A Deflection, Buckling and Stress Investigation into the Telescopic Cantilever Beam

A Thesis submitted for the degree of Doctor of Philosophy

By

Jeevan George Abraham

School of Engineering and Design

Brunel University

January 2012

ACKNOWLEDGEMENTS

First and foremost, I wish to thank the Lord Almighty for his infinite blessings during this long and hard period, and his grace, comfort and solace at those times when all hope was thought to have been lost.

I wish to place on record my eternal gratitude to Dr. D. W. A. Rees, for his constant support, words of encouragement and guidance without which the timely completion of this project would not have been possible. It has been an honour and a privilege, to work with as distinguished a teacher as Dr. D. W. A. Rees, and for the experience I am most grateful. In the same vein, I would also like thank Catherine Pinder of Engineering Integrity Journal, for having approved and published the two papers that emanated from this work

None of the experimental work undertaken would have been possible without the help of a truly special man: Mr. K. Withers. If it were not for his constant efforts and moral support, the experimental work would have been an utter disaster. Special thanks are also due to Mr. G. Fitch and of course the dynamic duo of Les and Paul, in stores.

I humbly thank my parents Abraham Neyanthara George and Annamma Abraham, for their undying love, affection, prayers, support, encouragement and blessings throughout the course of undertaking this thesis. I could never begin to repay you for all that you have given me, I only hope and pray that I do justice, to the unwavering faith you have always had in me.

I also wish to thank Dr. S. Sivaloganathan and Mr. Omid Mobasseri for their invaluable advice and guidance during the course of the project.

Throughout the undertaking of this very turbulent thesis, there has been one constant: my brother from another Bhavin Engineer. You have always been there for me, and I can only hope to repay you in some way or form, for all that you have done for me. A very special thank you is due to Roshni Amin, Ali M. Sayed, Ali Shakeel, Franco Clark and Craig Clark. Last but not least I wish to convey my deepest gratitude to my guru, my teacher and my bhai, Farid Hosseini.

ABSTRACT

The telescoping cantilever beam structure is applied in many different engineering sectors to achieve weight/space optimisation for structural integrity. There has been limited theory and analysis in the public domain of the stresses and deflections involved when applying a load to such a structure. This thesis proposes (a) The Tip Reaction Model, which adapts classical mechanics to predict deflection of a two and a three section steel telescoping cantilever beam; (b) An equation to determine the Critical buckling loads for a given configuration of the two section steel telescoping cantilever beam assembly derived from first principles, in particular the energy methods; and finally (c) the derivation of a design optimization methodology, to tackle localised buckling induced by shear, torsion and a combination of both, in the individual, constituent, hollow rectangular beam sections of the telescopic assembly. Bending stress and shear stress is numerically calculated for the same structure whilst subjected to inline and offset loading. An FEA model of the structure is solved to verify the previous deflection, stress and buckling predictions made numerically. Finally an experimental setup is conducted where deflections and stresses are measured whilst a two section assembly is subjected to various loading and boundary conditions. The results between the predicted theory, FEA and experimental setup are compared and discussed. The overall conclusion is that there is good correlation between the three sets of data.

CONTENTS

ABSTRACT	iii
LIST OF SYMBOLS	xii
LIST OF FIGURES	XV
LIST OF TABLES	xxxii

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND TO THE THESIS	1
1.2 STATEMENT OF THE PROBLEM	3
1.3 AIM AND OBJECTIVES	3
1.4 SUMMARY FINDINGS	4
1.5 STRUCTURE OF THE THESIS	5

CHAPTER 2 LITERATURE SURVEY

2.1 INTRODUCTION	8
2.2 CURVATURE – BENDING MOMENT RELATIONSHIP	.9
2.3 MACAULAY'S STEP FUNCTION METHOD 1	10
2.4 MOHR'S MOMENT AREA1	11
2.5 DEFLECTION THEOREMS IN BRIEF1	14
2.6 PRINCIPLE OF SUPERPOSITION1	15
2.7 ENERGY METHODS1	16
2.7.1 PRELIMINARIES1	17
2.7.2 PRINCIPLE OF VIRTUAL WORK	20
2.7.3 PRINCIPLE OF COMPLEMENTARY VIRTUAL WORK2	21
2.7.4 PRINCIPLE OF MINIMUM POTENTIAL ENERGY2	23
2.7.5 PRINCIPLE OF MINIMUM COMPLEMENTARY POTENTIAL ENERGY2	27
2.7.6 CASTIGLIANO'S THEOREM PART I	28
2.7.7 CASTIGLIANO'S THEOREM PART II2	29

2.8 BUCKLING – AN INTRODUCTION	0
2.9 BUCKLING OF THIN WALLED STRUCTURES	31
2.10 RAYLEIGH – RITZ METHOD	5
2.11 THE RAYLEIGH QUOTIENT	7
2.12 LOCAL BUCKLING	9
2.13 TORSION IN STRUCTURES	0
2.14 TORSIONAL AND FLEXURAL TORSIONAL BUCKLING42	2
2.15 LATERAL – TORSIONAL BUCKLING	3
2.16 SHEAR IN THIN WALLED CLOSED TUBE SECTIONS	4
2.17 TORSION IN THIN WALLED CLOSED TUBE SECTIONS	5
2.18 COMBINED SHEAR AND TORSION IN THIN WALLED CLOSED SECTIONS46	6
2.19 APPLICATIONS OF THE TELESCOPING CANTILEVER BEAM ASSEMBLY4	8
2.19.1 DEFINITION OF MOBILE ELEVATING WORK PLATFORM4	8
2.19. (a) RELATED TERMINOLOGY4	8
2.19. (b) ACCESS PLATFORM TYPES5	1
2.19.2 TELESCOPIC RETRACTABLE ROOFING SYSTEMS	4
2.19.3 TELESCOPING MARINE ASSEMBLIES5	8
2.19.4 TELESCOPING ADJUSTABLE COLUMNS	1
2.19.5 TELESCOPING ADJUSTABLE WHEELCHAIR RAMPS6	1
2.19.6 TELESCOPING POLES AND ADJUSTABLE MASTS	,
2.19.7 STEEL TELESCOPING TOWERS	4
2.19.8 TELESCOPING STORAGE RACKS	7

CHAPTER 3 DEFLECTION ANALYSES

3.1 INTRODUCTION – DEFLECTION ANALYSES	70
3.2 TELESCOPIC BEAM THEORY	71
3.3 TIP REACTIONS	72

3.4 MACAULAY'S METHOD FOR DEFLECTION ANALYSIS72
3.4.1 THE C PROGRAM
3.5 MOHR'S MOMENT AREA METHOD
3.5.1 MOHR'S MOMENT AREA METHOD APPLIED TO THE TWO SECTION
TIP LOADED CANTILEVER
3.5.2 MOHR'S MOMENT AREA METHOD APPLIED TO THE TWO SECTION
CANTILEVER SUBJECTED TO UDL
3.5.3 DERIVATION OF DEFLECTION FOR THE TWO SECTION CANTILEVER
BEAM SUBJECTED TO UDL AND TIP LOADING85
3.6 CASTIGLIANO'S THEOREM
3.7 VIRTUAL WORK PRINCIPLE
3.8 SUMMARY110

CHAPTER 4 BUCKLING ANALYSIS

4.1 INTRODUCTION
4.2 DETERMINING THE SECTION PARAMETERS OF THE TAPERED COLUMN113
4.3 SECTION PROPERTIES OF TAPERED BEAMS119
4.3.1 SECTION CHANGING BREADTH
4.3.2 SECTION CHANGING DEPTH121
4.3.3SECTION CHANGING BI-DIMENSIONALLY AT THE SAME AND
DIFFERENT RATES122
4.4 THE CANTILEVER COLUMN
4.5 DETERMINATION OF THE BUCKLING LOAD FOR AN AXIALLY SYMMETRIC
TRUNCATED CONE
4.6 DETERMINATION OF THE BUCKLING LOAD FOR THE PYRAMID131
4.6.1 BUCKLING LOAD FOR THE RECTANGULAR PYRAMID WHOSE
SECTION'S CHANGES BREADTH131

4.6.2	BUCKLING	LOAD	FOR	THE	RECTANGULAR	PYRAMID	WHOSE
	SECTION'S D	EPTH C	HANG	ES			134

SECTION1	AR
	42
4.8 BUCKLING LOAD FOR THE SINGLE STEPPED STRUT	43
4.9 BUCKLING LOAD FOR THE THIN WALLED TWO SECTION CANTILEVER1	50
4.10 SUMMARY	58

CHAPTER 5 SHEAR AND TORSION ANALYSES

5.1 INTRODUCTION	160
5.2 SHEAR IN UNIFORM THIN WALLED CLOSED RECTANGULAR SECTION	NS 161
5.3 TORSION IN UNIFORM THIN WALLED CLOSED RECTANGULAR SECTIONS	165
5.4 COMBINED SHEAR AND TORSION IN UNIFORM THIN-WALLED RECTANGULAR SECTIONS	168
5.5 SUMMARY	

CHAPTER 6 STRESS ANALYSIS

6.1 INTRODUCTION	
6.2BENDING STRESS	
6.3 SHEAR STRESS	
6.4 SUMMARY	

CHAPTER 7 FINITE ELEMENT ANALYSIS

7.1 INTRODUCTION	8
------------------	---

7.2 DEFLECTION ANALYSIS USING ABAQUS	194
7.3 STRESS ANALYSIS USING ABAQUS	
7.4 BUCKLING ANALYSIS USING ABAQUS	203
7.5 SUMMARY	

CHAPTER 8 EXPERIMENTAL ANALYSIS

8.1 INTRODUCTION	
8.2 THE TEST SPECIMEN	207
8.3 THE EXPERIMENTAL MOUNTING STAND	214
8.4 EXPERIMENTAL TIP DEFLECTION ANALYSIS	218
8.5 EXPERIMENTAL STRESS ANALYSIS	221
8.6 SUMMARY	238

CHAPTER 9 DISCUSSION AND CONCLUSIONS

9.1 RESULTS	239
9.1.1 DEFLECTION RESULTS	240
9.1.2 STRESS ANALYSIS RESULTS	249
9.1.3 BUCKLING RESULTS	274
9.2 CONTRIBUTIONS TO KNOWLEDGE	277
9.3 LIMITATIONS	281
9.2 RECOMMENDATIONS FOR FURTHER WORK	282

FERENCES

APPENDIX A – THE TWO SECTION TELESCOPIC CANTILEVER BEAM ASSEMBLY

A.1 DEFLECTION IN THE TWO SECTION TELESCOPING ASSEMBLY......293

A.2TIP REACTIONS	294
A.3 DERIVATION OF THE DEFLECTION CURVE FOR SECTION AC IN	BEAM AB 296
A.4 DERIVATION OF THE DEFLECTION CURVE FOR SECTION CB IN	BEAM AB 298
A.5 DERIVATION OF THE DEFLECTION CURVE FOR SECTION CB IN	BEAM CD 299
A.6 DERIVATION OF THE DEFLECTION CURVE FOR SECTION B	BD IN BEAM

APPENDIX C – PART 1 – INLINE LOADING ANALYSIS OF INDUCED STRESS IN THE TWO SECTION TELESCOPIC ASSEMBLY

C.1 CALCULATION OF TIP REACTIONS	310
C.2SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR BEAM ACB	311
C.3SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR BEAM CBD	312
C.4 CALCULATION OF BENDING AND SHEAR STRESSES FOR BEAM ACB	314
C.5 CALCULATION OF BENDING AND SHEAR STRESSES FOR BEAM CBD	316

APPENDIX D – PART 2 – OFFSET LOADING ANALYSIS OF INDUCED STRESS IN THE TWO SECTION TELESCOPIC ASSEMBLY

D.1 CALCULATION OF TIP REACTIONS	322
D.2SHEAR FORCE, BENDING MOMENT AND TORQUE DIAGRAMS FOR BEAM ACB	324
D.3SHEAR FORCE, BENDING MOMENT AND TORQUE DIAGRAMS FOR BEAM CBD	325
D.4 CALCULATION OF BENDING AND SHEAR STRESSES FOR BEAM ACB	327
D.5 CALCULATION OF BENDING AND SHEAR STRESSES FOR BEAM CBD	329

333
334
336
339
3EAM 345
347
348
351
355
359
354
362
363
364
368
369
374
378

APPENDIX H –STRAIN GAUGING PRINCIPLES AND PROCEDURES

H.1 THE STRAIN GAUGE	
H 2 STRAIN TRANSFORMATION AND ROSETTE GAUGE THEORY	386
	200
H.3 INSTRUMENTATION AND DATA ACQUISITION SYSTEM	

H.4 STRAIN GAUGE SELECTION	03
H.5 SURFACE PREPARATION STEPS	408
H.6 STRAIN GAUGE BONDING PROCEDURE	413
H.7 LEAD WIRE ATTACHMENT.	416

LIST OF SYMBOLS

- T_1, T_2, T_3 = Stress Tensors acting on each face perpendicular to coordinate axes x_1, x_2, x_3
- T_i = Universal stress tensor
- T = Stress tensors distributed over surface S
- n = Unit outward normal to the plane
- h = Perpendicular distance from origin to plane ACB of tetrahedron
- *V*= volume
- ∂W_E = External virtual work
- ∂W_I = Internal virtual work
- U = Strain energy
- U^* = Complementary strain energy
- σ = Direct stress
- e = Direct strain
- \prod =Total potential energy of the body
- i, j = tensor notation
- P = Applied tip load
- P_{cr} = Critical buckling load
- λ = Load displacement
- δ = Lateral or out-of-plane displacement
- I = Second moment of area
- L = Length
- E = Young's modulus of elasticity
- x=z = Arbitrary length
- z' = Non dimensional length parameter
- ΔU_T = Change in total potential energy
- ΔU_B = Change in bending strain energy

 ΔU_P = Change in potential of external force or the work done by the load P

w(x) = Y(z) = Assumed deflection functions

M(x) = M(z) = Bending moment functions

q = Shear flow

$$T = \text{Torque}$$

 τ = Shear stress

 F_{y} = Vertical force

A = Area

$$\mu = \left[\left(\frac{d_o}{d_e} \right) - 1 \right]$$
$$\psi = \left[\left(\frac{h_o}{h_e} \right) - 1 \right]$$
$$\eta = \left[\left(\frac{b_o}{b_e} \right) - 1 \right]$$

 L_1 = Length of fixed-end section

 α =overlap ratio

 a_1 =Overlap length

 L_2 = Length of free-end section

 ϕ =Length variation ratio

 $w_1 = w =$ Self weight of fixed-end section

 γ = Self weight ratio

 w_2 = Self weight of free-end section

H=d= Depth

B = b =Breadth

T = t =Thickness

y = Overall Deflection

 y_0 = Deflection of single fixed-end section cantilever

 I_1 = Second moments of area of fixed-end section

- I_2 = Second moments of area of overlap section
- I_3 = Second moments of area of free-end section
- I_z = Second moments of area of section at length *z* from datum
- I_e =Second moments of area of section at apex
- $I_{\rm o}$ =Second moments of area of section at base
- β = Second moment area ratio
- $F^V =$ Virtual force

 M^{V} =Virtual moment

- $d_{e=}$ diameter of apex
- d_z =diameter at arbitrary length z from datum
- d_0 =diameter at base
- σ_0 =Stress at d_o
- $b_{\rm e}$ =breadth at apex
- b_z =breadth at arbitrary length z from datum
- $b_{0=}$ breadth at base
- $h_{\rm e}$ =height at apex
- h_z =height at arbitrary length *z* from datum
- h_0 =height at base
- f = Shape factor
- Q = Geometrical coefficient
- W = Weight of section
- *K* = Buckling coefficients

LIST OF FIGURES

Figure 2.1: Beam in bending (Adapted from [20])9
Figure 2.2: Beam in bending (Adapted from [19])14
Figure 2.3: Stress tensors and their components (Adapted from [28])17
Figure 2.4: Stresses on an infinitesimal tetrahedron (Adapted from [28])17
Figure 2.5: Stress-strain curve of a non-linearly elastic rod (Adapted from [28])22
Figure 2.6: Differentiation between (a) Bending and (b) Buckling (Adapted from [33])31
Figure 2.7: Behaviour of buckling system showing the differentiation between the load and lateral displacements [33]
Figure 2.8: Stability of equilibrium [28]
Figure 2.9: Local buckling of edge supported thin plate with load-load induced displacement curve (P - λ) and the lateral displacement curve (P - δ) [33]
Figure 2.10: Local buckling of model box girder [33]40
Figure 2.11: Examples of (a) Torsional Buckling (b) Flexural-Torsional Buckling (c) Lateral Buckling [33]
Figure 2.12: Net Shear Flow in a closed thin walled tube
Figure 2.13: Static Equivalence between torque (F_yp) and shear flow q_b [25]46
Figure 2.14: Terminology associated with the mobile elevating access platform (Taken from [2])
Figure 2.15: Straight or "stick boom" access platform [74]52
Figure 2.16: Scissor lift [75]
Figure 2.17: Articulating boom machine (Taken from [2])53
Figure 2.18: Trailer mounted machine (Taken from [2])53
Figure 2.19: Vehicle mounted access platform [76]54
Figure 2.20: A retractable roof enclosure (a) before deployment and (b) after deployment [77]
Figure 2.21: A retractable commercial garden roof canopy (a) before deployment and (b) after deployment [77]
Figure 2.22: A retractable pool enclosure [77]56

Figure 2.23: A retractable awning [77]	56
Figure 2.24: Retractable stadium roof system consisting of two parts (a) before dep and (b) after deployment [77]	oloyment 57
Figure 2.24: Enclosure with a retractable stadium roof system consisting of three before deployment and (b) half way through full deployment [77]	parts a) 57
Figure 2.25: The SL-DEX Type hydraulic overhead beam crane manufactured by Structures USA [78]	Nautical
Figure 2.26: Applications of the SL-DEX Type hydraulic overhead beam crane [78].	59
Figure 2.28 (a) Single telescoping gangplank (b) Double telescoping gangplank and (telescoping gangplank [78]60	c) Triple
Figure 2.29: Telescoping adjustable column [79]	61
Figure 2.30: Telescoping adjustable wheelchair ramps [80]	62
Figure 2.31: Construction of the "Wonder Pole [®] " [81]	63
Figure 2.32: A telescoping "Wonder Pole [®] " in use [81]	63
Figure 2.33: Examples of trailer mounted US Tower manufactured telescoping [82]	g towers 64
Figure 2.34: A self contained US Tower manufactured Command, Control, Communand Tactical Shelter or C3T Trailer [82]	nications
Figure 2.35: Examples of vehicle mounted US Tower manufactured telescoping [82]	g towers
Figure 2.36: Aerial view of a large installation of SpaceSaver Racks in a steel servic [83]	ce center
Figure 2.37: SpaceSaver Racks installed outdoors [83]	68
Figure 2.38: '8 Tall SpaceSaver Rack' installed with optional electric lift cage. For m density 8Tall models nearly twenty feet high are available [83]	naximum 69
Figure 2.39: '5 Tall SpaceSaver Rack' storing 20'-24' tubing at Marmon/Keystone. A platform ladder is used to access the upper levels [84]	A rolling 69
Figure 3.1: Two-section, telescopic cantilever	71
Figure 3.2: Deflection Plot obtained from Macaulay's Theorem vs. Parameter α , for section telescopic cantilever beam assembly having individual part dimensions ou Table 3.1, and fixed and free-end lengths of 1200mm and 1000mm respectively	the two tlined in
Figure 3.3: Two section telescopic cantilever	78

Figure 3.4: Cross sectional view of the two section telescopic cantilever......79

Figure 3.11: Principle of Virtual Work applied to the two section cantilever beam.......97

Figure 3.13 (d): End Theoretical End Deflection Plots vs. Parameter α , for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200 mm and 1000 mm respectively, for a wL/P ratio of Figure 4.3: Plot of d_o/d_e against z'from Equation (4.7), for the tapered circular cantilever Figure 4.4: Plot of σ/σ_e against z'from Equation (4.8), for the tapered circular, cantilever Figure 4.5: Plot of σ/σ_e (obtained from Equation (4.5)) against z', where z'varies from 0 to 1, in increments of 0.1, for the tapered circular, cantilever column. The curves in turn represent Figure 4.6: Section Properties of Tapered Beams (a) Section changing breadth; (b) Section changing depth; (c) Section changing bi-dimensionally at the same rate; (4) Section changing bi-dimensionally at different rates (Adapted from [93]).....119 Figure 4.7: Geometry of the tapered rectangular cantilever column whose cross section Figure 4.8: Geometry of the tapered rectangular cantilever column whose cross section changes in depth......121 Figure 4.9: Geometry of the cantilever column (Adapted from [15]).....124 Figure 4.10: (a) A fixed-free column subjected to a tip load (b) Cross sections of an axially symmetric truncated cone (Adapted from [94]).....125 Figure 4.11: Plot of Equation (4.31) vs. d_o/d_e , for the axially symmetric, truncated Figure 4.12: (a) A fixed-free column subjected to a tip load (b) Cross sections of columns for Figure 4.13: Plot of Equation (4.35) vs b_{ρ}/b_{e} , for the truncated, square pyramid, whose Figure 4.14: (a) A fixed-free column subjected to a tip load (b) Cross sections of columns for Figure 4.15: Plot of Equation (4.41) vs h_o/h_e , for the truncated square pyramid, whose depth changes......136

Figure 4.16: Plot of Equation (4.46) vs. η, ψ , for the truncated square pyramid, whose section changes bi-dimensionally at the same rate
Figure 4.17: Geometry of a thin walled rectangular section142
Figure 4.18: Single Stepped composite strut143
Figure 4.19: Geometry of the cantilever column
Figure 4.20: Cross sectional view of the single stepped composite strut146
Figure 4.21: Plot of Equation (4.59) vs. ϕ , for the single stepped strut, having dimensions outlined in Table 4.3 and fixed and free-end lengths of 1200 mm and 1000 mm
Figure 4.22: Two section telescopic cantilever
Figure 4.23: Cross sectional view of the two section telescopic cantilever
Figure 4.24: Plot of Equation (4.64) vs. α , where α varies from 0 to 1, in increments of 0.1, for the two section telescopic cantilever beam assembly, having dimensions outlined in Table 4.5, and fixed and free-end lengths of 1200 mm and 1000 mm respectively
Figure 4.25: Plot of Equation (4.64) vs. ϕ , where ϕ varies from 0 to 1, in increments of 0.1, for overlap ratios α varying from 0 to 0.6, determined for the two section telescopic cantilever beam assembly, having dimensions outlined in Table 4.5, and fixed and free-end lengths of 1200 mm and 1000 mm respectively
Figure 4.26: Plot of Equation (4.64) vs. ϕ , where ϕ varies from 0 to 1, in increments of 0.1, for overlap ratios α varying from 0.7 to 1, determined for the two section telescopic cantilever beam assembly, having dimensions outlined in Table 4.5, and fixed and free-end lengths of 1200 mm and 1000 mm respectively
Figure 5.1: Uniform, rectangular tube161
Figure 5.2: Flexural shear flows q_B must be added to q_{net} with F_y be applied at the shear centre E
Figure 5.3: Rectangular tube with uniform thin-walled thickness
Figure 5.4: Uniform rectangular tube showing net shear flow168
Figure 6.1: Moment of resistance within section at x-position
Figure 6.2: Telescopic beam assembly with two sections
Figure 6.3 (a) Cross section of the uniform rectangular tube (b) Net shear stress distribution in the cross section of the uniform rectangular tube

Figure 7.1: ABAQUS/CAE pictorial methodology......190

Figure 7.7: Offset loading induced shear stress (MPa) vs Distance from the fixed end along $A_3C_3B_3D_3$, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400mm
Figure 7.8: Offset loading induced shear stress (MPa) vs Distance from the fixed end along $A_2C_2B_2D_2$, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400mm
Figure 7.9: FEA extracted values of P_{cr}/P_{Eu} vs. Overlap ratio α , where α varies from 0.2 to 0.8, in increments of 0.2, for the two section telescopic cantilever beam assembly, having dimensions outlined in Table 7.1
Figure 8.1: The Experimental test rig
Figure 8.2: Loading arm through which loads are applied
Figure 8.3: Loading arm configuration for (a) Inline Loading (b) Offset Loading209
Figure 8.4: Tufnell wear pads attached to beam 2. These four wear pads are located on the four walls of beam 2, at the end opposite to that where loads are applied
Figure 8.5: Unattached wear pads, inserted into the gap at the three position's A, B and C, at the start of the overlap between beam 1 and beam 2210
Figure 8.6: Position where the strain gauges were bonded onto the telescopic assembly. positions W and X are 300mm from the Fixed End of Beam 1, whilst positions Y and Z are 200mm from the inner end of Beam 2
Figure 8.7: Strain gauge rosettes bonded at (a) position W (b) position X (c) position Y and (d) position Z, as shown in Figure 9.5
Figure 8.8: Front view of the telescopic assembly. The arrow indicates the position where dial gauge readings of deflection for different load magnitudes were taken
Figure 8.9: Frontal view of the experimental mounting jig clamped to support column214
Figure 8.10: Details of the mounting mechanism
Figure 8.11: (a) Front view of the mounting jig (b) Rear view of the mounting jig215
Figure 8.12: Left hand view of the mounting jig showing the method by which the same is clamped to the support column
Figure 8.13: Load Applied in Newton vs Tip Deflection in mm for the experimental test rig having dimensions outlined in Table 8.1
Figure 8.14: Extrapolated Deflection Curves vs. Overlap ratio α for the experimental test rig having dimensions outlined in Table 8.1

Figure 8.15: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline Load Applied (Kg) with 400mm overlap
Figure 8.16: Principal Stresses at Position X (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 400mm overlap
Figure 8.17: Principal Stresses at Position Y (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 400mm overlap
Figure 8.18: Principal Stresses at Position Z (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 400mm overlap
Figure 8.19: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 400mm overlap
Figure 8.20: Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 400mm overlap
Figure 8.21: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 400mm overlap
Figure 8.22: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 400mm overlap
Figure 8.23: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline Load Applied (Kg) with 500mm overlap
Figure 8.24: Principal Stresses at Position X (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 500mm overlap
Figure 8.25: Principal Stresses at Position Y (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 500mm overlap
Figure 8.26: Principal Stresses at Position Z (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 500mm overlap
Figure 8.27: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 500mm overlap
Figure 8.28: Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 500mm overlap
Figure 8.29: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 500mm overlap
Figure 8.30: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 500mm overlap
Figure 8.31: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline Load Applied (Kg) with 600mm overlap

Figure 8.32: Principal Stresses at Position X (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 600mm overlap
Figure 8.33: Principal Stresses at Position Y (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 600mm overlap
Figure 8.34: Principal Stresses at Position Z (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 600mm overlap
Figure 8.35: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 600mm overlap
Figure 8.36: Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 600mm overlap
Figure 8.37: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 600mm overlap
Figure 8.38: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 600mm overlap
Figure 8.39: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline Load Applied (Kg) with 700mm overlap
Figure 8.40: Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Inline Load Applied (Kg) with 700mm overlap
Figure 8.41: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Inline Load Applied (Kg) with 700mm overlap
Figure 8.42: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Inline Load Applied (Kg) with 700mm overlap
Figure 8.43: Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 700mm overlap
Figure 8.44: Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 700mm overlap
Figure 8.45: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 700mm overlap
Figure 8.46: Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 700mm overlap
Eigure 0.1: Comparison of Deflection Curves vs. Decemptor a for the two section telescopie

Figure 9.1: Comparison of Deflection Curves vs. Parameter α , for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 8.1.....243

Figure 9.9: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline	Load
Applied (Kg) with 400mm overlap	258
Figure 0.10: Comparison of Principal Stresses at Position X ($\sigma_{\rm e}$, $\sigma_{\rm e}$ (MPa)) vs Inline	Load

Figure 9.10: Comparison of Principal Stresses at Position X (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 400mm overlap......258

Figure 9.11: Comparison of Principal Stresses at Position Y (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 400mm overlap
Figure 9.12: Comparison of Principal Stresses at Position Z (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 400mm overlap
Figure 9.13: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 400mm overlap
Figure 9.14: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 400mm overlap
Figure 9.15: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 400mm overlap
Figure 9.16: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 400mm overlap
Figure 9.17: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline Load Applied (Kg) with 500mm overlap
Figure 9.18: Comparison of Principal Stresses at Position X (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 500mm overlap
Figure 9.19: Comparison of Principal Stresses at Position Y (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 500mm overlap
Figure 9.20: Comparison of Principal Stresses at Position Z (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 500mm overlap
Figure 9.21: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 500mm overlap
Figure 9.22: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 500mm overlap
Figure 9.23: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 500mm overlap
Figure 9.24: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 500mm overlap
Figure 9.25: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline Load Applied (Kg) with 600mm overlap
Figure 9.26: Comparison of Principal Stresses at Position X (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 600mm overlap
Figure 9.27: Comparison of Principal Stresses at Position Y (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 600mm overlap

Figure 9.28: Comparison of Principal Stresses at Position Z (σ_1 , σ_2 (MPa)) vs Inline Load Applied (Kg) with 600mm overlap
Figure 9.29: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 600mm overlap
Figure 9.30: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 600mm overlap
Figure 9.31: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 600mm overlap
Figure 9.32: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 600mm overlap
Figure 9.33: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Inline Load Applied (Kg) with 700mm overlap
Figure 9.34: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Inline Load Applied (Kg) with 700mm overlap
Figure 9.35: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Inline Load Applied (Kg) with 700mm overlap
Figure 9.36: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Inline Load Applied (Kg) with 700mm overlap
Figure 9.37: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position W vs Offset Load Applied (Kg) with 700mm overlap
Figure 9.38: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position X vs Offset Load Applied (Kg) with 700mm overlap
Figure 9.39: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Y vs Offset Load Applied (Kg) with 700mm overlap
Figure 9.40: Comparison of Principal Stresses (σ_1 , σ_2 (MPa)) at Position Z vs Offset Load Applied (Kg) with 700mm overlap
Figure 9.41: Comparison between buckling curves generated from theoretical predictions and FEA, for the telescopic assembly whose individual part dimensions are outlined in Table 7.1
Figure A.1: Deflected shapes of the two section telescoping cantilever beam assembly293
Figure A.2: Fixed-end beam loading
Figure A.3: Free-end beam loading
Figure A.4: A Section in AC

Figure A.5: A Section in CB	98
Figure A.6: Deflection of Beams AB and CD	99
Figure A.7: Deflection of Beam CD)1
Figure C.1: Tip Reaction Model – Beam Assembly and Reactions on Individual Beams31	0
Figure C.2: Shear Force and Bending Moment Diagrams for the Individual Sections	13
Figure C.3: A Telescopic Beam Assembly with Two Sections and the Vertical and Horizont planes of symmetry shown	tal 14
Figure C.4: Telescopic beam bending stresses induced by inline loading, from tip reaction analysis	on 19
Figure C.5: Telescopic beam shear stresses induced by inline loading, from tip reaction analysis	on 20
Figure D.1: Tip Reaction Model – Beam Assembly and Reactions on Individual Beams32	22
Figure D.2: Shear Force, Bending Moment and Torque Diagrams for the Individu Sections	ıal 26
Figure D.3: A Telescopic Beam Assembly with Two Sections and the Vertical and Horizont planes of symmetry shown	tal 27
Figure D.4: Telescopic beam bending stresses induced by offset loading, from tip reactionanalysis	on 31
Figure D.5: Telescopic beam shear stresses, induced by offset loading from tip reactionanalysis	on 32
Figure G.1: Sketcher Window in ABAQUS/CAE33	37
Figure G.2: Extrusion of the Part Instance sketched in Figure 7.2, the arrow indicates t depth to which the part is extruded	the 37
Figure G.3 (a) Dimensioned Sketch of the second or free end beam instance, (b) Extrusion the second beam instance (as sketched in 7.4(a)), (c) Dimensioned Sketch of the wear p instance, (d) Extrusion of the wear pad instance (as sketched in I.3(c))	of ad 38
Figure G.4: Assigning Normals to the shell elements (Purple is the negative direction wh Brown is the positive direction)	ile 39
Figure G.5: Property Module Tools	40
Figure G.6: Steps to create and define Material Properties	40
Figure G.7: Tabs to be filled in order to create material section having properties of Steel34	41

Figure G.8: Tabs to be filled in order to create material section having properties of Tufnel
Figure G.9: Creating a Homogeneous, Shell section of thickness 1.55mm, having properties of Steel
Figure G.10: Creating a Homogeneous, Solid section having properties of Tufnell
Figure G.11: Assigning the Homogeneous, Solid Tufnell section to the part highlighted343
Figure G.12: Assigning the Homogeneous, Shell Steel section to the part highlighted344
Figure G.13: Assembly Module Tools
Figure G.14: Creation of part instances and their assembly to constitute the overall Two Section Telescopic Cantilever Assembly
Figure G.15: Step Module Tools
Figure G.16: Creation of Buckling Step as outlined in ABAQUS 6.10 Documentation and § G.4.1
Figure G.17: Interaction Module Tools
Figure G.18: Definition of constraints (Tie Contacts) between surfaces
Figure G.19: Definition of coupling constraint
Figure G.20: Existing Tie Definitions that can be controlled and edited from the Constraint Manager Tab
Figure G.21: Loading and Boundary Condition Tool Sets
Figure G.22: Application of self weight or gravity on the assembly
Figure G.23: Application of the concentrated end force at the free end of the assembly356
Figure G.24: Application of the twisting moment at the free end of the assembly357
Figure G.25: Application of 'Dead' load on the assembly
Figure G.26: Application of 'Live' load on the assembly
Figure G.27: Position where the Telescopic Assembly is constrained as indicated by the arrow, in all degrees of freedom to simulate an 'Encastre' type fixing
Figure G.28: Two-dimensional structured mesh patterns
Figure G.29: The swept meshing technique for an extruded solid

Figure G.30: The sweep direction can influence the uniformity of the swept mesh
Figure G.31: Controlling the screen view by switching of the irrelevant parts which provides more control in selecting parts in meshing process
Figure G.32: Adjustment of Mesh Size
Figure G.33: Meshed Telescopic Boom Assembly
Figure G.34: Submitting a job for analysis and monitoring its progress
Figure G.35: Selecting the displacement tab and its component in the negative y- direction
Figure G.36: The displacement at each of the nodes as is plotted along the assembly370
Fiigure G.37: Node Label display options
Figure G.38: Node Labels displayed on Part
Figure G.39: Report generation procedure for deflection magnitude extraction at individual nodes
Figure G.40: Report arranged according to Node Labels
Figure G.41: Obtaining deflection values diretly using the probe function available in ABAQUS
Figure G.42: Selecting the desired stress component tab
Figure G.43: The stress distribution is shown after the analysis is completed
Figure G.44: Report generation procedure for stress determination at individual nodes376
Figure G.45: Report arranged according to Node Labels
Figure G.46: Obtaining Stress values directly using the Probe function available in ABAQUS
Figure G.47: Determination of Critical Buckling Load for the two section telescoping assembly, for an overlap ratio of 0.2
Figure H.1: Simple illustration for the strain measurement
Figure H.2: Uniaxial strain gauge
Figure H.3: Biaxial rosette

Figure H.4: Three element rosette	84
Figure H.5: Shear patterns	84
Figure H.6: Basic Mohr's circle geometry	387
Figure H.7: Strain transformation of θ	89
Figure H.8: Some useful Mohr's circle configurations	390
Figure H.9: Typical strain gauge rosettes (a) Rectangular rosette (b) Delta rosette (c) Derosette (d) Stacked delta rosette	elta 390
Figure H.10: Normal and Shear Strains	91
Figure H.11: Rectangular rosette strain orientation	92
Figure H.12: Mohr's circle for rectangular rosette	395
Figure H.13: Schematic strain measurement system	396
Figure H.14: Quarter bridge strain gauge circuit	398
Figure H.15: Quarter bridge strain gauge circuit with addition of two resistors	398
Figure H.16: Three-wire, quarter-bridge strain gauge circuit	399
Figure H.17: Fishbone diagram-Factors which affect the selection of an instrumentat system	tion 400
Figure H.18: Strain indicator	401
Figure H.19: Data acquisition system	402
Figure H.20: Characteristic of a strain gauge	403
Figure H.21: Uni-axial strain gauge	403
Figure H.22: Bi-axial strain gauge	403
Figure H.23: 0°-45°-90° Rectangular Rosette & 0°-120°-240° Delta Rosette4	104
Figure H.24: Stacked Strain Gauge Configuration4	104
Figure H.25: Planar Gauge Configuration4	104
Figure H.26: Use a liberal amount of degreaser	408
Figure H.27: Wipe the specimen surface thoroughly with a gauze sponge	408
Figure H.28: To avoid recontamination, discard soiled sponges and continue until the sponges up clean	nge 409

Figure H.29: Flood the gagging area with conditioner409
Figure H.30: A dozen strokes are usually adequate409
Figure H.31: Wipe dry with a gauze sponge. Use only once through the gauging area. With a refolded or fresh sponge, wipe away from the gauging area410
Figure H.32: Remove any excess chemicals from the work surface410
Figure H.33: With a clean straight edge, and a 4H pencil firmly burnish a layout line. Hold the pencil perpendicular to the surface
Figure H.34: Use a liberal amount of conditioner to remove all graphite from the burnished layout line by scrubbing along the line with a cotton-tipped applicator
Figure H.35: Keep scrubbing, but check the applicator tip for soiled appearance. Continue until the tip comes up clean
Figure H.36: Now, flood and re-clean the entire gagging area411
Figure H.37: Replace the applicators when they become soiled. As before, continue scrubbing until the tip comes up clean
Figure H.38: Refold, and dry the remaining area412
Figure H.39: Removing the gauge from transparent envelope413
Figure H.40: Positioning the gauge on the layout line413
Figure H.41: Lift the tape to allow applying catalyst414
Figure H.42: Applying M-Bond 200414
Figure H.43: Applying adhesive415
Figure H.44: Applying gauge on the test specimen415
Figure H.45: Applying uniform pressure416
Figure H.46: Remove the tape416

LIST OF TABLES

Table 3.1: Nominal dimensions and sectional properties of rectangular hollow sections –Excerpt from ISO/FDIS 2633-2:2011 (E)
Table 3.2: Flow Chart of the 'C' program to calculate tip deflection
Table 3.3: Individual rectangular section properties
Table 4.1: Comparison of critical buckling loads for a rectangular pyramid, whose section changes bi-dimensionally at different rates
Table 4.2: Individual rectangular section properties
Table 4.3: Nominal dimensions and sectional properties of solid rectangular sections [95]
Table 4.4: Individual rectangular section properties
Table 4.5: Nominal dimensions and sectional properties of rectangular hollow sections – Excerpt from ISO/FDIS 2633-2:2011 (E)
Table 7.1: Dimensional properties of the simulated two section telescopic cantilever beam assembly
Table 7.2: ABAQUS/CAE procedure for tip deflection analysis
Table 7.3: ABAQUS/CAE procedure for bending and shear stress analysis
Table 7.4: ABAQUS/CAE procedure for determining critical buckling load
Table 8.1: Sectional properties of the individual beams of the test specimen
Table 8.2: Position of gauges along the telescopic beam assembly
Table G.1: Materials and Elements defined in the analysis