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Abstract 
Programming is a craft which often demands that learners engage in a significantly high  

level of individual practice and experimentation in order to acquire basic competencies. 

However, practice behaviours can be undermined during the early stages of instruction. This 

is often the result of seemingly trivial misconceptions that, when left unchecked, create 

cognitive-affective barriers. These interact with learners' self-beliefs, potentially inducing 

affective states that inhibit practice. This paper questions how to design a learning 

environment that can address this issue. It is proposed that analytical and adaptable 

approaches, which could include soft scaffolding, ongoing detailed informative feedback and 

a focus on self-enhancement alongside skill development, can help overcome such barriers.  
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1. Introduction 
Recently, there has been a drive to revitalise computing education (Gove 2012), in part, due 

to criticisms published by The Nesta Trust (Livingstone & Hope 2011) and The Royal 

Society (Furber 2012). Unfortunately, few beginners appear to find writing code easy and 

enjoyable (Jenkins 2001; Jenkins 2002), so crafting an effective learning environment is not a 
trivial task. Moreover, despite considerable research into programming instruction since the 

inception of Computer Science as an academic discipline, many learners have not acquired 

the desired level of competency (Soloway, Bondar & Ehrlich 1983; McCracken et al. 2001;  

Tew & Guzdial 2011). Even some whom appear to perform well in early tutorials choose 

not to pursue the discipline (Beaubouef & Mason 2005; Carter 2006). Such issues are so 

pervasive that the British Computer Society (BCS) declared programming a grand challenge 

for education research (McGettrick et al. 2005).  

 

An aspect of this challenge that the authors have encountered is getting learners to engage 

in frequent practice. Evidence suggests that levels of effort (Ventura 2005), comfort  

(Wilson & Shrock 2001; ibid.) and depth (Simon et al. 2006) predict success in a first 

programming course. This is in line with the theory that it can take approximately ten years 
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of deliberate practice to become an expert (Ericsson, Krampe & Tesch-Romer 1993; 

Winslow 1996; Ericsson 2006). Unfortunately, learners often claim that they lack time or 

have no motivation to do so (as in Kinnunen & Malmi 2006). So if deliberate practice is a key 

element in the acquisition of programming competencies, how do educators create learning 

environments that successfully encourage practice? 

 

2. Cognitive-Affective Barriers and Deliberate Practice 
In order to appreciate how to facilitate frequent practice, the barriers that prevent it should 

be explored. Programming is markedly distinct from other disciplines because proficiency in 

other areas does not predict success (Byrne & Lyons 2001; Erdogan, Aydin & Kabaca 2008) 

and some believe that there are no effective aptitude tests (McGettrick et al. 2005; 

Caspersen, Benedsen & Larsen 2007), assuming that aptitudes for programming even exist 

(Ericsson, Krampe & Tesch-Romer 1993; Jenkins 2002). This is because the learning material 

sometimes demands something very novel to new learners (Huggard 2004), drawing on 

skills that, at present, are seldom developed prior to programming instruction:  

 

By means of metaphors and analogies we try to link the new to the old, the novel to 

the familiar. Under sufficiently slow and gradual change, it works reasonably well; in 

the case of a sharp discontinuity, however, the method breaks down. 

(Dijkstra 1989, p. 1398) 

 

The sudden sense of “radical novelty” (ibid.) forms an unexpected challenge for many 

learners, presenting a barrier to learning. This is because those without prior experience 

need to adapt to thinking about the intangible and abstract concepts which are needed to 

describe the mechanics behind the code they are writing (Du Boulay 1989). Barriers can 
even arise as early as the first stage of instruction. Consider how someone new to reading 

program code might conceive the mechanics behind an assignment operation, such as:  

 

a = 1; 

b = 2; 

a = b;  // what is the value of a? 

 

Bornat, Dehnadi and Simon (2008) found that for “simple” assignment operations that 

“hardly look as if they should be hurdles at all” (p. 54), students held many different mental 

models for how the program may execute. Even after a few weeks of instruction, some 

participants failed to apply the correct model consistently in a diagnostic test. This illustrates 

that the ways in which learners conceptualise computer programs can be diverse and 

incorrect models may persist without some intervention. Consequently, it is important not 

to dismiss the early challenges experienced by individuals as: trivial; a lack of effort; or a lack 

of talent. Put elegantly, “if students struggle to learn something, it follows that this is for 

some reason difficult to learn” (Jenkins 2002, p. 53). These issues can be addressed through 

soft scaffolding, such that individual understandings are continuously probed to enable the 

timely delivery of tailored support (Simons & Klein 2007). Through this, misunderstandings 

are traced and corrected through the provision of intermediate learning objectives. When 

not promptly addressed, such issues can impede progress as learners are forced to the edge 

of, or perhaps beyond, their “zone of proximal development” (Vygotsky 1978, p. 86). 

 

Yet, Kinnunen and Malmi (2006) note there can be “individual variety in how students 

respond to the same situation” (p. 107). Many learners who encounter such challenges are 



 

able to overcome them without assistance, albeit perhaps after some frustration. So why are 

some people tenacious while others seem helpless? A potential candidate for mediating this 

response is an individual's academic beliefs. Notably, implicit beliefs surrounding 

programming aptitude. Dweck (2002) divides learners into entity-theorists, who believe their 

aptitude is a natural fixed trait, and incremental-theorists, who believe their aptitude is a 

malleable quality which is increased through effort. These two groups demonstrate different 

behaviours when they encounter difficulty (ibid.), as summarised in Figure 1: 
 

 Entity-Theorists Incremental-Theorists 

Goal of the student? To demonstrate a high 

coding ability 

To improve coding ability, 

even if reveals poor progress 

Meaning of failure? Indicator of low 

programming aptitude 

Indicative of lack of effort, 

strategy, or pre-requisites 

Meaning of effort? Demonstrates low 

programming aptitude 

Method of enhancing 

programming aptitude 

Strategy when meets difficulty? Less time practicing More time practicing 

Performance after difficulty? Impaired Equal or improved 

  Table 1. The potential influence of different theories of aptitude (Adapted from Dweck 2002) 
 

Too often, it is the case that learners start to believe an inherent aptitude is required to 

become a programmer. Such beliefs inhibit practice. Thus, it is important that programming 

pedagogies reinforce the incremental theory. An example might include the liberal use of 

detailed informative feedback. This approach focuses on improvement through illustrating 

weaknesses to overcome, rather than merely labeling learners with summative grades. The 

latter might be interpreted as a judgment of aptitude. However, many learners “often focus 

on topics associated with assessment and nothing else” (Gibbs & Simpson 2004, p. 14) so 

some form of marking is often necessary as an extrinsic motivator. 

 

While Dweck's (2002) dichotomy is useful in illustrating some differences, it does not 

explain why some learners seem far more determined than others. Potential factors, as 

Huggard (2004), Rogerson and Scott (2010) affirm, are the negative affective states that 

learners can experience as they write code. These “states[,] such as frustration and anxiety[, 

can] impede progress toward learning goals” (McQuiggan, Lee & Lester 2007,  

p. 698). However, while some learners become overtly frustrated with the all or nothing 

nature of preparing a computer program for compilation, others press on without 

complaint, demonstrating an admirable level of experimentation and debugging proficiency. 

This can be somewhat surprising given that anything short of a completely syntactically 
correct set of coded instructions will result in failure and it is unusual for those at an 

introductory level to write robust code on their first attempt.  

 

A potential candidate for mediating how learners are able to overcome negative affect is 

academic self-concept. That is, “self-perceptions formed through experience with and 

interpretations of one's environment” (Marsh & Martin 2011, p. 60). Many domain-specific 

forms of self-concept demonstrate a reciprocal relationship with academic achievement in 

their respective areas (ibid.) as well as, more generally, interactions with study-related 

emotions (Goetz et al. 2010). Extending this notion, learners who believe that they are 

programmers, those with a high programming self-concept, may be able to overcome 

frustrations and anxiety more easily. Thus, maintaining high levels of motivation. However, 

how can self-concept be enhanced? A meta-analysis of 200 interventions shows that 



 

practices which target a domain-specific facet of self-concept, with an emphasis on 

motivational praise and feedback alongside skill development, yield the largest effects 

(O'Mara et al., 2006). Other aspects of effective practice might also emphasize learning 

activities that are enjoyable and nurture senses of pride (Goetz et al., 2010). 

 

3. Conclusion 
Learners often need to practice writing code frequently in order to acquire basic 

programming competencies. This paper questions how learning environments can be better 

designed in order to facilitate deliberate practice, describing three potential barriers to 

deliberate practice: the radical novelty of the learning material; the belief that some inherent 

aptitude is required; and the emergence of unfavourable affective states. It is proposed that 

examples of good practice might include: soft scaffolding; on-going informative feedback that 

encourages a growth mindset; and an emphasis on self-enhancement, through motivational 

feedback and pride-worthy activities, in addition to skill-development. However, empirical 

enquiry is needed to establish the potential impact of these problems and proposals. 
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