness and equivalence for system (M21) differs from the one
for other systems and from its counterpart BDIE system (77) in [2], particularly because
item (ii) of Lemma 4.2 is different from its analog, Lemma 4.2(ii) in [2]. This leads to the
following assertion.

Theorem 6.2. Let pg € H? (0pQ), ¢o € H_%(BNQ), f € La(p; ) and let g € H%(GQ)

and Uy € H™ 3% (09) be some extensions of pg and g, respectively, and conditions (4.4),
(4.10) hold.
(i) Homogeneous BDIE system (M21) admits only one linearly independent solution

(uo7 0, cpo) € Hl’O(Q; A) x H 2 (0pf2) x H? (ONQY), where u® is the solution of the mized

BVP
Aul =0 in €, (6.2)
Tapa AT a(lx) on 0pQ, (6.3)
Ton T’ =0 on ONS, (6.4)

while
WO =710, 0 =Tl - 1/a(z) on 0. (6.5)

(#) The non-homogeneous BDIE systems (M21) is solvable, and any its solution
(u, v, ) € HEO(Q; A) x ﬁ_%(apﬁ) X ﬁ%(aNQ) can be represented as

u=a+cu’ in Q (6.6)
where 4 solves the BVP (3.1)-(3.3) and C is a constant, while

V=T a—To+Cy°, o=~Ta—do+Cx" on 9. (6.7)

Proof. Problem (6.2)-(6.4) is uniquely solvable in #?(2; A) by Theorem 3.1. Conse-
quently, the third Green identity (4.5) is applicable to uo7 leading to

W4+ R -Vl 4+ W’ =0 in Q, (6.8)

with notations (6.5), if we take into account that W (1/a(z)) = 0 in © due to the second
relation in (4.9) and the equality WA 1 =0 in © (cf. the proof of Lemma 4.2(ii)). Taking
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the co-normal derivative of (6.8) and substituting the first equation of (6.5) again, we
arrive at

%wo F TR W LT =0 on OO (6.9)

Equations (6.8)-(6.9) mean that the triplet (u®,1?, %) solves the homogeneous BDIE
system (M21).

To prove item (ii) and check that there exists only one linearly independent solution
of the homogeneous BDIE system (M21), we proceed as follows. First, we remark that the
solvability of the non-homogeneous system (M21) follows from the solvability of the BVP
(3.1)-(3.3) in H20(€2; A) and the deduction of system (M21).

Let now a triplet (u,v,¢) | € HM0(Q; A) x fl_%((?DQ) X ﬁ%(aNQ) solve (generally
non-homogeneous) BDIE system (M21). Take the co-normal derivative of equation (5.2)
on 9N and subtract it from equation (5.3) to obtain

Y4+ Vg —T u=0 on 0. (6.10)

Taking into account that v = 0 on Oy and Wg = g on In €2, this implies that u satisfies
the Neumann condition (3.3).

Equations (5.2) and (5.1) and Lemma 4.1 with ¥ = ¢ + ¥g, ® = ¢ + @ imply that
u is a solution of equation (3.1) and

V(Wo+y—T u)—W(@g+e—7Tu)=0 in Q. (6.11)
Due to (6.10) the first term vanishes in (6.11), and by Lemma 4.2(ii) we obtain
do+9—7"u=—-C/a(z) on 09, (6.12)

where C' is a constant. Taking into account that ¢ = 0 on dp2 and &y = g on Ip, we
conclude that u satisfies the Dirichlet condition

v u =+ Cla(z) on dpQ (6.13)

instead of (3.2). Introducing notation @ by (6.6) in (6.10), (6.12) and (6.13) and taking
into account (6.2)-(6.4) prove the claim of item (ii).

The case g =0, P9 =0, Y9 =0, ¥g =0, f = 0 leading to the homogeneous BDIE
system (M21) also implies that @ for this case satisfies homogeneous BVP (3.1)-(3.3) and
thus @ = 0 in (6.6) and (6.7) meaning that the triplet (u", 4" %) is the only linearly
independent solution of the homogeneous BDIE system (M21). This completes the proof
of item (i) and of the whole theorem. D

7. BDIO Fredholm Properties and Invertibility

We will consider in this section the Fredholm properties and invertibility of the boundary-
domain integral operators (BDIOs), starting from MB  H — F*P and then, under more
restrictive conditions on the coefficient a, of the operators MB X Yaﬁ, a,B=1,2.

7.1. Properties of operators M3 : H — F*P

In this section, we will analyze the operator invertibility (or the Fredholm property when
there is no invertibility) by proving first that the arbitrary right hand side functions from
the corresponding spaces can be represented in terms of the parametrix-based potentials
and using then the equivalence theorems.
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To start with, let us prove the following analog of Lemma 5.5 in [17] for the exterior
domain.

Lemma 7.1. For any function Fx € Hl’O(Q;A), there exists a unique couple (fx, ¥s) =
CF. € Lo(p; Q) x H™2(9Q) such that

Fa(y) = Ple(y) + VUa(y), ye€Q, (7.1)

where C : HYO(Q; A) = La(p; Q) x H_%(BQ) s a linear bounded operator.

Proof. Suppose first that there exist some functions f«(y) and W« (y) satisfying (7.1) and
find their expressions in terms of Fx(y). Taking into account relations (4.8) and (4.9) for
the volume and single layer potentials, ansatz (7.1) can be rewritten as

a(y)F«(y) = Pafs(y) + Va¥u(y), ye€ (7.2)

Applying the Laplace operator to (7.2) we obtain that

fx =A(aFx) in Q. (7.3)
Then (7.2) can be rewritten as
where
QW) = a(y)F«(y) — PalA(aF)](y), vy €. (7.5)
The trace of (7.4) on the boundary gives
Vala(y) =77 Q), yeo, (7.6)

where VA := V|g=1 is the direct value on 99 of the single layer operator Va associated
with the Laplace operator. Since Va : H*(9Q) — H*1(8Q), s € R, is isomorphism (c.f.
e.g. [6, Ch. XI, Part B, §2, Remark 1]), we obtain the following expression for W

Vi(y) =VA'v " Qy), yeon. (7.7)

Relations (7.3) and (7.7) imply uniqueness of the couple fx, ¥x. Now we have to prove
that f«(y), Us(y) given by (7.3) and (7.7) satisfy (7.1). Indeed, the potential VA ¥« (y)
with W4 (y) given by (7.7) is a harmonic function, and one can check that @ given by (7.5)
is also harmonic in Q. Then condition (7.6) implies that VAW« (y) and Q(y) coincide in
the Q (cf. Theorem 3.1), i.e. (7.4) holds true, which implies (7.1). Thus (7.3), (7.7) and
(7.5) give

(i, W) = CF = (A(aFy), V3'rH[aFs = PaAF)]),

and thus by Remark 4.1, C : H20(; A) — La(p; Q) x Hﬁé(BQ) is a bounded operatoi]

Corollary 7.1. A couple (Fo, F1) € HVO(Q; A) x H%(OQ) can be uniquely represented
as
Fo=Pf+VU.—Wod. in Q (7.8)
-Fl = "y+f0 — Q* on 89 (79)
for some (fu,Us,®s) = Csx (Fo,F1)', where Cx : HVO(Q; A) x H%((?Q) — La(p; Q) x
H2 (092) x H%(BQ) is a linear bounded operator.
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Proof. Taking &4« = 'y+_7-'0 — JF1 and applying Lemma 7.1 to Fx = Fg + WP«, we prove
existence of representation (7.8)-(7.9). To prove its uniqueness, we consider its homoge-
neous case, i.e., with 7o = 0, F; = 0. Then (7.9) implies ®+ = 0 and thus by (7.8) and
Lemma 7.1 we also obtain Vs =0, f« =0. O

Using essentially the same reasoning as in Lemma 7.1 and Corollary 7.1, one can prove
the following statement, that is similar to its counterpart for bounded domains, see [2,
Lemma 5.13 and Corollary 5.14].

Lemma 7.2. Let 09 = S1 U Sa, where S and S are nonempty nonintersecting simply
connected submanifolds of O with infinitely smooth boundaries. For an arbitrary triplet

F = (Fo, Fi, Fo) T € HYO(Q; A) x H™2(S1) x H(S2)

there exists a unique triplet

(for W, @) T = Cs, 5, F € Lo(p; Q) x H™7(8Q) x H? (09) (7.10)
such that
Fo=Pfe+VUi—Wo, in QF, (7.11)
Fi1=rg T Fo— rs, Ux on Sq, (7.12)
Fa=rg, vt F - rs, P« on Sa, (7.13)

where Cs, g, + HYO(Q A) x H™2(S)) x H? (S2) — La(p; Q) x H™2(0Q) x H? (09) is a
linear bounded operator.

Theorem 7.1. If conditions (4.4) and (4.10) hold, then the operators
MU HEHSFY, M2 HSF2 M2 H5F2 (7.14)

are continuous and continuously invertible.

Proof. Continuity of operators (7.14) follows from the volume and boundary potential
mapping properties, Theorem 4.1.

Let us prove continuous invertibility of the operator MU H - FU By Lemma 7.2,
any right hand side F'' = (Fy, Fp,Fn) € F'! of the equation MY = F'! can
be uniquely represented in form (7.11)-(7.13) with S; = 9OnQ, S2 = 90pf), where
(fe, Ui, @)1 = CaDQ7aNQ.F11 and the operator Cyyn.o,0 : FU = #LO(Q;4) x
H%((?DQ) X Hﬁé(BNQ) — La(p; ) x Hﬁé((‘?Q) X H%(aﬂ) is continuous.

Then equivalence Theorem 6.1 for the system (M11) and invertibility Theorem 3.1 for
the mixed problem imply that the equation MY = FH has a solution U = (u, 1, cp)T =
(M)7LFM where the operator (M) ™1 F' — H is given by

w= Ay o opa®e, 7o 0Wsl |, 0 =T u—0., p=9tu—a, (7.15)

where (f*,\IJ*,<I>*)T = CaDQ,aNQ]:ll, and is evidently continuous. Thus the operator
(./\/111)71 is the right inverse to the operator MY H - IFH, but due to the injectivity
of the latter implied by the equivalence Theorem 6.1, the operator (M) ™! is in fact the
two-side inverse.

Continuous invertibility of the operator M2 H - F2 s proved similarly.
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Let us prove continuous invertibility of the operator M2 H - F2, By Corollary 7.1,
any right hand side Fl2 = (Fo, F1) € F'2 of the equation M2y = F'2 can be uniquely
represented in form (7.8)-(7.9) for some (fx, U, ®x) | = C.F'2, where the operator Cy :
F12 = #19(Q; A) x H%((?Q) — La(p; Q) x H? (S) x H%(S) is continuous.

Then equivalence Theorem 6.1 for the system (M12) and invertibility Theorem 3.1 for
the mixed problem imply that the equation M'21f = F12 has a solution U = (u,, )" =
(M) 7LF2 where the operator (M*2)™1 : F12 — H is given by expressions (7.15),
where (fx, Ux, <I>>k)T = C+F'2, and is evidently continuous. Thus the operator (./\/112)71
is the right inverse to the operator M2 : H — F'2, but due to the injectivity of the latter
implied by the equivalence Theorem 6.1, the operator (./\/112)_1 is in fact the two-side
inverse. O

Let us prove an assertion implied by Theorem 7.1 for the operator M?? . H — F?2 for
the particular case a = 1 in 2, i.e., essentially for the purely boundary integral equation.
We will need it to prove invertibility of the operator M?? . X = Y?? for variable a in
Section 7.2.

If a = 1in £, then (3.1) becomes the classical Laplace equation, the remainder operator
R vanishes, and the BDIE system (M22) splits into the system of two Boundary Integral
Equations (BIEs),

1
Fope (§¢ —Wh v+ Lk 4,0) =1y o TTFy =1, oW on 9p, (7.16)

1
Tone (54,0 — VA Y+ Wa 90) = raNQFS' —Toya®Po on ON2, (7.17)

and the representation formula for u in terms of ¢ and 1,
u=Fy+ VAt —Wae in Q.
System (7.16)-(7.17) can be rewritten in the form
M2BUN = F32, (7.18)
where L?Z = (Y, p) € ﬁ_%((?DQ) X ﬁ%(aNQ),
[rope (BT=WA)  7opaLh

MR = ) , (7.19)
—Toya VA LCINTY) (5 I+ WA)

99 —TODQTJ’_FO_TBDQ\IJO 1 1
FA = € H 2(0pQ) x H2 (ONN).
_TONQF(;’_ —TonaPo

Moreover, the operator M32 : ﬁfé(BDQ) X fI%(QNQ) — Hﬁé(aDQ) X H%(BNQ) is
bounded and by Theorem 6.1 (employed for a = 1) is also injective.

Theorem 7.2. The operator M% H2 (0pQ2) x 2 (ONQY) — H2 (0pf2) x H? (ONQY)
is continuously invertible.

Proof. A solution of system (7.18) with an arbitrary (F32)! = (F2,F33) ¢
H™? (0pf2) x H? (O ) is delivered by the couple (¢, ¢) satisfying the extended system
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MRU = FR, where U = (u, ¥, ), FQ = (0, FA, F32) ', and

I —Va Wa
1
MZ = [0 Topa (51=WA)  1opa L
1
0 —roaVa  Toya (51+ WA)

The operator M2A2 : H — F?? has a continuous inverse due to Theorem 7.1 for a = 1.
Consequently, the operator MQAQ has a right bounded inverse, which is also a two-side
inverse due to injectivity of the operator M2A2 ]

To analyze properties of the operator M?! we will need the following assertion, that
appeared to be quite different from its counterpart for interior domains proved in [16,
Lemma 19].

Lemma 7.3. If conditions (4.4) and (4.10) hold, then a function Fi € H1?(Q; A) can be
represented as

Fu(y) = Ple(y) = Woi(y), yeQ, (7.20)

for some (fx, ®s) € La(p; ) x H%(aﬂ) if and only if

/ TX (aF.)dS = 0. (7.21)
o0

Proof. Suppose first there exist some functions f«(y) and ®«(y) satisfying (7.20). Taking
into account relations (4.8) and (4.9) for the Newton-type and double layer potentials,
ansatz (7.20) can be rewritten as

a(y)F«(y) = Pafe(y) = Wala®:(y), ye. (7.22)
Applying the Laplace operator to (7.22) we obtain that
fe=A(aF) in Q. (7.23)
Then (7.22) can be rewritten as
Wala®:](y) = Qy), ye€Q, (7.24)
where
Q(Y) := PalA(aF)](y) — a(y) Fx(y), ye Q. (7.25)

The trace of (7.24) on the boundary gives
(- %1 +Wal(@®.) =47Q,  on o9 (7.26)

By [6, Ch. XI, Part B, §2, Theorem 4]), equation (7.26) admits a solution a®x € H? (092)
if and only if the right hand side y7Q € H? (09) satisfies the condition

/ Yt Q(x) T v(z)dSs = 0, (7.27)
o

where v € H'(Q) solves the Dirichlet problem Av = 0 in Q, vFv = 1 on Q. Employing
the second Green identity (2.9) associated with the operator A and substituting there
(7.25), we have

/8 TX{PA[A(aF)] — aFy}dS = 0. (7.28)
Q
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We have TXPA[A(CL]:*)] = TAPalA(aFx)] on 0Q since PalA(aFx)] € HYO(R3; A) €
H? (R?) by Theorem 4.1. Keeping in mind that Pa[A(aF)] is a harmonic function in
the bounded domain 2™, we obtain

/ TXPAIA(aF:))dS =0,
o

which reduces (7.28) to (7.21).

Let now (7.21) be satisfied. We have to prove that there exist a representation (7.20).
First of all, let us note that if Fx € H1?(Q; A), then conditions (4.4) and (4.10) imply
aF« € HM(Q;A) and the co-normal derivative TZ (aFx) is well defined on 99Q. Then

(7.21) implies (7.28). Let a®s € H%(BQ) be a solution of (7.26) with @ given by (7.25),
while fi € La(p; Q) be given by (7.23). Then the potential W [a®.] € #*(€2) is a harmonic
function, and one can check that Q € #!(2) is also harmonic. Since (7.26) implies that
they coincide on the boundary, the two harmonic functions should coincide also in the
domain, cf. Theorem 3.1, i.e. (7.24) holds true, which implies (7.20). O

Lemma 7.3 implies the following corollary.

Corollary 7.2. If conditions (4.4) and (4.10) hold, then a couple (Fo, F1) € HY°(Q; A) x
H? (092) can be represented as

Foly) = Ple(y) + V¥s(y) — Woi(y), ye€Q, (7.29)
Fi(y) =TT Fo(y) — Wuly), y € OQ (7.30)

for some (fx, ¥x, ®x) € La(p; Q) X H_%(BQ) X H%(QQ) if and only if

& (Fo, F) = / [(Bna)y™ Fo + F1)]}dS = 0. (731)
o0

Proof. We take U, = T+ Fy— F; and apply Lemma 7.3 to Fx = Fg— VW4, which proves
representation (7.29) if and only if

/ T [a(Fo — V(T Fo — F1)))dS = 0. (7.32)
o0

Taking into account the jump property of the single layer potential and that aVg = Vag
is a harmonic function in the bounded domain 27, condition (7.32) reduces to

0= / (TXa)yt Fo + aT{ Fo — TT Fo + Fi]dS — / TAVA(TY Fo — Fr)dS
o0 o0
_ / [(Ona)y™ Fo + F1)]}dS. .
o0
One can check on the example F; = T Fy that condition (7.32) and thus (7.31) is
satisfied not for all (Fp, F1) € H10(Q; A) x H7%(6Q).

Theorem 7.3. If conditions (4.4) and (4.10) hold, then the operator M>*' : H — F?! is a
continuous Fredholm operator with zero index. It has one—dimensional null-space spanned
over the element (u®, 90, ©°) defined in Theorem 6.2(i) and the cokernel spanned over the
functional ¢° defined by (7.31).
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Proof. The claim about the null-space, particularly that its dimension is 1, follows from
Theorem 6.2(i).
Let now consider the equation M2\ = (.7:0,.7:1)T, ie.,

u+Ru—-—Vyy+Wep=F in Q,
1
SU+ TYRu—-W'v+L o =F on 89.
with arbitrary (Fo, F1) € F2 for (u, 1, ) € H. By Corollary 7.2, if g°(Fo, F1) = 0, where
the linear functional go € F?1* is defined in (7.31), then the right hand side is representable

in form (7.29)-(7.30) and the equation is solvable due to Theorem 6.2(ii).
On the other hand, we have from (5.4), the jump Theorem 4.2 and Lemma 4.1,

Tg{a

—V (T+(u+7zu — Vi + W) — (%1/) +TTRu — W’w+£+so))] } ds

gO(Mm(u,w,so)T):/ Wt Ru— Vi We

o0

= / T {alu+ Ru+ W — VT Tu]}dS = / T {aPAu}ds. (7.33)
o0 o0

Since u € H0(Q; A), by Theorem 4.1 we have PAu € HVO(R3; A) and thus aPAu €
HYO (R A) € HE(R?). This implies that TZ{a”PAu} = Tx {aPAu} on 99 and the last
integral in (7.33) is zero because a’P Au is harmonic in the bounded domain Q7. Thus the
range of the operator M2! : H — F?! coincides with the elements of (Fo,F1) € F2! such
that go(]:o,]:l) = 0, which implies that the dimension of the cokerM?! : H — F?! is 1.
Since the dimension of the null-space is also 1, we conclude that the operators is Fredholm
with zero index. O

7.2. Properties of operators MOB X 5 yoB

To prove in [2] the invertibility of the counterparts of the operators MOB X 5 Yo
for bounded domains, we essentially used the compactness of the operator R : H () —
H 1(Q) based on the Rellich compactness theorem. However, the latter theorem does not
hold for unbounded domains with compact boundaries, and to cope with this, we will split
the operator R into two parts, one of which can be made arbitrarily small while the other
one is compact, if the PDE coefficient satisfies the additional condition

xlgrolo p(x)Va(z) = 0. (7.34)
Lemma 7.4. Let conditions (4.4) and (7.34) hold. Then for any e > 0 the operator R can
be represented as R = Re+Rs, where ||Rs|ly1()—ni ) < € while Re : HLU(Q) = HEH(Q)
18 compact.

Proof. Let B; be a ball centered at 0 with a radius n such that 9Q C By and let
1 € D(R?) be a cut-off function such that u = 1 in By, p = 0 in R*\Ba, and 0 < p(z) < 1
in R3. Denote Reg := R(ug), Rsg := R((1 — w)g).

By (4.8) we have for arbitrary g € H(Q),

3

HRSQH?-U(Q) = Zpaj [(1— M)gaja]|lH1(Q) < QH’PHQ—%Q)HHl(Qy
=1
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where

3 3
=1 J=1

IN

Blgll Ly o100 IPVallL o v\ B,)) < 3lPVallL &3\B,) 19131 ()

Thus for the norm of the operator Rs we have,
”RSHHI(Q)—VHl(Q) < SHpvaHLoo(]R?’\B,})||PH’;:Z—1(Q)*>H1(Q) — 0 asn— oo,

as claimed.

Let us prove the claim about the operator R.. Since the support of 1 belongs to Bay, for
any fixed 7 the operator R : H!(Q) — H(2) can be represented as Reg = Ra,, [w"%7 gl,
where Qo,, = Q[ B2, and the operator Rq,, is given by the second relation in (4.6) with
Q replaced by Q. The operator Rq,, : L2(Q22y) — H1(Q) is continuous by (4.13) since
La(Q2y) = Lo (pfl; Qay) for the bounded domain ;. On the other hand, the restriction
operator rq, = : HH Q) — HE (Q2y) = H! (Q2,) is continuous while the imbedding of
Hl(an) in La(Q2y,) is compact, which implies that the operator Re : HLU(Q) = HEH(Q) is
compact. O

Lemma 7.4 implies the following corollary.

Corollary 7.3. Let conditions (4.4) and (7.34) hold. Then the operator I + R
HY(Q) = HY(Q) is Fredholm with zero index.

Proof. Representing R = R¢ + Rs by Lemma 7.4 so that HRsHHl(Q) < 1 and Re :
HL(Q) = H(Q) is compact, we obtain that I +Rs : H'(Q) — H'(Q) is invertible, which
implies the lemma claim. O

Theorem 7.4. If conditions (4.4), (4.10) and (7.34) hold, then the operators
M XYY, M2ixov? M2 ix o y® (7.35)

are continuous and continuously invertible.

Proof. By the mapping properties of the potentials, operators (7.35) are continuous and
we now prove their invertibility.

Invertibility of operator M. Let us consider the operator
Mt X =y (7.36)

where
1 -V w

11
Mo =10 =150V 1oV,

0 0 Tona L
and £ is defined in (4.30). Evidently operator (7.36) is continuous. The diagonal operators
of the triangular matrix operator ./\/l(l)1 are continuously invertible (cf. the proof of [2,
Theorem 5.3]), implying that the operator (M{') ™1 inverse to (7.36) is continuous.
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Let us now represent R = Rs+R¢ by Lemma 7.4 so that the operator R is sufficiently
small for the operator
Rs 0 0

M = 0TRSO0

roneTTRs 0 0
to satisfy the inequality
11 11,—1
M Iy <1/I(Mo™) ™ llyn sx-

Then the operator MO11 + M%l X > YU s continuously invertible, while the operator
M= M = ME‘)I — MM X > Y is compact by Lemma 7.4 and by the mapping
properties of the operators W' and £ — ﬁ, see [2, Theorems 3.4, 3.6]. This implies that
operator MM X — Y is a Fredholm operator with zero index. Since by Theorem 6.1

it is also injective, we conclude that it is invertible.

Invertibility of operator M2, Let us consider the auxiliary operator

I -V W
M2 = ;| XY (7.37)
0 v I

Evidently operator (7.37) is continuous. Any solution U = (u, v, go)T € X of the equation
MYPU = F, where F = (Fo,F1)| € HY(Q) x H%(BQ) will solve also the following
extended system of three equations,

u+We — Viyp=Fy) in Q, (7.38)
% ¢ — V¢Yp=7F on 09, (7.39)
—Topa Vy = Topa F1 on 9pf, (7.40)

and vice-versa. Taking into account that invertibility of the operator r, ¢V follows from
the first relation in (4.27) and e.g. [27, Theorem 2.7(i)], the diagonal operators of the
system,

I:HY Q) = HYQ)

L. mo0) = HE00),

2
—ropa Vi H 2 (0pQ) — H2(9pQ),
are continuously invertible implying that the triangular matrix operator of the system is
also invertible. If ¢ € H 2 (0pQ) solves equation (7.40), then ¢ = 2(F1+Vy) € 2 (On92)
by equation (7.39), and we arrive at invertibility of the operator (7.37). The rest of the
proof for the operator M2 is similar to the one for M.

Invertibility of operator M?22, Let us consider the auxiliary operator

MG X - Y2, (7.41)
where
I -V w
M(%Q =10 70 (%I - W/A) raDsz‘é >

0 _TaNnv Tone (%I+W)
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Operator (7.41) is evidently continuous and can be considered as a matrix block-triangle
operator with the lower diagonal block

~ 99 Topa (%I - W/A) TaDszE
MGT = )
_TONQV Tono (§I+ W)

Taking into account relations (4.27) and (4.29), we can represent
~(22 . 1y 22 o
Mo”g = diag(1, ) MA" [diag(L, a)g],

for any g = (g1,92)" € g (0pf2) x oz (On$2), where diag(1,1/a) and diag(1,a) are di-

agonal 2 X 2 matrices, while the operator MQAZ given by (7.19) is invertible by Theorem 7.2.
Since 0 < ag < a(x) < a1 < oo, this implies the invertibility of the operator

ME L H2(0pQ) x H? (OnQ) — H 2 (9pQ) x H? (9y9)

and thus of operator (7.41). The rest of the proof for the operator M?2 is similar to the
one for M1, O

Theorem 7.5. If conditions (4.4), (4.10) and (7.34) hold, then the operator M*' : X —
Y2 is a continuous Fredholm operator with zero index. It has one—dimensional null-space
spanned over the element (u®, ¢, ©°) defined in Theorem 6.2(i) and the cokernel spanned
over the functional ¢° defined by (7.31).

Proof. The claim about the null-space, particularly that its dimension is 1, follows from
Theorem 6.2(i).
Let us consider the auxiliary operator

I -V W
MG = ) xR (7.42)
0 —5I £

Evidently operator (7.42) is continuous. Any solution U = (u, 1, ) € X of the equation
M3U = F, where F = (Fo,F1)' € HY(Q) x H_%(aﬂ) will also solve the following
extended system of three equations,

u—Vi4+Wep=Fy in
—%w +Lp=F on 89,
Tana ﬁ‘P:TaNQ F1 on ONQ,

and vice-versa. Taking into account that invertibility of the operator raNQﬁ follows from
relation (4.30) and e.g. [27, Theorem 2.7(ii)], the diagonal operators of the system,

I:HYQ) > HY(Q)
%1 CHT3(00) — H™ % (09),

Fove £ HE(OnQ) — H™ 2 (9n9),

are continuously invertible implying that the triangular matrix operator of the system is
~1 .
also invertible. If ¢ € H2(9pf?) solves the third equation of the system, then F; — Ly €
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Ijlfé(aNQ), and we arrive at invertibility of the operator (7.42). Then the reasoning
similar to the second paragraph of the proof for operator M!! in Theorem 7.4 implies
that operator M2 X — Y?! is Fredholm with zero index.

To prove that the cokernel is spanned over the functional gO defined by (7.31), it
suffice to prove that for any for any U = (u,v,¢)' € X, the right hand side couple
F2 = (Fo,F1) € Y?! of the BDIE system M?'%f = F?!, satisfies condition (7.31).
Let a sequence uy, € D(Q) C HY(Q), k = 1,...00, converge to u in H'(Q) and denote
U, = (uk,w,cp)T. Then Mgll/{k e F?! by the mapping properties of the potentials and
thus go(./\/l21uk) = 0 by Theorem 7.3. Since M2 : X — Y?! is a continuous operator
and ¢° defined by (7.31) is a continuous functional on Y2, we obtain that gO(Mlek)
converges to g"(M2U), i.e., g°(M?U) = 0. D

8. Appendix: Variational BVP Settings

Generalizing the proofs of [24,11] for a general divergent-form elliptic equation in R" and of
[8,13,7] for the Dirichlet and Neumann problems for the Poisson equation in an unbounded
domain €2, we prove in this section unique solvability of the Dirichlet, Neumann and mixed
boundary-value problems for variable-coeflicient equation (2.1) in an unbounded domain
Q C R™ with a compact Lipschitz boundary using their variational settings and the Lax-
Milgram lemma.

8.1. Dirichlet problem

Let us first reformulate the Dirichlet problem (3.5)-(3.6) with a more general right hand
side f in the following weak form.

(D) : Given ¢g € H%(OQ) and f € H71(Q), find u € H(Q) such that

Eu,v) = —(f,v)g Yo e HYQ), (8.1)
vTu =gy on 0N (8.2)

Taking in mind that the space Hg () of functions ¢ € H'(Q) such that vtg = 0
can be identified with the space §j € H'(2) (see e.g. [14, Theorems 3.33, 3.40]), one can
easily prove that the space Hp(2) of functions g € H'(2) such that yTg = 0 can be
identified with the space H'(2) with equivalent norms. Then problem (8.1)-(8.2) with the
homogeneous Dirichlet condition, ¢g = 0 is reduced to the following variational problem.

(Do) : Given f € H™H(Q), find u € HE(Q) such that E(u,v) = —(f,v)q Yo € HH(Q).

By (2.5) and the norm definitions (2.2) and (2.3), we have estimates

1€(u, v)| < arfulyr vl o) < arllully @ llvllze @) (8.3)
E(u,u) > aglul3 gy > Caollull g (8.4)

implying the continuity on H!(Q) x #1(Q) and H! () —ellipticity and thus the continuity
on HE(Q) x HE(2) and Ho' (Q)—ellipticity of the bilinear functional €. The estimate

[(Fsvdal < Ifllu-r@)llvllg o) < ClAll-1@ vl @)

implies the continuity of the functional f on Hg(€2). Then due to the Lax-Milgram lemma,
the problem (Dg) is uniquely solvable and its solution is u = ABE f, where the operator
AB%) : 1Y) — HE(Q) is continuous.

Let now B be an open ball such that 9Q C B and denote Q' = Q[ B. Let us now look
for a solution of the general Dirichlet problem (8.1)-(8.2) in the form u = ug + @1, where
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@1 € HY(Q) is the extension by zero to Q of the solution u; € H'(Q) of the equation
Auj; = 0 in the bounded domain €' with the Dirichlet conditions vTu; = ¢o on 99,
~vtu1 = 0 on &B. The mapping of g € H? (09) to @1 € H'(Q) is evidently continuous.
Then ug € H(S) is the (unique) solution of the problem Dy with the modified right hand
side fo=f—Au € ’Hil(Q). Taking into account that the homogeneous problem (D) has
only the trivial solution due to the unique solvability of the problem (Dg), we arrive at
the following assertion.

Theorem 8.1. Under conditions (2.6) the problem (D) and the Dirichlet problem (3.5)-
(3.6) are uniquely solvable and their solutions can be written as u = ABI (f,00) ", where

the operators Al_)l c HTHQ) x H%(QQ) — HY(Q) and ABl : La(p; Q) x H%(BQ) —
HYO(Q; A) are continuous.

8.2. Neumann problem

Taking into account the first Green identity (2.8), it is easy to show that the Neumann
problem (3.7)-(3.8) is equivalent to the following weak problem

(N) : Given g € Hﬁé(aﬁ) and [ € La(p; Q), find u € HY°(Q; A) such that

E(u,v) = —(f,v)q + W0, 7 v)aa Yo € H'(Q). (8.5)

We associate with equation (8.5) also the following variational problem (in a wider
space).
(N) : For f € H™H(Q) find u € HY(Q) such that

E(u,v) = —(f,v) VYoeH (Q).

The estimates (8.3) and (8.4) imply the continuity and #* (Q)—ellipticity of the bilinear
functional £, while the functional f € H~1() is continuous on #!(2) by the definition

of the space 7?[71(9). Then due to the Lax-Milgram lemma we arrive at the following
assertion.

Theorem 8.2. Under conditions (2.6) the problem (N) is uniquely solvable and its solu-
tion is u = .A]_\-]l f, where the operator AJ_Vl s HHQ) = HE(Q) is continuous.

For problem (N), let us define f as (f,v)g = (f,v)q — (1/10,'y+v>39 Yv € 7-[1((2).
Then the estimates

[(fsval < N lLy o)Vl @) (8.6)
(Wo. v v)aql < ol H7+HH

H™ 3 (09) *1(9)—>H%(BQ)HUHH1(Q)

imply f € 7-7.71((2) and we obtain the following corollary from Theorem 8.2.

Theorem 8.3. Under conditions (2.6) the problem (N) and thus the Neumann problem
(3.7)-(3.8) are uniquely solvable and their solution is uw = .A]_Vl (f, 1/10)T, where the operator

Af\,l s Lo(p; Q) X H_%(OQ) — HYO(Q; A) is continuous.
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8.3. Mixed problem

Due to the first Green identity (2.8), it is easy to show that the mixed problem (3.1)-(3.3)
is equivalent to the following weak problem

(M) : Given o € H2(9pQ), o € H™2(dnQ) and f € La(p;Q), find u € H(Q; A)
such that

E(u,v) = ~(f,v)a + (0,7 V)oya o € Ho(0pL),
vru =gy on 9pQ,
where H$(;0pQ) == {w € H1(Q) : vTw =0 on HpQ}.
Let [H3(Q;0pQ)]* denote the space dual to H (Q; dp€2). We associate with the prob-
lem (M) also the following weak problem (in a wider space).

(M) : Given @q € H%(GDQ) and f € [H}(Q;0pQ)]*, find u € HY(Q) such that

E(u,v) = —(fiv)a Vv € HH(Q0pR),
fy+u= wo on JOpfl.

Then its special case for the homogeneous Dirichlet condition, 9 = 0 on dp{2, reduces to
the variational problem
(Mp) : Given f € [H{(;0p)]*, find u € HE(;0pQ) such that

E(u,v) = —(f,v) Vo€ HQ;00).

Since the norm in Hy(;dpQ) is induced by the norm in #* (), the estimates (8.3)
and (8.4) imply the continuity on H{(Q; dpQ) x HG(;pQ) and H (Q; dpQ)—ellipticity
of the bilinear functional £. The functional f € [H{(Q;dpQ)]* is evidently continuous on
"Hé (©;0pf). Then the Lax-Milgram lemma gives the following assertion.

Theorem 8.4. Under conditions (2.6) the problem (M) is uniquely solvable and its solu-
tion is u = A;vfl f, where the operator A;Zl C[HE(Q;0p)]* = HE(0pQ) is continuous.
0 0

Let now B be an open ball such that 92 C B and denote Q' = QN B. Let e :
H%(QDQ) — H%((‘?Q) be a linear continuous extension operator. Let us now look for a
solution of the problem (M) in the form u = ug + @1, where @1 € H*(Q) is the extension
by zero to Q of the solution u; € H'(Q') of the equation Au; = 0 in the bounded domain
Q' with the Dirichlet conditions yTu; = epg on 9, v u; = 0 on dB. The mapping of
wo € H%(GQ) to @1 € H'(Q) is evidently continuous.

The operator Ag,q : H'(Q) — [H'(Q;0pQ)]*, defined as

(Agpau,v)q = —E(u,v) YueH (Q), veH (Qp0)

is bounded, cf. [18, Section 3]. This implies Ay, i1 € [H!(Q;pQ)]*.

Then ug € H§(Q;pQ) is the (unique) solution of the problem My with the modified
right hand side fo = f — Ay, i1 € [H1(Q;0pQ)]*. Taking into account that by Theo-
rem 8.4 the homogeneous problem (Mp) and thus (M) has only the trivial solution, we
arrive at the following assertion.

Theorem 8.5. Under conditions (2.6) the problem (M) is uniquely solvable and its solu-
tion is u = A;le (f,00) ", where the operator AXZ1 S [HY(Q;0p0)]F x H™? (99) — HY(Q)
18 continuous.
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For problem (M), let us define f as (f,v)q = (f,v)a — (Y0,7 v)oya Yo €
HE (2 0pQ). Then estimate (8.6) along with the estimate

(o, v v)axal < ol -1 (o

H™2 (08 Q) HE(20p9Q)—H 2 (9nQ) ol 0:009)

imply f € [H{(Q;0pQ)]* and we obtain the following corollary from Theorem 8.5.

Theorem 8.6. Under conditions (2.6) the problem (M) and thus the mized problem (3.1)-
(3.3) are uniquely solvable and their solution is u = A]T/Il (f, vo, wo)—r, where the operator

.A]T/Il s Lo(p; Q) X H%(E)DQ) X H_%(aNQ) — HYO(Q; A) is continuous.

Remark that Theorems 8.3 and 8.4 give unique solvability of the generalized (aggre-
gate) settings of, respectively, the Neumann and mixed problems in unbounded domains,
that deal with the case when f € H~(Q), which implies that the canonical co-normal
derivative (2.7) is not well defined, while the corresponding generalized co-normal deriva-
tive is inherently non-unique, cf. [18, Section 3.2].

Concluding Remarks

Four different segregated direct boundary-domain integral equation systems, associated
with the mixed (Dirichlet-Neumann) BVP for a scalar “Laplace” PDE with variable coef-
ficient on a three-dimensional unbounded domain, have been formulated and analyzed in
the paper. Equivalence of three of the BDIE systems to the original BVPs was proved in
the case when right-hand side of the PDE is from L2 (p; ), and the Dirichlet and the Neu-
mann data are from the spaces H? (0pQ) and H™ 2 (0N ), respectively. The invertibility
of the BDIE operators of these three systems was proved in the corresponding weighted
Sobolev spaces. Fredholm properties of the fourth system were studied as well. This analy-
sis was based on the invertibility in the weighted Sobolev spaces of the variable-coefficient
BVPs in unbounded domains also proved in the paper.

Using the approach of [17], the united direct boundary-domain integro-differential sys-
tems can be also formulated and analyzed for the BVPs in exterior domains. The approach
can be extended also to more general PDEs and to systems of PDEs, while smoothness of
the boundary can be essentially relaxed, and the PDE right hand side can be considered
in more general spaces, cf. [16].

Employing methods of [3], one can consider also the localized counterparts of the
BDIEs for BVPs in exterior domains.

Acknowledgments

The work was supported by the grant EP/H020497/1 “Mathematical analysis of localised
boundary-domain integral equations for BVPs with variable coefficients” of the EPSRC,
UK.

References

[1] C. Amrouche, V. Girault and J. Giroire, Dirichlet and Neumann exterior problems
for the n-dimensional Laplace operator. An approach in weighted Sobolev spaces, J.
Math. Pures Appl. 76 (1997) 55-81.

[2] O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain
integral equations for a mixed BVP with variable coefficient, I: Equivalence and
invertibility, Journal of Integral Equations and Applications 21 (2009)(4) 499-543.



June 21, 2013

19:42 WSPC/INSTRUCTION FILE BDIEexter-aa-web-e

28 O. Chkadua, S.E. Mikhailov, D. Natroshvili

8]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of some localized boundary-
domain integral equations, Journal of Integral Equations and Applications 21 (2009)
405-445.

O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of segregated boundary-
domain integral equations for variable-coefficient problems with cracks, Nu-
merical Methods for Partial Differential Equations 27 (2011)(1) 121-140, doi:
10.1002/num.20639.

M. Costabel, Boundary integral operators on Lipschitz domains: elementary results,
SIAM J. Math. Anal. 19 (1988) 613-626.

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science
and Technology, vol. 4: Integral Equations and Numerical Methods (Springer, Berlin—
Heidelberg—New York, 1990), ISBN 3-540-50209-2.

J. Giroire, Etude de quelques problemes aux limites extérieurs et résolution par
équations intégrales, Thése de Doctorat d’Etat, Université Pierre-et-Marie-Curie
(Paris-VI) (1987).

J. Giroire and J. Nedelec, Numerical solution of an exterior Neumann problem using
a double layer potential, Mathematics of Computation 32 (1978) 973-990.

P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston—London—
Melbourne, 1985), ISBN 0-273-08647-2.

R. Grzhibovskis, S. E. Mikhailov and S. Rjasanow, Numerics of boundary-domain
integral and integro-differential equations for BVP with variable coefficient in 3D,
in IJABEM 2011, Symposium of the International Association for Boundary Element
Methods, 5-8 September 2011. Extended Abstracts (Brescia, Italy, 2011), pp. 163-168.
B. Hanouzet, Espaces de Sobolev avec poids application au probleme de Dirichlet
dans un demi espace, Rend. del Sem. Mat. della Univ. di Padova XLVT (1971) 227—
272.

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Appli-
cations, vol. 1 (Springer, Berlin — Heidelberg — New York, 1972), ISBN 3-540-05363-8.
J. Ma&ulen, Losungen der Poissongleichung und harmonishe Vektorfelder in
unbeshrénkten Gebieten, Math. Meth. in the Appl. Sci. 5 (1983) 233-255.

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge
University Press, Cambridge, UK, 2000), ISBN 0-521-66375 X.

S. E. Mikhailov, Localized boundary-domain integral formulations for problems with
variable coefficients, Engineering Analysis with Boundary Elements 26 (2002) 681—
690.

S. E. Mikhailov, Analysis of extended boundary-domain integral and integro-
differential equations of some variable-coefficient BVP, in Advances in Boundary
Integral Methods — Proceedings of the 5th UK Conference on Boundary Integral
Methods, ed. K. Chen (University of Liverpool Publ., Liverpool, UK, 2005), ISBN 0
906370 39 6, pp. 106-125.

S. E. Mikhailov, Analysis of united boundary-domain integro-differential and inte-
gral equations for a mixed BVP with variable coefficient, Math. Methods in Applied
Sciences 29 (2006) 715-739.

S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems
on Lipschitz domains, J. Math. Analysis and Appl. 378 (2011) 324-342, doi:
10.1016/j.jmaa.2010.12.027.

S. E. Mikhailov and N. A. Mohamed, Iterative solution of boundary-domain integral
equation for BVP with variable coefficient, in Proceedings of the 8th UK Conference
on Boundary Integral Methods, ed. D. Lesnic (Leeds University Press, Leeds, UK,
2011), ISBN 978 0 85316 2957, pp. 127-134.



June 21, 2013

20]

21]

(22]

23]
24]

(25]

19:42 WSPC/INSTRUCTION FILE BDIEexter-aa-web-e

Analysis of Segregated BDIEs in Exterior Domains 29

S. E. Mikhailov and I. S. Nakhova, Mesh-based numerical implementation of the lo-
calized boundary-domain integral equation method to a variable-coefficient Neumann
problem, J. Engineering Math. 51 (2005) 251-2509.

C. Miranda, Partial Differential Equations of Elliptic Type, 2-nd edn. (Springer,
Berlin — Heidelberg — New York, 1970).

J. Nedelec and J. Planchard, Une méthode variationelle d’éléments finis pour la
résolution numérique d’un probléme extérieur dans R®, RAIRO 7 (1973)(R3) 105—
129.

J.-C. Nédélec, Acoustic and electromagnetic equations, vol. 144 of Applied Mathemat-
ical Sciences (Springer-Verlag, New York, 2001), ISBN 0-387-95155-5.

J. B. Neto, Inhomogeneous boundary value problems in a half space, Ann. Sc. Sup.
Pisa 19 (1965) 331-365.

J. Sladek, V. Sladek and S. N. Atluri, Local boundary integral equation (LBIE)
method for solving problems of elasticity with nonhomogeneous material properties,
Comput. Mech. 24 (2000) 456—462.

J. Sladek, V. Sladek and J.-D. Zhang, Local integro-differential equations with do-
main elements for the numerical solution of partial differential equations with variable
coefficients, J. Eng. Math. 51 (2005) 261-282.

E. Stephan, Boundary integral equations for screen problems in R3, Integral Equa-
tions and Operator Theory 10 (1987) 236-257.

A. E. Taigbenu, The Green element method (Kluwer, Boston, 1999).

T. Zhu, J.-D. Zhang and S. N. Atluri, A local boundary integral equation (LBIE)
method in computational mechanics, and a meshless discretization approach, Com-
putational Mechanics 21 (1998) 223-235.

T. Zhu, J.-D. Zhang and S. N. Atluri, A meshless numerical method based on the
local boundary integral equation (LBIE) to solve linear and non-linear boundary
value problems, Engng. Anal. Bound. Elem. 23 (1999) 375-389.



