

Department of Economics and Finance

	Working Paper No. 13-05
Economics and Finance Working Paper Series	Guglielmo Maria Caporale and Luis Alberiko Gil-Alana Long Memory in the Ukrainian Stock Market March 2013
	http://www.brunel.ac.uk/economics

LONG MEMORY IN THE UKRANIAN STOCK MARKET

Guglielmo Maria Caporale, Brunel University, London, United Kingdom

Luis Alberiko Gil-Alana University of Navarra and NCID, Pamplona, Spain

March 2013

Abstract

This paper examines the dynamics of stock prices in Ukraine by estimating the degree of persistence of the PFTS stock market index. Using long memory techniques we show that the log prices series is I(d) with d slightly above 1, implying that returns are characterised by a small degree of long memory and thus are predictable using historical data. Moreover, their volatility, measured as the absolute and squared returns, also displays long memory. Finally, we examine if the time dependence is affected by the day of the week; the results indicate that Mondays and Fridays are characterised by higher dependency, consistently with the literature on anomalies in stock market prices.

Keywords: Stock market prices; Efficient market hypothesis; Long memory; Fractional integration.

JEL Classification: C22, G12

Corresponding author: Professor Guglielmo Maria Caporale, Department of Economics and Finance, and Centre for Empirical Finance, Brunel University, London, UB8 3PH, UK. Tel.: +44 (0)1895 266713. Fax: +44 (0)1895 269770. *Email:* <u>Guglielmo-Maria.Caporale@brunel.ac.uk</u>

Luis A. Gil-Alana gratefully acknowledges financial support from the Ministry of Education of Spain (ECO2011-2014 ECON Y FINANZAS, Spain)

1. Introduction

This paper analyses the behaviour of stock prices in Ukraine by modelling the PFTS stock market index. Specifically, it examines its degree of dependence, noting that if the order of integration of the series is equal to 1, it is possible for the efficiency market hypothesis to be satisfied provided the differenced process is uncorrelated. Moreover, it tests the hypothesis of mean reversion (orders of integration below 1 in prices) or alternatively, long memory returns (orders of integration above 1 in the log prices) by using long memory and fractional integration techniques. These are more general than the standard approaches based on integer degrees of differentiation, and provide much more flexibility in modelling the dynamics of the process. Finally, the degree of dependence for each day of the week is investigated in order to establish whether there are any day-of-the-week effects.

We use daily data from January 2007 to February 2013 and the main results in the paper can be summarised as follows. First, we find that the log-prices series are fractionally integrated or I(d) with an order of integration, d, which is slightly above 1 implying that the underlying returns exhibit a small degree of long memory behaviour. The same evidence of long memory is obtained for the absolute and squared returns, which are used as proxies for volatility. These results are consistent with those reported for other stock markets. More importantly, we also find evidence of higher degrees of dependence on Mondays and Fridays than during the other days of the week, validating the hypothesis that there is an anomaly in the form of a "day of the week" effect in the Ukrainian stock market.

The layout of the paper is as follows. Section 2 describes the methodology. Section 3 presents the data and the main empirical results, while Section 4 contains some concluding comments.

1

2. Long memory and fractional integration

Long memory is a feature of the data that implies that observations far apart in time are highly correlated. There are two main definitions, one in the time domain and the other in the frequency domain. Starting with the former, given a covariance stationary process $\{x_t, t = 0, \pm 1, ...\}$, with autocovariance function $E(x_t - Ex_t)(x_{t-j}-Ex_t) = \gamma_j$, according to McLeod and Hipel (1978), x_t is said to be characterised by long memory if

$$\lim_{T \to \infty} \sum_{j=-T}^{j=T} |\gamma_j| \tag{1}$$

is infinite. The alternative definition, based on the frequency domain, is the following. Suppose that x_t has an absolutely continuous spectral distribution function, implying that it has a spectral density function, denoted by $f(\lambda)$, and defined as

$$f(\lambda) = \frac{1}{2\pi} \sum_{j'=\infty}^{j=\infty} \gamma_j \, \cos \lambda \, j, \qquad -\pi < \lambda \le \pi.$$
 (2)

Then, x_t displays the property of long memory if the spectral density function has a pole at some frequency λ in the interval $[0, \pi)$, i.e.,

$$f(\lambda) \to \infty$$
, as $\lambda \to \lambda^*$, $\lambda^* \in [0, \pi)$. (3)

The empirical literature has focused on the case where the singularity or pole in the spectrum occurs at the 0 frequency, i.e., ($\lambda^* = 0$). This is the standard case of I(d) models of the form:

$$(1 - L)^{d} x_{t} = u_{t}, \quad t = 0, \pm 1, ...,$$
 (4)

where d can be any real value, L is the lag-operator ($Lx_t = x_{t-1}$) and u_t is I(0), defined for our purposes as a covariance stationary process with a spectral density function that is positive and finite at the zero frequency. Given the parameterisation in (4) we can distinguish several cases depending on the value of d. Thus, if d = 0, $x_t = u_t$, x_t is said to be "short memory" or I(0), and if the observations are autocorrelated (i.e. AR) they are of a "weakly" form, in the sense that the values in the autocorrelations are decaying at an exponential rate; if d > 0, x_t is said to be "long memory", so named because of the strong association between observations far distant in time. If d belongs to the interval (0, 0.5) x_t is still covariance stationary, while d ≥ 0.5 implies nonstationarity. Finally, if d < 1, the series is mean reverting in the sense that the effects of shocks disappear in the long run, contrary to what happens if $d \ge 1$ when they persist forever.

There exist several methods for estimating and testing the fractional differencing parameter d. Some of them are parametric while others are semiparametric and can be specified in the time or in the frequency domain. In this paper, we use a Whittle estimate of d in the frequency domain (Dahlhaus, 1989) along with a testing procedure, which is based on the Lagrange Multiplier (LM) principle and that also uses the Whittle function in the frequency domain. It tests the null hypothesis:

$$H_0: d = d_0, \tag{5}$$

for any real value d_0 , in a model given by the equation (4), where x_t can be the errors in a regression model of the form:

$$y_t = \beta^T z_t + x_t, \quad t = 1, 2, ...,$$
 (6)

where y_t is the observed time series, β is a (kx1) vector of unknown coefficients and z_t is a set of deterministic terms that might include an intercept (i.e., $z_t = 1$), an intercept with a linear time trend ($z_t = (1, t)^T$), or any other type of deterministic processes. Robinson (1994) showed that, under certain very mild regularity conditions, the LM-based statistic (\hat{r}):

$$\hat{\mathbf{r}} \to_{\mathbf{d}} \mathbf{N}(0, 1) \quad \text{as} \quad \mathbf{T} \to \infty,$$
 (7)

where " \rightarrow_d " stands for convergence in distribution, and this limit behaviour holds independently of the regressors z_t used in (6) and the specific model for the I(0) disturbances u_t in (4).

As in other standard large-sample testing situations, Wald and LR test statistics against fractional alternatives have the same null and limit theory as the LM test of Robinson (1994). Lobato and Velasco (2007) essentially employed such a Wald testing procedure, although it requires a consistent estimate of d; therefore the LM test of Robinson (1994) seems computationally more attractive. A semiparametric Whittle approach (Robinson, 1995) will also be implemented in the paper.

3. Data and empirical results

The series examined is the PFTS Ukrainian Stock Index. It is registered with the Ukrainian SEC stock exchange, which has been in operation since 1997 and currently is the largest marketplace in Ukraine. The PFTS index is calculated based on the results of trading. The daily trade volume is about \$30–60 million. Approximately 220 companies are listed on the PFTS, with a total market capitalisation around \$140 billion. We use daily data from January 9, 2007 to February 27, 2013.

[Insert Figure 1 about here]

Figure 1 displays the original time series, along with the corresponding returns, obtained as the first differences of the log-transformed data, and also the corresponding correlograms and periodograms. The original series appears to fluctuate throughout the sample period, while the returns are very stable. The correlogram of the returns, however, has many significant values, even for some lags far away from zero, and the periodogram has the highest value at the zero frequency, which suggests some degree of long memory in the return series.

As a first step we estimate a model of the form given by equations (4) and (6), with $z_t = (1,t)^T$, $t \ge 1$, 0, otherwise, i.e.,

 $y_t = \beta_0 + \beta_1 t + x_t, \quad (1 - L)^d x_t = u_t, \quad t = 1, 2, ...,$ (8)

where y_t is the log-transformed price.

We report in Table 1 the estimates of d in (8) for the three standard cases of no regressors in the undifferenced regression (i.e., $\beta_0 = \beta_1 = 0$ in (8)), an intercept (β_0 unknown and $\beta_1 = 0$), and an intercept with a linear time trend (β_0 and β_1 unknown) along with the 95% confidence interval of the non-rejection values of d using Robinson (1994) parametric approach.

[Insert Table 1 about here]

The results are reported for the cases of both uncorrelated and autocorrelated errors. In the latter case, we assume first that u_t is an AR(1) process, but then also model the disturbances following the more general specification proposed by Bloomfield (1973). His is a non-parametric approach that approximates ARMA models with only a few parameters. The t-values for the deterministic terms (not reported) imply that the model with an intercept is the most adequate specification for all three types of disturbances. The estimated coefficient for the fractional differencing parameter is slightly above 1 in all three cases and, more importantly, the I(1) hypothesis is rejected in favour of higher orders of integration. This implies that the underlying returns are characterised by long memory, with an order of integration of about 0.21 in the case of uncorrelated errors, and slightly smaller if the errors are autocorrelated. This implies that market efficiency does not hold in the Ukrainian stock market since there is some degree of predictability based on historical data.

[Insert Figure 2 about here]

Next we examine the volatility of the series measured as its absolute and squared returns.¹ Both series are displayed in Figure 2 along with their corresponding correlograms and periodograms. It can be seen that the sample autocorrelation values now decay very slowly, and the periodograms display large peaks at the zero frequency. This is clearly consistent with the I(d) process presented in Section 2 with a positive d.

[Insert Tables 2 and 3 about here]

Tables 2 and 3 provide the same information as Table 1 but for absolute and squared returns respectively. The former appear to be characterised by long memory in all cases, with the estimated values of d ranging from 0.245 (with white noise errors) to 0.343 (Bloomfield disturbances). Slightly smaller values are obtained for squared returns (see Table 3), these ranging from 0.183 (white noise ut) to 0.310 (with Bloomfield autocorrelated errors). This evidence of long memory in the volatility of the series is in line with previous studies of other stock markets and suggests that other approaches based on autoregressive conditional heteroscedasticity models (ARCH, Engel, 1982; GARCH, Bollerslev 1986) should be extended to the fractional case (e.g., FIGARCH-type models, Baillie, Bollerslev and Mikkelsen, 1996) when looking at stock market prices.

The results presented so far are based on a parametric approach (though a nonparametric method, Bloomfield, was also implemented for the I(0) disturbances), and should therefore be taken with caution given the possibility of misspecification. Therefore, we also conducted the analysis using a semiparametric method where no functional form is imposed on the I(0) error term. In particular, we used a Whittle approached developed by Robinson (1995) and later extended by Velasco (1999), Velasco and Robinson (2000), Phillips and Shimotsu (2004, 2005), Abadir et al. (2007)

¹ Absolute returns were employed by Ding et al. (1993), Granger and Ding (1996), Bollerslev and Wright (2000) and Gil-Alana (2003), whereas squared returns were used in Lobato and Savin (1998) and Gil-Alana

and others. This method is essentially a local 'Whittle estimator' in the frequency domain, which uses a band of frequencies that degenerates to zero. The estimator is implicitly defined by:

$$\hat{d} = \arg\min_{d} \left(\log \overline{C(d)} - 2 d \frac{1}{m} \sum_{s=1}^{m} \log \lambda_{s} \right), \quad (9)$$

$$\overline{C(d)} = \frac{1}{m} \sum_{s=1}^{m} I(\lambda_s) \lambda_s^{2d}, \qquad \lambda_s = \frac{2\pi s}{T}, \qquad \frac{m}{T} \to 0,$$

where m is a bandwidth parameter, $I(\lambda_s)$ is the periodogram of the raw time series, x_t , given by:

$$I(\lambda_s) = \frac{1}{2\pi T} \left| \sum_{t=1}^T x_t e^{i\lambda_s t} \right|^2,$$

and $d \in (-0.5, 0.5)$. Under finiteness of the fourth moment and other mild conditions, Robinson (1995) proved that:

$$\sqrt{m} (\hat{d} - d_o) \rightarrow_d N(0, 1/4) \quad as \ T \rightarrow \infty,$$

where d_o is the true value of d. This estimator is robust to a certain degree of conditional heteroscedasticity (Robinson and Henry, 1999) and is more efficient than other more recent semi-parametric competitors.

[Insert Figure 3 and Table 4 about here]

Figure 3 displays the estimates of d for the return series and the absolute and squared returns, specifically the whole range of values of the bandwidth parameter along with the 95% confidence interval for the I(0) case. It can be seen that the estimated values are slightly above the interval in the case of returns and much higher for the two volatility series. Table 4 displays the estimates for some specific bandwidth parameters – these are significant and positive in all cases.

(2005).

As a final step we examine whether there are any anomalies related to the days of the week, as extensively documented in the financial literature (Osborne, 1962, Cross, 1973; French, 1980 and Gibbons and Hess, 1981). For instance, Osborne (1962) and Cross (1973) using data of the S&P 500 found that returns were lower on Mondays than on Fridays. A similar results was reported by Gibbons and Hess (1981) for the DJIA series and in other studies for a number of countries including Canada, Australia, Japan and the UK (Jaffe and Westerfield, 1985); France (Solnik and Bousquet, 1990); and South Korea, Malaysia, the Philippines, Taiwan and Thailand (Brooks and Persand, 2001).

[Insert Figure 4 and Tables 5 - 8 about here]

Figure 4 displays the PFTS index for each day of the week. It can be seen that the five series display a very similar pattern. Tables 5 -7 report the estimates of d for the three cases of white noise, autoregressive and Bloomfield disturbances respectively. Consistently with the results shown in Table 1, the estimates are above 1 in all cases. Their most interesting feature is that in all three cases the highest degrees of persistence are obtained for Mondays and Fridays, and the lowest for the mid-days of the week. Thus, stock market prices are more persistent on Mondays and Fridays than during the other days of the week, implying a higher degree of predictability of their behaviour on these days. The same evidence is obtained when using the semiparametric approach of Robinson (1995) and Abadir et al. (2007) (see Table 8 for some selected bandwidth parameters).

[Insert Tables 9 and 10 about here]

Finally, the analysis for the absolute and squared returns by day of the week (in Tables 9 and 10) also shows higher estimates of d for Mondays and Friday (especially Mondays) than for the other days of the week.

4. Conclusions

In this paper we have examined the properties of the Ukranian stock market by estimating the order of integration of the PFTS series, daily, from January 9, 2007 until February 27, 2013. The main findings are the following. First, the log-prices series is highly persistent, with an order of integration significantly above 1, which implies that stock returns are characterised by long memory behaviour. Second, the same feature is detected in the absolute and squared returns which are used as a measure of volatility. Finally, the analysis by day of the week produces evidence of higher degrees of dependence on Mondays and Fridays than on the other days of the week.

References

Abadir, K.M., W. Distaso and L. Giraitis, 2007, Nonstationarity-extended local Whittle estimation, Journal of Econometrics 141, 1353-1384.

Baillie, R., T. Bollerslev and H. Mikkelsen, (1996), Fractionally integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 96, 3-30.

Bloomfield, P. (1973) An exponential model in the spectrum of a scalar time series, Biometrika 60, 217-226.

Brooks, C. and G. Persand (2001), Seasonality in Southeast Asian stock markets: Some new evidence on day –of –the week effects, Applied Economics Letters 8, 155 - 8.

Cross F. (1973) The behavior of stock prices on Fridays and Mondays, Financial Analyst Journal 29 (1973), 67-69.

Dahlhaus, R. 1989. Efficient parameter estimation for self-similar process. Annals of Statistics 17, 1749-1766.

Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31, 307-327.

Bollerslev, T. and H. Wright, (2000) High frecuency data, frequecy domain inference and volatility forecasting, Review of Economics and Statistics 83, 596-602.

Ding, Z., C.W.J. Granger, R.F. Engle (1993) A long memory property of stock markets and a new model, Journal of Empirical Finance 1, 83-106.

Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation, Econometrica 50, 987-1007.

French, K. (1980) Stock returns and the weekend effect, Journal of Financial Economics 8, 55-69.

Gibbons, M. and P. Hess (1981), Day of the week effects and asset returns, Journal of Business 54, 579-596.

Gil-Alana, L.A. (2003) Fractional integration in the volatility of asset returns, European Review of Economics and Finance 2, 41-52.

Gil-Alana, LA. (2005) Long memory in daily absolute and squared returns in the Spanish stock market, Advances in Investment Analysis and Portfolio Management 1, 198-217.

Granger, C.W.J. and Z. Ding (1996), Varieties of long memory models, Journal of Econometrics 73, 61-78.

Jaffe, J.F. and R. Westerfield (1985), The week-end effect in common stock returns. The international evidence, Journal of Finance 40, 433-454.

Lobato, I. And N.E. Savin, (1998) Real and spurious long memory properties of stock market data, Journal of Business and Economic Statistics 16, 261-268.

Lobato, I. and C. Velasco (2007), Efficient Wald tests for fractional unit roots, Econometrica 75, 575-589.

McLeod, A.I. and K.W. Hipel (1978), "Preservation of the Rescaled Adjusted Range: A Reassessment of the Jurst Phenomenon", Water Resources Research, 14, 491-507.

Osborne, M.F.M. (1962) Periodic structure in the Brownian motion of the stock market, Operations Research 10. 345-379.

Phillips, P.C.B. and Shimotsu, K., 2004, Local Whittle estimation in nonstationary and unit root cases, Annals of Statistics 32, 656-692.

Phillips, P.C.B. and Shimotsu, K., 2005, Exact local Whittle estimation of fractional integration, Annals of Statistics 33, 1890-1933.

Robinson, P.M. 1994. Efficient tests of nonstationary hypotheses. Journal of the American Statistical Association 89, 1420-1437.

Robinson, P.M., 1995, Gaussian semi-parametric estimation of long range dependence, Annals of Statistics 23, 1630-1661.

Robinson, P.M. and M. Henry, 1999, Long and short memory conditional heteroskedasticity in estimating the memory in levels, Econometric Theory 15, 299-336.

Solnik, B. and L. Bousquet (1990), Day of the week effect on the Paris Bourse, Journal of Banking and Finance 14, 461-469.

Velasco, C., 1999, Gaussian semiparametric estimation of nonstationary time series, Journal of Time Series Analysis 20, 87-127.

Velasco, C. and P.M. Robinson, 2000, Whitle pseudo maximum likelihood estimation for nonstationary time series, Journal of the American Statistical Association 95, 1229-1243.

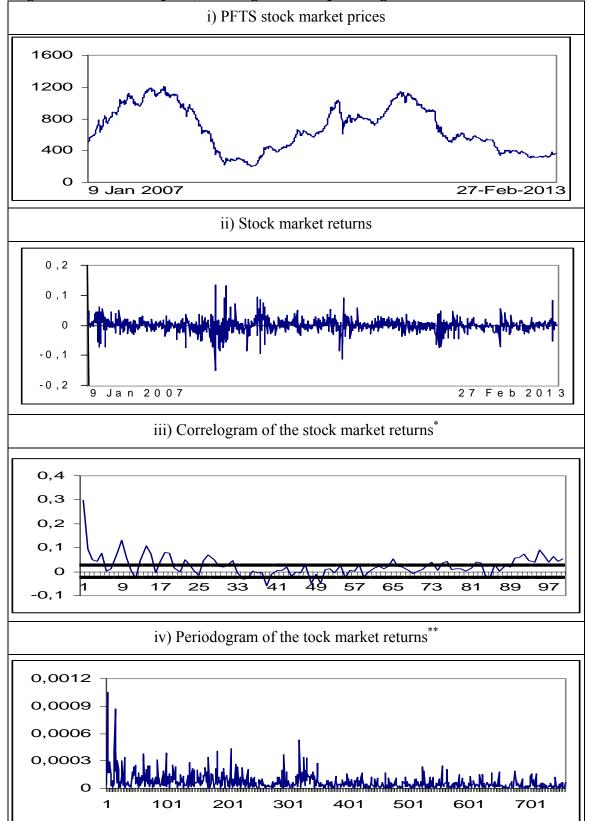


Figure 1: Time series plots, correlograms and periodograms

*: The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. **: The horizontal axis refers to the discrete Fourier frequencies $\lambda_j = 2\pi j/T$, j = 1, ..., T/2.

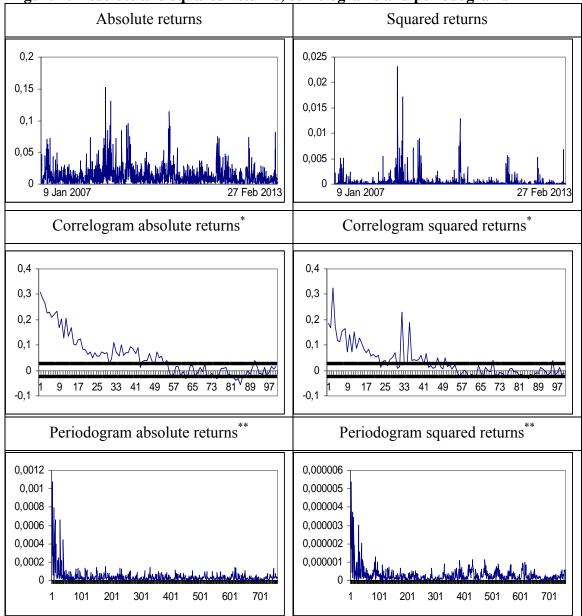


Figure 2: Absolute and squared returns, correlograms and periodograms

*: The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation.

**: The horizontal axis refers to the discrete Fourier frequencies $\lambda_j = 2\pi j/T$, j = 1, ..., T/2.

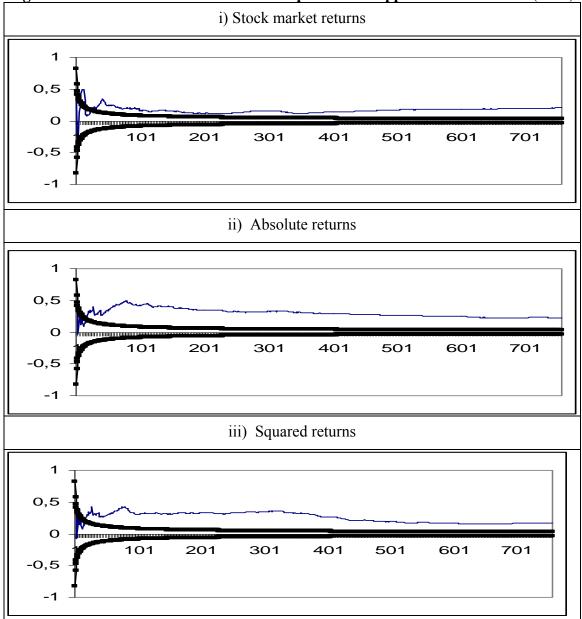


Figure 3: Estimates of d based on the semiparametric approach of Robinson (1995)

The horizontal axis concerns the bandwidth parameter while the vertical one refers to the estimated value of d.

	No regressors	An intercept	A linear time trend
White noise	$ \begin{array}{r} 1.009 \\ (0.979, 1.043) \end{array} $	1.218 (1.181, 1.261)	1.218 (1.181, 1.261)
AR(1)	1.381 (1.321, 1.450)	1.095 (1.049, 1.148)	1.095 (1.049, 1.148)
Bloomfield	$ \begin{array}{r} 1.009 \\ (0.960, 1.068) \end{array} $	1.101 (1.060, 1.154)	1.101 (1.061, 1.154)

Table 1: Estimates of the fractional differencing parameter in the log of PFTS series

The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.

Table 2: Estimates of the fractional differencing parameter in the absolute returns

	No regressors	An intercept	A linear time trend
White noise	$\begin{array}{c} 0.256\\ (0.232, \ 0.283)\end{array}$	0.245 (0.222, 0.273)	$\begin{array}{c} 0.243\\ (0.218, \ 0.271)\end{array}$
AR(1)	0 341 0 3		$\begin{array}{c} (0.213, 0.271) \\ \hline 0.324 \\ (0.283, 0.374) \end{array}$
Bloomfield	0.359 (0.312, 0.417)	0.343 (0.280, 0.404)	$\begin{array}{c} 0.342 \\ (0.281, \ 0.404) \end{array}$

The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.

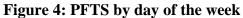
	No regressors An intercept		A linear time trend
White noise	0.186	0.183	0.180
	(0.163, 0.211)	(1.159, 0.209)	(0.157, 0.207)
AR(1)	0.276 (0.241, 0.315)	0.272 (0.237, 0.312)	$\begin{array}{c} 0.270 \\ (0.234, \ 0.310) \end{array}$
Bloomfield	0.322	0.310	0.310
	(0.271, 0.372)	(0.274, 0.367)	(0.261, 0.381)

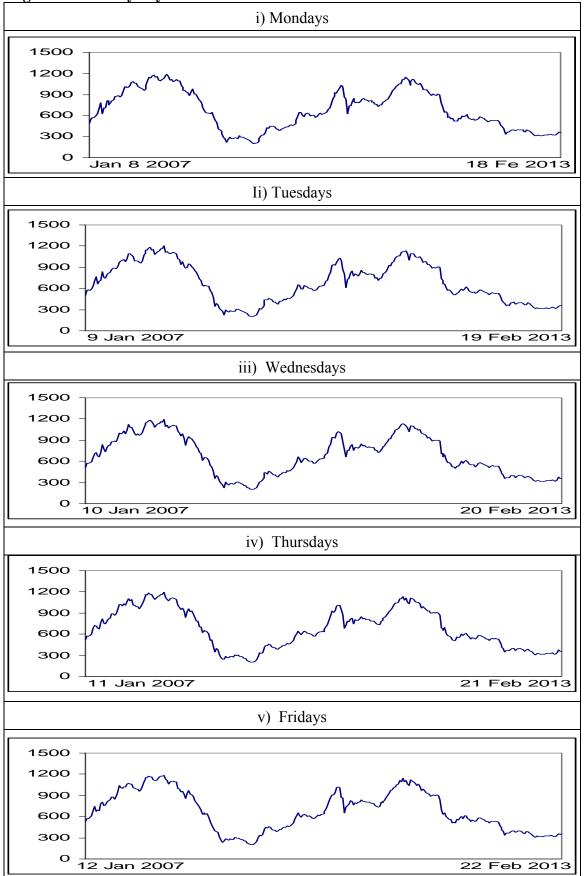
The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.

Bandwidth number	Stock market returns	Absolute returns	Squared returns
10	0.102	0.215	0.227
20	0.093	0.36	0.306
25	0.194	0.334	0.326
30	0.179	0.267	0.290
35	0.243	0.305	0.319
39***	0.299	0.328	0.317
45	0.299	0.301	0.262
50	0.245	0.339	0.287
60	0.241	0.405	0.324
70	0.192	0.450	0.385
80	0.205	0.492	0.429
90	0.200	0.433	0.334
100	0.161	0.423	0.307

 Table 4: Semiparametric estimates of d: Robinson (1995) and Abadir et al. (2007)

***: Bandwidth number corresponding to $(T)^{0.5}$.





	No regressors	An intercept	A linear time trend
Monday	1.017	1.187	1.187
111011444	(0.952, 1.100)	(1.124, 1.366)	(1.124, 1.365)
Tuesday	1.016	1.144	1.144
Tucsuay	(0.951, 1.099)	(1.085, 1.219)	(1.085, 1.218)
Wednesday	1.013	1.135	1.135
weathesday	(0.949, 1.096)	(1.077, 1.208)	(1.077, 1.208)
Thursday	1.013	1.164	1.164
Thursday	(0.948, 1.095)	(1.102, 1.244)	(1.102, 1.243)
Friday	1.014	1.212	1.212
Tinday	(0.949, 1.097)	(1.146, 1.296)	(1.146, 1.295)

Table 5: Estimates of the fractional differencing parameter with white noise errors

The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.

Table 6: Estimates o	of the fractional differ	rencing parameter wi	th AR(1) errors

	No regressors	An intercept	A linear time trend
Monday	1392	1.253	1.252
wionday	(1.280, 1.552)	(1.130, 1.413)	(1.130, 1.408)
Tuesday	1.387	1.222	1.221
Tuesday	(1.266, 1.542)	(1.121, 1.353)	(1.121, 1.350)
Wednesday	1.376	1.207	1.206
weatestay	(1.258, 1.528)	(1.105, 1.327)	(1.105, 1.324)
Thursday	1.375	1.174	1.173
Thursday	(1.256, 1.526)	(1.069, 1.293)	(1.069, 1.293)
Friday	1.384	1.228	1.227
Tinday	(1.266, 1.537)	(1.095, 1.385)	(1.095, 1.380)

The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.

	No regressors	An intercept	A linear time trend
Monday	$\begin{array}{c} 1.012\\ (0.911, \ 1.147)\end{array}$	1.242 (1.123, 1.400)	1.242 (1.123, 1.402)
Tuesday	$ \begin{array}{r} 1.002 \\ (0.901, 1.147) \end{array} $	1.231 (1.111, 1.397)	1.230 (1.111, 1.386)
Wednesday	$\begin{array}{c} 1.003 \\ (0.902, \ 1.046) \end{array}$	1.213 (1.091, 1.366)	1.212 (1.091, 1.375)
Thursday	0.991 (0.906, 1.132)	1.177 (1.061, 1.321)	1.177 (1.061, 1.319)
Friday	1.001 (0.894, 1.131)	1.219 (1.102, 1.380)	1.218 (1.101, 1.377)

Table 7: Estimates of the fractional differencing parameter with Bloomfield errors

The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.

Bandwith nb.	Monday	Tuesday	Wednesday	Thursday	Friday
5	0.130	0.128	0.138	0.154	0.138
10	0.500	0.500	0.500	0.500	0.500
15	0.101	0.089	0.093	0.106	0.105
18***	0.096	0.093	0.096	0.101	0.097
20	0.084	0.093	0.100	0.095	0.085
25	0.181	0.191	0.100	0.200	0.189
30	0.186	0.182	0.191	0.198	0.192

 Table 8: Semiparametric estimates of d: Robinson (1995) and Abadir et al. (2007)

***: Bandwidth number corresponding to $(T)^{0.5}$.

	No regressors	An intercept	A linear time trend
Monday	0.281	0.255	0.253
	(0.212, 0363)	(0.183, 0.338)	(0.180, 0.339)
Tuesday	0.257	0.238	0.235
	(0.181, 0.341)	(1.171, 0.322)	(0.161, 0.322)
Wednesday	0.245	0.224	0.218
	(0.182, 0.323)	(0.162, 0.302)	(0.151, 0.300)
Thursday	Thursday0.206 (0.143, 0.281)0.187 (0.128, 0.261)		0.182 (0.122, 0.258)
Friday	0.248	0.225	0.221
	(0.182, 0.329)	(0.163, 0.305)	(0.158, 0.303)

Table 9: Estimates of the fractional differencing parameter in the absolute returns

The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.

	No regressors	An intercept	A linear time trend
Monday	0.245	0.236	0.233
	(0.172, 0325)	(0.166, 0.326)	(0.150, 0.326)
Tuesday	0.203	0.198	0.193
	(0.134, 0.291)	(1.129, 0.286)	(0.122, 0.284)
Wednesday	0.206	0.203	0.198
	(0.147, 0.289)	(0.142, 0.283)	(0.134, 0.281)
Thursday	0.185	0.181	0.177
	(0.121, 0.260)	(0.121, 0.256)	(0.111, 0.254)
Friday	$\begin{array}{c} 0.196\\ (0.126, \ 0.289)\end{array}$	0.191 (0.123, 0.277)	0.190 (0.1119, 0.276)

The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the values corresponding to significant deterministic terms.