
Educating Programmers: A Reflection on

 Barriers to Deliberate Practice

 Michael James Scott
Information Systems, Computing & Mathematics

 Brunel University

 Uxbridge, Middlesex, UB8 3PH

 michael.scott@brunel.ac.uk
www.p-shift.co.uk

Gheorghita Ghinea
Information Systems, Computing & Mathematics

Brunel University

Uxbridge, Middlesex, UB8 3PH

 george.ghinea@brunel.ac.uk
www.p-shift.co.uk

Abstract
Programming is a craft which often demands that learners engage in a significantly high

level of individual practice and experimentation in order to acquire basic competencies.

However, practice behaviours can be undermined during the early stages of instruction. This

is often the result of seemingly trivial misconceptions that, when left unchecked, create

cognitive-affective barriers. These interact with learners' self-beliefs, potentially inducing

affective states that inhibit practice. This paper questions how to design a learning

environment that can address this issue. It is proposed that analytical and adaptable

approaches, which could include soft scaffolding, ongoing detailed informative feedback and

a focus on self-enhancement alongside skill development, can help overcome such barriers.

Keywords

Computer Science Education, Computer Programming, Laboratory Instruction, Affective

Development, Feedback, Self-Beliefs, Barriers.

1. Introduction
Recently, there has been a drive to revitalise computing education (Gove 2012), in part, due

to criticisms published by The Nesta Trust (Livingstone & Hope 2011) and The Royal

Society (Furber 2012). Unfortunately, few beginners appear to find writing code easy and

enjoyable (Jenkins 2001; Jenkins 2002), so crafting an effective learning environment is not a
trivial task. Moreover, despite considerable research into programming instruction since the

inception of Computer Science as an academic discipline, many learners have not acquired

the desired level of competency (Soloway, Bondar & Ehrlich 1983; McCracken et al. 2001;

Tew & Guzdial 2011). Even some whom appear to perform well in early tutorials choose

not to pursue the discipline (Beaubouef & Mason 2005; Carter 2006). Such issues are so

pervasive that the British Computer Society (BCS) declared programming a grand challenge

for education research (McGettrick et al. 2005).

An aspect of this challenge that the authors have encountered is getting learners to engage

in frequent practice. Evidence suggests that levels of effort (Ventura 2005), comfort

(Wilson & Shrock 2001; ibid.) and depth (Simon et al. 2006) predict success in a first

programming course. This is in line with the theory that it can take approximately ten years

© 2013 The Higher Education Academy
Proceedings of the 2nd HEA Conference on Learning & Teaching in STEM Disciplines
Birmingham, UK, April 17-18, 2013 Paper 028P

Version for arXiv Created with Permission

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/13641715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of deliberate practice to become an expert (Ericsson, Krampe & Tesch-Romer 1993;

Winslow 1996; Ericsson 2006). Unfortunately, learners often claim that they lack time or

have no motivation to do so (as in Kinnunen & Malmi 2006). So if deliberate practice is a key

element in the acquisition of programming competencies, how do educators create learning

environments that successfully encourage practice?

2. Cognitive-Affective Barriers and Deliberate Practice
In order to appreciate how to facilitate frequent practice, the barriers that prevent it should

be explored. Programming is markedly distinct from other disciplines because proficiency in

other areas does not predict success (Byrne & Lyons 2001; Erdogan, Aydin & Kabaca 2008)

and some believe that there are no effective aptitude tests (McGettrick et al. 2005;

Caspersen, Benedsen & Larsen 2007), assuming that aptitudes for programming even exist

(Ericsson, Krampe & Tesch-Romer 1993; Jenkins 2002). This is because the learning material

sometimes demands something very novel to new learners (Huggard 2004), drawing on

skills that, at present, are seldom developed prior to programming instruction:

By means of metaphors and analogies we try to link the new to the old, the novel to

the familiar. Under sufficiently slow and gradual change, it works reasonably well; in

the case of a sharp discontinuity, however, the method breaks down.

(Dijkstra 1989, p. 1398)

The sudden sense of “radical novelty” (ibid.) forms an unexpected challenge for many

learners, presenting a barrier to learning. This is because those without prior experience

need to adapt to thinking about the intangible and abstract concepts which are needed to

describe the mechanics behind the code they are writing (Du Boulay 1989). Barriers can
even arise as early as the first stage of instruction. Consider how someone new to reading

program code might conceive the mechanics behind an assignment operation, such as:

a = 1;

b = 2;

a = b; // what is the value of a?

Bornat, Dehnadi and Simon (2008) found that for “simple” assignment operations that

“hardly look as if they should be hurdles at all” (p. 54), students held many different mental

models for how the program may execute. Even after a few weeks of instruction, some

participants failed to apply the correct model consistently in a diagnostic test. This illustrates

that the ways in which learners conceptualise computer programs can be diverse and

incorrect models may persist without some intervention. Consequently, it is important not

to dismiss the early challenges experienced by individuals as: trivial; a lack of effort; or a lack

of talent. Put elegantly, “if students struggle to learn something, it follows that this is for

some reason difficult to learn” (Jenkins 2002, p. 53). These issues can be addressed through

soft scaffolding, such that individual understandings are continuously probed to enable the

timely delivery of tailored support (Simons & Klein 2007). Through this, misunderstandings

are traced and corrected through the provision of intermediate learning objectives. When

not promptly addressed, such issues can impede progress as learners are forced to the edge

of, or perhaps beyond, their “zone of proximal development” (Vygotsky 1978, p. 86).

Yet, Kinnunen and Malmi (2006) note there can be “individual variety in how students

respond to the same situation” (p. 107). Many learners who encounter such challenges are

able to overcome them without assistance, albeit perhaps after some frustration. So why are

some people tenacious while others seem helpless? A potential candidate for mediating this

response is an individual's academic beliefs. Notably, implicit beliefs surrounding

programming aptitude. Dweck (2002) divides learners into entity-theorists, who believe their

aptitude is a natural fixed trait, and incremental-theorists, who believe their aptitude is a

malleable quality which is increased through effort. These two groups demonstrate different

behaviours when they encounter difficulty (ibid.), as summarised in Figure 1:

 Entity-Theorists Incremental-Theorists

Goal of the student? To demonstrate a high

coding ability

To improve coding ability,

even if reveals poor progress

Meaning of failure? Indicator of low

programming aptitude

Indicative of lack of effort,

strategy, or pre-requisites

Meaning of effort? Demonstrates low

programming aptitude

Method of enhancing

programming aptitude

Strategy when meets difficulty? Less time practicing More time practicing

Performance after difficulty? Impaired Equal or improved

 Table 1. The potential influence of different theories of aptitude (Adapted from Dweck 2002)

Too often, it is the case that learners start to believe an inherent aptitude is required to

become a programmer. Such beliefs inhibit practice. Thus, it is important that programming

pedagogies reinforce the incremental theory. An example might include the liberal use of

detailed informative feedback. This approach focuses on improvement through illustrating

weaknesses to overcome, rather than merely labeling learners with summative grades. The

latter might be interpreted as a judgment of aptitude. However, many learners “often focus

on topics associated with assessment and nothing else” (Gibbs & Simpson 2004, p. 14) so

some form of marking is often necessary as an extrinsic motivator.

While Dweck's (2002) dichotomy is useful in illustrating some differences, it does not

explain why some learners seem far more determined than others. Potential factors, as

Huggard (2004), Rogerson and Scott (2010) affirm, are the negative affective states that

learners can experience as they write code. These “states[,] such as frustration and anxiety[,

can] impede progress toward learning goals” (McQuiggan, Lee & Lester 2007,

p. 698). However, while some learners become overtly frustrated with the all or nothing

nature of preparing a computer program for compilation, others press on without

complaint, demonstrating an admirable level of experimentation and debugging proficiency.

This can be somewhat surprising given that anything short of a completely syntactically
correct set of coded instructions will result in failure and it is unusual for those at an

introductory level to write robust code on their first attempt.

A potential candidate for mediating how learners are able to overcome negative affect is

academic self-concept. That is, “self-perceptions formed through experience with and

interpretations of one's environment” (Marsh & Martin 2011, p. 60). Many domain-specific

forms of self-concept demonstrate a reciprocal relationship with academic achievement in

their respective areas (ibid.) as well as, more generally, interactions with study-related

emotions (Goetz et al. 2010). Extending this notion, learners who believe that they are

programmers, those with a high programming self-concept, may be able to overcome

frustrations and anxiety more easily. Thus, maintaining high levels of motivation. However,

how can self-concept be enhanced? A meta-analysis of 200 interventions shows that

practices which target a domain-specific facet of self-concept, with an emphasis on

motivational praise and feedback alongside skill development, yield the largest effects

(O'Mara et al., 2006). Other aspects of effective practice might also emphasize learning

activities that are enjoyable and nurture senses of pride (Goetz et al., 2010).

3. Conclusion
Learners often need to practice writing code frequently in order to acquire basic

programming competencies. This paper questions how learning environments can be better

designed in order to facilitate deliberate practice, describing three potential barriers to

deliberate practice: the radical novelty of the learning material; the belief that some inherent

aptitude is required; and the emergence of unfavourable affective states. It is proposed that

examples of good practice might include: soft scaffolding; on-going informative feedback that

encourages a growth mindset; and an emphasis on self-enhancement, through motivational

feedback and pride-worthy activities, in addition to skill-development. However, empirical

enquiry is needed to establish the potential impact of these problems and proposals.

4. References
Beaubouef, T. & Mason, J. (2005) Why the High Attrition Rate for Computer Science Students:

Some Thoughts and Observations. ACM SIGCSE Bulletin, 37 (2), 103-106.

Bornat, R., Dehnadi, S. & Simon, S. (2008) Mental Models, Consistency and Programming

Aptitude. In Proceedings of the 10th Australasian Computing Education Conference, 53-61.

Byrne, P. & Lyons, G. (2001) The Effect of Student Attributes on Success in Programming. ACM

SIGCSE Bulletin, 33 (3), 49-52.

Carter, L. (2006) Why Students with an Apparent Aptitude for Computer Science Don't

Choose to Major in Computer Science. ACM SIGCSE Bulletin, 38 (1), 27-31.

Caspersen, M., Benedsen, J. & Larsen, K. (2007) Mental Models and Programming Aptitude. ACM

SIGCSE Bulletin, 39 (3), 206-210.

Djikstra, E.W. (1989) A Debate on Teaching Computer Science: On the Cruelty of Really

Teaching Computer Science. Communications of the ACM, 32 (12), 1398-1404.

Du Boulay, J. (1989) Some Difficulties of Learning to Program. Educational Computing Research,

2 (1), 57-53.

Dweck, C. (2002) Messages That Motivate: How Praise Molds Students' Beliefs, Motivation, and

Performance (in Suprising Ways). In Improving Academic Achievement (ed. J. Arsonson).

New York, USA: Academic Press.

Erdogan, Y., Aydin, E. & Kabaca, T. (2008) Exploring the Psychological Predictors of

Programming Achievement. Instructional Psychology, 35 (3), 264-270.

Ericsson, K. (2006) The Influence of Experience and Deliberate Practice on the Development of

Superior Expert Performance. In The Cambridge Handbook of Expertise and Expert

Performance (eds. K. Ericsson et al.). Cambridge, UK: Cambridge University Press.

Ericsson, K., Krampe, R. & Tesch-Romer, C. (1993) The Role of Deliberate Practice in the

Acquisition of Expert Performance. Psychological Review, 100 (3), 363-406.

Furber, S. (2012) Shut Down or Restart? The Way Forward for Computing in UK Schools.

London, UK: The Royal Society.

Gibbs, G. & Simpson, C. (2004) Conditions Under Which Assessment Supports Students'

Learning. Learning and Teaching in Higher Education, 1, 3-31.

Goetz, T., Cronjaeger, H., Frenzel, A., Lüdtke, O. & Hall, N. (2010) Academic Self-Concept and

Emotion Relations: Domain Specificity and Age Effects. Contemporary Educational

Psychology, 35 (1), 44-58.

Gove, M. (2012) Digital Literacy and the Future of ICT in Schools. Presentation at the BETT

Show, Department for Education, http://www.education.gov.uk/inthenews/speeches/

a00201868/michael-gove-speech-at-the-bett-show-2012 (5-11-2012).

Huggard, M. (2004) Programming Trauma: Can it be Avoided? In Proceedings of the BCS Grand

Challenges in Computing: Education, 50-51.

Jenkins, T. (2002) On the Difficulty of Learning to Program. In Proceedings of the 3rd HEA

Conference for the ICS Learning and Teaching Support Network, 1-8.

Jenkins, T. (2001) Teaching Programming: A Journey from Teacher to Motivator. In Proceedings

of the 2nd HEA Conference for the ICS Learning and Teaching Support Network, 53-58.

Kinnunen & Malmi (2006) Why Students Drop Out CS1 Courses? In Proceedings of the 2006

International Computing Education Research Workshop, 97-108.

Livingstone, I. & Hope, A. (2011) Next Gen: Transforming the UK into the World's Leading

Talent Hub for the Video Games and Visual Effects Industries. London, UK: NESTA.

Marsh, H. & Martin, A. (2011) Academic Self-Concept and Academic Achievement: Relations

and Causal Ordering. British Journal of Educational Psychology, 81 (1), 59-77.

McCracken M., Almstrum, D., Diaz, M., Guzdial, D., Hagen, Y., Kolikant, C., Laxer, L., Thoman,

I., Utting, T., & Wilusz, T. (2001) A Multi-National, Multi-Institutional Study of

Assessment of Programming Skills of First Year CS Students. ACM SIGCSE Bulletin, 33 (4),

125-140.

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G. & Mander, K. (2005) Grand

Challenges in Computing: Education - A Summary. The Computer Journal, 48 (1), 42-48.

McQuiggan, S., Lee, S. & Lester, J. (2007) Early Prediction of Student Frustration. Affective

Computing and Intelligent Interaction, 47 (38), 698-709.

O'Mara, A.J., Marsh, H.W., Craven, R.G. & Debus, R.L. (2006) Do Self-Concept Interventions

Make A Difference? A Synergistic Blend of Construct Validation and Meta-Analysis.

Educational Psychologist, 41, 181-206.

Rogerson, C. & Scott, E. (2010) The Fear Factor: How it Affects Students Learning to Program

in a Tertiary Environment. Information Technology Education, 9 (1), 147-171.

Simons, K., & Klein, J. (2007) The Impact of Scaffolding and Student Achievement Levels in a

Problem-Based Learning Environment. Instructional Science, 35, 41-72.

Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., de Raadt, M., Haden, P., Hamer, J.,

Hamilton, M., Lister, R., Petre, M., Sutton, K., Tolhurst, D. & Tutty, J. (2006) Predictors

of Success in a First Programming Course. In Proceedings of the 8th Australasian Computing

Education Conference, 189-196.

Soloway, E., Bonar, J. & Ehrlich, K. (1983) Cognitive Strategies and Looping Constructs: An

Empirical Study. Communications of the ACM, 26 (11), 853-860.

Tew, E. & Guzdial, M. (2011) The FCS1: A Language Independent Assessment of CS1

Knowledge. In Proceedings of the 42nd ACM Technical Symposium on Computer Science

Education, 111-116.

Ventura, P. (2005) Identifying Predictors of Success for an Objects-First CS1. Computer Science

Education, 15 (3), 223-243.

Vygotsky, L. (1978) Mind in Society: The Development of Higher Psychological Processes.

London, UK: University Press.

Wilson, B. & Shrock, S. (2001) Contributing to Success in an Introductory Computer Science

Course: A Study of Twelve Factors. ACM SIGCSE Bulletin, 33 (1), 184-188.

Winslow, L.E. (1996) Programming Pedagogy - A Psychological Overview. ACM SIGCSE Bulletin,

28 (1), 17-22.

