

ENHANCING RECALL AND PRECISION OF WEB

SEARCH USING GENETIC ALGORITHM

A thesis submitted for the degree of Doctor of Philosophy

By

Ammar Sami Al-Dallal

School of Information Systems Computing and

Mathematics, Brunel University

August 2012

Abstract ii

ABSTRACT

Due to rapid growth of the number of Web pages, web users encounter two main

problems, namely: many of the retrieved documents are not related to the user query

which is called low precision, and many of relevant documents have not been retrieved

yet which is called low recall. Information Retrieval (IR) is an essential and useful

technique for Web search; thus, different approaches and techniques are developed.

Because of its parallel mechanism with high-dimensional space, Genetic Algorithm (GA)

has been adopted to solve many of optimization problems where IR is one of them.

This thesis proposes searching model which is based on GA to retrieve HTML

documents. This model is called IR Using GA or IRUGA. It is composed of two main

units. The first unit is the document indexing unit to index the HTML documents. The

second unit is the GA mechanism which applies selection, crossover, and mutation

operators to produce the final result, while specially designed fitness function is applied

to evaluate the documents.

The performance of IRUGA is investigated using the speed of convergence of the

retrieval process, precision at rank N, recall at rank N, and precision at recall N. In

addition, the proposed fitness function is compared experimentally with Okapi-BM25

function and Bayesian inference network model function. Moreover, IRUGA is compared

with traditional IR using the same fitness function to examine the performance in terms

of time required by each technique to retrieve the documents. The new techniques

developed for document representation, the GA operators and the fitness function

managed to achieves an improvement over 90% for the recall and precision measures.

And the relevance of the retrieved document is much higher than that retrieved by the

other models. Moreover, a massive comparison of techniques applied to GA operators is

performed by highlighting the strengths and weaknesses of each existing technique of GA

operators.

Overall, IRUGA is a promising technique in Web search domain that provides a high

quality search results in terms of recall and precision.

Abstract iii

Acknowledgment iv

Acknowledgment

I would like to express my appreciation and sincere gratitude to everyone who helped me

on this thesis including the following:

I must thank my parents who had a major role in the initiation of this thesis and had

provided me with the worm continues moral support. I would like to thank my family;

represented by my wife, sons and daughters for their support and patience, in spite of

their interruption to follow their studies and help them in their projects.

Thanks must go to my supervisor Dr. Rasha Shaker, who had a larger role in

understanding the nature of the material and how to conduct the experiments and analyze

the results in addition to the guidance in the style and level of writing this thesis. Thanks

to my supervisor Dr. Ramzi El-Haddadeh for his big role in the guidance and advice in

organizing this thesis and the addition of the necessary proposals, including ideas

commensurate with the components of this thesis. I thank Prof. Shawqi Al-Dallal for

reviewing the thesis and providing beneficial comments. Finally, I would like to thank

the database administrator from International Turnkey System Company for helping me

in setting the programming environment and allows my system to run smoothly.

Content v

Contents

Error! Bookmark not defined.

List of Figures vi

List of Figures

Figure ‎1-1: The layout of thesis .. 19
Figure ‎2-1: The components of general IR system ... 20
Figure ‎2-2: GA process showing the role of fitness function highlighted by bold

diamonds ... 46
Figure ‎2-3: Example of one-point crossover .. 60

Figure ‎2-4: Example of two-point crossover .. 61
Figure ‎2-5: Example of uniform crossover ... 62
Figure ‎2-6: Example of inversion crossover. .. 63
Figure ‎2-7: Example of combining reordering crossover and 2-point crossover 64

Figure ‎2-8: Example of random mutation ... 69
Figure ‎3-1: The units of IRUGA ... 75
Figure ‎3-2: Sample of HTML document .. 77

Figure ‎3-3: Word node .. 83
Figure ‎3-4: Document node. ... 83

Figure ‎3-5: Data structure constructed by the inverted index showing how word node is

linked to a list of document nodes. ... 84

Figure ‎3-6: The parser engine showing the input tables and the output tables 87
Figure ‎3-7: The flowchart of creating the inverted index. .. 88
Figure ‎3-8: The flow of the GA process ... 91

Figure ‎3-9: Overview of GA process showing the effect of fitness functions 91

Figure ‎3-10: Illustration of the hybrid crossover process ... 97
Figure ‎3-11: Illustration of the applied mutation in IRUGA .. 99
Figure ‎3-12: first document retrieved by query: Digital systems design 112

Figure ‎3-13: example of low relevant document for the query: Digital system design" 113
Figure ‎3-14: Probability of success for population size = 50 and chromosome length = 50.

... 117
Figure ‎3-15: Probability of success for population size = 75 and chromosome length = 50.

... 117

Figure ‎3-16: Probability of success for population size = 100 and chromosome length =

50... 118
Figure ‎3-17: Probability of success for population size = 125 and chromosome length =

50... 118
Figure ‎3-18: Number of relevant documents per each query number. 119
Figure ‎3-19: Probability of success for population size =125 and chromosome length cl =

50... 119
Figure ‎3-20: Probability of success for population size =125 and chromosome length cl =

75... 120
Figure ‎3-21: Probability of success for population size =125 and chromosome length cl =

100... 120
Figure ‎3-22: Probability of success for population size =125 and chromosome length cl =

125... 120

Figure ‎4-1: Comparison of P@N for different selection techniques 140

Figure ‎4-2: Comparison of R@N for different selection techniques 141

Figure ‎4-3: Comparison of P@R for different selection techniques. 142

List of Figures vii

Figure ‎4-4: Comparison of P@N for different parent selection techniques 144
Figure ‎4-5: Comparison of R@N for different parent selection techniques 145
Figure ‎4-6: Comparison of P@R for Different Parent Selection Techniques 146

Figure ‎4-7: Comparison of P@N between hybrid crossover and 2-point crossover

technique ... 149
Figure ‎4-8: Comparison of R@N between hybrid crossover and 2-point crossover

technique. .. 150
Figure ‎4-9: Comparison of P@R between hybrid crossover and 2-point crossover

technique ... 151
Figure ‎4-10: Comparison of P@N between hybrid crossover and 2-Offspring crossover

techniques. .. 153
Figure ‎4-11: Comparison of R@N between hybrid crossover and 2-Offspring crossover

techniques. .. 154
Figure ‎4-12: Comparison of P@R between hybrid crossover and 2-Offspring crossover

techniques.. ... 155

Figure ‎4-13: Comparison of P@N between hybrid crossover and the non-ordered

crossover techniques. .. 156

Figure ‎4-14: Comparison of R@N between hybrid crossover and the non-ordered

crossover techniques ... 157

Figure ‎4-15: Comparison of P@R between hybrid crossover and the non-ordered

crossover techniques ... 158
Figure ‎4-16: Comparison of P@N for Different Crossover Techniques for queries having

more than 10 relevant documents. .. 160

Figure ‎4-17: Comparison of P@N for Different Fitness Functions 162
Figure ‎4-18: Comparison of R@N for Different Fitness Functions 163
Figure ‎4-19: Comparison of P@R for Different Fitness Functions 164

Figure ‎4-20: Comparison of P@N for Different Mutation Rates 166
Figure ‎4-21: Comparison of R@N for different mutation rates. 167

Figure ‎4-22: Comparison of P@R for different mutation rates 168
‎Figure ‎5-1: The TPBTIR layout .. 177
Figure ‎5-2: The first document retrieved using the TPEF function of TPBTIR. 183

Figure ‎5-3: the first document retrieved using OKAPI-BM25 function 183
Figure ‎5-4: The first document retrieved useing Bayesian Inference Network function.

... 184

Figure ‎5-5: The precision improvement of TPFF over other functions 186

Figure ‎5-6: The recall improvement of TPFF over other functions................................ 187
Figure ‎5-7: The precision- recall improvement of TPFF over other functions 188
Figure ‎5-8: The first doc retrieved by IRUGA for query 7 of table 7-2. 195
‎5-9: The first doc retrieved by TF-IDF formula for query 7 of table 7-2 197
‎7-1: Two samples of the first two retrieved documents using query:" digital systems

design" .. 238

List of Tables viii

List of Tables

‎1-1: The difference between Commercial Searching Engines and Academic search

engines .. 10
Table ‎2-1: Summary of indexing model used in IR systems .. 28
Table ‎2-2: Summary of creating initial generation methods in GA systems 43
Table ‎2-3: Parent Selection techniques used in GA and their advantages and

disadvantages .. 57

Table ‎2-4: Summary of crossover techniques used in GA ... 66
Table ‎2-5: Summary of mutation methods used in GA .. 71
Table ‎3-1: The weight assigned to HTML tags used in the inverted index 78
Table ‎3-2: Terms of formulas 3.1 and 3.2 showing their description, domain and type. 104

Table ‎3-3: Terms of formulas 3.4 showing their description, domain and type 106
Table ‎3-4: Probability of success for different values of the population size 118
Table ‎3-5: The probability of success of IRUGA for population size = 125 and different

chromosome length. .. 121
Table ‎3-6: Parameter setting of IRUGA ... 123

Table ‎4-1: Categories of documents used to test IRUGA... 131
Table ‎4-2: Statistics of the test collection used in IRUGA ... 132

Table ‎4-3: Data sets used in similar IR researches. .. 132
Table ‎4-4: The parameters used in the measurement of document retrieval (Horng and

Yeh, 2000)... 135

Table ‎4-5: The average convergence of each technique. .. 138

Table ‎4-6: The P@N enhancement percentage for different selection techniques 140
Table ‎4-7: The R@ N enhancement percentage for different selection techniques 141
Table ‎4-8: The P@R enhancement percentage for different selection techniques 142

Table ‎4-9: The P@N enhancement percentage for different parent selection techniques

... 145

Table ‎4-10: The R@N enhancement percentage for different selection techniques 145
Table ‎4-11: The P@R enhancement percentage of for Different Parent Selection

Techniques .. 147

Table ‎4-12: The P@N enhancement percentage of hybrid crossover over the 2-point

crossover techniques ... 149
Table ‎4-13: The R@N enhancement percentage of hybrid crossover over the 2-point

crossover techniques ... 150
Table ‎4-14: The P@R enhancement percentage of hybrid crossover over the 2-point

crossover techniques ... 151
Table ‎4-15: The P@N enhancement percentage of hybrid crossover over the 2- Offspring

crossover techniques ... 153

Table ‎4-16: The R@N enhancement percentage of hybrid crossover over the 2- Offspring

crossover techniques ... 154
Table ‎4-17: The P@R enhancement percentage of hybrid crossover over the 2- Offspring

crossover techniques. .. 155
Table ‎4-18: The P@N enhancement percentage of hybrid crossover over the non-ordered

crossover techniques ... 156

Table ‎4-19: The R@N enhancement percentage of hybrid crossover over the non-ordered

crossover techniques. .. 157

List of Tables ix

Table ‎4-20: The P@R enhancement percentage of hybrid crossover over the non-ordered

crossover techniques. .. 158
Table ‎4-21: The P@N improvement of hybrid crossover over other crossover techniques

for queries having more than 10 relevant documents. .. 161
Table ‎4-22: List of fitness functions ... 161
Table ‎4-23: The P@N enhancement percentage of the term proximity fitness function

over other fitness functions ... 162
Table ‎4-24: The R@N enhancement percentage of the term proximity fitness function

over other fitness functions ... 163
Table ‎4-25: The P@R enhancement percentage of the term proximity fitness function

over other fitness functions. .. 165
Table ‎4-26: The P@N enhancement percentage of MUTE70 over other mutation rates 166

Table ‎4-27: The R@N enhancement percentage of MUTE70 over other mutation rates

... 168
Table ‎4-28: The P@R enhancement percentage of MUTE70 over other mutation rates.

... 169
Table ‎4-29: Summary of the techniques, measures and percentage of improvement. The

percentage of improvement beside each technique represents the average comparison of

this technique with the one in bold above it. .. 172

Table ‎5-1: The performance of TPBTIR .. 178
Table ‎5-2: Comparison between IRUGA and TPBTIR in terms of recall and precision

measures .. 180

Table ‎5-3: Comparison between IRUGA and TPBTIR in terms of query processed time

... 181
Table ‎5-4: Comparison of the ranks and factors of the three fitness functions for the first

document retrieved by each fitness function. ... 185

Table ‎5-5: Percentage of precision improvement of TPFF over other functions 187
Table ‎5-6: Percentage of recall improvement of TPFF over other functions 188

Table ‎5-7: Percentage of precision- recall improvement of TPFF over other functions 189
Table ‎5-8: Summary of TPDTIR and IRUGA performance .. 189
‎5-9: Factors used to calculate TF-IDF for document 2 ... 195

Table ‎5-10: Summary of the performance of the IR techniques discussed 203
Table ‎7-1: description of the terminals used in weighting and fitness functions 228

Table ‎7-2: Term weighting formulas used in GA systems ... 229

Table ‎7-3: Fitness functions used in GA systems to measure document relativity to user

query. .. 231
Table ‎7-4: The retrieved documents by SRS and PRS techniques using query: “digital

systems design” ... 236
Table ‎7-5: The retrieved documents by PS100 and PS75 techniques using query: “digital

systems design” ... 239

Table ‎7-6: The retrieved documents by HC and C2O techniques using query: “multimedia

systems”... 241
‎7-7: The retrieved documents by HC and C2O techniques using query: “multimedia

systems” .. 244
‎7-8: The retrieved documents by HC and NOC techniques using query: “multimedia

systems” .. 247

List of Tables x

Table ‎7-9: : example of the results obtained by TPFF and OKAPI-BM25 fitness functions

using the query "database management systems" ... 250
Table ‎7-10: example of the results obtained by TPFF and bayesian inference network

model fitness functions using the query "database management systems" 252

List of Tables xi

Declaration xii

DECLARATION

Research from this thesis that has been published is presented below.

Journal publications

1. Al-Dallal, A. and Abdulwahab, R. (2012) GA and IR: study the effectiveness

of the developed fitness function on IR, International Journal of Artificial Life

Research (IJALR), 3(2), Apr-Jun

2. Al-Dallal, A., Abdulwahab, R. S., and El-Haddadeh, R.: IR with and without

GA: Study the Effectiveness of the Developed Fitness Function on the Two

Suggested Approaches, International Journal of Applied Metaheuristic

Computing (IJAMC). (Accepted to be published in IJAMC). (2012).

Conference papers:

1. Al-Dallal, A (2012), Enhancing Recall and Precision in Web Search using

Advanced Fitness Function, CD-ROM/Online Proceedings of the European,

Mediterranean and Middle Eastern Conference on Information Systems

(EMCIS). 6-7 June, Munich, Germany. (pp 29-41).

2. Al-Dallal, A and Abdulwahab, R. (2011) GA-based System for Achieving

High Recall and Precision in Information Retrieval, Proceedings of the 1
0th

Biennial International Conference on Artificial Evolution (EA-2011), October

2011, Angers, France.

3. Al-Dallal, A. and Abdulwahab, R. (2011) Achieving High Recall and

Precision with HTLM Documents: An Innovation Approach in Information

Retrieval, Proceedings of the World Congress on Engineering 2011 (WCE

2011), July 2011, London, U.K.

4. Al-Dallal, A. and Abdulwahab, R. (2009) Genetic Algorithm Based to

Improve HTML Document Retrieval, Proceedings of Second International

Conference on Developments in eSystems Engineering (DeSE’09), Dec.

2009, Abu Dhabi, UAE.

Declaration xiii

5. Al-Dallal, A. and Abdulwahab, R. (2009) Genetic Algorithm in Web Search

using inverted index representation, Proceedings of the 5th IEEE GCC

Conference and Exhibition, March 2009, Kuwait City, Kuwait.

Chapter 1: Introduction 1

1. C

hapter One: Introduction

1.1 Overview

The World-Wide Web provides users with access to an abundance of information. Users

query particular information from the Web using web search engines, and these web

search engines apply the information retrieval (IR) techniques to produce the needed

information. Information Retrieval is primarily devoted to extracting relevant information

in response to user query. The increasing amount of information on the web raises new

and challenging problems for information retrieval which is denoted as web search

problem.

These problems can be summarized in two areas, namely, the inaccuracy of the retrieved

information from the web (Bhatia and Khalid , 2007) within an aceptable retrieval time

(Kobayashi and Takeda, 2000). In oder to keep the focus, only the first problem will be

addressed in this thesis. Moreover, the information that can be retrieved using

information retrieval system (IRS) has multiple forms including text documents, sound

files, images, videos, etc. In order to focus the work in this thesis, only the text

documents will be considered for investigation and improvement.

The first web search problem has been investigated by many researchers attempting to

develop approaches that are capable of providing search results that satisfy user query,

examples are: (Liu, 2006; Marghny and Ali, 2005; Picarougne et al, 2002a; Kim and

Zhang, 2000; Fan et al, 2004; Kushchu, 2005; Karthik, Marikkannan, and Kannan, 2008;

Snasel, Moravec, and Pokorny, 2005; Tian et al 2006; Bhatia and Khalid, 2007;

Kobayashi and Takeda, 2000; Haveliwala et al, 2002; Ashraf, Ozyer, and Alhajj, 2008;

Yan et al, 2009; Xu, Deli, and Yu, 2009; Saini, Sharma, and Gupta, 2011). Often, these

results are evaluated using precision and recall perspectives. For precision, it measures

the percentage of relevant retrieved documents to the total retrieved documents, while

recall measures the percentage of relevant retrieved documents to the total relevant

http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435598158&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435599094&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435604114&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658

Chapter 1: Introduction 2

documents in search space.

In spite of several enhancements achieved in such approaches, still web users encounter

two major challenges when trying to retrieve useful information (LEE, 2007; Bhatia and

Khalid , 2007; Haveliwala et al 2002; Pathak, Gordon and Fan, 2000); namely; low

precision and low recall. Low precision is due to the irrelevance of many of the search

results where many of the highly ranked retrieved documents are not related to the user

query (Picarougne et al 2002a). On the other hand, the second challenge is the low recall,

which is due to the inability to index all the web documents available on the Web and

related to the user query, bearing in mind that the aim of the searching engine is to

retrieve all relevant documents based on the user query (high recall), and not to retrieve

any irrelevant document (high precision).

1.2 Information Retrieval Techniques

Recently, the IR challenge has gained certain importance as it aims at satisfying user

requirements by providing the most relevant set of documents in response to his query.

Thus, researchers have contributed to enormous paradigms and technique to solve this

issue. These techniques have been classified into four categories; probabilistic IR,

knowledge based IR, IR based on machine learning techniques, and traditional IR (Pathak

et al 2000; Chen, 1995; Dong, 2008). In probabilistic IR (Fuhr, 1992), the probabilistic

retrieval is based on estimating a probability of relevance of a document to the user

query. Typically, relevance feedback from a few documents is used to establish the

probability of relevance for other documents in the collection (Fuhr and Buckley, 1991;

Gordon, 1988). The second category of IR is knowledge-based IR (Chen and Dhar,

1991). This approach focuses on modelling two areas. The first area tries to model the

knowledge of an expert retriever in terms of the expert's domain knowledge. The second

modelling area is the user of the system. This modelling area is similar to the way used

by the librarian to develop the client profile. Although knowledge based approaches

might be effective in certain domains, it may not be applicable in all domains (Chen and

Dhar, 1991). The third category is learning-systems based IR (Pathak, Gordon and Fan,

2000). This approach is based on algorithmic extraction of knowledge or on identifying

patterns in the data. There are three broad areas within this approach: symbolic learning,

Chapter 1: Introduction 3

neural networks, and evolution based algorithms (Pathak, Gordon and Fan, 2000; Dong,

Hussain, and Chang, 2008). In the symbolic learning approach (Quinlan, 1986, 1993),

knowledge discovery is done typically through inductive learning by creating a

hierarchical arrangement of concepts and producing IF-THEN type production rules.

Neural networks are connectionist learning algorithms that typically simulate the way the

human brain learns and remembers knowledge. In these algorithms knowledge is

captured and remembered in terms of the weights on synapses, the interconnections of the

neurons, and the thresholds on logic units (Chen, 1995; Azcarraga et al, 2012; Guezouli

and Kadache, 2012). Evolutionary algorithms are based on the principles of natural

selection (Marghny and Ali, 2005). These algorithms can be further divided into: Genetic

Algorithms (GA), evolutionary strategies, and evolutionary programming. GA is based

on genetic operators of selection, crossover, and mutation (Holland, 1975), while

evolutionary programming utilizes changes at the level of species (Fan, Fox, Pathak, and

Wu, 2004), and the evolutionary strategies exploit changes at an individual behavioural

level (Fan et al, 2004). The fourth category is the traditional IR (TIR) (Dong, 2008). This

category is based on the semantic search engines and methods which are derived from the

traditional index-term-based information retrieval models. These models are further

classified into three main categories, namely, Boolean models, Algebraic models and

Probabilistic models. However, the general issue in these TIR models is that they are

computationally costly, where all documents in the search space need to be evaluated

against all of the indexed documents (Dong, 2008).

By investigating the above techniques, one can deduce the following: The first category

which is probabilistic IR requires parsing the whole document set upon receiving the user

query in order to estimate the probability of relevance of a document to the user. This

process requires the user to wait for a longer time before getting the final results. Hence,

it is impractical from a time perspective and from processing resources. Moreover, this

technique applies one factor only to evaluate the relevance is which is based on relevance

feedback from a few documents to establish the probability of relevance for other

documents in the collection. The second category, which is knowledge-based IR, and

both symbolic learning and neural networks, require preparing a model/example of the

data or applying the technique to a sample set before generalizing it to the whole

Chapter 1: Introduction 4

document set and producing the final results. This process consumes additional resources,

making it impractical in the domain of web search (Chen, 1995). According to (Dong et

al, 2008), the extensive computation cost is a common drawback for most of the

Traditional IR paradigms as it has to be applied to a vast number of documents in the data

set. Moreover, it is unreasonable to solve web-search problems using traditional IR

techniques. This is because in such techniques, all documents must be processed and

evaluated to produce the results related to the user query. However, considering the huge

number of web documents available in the search space makes this solution impractical

from a time processing point of view, since the user is going to wait for very long time

before he gets the results of his query. On the other hand, if the IR system is going to

process a limited number of documents in order to be fast enough, then it could not

retrieve all relevant documents and may process and retrieve unrelated documents ending

with very low recall and very low precision.

By looking at the methods of evaluate the documents, it is seen that most popular method

is based on an evaluation formulas which combines set of factors. One can deduce that

these factors are either limited to the statistical factors such as frequency of terms within

the document/collection, frequency of unique terms within the document/collection,

frequency of the most frequent term within the document, total number of documents

referring to a particular keyword(s), total number of documents in the search space, etc

(Salton and Buckley, 1988; Vrajitoru, 2000; Kim and Zhang, 2003; Radwan et al 2006;

Cummins and O’Riordan, 2006; Radwan et al 2006; Aly, 2007). Or these factors are

limited to the semantic factors where some researches use some HTML tags in weighting

the terms and hence in evaluating the documents (Kim and Zhang, 2003). It is clear that

there is a room to combine more facrots and consequently to create more advanced

evaluation formulas to better reflect document relevancy to the user query.

1.3 Web Search, Artificial Intelligence and Software

Engineering

Emphasis on the application of artificial intelligence (AI) to IR has been increased in

recent years as an alternative approach to traditional IR systems with the aim of solving

IR problems. That is because extraction of requested information requires searching for it

Chapter 1: Introduction 5

among tremendous collection of documents. Hence, Search is inherent to the problems

and methods of AI as AI problems are intrinsically complex. Efforts to solve problems

with computers which humans can routinely solve by employing innate cognitive

abilities, pattern recognition, perception and experience, invariably must turn to

considerations of search. All search methods essentially fall into one of two categories,

either: exhaustive (blind) methods or: heuristic (informed) methods (Bini et al, 2009).

Since the domain of the proposed model is a collection of vast number of documents and

requires an efficient technique, the first method becomes impractical to be adopted.

Hence, the best searching method that suits the proposed question is the second one

which is the heuristic method. Through knowledge, information, rules, insights,

analogies, and simplification in addition to a host of other techniques, heuristic search

aims to reduce the number of objects examined. However, heuristics do not guarantee the

achievement of a solution, although good heuristics should facilitate this. On the other

hand, heuristic search represents a practical strategy increasing the effectiveness of

complex problem solving (Bini et al, 2009). It leads to a solution along the most probable

path, omitting the least promising ones (Amarel, 1968), and it enables avoiding the

examination of dead ends while using already gathered data (Lenat, 1983).

In the domain of web search, heuristic methods can be applied to decide which

documents to examine, instead of examining all documents in the search space, and also

deciding that certain documents should be discarded, or pruned, from the selection

process (Kopec and Marsland, 1984).

AI as pointed by (Rech and Althoff, 2004), has two main strands, one is the scientific

strand and the other is the engineering strand. The scientific strand deals with the

cognitive science which requires the interference of the software engineering (SE) in

order to implement such system efficiently. In fact, there is a strong overlap between SE

and the engineering strand of AI. The important part of AI is the knowledge base systems

(KBS). Richter (2004) defines three different levels to describe KBS: the cognitive layer

(human-oriented, rational, and informal), the representation layer (formal, logical), and

the implementation layer (machine-oriented, data structures and programs) which

represent the area where SE is involved. Its main concern is the efficient and effective

development of high qualitative and mostly very large software systems (Rech and

Chapter 1: Introduction 6

Althoff, 2004).

1.4 Genetic Algorithm

Most studies argue that IR can be seen as a standard optimization problem (Marghny and

Ali, 2005,), where it has search space S represented by the set of documents, a set of

possible solutions S
+
 (the possible documents related to the user query), and evaluation

function f to evaluate the relevance of each of these possible documents related to the

user query. Finally, a search engine tries to output documents that maximize f. The

optimal solution is a document or set of documents that have the maximum score

returned by the function f. It is found that such an optimization problem can be solved

efficiently using Genetic Algorithm (Klabbankoh and Pinngern, 2008; Kim and Zhang,

2003; Petridis et al, 1998; Kazarlis et al, 2001). In addition, GA requires less processing

resources compared with the approaches mentioned in the previous section, since there is

no need to apply the technique to the training set before finding the optimum solution.

Moreover, there is no need also to evaluate all documents in the search space in order to

find the optimum solution. Therefore, it has been adopted by many researchers because

of its simplicity, flexibility, robustness, its capability as a powerful search mechanism,

and the ability to provide parallel solutions simultaneously (Aickelin, 1999; Kim and

Zhang, 2003; Sivanandam and Deepa, 2008); it can also be employed to make several

important contributions to the field of IR. Moreover, genetic search algorithms enable

intelligent and efficient internet searches and they are especially useful when the search

space is relatively large, as in the web (Milutinovic, Cvetkovic and Mirkovic, November

2000). GA uses the principles of selection and evolution to produce several simultaneous

solutions to a given problem (Sivanandam and Deepa, 2008); thus, it doesn’t stick to a

local optimum solution, rather, as it is a heuristic technique, it can permits to find in

average near optimal solution (Bini et al, 2009).

There have been a considerable number of various approaches investigating GA engines

for solving the web search problem (Kosala and Blockeel, 2000; Marghny and Ali, 2005;

Radwan et al 2006; Pathak, Gordon and Fan, 2000; Vrajitoru, 1997; Klabbankoh and

Pinngern, 2008; Yan et al, 2009; Drias, Khennak, and Boukhedra, 2009; Xu, Deli, and

Yu, 2009). In these types of approaches, GA generates an initial population which is a

http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435598158&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435599094&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435604114&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435604114&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658

Chapter 1: Introduction 7

group of individuals or set of documents selected randomly from the search space. The

individuals in the population are then evaluated using what is called a fitness function.

The fitness function is provided by the programmer and gives the web documents a score

to measure their relevance to the user query. Two individuals are then selected based on

their fitness: the higher the fitness, the higher the chance of being selected. These

individuals are then "reproduced" by an operation called crossover to create one or two

offspring, after which they are mutated randomly. This continues until a suitable solution

has been found or a certain number of generations have been passed, depending on which

happens first.

In the literature of using GA in IR it is found that the following techniques and areas of

GA are studied. Marghny and Ali (2005) elaborate on the quality of the retrieved web

documents by generating mean quality functions which utilize link quality and page

quality. Radwan et al (2006) develop a fast and flexible fitness function. This fitness

function depends on the difference between term weights of a given chromosome and the

query vector to evaluate the retrieved web documents. Pathak et al ,(2000) apply GA to

adapt matching functions that are used to match document descriptions with queries. The

performance of the system is measured using recall and precision. However, these

measures are based on a predefined document cut-off value, which is the number of

documents the user is willing to see. In addition, this approach lags in performance, using

a limited number of factors to evaluate individuals and being applied to a limited set of

documents. Vrajitoru (1997) maintained the relevance judgments of the past queries in

order to improve the performance of the system on the current query. However, this

approach uses simple GA operators except that it tries to estimate the error rate in a

reliable way by separating the information used for the evaluation from that used in the

training phase. While the above mentioned research works on search space to produce a

better result, Klabbankoh and Pinngern (2008) use GA to optimize the query

chromosome for document retrieval, and also study the effect of the probability of

crossover and mutation on recall and precision.

From the above mentioned studies of GA in IR, it has been found that there is a need to

enhance recall and precision through improving the quality of retrieved documents and

by displaying them at the top. Consequently, the user can be satisfied with the proper

Chapter 1: Introduction 8

results that appear right at the beginning of the retrieved list of document rather than

scrolling down and browsing multiple pages before finding the page that he/she wants

(Bedi and Chawla, 2007). Looking at the literature of using GA in IR from another

perspective, it has been found that many studies including Kim and Zhang (2003), Pathak

et al (2000) Aly (2007), Vrajitoru (2000), Martín-Bautista and Vila (1998) and

Klabbankoh and Pinngern (2008) have utilized the classical vector space model in their

studies to present their documents. Such an approach is considered to be impractical as it

requires a large space, a long time to create, and a long time to process (Snasel, Moravec

and Pokorny, 2005). On the other hand, Song and Park (2009) have used the Latent

Semantic Index model (LSI), which is relatively better than the vector space model in the

sense that it reduces the storage space and reduces the time of re-processing. However, it

consumes a longer time to generate the index as it is constructed in two stages. The first

stage is the building of the classical vector space, and the second stage is the construction

of the semantic vector extracted from the classical vector space (Song and Park, 2009).

Another point in existing GA is the techniques applied to evaluate the documents. Most

of these techniques are based on statistical factors and these factors are a combination of

local and global factors (Kim and Zhang, 2003; Radwan et al, 2006; Billhardt et al, 2002;

Vrajitoru, 2000; Cummins and O’Riordan, 2006; Salton and Buckley, 1988). Local

factors are those obtained from the document itself such as document size, term

frequency, and number of unique terms within the document, while global factors are

obtained from the collection, such as total number of documents, total number of terms in

the collection, total number of unique numbers, etc. These types of factors make the

evaluation of the document depend heavily on the collection, making the degree of

relevance inaccurate. In this case, the retrieval of the document is based on the documents

in the collection rather than reflecting their actual relevance, e.g. for a particular query,

there is no document exactly relevant to this query, but when using these factors, the

system returns the closest document in the collection to this query, although its actual

relevance is very small or non-existent. Another drawback in the existing GA models is

that most of their techniques are applied to plain text and not to structural documents

(Pathak et al, 2000; Aly, 2007; Vrajitoru, 2000; Martín-Bautista and Vila, 1998;

Klabbankoh and Pinngern, 2008), although most web documents are structured or semi-

Chapter 1: Introduction 9

structured. However, Kim and Zhang (2000; 2003) use GA to obtain the best HTML tag

weight for terms within the HTML text documents.

1.5 Commercial Searching Engines

No one can deny the importance and popularity of the commercial searching engines

(CSE) such as Google, Yahoo, MSN, etc. Even so, a lot of research is still conducted to

solve the web searching problems mentioned above. Why? In fact, the behaviour of these

search engines rarely considers the structure of the web document (Tian et al, 2006; Kim

and Zhang, 2003); rather, it considers intensively the links pointing to the retrieved web

document. As stated by Callen (2005, p. 21), the pages are ranked by Google based on

the importance and the number of websites that link to the retrieved document. In

general, a website will have high page ranking when it has a high number of links

pointing to it (Callen, 2005, p. 21), or if it has a link from a high ranked page pointing to

it (Kim and Zhang, 2003). Google uses three main techniques to evaluate the document.

The first one is the PageRank. The second one is location of the information which

applies the proximity concept, and finally, the visual presentation details such as the font

size of words (Green, 2004). The PageRank for a web page is evaluated using the

following technique:

For a web page A that has pages T1, T2,.., Tn, which are point to it, this web page has also

number of links going out of it, denoted by C(A), the PageRank of web page A is given

as follows:

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

Where parameter d is a damping factor that can be set between 0 and 1 but usually set to

0.85. As the PageRank forms a probability distribution over web pages, the sum of all

web pages' PageRanks will be one.

Even though, scientist and researchers are still developing other techniques to keep on

improving and proposing more and more IR techniques. Marghny and Ali (2005) used

Google results as an input to their IR model in order to further improve the quality of its

results. Moreover, it is noted that the users may query the same search engine several

times by rephrasing the query in order to obtain the desired results (Tian et al, 2006).

Chapter 1: Introduction 10

Also this is evidence of the low quality of the retrieved results if it is assumed that the

user passed the correct query to the search engine. Another point worth clarifying is that

the title is mentioned as “commercial”, which implies that the commercial effect plays a

vital role in such types of search engine. In fact, there is a big difference between

academic research applied to IR and CSE (Glover, 2007). This is due to various factors.

One of them is the crawling: How much of the web is crawled? What is the update

frequency? Not all web pages use HTML, etc. The second factor is indexing: what to

index, dealing with polysemous and synonyms, dealing with updates, etc. The third factor

is query processing: many queries would have large relevant sets, the order of query

words, geographical place of the user, year of the query, etc. The last factor is that the

user interface issues are extremely important for the retrieved web pages (Glover, 2007).

These factors make the CSE largely disconnected from the academic search engine. In

addition, the CSE is characterized by some biasing features (Glover, 2007). For Example,

ranking the results cannot assume independence, content of a web page is not sufficient

to imply meaning, results must consider maliciousness, the web is large or infinite, and

the goal of the CSE is to make money. The differences between CSE and Academic

search engines are summarized in table 1-1.Needless to say that the proposed model

cannot replace the commercial engines; however, the proposed techniques can be

included or added to the techniques applied by these CSE.

1-1: The difference between Commercial Searching Engines and Academic search engines

Commercial Searching Engines Academic Searching Engines

Goal is to make money Goal is to retrieve relevant documents

UI is extremely important Retrieving relevant documents is extremely

important

Real-time/fast expectation Concerned with quality of retrieved document

regardless of the time

Content of web page not sufficient to imply meaning Content of web page is sufficient to imply

meaning

Result ranking cannot assume independence Result ranking assume independence most of the

time

Must consider maliciousness Maliciousness is not considered at all

No quality control on pages (quality varies) The quality of pages is controlled

Web is large (practically infinite) Data set is finite

Millions of heterogeneous users Limited users

Chapter 1: Introduction 11

1.6 Problem Statement and Research Motivation

Every internet user wishes to have satisfactory results when using any web search engine.

Satisfaction is in the sense that all the retrieved results are relevant and all relevant

documents are retrieved; in other words, the web user is satisfied when the information

retrieval system retrieves all and only the relevant documents within a reasonable

response time. In spite of several enhancements having been achieved in such search

techniques, still web users encounter two major problems when trying to retrieve useful

information (Kosala and Blockeel, 2000; Pathak, Gordon and Fan, 2000; Haveliwala,

2002; Cho and Richards, 2004; Yeh et al, 2007; LEE, 2007; Bhatia and Khalid, 2007;

Bedi and Chawla, 2007). The first problem is low precision. It is due to the irrelevance of

many of the retrieved results, where many of the highly ranked retrieved documents are

not relevant to the user query (Picarougne, 2002). The second problem is low recall,

which is due to the inability to index all the relevant web documents available on the

Web.

The ultimate objective of any information retrieval system (IRS) is to retrieve only the

relevant documents. In this case, the precision will be equal to one. Another ultimate

objective is to retrieve all the relevant documents which yields in a recall of one. Since,

in real situation, it is not practical to display all relevant results to the user query,

researchers consider an asymptotic solution, where the results are evaluated at the first N

retrieved document; given that N is multiples of 10 and 0 ≤ N ≤ 100. The common values

of N for the precision are 10, 20, 30, ..., 100. Some authors use the average of these 11

points (Cutler et al, 1999; Kim and Zhang, 2000) while others use the first two values,

which are precision at 10 and 20 (Kim and Zhang, 2003). Considering this measure, it is

shown from the literature that the maximum results achieved for the average 11-points

measure is 0.255 (Cutler et al, 1999). When using N<3, or precision at first 10 and 20

retrieved documents only, then the best result obtained is the average of these 2 points

which is 0.545 (Kim and Zhang, 200).

The second measure that is used by researchers is the recall at first N retrieved

documents, where N is similar to that of the precision measure. This measure gives

accurate results for the proposed measure (that is recall at N and N ≤ 100) when the total

Chapter 1: Introduction 12

relevant documents for a given query is not more than 100 documents. Otherwise, this

evaluation becomes relative, where the results are compared with other techniques or

with other queries for same technique undertaken. When retrieving all the relevant

documents within first 100 positions, then this measure will return a score of one for

recall at 100 retrieved documents. However, authors use the same concept of the average

of 11-points which is mentioned above. In this case the maximum score achieved in this

domain is 0.319 (Cho and Richards, 2004).

To overcome the limitation of the number of retrieved documents compared with the

number of all relevant documents, especially for the web, researchers use the concept of

precision-recall measure. This measure combines both precision and recall into one

measure. In fact, this is a more popular measure that is used in evaluating the information

retrieval systems than the previous two (Horng and Yeh, 2000, Desjardins, Godin, and

Proulx, 2005, Aly, 2007, Yeh et al, 2007, Kim and Zhang, 2000). This evaluation

technique measures the precision at each 10% of the total relevant documents retrieved.

In another words, when retrieving 10% of the total relevant documents, what is the

percentage of these 10% within the total retrieved documents? As an example, suppose

that 5 documents form 10% of the 50 relevant documents. By the time the system has

retrieve these first 5 relevant documents, it has also retrieved an additional 3 irrelevant

documents. In this case, the precision-recall = 5/ (5+3) = 0.625. So the precision-recall at

10% = 0.625. Obviously, it measures how many impurities (irrelevant documents) exist

within the displayed results. The ultimate score of this measure is also one and it is

achieved when retrieving only the relevant documents and displaying them at the top

ranked position.

Similar to the 11 points used for other measures, researchers use the same concept of the

average 11 points for the precision-recall measure, where the domain of the relevant

documents is divided into 10 slots and it evaluates the percentage of the relevant

documents within each slot. Then the average of these slots is computed. By looking at

the scores achieved using this measure it is found that the best score reaches 0.7003

(Horng and Yeh, 2000). In addition, it is found that the score achieved for these measures

using current approaches is still far away from user expectation where his/her expectation

that need to be accomplished is to have an information retrieval system that is able to

Chapter 1: Introduction 13

achieve a score of one or very close to one when evaluated by these measures. Therefore,

this thesis aims at enhancing the recall and precision of the web search to achieve an

average 11-point precision higher than 0.35, an average 11-point recall higher than 0.9

and an average 11-point precision-recall higher than 0.9 in order to meet the user desire

when accessing the web search engine.

This aim will be achieved through three steps. The first one will focus on the document

representation. The second step is to modify the existing GA operators such as initial

generation creation, parent selection, crossover and mutation. The third direction is to

develop a fitness function that is able to distinguish the relevant documents from

irrelevant by giving a high score for the relevant documents.

1.7 Research Aim and Objectives

As Web search becomes a vital area for all Web users, there is a need to have a robust

search mechanism that is able to display all relevant documents as the top ranked results.

This research aims at providing such a mechanism which enhances the precision by

displaying the relevant documents at top rank, and enhances the recall by retrieving as

many relevant documents as possible from the search space. The maximum average

precision of the existing approaches reaches 0.255, while the maximum average recall is

0.319. When using precision-recall measure, this score reaches 0.7003. This research

aims to produce higher scores for the same measures by applying the GA model to

HTML documents using the enhanced inverted index. Based on the motivation for the

work mentioned earlier, the objectives to be achieved by this research are:

1. To develop an enhanced inverted index that takes an O(n) time to construct and

retrieve the needed data, requires small storage space and retrieve the data in

O(n) time, where n is the size of the indexed terms. The design of this index is

based on analyzing the different existing models of document representations to

benefit from their advantages and overcome their weaknesses.

2. To explore the existing techniques of genetic algorithms which are used in

information retrieval and identify their advantages and weaknesses to produce

higher performance operators and develop a new technique for the crossover

Chapter 1: Introduction 14

operator which enhances the retrieval results in terms of precision and recall.

3. To propose new evaluation function to evaluate the documents retrieved that

compete with the existing document evaluation functions after identifying their

advantages and disadvantages. This function need to combine local factors,

statistic factors and semantic factors, so the evaluation is done independently of

other documents in the search space. These factors expected to enhance the recall

and precision by at least 10% compared to the benchmark fitness functions

(OKAPI-BM25 and Bayesian inference network model).

4. To propose new crossover technique that doubles the quality of chromosomes

within each generation.

5. To develop traditional IR (TIR) model based on the proposed evaluation function

to compare its performance with IRUGA from one side and with other GA-based

IR techniques from other side in terms of time, recall and precision. The time can

be measured using the actual time in seconds, and in case of GA the time will be

compared in terms of maximum number of generations produced by the model.

1.8 Research Methodology

Implementing an IR-system Using GA (IRUGA) model requires robust data structure that

is capable of supporting and maintaining a large amount of data and at the same time

provides fast access and retrieval of the requested information. However, it was not

mentioned explicitly in the literature what kind of such tools are used, but as per

(Application development: PL/SQL, Java or C++?, 2002) it is found that the Oracle

database is much more suitable and provides a powerful tool that is featured by

consistency and faster access to the data needed than C++. Therefore, the Oracle 10g

database and PL/SQL programming language are going to be used for generating the

inverted index and modelling IRUGA since Oracle supports the large number of

documents to be indexed and is very straightforward in storing the data required,

retrieving the terms and documents needed, sorting the genes within the chromosome,

and manipulating the data. Also it is very easy and simple to program compared with

C++ which requires additional effort to manipulate the character string and find the

Chapter 1: Introduction 15

minimum distance between terms whereas it can be done in Oracle using a simple SQL

statement. C++ also requires an extra code for sorting while it can be done in SQL easily

by just adding order by closure to the SQL statement. Moreover, several difficulties are

encountered while treating large numbers of documents using C++ from a memory

management point of view.

This is from the environment and tools point of view. From the structure point of view,

IRUGA will be composed of two main units, namely: indexing unit and GA unit. In the

indexing unit, the inverted index is created to transform the documents into a structure

that can be accessed by IRUGA easily and efficiently. The GA unit is composed of

several operators which are the initial selection process, the parent selection operator, the

innovative hybrid crossover operator, and the mutation operator. These operators act to

form consecutive generations. Each generation is composed of a set of chromosomes.

Each chromosome represents a possible solution. These chromosomes are evaluated

using specially developed fitness function. The best chromosome of the last generation

represents the results of the user query. These results are encoded in the form of the index

of documents relevant to the user query.

Results obtained by IRUGA will be analyzed by studying four measures. The first

measure is the speed of convergence, where the number of generations required to

produce the final result is going to be compared with other similar techniques applied to

the IR domain. The second measure is the precision at top N, where N is the top retrieved

document and N {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The average precision at

these points starting from 0 to 100 forms 11 points; hence, it is called 11-point average

precision. This measure is commonly used to evaluate the IR systems developed (Cutler,

Deng et al, 1999; Kim et al, 2000). The third measure is the recall at top N. This measure

evaluates how many relevant documents exist in the window of size N, where N is the

same as above. The last measure which is common in this domain is precision at recall

percentage, noted as P@R measure (Radwan, 2006; Aly, 2007; Desjardins, 2005; Horng

and Yeh, 2000; Kim and Zhang, 2000). This measure calculates the percentage of

relevant retrieved document to each 10% of the total number of relevant documents. In

other words, it is the percentage of relevant documents when retrieving 10%, 20%,..

100% of total relevant documents.

Chapter 1: Introduction 16

1.9 Thesis Outline

The remainder of this thesis is organized in the following way:

 The second chapter starts by highlighting the main components of the general IR

system. Then it describes three types of documents before reviewing and

assessing the document representation models. The common models of

implementing IR systems are presented in order to show where the proposed GA

fit among them. An investigation of the current techniques applied to implement

the GA operators is performed. It shows the advantages and the drawbacks of

these techniques. Finally, a discussion of different types of fitness functions is

provided.

 Chapter three introduces the design of IRUGA. It is composed of two main

components: the document representation and the GA mechanism. At the

beginning it explains the features of the HTML document as a document type

adopted for IRUGA. Next, in the same section, the reason behind the selection of

specific HTML tags and their weights is highlighted. The description of the first

unit of IRUGA, namely, the inverted index unit is explained in full details. The

advantages of this indexing model are also discussed. The next section explains

the main unit involved in IRUGA, namely, the GA unit. This chapter proposes a

set of operators that can be applied by the GA unit in such a way that IRUGA at

the end will be capable of producing the high quality results expected. Finally, the

chapter closes by introducing two fitness functions that are used to evaluate the

documents retrieved by the GA unit.

 Chapter four describes the environment configuration of the machine used to run

IRUGA. The reason behind choosing PL/SQL and oracle 10g for implementing

this approach will be discussed. The experimental work for choosing IRUGA’s

parameters is also presented in this chapter. Next, several experiments are

conducted to setup IRUGA’s parameters. These parameters include population

size, chromosome length, crossover probability, mutation probability, and the

terminating criteria. Additionally, an experiment is conducted to test how the

performance of IRUGA is influenced by these parameters. Finally, this chapter

Chapter 1: Introduction 17

defines a range of experiments that are used to evaluate and compare each

technique proposed for IRUGA units against the existing technique.

 Chapter five presents the evaluation process of IRUGA. It starts by describing the

document set which is written in HTML format and forms the search space of

IRUGA. Next it describes the queries used to examine the IRUGA performance.

The evaluation measures used to assess IRUGA are also explained in this chapter.

These measures are: precision at rank N, recall at rank N, precision at recall and

the convergence speed. This chapter employs the experiments as explained in

Chapter 4 and evaluates the proposed techniques of implementing the GA

operators which are described in Chapter 3. The analysis of each experiment is

performed and illustrated by tables and diagrams. Finally, a table that summarizes

all the experimental results performed throughout this chapter is included at the

end.

 Chapter six compares IRUGA, which is a GA-based IR model, with traditional IR

(TIR) systems. This chapter starts by providing a description of the TIR structure

and its units. Next, a TIR system is built based on the term proximity evaluation

function (TPEF) forming: Term proximity-based TIR (TPBTIR). Then, the

performance of this system is compared with IRUGA in terms of the processing

time in one experiment, and in terms of the precision and recall measures in the

second experiment. In order to illustrate the novelty of the proposed term

proximity function, an experiment is conducted to compare the quality of the

documents retrieved by this function and documents retrieved by other two well

known evaluation functions using the TIR system. These functions are the

OKAPI-BM25 function and the Bayesian inference network function. The last

experiment, tests the performance of both IRUGA and TIR using these three

evaluation functions. This experiment shows that if the processing time is not a

concern, then TIR is better only for the TPEF functions. This chapter concludes

that IRUGA is the best approach for a large set of documents such as the web,

while TPBTIR is the best for a small collection of documents.

 Chapter seven shows how IRUGA and TPBTIR managed to enhance the

Chapter 1: Introduction 18

precision and recall measures. This is done by analyzing the results obtained in

Chapters 5 and 6, and comparing them with the performance of existing GA-

based IR models described in Chapter 2 in terms of P@N, R@N, and P@R

measures. The results obtained by IRUGA reflect the novelty of this model and

the achievements aimed in this study since it is more suitable than TPBTIR for the

web search domain.

 Chapter eight concludes this thesis. It summarizes the design of the proposed

IRUGA and TPBTIR models, followed by the contributions and the conclusions

drawn from this work. The limitations of this work are listed before opening the

door to the possible directions of future work for extending the proposed model to

web search space.

The layout of thesis is presented in Figure 1-1.

Chapter 1: Introduction 19

Figure 1-1: The layout of thesis

Knowledge Base Problem statement

in Web search

1. Low recall

2. Low precision

Design of IRUGA

1. Build inverted index

2. Develop new Fitness

function

3. Propose new

techniques for GA

operators.

Methodology to

implement IR

prototype

1. Utilize Oracle

Database

2. Use PL/SQL

Perform experiment

1. Specify document set

2. Define queries

3. Run the IRUGA over set of

documents

4. Set GA parameters

5. Define experimental methods

Apply measurement:

1. Recall

2. Precision

3. Recall-precision

4. Speed of

convergence

Evaluation:

1. Compare IRUGA with other GA-

based IR in terms of the

measurements:1-4

2. Compare IRUGA with other TIR

models in terms of the

measurements:2-4

3. Compare different fitness functions

using IRUGA

4. Compare IRUGA with TIR

Assessment of

IRUGA

Refine

Conclusion:

 Validity of the

model

 Limitations

 Future work

Foundation

1. Literature review

2. IR model to be

applied

Business
needs

Applicable
Knowledge

Measures

Chapter 2: Literature Review 20

2. C

hapter Two: Literature Review

2.1 Overview

Emphasis on the application of artificial intelligence (AI) to information retrieval (IR) has

been increased in recent years as an alternative approach to traditional IR systems with

the aim of solving IR problems. One of the AI areas is evolutionary computation (EC),

which is based on models of natural selection. A classical and very important technique

in EC is the genetic algorithm (GA). The GA is biologically inspired and has many

mechanisms derived from natural evolution. Because of its parallel mechanism with high-

dimensional space, GA has been used to solve many scientific and engineering problems.

This in turn began to encourage researchers to use this algorithm in the field of IR.

Moreover, GA played an important role in providing suitable information for the user's

needs. IR systems in general are composed of four components. These components are:

collection of indexed documents and user query as an input, the retrieval engine as a

processor which has the ability to evaluate documents based on user query, and a set of

ranked retrieved documents as an output. These components are illustrated in Figure 2-1.

Figure 2-1: The components of general IR system

For any IR system to be applied to a set of documents, these documents need to be

represented in such a way that the IR system can easily retrieve the relevant document as

a response to a user query. This representation is done through a process called document

User

Query

IR

Engine

Document

Indexing

Document
Evaluation

Ranked

Results

Chapter 2: Literature Review 21

indexing. This chapter is going to review different techniques used to index the

documents in order to identify their advantages and weaknesses, then it will consider GA

systems as an approach applied to the IR domain by looking into each operator of GA

and indentifying its drawbacks and limitations whenever they exist. Since genetic

algorithms have become more popular, intensive research work has been directed to

develop this domain. Therefore, the literature review is restricted to review specific areas

related to GA systems that are used in information retrieval systems only.

This chapter is organized as follows: Section 2.2 starts by discussing the basic three types

of documents followed by presentation of several models of document representation.

Section 2.3 is about the basic information retrieval techniques which are Probabilistic IR,

Knowledge Based IR, Learning Systems Based IR and traditional IR. The main work is

presented in Section 2.4 where it discusses the techniques used in GA to solve the IR

problem. GA is based on three operators and each one of these operators is elaborated in

a separate sub-section. It starts with the initial generation creation methods. Next is the

elaboration of the main three operators of GA, namely: selection, crossover and mutation.

Then it emphasizes the intensive work undertaken to develop the fitness function used to

evaluate the documents.

2.2 Document Representation

When talking about document representation, there is a need to take a look at the

document types that form the search space of any IR system. This in turn, leads to an

investigation of several document representation models that are applied as a re-

processing stage for IR systems. What is meant by document representation is the process

of extracting the meaningful words from a document and presenting them into a structure

that facilitates the process of matching the query with the documents referencing these

words. These models will be discussed in this section by highlighting their advantages

and drawbacks followed by an assessment of them.

2.2.1 Types of documents

Basically, an IR system can be applied to several kinds of documents. These documents

are categorized into three classes: structured, semi-structured and non-structured

Chapter 2: Literature Review 22

documents.

When a collection of documents shares the same kind of information, it is natural to think

about describing that information in the same way for all of them. For example,

conference papers have almost the same structure, so it is desirable that this structure

would be described in a standard way. These ideas were at the origin of the standard for

specifying markup languages, the Standard Generalized Markup Language (SGML), as a

format of exchanging documents (Gancarski and Henriques, 2003). Some SGML

documents have a well defined hierarchical structure, such as titles, subtitles and headers.

So they are called structured documents. The sections in structured documents are clearly

marked with single or multiple levels headings. Structured documents can have other

attributes which are necessary to create the hierarchy, such as distinctive colour,

underlines, boldness, etc. (Alam et al, 2003). An example of this type of document is

eXtensible Markup Language (XML). The specification of the structural elements and

their hierarchical relations for a given type of documents is made through the Document

Type Definition (DTD) (Gancarski and Henriques, 2003). The advantage of this type of

document is that both type and location of data is known before scanning (Kofax, 2011).

On the other hand, if the type of data is known but its location is not known before

scanning, then this type of document is called semi-structured (Kofax, 2011). A famous

example is the HTML documents. HTML documents are developed as an SGML

application to show the documents in the Web (Gancarski and Henriques, 2003). This

standard makes use of presentation marks to describe how the textual parts must be

displayed by the browser. Contradictory to XML which uses Document Type Definition,

HTML has limited but not a small number of types of tags, hence they are embedded in

the same file.

The third type of documents is the unstructured document or flat document which

referred to as plain text in many papers. In this type of documents, both the type and

location of the information it contains are unknown prior to scanning (Kofax, 2011). Also

it will not have any of the attributes mentioned in the structured document such as

headers, colour, underlines and boldness (Alam et al, 2003). These types of documents

usually have a title, but after that the content is not organized in any structured fashion. It

is interesting to note that much research in the IR domain uses this type of document. The

Chapter 2: Literature Review 23

reason is that many document sets in this format are served by a predefined index, a set of

queries, and a set of documents relevant to these queries. Such an approach offers

simplicity for developers to utilize this system.

2.2.2 Models of Document Representation

The IR system is applied to a set of documents which form the search space. These

documents must be represented in a way such that matching these documents with

queries is easy (Pathak, Gordon and Fan, 2000). Another consideration in document

representation is that such representation should correctly reflect the author's intention

(Pathak, Gordon and Fan, 2000). The primary concern in representation is how to select

proper index terms (Pathak, Gordon and Fan, 2000) and which indexing model is to be

implemented. Typically, representation proceeds by extracting keywords that are

considered as content identifiers and organizing them into a given format (Pathak,

Gordon and Fan, 2000). The basic method of web search and traditional IR system is to

find documents that contain the terms in the user query. Many models such as the

Boolean Model, Vector Spacing Model, Probabilistic Model, Latent Semantic Indexing

Model and Inverted Index Model have been developed to represent the documents.

2.2.2.1 Boolean Model

The Boolean model is one of the oldest and simplest information retrieval models. In the

Boolean model, documents and queries are represented as sets of terms. That is, each

term is only considered present or absent in a document. Using vector representation of

the document, the weight of the term ti in document dj is 1 if ti appears in document dj,

and 0 otherwise. Given a Boolean query, the system retrieves every document that makes

the query logically true. Thus, the retrieval is based on the binary decision criteria, i.e., a

document is either relevant or irrelevant. There is no notion of partial match or ranking of

the retrieved documents. This is one of the major disadvantages of the Boolean model,

which often leads to poor retrieval results (Billhardt, Borrajo, and Maojo, 2002).

2.2.2.2 Vector Spacing Model

The vector space model (VSM) is the most commonly used model (Liu, 2006; Lopez-

Chapter 2: Literature Review 24

Pujalte, Guerrero-Bote, and de Moya-Anegon, 2003a). In this model, a document is

represented as a weight vector, in which each component weight is computed based on

some variation of term frequency TF, or term frequency- inverse document frequency

TF-IDF. The weight wij of term ti in document dj is the number of times that ti appears in

document dj.

In this model, the documents are ranked according to their degree of relevance to the

query. One way to compute the degree of relevance is to calculate the similarity of the

query q to each document dj. There are many similarity measures, such as the cosine

similarity (Aly, 2007; Vrajitoru, 1997; Lopez-Pujalte, Guerrero-Bote, and de Moya-

Anegon, 2003a), which is the cosine of the angle between the query vector q and the

document vector dj. Another way to assess the degree of relevance is to directly compute

a relevance score for each document to the query. The Okapi method and its variations

are popular techniques in this setting (Liu, 2006).

When implementing GA–based IR system using the aforementioned technique by (Aly,

2007) using VSM and cosine similarity function, the average 11-point precision-recall

measure achieved ranges between 0.2969 and 0.4321. Another variant of the VCM is

called context vector space (CVM) implemented by (Billhardt, Borrajo, and Maojo,

2002). CVM is a semantic indexing technique that uses co-occurrence data to estimate

the probability-based semantic meaning of a term or its context in relation to other terms.

This technique is tested using various mid-sized document sets. The achieved average

precision varies between 0.2839 and 0.6746 reflecting instability effect of such model.

The vector spacing model has many disadvantages (Snasel, Moravec and Pokorny, 2005).

One of them is that the document vectors have a big dimension (e.g. 150,000) and are

quite sparse. The second is called the “curse of dimensionality”, which causes classical

indexing structures, such as M-trees and A-trees, to perform in the same way or even

worse than sequential scan in a higher dimension. The third is the synonyms of terms and

other semantically related words that are not taken into account. In spite of its

disadvantages, still VSM is used by some researchers to implement their approaches such

as (Kui and Juan, 2012) who applied an improved version of TF-IDF and called it: TF-

IDF-IG. The achieved average precision and recall are 86.764% and 88.264%. This

technique has improved the fitness function TFIDF by introducing the optimized feature

Chapter 2: Literature Review 25

extraction to avoid the data imbalance problem that results from magnitude of categories.

2.2.2.3 Probabilistic Model

This model tries to use the probability theory to build the search function and its

operation mode. The information used to compose the search function is obtained from

the distribution of the index terms throughout the collection of documents or a subset of

it. This information is used to set the values of some parameters of the search function,

which is composed of a set of weights associated with the index terms (Radwan et al,

2006). However, the term weight within this model depends basically on the probability

of the word within the document regardless of its position in the document. Accordingly,

it loses the ability to distinguish between documents and gives the same level of

relevance for documents having the same probability for the queried term.

2.2.2.4 Latent Semantic Indexing Model (LSI)

 The purpose of LSI is to extract a smaller number of dimensions that are more robust

indicators of meaning than individual terms (Song & Park, 2009). Once a term-by-

document matrix is constructed, LSI requires the singular value decomposition of this

matrix to construct a semantic vector space. Singular Value Decomposition (SVD) is

performed on the matrix to determine patterns in the relationships between the terms and

concepts contained in the text. The SVD forms the foundation for LSI. Due to the word-

choice variability, the less important dimensions corresponding to “noise” are ignored. A

reduced rank approximation to the original matrix is constructed by dropping these noisy

dimensions.

Although this model requires less storage space at the last stage of construction, it has

two drawbacks. The first one is that once the index is created and there is a need to add

new searchable documents, then the terms that were not known during the SVD phase for

the original index are ignored. These terms will have no impact on the global weights and

learned correlations derived from the original collection of terms (Song and Park, 2009).

Another drawback is that it requires a longer time to construct as it involves an additional

step to construct SVD. (Zaman and Brown, 2010) compared between three document

evaluation functions on TREC-8 data set that contain 131,321 documents using LSI

Chapter 2: Literature Review 26

model. These functions are TF-IDF, log-entropy, and row term-frequency. The size of the

matrix required to construct the index is 131,321 (the number of documents) * 93,909

(the number of indexed terms). Assuming that each term required 4 bytes of storage (if

the word size is 4 characters and each character needs one byte) then the total storage size

required to store this index is 49GB. The best average non-interpolated precision

achieved in this study is 0.0436 and it is scored by the TF-IDF term weighting scheme.

These results reflect the low efficiency of this model.

2.2.2.5 Inverted Index Model

In its simplest form, the inverted index of a document collection is basically a data

structure that attaches each distinctive term to a list of all documents that contain the term

along with its position within the document, the frequency of its appearance in the

document, and the weight of this term with respect to the document in addition to any

extra data required such as the offset of the sentence that includes this term. In this model

as described in (Uematsu et al, 2008, p.308), the inverted index holds word position data,

as well as document ID. Word position data is a list of offsets at which the words occur in

the document. Such occurrence information (i.e. document ID and word position data) for

each word is expressed as a list, called an “inverted list”, and all the inverted lists taken

together are referred to as the inverted index. The position data is mainly used for

sophisticated phrase (i.e. order-sensitive) searches and proximity search which depend on

the distance between terms. When a phrase query is submitted, the search engine accesses

the inverted list of each word of the query – referred to as the keyword - to identify

documents that contain those keywords. In addition, it retrieves the additional data

associated with the keyword. These additional data are fed into the evaluation process

such as the fitness function. Finding documents containing multiple queries is also easy

as well.

2.2.2.6 Sentence-Based Inverted Index Model

This model is similar to the inverted index model described above but it indexes only the

presence of each word in each sentence. The inverted list holds sentence position data

instead of word-based position data (Uematsu et al, 2008). This model reduces the size of

Chapter 2: Literature Review 27

the index by 25% compared with word-based index. However, it doesn’t reflect the

accurate relativity of the document to the user query since it doesn’t consider the order of

the terms within the sentence or the distance between the keywords. It checks only the

presence of the keywords in the same sentence within a document regardless of their

order of appearance. This model is applied by (Uematsu et al, 2008) to TREC-8 data set

containing 528,155 documents. The precision at first 5 retrieved documents (P@5)

achieved is 0.468 which is better than word-based index by 0.8%. However, the precision

at the points: P10, P20, P30, P100 and P200 for the word-based index are better where

they range between 2.75% and 6.2%. Thus, when considering the precision measure,

word-based index comes in the first position outperforming the sentence based index.

2.2.3 Assessment of the indexing models:

Investigation of the structure of the above models reveals that the first 3 models

(Boolean, vector spacing and probability models) require scanning the document

database sequentially in the retrieval process to find the documents that contain the query

terms. However, these methods are obviously impractical for a large collection, such as

the Web (Liu, 2006), since scanning the document database sequentially takes a relatively

long time for retrieval. The Latent Semantic Indexing model ends with a relatively small

index compared to vector space. However, to build that index it first uses the vector space

model – with its drawbacks mentioned earlier - then it builds the modified index out of

the vector space. Accordingly, it takes more time and consumes more space and

resources to construct. Yet there is room for a better model which utilizes very much

lower space and hence causes the information retrieval to be faster. This model is

implemented using data structure (called indices) from the document collection to speed

up the retrieval or search (Liu, 2006). The inverted index, which has been shown to be

superior to most other indexing schemes, is a popular one and perhaps it is the most

important index method used in search engines as mentioned in (Liu, 2006). This

indexing scheme not only allows different retrieval of documents that contain the

keywords, but is also very fast to build since it requires a one-time parse for the

document set and also it supports highly sophisticated queries (Uematsu et al, 2008).

Thus, in retrieval, it takes a constant time to find documents that contain a query term

Chapter 2: Literature Review 28

along with all data related to the keyword such as the total frequency within a document

and within the whole set, etc. An empirical study is conducted by (Uematsu et al, 2008)

shows that the sentence-based inverted index performs slightly better than the word-

based inverted index in terms of retrieval time where it is faster by 0.9%. Eventhough, the

word-based index is better in terms of recall and precision.

Because the word-based inverted index model is fast to build, smaller in storage space,

stores word position rather than sentence position, is mainly fast to retrieve the needed

data, and it produces better results in term of precision and recall, it is adopted for

IRUGA instead of any other indexing model. Advantages and disadvantages of each

indexing model are listed in Table 2-1.

Table 2-1: Summary of indexing model used in IR systems

Model of

presenting the

documents

Description Advantages Disadvantage

Boolean model

(Radwan et al

2006)

 Binary indexing: the term

either exists or not (0 or

1).

 Provide an exact match

for documents having

the same query term

only.

 Requires a large space to

present document.

 Requires a long time to

process a document,

O(n2).

 Only presence or absence

of term is provided.

 No additional term info

(e.g. frequency, weight,

and order within

document) is provided.
Vector space

model (Lopez-

Pujalte,

Guerrero-Bote,

and de Moya-

Anegon, a,

2003; Aly,

2007;

Vrajitoru,

1997; Billhardt

et al, 2002)

The document is viewed as

a vector in n-dimensional

document space, where n is

the number of

distinguishing terms and

each term represents one

dimension in the document

space.

 Documents are evaluated

based on frequency of

the query terms.

 Readymade Datasets

represented as vector

space are available in the

web.

 Many techniques of

evaluating documents’

similarity to the query

are available to be used

with this indexing model

 Requires a large space to

present document where

many redundant zeros are

presented in the vector.

 Requires a long time to

process a document,

O(n2).

 Adds extra info

associated to the terms

(e.g. frequency, weight,

etc.) enlarges the space

tremendously.

 Synonyms are not taken

into account

Probabilistic

Model

(Radwan et al

2006)

Uses probability theory to

build the search function

and its operation mode. The

information used to

compose the search function

 Term weight is

evaluated based on its

distribution in the data

set.

 Evaluates terms based on

term probability.

 Long time to construct as

it requires parsing the

documents to obtain term

Chapter 2: Literature Review 29

is obtained from the

distribution of the index

terms throughout the

collection of documents or a

subset of it.

probability before

assigning the weight for

each term, O(n
2
)

Latent

Semantic

Indexing (Song

and Park,

2009)

Once a vector space is

constructed, Singular Value

Decomposition (SVD) is

performed on it to

determine patterns in the

relationships between the

terms and concepts

contained in the text. Based

on the word-choice

variability, the less

important dimensions

corresponding to “noise”'

are ignored and reduced

rank approximation to the

original matrix is

constructed by dropping

these noisy dimensions.

 Indexes the most

significant terms only.

 Term occurrence is

presented by real

number reflecting its

local or global weight.

 Presents the most

important semantic

information in the text

using Singular Value

Decomposition (SVD)

 Reduces noise and other

undesirable artefacts of

the original space.

 Requires a longer time to

construct.

 Requires a large space to

construct (while building

the index)

 Cannot add extra terms to

the index once created.

Word-based

Inverted Index

model (Liu,

2006; Uematsu

et al, 2008)

It is a data structure that

attaches each distinctive

term to a list of all

documents that contain the

term along with position

within the document and

additional useful data.

 Ability to index all

meaning terms.

 Ability to add all needed

info associated to the

terms such as term

frequency, term weight,

etc.

 Small space to store the

indexed terms since only

the indexed terms are

stored.

 Short time to construct

O(n) where n is total

indexed terms.

 Fast to access and

retrieve needed terms

and their related info,

O(n) in worst case.

 Supports highly

sophisticated queries

 If user is not interested in

the order of terms within

the sentence then this will

occupy a larger space

than Sentence-Based

Inverted Index Model

Sentence-

Based Inverted

Index Model

(Uematsu et al,

2008)

It is a data structure that

attaches each distinctive

term to a list of all

documents that contain the

term along with a sentence

within the document and

additional useful data (order

of words within the

sentence is not maintained)

 Ability to index all

meaning terms.

 Ability to add all needed

info associated to the

terms such as term

frequency, term weight,

etc.

 Small space to store the

indexed terms since only

the indexed terms are

stored.

 Exact match to user query

is lost since order of

words within sentence is

not considered.

Chapter 2: Literature Review 30

 Short time to construct

O(n) where n is total

indexed terms.

 Fast to access and

retrieve needed terms

and their related info,

O(n) in worst case.

 Supports highly

sophisticated queries

 Useful if order of query

terms is not important

2.3 Information Retrieval Techniques

This section highlights various research paradigms commonly applied to IR as classified

by (Pathak , Gordon and Fan, 2000; Dong et al, 2008) and where this work fits in. At a

broad level, research in IR can be categorized into three categories (Chen, 1995; Dong et

al, 2008): Knowledge based IR, IR based on machine learning techniques and traditional

IR. Explanation of these categories is in the coming subsections.

2.3.1 Knowledge Based IR

This approach focuses on modelling two areas. First: it tries to model the knowledge of

an expert retriever in terms of the expert's domain knowledge, that is, his or her search

strategies and feedback heuristics. An example of such an approach is the Unified

Medical Language System. Another area that has been modelled is the user of the system.

This typically follows the way the librarian develops a client profile. Although

knowledge based approaches might be effective in certain domains, it may not be

applicable in all domains (Chen and Dhar, 1991).

2.3.2 Learning Systems Based IR

This approach is based on algorithmic extraction of knowledge or identifying patterns in

the data by acquiring knowledge automatically from examples such as from source data

or from training data sets (Chen, 1995). This is in contrast to the performance systems

which acquire data from human experts. There are three broad areas within this approach:

Symbolic Learning, Neural Networks, and Evolution Based algorithms. Although these

techniques are derived from different origins and behaviours, all show high capability for

Chapter 2: Literature Review 31

analyzing both qualitative, symbolic data and quantitative numeric data. Below is brief

overview of each one of them.

2.3.2.1 Symbolic Learning

In the symbolic learning approach knowledge discovery is done typically though

inductive learning. It is applied by inducing a general concept description to best describe

the positive and negative examples. Another model of symbolic learning algorithms is

incremental where it produces a hierarchical arrangement of concepts for describing

classes of objects. The output of such a model is concept hierarchies or a set of

production rules. From that, a hierarchical arrangement of concepts is created to produce

IF-THEN type production rules. Examples of the positive and negative rules algorithms

are the ID3 decision-making algorithm (Quinlan, 1986) and Mitchell’s (1982) Version

Space. ID5R (Utgoff, 1989) which is an extended form of ID3 is an example of

incremental algorithms.

2.3.2.2 Neural Networks

Neural networks are connectionist learning algorithms that typically simulate the way the

human brain learns and remembers knowledge. In these algorithms knowledge is

captured and remembered in terms of the weights on synapses, the interconnections of the

neurons, and the thresholds on logic units. (Azcarraga et al, 2012) applied back

propagation network of neural network to generalize the relationship of the title and the

content of 2000 articles by following word features. In addition to TF-IDF, these features

include position of word in the sentence, paragraph, or in the entire document, and

formats such as heading, and other attribute. An extraction rule algorithm is then applied

to convert the back propagation networks for the two datasets into equivalent rule-sets

that are more comprehensible to humans. The results are evaluated using F-measure. The

achieved results of this technique ranging between 0.7836 and 0.8831 depending on the

data set since the former results are from news articles and the later are from scientific

journals. (Guezouli and Kadache, 2012) build an Information retrieval model based on

neural networks using the neighbourhood. In this technique, and during the learning

phase, for each term of a class of the output layer, the common neighbours are kept.

Chapter 2: Literature Review 32

These neighbours represent the current term in most of the documents of the class. This

technique is implemented on set of 425 documents and the achieved precision is 0.3604.

2.3.2.3 Evolutionary Algorithms

Evolutionary algorithms are based on the improvement principles of natural selection.

These algorithms can be divided into: evolutionary programming EP, evolutionary

strategies, and Genetic Algorithms (GAs). Evolutionary programming utilizes changes at

the level of species, while evolutionary strategies are more specific and exploit changes at

the individual behavioural level (Fan et al, 2004). The main feature of EP is the use of

complex data structure, such as tree, link list and stack. Moreover, the structure length is

not fixed, although it may be constrained to be within a limited size. In contrast to EP,

GA uses simple structure to represent its elements where each individual is represented

by a fixed-length bit string, like (1011011…), or by a fixed-length real number (2.3, 1.4,

3,..) (Fan et al, 2004). GAs are used to solve difficult optimization problems, while EPs

are typically used to approximate complex and nonlinear functional relationships (Koza,

1992). More about GA technique will be presented in Section 2.4.

2.3.3 Traditional IR

The fourth category is traditional IR (TIR) (Dong et al, 2008). This category is based on

the semantic search engines and methods which are derived from the traditional index-

term-based information retrieval models. These models are further classified into three

main categories, namely, Set theoretic models, Algebraic models and Probabilistic

models. A brief description of each is in the following:

2.3.3.1 Set Theoretic Model

The Set Theoretic algorithm is based on set theory and Boolean algebra. A set is a

collection of abstract objects where each object is a member of this set. Set theoretic

models have four types. The first type is Boolean algebra. It is a set of logical operations

between two sets such as conjunction, disjunction and complement. In the Boolean

model, the appearance of the indexed term determines the weight between the term and

Chapter 2: Literature Review 33

the document. If any conjunctive component from a query has a counterpart in a

document, the document matches the query and a weight of 1 is awarded, otherwise a

weight of zero is awarded. An example of applying Boolean algebra is implemented by

(Yoshioka and Haraguchi, 2005). They propose a method for modifying a given Boolean

query by using information from a relevant document set. This method is based on the

assumption that the (pseudo-) relevant document set should satisfy the newly constructed

Boolean query. As a result of this query reformulation process, some important keywords

may be excluded which causes difficulties when searching for relevant documents that

contain these excluded keywords. To overcome this difficulty, they propose a method

that combines both the probabilistic IR model and the Boolean IR model. This system

uses a modified version of the Okapi system as a probabilistic IR engine and it uses both

a word index and an index of phrases comprising combinations of two adjacent words.

This system is evaluated using precision-recall measure and the score achieved precision

ranges between of 0.7 for R@10 and 0 with average of 0.31. This low score comes from

two drawbacks of this technique. First one is the exclusion of some important keywords

during the query reformulation process. The second drawback is that when expanding a

query’s terms using the relevant documents in the probabilistic IR model, there is a

chance that documents without all the required query terms will receive a higher score

than documents with these terms which reduces the retrieval performance. Generally

speaking, Boolean model is useful in case of exact match is required (Lashkari, Mahdavi

and Ghomi, 2009) and in this case all the retrieved documents will have similar degree of

relevance which is not true from the logical point of view since many other factors need

to be considered, such as the frequency of the term in the document, or the density (

frequency compared to the document size), the location of the terms within the document,

and other factors which will be discussed later in this chapter..

The second type of set theoretic models is the Case-Based Reasoning model. It is used to

retrieve and reuse existing problems (Carthy et al, 2003). It consists of four processes:

retrieve, reuse, revise and retain. The features extracted for inferred situation are given a

weight depending on its certainty ranging from -1 for complete uncertainty to 1 for

complete certainty. When applying Case-Based Reasoning to problem-solving (Liu et al,

2008), an association rule mining is used to discover context-based inference rules from

http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81309483459&coll=DL&dl=ACM&CFID=126621907&CFTOKEN=99656279

Chapter 2: Literature Review 34

historical problem-solving logs. The discovered patterns identify frequent associations

between context information and situation features in order to be used in inferring more

situation features. By considering the inferred situation features, case-based reasoning is

then employed to identify similar situations. However this study does not provide

quantitative results.

The third type is the fuzzy set model (Dong et al, 2008). In this model, thesaurus is

defined as a term-term correlation matrix. The elements of the matrix are the correlation

values between two terms. In order to match the semantic similarity between documents

and a query, the query expression is converted into set of conjunctive components. Then,

each conjunctive component associates with a fuzzy set of documents and the union of

the fuzzy sets are processed by Boolean operations. Finally, the membership value of

each document in the processed fuzzy set is computed and ranked. (Alzahrani and Salim,

2009) applied the fuzzy IR on a set of 500 Arabic document and analyze their similarity

compared to a set of 15 queries. This approach indexed the terms within the document by

building unique term pairs. For each pair of terms, a term-to-term correlation factor that

defines the extent of relevance between these two pairs is computed. Then the documents

are evaluated by measuring the degree of similarity between the document under

consideration and the query document. Although this model is tested on HTML

document set, but the author treat the HTML as stop words. In addition, this approach

constructs a term-to-term correlation matrix thesaurus which includes all unique pairs of

terms extracted from the document set and the document query set. The results obtained

by this approach are ranging between 0.7 and 0.73 for precision measure which it is

ranging between 0.68 and 0.7 for recall measure. It is mentioned by the author that one

disadvantage of this technique is that it requires long time and consumes large space.

The fourth type of the semantic search models is the Extended Boolean model. It uses the

same concept of Boolean algebra model except that it uses the term-frequency inverse-

document-frequency (TF-IDF) functions to measure the similarity between the document

and the query (Pohl, Zobel and Moffat, 2010). For that, it is using the VSM to index the

documents. (Pohl, Zobel and Moffat, 2010) used this technique for the systematic

biomedical views. Instead of using recall measure to evaluate the model, they compute

the average recall after retrieving collection of documents. The best result achieved is

Chapter 2: Literature Review 35

average of 79% of relevant documents are retrieved when retrieving total of 10,000

documents. Precision of this model can be inferred if we know that the average recall is

18% at first 100 retrieved documents. This assists to conclude that the precision of this

system is very low.

2.3.3.2 Algebraic Models

The second category of traditional IR is the algebraic model. This model uses algebraic

formulas to find the distance between the document and the query (Kleinberg and

Tomkins, 1999). This category is further divided into three models (Dong et al, 2008).

This first one is the vector space model (VSM). In this model, the documents are indexed

using the vector space model. And the relativity is measured using the common (TF-IDF)

functions. This model is widely used in information retrieval studies such as (Hammo,

2009; Penev and Wong, 2010; Kui and Juan, 2012).

The generalized form of this type is called Generalized Vector Space Model (GSVM). It

is the second type of the algebraic models and differs from the vector space model by

using independent indexed terms where the set of vectors is linearly independent and

forms a subspace of interest. Two vectors can be composed of smaller components which

are derived from the particular collection. If the weights of association between index

terms and documents are all binary, all possible patterns of term co-occurrence can be

represented by a set of 2t minterms. In the GVSM, a set of pairwise orthogonal vectors

associated with a set of minterms are introduced and a set of vectors is adopted as a basis

for the subspace of interest. In the GVSM, these representations can be directly translated

to the space of minterm vectors. The resultant document vectors and query vectors are

then used to compute the ranking using the standard cosine similarity function. The third

type of the algebraic models is the Latent Semantic indexing (LSI) model. In LSI, a

smaller number of dimensions are extracted from the vector space model to produce more

robust indicators of meaning than individual terms. After constructing a term-by-

document matrix, LSI requires the singular value decomposition of this matrix to

construct a semantic vector space. In LSI, a term-document association matrix is

decomposed into three components using singular value decomposition. The first one is

the matrix derived from the term-to-term correlation matrix; the second one is the matrix

Chapter 2: Literature Review 36

derived from the transpose of the document-to-document matrix; and the third one is an r

× r diagonal matrix of singular values where r is the minimum between the row and the

column of the original matrix, and the rank of the term-document association matrix.

Consider that only s largest singular values of the third matrix are kept, along with their

corresponding columns in the first and the third matrix, while the rest of the singular

values are deleted. The resultant matrix is closest to the original matrix in the least square

sense with rank s. The relationship between two documents in the reduced space of

dimensionality s, can be obtained from the multiplication of the resultant matrix and its

transpose. To rank documents with regards to a query, the query is modelled as a pseudo-

document in the original term-document matrix. If the query is modelled as the document

with number 0, then the first row in the multiplication of the resultant matrix and its

transpose provides the ranks of all documents with respect to this query (Dong et al,

2008; Song and Park, 2009). (Zaman and Brown, 2010), applied LSI in order to study

the three most popular weighting schemes which are TF-IDF, log-entropy and raw-term

frequency to find which weighting scheme is more effective for very large data set

indexed using LSI. It shows that TF-IDF is the best among these three schemes with

score of 0.164 using average 11-points for precision-recall. However, when using P-

R@N measure, this score increases to 0.88 for N<4.

2.3.3.3 Probabilistic IR

Probabilistic retrieval is based on estimating the probability of relevance of a document

to the user for a given user query. Typically, relevance feedback from a few documents is

used to establish the probability of relevance for other documents in the collection (Fuhr

and Buckley, 1991; Gordon, 1988). There are several probabilistic IR techniques

developed in this domain. (Zhang, Wei and Meng, 2012) proposes an automated ranking

approach based on probabilistic information retrieval model to solve the Many-Answers

Problem of XML twig query. This approach applies the probabilistic information

retrieval model to capture the correlations between the unspecified and specified values

of leaf nodes as well as the user preferences based on the XML data and query history,

and then it constructs the scoring function and ranks the query results according to the

ranking scores. This approach evaluates the documents using a modified version of the

Chapter 2: Literature Review 37

known TF-IDF formula and is applied on a set of XML documents including 100,000

used car elements. The achieved precision using this approach reaches to 0.79 in average.

However, this approach lags in the factors used to evaluate the document as it depends on

the statistical factors in addition to the probability of the relevance of the retrieved

document for the query given the text features of that document.

There are three different learning strategies used in probabilistic retrieval. The first one

applies estimation of probabilities of relevance to a set of sample documents (Robertson

and Jones, 1976). The second one applies estimation of probabilities of relevance to a set

of sample queries (Maron and Kuhns, 1960). The last one applies estimation of

probabilities of relevance to all documents or queries. Inference networks (Turtle and

Croft, 1990, Manning, Raghavan, Schütze, 2009) use a document and query network that

capture probabilistic dependencies among the nodes in the network. The average

precision achieved by last mentioned technique is 0.245.

2.3.4 Which IR Paradigms to Choose?

In spite of the extensive enhancements achieved on Web search, web users still encounter

two major problems when trying to retrieve useful information (LEE, 2007; Bhatia and

Khalid , 2007; Haveliwala et al, 2002). These problems are: low precision, which is due

to the irrelevance of many of the search results, and low recall, which is due to inability

to index all the web documents available on the Web and related to user query. Many

researchers used Web information retrieval to solve these two problems, since the aim of

a search engine is to retrieve all documents relevant to the user query (high recall), and

not to retrieve any irrelevant document (high precision).

Considering the web, which consists of a tremendous number of documents that need to

be evaluated and ranked using the information retrieval system, it is found that the

Boolean model is not suitable although it is less computationally costly because it doesn't

provide ranking methods where documents are marked as either relevant or not without

providing a degree of relevance (Dong et al, 2008). The fuzzy set theory computes the

degree of semantic relevance between two terms, which is more efficient in improving

the precision. However, the cost associated with computing the relevance between two

terms depends on the number of occurrences of the terms in all documents, which makes

Chapter 2: Literature Review 38

the implementation of the fuzzy set theory in large scale databases costly (Dong et al,

2008). The extended Boolean model overcomes the limitations of the Boolean model,

where the documents can be ranked by extending the relevance between the documents

and the query. However, the extraction and manipulation of the index terms from

dynamic sources in databases is costly on time. In addition, the cost of computing the

relevance between terms is extensive (Dong et al, 2008). In VSM, the dynamic document

bases make index terms difficult to maintain. In addition, the dependency of index terms

is a prerequisite for VSM. Due to the locality of many term dependencies, the

indiscriminate application to all documents in the collection dramatically affects the

performance (Dong et al, 2008). In GVSM, the dependency is represented in an effective

way to overcome the VSM dependency drawback. However, the incorporation of term

dependencies does not yield effective improvement with general collections.

Consequently, the GVSM does not have a clear progress in practical performance.

Moreover, GVSM is more complex and computationally more expensive than VSM

(Dong et al, 2008). Although LSI is an efficient indexing scheme which reduces noise

and removes redundancy, it has not been validated on a large set (Dong et al, 2008; Song

and Park, 2009). The best model of the probabilistic IR models is the Bayesian network

model (Dong et al, 2008). It overcomes the drawback of the inference network model, as

it adopts a clearly defined sample space more easily. Although it provides a separation

between the document space and the query space which simplifies the modelling task and

facilitates the modelling of additional evidential sources, such as past queries and past

relevant information, it still has the same drawback of other techniques, which are the

high cost of computation and the limitation of the factors used to measure the degree of

relevance to the query.

Generally speaking, and according to Dong et al (2008), the main drawback of these

traditional IR models is that they are computationally costly making them not suitable for

web search domain. Moreover, it is impractical to solve web search problems using these

traditional information retrieval techniques. This is because in such techniques, all

documents must be processed and evaluated to produce the results related to the user

query. Nevertheless, considering the huge number of web documents available in the

search space, it makes this solution impractical from a time processing point of view

Chapter 2: Literature Review 39

since the user is going to wait for very long time before he gets the results of his query.

On the other hand, if the IR system is going to process a limited number of documents in

order to be fast, then it could not retrieve all relevant documents and may process and

retrieve irrelevant documents ending with very low recall and a very low precision

percentage. These problems are among the tasks to be addressed in this work. Moreover,

using neural networks to solve web search problems is impractical since this needs

examples or training sets to start with before the actual process starts to generate and

produce the final results (Chen, 1995), in addition, this technique fits well with

conventinal retrieval models such as vector space models and probabilistic model (Chen,

1995). Consequently, this technique is extensive in computation and as a result, requires a

longer time to get the required results (Dong et al, 2008).

2.4 Genetic Algorithm

As mentioned in the introduction of this chapter, GA is one of the evolution based

algorithms and it became an important approach when used to provide suitable

information for the user's needs. Therefore, it has been adopted by many researchers to

enhance recall and precision of the retrieved documents as will be seen in this section.

GA is a probabilistic algorithm used to simulate the mechanism of natural selection of

living organisms. It is often used to solve problems having expensive solutions. This is

basically due to the principles of selection and evolution employed to produce several

solutions for a given problem. Generally speaking, GA’s search space is composed of

candidate solutions (chromosomes) to the problem. Each chromosome has an objective

function value known as fitness value. This measure is used to favour selection of

successful parents for new offspring. Offspring solutions are produced from parent

solutions by the application of selection, crossover and mutation operators (Radwan et al

2006).

The most common type of genetic algorithm used for web search works as follows: a

population of web pages or documents is created with a group of individuals selected

randomly, normally either by randomly generating an IP address or by querying a

standard search engine such as Google, Yahoo, MSN, etc, or having a predefined set of

Chapter 2: Literature Review 40

documents such as TREC and CACM. The individuals (retrieved documents) in the

population are then evaluated using what is called a fitness function. This fitness function

is provided by programmers and gives the individuals a score based on how relative are

they to the user query. Two individuals are then selected based on their fitness. The

higher the fitness, the higher the chance of being selected. These individuals are then

"reproduced" by operation called crossover to create one or more offspring, after which

the offspring are mutated randomly. This continues until a suitable solution is found or a

predefined number of generations are created, depending on the needs of the system. The

research areas in GA tackled by researchers cover wide range of IR topics such as query

induction, representation, and optimization; document clustering; and document matching

and ranking. Next section is going to discuss the current work in IR in general then the

focus will be on the techniques of implementing each GA operator.

2.4.1 Genetic Algorithm in IR Domain

GA is characterized by the intrinsic parallel search mechanism and powerful global

exploration capability in a high-dimensional space. Therefore it is intensively used to

solve a wide range of hard optimization problems that have no best known solutions. For

this merit, there is an increasing interest in applying GAs to intelligent IR in recent years.

Gordon (1988) presented an approach for re-describing document descriptions and based

on that he adopted a similar approach to document clustering (Gordon, 1991). (Raghavan

and Agarwal, 1987) have also used GA's for modifying document clustering. (Yang et al,

1993) used GA to improve queries by using the relevance feedback. The average 11-point

precision-recall achieved was 0.1213. (Aly, 2007) has also applied GA to improve

queries by modifying user’s queries based on relevance judgments. This method achieved

average 11-point precision-recall of 0.27397. (Chen, 1995) used GA to optimize

keywords that were used to suggest relevant documents. Ozel (2010) used GA to classify

web pages by extracting the most important HTML tags and construct features from tag-

term combination. This approach increased the document classification accuracy by 95%.

(Ashraf, Ozyer, and Alhaji, 2008) use clustering of HTML documents based on set of

features composed of HTML, semantic and orthographic features, combined to better

represent a particular domain. This technique is applied on 18 web pages and achieves

Chapter 2: Literature Review 41

high score of precision which is 0.9455 for precision, and 1 for recall. However, this size

of data set is not enough to judge its high performance. (Dashti and Zad, 2010) used GA

in a distributed way according to users' favourites to optimize query sent to the search

engine to finally optimize the quality of result pages. (Saini, Sharma, and Gupta, 2011)

applied implemented an IR system using GA model in which the fitness function was

combination of the know Cosine measure, Jaccard measure, and the developed semantic

similarity measure to form a semantic-based-combined-similarity measure. The best

results achieved by this model using the precision-recall measure are ranging between

0.932 for P-R@10, and 0.19 for P-R@100. These results are obtained when applied on

CISI plain document set of 1414 documents. (Yan et al, 2009) proposed a new approach

of IR which is quantum-inspired GA. This approach combines GA with quantum

computing principles such as quantum bit and superposition of states. This approach is

investigated against 5000 document downloaded from the Web and indexed using VSM.

These documents are weighted using the TF-IDF formula, and the fitness function is

derived from

In this formula, Di and Dj are two documents which their similarities are to be compared.

The precision-recall achieved by this approach ranges between 0.9 for P-R@10 and 0.07

for P-R@100. Another approach that applies GA in IR domain is the one introduced by

(Xu, Deli and Yu, 2009). This approach combines GA with simulated annealing

algorithm based on the vector space model. The maximum achieved score for precision-

recall measure is 0.75 for P-R@10 and drops to 0.6 for P-R@100. (Sehgal et al, 2009)

developed an approach to classify multiple database records such as MIDLINE and

Swiss-port. This approach is implemented using genetic algorithm and compared to

Handcrafted Rule-Based Classifiers. The results show that the former approach achieved

higher precision which reached to 0.857.

The following subsections elaborate with more details on the techniques used to

implement each one of the GA operators

Chapter 2: Literature Review 42

2.4.2 Initial Generation Creation

As stated earlier, GA produces several generations before the optimal solution is found.

However, the selection of first generation has a special importance because the

characteristics of next generations are inherited from this generation. Moreover, the speed

of finding the optimal solution depends on the quality of the individuals of the first

generation. Therefore a particular attention is given to this stage as it strongly affects the

GA process. The search space, which the initial generation is subset of, can be generated

in many ways. One of which is to query any search engine, such as: Google, yahoo,

MSN, etc. But for the purpose of analysis and empirical studies, most of researchers use a

prepared collection set of documents such as: Text Retrieval Conference (TREC) series

(Kim and Zhang, 2003; Kim and Zhang, 2000), Communication of the Association for

Computing Machinery (CACM) set (Aly, 2007) and Communications of the Institute for

Scientific Information (CISI) (Vrajitoru, 2000; Saini, Sharma, and Gupta, 2011). In fact,

this method is commonly used by researchers because it has a prepared list of documents

along with queries and their relevant documents. Selecting individuals to form first

generation of genetic algorithm system from the search space can be implemented using

various methods. One of these methods is to query standard search engines using

heuristic creation operator to generate the initial population (Marghny and Ali, 2005).

The second method is the most popular one. It involves the selection of individuals

randomly from search space without any specific criteria (Pathak, Gordon and Fan, 2000;

Aly, 2007; Yeh et al, 2007; Beasley, Bull, and Martin, 1993; Beasley et al, 1993a; Zhang,

et al., 2005; Noreault et al, 1980; Horng and Yeh, 2000; Martín-Bautista and Vila, 1998;

Lopez-Pujalte, Guerrero-Bote, and de Moya-Anegon, 2003a). Heuristic initialization is a

third method used to create initial generation. It is achieved by applying some filtration

on the randomly selected individuals so that search begins with some good points

(Beasley et al, 1993b). Martin-Bautista and Vila (1998) select two individuals randomly

and XOR them to generate new individual of initial population. (Kim, Zhang, 2000) use a

document judged relevant by a user as an initial generation.

Chapter 2: Literature Review 43

2.4.3 Assessment of Initial Generation Creation

Since this work is based on predefined set of documents, then the first option, which is

concerned with starting by individuals selected from standard search engine, is omitted

from consideration. When looking at other methods of creating initial generation, there is

a trade-off between creating initial generation in a fast way with low quality or slower

way but with high quality. Fast creation is done by selecting individuals randomly

without any selection criteria. However, this method may stick at a local optimum

solution causing the results to be less effective. Example of these low performance due to

this technique of selection is (Aly, 2007) which achieve an average precision-recall score

of 0.297. To avoid this, GA could produce larger number of generations as stated by (Yeh

et al, 2007); hence we see that Aly’s approach (2007) converges after 100 generations.

The second method is to select individuals based on some criteria. Although this method

slows down the creation of initial generation, it provides a higher probability to find

optimal solutions rapidly. The former method is practical when the population size is big.

Accordingly, selecting individuals randomly creates the population rapidly. However, the

second method is much better when the population size is relatively small or controllable.

This is because the created population starts by good points and also allows finding

optimal solution faster. Hence, the proposed approach in this thesis will use the second

method. The last two methods are not practical here. The first one of them (Martín-

Bautista and Vila, 1998), which involves the selection of two individuals randomly and

XOR them, is applicable on binary representation of individuals and this type of

representation doesn’t match the proposed model. The second method uses document

judged relevant by a user and this involves user interaction in this process which reduces

its speed of the process. Hence, it is not considered in this study. A brief description of

creating initial generation along with advantages and disadvantages of each method are

listed in Table 2-2.

Table 2-2: Summary of creating initial generation methods in GA systems

Creating initial

generation techniques
Description Advantage Disadvantage

heuristic creation

operator (Marghny and

Ali, 2005)

outputs a web page from the

results given by four standard

search engines (AltaVista, Google,

Msn, Yahoo)

 Fast to

generate the

initial

generation

 Search can begin with

bad points

Chapter 2: Literature Review 44

Top 15 (Radwan et al

2006)

Top 15 documents retrieved from

classical IR
 Search begins

with some

good points

 Limited number of

document to start

with

 Random selection

(Pathak, Gordon and

Fan, 2000; Aly, 2007;

Yeh et al, 2007; Beasley

et al, 1993a; Zhang, et

al., 2005; Noreault et al,

1980; Horng and Yeh,

2000; Martín-Bautista

and Vila, 1998; Lopez-

Pujalte, Guerrero-Bote,

and de Moya-Anegon, a,

2003; Drias, Khennak,

and Boukhedra, 2009)

Selecting individuals randomly

from search space
 Fast to

generate the

initial

generation

 Search can begins

with bad points

 Slow the process

 Could finish without

finding relevant

documents

Selective random

selection (Beasley et al,

1993b)

Applying some filtration on the

randomly selected individuals
 Search begins

with good

points

 Reduce process

of finding

optimal

solution

 Slow the process

while filtering the

documents.

Document judged

relevant selection (Kim

and Zhang, 2000)

collection of documents

initially judged relevant by a user

represents the initial population

 Search begins

with good

points

 Involves user

interaction.

 Slow the process

2.4.4 Fitness Function

The concept of GA system is to create several generations before finding the optimal

solution. These generations are obtained from initial generation by the process of

selection, crossover and mutation. The individuals are selected according to their

performance to participate in crossover. The performance is evaluated using fitness

function. The fitness function (FF) is a performance measure or reward function, which

evaluates the relevance of the document to the user query. During the GA process, the

fitness function is used in two operators. These operators are selection and mutation.

Figure 2-2 shows where the fitness function is applied to the GA process where it is

presented in bold diamonds.

Fitness functions used in GA -as it is noted - are of three types: The first type either

consists of summation of term weights or it has the term weight as a main component.

The second type of fitness functions is the similarity measure. The third type is a

customized fitness function in which authors develop their own fitness functions that suit

their GA system. To understand the first type of fitness function there is a need to explain

Chapter 2: Literature Review 45

the term weight.

2.4.4.1 Term Weight

It is a score assigned to a term reflecting its importance within the document. It forms one

of the main factors in fitness function used by researchers as noted in the literature. The

weight of the term within a document or among a collection depends on many factors.

These factors are either local factors (within document) or global factors (collection

wide). Famous local factors used are term frequency within a document (Kim and Zhang,

Chapter 2: Literature Review 46

Figure 2-2: GA process showing the role of fitness function highlighted by bold diamonds

Create initial

generation

Evaluate

parents by

fitness function

Apply crossover to

generate new offspring

Select gene for Mutation from the

offspring and from collection

Replace mutated

gene by new gene

Selection of parents

from generation i

Keep original

gene

Not fit

Fit

Not fit

Fit

Document
collection

Reach population size?

 Reached max no.

of iterations or no more

progress?

Selection

process

Mutation
process

Generation

creation

process
Yes

No

Display results to the

user in descending order

Compare new

gene fitness

value with the

selected gene for

mutation

Chapter 2: Literature Review 47

2003; Radwan et al 2006; Cummins and O’Riordan, 2006; Salton and Buckley, 1988),

document size (total terms frequency) (Kim and Zhang, 2003; Cummins and O’Riordan,

2006), frequency of the most frequent term within the document (Kim and Zhang, 2003;

Radwan et al 2006; Aly, 2007; Vrajitoru, 2000), and number of unique terms within the

document (Cummins and O’Riordan, 2006). Global factors used in evaluating term

weight are: number of documents referencing a term (Kim and Zhang, 2003; Radwan et

al 2006; Billhardt et al, 2002; Vrajitoru, 2000; Cummins and O’Riordan, 2006; Salton

and Buckley, 1988), total number of documents in the collection (Kim and Zhang, 2003;

Radwan et al 2006; Billhardt et al, 2002; Vrajitoru, 2000; Cummins and O’Riordan,

2006), frequency of the term in the collection (Cummins and O’Riordan, 2006), and total

number of terms in the collection (Cummins and O’Riordan, 2006).

The simplest formula of term weight is the one that considers the term frequency within

the document as a term weight. But most common term weight formula used by

researchers (Cummins and O’Riordan, 2006; Xu, Deli and Yu, 2009) is the one proposed

by Salton and Buckley (Salton and Buckley, 1988). It is multiplication of Term

Frequency by Inverse Document Frequency (TF-IDF). In this approach the weight of

term i in document j is defined as:

where is the number of occurrences of term i in the document j; is the frequency

of documents referenced by term i in data set and N is the total number of documents in

the collection. Although it uses limit factors to evaluate the term, still many users apply it

in their researches because of its popularity and been accepted by the researcher.

However, using this formula alone may reduce the quality of retrieved documents.

Vrajitoru (2000) uses normalized term frequency and normalized inverted frequency

although the author didn’t justify the advantage of this method over classical TF-IDF

method. Normalized term frequency is computed as the actual frequency of a term within

the document divided by the frequency of the most frequent term in that document.

Normalized inverted frequency is defined as (log(N) – log(dfi)) / log(N), where N is the

total number of documents in the space. This approach achieved best results for average

Chapter 2: Literature Review 48

precision-recall of 0.383 which is relatively low.

Probabilistic version of TF-IDF is called Okapi-BM25 and was developed by Robertson

et al. (1998). It was shown that it achieves a higher average precision than TF-IDF on

large document collections. (Cummins and O’Riordan, 2006) compare the three

weighting schemes, namely, the classical TF-IDF, the Okapi-BM25 and their own

developed formula which is:

Where cf is the frequency of a term in the collection, df is the number of documents

containing the term, tf is the term frequency in the document and l is the document

length. The results show that TF-IDF has the lowest performance where it achieved an

average score of 35.86%, while the above formula achieved 38.85, and OKAPI-BM25

achieved 39.4%.

Cummins and O’Riordan (2006) found that adding more terminals to the weighting

function increases the precision until reaches maximum when all the above described

terminals are forming the upper mentioned formula. Also they concluded that cf measure

plays an important role in determining the relevance of documents in the collection they

used. In addition, they combine three separate weighting schemes, namely, local weigh,

global weight and query weight to form a general weighting scheme. Using this

approach, they show that complete weighting scheme can outperform the BM25

weighting scheme on collections similar in size to the training set . However, the full

weightings evolved on small collections do not outperform BM25 on large collections.

Both Bayesian inference network model and 2-Poisson model use the same factors used

in the previously mentioned term weight except that 2-Poisson model uses additional

factor, which is the average document length in the collection (Kim and Zhang, 2003).

Considering HTML documents, (Marques Periera, Molinari, and Pasi, 2005) proposed a

weighting scheme for non–linear contextual model. This approach considers the total

number of meaningful HTML tags and assigns weight for each tag such that weight of 1

Chapter 2: Literature Review 49

is assigned to the most important tag and n to the least important tag. Subsequently, it

considers the total length of each tag by summing the number of terms within the tag.

Then, from these 2 factors, a weighting formula is constructed in a way that it favours

terms that appear in higher important tag and occur in a shorter length tag. The advantage

of this approach is the adaptive determination of the weight assigned to the keywords.

This adaptation allows considering “to some extent” the author’s writing style that is

hidden in the HTML tag distribution. On the other hand, this approach requires extensive

computational time to calculate the term weight since it requires parsing the whole

document to obtain the total number of tags. To find the length of each tag requires

parsing it again to assign the weight for each term accordingly. In another word, the time

complexity is O(n
2
). Moreover, it treats all documents having the same number of tags

equally regardless of the tag importance. For example: if a document has title, Header1

and anchor tags and another document has header3, bold and italic tags, then this

approach will assign same term weight for a word appearing in the first tag, while

logically, the former document must have higher weight since title tag reflects the content

more clearly than header3 does.

2.4.4.2 Similarity Function

The second type of fitness function is the similarity function. It measures how close is the

document vector to the user query vector. In other words, it measures the distance

between the document and the query vector. Some authors use similarity measure as a

fitness function and others use it as a component in the fitness function. Most common

similarity function used as a fitness function is the cosine similarity measure (Radwan et

al 2006; Aly, 2007; Vrajitoru, 2000). It is found that the average precision-recall score

achieved by (Radwan et al 2006) is 0.437, 0.432 by (Aly, 2007) and 0.383 by Vrajitoru,

2000). On the other hand, Wang and Feng (2005) use cosine similarity as a component of

the Fitness function. It is represented by the ratio of summation of similarity measure of

set of relevant documents retrieved to the summation of similarity measure of set of non-

relevant documents retrieved; all are divided by the total number of documents. This

approach is evaluated by comparing the number of relevant documents after each

iteration, where it ranges from 100% at the first one and it reaches to 10.8% at the fifth

Chapter 2: Literature Review 50

iteration. Normally, the performance of GA increases as more iterations are performed,

while this approach has opposite behaviour.

Other similarity measures are Dice coefficient (Klabbankoh and Pinngern, 2008), Cosine

coefficient (Klabbankoh and Pinngern, 2008) and Jaccard coefficient (Klabbankoh and

Pinngern, 2008) (these formulas are listed in Table 7-1 in appendix A). However, these

measures are most suitable for systems implemented using vector space model, because

in this model both the document and the query are represented as vectors making

applying similarity measures simple and straightforward. In this study, comparison is

done between these three formulas when applied by GA on document set of 343

documents. The results are analyzed using F1 measure where:

The achieved results are 0.8625, 0.89625 0.89125 for Dice coefficient, Cosine coefficient

and Jaccard coefficient respectively. These results reflect the high performance of these

formulas which prove that these are better to be considered in case of vector space model

of implementation. Another point worth mentioning is that the document is very small to

compare the performance with other formulas.

2.4.4.3 Custom Fitness Functions

This type of fitness functions is the third type developed by researchers to evaluate a

chromosome. One of these fitness functions that is applicable to the vector space model is

proposed by Radwan et al (2006). It evaluates the difference between terms weight of a

given chromosome and the query vector. The complexity of this fitness function is n
2
 as

compared to the complexity of n
5
 of the cosine similarity fitness function, where n is the

number of terms in the search space for the query, and has a precision value better than

that of the cosine similarity fitness function as stated by the author (formula 6 in table 7-

2). This approach achieved a maximum average precision-recall of 0.437 which applied

on CISI document se which consists of only 1414 documents.

Another formula is the one developed by Marghny and Ali (2005) which evaluates the

document based on link quality within the document and uses the summation of mean

Chapter 2: Literature Review 51

number of query keywords occurrences in links. This function considers the terms that

appear in the links within the document only regardless of other factors that may affect

document evaluation; hence, the performance of the document is evaluated based on

limited factors. This approach is analyzed in terms of the mean quality of the population

and the results show that the average precision reaches 0.2531 in average after 1000

iterations.

Another technique called Geniminer proposes a method of GA based on a fitness

function developed by Picarougne et al (2002a). It results in a high score if the document

contains many keywords given by the user with uniform proportion of each keyword,

many words from the list of words that must exist and no words from the list of words

that must not exist and many links that might lead to relevant pages (formula 7 in table 7-

2). This approach is tested by 10 queries applied on 500 documents. The evaluation is

done by analyzing the average population mean quality for different mutation rate, and it

is found that the best is achieved when mutation rate is 0.5. At this point, the population

size is 100 and the mean quality is 457.9.

Honng and Yeh (2000) used non-interpolated average precision as a fitness function. It is

similar to the average precision but with cut-off points equivalent to the training

documents. (Kim and Zhang, 2003) used two weighting models in addition to the

classical Salton model. The first of these methods is the Bayesian inference network in

which the factors are term frequency per document and frequency of the most frequent

term in the document. The second weighting model is the 2-Piosson model. The factors

used in this model are term frequency per document, document length, average document

length, total number of documents in the collection, and the number of documents in

which a term occurs. With these fitness functions the achieved precision at 10 top

retrieved documents for Bayesian is 0.45 and for 2-Piosson model is 0.63.

The fitness function used in (Húsek et al 2005) is called precision fitness and is

composed of two parts added together: the first part reflects recall quality and the second

part reflects precision quality. Influence of each part is given by α and β coefficients in

the precision fitness function. The precision achieved by this approach is 0.75 while the

recall is 1. In fact these are very attractive results. However, this system was run on 5000

Chapter 2: Literature Review 52

documents for 1200 iterations before achieve this. In fact, this huge number of iterations

reflects somehow the weakness of this technique compared with others.

In (Marghny and Ali, 2005), the fitness function for a web page (web document) is

composed of link quality and page quality. The link quality is expressed as:

,

Where: n is the total number of input keywords, #Ki is the number of occurrences in link,

and K1, K2, K3… are the keywords given by the user.

The page quality is determined as:

,

Where m is the total number of links per page.

Then the fitness function is the mean quality and is expressed as:

.

This model was applied to a sample of 250 pages using 10 queries to evaluate the GA

effect on the quality of the results. This evaluation is done using the population averaged

mean quality for different values of population size that forms 25%, 50%, 75% and 100%

of the pages retrieved from standard search engine. Their findings show that small size of

pages and small size of population limit the chances of improving the page qualities and

reduces the execution time at a specified number of iterations. This technique was

evaluated using the average mean quality. It shows that the best average precision of

25.31% is achieved at 50% of population size, and this was achieved after 10000

iterations which is impractical long time for document retrieval compared to other studies

who present the results with much fewer generations such as 50 generations by

(Cummins and O’Riordan, 2006).

For HTML documents, (Kim and Zhang, 2003), evaluate the similarity of a document to

Chapter 2: Literature Review 53

the query by assigning a weight for each HTML tag, then compute the similarity of

document d to the query q using the following formula:

Where αdk is the weight of term k, wdk is the weight of the k
th

 term in the document d,

wqk is the weight of k
th

 term in the query q, and T is the number of terms. This approach

applies GA to determine the proper weight that can be assigned to each HTML tag. And

then the results are analyzed by comparing the precision of the output with and without

applying the HTML tag. The best score was 0.35 for P@10. However, these results are

produced using the classical TF-IDF to weight the terms.

(Marques Periera, Molinari, and Molinari, 2005) utilize the frequency of terms within the

HTML tag to evaluate the degree of significance for a term t. Given a term ti in document d

belonging to a class of tags ctag, then the significance degree F(d, t) is computed as:

Where wi is the numerical importance weight wi > 0 that is assigned to each ctag, such

that , and is the normalized inverse document frequency. This

technique was applied on two documents only having 9 classed of HTML to analyze the

term significances. Hence the results are inadequate to be criticised.

The last fitness function to be mentioned in this section is the one developed by (Saini,

Sharma, and Gupta, 2011). This functions combined three measures, named: Cosine

measure, Jaccard measure and the semantic similarity measure, where in the last measure,

a weight assigned to each term which can be a single word or phrase is based on the

count of how many times a term is used as an argument in the whole document in every

verb argument structure of sentences. This function is represented as:

SBCSM=W1*similarity-measure+W2*cosine-similarity+ W3* Jaccard-measure

Chapter 2: Literature Review 54

This measure is applied on CISI document set which composed of 1414 plain text

documents. The results obtained using precision-recall measure ranges between 0.932 P-

R@10 and 0.19 for P-R@100.

2.4.4.4 Assessment of Term Weight and Fitness Function

Investigation of the above mentioned fitness functions reveals that they use common

factors. These factors are term frequency in the document, global term frequency in

document collection, total number of documents in the collection, and number of

documents that reference certain term. Some other factors which are used by some

researchers in this area are the frequency of the most common term in a document, global

frequency of most common term in document collection, document length, average

document length within the collection, total number of terms in the collection, total

number of unique terms in a document, and in the document collection. These factors are

more statistically than being content descriptive. Hence they reflect one side of the

relativity of the documents. Hence, it is noted that the average precision-recall achieved

ranges between 0.297 (Aly, 2007) and 0.75 (Xu, Deli and Yu, 2009). Moreover, several

approached analyzed are applied on limited document set of size 343 (Klabbankoh and

Pinngern, 2008), 500 by (Picarougne et al, 2002), 1033 by (Cummins and O’Riordan,

2006) and 1460 by (Vrajitoru, 2000; Radwan et al, 2006; Aly, 2007).

Although (Húsek et al 2005) achieved high recall (100%) and high precision (75%), but

this is after runing the system for 1200 iterations making time performance far from other

approaches, where other approaches generate lower number of iteration such as (Radwan,

2006; Aly, 2007) generated 100 generations, (Vrajitoru, 2000) generated 40 generations,

and (Cummins and O’Riordan, 2006) generation 50 generations.

Moreover, some of these factors are dependent on the collection set when considering the

global factors such as the total number of terms in the collection, the total number of

documents in the collection, the most frequent term and the number of unique terms in

the collection. That means, when considering one document as relevant, implies that it is

relevant compared to other documents in the collection, but could not be purely relevant.

In addition, they are more suitable for plain text rather than structured or semi-structured

documents. Additional or sometimes alternative factors are required to be considered

Chapter 2: Literature Review 55

when evaluating the document relevance to the user query.

Considering HTML documents which form most of web documents (Kim and Zhang,

2003), HTML tags play a vital role in determining term importance. If the term appears

in the title or some headers within the document with low frequency then it may reflect

the content of the document more accurately than terms that appear more frequent but

somewhere close to the end of document or in the body of the document.

 Another factor that needs to be included in evaluating the document is the number of the

query keywords that appear in the document. If a document includes all query keywords

then it is more relevant than document that has subset of the query keywords. The third

factor that needs to be included in evaluating the document is the distance between query

terms. Finally and not last is the first appearance of the query keywords within the

document. It is assumed that more relevant documents refer to user query terms in the

first few sentences. Although this factor is not always true, including it in the fitness

function is expected to enhance the evaluation process. List of term weight formulas and

fitness functions formulas used by authors in GA systems are included in appendices A

and B.

2.4.5 Parents Selection

The main three operators of GA that produce next generations are parent selection,

crossover and mutation. Parent selection is controlled by the fitness function which

favours certain individuals based on their fitness value. Parent selection forms a central

component of the genetic algorithm (GA) (Holland, 1975; Goldberg, 1989) and directly

controls the exploitation factor in the “exploitation-versus-exploration” trade-off that is

believed to be critically important in the working of the GA (Chakraborty, Deb, and

Chakraborty, 1996). As a preparation for crossover, parents need to be selected such that

the selection operator is intended to improve the average quality of the population. This

can be achieved by giving individuals of higher quality a higher probability to be copied

into the next generation based on the assumption that better individuals are more likely to

produce better offspring (Kim and Zhang, 2003).

Several selection methods were developed. The simplest one is to select parents

Chapter 2: Literature Review 56

randomly without any restriction or evaluation (Martín-Bautista and Vila, 1998). It is

obvious that this method causes poor selection since it doesn’t favour the fittest

individuals and hence it is rarely used. However, there are several commonly used

methods for selection. The most popular one is simple random sampling selection also

called proportional selection. It has been applied by many researches (Petridis, Kazarlis

and Bakirtzis, 1998; Chen, 1995; Pathak, Gordon and Fan, 2000; Billhardt et al, 2002;

Vrajitoru, 2000; Kim and Zhang, 2003Lopez-Pujalte, Guerrero-Bote, and de Moya-

Anegon, 2003a; Lopez-Pujalte, Guerrero-Bote, and de Moya-Anegon, b, 2003; ; Radwan

et al 2006; Saini, Sharma, and Gupta, 2011; Pandey, Dixit and Mehrotra, 2012) and was

also recommended by Goldberg (1989).This method performs roulette-wheel selection,

where each individual is represented by a space that proportionally corresponds to its

fitness. By repeatedly spinning the roulette wheel, individuals are chosen by using

stochastic sampling.

Another common method for selection is the tournament selection used by Holland

(1975) and by Yeh, Lin, Ke and Yang (2007). In this approach a group of i individuals

are randomly chosen from the population. This group takes part in a tournament and an

individual with highest fitness value wins. In many cases i is chosen to be two, and this

method is called binary tournament selection. In ranking selection the individuals are

sorted according to their fitness values and rank N is assigned to the best individual and a

rank 1 to the worst (Goldberg and Deb, 1991; Húsek et al, 2005). The selection

probability is linearly assigned to the individuals according to their rank. In truncation

selection (Yang, Korfhage, and Rasmussen, 1992; Muhlenbein and Schlierkamp-

Voosen, 1993) with threshold t and the fraction f of best individuals are selected and

mated randomly with the same probability until the number of offspring is equal to the

size of the population. Genitor selection (Goldberg and Deb, 1991) works individual by

individual, choosing an offspring for birth according to linear ranking, and choosing the

currently worst individual for replacement.

Tate and Smith (1995) Suggest another selection method by selecting a uniform random

number between 1 and , where S denotes the population size, and then squaring it. The

result is truncated and taken to be the rank of the selected parent. If the result is one, the

Chapter 2: Literature Review 57

best fitting individual in the population will be chosen. However, Tate and Smith (1995)

didn’t provide justification or analysis for using this method. On the other hand, a

comparison between several parent selection methods in terms of time complexity was

performed by Goldberg and Deb (1991). It shows that tournament selection, Stochastic

remainder proportionate, and Stochastic universal proportionate have the lowest time

complexity of O(n), where roulette-wheel, ranking and Genitor have complexity of O(n

log n). On the other hand, Genitor selection and overlapping population selection show

higher growth ratio than other methods.

Another advantage of simple random sampling over proportional selection method rather

than time complexity is that there is a chance for some weaker solutions to survive in the

selection process. These weak solutions may include some components which could

prove usefulness following the recombination process (Goldberg, 1989). In addition to

that, the truncation selection may stick at local optima and cannot converge from initial

selected chromosomes. Elitism is used by (Asllani and Lari, 2007; Billhardt et al, 2002)

where best l members from the old generation are assigned to the new generation to

ensure gradual improvement of the solution. Then the remaining members of the new

population are selected using one of the above selection techniques.

2.4.6 Assessment of Parent Selection Technique

As a conclusion from the above judgment, there is a need to have a selection technique

that combines the advantages of each method such as low time complexity, the capability

of selecting healthy parents for crossover operation while passing some good individuals

to the next generation (elitism), provided that the selected parents do not lead to local

optima and do not converge at low performance. The methods of parent selection are

summarized with their advantages and disadvantages in Table 2-3.

Table 2-3: Parent Selection techniques used in GA and their advantages and disadvantages

Parent selection method Description Advantage Disadvantage

Pure random selection

(Martín-Bautista and Vila,

1998)

Select parents randomly

without any restriction
 Fast to create

chromosome

 causes poor selection

Simple random sampling

selection or roulette-wheel

(proportional selection)

Each element has

probability of selection

proportional to its fitness

 High fitted

individual are

selected with high

 Certain parents may be

selected frequently

causing fast

Chapter 2: Literature Review 58

(Kim and Zhang, 2003;

Radwan et al 2006;

Pathak, Gordon and Fan,

2000; Billhardt et al,

2002; Vrajitoru, 2000;

Lopez-Pujalte, Guerrero-

Bote, and de Moya-

Anegon,a, 2003; Lopez-

Pujalte, Guerrero-Bote,

and de Moya-Anegon, b,

2003; Petridis, Kazarlis

and Bakirtzis, 1998; Chen,

1995; Goldberg, 1989;

Saini, Sharma, and Gupta,

2011, Pandey, Dixit and

Mehrotra, 2012)

probability.

convergence.

 High time complexity

 Requires evaluation of

all population to

specify the probability

of selection.

Tournament selection

(Yeh, Lin, Ke and Yang,

2007; Holland, 1975)

Group of individuals are

randomly chosen and the

one with highest fitness

value wins

 Wide range of

individuals are

selected

 Fit parents are

selected

 Low time

complexity

 Allow week

individuals to

participate in the

solution

 High growth ration

with large

tournament size

 Slower than random

selection

Ranking selection

(Goldberg and Deb, 1991;

Húsek, Snášel, Owais, and

Krömer, 2005)

It works by Sorting the

population from best to

worst, assign the number of

copies that each individual

should receive according to

a non-increasing

assignment function, and

then perform proportionate

selection according to that

assignment.

 High N Fit parents

are selected

causing fast

divergence.

 Sorting reduces speed

performance

 Lower growth ration

Truncation selection

(Yang, Korfhage, and

Rasmussen, 1992;

Muhlenbein and

Schlierkamp-Voosen,

1993; Xu, Deli, and Yu,

2009)

The L% best individuals

are selected from previous

generation for mating.

Normally L is in the range

of 50% to 10%.

 Reduce time of

creating offspring

 Low fit parents are

excluded which may

contain some good

individuals.

 Certain parents may be

selected frequently

causing fast

convergence.

Genitor selection

(Goldberg and Deb, 1991)

It examines individual by

individual, chooses an

offspring for birth

according to linear ranking,

and choosing the worst

individual for replacement

 High growth ration  High time complexity

Stochastic remainder

proportionate (roulette

Divide fitness of individual

by the average fitness of the
 Low time

complexity

 Requires additional

processing to specify

http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435598158&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435599094&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435604114&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658

Chapter 2: Literature Review 59

wheel selection)

(Goldberg, 1989;

Goldberg and Deb, 1991)

population, then the integer

part of the result represents

the number of times this

individual is assigned as

parent and the free places

are filled based on roulette

wheel selection (Sivaraj and

Ravichandran, 2011)

(Goldberg and

Deb, 1991)

 greatest

probability of

selection is given

to the most fit

members of the

population

the probability of

selecting each

individual.

 Low performance

individuals have low

chance to be selected

Stochastic universal

proportionate (Goldberg

and Deb, 1991; Yan et al,

2009; Simon and Sathya,

2009)

It is performed by sizing the

slots of a weighted roulette

wheel, placing equally

spaced markers along the

outside of the wheel, and

spinning the wheel once;

the number of copies an

individual receives is then

calculated by counting the

number of markers that fall

in its slot.

 Low time

complexity

 Requires knowledge of

fitness value of all

population prior to

selection which adds

extra processing load

Elitism (Asllani and Lari,

2007; Billhardt et al,

2002)

best n members from the

old generation are assigned

to the new generation

 Ensure gradual

improvement of

offspring

 Reduce time of

finding optimal

solution

 Used to create portion

of the offspring only

when applied alone.

2.4.7 Crossover Operator

Once the individuals are selected using the selection operator, they are ready for

crossover operation. In GA, crossover is the second operator which is applied with a pre-

defined probability to two selected individuals of a population to generate new offspring

of new generation. These offspring inherit some features from parents. Higher fitness

chromosome has an opportunity to be selected more than lower ones, so good solution

always alives to the next generation (Radwan et al 2006; Aly, 2007).

Many algorithms apply crossover operator with a probability ranging from 0.6 to 0.8

(Minaei-Bidgoli and Punch, 2003; Picarougne et al, 2002b; Radwan et al 2006; Aly,

2007; Cutler et al, 1999; Martín-Bautista and Vila, 1998), and chromosomes not

subjected to crossover are passed to the next generation and remain unmodified, where in

some other systems like the one developed by (Húsek et al, 2005) it is always performed

to generate the offspring. From the literature, there is a wide range of crossover

techniques. However, two of them are common. These are the one-point crossover and

the two-point crossover, while others are not. The first two are explained in separate

subsections and the remaining is in the preceding sub-section.

Chapter 2: Literature Review 60

2.4.7.1 One-point crossover

The simplest and most popular crossover technique is the one-point crossover (Marghny

and Ali, 2005; A. Asllaniand A. Lari, 2007; Radwan et al 2006; Aly, 2007; Yeh et al,

2007; Húsek et al, 2005; Billhardt et al, 2002; Vrajitoru, 2000; Vrajitoru, 1998; Beasley

et al, 1993a; Desjardins, Godin, and Proulx, 2005; Martín-Bautista and Vila, 1998;

Klabbankoh and Pinngern, 2008; Lopez-Pujalte, Guerrero-Bote, and de Moya-Anegon,

2003a; Song and Park, 2009; Chen, 1995). It works by choosing single point randomly

within the chromosome and copy the values of parents 1 and 2 before or after this point

to the same locations in the new offspring 1 and 2. Then, the values after or before this

point are exchanged by copying them to the new offspring such that genes of parent 1 are

copied to offspring 2 and that of 2 are copied to offspring 1. The drawback of this method

is that best building blocks can be broken. Also the offspring may have lower

performance than parents unless there is restriction on exchanging the genes. The third

drawback is that if the cross point happen to be close to one edge of the chromosome then

the generated offspring will be very similar to the parent which may delay finding the

optimum solution or may fall into local optima. One way to overcome the last drawback

is to apply restricted crossover where the cross point is chosen to be between the first and

the last positions where the parents’ chromosomes are different (Vrajitoru, 1998).

Example of this technique of crossover is illustrated in Figure 2-3. In this example a

crosspoint is selected randomly to be at position 6. The genes to the right of this position

are exchanged between chromosome i and j and the genes to the left of this point are

copied to the corresponding offspring.

Figure 2-3: Example of one-point crossover

The results obtained by the aforementioned techniques can be summarized as follows:

(Song and Park, 2006) achieved a precision of 0.755 and recall of 0.731 using a set of

Ci={3, 5, 7, 2, 9, 22, 4, 12, 23, 11)

Cj={24,1,14,7,4,17,8,13,15,20}

Crosspoint = 6

Oi={3, 5, 7, 2, 9, 17, 8, 13, 15, 20}

Oj={24, 1, 14, 7, 4, 22, 4, 12, 23, 11}

Chapter 2: Literature Review 61

500 documents.

2.4.7.2 Two-point and N-point Crossover

Another technique used to overcome the last drawback of 1-point crossover is known as

the two-point crossover (Pathak, Gordon and Fan, 2000; Beasley et al 1993b; Yang,

Korfhage, and Rasmussen, 1992; Spears and De Jong, 1991; Atsumi, 1997). It is similar

to 1-point crossover except that 2 points are selected randomly as crosspoints and genes

between them are exchanged to form the offspring. This technique provides wider

diversion from parents than 1-point crossover, and researchers agree that 2-point

crossover is generally better than 1-point crossover (Beasley et al, 1993b). However, if

the crosspoints are close to each other then the offspring will not much differ from the

parents. This technique is generalized by introducing n-point crossover (Vrajitoru, 1998;

Klabbankoh and Pinngern, 2008; Kazarlis et al, 2001; Spears and De Jong, 1991). In n-

point crossover the operation is done by randomly choosing a number of cross points and

applies n simple crossover operations on the parents simultaneously. However, adding

more crosspoints affects the speed of the crossover process and also disrupts the building

blocks and doesn’t guarantee that the offspring are better than parents although it

provides wider diversity of genes in offspring. Example of 2-point crossover is shown in

Figure 2-4. In this example two crosspoints are selected randomly at position 3 and 7.

The genes between these two positions are exchanged between the parent i and j and the

genes outside this range are copied to the corresponding offspring, i.e. genes of Ci are

copied to offspring Oi and that of Cj are copied to offspring Oj.

Figure 2-4: Example of two-point crossover

Ci={3, 5, 7, 2, 9, 22, 4, 12, 23, 11)

Cj={24,1,14,7,4,17,8,13,15,20}

cp1=3, cp2=7

Oi={3, 5, 14,7,4,17,8, 12, 23, 11}

Oj={24, 1, 7, 2, 9, 22, 4, 13,15,20}

Chapter 2: Literature Review 62

2.4.7.3 Other Crossover Techniques

Very similar to n-point crossover is the uniform crossover which is applied by (Cutler et

al, 1999; Beasley et al, 1993b; Yang, Korfhage, and Rasmussen, 1992). It is implemented

in two ways. The first one is to generate binary mask randomly with the same number of

components of the chromosome. Each mask is used to generate a child from a pair of

parents. The binary values zero or one in each mask are used to select the value of genes

from either the first or the second parent, respectively. Example of this method is

illustrated in Figure 2-5 where genes at positions corresponding to 1 in the mask are

exchanged and others are left unchanges.

Figure 2-5: Example of uniform crossover

The second way of implementing uniform crossover is to define a swapping probability

pswap and perform swapping between parents if the generated random is less than pswap

for each genes. In this technique the offspring contains a mixture of genes from each

parent. The advantage of this technique is that offspring have high chance to differ from

parents which makes finding the optimal solution faster. However, if the building blocks

are required then this technique is harmful since the blocks are destroyed in this kind of

crossover. Rather than just exchanging genes between parents to form offspring,

arithmetic operations can be done on genes to produce offspring. Example of such

arithmetic operations is the crossover technique called recint which is applied by

(Minaei-Bidgoli and Punch, 2003; Yan et al, 2009). This method is applicable to

chromosomes having their genes represented in real-value number but not applicable to

our model where the genes are represented in integer referring to the document index. It

performs an intermediate recombination between pairs of individuals where it combines

Ci={2, 3, 4, 5, 7, 9, 11, 12, 22, 23)

Cj={1,4, 7, 8,13,14, 15,17, 20, 24}

Mask={1, 1, 0, 1, 1, 0, 0, 1, 0, 0}

Oi={1, 4, 4, 8, 13, 9, 11, 17, 22, 23}

Oj={2, 3, 7, 5, 7,14, 15,12, 20, 24}

Chapter 2: Literature Review 63

parent values to produce offspring using the formula:

Offspring = parent1 + Alpha × (parent2 – parent1),

Where Alpha is a Scaling factor normally ranging between [-0.15, 1.55]. Bear in mind

that offspring here have a visible chance to be similar to parents. However, the author

used this method in his research without justification of its benefits or advantages.

Another technique used to generate offspring using arithmetical operation is called

arithmetical crossover (Kim and Zhang, 2003). Offspring in arithmetical crossover are

generated by assigning the average of two parents for each location to the corresponding

location of the offspring. One of the drawbacks of this technique is that it could produce

offspring having duplicate genes where the same average may be produced from different

combinations. This will lead to week solution by diverting from the optimal solution.

Another drawback of this technique and the former one is that the generated offspring

could be out of the search space where the outcome of the formula could produce invalid

values.

Inversion is another technique used for crossover (Beasley et al, 1993b; Goldberg, 1989)

in which the order of genes between 2 randomly chosen positions within the chromosome

are reversed. Hence it is applied to a single parent to produce a single offspring.

However, this technique is useful when the order of genes is important; otherwise, the

chromosome will remain having the same list of genes and this technique will be useless

(Beasley et al, 1993b). Example of this technique is depicted in Figure 2-6. In this

example, the chromosome Ci has ordered genes, then two crosspoints are selected

randomly to be 4 and 8. The order of genes between these two points is reversed.

Similar to inversion is the reordering crossover technique but it is applied to two parents

to produce two offspring (Beasley, Bull, and Martin, 1993b; Yang, Korfhage, and

Figure 2-6: Example of inversion crossover.

Ci= { 2, 3, 4, 5, 7, 9, 11, 12, 22, 23}

cp1=4, cp2=8

Oi={2, 3, 4, 12,11,9,7,5, 22, 23}

Chapter 2: Literature Review 64

Rasmussen, 1992). It is applied to 1-point or 2-points crossover where the order is

maintained after each crossover. The purpose of reordering is to find gene ordering

which have better evolutionary potential (Beasley, Bull, and Martin, 1993b). It is useful

when needing to discover good gene ordering but requires longer time to sort genes each

time the offspring is created, and consequently causes delay to the GA process. Example

of combining reordering crossover and 2-point crossover is shown in Figure 2-7. In this

example, the genes between positions 4 and 8 are exchanged between parents Ci and Cj,

while genes outside this window are copied unchanged. After that the genes are ordered

in ascending order based on the fitness value.

Figure 2-7: Example of combining reordering crossover and 2-point crossover

It is not necessary that crossover produces two offspring from two parents. On fusion

crossover (Vrajitoru, 1998) only one offspring is generated from two parents where for

each gene, the child inherits the value from one or the other of the parents with a

probability according to its performance. The advantage of this technique is that the good

genes of both parents are inherited simultaneously to the offspring producing high quality

offspring- in case where the probability is high enough -which speeds up finding the

optimal solution. On the other hand, the generation of each population will take double of

the time elapsed in normal techniques in order to generate same size of population.

Another crossover technique is used in (Vrajitoru, 1999) called Dissociated crossover. It

uses 2-point crossover, but applies a different 1-point crossover operator to each parent.

The First offspring is generated as follows: Genes in position less than the first crosspoint

are copied as is from parent 1, and genes between two crosspoints are copied either from

Ci={2, 3, 4, 5, 7, 9, 11, 12, 22, 23)

Cj={1,4, 7, 8,13,14, 15,17, 20, 24}

cp1=4, cp2=8

Oi={2, 3, 4, 5, 13,14, 15,17, 22, 23}

Oj={1,4, 7, 8, 7, 9, 11, 12, 20, 24}

After reordering: Oj={2, 3, 4, 5, 13,14, 15,17, 22, 23}

 Oj={1,4, 7, 7, 8, 9, 11, 12, 20, 24}

Chapter 2: Literature Review 65

parent 1 or parent 2 (the author didn’t mentioned a criteria to select from which parent).

Genes after the second crosspoint are copied from the second parent. The innovation of

this technique is the creation of the second offspring where genes before the first

crosspoint are copied from parent 2 and genes after the second crosspoint are copied from

the first parent and genes between crosspoints are replaced with 0 in binary

representation. The author compared this technique with classical 1-point, 2-points

crossover and uniform crossover and found that it performs better than both in terms of

precision where it achieves precision of 0.4464 at P@10, using CACM document set

which includes 3204 documents, and it is better than uniform crossover by 35.36%.

2.4.7.4 Assessment of Crossover Techniques

The main feature that must characterize the crossover operator is to generate optimal

chromosomes by inheriting good features from parents and maintains the chromosome

performance at its highest value. Therefore, the crossover technique must be

implemented in a manner that passes good genes from one generation to another up to the

last generation and to minimize the loss of these good genes during generation creation.

The main drawback of the previously discussed crossover techniques is that the generated

offspring may be of lower performance than their parents such in case of n-point

crossover where n is greater than zero. It is proved when the technique applied by

(Vrajitoru, 1998), where the average precision-recall scored ranges between 0.2182 and

0.4149. On the other hand, (Klabbankoh and Pinngern, 2008) achieved recall as high as

0.976 and precision as high as 0.746. Although these results are promising, but these are

affected by the document model and the fitness function applied.

 However if the one-point crossover method is combined with another crossover method

such as re-ordering crossover then there is a great opportunity to have offspring with a

better performance as expected by (Goldberg and Bridges, 1990) and proved in chapter 4

experimentally. Another drawback of the some crossover techniques is that they require

extra time when re-producing the offspring such as reordering crossover and arithmetical

operational crossover. The third drawback in some of the above crossover techniques is

that they require additional storage space such as inversion crossover method. Destroying

building blocks of consecutive genes that perform better together is a common drawback

Chapter 2: Literature Review 66

for many crossover techniques such as in uniform crossover, random crossover and n-

point crossover when n is relatively large. For the uniform crossover, it is shown that

when applied by (Xu, Deli, and Yu, 2009), the achievement was only 0.75 for the

precision-recall@10, which is comparatively low. When applying the n-point crossover

by (Klabbankoh and Pinngern, 2008), the maximum precision achieved is 0.746. and the

lowest is 0.417. However, the last approach was applied in GA using binary

representation, and there is a need to investigate its performance when applied on other

kind of representation. The last drawback that needs to be mentioned here is that the

generation of the offspring may produce an individual which is out of the search space

such as in case of arithmetic crossover which also increases resource requirements in

terms of time and processing. An empirical study is performed in chapter 4 to compare

the performance of one-point, two-point, ordered crossover and fusion crossover in terms

of recall and precision for inter representation. Summary of crossover techniques along

with the advantages and disadvantages are listed in Table 2-4.

The above discussion emphasizes the need to develop a new crossover technique or

enhance the existing crossover operator such that it overcomes the above mentioned

drawbacks and to be applied with probability equal to one, in contradiction to the most of

researchers where they apply it with probability between 0.6 and 0.8 as explained earlier.

Table 2-4: Summary of crossover techniques used in GA

Crossover Method Description Advantages Disadvantages

Single point crossover

(Lopez-Pujalte,

Guerrero-Bote, and de

Moya-Anegon, a, 2003;

Song and Park,

Asllaniand and Lari,

2007; Radwan et al

2006; Aly, 2007; Yeh et

al 2007; Húsek et al,

2005; Billhardt et al,

2002; Vrajitoru, 2000;

Vrajitoru, 1998;

Beasley, Bull, and

Martin, 1993a;

Desjardins, Godin, and

Proulx, 2005; Martín-

Bautista and Vila, 1998;

Klabbankoh and

Pinngern, 2008; Carroll

Randomly choose a

point and genes of

parents are

exchanged before or

after this point.

 Easy to implement

 Fast in generating child

 Best building blocks can

be broken.

 offspring may have lower

performance than parents

 The offspring can be

similar to parent if

crosspoint is close to one

edge of the parent

 may produce child with

lower performance than

parent

Chapter 2: Literature Review 67

and Lee, 2008; Simon,

Sathya, 2009; Drias,

Khennak, and

Boukhedra, 2009;)

Two-points crossover

(Pathak, Gordon and

Fan, 2000; Beasley,

Bull, and Martin, b,

1993; Yang, Korfhage,

and Rasmussen, 1992;

Spears and De Jong,

1991; Atsumi, 1997)

Randomly choose

two points and

genes of parents

between these 2

points are

exchanged.

 Provides wider diversity

from one-point

crossover

 Performs better than n-

point crossover (Spears

and De Jong, 1991).

 The offspring can be

similar to parent if

crosspoints are close to

each other

 performance using 2-point

crossover drops

dramatically if the

recommendation of

building blocks are not

adhered to (Beasley et

al,1993b)

n-point crossover

(Vrajitoru, 1998;

Klabbankoh and

Pinngern, 2008;

Kazarlis, Papadakis,

Theocharis and Petridis,

2001; Spears and De

Jong, 1991)

Randomly choose a

number of

crosspoints and

apply n simple

crossover operations

on the parents at

once

 Provides wider diversity

from two-points

crossover

 Reduce speed of the

crossover process

 Disrupts the building

blocks

 may produce child with

lower performance than

parent

Uniform crossover

(Cutler et al, 1999;

Beasley, Bull, and

Martin, b, 1993; Yang,

Korfhage, and

Rasmussen, 1992;

Muhlenbein and

Schlierkamp-Voosen,

1993; Xu, Deli, and Yu,

2009)

Random binary

mask is generated to

swap corresponding

1’s positions or

preset probability

for swapping each

gene

 offspring have high

chance to differ from

parents if swap

probability is high

 finding optimal solution

faster

 order is not important

 increased disruption is

beneficial if the

population size is small

produced robust

performance (Beasley et

al,1993b)

 Disrupts the building

blocks.

 may produce child with

lower performance than

parent

Random crossover

(Alfonseca, 1991).

exchange randomly

selected set of genes

between two parents

 Wide range of search

space to select from.

 Disrupts the building

blocks.

 may produce child with

lower performance than

parent

Recint crossover

(Minaei-Bidgoli and

Punch, 2003).

Offspring = parent1

+ Alpha × (parent2

– parent1)

 No justified advantage  Applicable on real

numbers only.

 High probability of

offspring to be similar to

parents

 generated offspring could

be out of the search space

Arithmetical operation

(Kim and Zhang, 2003;

S. Kim, B.-T. Zhang,

2000).

offspring is average

of parent’s genes
 Allow to generate new

child which are not exist

in the original space.

 Generated offspring could

be similar to parents

 week solution by diverting

from the optimal solution

 generated offspring could

be out of the search space

 Requires additional

http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435598158&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435599094&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658
http://dl.acm.org.v-ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435604114&coll=DL&dl=ACM&CFID=129606728&CFTOKEN=41966658

Chapter 2: Literature Review 68

processing time in order to

find the average.

Inversion crossover

(Beasley et al, 1993b).

Reverse the order of

genes between 2

crosspoints

 It helps finding gene

orderings which have

better evolutionary

potential

 Child may have lower

performance than

parents.

 Genes must be labelled in

this method if

maintaining same

position within the

chromosome which

requires additional

storage (Beasley et al,

1993b).

 Requires additional

processing time in order to

order the genes.

Reordering crossover

(Beasley, Bull, and

Martin, 1993b; Yang,

Korfhage, and

Rasmussen, 1992)

orders the genes

between 2 randomly

chosen positions

within the

chromosome either

in ascending order

or descending order

 useful when needing to

discover good gene

ordering

 Reduce speed of the

crossover process for

ordering each

chromosome.

Fusion crossover

(Vrajitoru, 1998).

Produces.

Produce only one

child from two

parents where for

each gene, the child

inherits the value

from one or the

other of the parents

with a probability

according to its

performance

 good genes of both

parents are inherited

simultaneously

 speeds up finding the

optimal solution

 Reduce speed of the

crossover process

Dissociated crossover

(Vrajitoru, 1998; Collard

and Escazut, 1995; Yan

et al, 2009).

Genes in second

child are replaced by

0 between the cross

points in binary

representation or

replaced by the

function: Offspring

= parent1 + Alpha ×

(parent2 – parent1).

Alpha is a Scaling

factor chosen

uniformly in the

interval [-0.25,

1.25].

 Performs better in terms

of precision when

compared with classical

1-point, 2-points

crossover and uniform

crossover (Collard and

Escazut, 1995)

 Generated offspring could

be out of the search space

Swap-Window (Petridis,

Kazarlis and Bakirtzis,

1998).

Selects two arbitrary

unit strings u1, u2, a

“time window” of

random width and a

random window

position taking

values in the range .

Then the bits of the

two unit strings u1,

 Could enhance gene

performance if used as

secondary operator in

addition to main

crossover technique.

 Window size could be

small which doesn’t

allow for enhancement of

the offspring over the

parent.

Chapter 2: Literature Review 69

u2 within the

window are

interchanged

2.4.8 Mutation Operator

Mutation is the third and last genetic operator. It causes the individual genetic

representation to be changed according to some probability pm ranging from 0.001

(Beasley et al, 1993a) to 0.7 (Radwan et al 2006). Mutation is generally considered to be

a back-ground operator since it ensures that the probability of searching a particular

subspace of the problem space is never zero (Minaei-Bidgoli and Punch, 2003). Despite it

is applied with low probability, it is considered as a very important operator (Beasley et

al, 1993b). Applying mutation during GA achieves many objectives. These objectives are

restoring lost data, exploring variety of data (Radwan et al 2006), improving diversity of

the solution (Noreault et al, 1980), and reduce the possibility of converging to a local

optimum, rather than the global optimum (Minaei-Bidgoli and Punch, 2003; Noreault et

al, 1980).

The most common method of mutation is implemented by randomly selecting one gene

and changing it with another value (Radwan et al 2006; Aly, 2007; Alfonseca, 1991;

Vrajitoru, 2000; Vrajitoru, 1998; Beasley et al, 1993a; Martín-Bautista and Vila, 1998;

Klabbankoh and Pinngern, 2008; Lopez-Pujalte, Guerrero-Bote, and de Moya-Anegon, a,

2003). Example of random mutation is shown in Figure 2-8, where position 8 is selected

randomly and its value is replaced by another random value.

Figure 2-8: Example of random mutation

Asllani and Lari (2003) suggested mutation by randomly selecting two genes within a

chromosome and swap their positions. This method is useful if the order of genes within

the chromosome is important. Mutation can also be performed by introducing Gaussian

noise (Pathak, Gordon and Fan, 2000; Song and Park, 2009; Steinbach, Karypis, and

Kumar, 2000). While previous methods apply mutation to particular genes, it is found

that Beasley, Bull, and Martin (1993a) apply mutation for each gene but with probability

Ci={2, 3, 4, 5, 7, 9, 11, 12, 22, 23)

Ci={2, 3, 4, 5, 7, 9, 11, 15, 22, 23)

Chapter 2: Literature Review 70

of 0.001. This is to ensure that no point in the search space has a zero probability of being

examined as per the authors. When genes are presented in a numerical form (Beasley et

al, 1993b) then mutation is performed in one of three methods. Either by replacing the

value with a random one, or using Creep method which is adding or subtracting a small

randomly generated amount, or using geometric Creep method which is multiplying by a

random amount close to one. In the work done in (Yang, Korfhage, and Rasmussen,

1992) some individuals are selected randomly from the semi-new generation, and some

of their genes are selected and assigned new values, also in the range [0, 1]. The number

of individuals to be selected depends on the mutation ratio chosen in the experimentation.

The selection of genes and the new value assignments are also done randomly. A new

mutation method introduced by Horng and Yeh (2000) was applied to generated

offspring. It is defined to be the inversion of a weight as per the following formula:

 ,

where is a weight of a gene in the population; is the weight of the best gene

in the population, and is the weight of a gene to be found in the new population.

Last method of mutation to be mentioned in this literature is the one suggested by Wang

and Feng (2005) to speed up the ability of finding better query vector. In this method the

new individual which represents a query in this model is assigned the term weight

average of selected individual query if random (p) < p(mutation), otherwise it is assigned

a maximum term weight of selected individual minus the minimum term weight of the

selected individual. (Yan et al, 2009) use quantum-bit representation for the gene which

is defined as pair of numbers (, ) as: . Mutation in this technique is performed by

swapping the values of  and  for the mutated gene.

2.4.9 Assessment of Mutation Operators

As mentioned earlier, some of these techniques cannot be applied to our model as the

resulted genes may not belong to the search space like in arithmetic operation mutation. It

Chapter 2: Literature Review 71

cannot also be applied when assigning random value to a gene where this value could not

be in the search space. Moreover, the mutation could destroy the building blocks if the

mutated gene has lower performance than the replaced one. In these cases if a validation

is done before replacement to make sure that the replacing gene is of same or better

performance (fitness value) than the replaced one, then these drawbacks could be

avoided. Another drawback is the slow performance of mutation when performing some

operations to produce new genes via mutation such as the arithmetic operation or when

introducing Gaussian noise. Finally, in case of Q-bit gene representation, the swapping of

 and  for the mutated gene may produce a duplicate gene, consequently, the

performance of the new chromosome is not enhanced. As a result, the mutation could be

applied to one or two individuals within the chromosome ensuring that the replacing gene

enhances the overall performance of the chromosome. Table 2-5 summarizes the

mutation methods with their advantages and disadvantages.

Table 2-5: Summary of mutation methods used in GA

Mutation

method

Description Advantages Disadvantages

One position

mutation

(Radwan et al

2006; Aly, 2007;

Alfonseca, 1991;

Vrajitoru, 2000;

Vrajitoru, 1998;

Beasley et al,

1993a; Martín-

Bautista and Vila,

1998;

Klabbankoh and

Pinngern, 2008;

Lopez-Pujalte,

Guerrero-Bote,

and de Moya-

Anegon, a, 2003;

Carroll and Lee,

2008; Saini,

Sharma, and

Gupta, 2011)

Replace random position by random

value
 Introduces new

gene in the

chromosome if

duplicates are

discarded

 Mutated gene can

be of lower

performance than

before mutation.

Two position

mutation (A.

Asllaniand A.

Lari, 2007)

Selecting two randomly genes within a

chromosome and swap their positions
 Useful only if

order of genes is

important

 useless if order not

important

Introducing

Gaussian noise

(Pathak, Gordon

One location selected randomly and

replaced with Gaussian noise
 Introduces new

gene in the

chromosome

 Extra calculation

load on the system

Chapter 2: Literature Review 72

and Fan, 2000;

Song and Park,

2009; Steinbach,

Karypis, and

Kumar, 2000)

Probability

mutation (Beasley

et al, 1993a)

Applies mutation to each gene but with

probability
 Provide wider

diversity of genes

 Damage building

blocks

 slow generation

process

Arithmetic

operation

mutation

(Beasley, Bull,

and Martin,

1993b)

Add or subtract a small, randomly

generated amount or multiply the gene

value by a random amount close to one

 Introduces new

gene in the

chromosome

 Could produce

duplicate genes

Assign random

value between 0

and 1 to some

randomly selected

individuals

(Yang, Korfhage,

and Rasmussen,

1992)

Assign random value between 0 and 1 to

some randomly selected individuals
 Introduces new

gene in the

chromosome if

duplicates are

discarded

 Applicable for

genes ranging

between 0 and one

only.

 Could produce

duplicate gene

Inversion of a

weight of mutated

gene (Horng and

Yeh, 2000)

 Introduces new

gene in the

chromosome

 Requires

knowledge of all

genes in the

population in

advance.

Swapping the

values of  and 

for the mutated

gene in Q-bit

representation

(Yan et al , 2009)

Swapping the values of  and  for the

mutated gene in Q-bit representation

 Introduces new

gene in the

chromosome

 The produced gene

may be a duplicate

of existing gene.

2.5 Summary

The following observations are concluded from the literature review of the IR categories

in general and the literature review of the genetic algorithm technique and its operators in

particular. First observation is that the traditional IR models are not practical to be

applied to the web search domain due its complexity and the expensive computation cost.

The second observation is that there is no research work–up to our knowledge- that

analyzed all GA operators in one study and no one –also up to our knowledge- tried to

find the best combination of GA operators that produce the highest performance of

information retrieval systems in terms of recall and precision. The third observed point is

that the GA operators in the reviewed studies are tested and analyzed on documents

represented by either vector space model or latent semantic model while in this research

Chapter 2: Literature Review 73

they are tested and analyzed using modified inverted index model. The fourth important

point is that most of the studies reported in the literature are using ready-made indexes.

The fifth observation is that the precision and recall achieved by these techniques and

models are still not meeting the user satisfaction which is the major aim of any

information retrieval system, and this motivates the researchers to keep on developing

several techniques of IR.

It is noted in this literature review that the average precision ranges between 0.2182

(Vrajitoru, 1998) and 0.4149 (Vrajitoru, 1998), and the average precision for recall

ranges between 0.225 (Desjardins, Godin, and Proulx, 2005) and 0.7003 (Horng and Yeh,

2000) using the 11-points average while it is reaching 0.2969 using the 9-points average.

For recall at N it is ranging between 0.274 and 0.319.

Although several techniques are developed for each operator of GA, some are not

suitable for the proposed IR model, while others are producing good results based on

some environmental setting, but still the achieved precision and recall percentage are low

compared to the user expectation. On the other hand, some GA-based IR models

produced high percentage of precision, but this was due to the relevance feedback

provided by the end user which is not considered in this study.

In the light of these results and observations, there is an important need to have an

improved IR system that provides high recall and high precision results. Consequently,

this thesis presents two models of IR system that aim at filling in the gap of the low

performance of IR systems in terms of recall and precision. First model is GA-based IR

model while the second is traditional IR-based model. Details of these models, their

features and their performance are presented in the next chapters.

Chapter 3: Setting and Experimental design 74

3. C

hapter Three: The Design of Information Retrieval

Using Genetic Algorithm (IRUGA) Model

3.1 Introduction

Recently, IR problems have gained a considerable importance, and most studies argue that

IR can be seen as a standard optimization problem (Marghny and Ali, 2005; Petridis,

Kazarlis and Bakirtzis, 1998; Deb, 1998). Therefore, many researches are directed towards

the use of Genetic Algorithms (GAs) for developing such a system which has proved its

simplicity and capability as a powerful search mechanism to solve many scientific and

engineering problems (Minaei-Bidgoli and Punch, 2003; Asllaniand and Lari, 2007; Losee,

1996; Deb, 1998). As is clear from its title, the goal of this thesis is to utilize the concept of

GA with a significant improvement to produce what is called: “Information Retrieval Using

the Genetic Algorithm (IRUGA) model”.

IRUGA consists of two main units. The main purpose of the first unit, namely indexing, is

to extract the meaningful keywords from the documents and represent them in a way that

makes the process of finding relevant documents efficient. GA is the second unit of IRUGA

and is utilized in this thesis as a core of its behaviour. This unit compares the user query

with the indexed documents to retrieve the relevant set of documents and display them in a

descending order according to a relevance measure.

More precisely, in order to obtain high quality results, additional units need to be combined

with IRUGA, namely, the query formatting unit and the ranking unit. These units are

outlined as shown in Figure 3-1.

Chapter 4: Design of IRUGA 75

Figure 3-1: The units of IRUGA

The rest of this chapter is organized as follows: Section 3.2 highlights some of the document

types as well as the indexing engine even though one of them will be selected throughout

the IRUGA’s designing. The goal of this section is to talk about the reasons for using

HTML documents being used as a backbone for IRUGA, and the HTML tags that are to be

used to classify words within the document and finally the assigned weights of these tags,

while the second part of this section explains the new approach of the document indexing

which is designed especially for IRUGA. Moreover, this section is divided into three parts.

The first one is the reasons for using the inverted index model in IRUGA, while the second

part describes how the data is stored in this index, and finally the mechanism for creating

the index is presented at the end of this section. Section 3.3 describes in full details the main

unit involved in IRUGA, that is GA. New techniques are explained and applied to the GA of

IRUGA and to both new functions which are named as: multi-terminal function and term

proximity functions are also explained in this section. The last section of this chapter, which

is 3.4, summaries this chapter.

User

Query

HTML Document

Index Unit

Document
Evaluation

process

(fitness

function)

Set of all

documents that

contain the

query keywords

Set of

keywords

GA

Unit

Selection

Crossover

Mutation

Total set of

documents

Document

index stored in

Database

Ordering results

(Ranking)

Set of retrieved

relevant

documents

Chapter 4: Design of IRUGA 76

3.2 Document Types and Representation

The effective way to represent documents influenced scientists' thought in the IR arena.

Historically, documents that are evaluated by IR can be either plain text, semi-structured

(i.e., HTML (Hypertext Markup Language) documents) or structured. Because most of web-

documents are written in HTML (Kim and Zhang, 2000; 2003), this format was adopted for

implementing our proposed system. In addition to that, many GA-based IR systems are

implemented using plain text such as (Radwan et al, 2006; Vrajitoru, 1997; Billhardt et al,

2002; Cummins and O’Riordan, 2006; Aly, 2007; Salton and Buckley, 1990) which do not

comply with the Web search systems.

3.2.1 Document Type to be used by IRUGA

Actually, the documents that are indexed by the inverted index are the semi-structured (i.e.:

HTML (Hypertext Markup Language)) documents. This format exhibits the following

features:

1. IRUGA is an application of web mining where most of the web documents are

written in HTML format (Kim and Zhang, 2003; Kim and Zhang, 2000).

2. The layout and HTML tags better reflect the importance of certain terms within a

document (Cutler et al, 1999) where the emphasized terms are written in a different

format.

3. The ability to use HTML tags in weighting the terms (Cutler, Shih and Meng, 1997)

as will be illustrated in the next sub-section.

4. HTML documents are well content descriptive documents (Cutler, Shih and Meng,

1997).

5. Clarity of the tags that need to be included in the term weights (Kim and Zhang,

2003; Cutler et al, 1999), where these tags are bounded by special characters to

distinguish them from the normal text within the document.

 Because of these features, HTML documents are adopted to form the search space of

IRUGA.

Chapter 4: Design of IRUGA 77

3.2.2 HTML Tags and Weights Used in IRUGA

The main characteristic of this type of documents is the HTML tags. These tags reflect

different kinds of importance for each portion of the document. Basically, these tags can be

classified into semantic tags and formatting tags. Semantic tags emphasize the ideas that the

author needs to highlight, while formatting tags are related to the way of writing the syntax.

Examples of the former are the title, header (in all levels: header1, header2, header3, …

header6), anchor text, and body. These tags are represented as TITLE, HEADER, H1, H2,

H3, A, and BODY, respectively, while examples of formatting tags are bold and italic tags

and they are represented by B and I tags. Actually, each tag within the document reflects a

certain level of importance. However, IRUGA will be using only these tags as they better

reflect the document content in terms of user query. Moreover, they are most frequently

used in the web documents (Cutler et al, 1999). Example of HTML document is illustrated

in Figure 3-2 where the HTML are shaded.

Figure 3-2: Sample of HTML document

Chapter 4: Design of IRUGA 78

To better understand the importance of these tags, an explanation of each one of these tags

is provided here, starting with the most important tag, which is the title tag. The terms in the

document’s title provide information about what the document is about. Hence, a score of 6

is given to the terms that occur in this tag. The second more important tag is the header tag

and its sub-headers, denoted by H1, H2 and H3. The words in these tags provide

information about the structure and main topics of the document; hence, a score of 5 is

assigned to the terms within this tag. The next important HTML tag is the anchor tag. The

words in the anchor appear in the hyperlink which points to other documents. These

documents which are pointed to by the hyperlink are most likely to be relevant to user

query. In addition, the anchor tag contains words that appear in other documents. Therefore,

terms within this tag are given a weight of 3. Authors emphasize certain terms within the

HTML document by using specific formats such as bold and italic to reflect a degree of

importance that they want to highlight; hence, this tag provides an extra level of describing

document content. For these reasons, these two tags are given a weight of 2. The last tag to

be mentioned here is the body tag. This tag contains plain text. This plain text cannot be

neglected as it plays a limited role in identifying the document. Therefore the words in the

body text are given a weight of one. These weights are influenced from the study done by

Kim and Zhang (2003) and summarized in Table 3-1.

Table 3-1: The weight assigned to HTML tags used in the inverted index

Tag Name Weight

Title 6

Head, h1, h2, h3 5

A: Anchor 4

B: Bold, I: italic 3

Body 1

Terms which are used in formatting the document or terms that appear in the document and

have nothing to do with document content are excluded.

3.3 Inverted Index Unit

As mentioned in the introduction of this chapter, the process of indexing documents is

considered as one of the main units of IRUGA. It is designed to represent documents that

are used to support the GA unit. This representation is done through a process called

Chapter 4: Design of IRUGA 79

enhanced inverted index. As shown in Figure 3-1, the document set is passed to the indexing

unit. Then this unit extract the useful information from these documents and store it in the

database for later reference by the GA unit.

Definition 3.1: Inverted index: is a structure that attaches each distinctive term to a list of

all documents that contain the term (Liu, 2006, p. 205).

3.3.1 Why the Inverted Index Model

It is proved that effective representation in the area of IR is achieved by selecting a proper

index terms (Pathak, Gordon and Fan, 2000) and choosing a proper indexing model

(Radwan et al 2006). Inspired by several researches, (described in Section 2.2.2.2), IR

systems that adopt GA as a backbone of their systems are using vector space model to

represent the documents (Lopez-Pujalte et al, 2003a; Aly, 2007; Vrajitoru, 1997; Billhardtet

al, 2002). On the other hand, several scientists are using Latent Symantec model to develop

their indexing scheme (Kleinberg and Tomkins, 1999; Song and Park, 2009). These models

may not be used any more in the areas of IR for the following reasons (Snasel et al, 2005):

1. They require a large amount of space to store the index.

2. They require a long time to retrieve the needed keyword.

3. The need to examine all the documents against each query.

4. The index stores limited information about the documents (Al-Dallal and

Abdulwahab, 2011), and this is due to the large amount of space required to

include addition data per keyword.

To overcome these drawbacks, a well known indexing scheme is developed and was chosen

for the implementation of our system. This indexing scheme is called the inverted index

(Liu, 2006). It is perhaps the most important index method used in search engines as stated

by Liu (2006, p. 204).

Furthermore traditional IR seeks to find documents that match the keyword of the user

query. To do so, all documents are scanned sequentially in the database to find what the IR

is seeking for. However, this procedure is impractical for large collections of documents

Chapter 4: Design of IRUGA 80

such as the Web. Another option which is more efficient in terms of speed and processing is

to scan the database for the query keywords and retrieve the documents that index these

keywords.

This thesis will concentrate on developing the new indexing scheme to overcome these

drawbacks. This indexing is developed by improving the known inverted index. Generally

speaking, this model of indexing scheme is characterized by a set of the following features:

1. The building time of indexing documents is short and the performance of

parsing the document set cannot be simply ignored. Indeed, the time complexity

required to build this index is O(n) where n the number of all terms in the

document collection (Liu, 2006, p. 204).

2. Liu (2006) presented good remarks regarding the behaviour of this model for its

ability to retrieve variant documents that matched the terms of the user query.

3. Liu (2006) also pointed out that it is possible to identify documents by using the

pointers inside the inverted list, so no search operation is carried out on the

documents themselves.

4. The space required to store the result of this model is very small compared to

the space required by other models (Snasel, Moravec and Pokorny, 2005).

Indeed, only the indexed terms and the referenced documents will be saved.

5. Different types of information related to each term such as frequency, position

and weight can be easily stored. Thus, the evaluation time of the term is reduced

dramatically.

6. It is obvious that this model is very fast in retrieving the documents as it scans

the database for the query keywords and retrieves the documents that index

these keywords, instead of examining each document against the query

(Uematsu et al, 2008).

In conclusion, one can easily see that the performance of this model has been emphasized by

many researchers (Liu, 2006; Uematsu et al, 2008). For this reason, the inverted index

model is adopted in IRUGA with a significant improvement to produce what is called the

Chapter 4: Design of IRUGA 81

Enhanced Inverted Index (EII).

As mentioned earlier in this section, the concern when building the index is the choice of the

model to be used and the terms to be indexed. Now the talk is about the second part which

identifies the terms that need to be indexed.

It is obvious that any index must contain all information that allows the best retrieval for the

required document based on keywords provided by the end user. Part of this information is

obtained while parsing the document during the process of creating the index such as: the

referencing documents, the offset (position) within the document, the offset within the

sentence and word weight based on the HTML tag that it is bounded with. On the other

hand, there is information obtained once the index creation is over. This is classified as

global information. Global information includes the total number of documents in the

collection, total number of indexed terms, total number of unique terms in the collection,

and total weight of all indexed terms (Cummins and O’Riordan, 2006). All these types of

information need to be stored in the index in order to facilitate the process of evaluating the

document based on the user query and consequently to retrieve the proper documents.

Nevertheless, there is a collection of words which don’t have much informative content.

This type of words is not useful in identifying the document; hence, they are omitted from

the index. These words are known as stop-words. The storage space could be reduced by

30% when excluding stop-words from the index (ixCreateStopWordList, 2002). There are

many lists of stop-words available in the Web but there is no reason for favouring one of

them over the rest. Hence, the list of stop-words used when creating EII is the one provided

in (Stop Word List 1, 2002).

3.3.2 Inverted Index Mechanism

The inverted index is one of the most interesting models used for indexing the documents.

The idea of the inverted index as described in (Uematsu et al, 2008) is a structure used to

store word position data, as well as document ID. Word position data is a list of offsets or

positions in which the words occur in the document. Such occurrence information (i.e.

document ID and word position data) for each word is expressed as a list, called the

“inverted list”, and all the inverted lists taken together are referred to as the inverted index.

Chapter 4: Design of IRUGA 82

The position data is mainly used when the order of words within the query is sensitive and

also used for proximity search when the distance between words is required. When a query

phrase is submitted, the EII unit accesses the inverted list of each word of the query to

identify the documents that contain those words in the same order as the query if possible.

In addition, EII retrieves the additional information associated with the query words such as

the offset to be fed into the evaluation process, which is the fitness function.

However, as stated above, the inverted index has motivated many developers to design their

own schemes. This section highlights some of the most prominent improvements and

variations of the inverted index scheme. Here, the inverted index has been modified by

associating each word with its weight and its position within the sentence and within the

document.

In particular, two different mechanisms are applied to implement the inverted index in

IRUGA. The first mechanism is implemented by using the link list data structure through

using C++ programming language. Furthermore, Oracle database with its tables and

relations is used to implement the second mechanism. In fact, both mechanisms were

examined in this work and their details are described in the following sections.

3.3.2.1 Building the Inverted Index Using C++ Data Structure

The first adopted option was to implement this system using C++ programming language.

The basic concept in this method is the link list data structure. In its simplest form the

inverted index of a document collection is basically a data structure that attaches each

distinctive term to a list of all documents that contain the term. Therefore, the system is

built using two types of nodes where each type is linked to its peers through a link list

structure. The first type of nodes is the word node. It includes the word to be indexed, the

total frequency of this word in the document set and the total number of documents

referencing this word. The second type of nodes is the document node. It is linked to the

word node and stores:

a. Document name.

b. Total number of words in the document.

c. Frequency of that word within the document.

Chapter 4: Design of IRUGA 83

d. The HTML tag weight of this word in the document.

There can be as many nodes linked to the word node as there are documents referencing this

word.

The structures of the word node and document node are shown in Figures 3-3 and 3-4

respectively, while Figure 3-5 shows how all nodes are linked together.

This model of implementing the inverted index encounter two main drawbacks during the

implementation; the first one is that it requires a lot of memory to build the index, causing

the computer to experience undesired slowness. The second drawback is the slowness of

retrieving details of a query word. The slowness comes from the fact that accessing a word

node from the list requires parsing the word list sequentially until it reaches the required

word node.

In order to overcome these drawbacks, another method of implementing the inverted index

is used; in this method, Oracle database is used instead of the link list data-structure, and

PL/SQL programming language instead of C++. The algorithm of building the inverted

index using C++ data structure is listed in Algorithm 3-1.

Figure 3-3: Word node

Figure 3-4: Document node.

Word1 Freq. No. of Doc.
Link to

document node

Link to next node

Word1: Web 9 3

Word2: Data 7 1

Word3:Mining 3 2

 d1 34 4 11 d2 55 3 7 d3 75 2 5

 d2 55 7 4

 d1 34 2 9 d5 109 1 1

NULL

NULL

NULL

…

…

…

 D1 doc. size Word Freq. Word Weight
Link to

document

node

Chapter 4: Design of IRUGA 84

Figure 3-5: Data structure constructed by the inverted index showing how word node is linked to a list of

document nodes.

3.3.2.2 Building the Inverted Index Using Oracle Database

In this model, several tables are used to represent different objects of the inverted index

model. The parser engine is driven by table file_info which includes names and references

of the documents that need to be indexed. Two setup tables are used. One is called

tag_weight which stores the HTML tag and its corresponding weight, and a second is called

the special_words table, which stores the stop words, special characters and sentence

Algorithm 3-1: Indexing engine using C++ data structure

while there are more documents that need to be processed do

 while there is a word in the document do

 Read the document one word at a time until the whole document is read. Split the string into

tokens.

 Remove stop words

 Get the related document node, or create it if it doesn’t exist

 if there is a link to document node for same document

then

 increment frequency in that node

 else

 create new node for this document and set frequency to 1

 Add this document to the list of documents

 end if

 Increment the word count for that document since it is needed in calculating word density

per document

 end while

 end while

delimiters. Stop words are the words that occur very frequently in the text but have little

meaning (Liu, 2006). Special characters are set of characters to be discarded while parsing

the files, and which are used as punctuation or formatting. Sentence delimiters are a subset

of special characters that are used to separate the sentences from each other, so the words

belonging to each sentence have the offset of the sentence or the sentence number. These

delimiters include period, semi colon, question mark and exclamation mark.

The process of the inverted index starts by reading the document name from the table

Chapter 4: Design of IRUGA 85

file_info, opens that document, reads it word by word and ignores the stop words. In

addition, the scanning process will ignores the HTML tag words, formatting words, and the

words that are outside a tag since these words could be used for formatting the document or

may be hidden. The inverted index process classifies the words depending on the tag that

occurs within, and accordingly assigns a weight to each word as per Table 3-1 (page 67).

EII computes word_weight variable for each document which is considered one of the

computed global variables via this algorithm. Initially, at the time of reading the document,

the variable word_weight is set to zero. The word_weight is incremented by the HTML tag

weight fetched from the tag_weight table. Since the word can be nested in HTML tags (i.e.

within several tags at the same time so as to be in the header and written in bold and italic

font), then it will have the accumulation of these tag weights (e.g.: 5+3+3=11 for header,

bold and italic tags as per Table 3-1).

A new record R will be added to table word_doc if the intended word is new within the

document. EII adds other variables to R, i.e., R = [word, document, frequency, term weight]

where R.frequency is set to 1 and R.term_weight is equal to the value of the word_weight.

On the other hand, if the combination of the [word, document] already exists then its

frequency is incremented by one and the global variable word_weight is incremented by

tag_weight. If the closing HTML tag is found, then the global variable word_weight is

decremented by HTML tag weight fetched from the tag_weight table. In addition to the

word_weight, the positions within the sentence ps and within the document pd are included

in the word_doc table. Algorithm 3-2 shows the pseudo code for the parser engine.

Algorithm 3-2: The document set parser

While d D do

global_term_weight = 0;

While not EOF do

 ps = 0;

pd = 0;

 Get word (w1);

 If w1 is an open tag

 global_term_ weight:= global_term_ weight + tag_weight;

 Else if w1 is a closing tag

 global_term_ weight:= global_term_ weight - tag_weight.

 Else if w1 is not stopword

 {

 w1.weight = global_term_ weight;

Chapter 4: Design of IRUGA 86

 If w1  keyword table then insert it with frequency =1

 Else keyword.w1.frequency = keyword.w1.frequency +1;

 If this is first occurrence of the word in the document then

unique_terms = unique_terms +1;

Insert new record R in table word_doc with values [document name, w1, frequency

of 1, global_term_ Weight]

Insert new record in table word_position with values [w1, ps, pd].

 Else w1.frequency w1.frequency +1;

 word_doc.w1.term_wight =global_term_ weight + word_doc.w1. term_ weight

 file_info. file_size = file_info. file_size+ 1;

 }

End while.

End while.

By the end of the parsing process, the index details are included in three tables. The first one

is the word_doc table which stores frequency, total weight of the word within the document,

and the documents that reference each word. The second table is word_position which stores

the offset (position) within the document and the sentence number for each word. The last

one is the driver table file_info, which includes global details for each document. These

details are: document size, summation of words’ weight within the document, and the total

number of unique words.

Recall that in Algorithm 3-2, the index details are appended to three tables. The details of

these three tables are shown below:

1. Each record in the word_doc table (TW) is a 3-triple [F, W, P], where F is used to

store the frequency of the word within the document, W is the weight, and P is the

document name that references this word.

2. Each word of the document will have a set of records in the word_position table

(TP) where each record is also a 3-triple [T, ps, wd], where T is the word (Term),

while ps and wd are as described earlier.

3. Each record in the table file_info is a vector including global details for each

document in the form of [DS, WT, UT,] where DS is the document size, WT is the

summation of words weight within the document, and UT is the total number of

unique words.

Once the documents are parsed, the inverted index is created and the pre-processing step is

Chapter 4: Design of IRUGA 87

over; so that all documents are presented in a way that IRUGA can process these documents

in order to retrieve the related documents and evaluate them based on the user query.

Moreover, the data is available for document evaluation based on user query. Figure 3-6

shows the interaction between the EII engine, the input tables that supply the parser engine

with the required data and the output tables that store the output of the parser engine. The

Flowchart of creating the EII is demonstrated in Figure 3-7.

Once the index is created, the pre-processing step is over and the IRUGA is ready to start

receiving queries.

Figure 3-6: The parser engine showing the input tables and the output tables

FILE_INFO

Document name

Document reference

Document size

Fitness value

Total word weight

No. of unique word

No. of referenced keywords

WORD_DOC

Document reference

Word

Frequency

Word weight

Word Position

Word

Document reference

Sentence No.

Position

Special words

Stop word

Special characters

Sentence delimiter

Parser Engine Documents

Set

HTML tags

HTML tag

Tag weight

Chapter 4: Design of IRUGA 88

Figure 3-7: The flowchart of creating the inverted index.

Read word

Get HTML

tag weight

Initializations

Word weight = 0

Document size =0

Increment

word weight

Decrement

word weight

Increment

Document size

More documents

to process?

Stop

word?

Start

New word in

the document?

Insert new record

into word_doc

table with
frequency =1

Update record in

word_doc table with

new frequency

Increment word

frequency by 1

Insert into

word_position

table the word

details

End of

File?

No

No

No

No

Increment sentence

counter

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Update table file info

with related statistics

Open

HTML tag
word?

End

HTML Tag

word?

Sentence

delimiter?

Chapter 4: Design of IRUGA 89

3.4 GA Unit:

As mentioned in the introduction, the IRUGA consists of two main components: the

indexing unit and the GA unit. In this section, the new implementation of IRUGA’s GA

mechanism will be explained. The reason behind choosing GA to be the backbone of

IRUGA is that it has become a popular technique used in IR where many approaches are

developed based on GA. This is due to the following features of GA:

1. It is a stochastic algorithm where randomness is an essential role in genetic

algorithms as two main operators (selection and reproduction) need random

procedures (Sivanandam & Deepa, 2008).

2. It has the ability to produce several solutions simultaneously (Kim and Zhang,

2003; Sivanandam and Deepa, 2008). Normally, the solution is the last

generation and each individual of this generation represents a possible solution.

3. It provides acceptably good solutions for web searching problems within an

acceptably quick time (Beasley et al, 1993a, p2.) This represents the main

reason for using GA to solve the IR problem.

4. It can recombine different solutions to produce better ones via a crossover

operator (Sivanandam and Deepa, 2008).

5. It is the best method used to solve a problem for which little is known

(Vrajitoru, 1997; Sivanandam and Deepa, 2008).

6. It is a very general algorithm; therefore it works well in any search space

(Vrajitoru, 1997).

7. It starts searching from multiple points instead of a single point, which avoids

falling into local optima.

8. It works very well for a huge search space since processing is usually done on

selected genes and not on all genes forming the search space.

Generally speaking, GA consists of three well known operators, namely, selection,

crossover and mutation. And these are driven by the fitness function which favours specific

Chapter 4: Design of IRUGA 90

individual based on their fitness value. The first operator is the selection. This includes the

selection of individuals forming the first generation which GA starts with as well as parent

selection which is applied in later generations to prepare for crossover. The crossover is the

process of producing offspring from the parents, while mutation is the last operator of GA in

which one of the genes within the chromosome is replaced by other according to some

mechanism.

The flow of the GA process is illustrated in Figure 3-8, while the overview of GA process

showing the effect of fitness functions is presented in Figure 3-9. In Figure 3-8, ci1

represents chromosome one in generation i, g1 is gene one of the chromosome, m is the

length of the chromosome and n is the length of the generation, p1 and p2 are parent 1 and

parent 2 which feed the crossover operator, Oi is offspring i which is the result of the

crossover, whereas is the mutated offspring Oi. The behaviour of the GA mechanism is

explained in the following subsections.

ci1

ci2

ci3

ci4

.

.

.

.

cin

 g1 g2 g3 g4 ….. gm

ci+1,1

ci+1,2

c i+1,3

c i+1,4

.

.

.

.

c i+1,n

 g1 g2 g3 g4 ….. gm

 

    

     

        

       

      

     

  

 

Initial
generation

selection

 Crossover

Parent

selection

Generation 1

Mutation

p1

p2

Oi

O`i

Search space

Generation 2

Chapter 4: Design of IRUGA 91

Figure 3-8: The flow of the GA process

3.4.1 Initial Generation

The population of GA in IRUGA consists of a set of documents. The first generation which

is randomly created has a number of chromosomes. Each chromosome has a set of genes

which are integers representing the document references.

The first generation of IRUGA has a vital importance since the genes of this generation

form the base of the next generations, and most of its individuals have a high opportunity to

be passed to the next generations. Therefore, special care must be taken when creating this

generation. However, many authors (Pathak, Gordon and Fan, 2000; Aly, 2007; Yeh, Lin,

Figure 3-9: Overview of GA process showing the effect of fitness functions

Ke and Yang, 2007; Beasley et al, 1993a; Zhang, et al., 2005; Noreault et al, 1980; Horng

and Yeh, 2000; Martín-Bautista and Vila, 1998; Lopez-Pujalte, Guerrero-Bote, and de

GA operators

Generation n
Parent selection

Crossover

Mutation

Chromosome

Evaluation

Generation n+1

Ordering the

genes in the

chromosome

Fitness

function

Chapter 4: Design of IRUGA 92

Moya-Anegon, 2003a) ignore this importance by selecting the individuals randomly without

any favouring criteria. Although this method builds the population rapidly, the quality of

individuals is low, causing slowness in finding the optimal solution by forming additional

generations.

The proposed technique of creating initial generation of GA in IRUGA is the selective

random method. In this method, genes are selected randomly but must satisfy two

conditions in order to be added to the chromosome. The first condition is that the document

added to the chromosome must include at least one keyword from the user query, i.e.,

document D is composed of set of terms ti such that D= t1, t2,.. tn,, and a query Q = q1, q2,

…, qn, where qi is the query keyword within the user query. Then the document D is selected

such that D  Q  .

The second condition for adding a document to the chromosome is that this document must

not exist in the same chromosome, which means that genes within a chromosome are

unique, i.e., given the chromosome C =g1, g2, …gn, and gi is a gene within chromosome C,

then C  gx =  where gx is the newly added gene to the chromosome C.

Satisfying the first condition has advantages and one disadvantage. One of the advantages is

that the quality of documents selected is high in the sense that it contains all terms queried

by the user. In addition, including documents having this feature reduces the time for the

system to converge or to find the optimal solution. On the other hand, the disadvantage of

this selection criterion is that examining each document before adding it to the chromosome

will slow down the process of creating each chromosome, but the time is compensated for

by finding the optimal solution faster.

Adding documents having all query terms to the chromosomes seems at first glance to be

the optimal solution because only documents that contain all query terms are selected, but in

fact this is not enough to measure the relativity of the document. In fact, having all query

terms within the document doesn't guarantee that it is relevant. Suppose that the query is

“memory systems research”. Although a document may contain all the terms, each word is

surrounded by a different topic. Moreover, the GA will consider the term’s frequency, in

addition to the HTML tag that the terms fall in, beside other factors that will affect the

document weight. Hence, selecting the documents that include all query terms is not enough

Chapter 4: Design of IRUGA 93

to determine the relevance but will reduce the search space and enhance GA performance by

reducing the time for processing all search space and will produce a set of documents which

is more likely to be related to the user query.

3.4.2 Parent Selection

Next generations are created by applying crossover between selected parents from the

current generation. However, these parents must be selected in such a way that their good

features are passed to the next generations.

Two techniques are used for selection. The first technique applied here is elitism, where the

best individual is copied as it is passed to the next generation, guaranteeing that the best

building block from this generation is inherited, e.g., given a population Pi, where i is the

generation number, Pi = c1i, c2i,…, cni, where cji is chromosome j in population i, and f(cji) is

the fitness value of the chromosome j in generation i, then cxi  Pi+1, such that

f(cxi) = max(f(c1i), f(cni),,…, f(cni)).

The advantage of using elitism is that it can increase the performance of GA rapidly and

meanwhile prevents losing the best individuals.

Other individuals of the next generation are created differently. From the literature, it is

found that although Genitor selection and overlapping population selection show higher

growth ratio than other techniques (Goldberg and Deb, 1991, p.70) (as shown in Section

2.2.5), this is not enough to be applied to GA unit of IRUGA as they are not able to beat the

advantages of binary tournament selection. Hence, binary tournament selection is chosen in

IRUGA for many reasons. The first one is that a wide range of individuals is selected due to

its randomness. The second feature is that fit parents are selected because of tournament

between the randomly selected individuals. The third advantage for using this technique is

its low time complexity compared to the other types of selection (Goldberg and Deb, 1991,

p.75). Finally, this method allows weak individuals to participate in the solution as will be

illustrated later in this section.

In binary tournament selection, two individuals are selected randomly, and the one that has

higher fitness value is picked up as the parent one. The same process is repeated to select the

Chapter 4: Design of IRUGA 94

second parent.

However, a slight change is made while implementing tournament selection in IRUGA,

where two individuals are chosen at random from the population, and a random number r is

then generated between 0 and 1. If r < k, (where k is a parameter set to 0.75 to favour the

fitter individual), the fitter individual is selected (Al-Dallal and Abdulwahab, 2009). The

idea behind this technique is to allow weak individuals to participate in the solution since

they may include some good genes (documents) that have a degree of relevance and may

enhance the results at some stages; therefore, this technique will provide a chance for these

documents to be selected. Once the parents are selected, then they are passed to the next

operator to perform crossover in order to produce the offspring of the next generation.

3.4.3 Hybrid Crossover Operator

Crossover is one of the GA operators used to produce a new generation. It is the process of

producing offspring from two parents. Its purpose is to create new individuals having,

hopefully, better performance than their parents. The most common form of crossover

operator is applied with a predefined probability ranging from 0.75 to 1 to two selected

individuals of a population to generate new offspring of the next generation. Indeed, several

inherited features from the selected parents will be given to the resulting offspring

(Vrajitoru, 1998; 2000).

Several crossover techniques have been discussed in Section 2.2.6 and it is shown that many

of them have either one or more disadvantages.

In order to produce high quality offspring, some drawbacks have to be avoided in the

proposed crossover technique while others could be overlooked or reduced by combining

several techniques together. The main drawbacks that need to be avoided are generating

lower performance offspring, breaking building blocks, generating offspring out of search

space and low speed of convergence. These drawbacks are to be avoided in the proposed

crossover which is called hybrid crossover.

3.4.3.1 The Design of Hybrid Crossover

The proposed crossover operator chosen to be implemented in IRUGA is a combination of

Chapter 4: Design of IRUGA 95

reordering crossover (Vrajitoru, 2000), fusion crossover (Vrajitoru, 1998) and one-point

crossover (Marghny and Ali, 2005). When genes within a chromosome are ordered based on

their fitness value and the order is important, then the crossover applied to such

chromosomes is called a reordering crossover. In fact, the order of genes in the proposed

crossover to is important as it represents the ranked documents that will be displayed to the

user. If one offspring is to be produced from the crossover process rather than two then it is

called a fusion crossover. Combining these two techniques together and applying a one-

point crossover on them forms the new crossover suggested in the GA unit of IRUGA.

In the one-point crossover, GA selects one point randomly to perform exchange of genes. A

reordering crossover is applied to chromosomes having their genes ordered based on their

fitness value from higher to lower. Since genes are in order within the chromosome then a

2-point crossover could not produce better results as the high quality genes are on the edges

while exchange is done for the genes somewhere in the middle. Other techniques of

crossover are not applied to the GA unit of IRUGA due to their disadvantages mentioned in

Table 2-4.

The rationale behind using the ordered crossover technique over other techniques is the need

to inherit the good genes and pass the good building blocks to the resulting offspring.

In fusion crossover (Vrajitoru, 1998) only one offspring is generated from the two selected

parents. In this technique, the offspring inherits the genes from one of the parents with a

probability according to its performance. The advantage of this technique is that the good

genes of both parents are inherited simultaneously to the offspring, producing high quality

offspring.

Combining the three techniques of crossover into one process allows fast convergence with

high quality offspring. The ordered technique gathers the good genes into one side of the

chromosome. Then the one-point crossover copies these gathered genes from the heavy side

of both parents to one offspring only. This results in an offspring having the best genes of

the parents.

Chapter 4: Design of IRUGA 96

3.4.3.2 The Functionality of Hybrid Crossover

The hybrid crossover operates in the following manner. Suppose there are two parents x and

y of length L. These two individuals are selected randomly using binary tournament

selection from current population Pi to produce one offspring O of population Pi+1. Firstly,

the chromosome’s genes are ordered based on their fitness value from higher to lower from

the previous generation. Then a one-point crossover is applied by choosing crosspoint cp

randomly over the range [1.. L]. The selected crosspoint divides the chromosomes into two

parts. The first O's genes [O0, .., Ocp] are copied from the candidate parent that has the

greatest gene’s value at position L0, which is x in the above mentioned example. The

remaining genes of O are copied from the second parent starting from the leftmost position

until the offspring O is filled up or until it reaches the specified location cp. Through the

process of copying the remaining genes from the parents, the uniqueness of the copied gene

must be considered, i.e., each gene can occur only once in the new offspring O. This is

implemented by excluding the genes that already exist in O. When O is not filled up to the

specified length, the fitness values of other genes in both parents are compared starting from

cp + 1. The gene that has a higher fitness value contributes to O. This is done in order to

generate offspring with appropriate genes from each parent and to guarantee that the length

of O is maintained at L. Figure 3-9 gives an example of the proposed crossover in which

numbers in each chromosome represent the fitness value of the gene at that position. The

two candidates x and y that are shown in Figure 3-9-Step A are considered the contributors,

and are selected from the previous generation using binary tournament selection explained

in the previous section. The crosspoint cp is selected randomly to perform a one-point

crossover. In this example it is 3. Because the first gene of x has a greater fitness value than

the first gene of y, x's genes along with the fitness values are considered as the first three

genes of O. To complete the genes values of O, the other three genes are copied starting

from the leftmost position of y. Then a competition between the genes in both x and y is

done to complete the creation of O. Because the gene at position cp+1 in y has a greater

value than that of x, then y’s genes are copied into O (step C in Figure 3-9). Once all

positions in the offspring are populated with genes, these genes are ordered from higher to

lower based on their fitness value (step D in Figure 3-9). The algorithm of hybrid crossover

is illustrated in Algorithm 3-3.

Chapter 4: Design of IRUGA 97

Figure 3-10: Illustration of the hybrid crossover process

Algorithm 3-3: The hybrid crossover operator

Prerequisite: Both parents are of same length and the genes in each of them are sorted with respect to their

fitness value.

Select crosspoint cp randomly such that 0 < cp < parent length.

gmax= max gene(f(x1), f(y1)) --compare fitness value of first gene in both parents

parent 1= chromosome with gmax

Create offspring such that: O

= g1, g1 ≤ cp

= g2, g2 ≤ cp, g2 O and length(O) ≤ length(parent1)

If length (O) < length(parent1)

begin

 g`max= max gene(f(xcp +1), f(ycp +1))

 parent 1`= chromosome with g`max

 Copy genes from parent 1` to O such that genes are unique in O

end;

Order genes in O in descending order with respect to their fitness value.

3.4.4 Mutation

Mutation is the last genetic operator used in the GA unit of IRUGA. In mutation, one or

more genes are selected randomly to be replaced by other genes according to some criteria.

It causes the individual genetic representation to be changed according to some probability

pm ranging from 0.001 to 0.7. Because of its importance and effect on the generated

chromosome, it is applied in this system with probability of 0.7.

Mutation is generally considered to be a background operator since it ensures that the

probability of searching a particular subspace of the problem space is never zero (Minaei-

Bidgoli and Punch, 2003). Although it is applied with low probability, it is considered as a

very important operator (Beasley et al, 1993b). Applying mutation during GA achieves

} 25 19 16 15 13 8 5 4 3 2

 21 20 13 12 9 7 6 5 4 1

 1 2 3 4 5 6 7 8 9 10

 25 19 16 21 20 13 15 8 5 4

 25 21 20 19 16 15 13 8 5 4

x

y

O

O after

sorting

Step A

Step B

Step C

Step D

Cross point cp

Chapter 4: Design of IRUGA 98

many objectives. These objectives are: to restore lost data, to explore variety of data

(Radwan et al 2006), to improve diversity of the solution (Noreault et al, 1980) and finally

but not last to reduce the possibility of converging to a local optimum (Minaei-Bidgoli and

Punch, 2003; Noreault et al, 1980).

The mutation technique applied in the GA of IRUGA is the most common technique of

mutation (Radwan et al 2006; Aly, 2007; Alfonseca, 1991; Vrajitoru, 1998; 2000; Beasley et

al, 1993a; Martín-Bautista and Vila, 1998; Klabbankoh and Pinngern, 2008; Lopez-Pujalte,

Guerrero-Bote, and de Moya-Anegon, 2003a) and is implemented by randomly selecting

one gene and changing it with another value from search space such that the new gene has

better or the same fitness value and does not exist in this chromosome. This is to ensure that

at least the same performance as the replaced gene. This technique of mutation is more

suitable for the developed system when compared with other methods of mutation in

literature (listed in Table 2-4). Examples of inapplicable techniques of mutation are:

selecting 2 random genes and exchanging their locations (Asllaniand and Lari, 2007). This

method is useless since genes are reordered based on fitness value, and hence will return to

the same original position and this will not change anything in the chromosome. Arithmetic

mutation (Beasley et al, 1993b) and introducing Gaussian noise (Pathak, Gordon and Fan,

2000; Song and Park, 2009; Steinbach, Karypis, and Kumar, 2000) are discarded from this

work as they require extra calculation load and will slow down the process of generating the

chromosomes. In addition, they may produce genes that are out of search space. Similarly,

using inversion of a weight of mutated gene (Horng and Yeh, 2000) will reduce the system

performance due to huge amount of calculation and it requires previous knowledge about all

genes prior to implementing it.

An example of the mutation applied in this work is illustrated in Figure 3-10 where the

numbers in this figure represent the fitness value of genes at these positions. The

chromosome represented here is a continuation to the one shown in Figure 3-9. The position

of mutation is selected randomly (position 7 in this example – Step B). The gene at this

Chapter 4: Design of IRUGA 99

Figure 3-11: Illustration of the applied mutation in IRUGA

position is replaced by another gene selected randomly from the space such that it has a

better fitness value or the same as the replaced one. In this example, the new value is 23 and

it is better than the original one: 13 (Step C). This new value is unique within this

chromosome; therefore it is exchanged with the original one. Then genes of this

chromosome are re-ordered in descending order according to their fitness value to produce

the new chromosome (Step D).

3.4.5 Fitness Function

Fitness function is a performance measure or reward function that measures the relevance of

the documents to the user query. The decision about whether to accept or reject a document

for crossover or mutation depends only on the value computed by the fitness function. This

function is used in the GA process to evaluate the documents while selecting parents to

perform crossover and mutation. The evolution process results in pushing high quality

individuals to survive over lower ones.

From the literature review, it is deduced that the fitness functions can be categorized into

three types, namely, the terms weight-based fitness function, similarity-measuring fitness

function, and the custom fitness function.

Furthermore, the fitness functions consist of a set of factors. These factors can be classified

into statistical factors, formatting factors, and semantic factors. From another point of view,

these factors can be classified into local factors and global factors. Details of these

categories and types are explained below.

25 21 20 19 16 15 13 8 5 4

25 21 20 19 16 15 23 8 5 4

25 23 21 20 19 16 15 8 5 4

Mutation position

1 2 3 4 5 6 7 8 9 10

O before mutation

Select random

position for mutation

O after mutation

O after re-ordering

Step A

Step B

Step C

Step D

Chapter 4: Design of IRUGA 100

3.4.5.1 Fitness Function Categories

The fitness functions developed by researchers can be categorized into three categories:

The first category uses the term weight as an evaluation function to the document. In this

category the document is evaluated by taking the summation of the query term weight (Kim

and Zhang, 2003; Billhardt et al, 2002; Cummins and O’Riordan, 2006; Vrajitoru, 2000;

Radwan et al 2006; Aly, 2007)

The second category is the similarity function which measures the distance between the

document and the query vector. However, this method is most suitable for documents

indexed using the vector space model, and doesn't fit into the proposed model because it

uses the enhanced inverted index model (Klabbankoh and Pinngern, 2008).

The third category is the custom fitness function in which the fitness functions are

developed using set of factors that best suit each model (Marghny and Ali, 2005; Picarougne

et al, 2002a; Fan et al, 2004).

3.4.5.2 Types of Factors Used in Fitness Functions

Normally, the fitness function consists of a set of factors. These factors can be divided into

three types: statistical, formatting, and semantic factors.

Statistical factors are those obtained from the document set by counting certain elements,

such as frequency of query terms within a document or within the document set, frequency

of unique terms within a document or within the document set, total number of documents

in the set, or frequency of the total number of terms in a document or in the set.

If the fitness function is built using statistical factors only, then the documents become

relevant with respect to other documents in the set. Therefore, these functions are applicable

only to the document set under consideration and cannot be generalized. Moreover, the best

retrieved and ranked documents need not be purely relevant because they have the best

score among others in the set, and at the same time could be of low relevance.

Formatting factors are the second type of factors which include bold, italic, underlined,

and text emphasized by using different font and size. However, identifying such format

requires special tags to handle them and a special indexing model that is able to detect such

Chapter 4: Design of IRUGA 101

format and treat terms accordingly.

Semantic factors are the third type of factors. These factors can be obtained using semi-

structures, e.g.: HTML and structured documents, XML and Resources Description

Framework (RDF) (Karthik et al,2008). In such documents, special tags are used to

fragment the document into different meaning units such as title, header, anchor (link to

other document), table, and normal text. Since most researches mentioned in the literature

review chapter use non-structured documents, these types of factors are not included in their

fitness function. By assigning different weights and counting the frequency of such terms,

these factors become a combination of statistical and semantic factors.

From another perspective, the factors used to evaluate the documents can be classified into

two categories: local factors and global factors. These categories are explained in the

following sub-section.

3.4.5.3 Local Factors Verses Global Factors

The fitness function can have both local and global factors or be restricted to one of them

only. Local factors are those obtained from the document under consideration such as

document size, number of unique terms within the document and frequency of a specific

term within the document. On the other hand, global factors are those obtained from the

document set such as total number of documents in the set, total indexed terms, total number

of a specific term within the document set and total number of documents indexing a term

(Minaei-Bidgoli and Punch, 2003).

Local factors are preferred for many reasons. The first one is that the document is evaluated

independently of other documents in the set. The second one is that obtaining the factors

requires less time since these are obtained for the document in consideration only, while

obtaining global factors requires processing all documents in the set which adds extra time

and processing load on the system. The third is that by setting a threshold for the fitness

value, the relativity of a document to the query is measured more accurately by stating how

relevance the document is to the query.

However, the time consumed and additional processing load of obtaining some global

factors can be reduced if they are evaluated while constructing the index and stored before

Chapter 4: Design of IRUGA 102

accepting the user query so that it can be referenced whenever needed without affecting

response time to user query.

In addition to the extra time and processing load required to obtain the global factors, the

retrieved documents are only relatively relevant in comparison to other documents in the set

and may not be purely relevant. Hence, fitness functions using only global factors cannot be

generalized.

Based on the above categorization of the fitness functions and the types of factors, two

fitness functions which fall under the custom category according to the first classification

are developed. The term’s weight is considered as a component of the fitness functions, and

similarity functions are avoided in this work as our model does not use the vector space

model in indexing the terms. The first fitness function uses a combination of local and

global factors and the second one uses only local factors. However, the first one uses only

statistical and formatting factors, while the second uses statistical, formatting, and semantic

factors.

3.4.5.4 Multi Terminal Fitness Function

The first fitness function developed and to be tested in IRUGA is called the multi-

terminal fitness function. This function consists of many factors: some are local and others

global. The user query is considered as a global terminal (Cummins and O’Riordan, 2006).

Also it consists of statistical and formatting factors.

Starting from the common TF-IDF formula where the term weight is evaluated as:

To include the percentage of the term frequency within the document, first components will

be divided by document length Fi. to be which forms the first component of the proposed

formula. In addition, there is a need to include the distribution of the query keywords among

Chapter 4: Design of IRUGA 103

the search space, so the component is included, which evaluates the log of total

number of terms in the collection by the total number of the term under consideration. To

include the HTML tag weight , it is multiplied by the above components.

This fitness function that evaluates the document consists of three components. The first one

is the ratio of existence of a keyword in the document to the total unique query keywords, or

in other words, how many keywords of the user query exist in the document. The second

component is the ratio of query keywords that exist in the document to the unique number of

terms in the document. The third component is the summation of the weight of the query

keywords that exist in this document. Thus, the fitness function is presented in formulas 3.1

and 3.2 whereas the explanation of its terms is presented in Table 3-2:

 f(dj) = (3.1)

 (3.2)

Bearing in mind that the fitness value for each chromosome ci in the population is the

summation of the fitness value for each document in the chromosome and is calculated

using the following fitness function:

 (3.3)

where length represents the maximum length of chromosome .

The description of each factor of the fitness function is presented in the following, starting

by the term weight function which describes the formula in (3.2).

The first component of the term’s weight is: . This factor is the division of the frequency

of the term i in document j by the size of document j. So it represents the probability of the

term i in document j. By using this factor, the fitness value is not biased by document size

Chapter 4: Design of IRUGA 104

and is not dependent on it. If this factor is not used, then considering the term’s frequency

Table 3-2: Terms of formulas 3.1 and 3.2 showing their description, domain and type.

Terminal Description
Domain

Type

i Term i in the document. Local -

j Document j in space. Local -

Weight of term i in document j Local Format –

Statistical

 Frequency of term i in user query

Q.

Global Statistical

 Total number of terms in Q. Global Statistical

 Frequency of term i in

document-j.

Local Statistical

Size of document j (total number

of words in document-j)

Local Statistical

Number of unique terms in

document j

Local Statistical

Total number of documents in

space.

Global Statistical

 Total number of documents

having term i.

Global Statistical

 Total number of all terms in

space.

Global Statistical

 Total number of term i in space. Global Statistical

regardless of document size could be biased by the high frequency in big documents so that

more occurrences of the term in such documents will give the impression that this document

is more relevant to user query while this high frequency could represent a small fraction of

that document and doesn’t represent the actual relation to this keyword. Therefore

considering the probability of the term within the document is important, because it reflects

the level of relevance of the document to the keyword.

The second component in term’s weight is the HTML tag weight wi. It is a weight given to a

term depending on the HTML tag that this term falls in. Details of the HTML tag weights

are described in Section 3.2.2. The weights associated to each HTML tag are listed in Table

3-1.

The third component in the term’s weight formula is This component represents

the IDF component of the common Salton and Buckley weighting scheme (Salton and

Buckley, 1988). It is the logarithm of the total number of documents in the space divided by

the total number of documents indexed by term i (Radwan et al 2006; Noreault et al, 1980;

Chapter 4: Design of IRUGA 105

Cummins and O'Riordan, 2006).

The fourth component of the term weight formula is It is the logarithm of the total

number of terms in the space divided by the total occurrences of term i in the search space

(Noreault et al, 1980).

The above four components are used to obtain the term’s weight. In order to obtain the

document’s weight, these components are multiplied by two more components. The first one

is . This component is used to obtain the ratio of the query keywords exist in the document

corresponding to the total query keywords. Thus, this component will be one for the

documents that have all user query terms, and less than one otherwise.

The second component used to obtain the document’s fitness value is . This component is

used to obtain the probability of the term among all unique terms in the document under

consideration. So this component depends on the unique terms within the document.

Thus, this function returns high fitness value if the document is relatively small and has a

small number of unique terms.

3.4.5.5 Term Proximity Fitness Function

The second fitness function to be tested in this work is called: Term Proximity Fitness

Function (TPFF). This function shows much better performance than the multi-term fitness

function explained in the previous section and will be used though out this thesis. That is

because it has many advantages. These features are:

1. It utilizes the term distance.

2. It includes only local factors.

3. It uses all the three types of factors: statistical, formatting and semantic.

4. It has a maximum upper limit; hence a threshold can easily be set to determine

the relevant documents.

Chapter 4: Design of IRUGA 106

The TPFF function is defined in formula 3.4 shown below and its terms are explained in

Table 3-3:

 (3.4)

Table 3-3: Terms of formulas 3.4 showing their description, domain and type

Terminology Description Domain Type

kui Represents the existence of kui

within the documents

Local Statistical

K The query length, i.e. the total

number of terms in the query

Local Format – Statistical

 Distance between term i and

term i+1of the query terms

Local Semantic

 The offset (position) of term i

within the document

Local Constant

F Document size (total number of

terms in the document)

Local Statistical

wi Weight of term i in the

document as per Table 3-1

Local Format – Statistical

- Semantic

a, b, c and d Weighting factors for each

component

Local Constant

This function is a summation of four components: the first one is the ratio of the existence

of the query’s keywords within the document, where kui represents the unique existence of

keyword i within the document D. In other words, this component reflects how many of the

query keywords exist in the document divided by the query size. This factor has a maximum

value of one. Further explanation for computing this factor; assume “web data mining” is

the requested query that is entered by the user. If D has just two keywords such as “web”

and “mining” and K=3 (i.e. query size), then this factor will be equal 2/3. This factor equals

3/3 when D has all the assumed keywords (i.e. “web”, “data” and “mining”).

The Minimum Term Distance (MTD) between query keywords within document D is used

to compute the second component of the evaluation function. However, this component is

evaluated by subtracting one from the total number of existence of query’s keywords within

the document D. Consequently, the resulting value will be divided by the

 Undoubtedly, the summation of the

minimum (shortest) distance between query keywords in the document D. The reason for

subtracting one here is that the distance between K keywords is K-1. Recall to the above

Chapter 4: Design of IRUGA 107

example for the suggested query (i.e., q={“web”, “data”, “mining”}), MTD equals 2.

Indeed, this component will return 1 if all query keywords exist in the document and they

appeared adjacent.

The third component depends on the position of MTD within the document. It represents the

reciprocal of the average of the minimum distance between query terms

.

The highest value of this component is given when the keywords appear right at the

beginning of the document, such as in the title, header or in the first sentence of the

document. However, the maximum value of this component is one only if the query consists

of one word and this word is the first word in the document. Otherwise, the value is always

less than one as it considers the average offset of the first appearance of MTD keyword. The

value of this component decreases as the keyword appear far from beginning of the

document. The second and third components are further clarified by the following example:

Example 1: to understand the way of calculating component 1, 2 and 3, assume a document

d of length 12 that has the following string of words:

ABCDEFGHCIJD

and assume the query is CDF, while the offset (position) of these words within the

document are 3, 4, 6, 9 and 12. The first component of the Formula 3.4 is

, where the 3 in the numerator represents the number for unique query keywords

that exist in the document d, and here all the three keywords are exist in the document d,

while the 3 in the denominator represents the query size. The MTD of the second

component is calculated by MTD = min(C, D) + min (D, F) = 1+2 = 3.

The factor kui of this example is equal to 3, where all query keywords appear in the

document. Then, the results of the second component will be summarized as follows

Chapter 4: Design of IRUGA 108

  Final result of the second component

In order to calculate the third component, which is the average position of minimum

distance between query terms, it needs to get the position of the terms used in obtaining the

above MTD. In this example they appear in the 3
rd

, 4
th

 and 6
th

 position. Therefore:

  Final result of the third component.

The last component considers the HTML weight of the keywords. It is evaluated by finding

the log of the average term’s weight of the query keywords in the document. This part

reflects the importance of the query keywords within the document. If the keyword is very

important, such that it appears in either title, subtitle, or header tag, or it appears in a text

that is emphasized using bold or italic tag, or it is within an anchor text (text that refers to

other web document) then this component will have a high value according to the tag

weights specified in table 3-1. Indeed, the maximum value of this part is 1 if the total weight

of the keywords is 10 times greater than the frequency of these keywords. In order to

normalize this component to cope with the other components of this function where each

one has a maximum value of one, the log function is applied to the average keyword weight

in order to reduce this value of this component to be smaller than one. This will control the

upper limit of it.

The four components of this function are not of equal weight, since each one reflects a

degree of relativity to the user query. Therefore, a high importance is given to the

components that reflect high relativity of the document to the query and able to distinguish

one document from the other. To achieve this, each component of this function is

multiplied by a weighting coefficient according to its importance, such that the summation

of these weighting coefficients is one. In this function, the first component is given a high

importance in reflecting the relativity of the document, where the document is supposed to

be more relevant if it refers to the all query keywords; therefore, a weight of 0.3 is given to

coefficient a. Moreover, if these keywords are adjacent within the document, this yields

Chapter 4: Design of IRUGA 109

high degree of relativity; hence, a weight of 0.3 is given to coefficient b as well. The third

component is given a high importance because it favours one document over the other when

the first two components are achieving the same score. This factor gives high importance to

the document that refers to the query keywords that appear right at the beginning of the

document, such as the title or first paragraph. Therefore, this component is given high

weight as well. Thus, a weight of 0.3 is assigned to coefficient c. On the other hand, the

fourth component can produce same results for multiple documents depending on the

frequency of the query keywords and the HTML tag that these words appear in which may

not distinguish a document accurately. Even though, this component is included in the

function in order to benefit from the HTML tag weight and the frequency of the keywords.

Therefore, this component is given a lower weight and d is set to 0.1.

3.5 Success Criteria of Relevant Document

In similar researches, the proposed techniques are tested against readymade data sets where

the queries and relevant documents are predefined. Examples of such sets are: CRAN

(Billhardt et al, 2002; Salton and Buckley, 1990), CISI (Radwan et al 2006; Vrajitoru, 1997;

Billhardt et al, 2002; Cummins and O’Riordan, 2006; Aly, 2007; Salton and Buckley, 1990),

CACM (Radwan et al 2006; Billhardt et al, 2002; Aly, 2007; Vrajitoru, 1997; Salton and

Buckley, 1990), OHSU90-91 (Cummins and O’Riordan, 2006), and TREC (Kim and Zhang,

2000; 2003; Yeh et al, 2007; Kim and Croft, 2008, Xu et al, 2008, Uematsu et al, 2008).

Hence, these researches relay on the relevance of document as stated by the provided

document set and doesn’t mention a success criterion. However, in this work the data set

applied is not provided with queries and their relevant documents. Therefore, a set of

queries and their corresponding relevant documents are created manually for this thesis.

While creating this set, a document is judges as relevant when satisfying two conditions,

which are:

1. The document must contain all the query words. Given a document D, and a query

Q={q1, q2, ..., qn}, then, .

2. The query words must appear at least once in adjacent place with the document. Given

a query Q of length k, then MTD for Q =k-1.

Chapter 4: Design of IRUGA 110

According to the analysis of retrieved documents based on the Term Proximity Function, it

is found that the document is relevant and can be included in the solution if it has a

minimum fitness value of 0.6. This is explained as follows. If the document contains all

query keywords, then the first component of TPFF will equal one. Similarly, when the MTD

=k-1, then the value of the second component will equal one as well. Since each one of these

components has a weight of 0.3 and these two components are summed in the formula, this

leads to minimum fitness value of 0.6. Therefore, the threshold fitness value for accepting a

document as a relevant to the query is 0.6.

As an application of the TPFF on the data set, consider the query: “Digital systems design”.

This query has 44 relevant documents as per the success criteria defined aforementioned

while 170 documents in the collection reference all keywords. Figure 3-12 shows the

document that is retrieved in the first position as the most relevant document. As this

document referenced the three keywords, the first component of TPFF will be:

The second component utilizes the MTD of the keywords. MTD for these keywords in this

document is 2 as these keywords appear adjacent at least once, hence

By looking at the position where first occurrence for the MTD appear, it is shown that it

appears in the header1 <h1> that is few lines after the beginning of the document. By

excluding the words out of the HTML tag (as per the indexing algorithm 3-2) and the

HTML tags, it is found that these keywords appear at locations 4, 5 and 6. Hence the this

component of TPFF will be

The last component of TPFF considers the HTML tag weight. By refereeing to table 3-1, the

weight of the keywords is the summation of weight of each keyword and will be:

Chapter 4: Design of IRUGA 111

Weight of “digital”= w(h1) = 5,

Weight of “systems”= w(h1) = 5,

Weight of “design”= w(h1) = 5, hence

Multiplying each component by the weighting factors and adding them up yields:

0.3(1) + 0.3(1) + 0.3(0.2) + 0.1(0.699) = 0.7299

Another example can be considered here to show the output of the TPFF when the

document is less relevant. The document shown in Figure 3-13 will be considered. This

document references the three keywords; however, these keywords are not adjacent.

By following same analysis for each keyword within this document, it is found that first

component has value of 0.3 (when multiplied by the weighting factor), second component

also have value of 0.3, sine the three keywords are adjacent; however, the first occurrence of

the MTD is at offset 32, 33 and 34, giving average of 33, so third component will be the

reciprocal of 33= 0.0303, when multiplied by the weighting factor it becomes 0.0909.

Finally is the HTML weight component. The total HTML weight of these keywords is 32,

yields . Multiplying this value by the weighting factor it becomes 0.0426.

so the fitness value of this document is

0.3 + 0.3 + 0.0909 + 0.0426 = 0.6517.

Chapter 4: Design of IRUGA 112

Figure 3-12: first document retrieved by query: Digital systems design

Although the frequency of the keywords in this document (12 occurrences) is greater than

the previous document (3 occurrences), it has lower fitness value than the one in previous

example because the first occurrence of MTD is at position 33 compared to 5 in previous

example. Also the keywords are appearing in lower HTML tags which are “a” and “body”

that have weights of 4 and 1 respectively, compared to “h2” which has weight of 5.

Chapter 4: Design of IRUGA 113

Figure 3-13: example of low relevant document for the query: Digital system design"

Chapter 4: Design of IRUGA 114

3.6 Environmental Settings

The design of the two units of IRUGA (Information Retrieval Using Genetic Algorithm)

model is explained in the previous sections. When examining IRUGA, several aspects need

to be addressed. First of all, the environment configuration of the machine used to run

IRUGA as well as the programming tool used in implementing this model is described.

This chapter is organized as follows: the environment configuration and programming

language are described in Section 4.2. Section 4.3 examines experimentally the parameters

of the GA unit of IRUGA. Section 4.4 explains the method to be followed in comparing the

proposed techniques with the existing techniques on implementing each operator of the GA

unit of IRUGA. Finally, this chapter is summarized in Section 4.5.

3.6.1 Hardware Configuration

IRUGA is implemented using IBM laptop powered by Intel Core 2 Due CPU @ 2.35GHz

having 3GB RAM. The database is stored on a SUNW SPARC-Enterprise machine.

3.6.2 Software Configuration

The software configuration concentrates mainly on the programming languages used to

implement IRUGA.

mailto:CPU@2.35GHz

Chapter 4: Design of IRUGA 115

In fact, there was a discussion about the programming language suitable for implementing

IRUGA. After encountering several limitations in C++, Oracle database 10g was chosen to

implement IRUGA using PL/SQL programming language. It was adopted for this approach

due to the following features:

1. The integration of PL/SQL with SQL engine is much faster than that on C++

(Application development: PL/SQL, Java or C++?, 2002).

2. The ability to manage thousands of documents without having to worry about space

because of the function of internal tables and indexes. This is one of the limitations

faced due to the data structure adopted in implementing this model, which obliged us

to think of a better alternative

3. Data access is very fast and not sequential as in C++, since the data structure used in

C++ is the link list and requires sequential processing of all nodes in this list until

reaching the desired node.

4. The built-in functions save many lines of codes, such as order function and

comparison function.

3.7 Parameter Settings of the GA unit of IRUGA

Next, is to perform a set of experiments to evaluate the performance of IRUGA. These

experiments are of two types. The first type is a set of experiments conducted to find the

best setup for IRUGAs’ parameters. These parameters include population size (ps),

chromosome length (cl), crossover probability (cp), mutation probability (mp), and the

termination criteria. The second type of experiments is those applied on the GA unit of

IRUGA to test its actual performance where the output is evaluated using the recall and

precision measures. The experimental work for choosing IRUGA’s parameters is presented

in this section while the experiments used to evaluate IRUGA are explained in the following

section, while the experimental results are analyzed in the next chapter. The evaluation of

the experimental work is conducted in terms of the following criteria:

1. To see how IRUGA scales-up with population size ().

Chapter 4: Design of IRUGA 116

2. To find the best setup for IRUGAs’ parameters, i.e. , chromosome length (cl),

crossover probability (cp), mutation probability (mp), and the termination

criteria.

3. To see how the performance of IRUGA is influenced by these parameters.

In order to have an efficient setup for the GA unit’s parameters, a success rate is computed

in this experiment. The success rate is evaluated by testing the GA unit with 10 independent

runs for 4 queries of different lengths, i.e. 2≤ l≤5, where l is the query length. These runs are

applied on different values of and cl. The quality criteria for a sufficient solution are

obtained by ignoring the solutions that are far from the optimal. The accepted solutions are

those which have fitness values varying between 0.9 and 1.

3.7.1 Choosing the Appropriate Population Size

Since GA is a probabilistic algorithm, there is no sharp edge for specifying the population

size of GA. Moreover, the population size may be influenced by the size of possible solution

for a given problem. Hence an empirical study is conducted in order to specify the suitable

population size of the GA unit in IRUGA. This is done by examining the GA unit with

variant values of population sizes (ps), i.e.: ps {75, 100, 125, 150}. The evaluation is

achieved by calculating the probability of success per generation for each population size.

Figures 3-11 to 3-14 present the performance curves for different values of , i.e.

. Each curve is based on 10 independent runs. The curves of

these figures show the probability of success of solving the problem by generation . In this

experiment, in order to find the precise value of ps, 10 queries of different length 2≤ql≤ 5

are examined. Summary of these results are presented in table 3-4.

3.7.2 Chromosome Length

Each chromosome represents a possible solution which is a set of possible documents

relevant to the user query. Each chromosome consists of a set of genes that form a possible

Chapter 4: Design of IRUGA 117

solution to the user query. Therefore, its length must be selected such that it is able to

Figure 3-14: Probability of success for population size = 50 and chromosome length = 50.

Figure 3-15: Probability of success for population size = 75 and chromosome length = 50.

Chapter 4: Design of IRUGA 118

Figure 3-16: Probability of success for population size = 100 and chromosome length = 50.

Figure 3-17: Probability of success for population size = 125 and chromosome length = 50.

Table 3-4: Probability of success for different values of the population size

Generation

Number
ps=50 ps=75 ps=100 ps=125

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0.03 0.03

10 0.1 0.1 0.10 0.10

12 0.2 0.2 0.20 0.40

14 0.2 0.35 0.23 0.73

16 0.2 0.35 0.30 0.93

18 0.2 0.35 0.50 0.97

20 0.2 0.35 0.57 0.97

22 0.2 0.35 0.63 1

24 0.2 0.35 0.63 1

26 0.2 0.35 0.63 1

28 0.2 0.35 0.63 1

30 0.2 0.35 0.63 1

include all possible solutions to the user query. In another words, it must be lengthy enough

to include all documents relevant to the query entered. The relevant number of documents

per queries passed to the GA unit varies between 2 and 105, as shown in Figure 3-15.

Bearing in mind that the criterion of selecting the document is that it must have at least one

keyword. Hence the number of documents that satisfy this condition is much higher than the

number of relevant documents. Therefore, there is a need to examine the probability of

success for the chromosome length in order to select the chromosome length suitable for the

GA unit of IRUGA.

Chapter 4: Design of IRUGA 119

In order to determine the best chromosome length, an experiment similar to the one

conducted in the previous section is performed here. The probability of success is applied

here by fixing the population size at 125 which is the optimal one obtained earlier, and

performing several experiments on 4 queries for chromosome lengths cl {50, 75, 100,

125}. The results obtained are illustrated in Figures 3-16 to 3-19 and Table 3-5.

Figure 3-18: Number of relevant documents per each query number.

Figure 3-19: Probability of success for population size =125 and chromosome length cl = 50

Chapter 4: Design of IRUGA 120

Figure 3-20: Probability of success for population size =125 and chromosome length cl = 75

Figure 3-21: Probability of success for population size =125 and chromosome length cl = 100

Figure 3-22: Probability of success for population size =125 and chromosome length cl = 125

Chapter 4: Design of IRUGA 121

These figures show that at generation 10, the probability of success in the GA unit of

IRUGA system is equal to 10%, 10%, 40% and 60% when cl = 50, 75, 100, 125

respectively, while this probability of successes for finding the optimal solution increases to

20%, 35%, 90% and 100% at generation 21. The results obtained illustrate that when cl

value is equal to 125, the GA unit of IRUGA system is able to produce the optimal test

results. Hence, the adopted chromosome length for the GA unit of IRUGA is 125.

Table 3-5: The probability of success of IRUGA for population size = 125 and different chromosome length.

Generation

number

chromosome

length =50

chromosome

length =75

chromosome

length =100

chromosome

length =125

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0.2 0.35

10 0.1 0.1 0.4 0.6

12 0.15 0.2 0.5 0.75

14 0.15 0.3 0.5 0.95

16 0.15 0.3 0.6 0.95

18 0.2 0.3 0.7 0.95

20 0.2 0.3 0.8 1

22 0.2 0.3 0.9 1

24 0.2 0.35 0.9 1

26 0.2 0.35 0.9 1

28 0.2 0.35 0.9 1

3.7.3 Crossover Rate

Crossover rate represents the probability of applying the crossover during the creation of the

next generation. In (Minaei-Bidgoli and Punch, 2003; Picarougne, Monmarche, Oliver, and

Venturini, 2002b; Radwan et al 2006; Aly, 2007; Cutler et al, 1999; Martín-Bautista and

Vila, 1998; Radwan et al,2006) this rate is between 0.6 and 1.The idea behind making

crossover rate less than one is to allow some random parents to be copied to the next

generation without change. However, if this process is modified such that only the best

individual is copied unchanged to the next generation, which is called elitism, then there is

no need to reduce the rate of crossover. Consequently, the crossover rate in the GA unit of

IRUGA is set to one. This means that the crossover is performed each time the offspring is

generated and the elitism will improve the GA unit performance where the best individuals

Chapter 4: Design of IRUGA 122

are always maintained and driven to the next generation.

3.7.4 Mutation Rate

The mutation rate represents the probability of applying the mutation during the creation of

the next generation. The mutation rates used in similar studies range between 0.001

(Beasley et al, 1993a) to 0.7 (Radwan et al 2006). However, the mutation is more useful

when search space is large (Milutinovic, Cvetkovic and Mirkovic, 2000). Hence, the

mutation rate applied in the GA unit of IRUGA is 0.7. The reason behind using this high

rate is to increase the chance of modifying the offspring by injecting it with better genes. In

addition, it increases the speed of convergence since many species in the search space are

parsed. Moreover, high mutation rate has an effect on avoiding convergence into local

optima (Minaei-Bidgoli and Punch, 2003).

To justify this conclusion, an experiment will be conducted in Chapter 5 using four mutation

rates in order to compare their performance in terms of precision and recall.

3.7.5 Maximum Number of Generations

For each run, the maximum number of generations reached is 35. The experimental results

in Section 4.3 show that 35 generations of evolution is enough because all the fitness values

converge before the fiftieth generation. Figure 4-9 shows that the system reaches the

probability of success of 1 at generation number 22. This result represents the average of 10

runs. To be on the safe side and not to force the GA to divert to unexpected results, the

maximum number of generations max_g can be set to a somehow higher value. Hence it is

set to 50.

3.7.6 Termination Criteria

GA is an iterative process where each iteration is called a generation. The iterative process

of the GA unit of IRUGA will be stopped by one of the following two termination criteria:

the first criterion is that there is no improvement on the current generation performance

compared with the previous generation. The generation performance is measured as the

summation of fitness values of all individuals within the generation. However, the GA unit

of IRUGA stops if the difference between two consecutive generations is less than the

Chapter 4: Design of IRUGA 123

predefined threshold, i.e., E(Gi) - E(Gi-1) < threshold. To have a better solution, this

threshold is set to a very small value compared to the possible chromosome fitness value. In

fact, the fitness value of the population in the GA unit depends on two factors, namely, the

chromosome length cl and the population size ps.

According to the description of the fitness functions described in Chapter 3, the maximum

fitness value for the document is almost one. Hence, the maximum fitness value of the

generation is cl × ps × 1. In the GA unit of IRUGA, the threshold value is set to be very

small compared to this value; therefore it is set to one, which is much smaller than cl × ps.

That means, if the difference in the fitness value between the current generations and the

previous generations is less than one, the system halts.

The second termination criterion is when the predefined maximum number of generations is

reached.In both cases, the solution is an individual of the last generation that has the highest

fitness value.

3.7.7 Summary of setting up the parameters of GA unit

The parameters of the GA unit of IRUGA are summarized in Table 3-6. In this table it is

shown that the population size of each generation is set to 125. The chromosome length is

also set to 125, while the crossover rate is set to 1 which means that the crossover is

performed for each process of creating the offspring. Moreover, the elitism is done for the

best chromosome only to be passed to the next generation without passing through the

crossover process. However the mutation rate is set to 0.7. Finally, the maximum number of

generations is set to 50. These values are set based on the experiments conducted earlier in

this section.

Table 3-6: Parameter setting of IRUGA

Parameter Description Value

Population size Fixed at 125

Maximum number of generations 50

Chromosome length 125

Crossover rate 1

The number of best individuals copied to the next generation

(Elitism)
1

Mutation rate 0.7

Chapter 4: Design of IRUGA 124

3.8 The Description of IRUGA Comparisons

To prove the effectiveness of the proposed GA techniques adopted for IRUGA, a set of

comparisons is conducted. This section is going to explain the comparison methods which

will highlight the effect of the proposed technique for each operator.

When examining the effect of a particular technique, the GA parameters and other operators

are kept unchanged.

Each comparison method is performed by fixing all operators and parameters except the one

under consideration, and studying the performance of the variations applied to it.

3.8.1 Comparison Methods of the Enhanced Inverted Index

As mentioned in Section 3.3, EII is implemented using the Oracle database, which has the

ability to index a large number of documents and allow their fast retrieval. Hence, the

storage space required to store the index of 8344 documents using EII will be compared

with the expected storage space occupied by the vector space, bearing in mind that IRUGA

requires additional data to be stored for each term beside the indexed terms and the list of

documents referencing it.

In addition, the time required to retrieve the document will be monitored. This time will be

calculated from the moment the user enters the query until the document list is retrieved and

displayed to the user.

3.8.2 Comparison Methods of Evaluating the GA unit of IRUGA

The GA unit of IRUGA is composed of a set of operators and controlled by a set of

parameters.

The GA unit of IRUGA is evaluated in terms of recall and precision through a set of

comparison methods. These comparison methods are described in the following subsections.

3.8.2.1 Comparison Methods of the Initial Generation Creation

The first generation of the GA unit is created using the random selection technique with

selective criteria as explained in Section 3.4.1.

Chapter 4: Design of IRUGA 125

There are two steps that must be considered here. The first one is to check IRUGA’s

performance in terms of recall and precision. The second one is to compare the speed of

convergence between the two IRUGA models, namely, the selective random selection and

the pure random selection.

3.8.2.2 Comparison Methods of the Selection Operator

The selection method used in the GA unit of IRUGA is the modified binary tournament

selection. It is implemented such that two individuals are chosen at random from the

population; random number r is then generated between 0 and 1. If r < k, (where k is a

parameter set to 0.75 to favour the fitter individual), then the fitter individual is selected

(Chen and Dhar, 1991), otherwise the weaker one is selected. This technique is denoted as

parent selection -75. The idea behind this technique is to allow weak individuals to

participate in the solution since they may contain good genes (documents) that have a

particular degree of relevance and can increase the performance at some stages. Therefore,

this technique gives a chance for these documents to be selected. The common technique

applied in the tournament selection is the one that favours the fitter one with probability

equal to one, and denoted as parent selection -100.

In this experiment, the comparison will be applied between parent selection -100 and parent

selection -75 in terms of speed of convergence, recall and precision.

3.8.2.3 Comparison Methods of the Crossover Operator

Crossover is one of the main GA operators which are used to produce a new generation. It is

the process of producing offspring from two parents. The proposed crossover operator is the

hybrid crossover technique as explained in Section 3.5.2.

The comparison methods that will be used in the GA unit of IRUGA carried out in this

regard have three disciplines. The first one shows that the hybrid crossover technique

performs better than the two-point crossover in terms of recall and precision. The second

experiment is to show that the hybrid crossover technique performs better in terms of recall

and precision than the normal crossover which produces two offspring. The last experiment

is to demonstrate that the hybrid crossover technique performs better than the classical one-

point crossover which is applied to a non-ordered crossover.

Chapter 4: Design of IRUGA 126

3.8.2.4 Comparison Methods of the Fitness Functions

In the GA unit of IRUGA, two fitness functions are developed. One uses both local and

global factors and called the multi-terminal fitness function. The second fitness function

uses only local factors and called the term proximity fitness function. Details of these fitness

functions are explained in Section 3.4.4.

This experiment examines the performance of the TPFF fitness functions in comparison

with two other well-known fitness functions in this domain, which are the Okapi-BM25

(Noreault, McGill, & Koll, 1980) and the Bayesian inference network model)Kim and

Zhang, 2003) fitness functions. According to Zhang (2009), the state-of-the-art retrieval

function used in information retrieval is the Okapi-BM25. Moreover, this function

consistently performs very well in TREC competitions (Fan et al, 2004; Manning, Raghavan

and Schütze, 2009, p. 234). This function is based on two main factors, namely, term

frequency and document length. Both The Bayesian inference network model and OKAPI-

BM24 are based on the probabilistic models in document retrieval.

In this experiment, all the parameters and operators of the GA unit of IRUGA are fixed, and

the performance will be monitored for each fitness function and will be examined against

the recall and precision achieved by each one of these functions.

3.8.2.5 Mutation Comparison Methods

The mutation concept used here is the basic one which selects one gene randomly and

replaces it with another one chosen randomly from the search space with the new gene,

which has a better performance than the replaced one. Moreover, the mutation rate adopted

here is 0.7, which is the maximum rate used in similar studies, and it varies between 0.001

and 0.7.

Therefore, the experiment conducted here is to demonstrate that the GA unit of IRUGA is

expected to have better performance when using a mutation rate of 0.7. This is achieved by

performing a comparison between different mutation probabilities. The experiment done for

this purpose will be for the mutation probabilities 0.001, 0.1, and 0.2, in addition to the 0.7

which is adopted in the GA unit of IRUGA.

Chapter 4: Design of IRUGA 127

3.9 Summary

This chapter has described in detail the design of IRUGA. It starts by the pre-processing

step. In this process an enhanced inverted index is created using Oracle database and

enhanced to include HTML tag weight for each term. This index stores for each indexed

document a list of terms along with their offset, HTML weight and sentence index. The six

most frequent HTML tags are adopted in this model and assigned a weight from 1 for the

body text to a weight of 6 for the title, as it best describes the document. Other HTML tags

included are header, anchor, bold and italic.

The proposed IRUGA is characterized by the following:

1. IRUGA is a GA-based IR system.

2. It is applied to HTML documents.

3. The HTML documents are represented using an advanced inverted index model.

4. It uses a set of GA operators that are capable of producing high quality results.

These operators are further enhanced to meet the IRUGA requirements.

5. It evaluates documents using an innovative fitness function: TPFF.

6. IRUGA is capable of evaluating documents in the search space based on the

number of referenced query keywords.

7. It ranks the results based on the user query.

After creating the index, the user can enter his query which consists of several words. These

words are considered as keywords. The GA unit of IRUGA starts by creating initial

population randomly from the search space such that these individuals must have at least

one keyword of the user query. Next generations are reproduced using three operators,

named: selection, crossover and mutation and each individual is evaluated using the fitness

function.

The selection method applied in this framework is the binary tournament selection in which

two individuals are selected randomly from the population, and then the one with higher

Chapter 4: Design of IRUGA 128

fitness value is nominated as first parent with probability equal to one. The second parent is

selected in the same manner from another two randomly selected individuals.

Among several crossover techniques developed in this domain, a special crossover

technique is proposed for the GA unit of IRUGA which is the hybrid crossover technique

that combines one-point crossover, ordered crossover and fusion crossover. One-point

crossover was selected since it is more suitable than the n-point crossover (n > 1) for

chromosomes with ordered genes. For the IRUGA to retrieve the related document at high

position and high rank, the ordered crossover is applied beside a one-point crossover.

Finally, to reduce the number of iterations to get the best generation, a fusion crossover

method is applied where one offspring is produced from two parents with best genes

inherited from both parents.

Simple mutation technique is applied in the GA of IRUGA. The main reason behind

selecting this technique is that it requires less processing load where mutated genes are

selected randomly and replaced with new randomly generated ones. Two things need to be

considered before replacing the old gene in the mutated chromosome. The first one is that it

must preserve the uniqueness of genes within the chromosome and the second one is that it

must have a better fitness value than the replaced one.

Two fitness functions are developed to evaluate the individuals. The first one is called

multi-terminal fitness function which uses a combination of local and global factors which

are categorized as statistical, formatting, and semantic factors. The best documents retrieved

by this function are those which contain all query keywords, and have a number of unique

keywords which are almost the same as the number of unique terms in the document.

Moreover, this document has a very small frequency of the query keywords compared to the

frequency of all terms in the set, and the number of documents referencing the query

keywords is very small compared to the total number of documents in the space. Finally, the

HTML tag weight is very high.

The second fitness function developed that features the GA unit of IRUGA is called the

Term Proximity Fitness Function. It uses only local factors. And these factors include

statistical, formatting, and semantic factors. The best documents returned by this formula

are those which have all keywords of the query, in the same sequence as that of the query,

Chapter 4: Design of IRUGA 129

and adjacent to each other, and appear at the very beginning of the document. Moreover,

they appear in important HTML tags and have high frequency among the document.

This chapter also described the environment configuration and the parameter settings of

IRUGA in addition to the experiments that need to be performed in order to test the

performance of the GA units of IRUGA. The system configuration includes the platform

specifications and the programming language used. The parameter setting includes

population size, chromosome length, crossover probability, mutation probability, and

termination criteria. The values of population size and chromosome length are selected

based on the empirical studies so that these values provide the highest probability of

success. On the other hand, the parameter values of crossover probability and mutation

probability are set to one and 0.7 respectively. Justifications of these values are presented in

Sections 3.7.3 and 3.7.4. The maximum number of generations is specified based on the

experiments performed. The termination criteria of the GA unit of IRUGA are one of two

choices: either the performance of the current generation compared to the previous

generation is not improved, or the maximum number of generations is achieved.

The comparison methods to be performed in order to test the GA unit of IRUGA

performance compared with existing techniques used in other GA systems are described in

this chapter. These comparison methods examine the performance of IRUGA based on the

enhanced techniques described in this chapter that need to be applied to each operator. This

section has highlighted the layout of the comparison methods that need to be performed. For

each technique used to implement an operator there is a set of experiments that needs to be

executed by fixing all operators and parameters except the one under consideration. The

results of evaluating these techniques are presented and analyzed in the next chapter.

Chapter 5: Experiments and Results 130

4. C

hapter Four: Experiments and Results Of IRUGA

4.1 Introduction

As explained in previous chapters that IRUGA is GA –based IR system that applies the GA

concept to retrieve the relevant documents based on user query. The design of IRUGA and

its units has been explored in Chapter 3. Furthermore, the environment setting of IRUGA

and the parameter setup of the GA unit are defined in Chapter 4. The current chapter aims to

evaluate the proposed techniques in terms of several well known measures applied to IR

systems.

The first part of this chapter describes the document set as well as the queries used to

examine IRUGA. The second part describes the measures used to evaluate the performance

of IRUGA. These measures are recall at rank N, precision at rank N and precision at recall

M, where N is multiples of 10 and M is multiples of 10%. The storage space required to

store the indexed documents using the enhanced inverted index (EII) is compared with the

space required by the vector space model. The third part of this chapter examines the

performances of all operators of the GA unit of IRUGA against the proposed techniques

explained in Chapter 3.

The proposed experiments are performed by fixing all the parameters and fixing the

techniques of all operators except the one under investigation. The results are averaged to

produce the final figures. These figures are plotted graphically and/or presented in tabular

form if the figures are close and cannot be analyzed graphically.

IRUGA aims ultimately to produce an IR system that is able to retrieve the relevant

documents based on the user query. These documents must satisfy two criteria. The first

criterion is that the obtained results must have high recall, i.e. retrieving from the search

space as much relevant documents to the user query as possible. The second criterion is that

the results must have high precision, i.e. the least possible irrelevant documents from the

Chapter 4: Experiments and Results 131

search space.

This chapter is organized as follows: Section 4.2 describes the document set used, while

Section 4.3 describes the queries applied and Section 4.4 explains the relativity measures

adopted to test the performance of IRUGA. Section 4.5 is the main section where it shows

the results of each operator of IRUGA. Finally, Section 4.6 concludes this chapter.

4.2 Document Set Description

In similar studies, researchers tend to use ready-made data sets which use vector space

indexing models such as TREC and ACAM data sets. These sets include documents, vector

space index, queries and their results. However, these sets are not suitable for IRUGA

because of the indexing model on the one hand, and due to the additional data that need to

be included in the index which is not supported by these data sets on the other hand.

The document set or search space of IRUGA is a set of HTML web documents. This set is

the Carnegie Mellon University data set (WebKB). It is a set of HTML documents from the

departments of computer science at various universities collected in January 1997 by the

World Wide Knowledge Base project of the CMU text learning group. It consists of 8284

documents (The 4 Universities Data Set, 1998) and used by several researches (Craven, et

al., 1998; Dong et al, 2008). This set consists of seven categories, named: course,

department, faculty, project, staff, student and others, in additional to another 60 web

documents downloaded from the Web by passing different keywords to the Google search

engine. Hence, the total number of HTML documents in the set is 8344. Table 5-1 shows

the categories of the document set as well as the number of documents in each category, and

Table 4-1: Categories of documents used to test IRUGA

Category No. of Documents

Courses 927

Department 183

Faculty 1130

Project 504

Staff 137

Students 1639

Others 3764

Random web pages 60

Total 8344

Chapter 4: Experiments and Results 132

Table 4-2: Statistics of the test collection used in IRUGA

Parameter Name Value

Number of documents 8344

Number of queries 100

Number of unique indexed terms 128213

Average number of terms by query 2.69
Average number of relevant documents by query 16.82278
Average number of indexed terms by document 410.2792

Table 4-2 shows some statistics for the documents and queries used to test the IRUGA.

Using the document set made up of 8344 documents is expected to be reasonable to analyze

IRUGA since this size is in the range of document size used in similar researches. In the

literature, the data set used to test most GA-based IR systems is CISI. This data set consists

of 1460 documents and was tested against 76 to 112 queries. The data sets used in such

researches are summarized in Table 4-3 which shows that the size of these sets varies from

300 to 247,491 documents. By referring to this table, it is found that (Cutler, 1999; Radwan

et al 2006; Billhardt et al, 2002; Aly, 2007; Vrajitoru, 1990) are using a data set ranging in

size between 3040 and 3204, which is bigger than CISC. This gives an indication that the

data set size used in this study is within the acceptable range.

Table 4-3: Data sets used in similar IR researches.

Data set
No. of

Documents
No of queries Reference

Downloaded pages

from the standard four

search engines (Yahoo,

Google, AltaVista,

MSN)

300 10 (Marghny and Ali, 2005)

Medline 1033 30 (Billhardt et al, 2002; Cummins and

O’Riordan, 2006; Salton and Buckley,

1990)

CRAN 1398 225 (Billhardt et al, 2002; Salton and Buckley,

1990)

Cranfield 1400 225 (Cummins and O’Riordan, 2006)

CISI 1460 76-112 (Radwan et al 2006; Vrajitoru, 1997;

Billhardt et al, 2002; Cummins and

O’Riordan, 2006; Aly, 2007; Salton and

Buckley, 1990)

Binghamton University

at the end of 1996

3040 10 (Cutler et al, 1999)

CACM 3204 52-64 (Radwan et al 2006; Billhardt et al, 2002;

Aly, 2007; Vrajitoru, 1997; Salton and

Chapter 4: Experiments and Results 133

Buckley, 1990)

WebKB 8284 100 (Craven, et al., 1998; Donget al , 2008)

NPL 11,429 100 (Radwan et al 2006; Aly, 2007; Cummins

and O’Riordan, 2006; Salton and Buckley,

1990)

INSPEC 12684 84 (Salton and Buckley, 1990)

OHSU88 70,825 61 (Cummins and O’Riordan, 2006)

OHSU89 74,869 63 (Cummins and O’Riordan, 2006)

OHSU90-91 148,162 63 (Cummins and O’Riordan, 2006)

TREC 247,491 - (Kim and Zhang, 2003; Kim and Zhang,

2000)

4.3 IRUGA Queries Setting

IRUGA system is tested on 100 queries prepared specially for this purpose. These queries

vary in length from two to five words. The number of queries used in similar studies is

shown in Table 4-3. By comparing the number of the queries to the 100 queries used in

IRUGA, it is found that their number is quite reasonable to test the effectiveness of IRUGA.

In literature, researchers tend to use a predefined set of queries where the relevant

documents are known. However, due to certain circumstances, such sets are not available

for this research. Therefore, a new set of queries has been created. They are created such

that some of them have a small number of relevant documents and some have a large

number of relevant documents. These queries are encoded as vector Q = {q1, q2,..,qn},

where n > 1 and qi represents the term within the query. Only one condition is applied to the

created queries. This condition is that the query vector length must be greater than one in

order to make the query meaningful. In addition, it limits the number of relevant documents.

A list of these queries associated with relevant statistics is presented in Appendix C.

In order to judge how relevant each document is to the created queries, three steps are

applied. The first step is to find the documents that reference all query keywords. The

second step is to filter those documents to pick the ones that allow these keywords to appear

in a distance equal to the number of query keywords or less by one. In other words, these

keywords appear adjacent at least once within the document. The last step is to examine the

filtered documents visually in order to be considered for relevance.

4.4 Evaluation Measures

The results of the proposed system are evaluated by using precision and recall measures.

Chapter 4: Experiments and Results 134

Precision is defined as the percentage of relevant retrieved documents to the total number of

retrieved documents, while recall is defined as the percentage of relevant retrieved

documents to the total number of relevant documents (Desjardins, Godin, and Proulx, 2005;

Horng and Yeh, 2000).

One of the most popular measures used to evaluate the IR systems is called average

precision-recall measure (Pathak, Gordon and Fan, 2000) where it is used in (Kim and

Zhang, 2003; Radwan et al 2006; Kim and Zhang, 2000; Aly, 2007; Horng and Yeh, 2000;

Desjardins, Godin, and Proulx, 2005). It measures the precision at multiples of 10% of the

total relevant retrieved documents for the given query. In other words, if the query has 100

relevant documents, then this measure will evaluate the precision when retrieving 10, 20,

30,.., 100 relevant documents. Therefore, this measure evaluates the system in terms of

percentage of the total relevant documents.

In addition to the average precision-recall measure, two common measures are used to

evaluate such systems. These measures are: Precision at Rank N (P@N) and Recall at Rank

N (R@N), where N is multiple of 10 (Kim and Zhang, 2003; Cho and Richards, 2004).

Rank N here means the top N ranked documents of the retrieved documents. In this method,

the retrieved documents are ranked in descending order based on the fitness value and the

average of precision and recall are calculated. Therefore, this measure evaluates the system

based on the number of the total retrieved documents.

When the maximum value of N is 100, this measure is called 11-point average precision

(Kim and Zhang, 2000) and it is widely used to evaluate IR models (Cutler et al, 1999),

since it measures the performance at the points 0, 10, 20, 30 up to 100 top ranked retrieved

documents, where point 0 means first retrieved document. However, some authors use a

smaller value for N, such as Carlberger et al (2001) who evaluate the average precision-

recall for N=10 only, and Vrajitoru (1998) uses N {5, 10, 15, 20, 25, 30}.

In addition to P@N and R@N measures, there are several measures used to evaluate the IR

system considering the documents in terms of relevance and retrieval factors. These factors

are shown in Table 4-4 (Horng and Yeh, 2000).

Chapter 4: Experiments and Results 135

Table 4-4: The parameters used in the measurement of document retrieval (Horng and Yeh, 2000)

Number of documents Relevant Non-relevant

Retrieve a b

Not retrieved c d

Examples of the evaluation measures that use these factors are: recall ratio (R) = a/(a+c),

precision ratio (P) = a/(a+b), fallout ratio (N) = b/(b+d), and F1 measure = 2a/(2a+b+c)

(Horng and Yeh, 2000). However, these measures require a threshold to classify the

document as relevant or not. This threshold must be chosen carefully so as not to retrieve

irrelevant document if the threshold is low and not to miss relevant documents if the

threshold is high (Horng and Yeh, 2000, p.745-746).

In addition to these measures, there is another measure used to obtain the average fitness per

generation (Pathak, Gordon and Fan, 2000; Kim and Zhang, 2003). However, this measure

better assesses the improvement of GA through several generations, which compares

different generations in terms of the total value of fitness. Therefore, it is not consistent with

the objective of IRUGA.

In IRUGA, three measures are adopted to evaluate the proposed algorithm. The first one is

the average precision-recall. It is chosen since it is a common measure in this field (Pathak,

Gordon and Fan, 2000). The second measure is the precision at rank N (P@RankN). The

third one is the recall at rank N (R@RankN). The last two measures are adopted as they

simulate the behaviour of the user toward the results of the search engine, where the user

normally measures the performance of the search mechanism by concentrating on the results

appearing in the first few pages, and each page normally retrieves 10 documents. N can be

considered as the number of results per page that is displayed to the user. In addition to

P@RankN measure, precision at 11-points is also considered due to its popularity in

evaluating IR models (Yeh et al, 2007; A. Aly, 2007; Desjardins, Godin, and Proulx, 20;

Kushchu, 2005; Kim and Zhang, 2000).

In addition to these measures a new measure can be considered to further evaluate the

performance of IRUGA. This measure is the convergence speed of the GA unit. In this

Chapter 4: Experiments and Results 136

measure, the number of generations for each technique used in the GA unit of IRUGA is

recorded and is then compared with the existing techniques to measure how fast the

proposed techniques converge. This gives a clue of how fast this technique will present the

results to the user. In fact, this measure was not tackled by researchers explicitly, but need to

be introduced in this work as a new measure.

These measures will be applied to each technique of the GA unit of IRUGA mentioned in

the previous chapter whenever applicable, and each measure will be presented graphically in

a separate diagram to compare different methods in terms of recall percentage or precision

percentage.

4.5 Experimental Baseline

The baseline or benchmark of the experiments to be performed is based on two parts

according the literature. The first considers the document representation. It is found that

many researchers use VSM as baseline for the document representation such as (Vrajitoru,

1998; Billhardt, Borrajo, and Maojo, 2002). Because drowbacks of VSM are already

mentioned in Section 2.2.3, this baseline is omited from this study.

What ready concerns here is the evaluation of the document and determining the degree of

relativity of it to the user query, Some researches such as (Yeh et al, 2007) have adopted

BM25 as baseline for thier expiremnts. While (Jones, Walker, and Robertson, 2000;

Yoshioka and Haraguchi, 2005; Yoshioka and Haraguchi, 2005; Pohl, Zobel, and Moffat,

2010) use the OKAPI functions as a baseline and (Lops et al, 2012) adopt OKAPI as a

scoring function for their model because it is still considered as one of the state-of-the-art

retrieval model. However, it is been shown that yet there is a better evaluation function that

can be used as a baseline (Fan, Fox, Pathak, and Wu, 2004) which is OKAPI-BM25.

Advantages of this evaluation fucntions are discussed in Sections 2.4.4.1 and 3.8.2.4. Hence

the baseline for this thesis will be the OKAPI-BM25 evaluation function as it is been

adopted by many researches .

4.6 Testing the Performance of the Enhanced Inverted Index

The expectation of the enhanced inverted index is to use less space than the vector space and

Chapter 4: Experiments and Results 137

Latent Symantec index model. By analyzing the document collection, it is found that it

consists of 128,213 unique words and 8344 documents. The index needs to store several

kinds of information for each word. The space required to store one kind only is to be

considered using the vector space model. This kind of information is the frequency of each

term. When using two bytes to store each entry, then this will require 128,213 words × 8344

documents × 2 bytes which is equivalent to about 20 GB of storage.

In fact, when using the inverted index, the storage space required to store the whole index

with all needed details of each document consumes only100 MB. This implies that the

enhanced inverted index saves almost 99.5% of storage space.

4.7 Testing the Operators’ Performance of the GA unit of IRUGA

As stated in Chapter 3, the operators of the GA unit of IRUGA are implemented using

specific techniques. The results of evaluating these techniques are presented here, starting

with the technique of creating initial generation.

4.7.1 Convergence Speed of IRUGA Operators

This section examines the convergence speed of the GA unit of IRUGA. It is evaluated by

considering the last generation number created by each technique for each operator. The

average number of generations is obtained by running each technique once on the 100

queries. Then the last generation is recorded for each one of these 100 queries. After that,

the average of these records is taken to represent the average convergence for the technique

under consideration.

These averages are presented in Table 4-5. The techniques appearing in bold in the table are

the techniques adopted for the GA unit of IRUGA. The figures represent the last generation

number of each technique. The numbers in bold represent the corresponding results of the

GA unit of IRUGA.

There are several observations that can be drawn after examining the results in this table.

 The first observation is that creating initial generation using the selective criteria

mentioned above leads to faster convergence since the selective random

selection technique converges at the 22
nd

 generation, whereas the pure random

Chapter 4: Experiments and Results 138

selection technique converges at generation 25. This implies that the proposed

selection criterion speeds up IRUGA by 12%.

Table 4-5: The average convergence of each technique.

Operator Name Technique Name
Average

Convergence

Initial selection Initial generation with selective criterion (selective random

selection)

22.26

 Random selection of initial generation (pure random selection) 24.96

Parent selection binary tournament selection which always favours better

parent (Parent Selection-100)

22.26

 binary tournament selection which favours better parent with P

≤ 0.75 ((Parent Selection-75)

22.90

Crossover method Hybrid crossover 22.26

 Non-ordered crossover representation 28

 One-point crossover and producing two offspring 43.40

 Two –point crossover producing one offspring 13.65

Mutation rate 70% -MUTE70 22.26

 0.1% - MUTE001 22.13

 20% - MUTE20 22.56

 10% - MUTE10 22.30

Fitness function Proximity term fitness function 22.26

 Okapi-BM25 41.66

 Bayesian inference model 23.58

 The second observation is that the binary tournament selection using the parent

selection-100 technique has the same performance as the parent selection-75

technique except for a miner improvement where the former one is faster by

only one generation.

 The speed of convergence differs widely from one technique to another. It is

noted that the fastest convergence is achieved by the 2-point crossover

technique. This is because the genes between the 2 cross points have similar

performance, since the good and bad genes are mixed together. Hence,

exchanging them will not affect the overall chromosome performance. That

means: the offspring will have almost the same or very close performance as the

parents. Therefore, GA converges fast. However, the performance of this

technique in terms of recall and precision is very low and comes in the third

position when compared with other crossover techniques illustrated in Section

5.6.4.

Chapter 4: Experiments and Results 139

 The slowest crossover technique is the one that applies a one-point crossover on

ordered chromosomes and produces two offspring. The reason is that the good

genes are bouncing between the two offspring, which delays the convergence.

 The speed of convergence is not dependent on the mutation rate, since from rate

of 0.001 to 0.7, all queries are converging at 22
nd

 generation.

4.7.2 The comparison results of the Initial Generation Creation Techniques

It is mentioned in Section 3.4.1 that there are several ways of creating the initial generation.

The most popular one is to select the population randomly from the search space. This

technique is called pure random selection. On the other hand, selecting the initial population

with specific criterion – which is called selective random selection - may enhance the

performance in terms of the speed of convergence and the percentage of recall and

precision. In the GA unit of IRUGA, the selection criterion adopted is to select the

documents that reference at least one keyword from the user query.

This experiment will examine the speed of convergence of the GA unit of IRUGA between

these two methods. Table 4-5 (page 149) shows the average convergence which represents

the last generation of each mentioned technique. Note that this table represents the different

techniques applied in the GA unit of IRUGA by using the parameters that are set in the

previous chapter. The results obtained for this experiment show that creating the initial

population using the above mentioned selective criteria leads to faster convergence since

selective random selection technique produces the results at the 22
nd

 generation, whereas

pure random selection technique produces the results at generation 25. This implies that the

proposed selection criterion speeds up the system by 12%.

Looking at the performance of these selective techniques in terms of the precision measure,

it is found that the precision at the top 10 retrieved documents reaches 85% when applying

the selective random selection while pure random selection achieves only 60%. It is noted

also that the average precision for the selective random selection is 0.49 while the average

of pure selection is 0.31 showing that the former technique achieved enhancement of

101.94%. These results are illustrated in Figure 4-1 and Table 4-6.

Chapter 4: Experiments and Results 140

Figure 4-1: Comparison of P@N for different selection techniques

The next measure to be investigated is the recall @ N. As illustrated in Figure 4-2, selective

random selection retrieved 88% of the relevant documents at the top 50 retrieved

documents, in the time pure random selection retrieved only 42%. Moreover, the GA unit of

IRUGA which uses the selective random selection retrieved 94% of the total relevant

documents at the top 100 retrieved documents, whereas only 44% of total relevant

documents appear within the top 100 retrieved documents when using the pure random

Table 4-6: The P@N enhancement percentage for different selection techniques

Selection

technique

Selective

random

selection

Pure Random

Selection
% of improvement

P@0 1.00 1.00 0

P@10 0.85 0.60 40.87

P@20 0.64 0.40 60.10

P@30 0.54 0.30 79.90

P@40 0.47 0.24 94.35

P@50 0.41 0.19 115.14

P@60 0.36 0.16 125.16

P@70 0.33 0.14 136.43

P@80 0.30 0.12 147.05

P@90 0.28 0.11 158.57

P@100 0.26 0.10 163.80

Average 0.49 0.31 101.94

mailto:P@20
mailto:P@20
mailto:P@20
mailto:P@20
mailto:P@20

Chapter 4: Experiments and Results 141

selection technique. This implies that using the selective random selection enhances the

recall @ N measure by 110.02%. The recall @ N retrieved for both techniques along with

percentage of enhancements is included in Table 4-7.

Figure 4-2: Comparison of R@N for different selection techniques

The third measure to be demonstrated here is the precision @ recall. In this measure, the

performance is examined: for example, when retrieving 10% of total relevant documents,

what will be the precision within this window of 10%. The results of this measure are shown

Table 4-7: The R@ N enhancement percentage for different selection techniques

Selection

technique

Selective

random

selection

Pure

Random

Selection

% of

improvement

R@10 0.65 0.35 86.08

R@20 0.78 0.38 103.97

R@30 0.85 0.40 114.13

R@40 0.88 0.42 110.56

R@50 0.90 0.42 112.88

R@60 0.91 0.43 113.68

R@70 0.92 0.43 113.68

R@80 0.93 0.44 113.68

R@90 0.93 0.43 115.76

R@100 0.94 0.44 115.76

Average 0.87 0.41 110.02

Chapter 4: Experiments and Results 142

in Figure 4-3 and Table 4-8. Selective random selection and pure random selection

techniques start by a precision of 100% and 98% when retrieving 10% of total relevant

documents respectively. However, selective random selection technique achieves a

maximum of 98% when retrieving 50%, while pure random selection achieves a maximum

of 67% when retrieving 50%. Moreover, the precision of the first technique drops to 87%

when the number of retrieved documents is equal to the number of relevant documents. On

the other hand, the precision for pure random selection drops until reaching 36% when

retrieving a number of documents equal to the number of relevant documents. The

comparison in the case of precision versus recall is sometimes done by comparing the

number of retrieved documents to the total number of relevant documents instead of the

actual retrieved documents. Since the retrieved documents are arranged in a descending

order, this implies that the precision value at 100% recall reflects the percentage of total

relevant documents retrieved within the retrieved documents. In this case selective random

selection retrieved has percentage of 87% whereas the second technique retrieved only 36%.

Figure 4-3: Comparison of P@R for different selection techniques.

From this analysis, and the example provided in Appendix D, it is shown that the

performance of the selective random selection is better almost 100% than that of the pure

random selection in terms of the number of the relevant documents retrieved.

Chapter 4: Experiments and Results 143

Table 4-8: The P@R enhancement percentage for different selection techniques

Measure

Selective

Random

Selection

Pure

Random

Selection

% of

improvement

P@R10 1 0.98 2.04

P@R20 0.99 0.94 5.32

P@R30 0.99 0.86 15.12

P@R40 0.98 0.76 28.95

P@R50 0.98 0.67 46.27

P@R60 0.95 0.55 72.73

P@R70 0.93 0.47 97.87

P@R80 0.91 0.42 116.67

P@R90 0.89 0.38 134.21

P@R100 0.87 0.36 141.67

Average 0.95 0.64 66.08

4.7.3 Comparing the selection operators of GA unit in IRUGA

The concept of GA is to produce several generations, until an optimal solution is found in

generation Gk where its performance cannot be further improved. Denoting the current

generation Gi={p1, p2, …pk}, where k is the generation size, then new generation is

generated using crossover applied on two selected parents such that the offspring Oi is

produced from pi,and pj. The selection technique of pi, and pj adopted in the GA unit of

IRUGA is the binary tournament selection, in which two random individuals are selected,

then the one with higher fitness is nominated as the first parent, and the second parent is

selected in a similar way.

However, the binary tournament selection can be applied in several ways. After selecting

two candidates for tournament, there are two options among others for nominating the

parent. The first option is to pick the fitter one with probability equal to 100%, and this

option is called parent selection-100. The second option is to select the fitter one with a

lower probability and give a chance for the less fit one to participate in the crossover as it

may contain some good genes. In this experiment, the comparison is between these two

techniques whereas in the second one the probability of selecting the best one is 75%, giving

a chance of 25% for the lower candidate to be selected for crossover. Hence, this technique

Chapter 4: Experiments and Results 144

is called parent selection-75. According to this experiment, it is shown that the performance

in terms of speed of convergence is almost the same with little improvement in the parent

selection-100. From the convergence point of view, it is found that parent selection-100

technique converges after 22.26 generations in average while parent selection-75 converges

after 22.9 generations, which results in a difference of 2.87%. Table 4-5 (which is presented

in Section 5.6.1) shows the convergence of these techniques.

Looking at the precision measure (P@N), it is found that the parent selection-100 technique

achieves noticeable enhancement over parent selection-75 technique. The enhancement

ranges from 4.43% at P@10 to 25.57% at P@100 for P@N measure as shown in Figure 4-4

and illustrated numerically in Table 4-9. This reflects the effect of including some low

performance chromosomes in the process of crossover. Such chromosomes will introduce

low relevance or irrelevant documents into the chromosome; hence they will end with a

solution having a lower number of relevant documents.

For the recall measure which is R@N, the results in Figure 4-5 show slight enhancement of

parent selection-100 technique over parent selection-75 technique. The difference ranges

from 1.12% at R@50 to 14.04% at R@10. However, parent selection-100 was able to

retrieve 94% of relevant documents at top100 ranked documents. This is very close to the

parent selection-75 technique which retrieved 92% of such documents. These results are

illustrated in Table 4-10.

Figure 4-4: Comparison of P@N for different parent selection techniques

Chapter 4: Experiments and Results 145

Table 4-9: The P@N enhancement percentage for different parent selection techniques

Measure

Parent

Selection-

100

Parent

Selection-

75

% of

improvement

P@10 0.85 0.83 2.24

P@20 0.64 0.62 2.96

P@30 0.54 0.51 4.96

P@40 0.47 0.42 9.92

P@50 0.41 0.36 14.74

P@60 0.36 0.30 22.73

P@70 0.33 0.25 28.90

P@80 0.30 0.22 34.78

P@90 0.28 0.20 40.96

P@100 0.26 0.18 43.80

Average 0.44 0.39 20.60

Considering the Precision @ Recall measure, it is noted that both parent selection-75 and

parent selection-100 are very close in performance to each other from P@R10 to P@R60 as

illustrated in Figure 4-6. In this range, the performance of parent selection-100 technique is

better than that of the parent selection-75 technique, whereas the enhancement of the former

technique ranges from 0.82% to 3.25%. After that, the difference in performance starts to

increase till it reaches 11.01% at P@R100. At this point the P@R100 score for the parent

Figure 4-5: Comparison of R@N for different parent selection techniques

Table 4-10: The R@N enhancement percentage for different selection techniques

Chapter 4: Experiments and Results 146

Measure

Parent

Selection-

100

Parent

Selection-

75

% of

improvement

R@10 0.65 0.57 14.04

R@20 0.78 0.75 4.56

R@30 0.85 0.84 1.19

R@40 0.88 0.86 2.33

R@50 0.90 0.89 1.12

R@60 0.91 0.89 2.25

R@70 0.92 0.90 2.22

R@80 0.93 0.91 2.20

R@90 0.93 0.91 2.20

R@100 0.94 0.92 2.17

Average 0.87 0.84 3.43

selection-100 technique is 0.87. This means that when retrieving all relevant documents and

displaying them to the user, the displayed list will include 13% of irrelevant documents,

while the parent selection-75 technique will include 22% of irrelevant documents in the

displayed results. Details are included in Table 4-11.

Figure 4-6: Comparison of P@R for Different Parent Selection Techniques

For all measures described above, the parent selection-100 has a better performance than the

parent selection-75 in terms of speed of convergence, precision at top N, recall at top N and

precision at recall. From another point of view, these figures and tables of the results prove

Chapter 4: Experiments and Results 147

that the assumption stated in Section 3.4.1 is not always true. This assumption states that

there are some low performance individuals that may include good genes in the

chromosome.

Table 4-11: The P@R enhancement percentage of for Different Parent Selection Techniques

Measure

Parent

Selection-

100

Parent

Selection-

75

% of

improvement

P@R10 1.00 0.99 0.82

P@R20 0.99 0.99 0.25

P@R30 0.99 0.98 1.37

P@R40 0.98 0.96 1.85

P@R50 0.98 0.95 3.41

P@R60 0.95 0.92 3.25

P@R70 0.93 0.88 6.10

P@R80 0.91 0.85 7.40

P@R90 0.89 0.81 10.52

P@R100 0.87 0.78 11.01

Average 0.95 0.91 4.60

4.7.4 Comparing the Crossover operators of GA unit in IRUGA

In this section, three experiments are performed to study the performance of the hybrid

crossover technique which performs a one-point crossover on ordered parents to produce

one ordered offspring. The first experiment is to compare the hybrid crossover with the two-

point crossover, but both will be applied on ordered parents and produce one offspring. The

second experiment studies the effect of applying a crossover on ordered and non-ordered

parents. However, both techniques will use a one-point crossover and will produce one

offspring. The third experiment will examine the effect of producing one offspring and two

offspring out of two ordered parents while using a one-point crossover. The results obtained

from these three experiments will be analyzed in terms of the speed of convergence and in

terms of precision @ N, recall @ N, and precision @ recall.

4.7.4.1 The Comparison between the Hybrid Crossover and Two-Point Crossover

The first experiment in the crossover comparisons is to study the first measure denoted as

precision @ top N. In this experiment, the comparison will be done between the hybrid

Chapter 4: Experiments and Results 148

crossover technique and the two-point crossover, abbreviated as “2-point CO” (Refer to

Section 2.4.5.2 for the explanation of the two-point crossover technique).

The first experiment in the crossover comparisons is to apply the GA unit of IRUGA using

the classical two-point crossover (Pathak, Gordon and Fan, 2000; Beasley, Bull, and Martin,

1993b; Yang, Korfhage, and Rasmussen, 1992; Spears and De Jong, 1991; Atsumi, 1997).

After selecting two parents p1 and p2, two positions are to be selected randomly cp1 and cp2

such that cp1 < length(p1)/2 and length(p1)/2 < cp2< length(p1). The genes between these

two cross positions are exchanged between p1 and p2, knowing that the replaced genes are

unique within each chromosome (offspring). Both offspring must have the same length as

the parents. When creating offspring O1, if a gene g1i is found to be already exist in

offspring O1 then it is skipped and no exchange is done, and the genes after this position are

shifted to the left. After creating the offspring in this manner, if the offspring has a length

smaller than the parents; then the remaining positions are filled by genes after the cp2 of

parent 2 (Refer to Figure 2-4 in Chapter 2 to see an example of the two-point crossover).

Since the genes within each parent are ordered according to the fitness value, it is expected

that in the two-point crossover, the offspring will not much differ from the parents, as the

genes at each edge forming the extremes of the best and worst documents are copied as they

are to the offspring, while the middle genes which have medium performance are exchanged

causing the offspring to differ slightly from the parents. This expectation is proved when

evaluation measures are analyzed.

Figure 4-7 and Table 4-12 show the precision @ top N retrieved documents. It is shown that

the GA unit of IRUGA using hybrid crossover has much better performances than the 2-

point crossover (referred to as “2-point CO” in this figure) for the reason mentioned above.

Moreover, the hybrid crossover achieves 0.86 at the top 10 retrieved documents, while the

2-point crossover achieves only 0.34. In other words, hybrid crossover achieves an

improvement of 152.84% at top 10 over the 2-point crossover.

The second measure to be considered in evaluating this technique is the recall @ top N.

Figure 4-8 shows that the recall @ top N retrieved for the hybrid crossover starts from 63%

until it reaches 85% at R@60. That means this technique is capable of retrieving 85% of the

Chapter 4: Experiments and Results 149

Figure 4-7: Comparison of P@N between hybrid crossover and 2-point crossover technique

total relevant documents at top 60 retrieved documents. However, the 2-point crossover

technique starts by retrieving 31% of relevant documents at top 10, and as a whole it

retrieves only 35% at top 100 retrieved documents. That implies hybrid crossover achieves

enhancement of 104% at R@10 and drops to 82.32% at R@100. These results are shown in

Table 4-13.

Table 4-12: The P@N enhancement percentage of hybrid crossover over the 2-point crossover techniques

Measure
Hybrid

CO

2-point

CO

% of

improvement

P@10 0.86 0.34 152.84

P@20 0.69 0.27 152.52

P@30 0.57 0.19 199.22

P@40 0.48 0.15 233.22

P@50 0.41 0.12 250.46

P@60 0.35 0.1 259.51

P@70 0.30 0.08 267.68

P@80 0.27 0.07 276.05

P@90 0.25 0.06 283.58

P@100 0.22 0.06 285.64

Average 0.44 0.14 236.07

Chapter 4: Experiments and Results 150

Figure 4-8: Comparison of R@N between hybrid crossover and 2-point crossover technique.

The third measure is the precision @ recall which evaluates the precision percentage when

retrieving multiples of 10% of relevant documents. In other words, this measure evaluates

the purity of the results from the irrelevant documents.

Table 4-13: The R@N enhancement percentage of hybrid crossover over the 2-point crossover techniques

Measure
Hybrid

CO

2-point

CO

% of

improvement

R@10 0.63 0.31 104.50

R@20 0.76 0.46 63.55

R@30 0.81 0.47 71.09

R@40 0.83 0.48 75.25

R@50 0.84 0.48 77.09

R@60 0.85 0.48 77.72

R@70 0.85 0.48 78.37

R@80 0.85 0.48 79.02

R@90 0.85 0.48 79.67

R@100 0.86 0.48 80.32

Average 0.81 0.46 78.66

Figure 4-9 shows the performance of the proposed hybrid crossover over the 2-point

crossover. By using the hybrid crossover, the GA unit of IRUGA was able to achieve 99%

of relevance when retrieving 30% of the total relevant documents. This percentage reduces

Chapter 4: Experiments and Results 151

to 87% when retrieving all the relevant documents. However, the two-point crossover has

50% of relevant documents when retrieving 30% of relevant documents, and this percentage

dropped to 31% when retrieving all relevant documents. These scores show that the hybrid

crossover managed to achieve an enhancement of 130.07% in the average over all 10-points

shown in Table 4-14 for the precision @ recall measure.

Figure 4-9: Comparison of P@R between hybrid crossover and 2-point crossover technique

Table 4-14: The P@R enhancement percentage of hybrid crossover over the 2-point crossover techniques

Measure
Hybrid

CO

2-

point

CO

% of

improvement

P@R10 0.99 0.78 28.96

P@R20 0.99 0.60 66.07

P@R30 0.99 0.50 98.65

P@R40 0.98 0.43 127.68

P@R50 0.98 0.42 131.82

P@R60 0.95 0.36 162.26

P@R70 0.93 0.36 157.96

P@R80 0.91 0.34 164.13

P@R90 0.89 0.32 179.39

P@R100 0.87 0.31 183.77

Average 0.95 0.44 130.07

Chapter 4: Experiments and Results 152

4.7.4.2 The Comparison between the Hybrid Crossover and the two-Offspring

Crossover

The second technique of implementing the crossover that needs to be compared with the

hybrid crossover is the two-offspring crossover (abbreviated as 2-offspring CO). In this

technique, the crossover is applied to two ordered parents to produce two offspring using

one crosspoint. Remember that the hybrid crossover produces only one offspring. In this

kind of crossover, the genes after the crosspoint are exchanged between the two parents.

Hence, the two offspring from parents P1 and P2 using crosspoint cp are expressed as

follows:

where P1i is the gene i in parent 1, and P2i is the gene i in parent 2.

Looking at the performance of the two-offspring crossover, one can argue that applying

hybrid crossover is tremendously much better than applying two -offspring crossover. The

performance of this technique in terms of P@N is illustrated in Figure 4-10. Once again, the

precision @ top N measure of the hybrid crossover is much better than this technique, where

the former achieves 0.86 @ 10, while this technique (producing 2-offspring) achieves only

0.48. Although this technique is the second best technique after the hybrid crossover, the

hybrid crossover achieved an improvement of 78.49% over this technique as illustrated in

Table 4-15.

For R@ top N measure, it is found that the two-offspring crossover technique retrieves 32%

of relevant documents at the top 10 and increases to 35% at the top 100 retrieved

documents. These results are poor compared with those of the hybrid crossover, which

retrieves 63% at the top 10 and 86% at the top 100 retrieved documents. In other words, the

hybrid crossover was able to enhance the performance from 98.42% at the top 10 retrieved

Chapter 4: Experiments and Results 153

Figure 4-10: Comparison of P@N between hybrid crossover and 2-Offspring crossover techniques.

Table 4-15: The P@N enhancement percentage of hybrid crossover over the 2- Offspring crossover techniques

Measure
Hybrid

CO

2-

Offspring

% of

improvement

P@10 0.86 0.48 78.49

P@20 0.69 0.27 155

P@30 0.57 0.19 207.62

P@40 0.48 0.14 244

P@50 0.41 0.11 261.8

P@60 0.35 0.09 271.18

P@70 0.3 0.08 279.62

P@80 0.27 0.07 288.1

P@90 0.25 0.06 295.82

P@100 0.22 0.06 298.12

Average 0.44 0.16 237.97

documents to 147.12% at the top 100 retrieved documents. The poor performance of this

technique is due to the fact that the good genes are not gathered in one chromosome.

Therefore each crossover results in splitting the good genes between the two produced

offspring. These scores are illustrated graphically in Figure 4-11 and in tabular form in

Table 4-16.

Chapter 4: Experiments and Results 154

Figure 4-11: Comparison of R@N between hybrid crossover and 2-Offspring crossover techniques.

Table 4-16: The R@N enhancement percentage of hybrid crossover over the 2- Offspring crossover techniques

Measure
Hybrid

CO

2-

Offspring

% of

improvement

R@10 0.63 0.32 98.42

R@20 0.76 0.34 122.37

R@30 0.81 0.35 134.55

R@40 0.83 0.35 140.17

R@50 0.84 0.35 142.69

R@60 0.85 0.35 143.55

R@70 0.85 0.35 144.44

R@80 0.85 0.35 145.34

R@90 0.85 0.35 146.23

R@100 0.86 0.35 147.12

Average 0.81 0.34 136.49

The third measure to be analyzed when comparing the hybrid crossover with the 2-offspring

crossover technique is the P@R measure. From Figure 4-12, one can deduce the high

difference in performance between the two techniques, where hybrid crossover reaches its

maximum precision value of 1when retrieving 10% (P@R10) of relevant documents,

whereas the two-offspring crossover technique reaches its maximum of 0.79 at the same

point. This gives an advantage of the proposed hybrid crossover technique which achieves

maximum enhancement percentage of 188.78 at P@R100 as illustrated in Table 4-17. On

average, the hybrid crossover technique has enhanced the P@R measure by 114.69% on

average.

Chapter 4: Experiments and Results 155

Figure 4-12: Comparison of P@R between hybrid crossover and 2-Offspring crossover techniques..

Table 4-17: The P@R enhancement percentage of hybrid crossover over the 2- Offspring crossover techniques.

Measure
Hybrid

CO

2-

Offspring

% of

improvement

P@R10 1 0.79 26.52

P@R20 0.99 0.65 51.56

P@R30 0.99 0.57 73.37

P@R40 0.98 0.51 90.59

P@R50 0.98 0.48 103.75

P@R60 0.95 0.42 125.08

P@R70 0.93 0.38 143.24

P@R80 0.91 0.35 162.51

P@R90 0.89 0.32 181.5

P@R100 0.87 0.3 188.78

Average 0.95 0.48 114.69

4.7.4.3 Comparing the Hybrid Crossover and Non-ordered Crossover

Another alternative technique for crossover is the one-point crossover applied to non-

ordered chromosomes (abbreviated as Non-Ordered CO) to produce one offspring. What

differentiates this technique from the hybrid crossover technique is that the genes within the

chromosome are not ordered according to their fitness value. Thus, good genes (genes that

have high fitness value) are scattered throughout the chromosome resulting in a

chromosome having a mixture of good and bad genes distributed arbitrarily within the

chromosome. Applying a one-point crossover on such a chromosome results in swapping

Chapter 4: Experiments and Results 156

these mixed genes from one side of the cross point to the other side without any noticeable

improvement.

Although non-ordered crossover techniques is much better than the two-point crossover and

two-offspring crossover mentioned earlier, it is still not able to beat the proposed hybrid

crossover. Referring to Figure 4-13 of P@N measure, it is shown that this technique starts at

a precision of 0.86 at the top 10 retrieved documents and ends with a precision of 0.22 at the

top 100 retrieved documents, as compared with 0.58 and 0.13 for the same points for the

hybrid crossover technique. That means the second technique is enhanced from 48.12% to

70.62%. These scores are illustrated in Table 4-18.

Figure 4-13: Comparison of P@N between hybrid crossover and the non-ordered crossover techniques.

When comparing this technique with the hybrid crossover technique in terms of R@N

measure as illustrated in Figure 4-14, it is noticed that the non-ordered crossover

Table 4-18: The P@N enhancement percentage of hybrid crossover over the non-ordered crossover techniques

Measure
Hybrid

CO

Non-

Ordered

CO

% of

improvement

P@10 0.86 0.58 48.12

P@20 0.69 0.43 61.95

P@30 0.57 0.36 59.99

P@40 0.48 0.3 59.81

P@50 0.41 0.26 55.05

Chapter 4: Experiments and Results 157

P@60 0.35 0.22 59.14

P@70 0.3 0.19 62.56

P@80 0.27 0.16 66.79

P@90 0.25 0.15 69.58

P@100 0.22 0.13 70.62

Average 0.44 0.28 61.36

Figure 4-14: Comparison of R@N between hybrid crossover and the non-ordered crossover techniques

Table 4-19: The R@N enhancement percentage of hybrid crossover over the non-ordered crossover

techniques.

Measure
Hybrid

CO

Non-

Ordered

CO

% of

improvement

R@10 0.63 0.39 60.33

R@20 0.76 0.46 65.50

R@30 0.81 0.49 65.10

R@40 0.83 0.50 65.47

R@50 0.84 0.51 65.09

R@60 0.85 0.51 65.68

R@70 0.85 0.51 66.29

R@80 0.85 0.51 66.90

R@90 0.85 0.51 67.50

R@100 0.86 0.51 68.11

Average 0.81 0.49 65.60

Chapter 4: Experiments and Results 158

performance ranges between 39% at R@ top 10 and 51% at R@ top 100. This means that

this technique lags behind hybrid crossover technique by 60.33% to 68.11%. Table 4-19

lists the scores for each point of the scale of R@N measure.

The last measure to be compared between the non-ordered crossover technique and the

hybrid crossover is the precision @ recall measure. The results are shown in Figure 4-15.

The performance of the former technique ranges between 0.92 at P@R10 and 0.43 at

P@R100, compared with hybrid crossover which ranges from 1 at P@R10 to 0.87% at

P@R100. As demonstrated in Table 4-20, it is found that the proposed technique enhanced

the performance by 102.89% at P@R100.

Figure 4-15: Comparison of P@R between hybrid crossover and the non-ordered crossover techniques

4.7.4.4 Revisiting the Crossover Operator of the GA unit of IRUGA

In the above analysis of the precision score for the hybrid crossover, it is found that it

achieved 0.86 at P@10 and 0.69 at P@20. Since the genes are ordered within the

chromosome, it is expected to have a higher percentage than 86% for precision @ 10 where

the best genes of each candidate chromosome are pushed to the new offspring. Remember

that P@10 means the number of relevant documents at the top 10 retrieved documents.

Chapter 4: Experiments and Results 159

Table 4-20: The P@R enhancement percentage of hybrid crossover over the non-ordered crossover techniques.

Measure
Hybrid

CO

Non-

Ordered

CO

% of

improvement

P@R10 1 0.92 8.69

P@R20 0.99 0.86 15.29

P@R30 0.99 0.8 24.5

P@R40 0.98 0.73 34.01

P@R50 0.98 0.68 43.32

P@R60 0.95 0.61 55.35

P@R70 0.93 0.54 70.73

P@R80 0.91 0.5 82.58

P@R90 0.89 0.45 96.97

P@R100 0.87 0.43 102.89

Average 0.95 0.65 53.43

However, what causes this percentage to drop is the high percentage of queries that have

relevant documents less than 10. In the previous experiment these queries form 47% of the

total queries. In such a case, exactly 53% of the queries will have a precision less than one.

Moreover, this score will depend also on the number of relevant documents per query. So if

the relevant number of documents for these queries is low, the score will also be low.

For example, if 53% of these documents have 5 relevant documents, then the precision @10

for these documents in the best case, i.e. if all relevant documents are retrieved, will be 5/10

which is 0.5.

In other words, this measure depends on two factors. The first one is the number of queries

that have a high number of relevant documents, and the second factor is the number of

relevant documents per query.

Consequently, this experiment is repeated by using only the queries that have 10 relevant

documents or more. The result of this experiment is shown in Figure 4-16, where the

precision@10 reaches its maximum of 1. This score is 14% better than the score of the

previous experiment. Moreover, this score reflects the high effect of the previously

mentioned factors on the P@N measure.

Chapter 4: Experiments and Results 160

Figure 4-16: Comparison of P@N for Different Crossover Techniques for queries having more than 10

relevant documents.

From another point of view this result shows the tremendous performance of the hybrid

crossover over the other crossover techniques. The score of the second best crossover

technique, which is the non-ordered crossover, is 0.68 while the scores of two-point

crossover and two-offspring crossover are only 0.4 and 0.56 respectively. The percentages

of enhancement achieved by the hybrid crossover over other crossover techniques are

represented in Table 4-21.

Generally speaking, the proposed hybrid crossover technique performance is much better

than other crossover techniques analyzed in this study. The advantage of this technique

comes from the mechanism it follows in selecting the best genes from the chromosome and

gives it a better chance to be inherited to the next generation.

Moreover, the GA unit of IRUGA shows the strength of the hybrid crossover technique

when it is applied to queries that have a high number of relevant documents, especially

when comparing the results for the top retrieved documents where N ≤ 20.

Chapter 4: Experiments and Results 161

Table 4-21: The P@N improvement of hybrid crossover over other crossover techniques for queries having

more than 10 relevant documents.

Measure
Hybrid

CO

2-

point

CO

% of

improvemen

t

2-

Offspring

% of

improvemen

t

Non-

Ordere

d CO

% of

improvemen

t

P@10 1.00 0.40 152.84 0.56 78.49 0.68 48.12

P@20 0.88 0.35 152.52 0.34 155.00 0.54 61.95

P@30 0.77 0.26 199.22 0.25 207.62 0.48 59.99

P@40 0.67 0.20 233.22 0.20 244.00 0.42 59.81

P@50 0.60 0.17 250.46 0.16 261.80 0.38 55.05

P@60 0.53 0.15 259.51 0.14 271.18 0.34 59.14

P@70 0.48 0.13 267.68 0.13 279.62 0.30 62.56

P@80 0.44 0.12 276.05 0.11 288.10 0.27 66.79

P@90 0.41 0.11 283.58 0.10 295.82 0.24 69.58

P@100 0.38 0.10 285.64 0.10 298.12 0.22 70.62

Average 0.62 0.20 236.07 0.21 237.98 0.39 61.36

4.7.5 Testing Different Fitness Functions

For our ranking technique, the decision about whether to take or reject a document depends

only on the value computed by the proposed fitness function. The proposed fitness function

is developed based on local factors only to make the evaluation of the document

independent of other documents. The local factors are those obtained from the document

under consideration such as document size, number of unique terms within the document,

and the total number of specific terms within the document.

As mentioned in Section 4.4.2, the performance of term-proximity fitness function will be

examined against two well known fitness functions in the IR domain. These fitness

functions are the Okapi-BM25 and the Bayesian inference network model functions. These

functions are listed in Table 4-22.

Table 4-22: List of fitness functions

Fitness method Fitness Formula

Okapi-BM25

Bayesian

inference network

model

Chapter 4: Experiments and Results 162

Term-proximity

fitness function

It is obvious from the results shown in Figure 4-17 that the GA unit of IRUGA which uses

the term-proximity function has the highest average precision of 86% in the first top 10

ranked documents at the moment where the other two models reach only 49% for the

Bayesian network inference model and 55% for the Okapi-BM25, which means that the

proposed system achieves a 75.27% improvement on average in precision at the top 10

ranked documents over the Bayesian model and 31.78% over the OKAPI-BM25 models.

Details of these results are illustrated in Table 4-23.

Figure 4-17: Comparison of P@N for Different Fitness Functions

Another measure to be considered here is the recall @ top N measure. The term proximity

function was able to retrieve 84% of related documents at maximum of the top 50 retrieved

documents, as shown in Figure 4-18, whereas the Bayesian network inference model and the

Okapi-BM25 reach only 75% and 71% recall respectively for the first 50 retrieved

documents. The improvement of the term proximity model is 22.52% over the Bayesian

network inference model and 27.55% over the Okapi-BM25 model. Table 4-24 illustrates

the details of these results.

Table 4-23: The P@N enhancement percentage of the term proximity fitness function over other fitness

functions

Chapter 4: Experiments and Results 163

Measure
Term

proximity
BAYESIAN

% of

improvement
OKAPI

% of

improvement

P@0 1.00 0.82 21.95 0.86 18.60

P@10 0.85 0.49 77.73 0.55 56.18

P@20 0.64 0.36 92.66 0.44 57.66

P@30 0.54 0.29 97.62 0.38 49.89

P@40 0.47 0.24 97.79 0.34 44.03

P@50 0.41 0.22 81.95 0.30 33.73

P@60 0.36 0.20 73.06 0.28 24.73

P@70 0.33 0.18 64.94 0.26 18.50

P@80 0.30 0.17 59.37 0.24 15.94

P@90 0.28 0.16 56.19 0.22 11.64

P@100 0.26 0.15 51.42 0.21 5.51

Average 0.49 0.30 70.43 0.37 30.58

Figure 4-18: Comparison of R@N for Different Fitness Functions

When examining the precision @ recall measure, which is shown in Figure 4-19, one can

notice the high performance of the proximity function. The precision starts by 1 when the

system retrieves 10% of relevant documents and then reduces gradually until it reaches 0.87

when retrieving all relevant documents. This means that until it retrieves 10% of relevant

documents, all the displayed documents are relevant. In fact, this score was not achieved by

Table 4-24: The R@N enhancement percentage of the term proximity fitness function over other fitness

functions

Chapter 4: Experiments and Results 164

Measure
Term

proximity
BAYESIAN

% of

improvement
OKAPI

% of

improvement

R@10 0.65 0.46 40.05 0.50 29.86

R@20 0.78 0.63 23.73 0.63 24.14

R@30 0.85 0.70 21.25 0.67 27.42

R@40 0.88 0.73 20.04 0.70 26.40

R@50 0.90 0.75 19.60 0.71 26.04

R@60 0.91 0.75 20.93 0.71 27.44

R@70 0.92 0.75 22.26 0.71 28.84

R@80 0.93 0.75 23.58 0.71 30.24

R@90 0.93 0.75 23.58 0.71 30.24

R@100 0.94 0.85 10.22 0.75 24.91

Average 0.87 0.71 22.52 0.68 27.55

Figure 4-19: Comparison of P@R for Different Fitness Functions

any other technique or model. Moreover, the 0.87 at 100% recall implies that when the

system retrieves all the relevant documents, only 13% of those retrieved are not relevant to

the user query and they appear in low rank or at the bottom. This result is very close to the

user anticipation since he or she is looking to have all top ranked documents as relevant, and

most of the relevant documents appear in top position.

These results imply that the term proximity model achieved a 5.16% enhancement

compared with the Bayesian inference network model, and achieved an enhancement of

13.17% when compared with the OKAPI-BM25 model. Details of these figures are

illustrated in Table 4-25.

mailto:R@20
mailto:R@20
mailto:R@20
mailto:R@20
mailto:R@20

Chapter 4: Experiments and Results 165

Table 4-25: The P@R enhancement percentage of the term proximity fitness function over other fitness

functions.

Measure IRUGA BAYESIAN
% of

improvement
OKAPI

% of

improvement

P@R0 1.00 1.00 0.00 1.00 0.00

P@R10 0.99 0.99 1.01 0.96 4.17

P@R20 0.99 0.97 2.06 0.94 5.32

P@R30 0.99 0.95 4.21 0.92 7.61

P@R40 0.98 0.94 4.26 0.89 10.11

P@R50 0.98 0.92 6.52 0.86 13.95

P@R60 0.95 0.91 4.40 0.83 14.46

P@R70 0.93 0.89 4.49 0.80 16.25

P@R80 0.91 0.85 7.06 0.76 19.74

P@R90 0.89 0.80 11.25 0.71 25.35

P@R100 0.87 0.78 11.54 0.68 27.94

Average 0.95 0.91 5.16 0.85 13.17

The reason behind high results for the proposed fitness function is that it doesn’t depend

only on the frequency of terms within the document as other fitness functions do. It also

depends on the importance of the term based on the HTML tag and on the position of the

terms within the document, in addition to considering the distance between the terms. At the

same time it doesn’t ignore the term frequency factor.

4.7.6 Mutation

The last operator to be checked in the GA unit of IRUGA is mutation. This section will

examine the performance of the GA unit of IRUGA when implemented using different

probabilities of applying mutation. Normally, mutation is applied with low probability to

simulate the natural behaviour of an organism. However, because it has many advantages

(please refer to Section 2.3.5 which explains them) that enhances the GA unit of IRUGA

performance, the mutation rate to be applied in the GA unit of IRUGA is 0.7, which is the

maximum rate used (Radwan et al 2006). Hence the comparison in this experiment is done

when IRUGA is using mutation with probabilities of 0.001, 0.1, 0.2 and 0.7.

As a general observation, the performance of the GA unit of IRUGA when applying these

mutation rates is almost the same and can hardly be distinguished using the graphs.

Therefore tables are included here to better represent the figures. Looking at precision @ top

N measure, it is found that MUTE70 achieves the highest performance when compared with

other rates of mutation. It achieves the highest enhancement when compared with

mailto:P@R0

Chapter 4: Experiments and Results 166

MUTE001 although it is a slight enhancement. This enhancement ranges from 1.52% at

P@10 to 9.67% at P@70. The performance of different mutation rates becomes closer to

MUTE70 as the mutation rate increases. Illustration of this is shown in Figure 4-20 where

the performance of MUTE20 is the same as that of MUTE70 except for one point which is

at P@70. The reason behind this similarity is that in mutation only one gene per

chromosome is nominated for replacement. Moreover, the replacement is done only if the

new gene has better fitness value than the replaced one. Otherwise, no replacement is done.

This is to maintain the chromosome performance at its maximum value.

Figure 4-20: Comparison of P@N for Different Mutation Rates

Another measure to be examined is the recall @ top N (Figure 4-21). In contrast to the

previous measure, the performance of MUTE70 has a different effect on recall @ top N

measure. It can be seen from Table 4-27 that the maximum enhancement of MUTE70 is

when compared with MUTE10. Here MUTE70 retrieves 65% of relevant documents at top

10 retrieved documents whereas MUTE10 retrieves 62%, achieving an enhancement of

5.68%. The maximum enhancement occurs at recall @100 where MUTE70 retrieves 94%

while MUTE10 retrieves 89% only, resulting in an enhancement of 6.03%.

Table 4-26: The P@N enhancement percentage of MUTE70 over other mutation rates

Chapter 4: Experiments and Results 167

Mutation

type
MUTE70 MUTE001

% of

improvement
MUTE10

% of

improvement
MUTE20

% of

improvement

P@10 0.72 0.71 1.52 0.71 1.31 0.72 0.00

P@20 0.52 0.51 1.33 0.52 -0.64 0.52 0.00

P@30 0.42 0.41 2.21 0.42 -0.84 0.42 0.00

P@40 0.35 0.34 3.60 0.35 1.25 0.35 0.00

P@50 0.29 0.28 3.28 0.29 0.88 0.29 0.00

P@60 0.25 0.28 -10.97 0.24 4.17 0.25 0.00

P@70 0.22 0.20 9.67 0.21 7.13 0.21 4.76

P@80 0.19 0.18 8.12 0.18 5.58 0.19 0.00

P@90 0.17 0.16 9.04 0.16 6.48 0.17 0.00

P@100 0.15 0.14 6.84 0.14 7.14 0.15 0.00

Average 0.33 0.32 3.47 0.32 3.25 0.33 0.48

Details of the performance of all mutation rates and the percentage of enhancement of

MUTE70 over others are represented numerically in Table 4-27.

The last measure to be considered in this section is the precision @ recall measure. Figure 4-

22 demonstrates the behaviour of MUTE70 as compared with MUTE001, MUTE10 and

MUTE20 graphically. At Precision @ recall 10 the MUTE70 once again has the best

performance where the precision at 10% recall is 100%. That means when retrieving 10% of

relevant documents, all the displayed results are relevant.

Figure 4-21: Comparison of R@N for different mutation rates.

Chapter 4: Experiments and Results 168

Table 4-27: The R@N enhancement percentage of MUTE70 over other mutation rates

Mutation

type
MUTE70 MUTE001

% of

improvement
MUTE10

% of

improvement
MUTE20

% of

improvement

R@10 0.65 0.64 2.34 0.62 5.68 0.63 3.69

R@20 0.78 0.76 2.17 0.75 4.16 0.75 3.87

R@30 0.85 0.82 3.21 0.82 4.00 0.82 3.80

R@40 0.88 0.85 3.20 0.84 4.32 0.85 3.79

R@50 0.9 0.87 3.52 0.86 4.61 0.87 3.43

R@60 0.91 0.88 3.91 0.87 5.01 0.88 3.82

R@70 0.92 0.88 4.31 0.87 5.41 0.88 4.22

R@80 0.93 0.89 4.67 0.88 5.77 0.89 4.58

R@90 0.93 0.89 4.93 0.88 6.03 0.89 4.83

R@100 0.94 0.90 4.93 0.89 6.03 0.90 4.83

Average 0.87 0.84 3.72 0.83 5.10 0.84 4.08

At precision @ recall 100, the score is very close to that of other mutation rates, where both

MUTE70 and MUTE20 achieved 0.87, MUTE001 achieved 0.869, and MUTE10 achieved

0.881. It is noted from Table 4-28 that, at some points, the performance of MUTE001,

MUTE10 and MUTE20 is better than that of MUTE70. Although the overall average

performance of MUTE10 is better than MUTE70 by 0.5%, this improvement is considered

to be very small which gives a favour for the MUTE70 as it achieved the highest precision

at top N and the highest recall at top N.

Figure 4-22: Comparison of P@R for different mutation rates

Chapter 4: Experiments and Results 169

Table 4-28: The P@R enhancement percentage of MUTE70 over other mutation rates.

Mutation

type
MUTE70 MUTE001

% of

improvement
MUTE10

% of

improvement
MUTE20

% of

improvement

P@R10 1.000 0.947 5.60 0.977 2.34 0.960 4.17

P@R20 0.990 0.970 2.09 1.000 -0.99 0.992 -0.16

P@R30 0.990 0.978 1.20 0.997 -0.73 1.011 -2.05

P@R40 0.980 0.968 1.21 0.967 1.39 0.967 1.39

P@R50 0.980 0.983 -0.26 0.982 -0.25 0.982 -0.25

P@R60 0.950 0.957 -0.73 0.958 -0.88 0.947 0.30

P@R70 0.930 0.945 -1.57 0.950 -2.11 0.927 0.31

P@R80 0.910 0.914 -0.49 0.921 -1.23 0.899 1.27

P@R90 0.890 0.897 -0.74 0.902 -1.30 0.878 1.33

P@R100 0.870 0.869 0.08 0.881 -1.23 0.870 0.00

Average 0.949 0.943 0.64 0.954 -0.50 0.943 0.63

4.8 Summary

Several experiments are conducted in this chapter to examine the performance of multiple

techniques applied to test the performance of IRUGA.

This chapter started by describing the HTML documents set used to test the performance of

IRUGA.

Next in the chapter was the identification of the measures that need to be used to evaluate

the IRUGA performance. These measures are precision @ rank N, recall @ rank N, and

precision @ recall N, where N ≤ 100 and N is a multiple of 10. In addition to these

measures, the speed of convergence was considered as a mean to evaluate different

techniques, where the maximum number of generations is obtained for each technique. The

smaller the number of generations implies the faster convergence.

As mentioned earlier, IRUGA consists of two main units. The first one is the document

index. The proposed indexing model is the enhanced inverted index model. The experiment

applied here shows the superiority of this model over other models in terms of space

required to store the indexed terms along with associated data where it used 0.5% of the

space required to store the same index using the vector space model.

The second unit of IRUGA is the GA. GA is applied by performing several operators to

Chapter 4: Experiments and Results 170

produce multiple generations before converging and presenting the results at the last

generation.

A set of experiments is conducted to compare the performance of the proposed technique of

each operator with the main known techniques.

The first experiment tested the selective random selection technique of the first generation

with random selection technique. The enhancement achieved for the former technique on

average using this technique was 101.94% for P@N measure, 110.02 for R@N measure,

and 66.08% for P@R.

The second experiment was to test the effect of the parent selection technique on the quality

of retrieved documents. The comparison was done between parent selection-100 and parent

selection-75. The results obtained showed the advantage of the former one for the measures

P@N, R@N and P@R with an enhancements of 20.6%, 13.43% and 4.6% respectively.

The third experiment conducted was on crossover techniques. The proposed hybrid

crossover is tested against: simple 1-point crossover producing two offspring, non-ordered

crossover producing one offspring, and 2-point crossover producing one offspring. The

hybrid crossover technique achieved the best enhancement for all measures over all other

techniques, and the maximum enhancement was 237.97% and 136.49 % for P@N and R@N

when compared to a simple 1-point crossover producing two offspring. Moreover, the

hybrid crossover achieves the highest enhancement of 130.07% over the two-point

crossover.

The fourth experiment performed in this chapter to compare the performance of the

proposed TPFF function with two of the well know fitness functions used in this domain

which are Okapi-BM25 and Bayesian inference network model. The results reflected the

superiority of TPFF over these functions. The improvement achieved by TPFF over Okapi-

BM25 and Bayesian inference network model is 30.58% and 30% respectively in terms of

P@N measure, 27.55% and 22.52% for R@N measure, while it is 13.17% and 5.16% in

terms of P@R measure.

The last experiment conducted was to test the performance of IRUGA against different

mutation rate. The adopted mutation rate for IRUGA was 70% which was compared with

Chapter 4: Experiments and Results 171

the rates: 0.1%, 10% and 20%. The results obtained show that the mutation rate plays a very

minor factor since the average improvement in the best case was 5.1% for R@N when the

mutation rate is 10%.

The summary of all experiments including operator, techniques used, results of each

measure for each technique and the improvement percentage achieved by IRUGA are

included in Table 4-29.

However, still full marks are not achieved for this technique and this is due to the nature of

IRUGA which is based on the probabilistic feature of its backbone which is the GA unit.

Chapter 4: Experiments and Results 172

Table 4-29: Summary of the techniques, measures and percentage of improvement. The percentage of

improvement beside each technique represents the average comparison of this technique with the one in bold

above it.

Operator Technique P@N Impr. R@N Impr. P@R Impr.
Convergence

speed
Impr.

Initial

generation

creation

Selective

random

selection 0.49 0.87 0.95 22.26

Pure Random

Selection 0.31 101.94 0.44 110.02 0.64 37.80 24.96 12.13

Parent Selection

Parent

Selection-100 0.49 0.87 0.95 22.26

Parent

Selection-75 0.39 20.60 0.86 3.43 0.91 4.6 22.9 2.88

Crossover Hybrid

crossover 0.49 0.87 0.95 22.26

 2-point

crossover 0.14 236.07 0.46 78.66 0.44 130.07 28 25.79

 2-Offspring 0.16 237.97 0.34 136.49 0.48 114.69 43.4 94.97

 Non-Ordered

crossover 0.28 61.36 0.51 65.60 0.66 53.43 13.65 -38.68

Mutation MUTE70 0.33 0.87 0.949 22.26

 MUTE001 0.32 3.47 0.84 3.72 0.943 0.64 22.13 -0.58

 MUTE10 0.32 3.25 0.83 5.10 0.954 -0.50 22.56 1.35

 MUTE20 0.33 0.48 0.84 4.08 0.943 0.63 22.3 0.18

Fitness function Proximity

term fitness

function 0.49 0.87 0.95 21.43

 Okapi-BM25 0.73 75.03 0.68 27.55 0.83 13.17 41.50 48.36

 Bayesian

Network

Interface

Model 0.75 35.07 0.70 22.52 0.91 5.16 20.84 -2.84

Chapter 4: Experiments and Results 173

Chapter 5: Discussion 174

5. C

hapter Five: TPBTIR and IRUGA

5.1 Introduction

IR problem are investigated using many technique as illustrated in Chapter 2. In previous

chapters the IR performance was enhanced using a GA-based IR model which is called

IRUGA. However, GA in general is a probabilistic technique based on randomness, which

due to its nature may miss some high quality documents during the selection of individuals

for the initial generation. Therefore, in this chapter, a traditional IR (TIR) model is to be

designed in order to overcome the random nature of GA. The proposed TIR is featured by

examining all the documents in the collection. Thus, no document is missed during the

evaluation process, resulting in providing the highest performance document in the space as

response to the user query. In contrast, IRUGA is a probabilistic model where a random

sample of the collection is selected and evaluated. Nevertheless, what controls the

performance in TIR is the collection size. If the collection size is huge enough, this

approach becomes extensive in both time and computation cost giving the advantage for

IRUGA.

 In order to recognize the novelty of the proposed Term Proximity Evaluation Function

(TPEF) which is referred to as TPFF in Section 3.4.4, a comparison between this function

and other fitness functions needs to be performed. An empirical study is conducted in this

chapter to compare the performance of both IRUGA and TIR using the TPEF evaluation

functions. In addition, a comparison will be conducted to compare the performance of TPEF

with the performance of the two well known evaluation functions applied in IR and already

described in Chapter 4, namely, the OKAPI-BM25 and Bayesian inference network

functions. This experiment will be conducted using both IRUGA and TIR models.

Moreover, this chapter analyzes the time performance of both IRUGA and TIR when using

the TPEF function. With the results analyzed, all these techniques are discussed

At the end of this chapter, the results obtained are discussed by different experiments

Chapter 5: Discussion 175

conducted in this chapter and previous one. The experiments performed in Chapter 4

compared the IRUGA performance with other GA-based IR models. The comparison is

performed between different techniques of implementing GA operators, while the

experiments done in this chapter compared the performance of IRUGA with traditional IR

(TIR) models using several evaluation functions. The results obtained show a high

improvement of IRUGA over TIR models in terms of the processing time. Applying the

term proximity functions to TIR produces a high performance TPBTIR model which

slightly outperforms IRUGA in terms of the three recall and precision measures defined

earlier. On the other hand, applying the two well known evaluation functions, namely, the

OKAPI-BM25 and Bayesian inference network models, to the TIR model results in an IR

system that has a lower performance than IRUGA in terms of these three measures.

Hence, this chapter will be organized in the following order: Section 5.2 provides a

description of the structure of the proposed term-proximity-based TIR (TPBTIR) model and

its units as well as illustrating its performance in term of the precision and recall measures.

Section 5.3 will examine the performance of the proposed TPEF when applied by the

TPBTIR model. The next experiment in Section 5.4 will investigate the time performance of

IRUGA and TPBTIR when both are using the TPEF function, while in Section 5.5, an

experiment is conducted to compare the quality of the retrieved documents using the TPEF

function, Okapi-BM25 function, and Bayesian inference network function when all are

applied using the TIR approach. This experiment is conducted by examining the first

retrieved document using each one of these evaluation functions and by comparing the

precision and recall measures achieved by each model. The discussion of the results that

have been achieved, indicating the strengths in IRUGA and TPBTIR that led to these

impressive results is provided in section 5.6. This discussion includes the performance of

the enhanced inverted index of IRUGA against other indexing models and the performance

of IRUGA and TPBTIR in terms of the three measures. The last section, which is 6.6,

summarizes and concludes this chapter.

5.2 TPBTIR Structure

The Traditional IR (TIR) system typically consists of two units (Cutler, Shih, and Meng,

1999). The first unit is the indexing tool which extracts the useful keywords from the search

Chapter 5: Discussion 176

space and represents them in a way that facilitates the process of finding the relevant

documents. The second unit is the searching tool. It compares each user query to all

documents in the search space through the index database and returns a list of relevant

documents. In most cases, the documents returned are ranked based on an evaluation

function (Cutler, Shih, and Meng, 1999). However, the application of the evaluation

functions to the set of documents returned is a crucial issue for the IR models from the

computation point of view. According to (Dong et al, 2008), the extensive computation cost

is a common drawback for most of the Traditional IR paradigms as it has to be applied to a

vast number of documents in the data set. Nevertheless, the assumption applied by

(Picarougne et al, 2002), that the user can wait a longer time (several hours) provided that

he gets better results, is valid as outlined in the coming experiments as well.

5.2.1 The Design of TPBTIR

In this experiment, an example of the TIR technique is proposed and denoted as: Term-

Proximity-Based TIR (TPBTIR). The indexing unit of this model is similar to that of

IRUGA’s. However, the mechanism of the searching unit of TPBTIR is different from

IRUGA’s. In IRUGA, it is the GA unit, whereas in TPBTIR, it is the proposed Term

Proximity Evaluation Function (TPEF) described in Section 3.4.4. Once the user enters the

query, this function will be applied to the whole document set in the search space to

evaluate the documents based on this query in order to rank the results before displaying

them to the user. Obviously, the evaluation of all documents in the data set is impractical,

especially in the case of the web, where the number of such documents is uncountable. To

further improve this, an additional criterion is applied to limit the number of evaluated

documents. This criterion is to set a threshold for the number of referenced keywords within

the document. If the document has a number of referenced keywords greater than this

threshold then it will be evaluated, otherwise it is discarded. Consequently, only the

documents that reference at least one keyword will be evaluated (if the threshold is set to

one). The TPBTIR layout is depicted in Figure 5-1,

Chapter 5: Discussion 177

5: The TPBTIR layout

5.2.2 The Performance of TPBTIR

In this study, TPBTIR is applied to the same data set and to the same queries described in

Sections 5.2 and 5.3 respectively. The threshold of minimum number of query keywords

that exists in the evaluated document in this experiment is set to one. That is, if any

document has at least one of the query keywords, then it is evaluated and ranked. By

applying this approach, TPBTIR was able to retrieve the best relevant documents and rank

them at the top position. The documents retrieved are analyzed using the measures:

precision at top N, the recall and top N and precision-recall measures.

As illustrated in Table 5-1, the precision achieved by this model reaches 0.95 at first 10

documents retrieved. This implies that the number of relevant documents that appear at the

first position ranges between 9 and 10 documents. Hence, the first page of results (assuming

that each page displays 10 results) returns only the relevant documents. In fact, the

remaining 0.05 are due to the fact that 47% of the queries have less than 10 relevant

documents. In this experiment, the relevant documents appear at the top, while the irrelevant

documents appear at the bottom of the resulting page. That’s why the precision is very low

at the bottom rows of this table. When applying the average 11-point precision measure, it

is shown that the achieved score for this technique is 0.57. This percentage is very high

when compared with the existing techniques such as (Cutler et al, 1999) and (Kim and

Zhang, 2000) which achieved 0.255 and 0.2412 respectively.

TPBTIR

System
User

Query

HTML Document

Indexing Unit

Documents

Evaluated by

term proximity
function

Ranked

Results

Chapter 5: Discussion 178

Table 5-1: The performance of TPBTIR

Measure Precision Recall
Precision-

recall

0 1.00 0.01 1.00

10 0.95 0.71 0.97

20 0.78 0.85 0.97

30 0.67 0.92 0.96

40 0.57 0.95 0.96

50 0.50 0.96 0.95

60 0.44 0.97 0.95

70 0.40 0.98 0.94

80 0.36 0.98 0.93

90 0.33 0.99 0.92

100 0.31 0.99 0.91

Average 0.57 0.85 0.95

The second measure to be considered here is the recall at top N retrieved documents. The

importance of this measure is to show the improvement of retrieving relevant documents

and to demonstrate the ability of TPBTIR to retrieve all of the relevant documents. As

shown in Table 5-1, this approach is able to retrieve most of the relevant documents since

this measure scores 0.99 at recall at 100. Knowing that 80% of the queries have less than 30

relevant documents, it is shown that the recall is more than 0.9 after the point recall at 30.

Using the average 11-point recall measure, TPBTIR achieves 0.85. Once again, this value is

much better than that of the existing techniques (Cho and Richards, 2004) which achieved

0.319.

The last measure to be investigated here is the precision-recall measure. It is one of the

most common measures used to evaluate the information retrieval systems as explained in

Section 5.4. This measure examines the purity of the results retrieved, since it reflects the

percentage of relevant documents at multiples of 10% of the relevant documents to the total

retrieved documents. The ideal case is achieved when these numbers are identical, i.e. when

the number of relevant retrieved documents is equal to the number of retrieved documents

or when all retrieved documents are relevant at each point in this scale.

Referring to the Table 5-1 once more, it is noted that the highest score is 0.97 at this first

10%. This means that when retrieving 10% of the relevant documents, there is a very small

Chapter 5: Discussion 179

fraction of irrelevant documents that are additionally retrieved. The P@R measure achieves

more than 0.9 at all of the measuring points in this table, which shows that the relevant

documents are always retrieved at high rank and displayed right at the top of the retrieved

documents. In fact, web users are looking for such a retrieval system which saves the user

from browsing many results before finding the requested piece of information. By looking at

other existing techniques, it is found that (Aly, 2007) achieved precision-recall of 0.7 using

the average 11-points, while (Kim and Zhang, 2000) achieved 0.7152 as an average of the

first 2 points, which are precision-recall at 10 and at 20.

Comparing these results with those achieved by the existing techniques, TPBTIR proves its

superiority over these models in terms of precision, recall and precision-recall measures.

5.3 Recall and Precision Performance of TPBTIR and IRUGA

The second point to be considered when comparing IRUGA with TIR is the recall and

precision performance. Since TPBTIR evaluates all documents of the search space using

TPEF to display the best of them in descending order to the user, TPBTIR is expected to

have better performance than IRUGA for this data set using the same fitness function. The

reason behind this is that IRUGA is considered as a probabilistic model; hence not the all

the documents in the search space are selected in the solution. This kind of selection misses

some good documents, while TPBTIR examines all the documents in the search space. This

allows TPBTIR to retrieve all relevant documents.

The comparison of IRUGA and TPBTIR in terms of these measures is illustrated in Table 5-

2. These results are already analyzed in Section 5.6.5 for IRUGA and in the previous

Section for TPBTIR, but are brought here to perform side by side comparison. In this table,

the average P@N of TPBTIR is higher than that of IRUGA by 16.3%, the average R@N of

TPBTIR is higher than that of IRUGA by 14.87%, and the average P@R measures are

almost the same for both TPBTIR and IRUGA. These results are consonant with our

expectation.

Chapter 5: Discussion 180

Table 5-2: Comparison between IRUGA and TPBTIR in terms of recall and precision measures

Measure P@N R@N P@R

Model TPBTIR IRUGA TPBTIR IRUGA TPBTIR IRUGA

0 1.00 1.00 0.01 0.01 1.00 1.00

10 0.95 0.86 0.71 0.63 0.97 1.00

20 0.78 0.69 0.85 0.76 0.97 0.99

30 0.67 0.57 0.92 0.81 0.96 0.99

40 0.57 0.48 0.95 0.83 0.96 0.98

50 0.50 0.41 0.96 0.84 0.95 0.98

60 0.44 0.35 0.97 0.85 0.95 0.95

70 0.40 0.30 0.98 0.85 0.94 0.93

80 0.36 0.27 0.98 0.85 0.93 0.91

90 0.33 0.25 0.99 0.85 0.92 0.89

100 0.31 0.22 0.99 0.86 0.91 0.87

Average 0.57 0.49 0.85 0.74 0.95 0.95

5.4 Time Performance of TPBTIR and IRUGA

The major advantage of IRUGA over TPBTIR is the number of documents that are

evaluated upon reception of the user query before displaying the results. In TPBTIR all

documents in the search space are evaluated, while in IRUGA, only the randomly selected

documents are evaluated. In IRUGA, the number of evaluated documents depends on the

number of chromosomes which represent the population size P and the size of the

chromosome C. In a such case, this number is P × C  S, where S is the search space.

Adding additional criteria to the documents selected will reduce the number of these

documents. The criterion applied in IRUGA is that the selected documents must have at

least one keyword from the user query. Applying this criterion to IRUGA and to TPBTIR

when both are using the TPEF function produces the results shown in the third column of

Table 5-3, which shows slight advantage of TPBTIR over IRUGA. These figures represent

the average time required by each approach using 15 queries, bearing in mind that IRUGA

works in two stages. The first stage is the creation of the first generation, where the

document evaluation is performed. However, most of the processing time is spent in this

stage (as the few document evaluations are done during the mutation process). While the

second stage, which takes a much shorter time, is the application of the GA’s operators to

generate the following generations and to produce the final result. Moreover, the

performance of TPBTIR is much affected by the criteria of document selection. In the case

Chapter 5: Discussion 181

when N ≥ 0, where N represents the number of the query keywords. In this case, TPBTIR is

going to evaluate all the documents in the search space before producing the result. The

second column in Table 5-3 demonstrates the performance of this scenario which shows

how much faster is IRUGA than TPBTIR.

Table 5-3: Comparison between IRUGA and TPBTIR in terms of query processed time

Model

Average Time per

query (sec)

N≥0

Average Time

per query (sec)

N≥1

Average

GA time

(Sec)

N≥1

Document Evaluation

time (sec)

N≥1

IRUGA 2694.2 2721.5 852 1.581

TPBTIR 5545.6 2079.6 - 1.794

5.5 The Performance of the Three Fitness Functions Using

TPBTIR

This section compares the performance of the TPEF function with both OKAPI-BM25 and

Bayesian inference network model functions by performing two experiments. The first

experiment examines the quality or the degree of relevance of the first document retrieved

by each model. The second experiment investigates the documents retrieved in terms of the

recall and precision measures, which are precision at top N, recall at top N, and the

precision-recall measures. The comparison between these three functions is already

performed in Section 5.6.5 using IRUGA. In order to demonstrate the extreme performance

of each function, the TPBTIR approach will be applied. Using this approach in this

experiment rather than in IRUGA is to avoid the probabilistic behaviour of IRUGA which

may miss some good documents of the search space due to the random selection of

population, and to make sure that the first ranked document is the best in the search space

from the evaluation function’s point of view.

5.5.1 The Quality of the Documents Retrieved Using Different Evaluation

Functions

In this experiment TPBTIR is tested on a set of queries listed in Appendix C. One query of

this list is considered here as an example to illustrate the quality of the retrieved documents

using different fitness functions, which is:

Chapter 5: Discussion 182

“Mathematics experiences through image processing”

This query exists in eight documents.

When applying TPBTIR with different evaluation functions on this query, different

documents are retrieved at the first position. These documents are presented in Figures 5-2

to 5-4, where Figure 5-2 shows the first document retrieved using TPEF, Figure 5-3 shows

the first document retrieved using Okapi- BM25, and Figure 5-4 shows the first document

retrieved using Bayesian inference network fitness function. From these figures, one can

judge that the document retrieved by the TPEF function (shown in Figure 5-2) is the most

relevant document to the user query. This is because the title of this document matches the

query. And the query keywords appear near the top of the document which is the title.

Moreover, these terms appear in different kinds of tags, ranging from the most important

HTML tag which is the title tag to the second most important tag which is the header tag

ending with the least important tags which are the bold and body tag. This implies that these

keywords are emphasized by the author of this document using the semantic tags (title and

header) and formatting tags (bold).

However, the document shown in Figure 5-3, which is retrieved at the first rank by OKAPI -

BM25 function, can be judged as more relevant than the one shown in Figure 5-2. This is

because the percentage of occurrences of the query keywords is high compared to the size of

the document. However, these keywords do not appear within other tags and are not

scattered among the document. This makes the document in Figure 5-2 more relevant to this

query.

The first document retrieved by the third function, which is the Bayesian inference network

model, is shown in Figure 5-4. This document has many occurrences of the queried

keywords. Although it references the same query terms and the same order, its content is not

as relevant as the one in Figure 5-2, since the main topic of this document does not

Chapter 5: Discussion 183

Figure 5-1: The first document retrieved using the TPEF function of TPBTIR.

Figure 5-2: the first document retrieved using OKAPI-BM25 function

Chapter 5: Discussion 184

Figure 5-3: The first document retrieved useing Bayesian Inference Network function.

match the query exactly. Although all these three documents are considered as relevant to

the query under consideration, it is obvious that the one retrieved by TPEF is the most

relevant and reflects the accuracy of this function.

Another point worthy of attention is the evaluation value of each function. As stated in

Chapter 3, for TPEF function, the evaluation score of each document has an upper limit and

it is dependent on the document itself. Hence, its maximum value is one. As shown in Table

5-4, the evaluation value of the first document retrieved by TPEF is 0.7739. This gives a clue

as to how relevant the document is to the query. On the other hand, the evaluation value

obtained by the Okapi-BM25 and Bayesian models (41.97 and 0.826 respectively) are not

bounded. Consequently, one cannot predict the degree of relevance based on these values

alone unless these values are compared with the scores of the other documents in the space.

Chapter 5: Discussion 185

This is because they are dependent on some global factors that are obtained from all the

search space. Therefore, the degree of relevance of a document is “comparative” in the

sense that it is more relevant to the user query than other documents in the space.

Table 5-4 lists the statistics of the factors used by each one of these three fitness functions in

addition to the rank and evaluation value of these documents according to each fitness

function.

Table 5-4: Comparison of the ranks and factors of the three fitness functions for the first document retrieved by

each fitness function.

Factors and Ranks TPEF Okapi-BM25 Bayesian

Document reference number 6371 5685 6376

Unique Terms within document 303 73 277

Document Size 624 133 579

Fitness value 0.7739 41.97 0.826

Keyword Frequency 27 10 29

No. of unique referenced keywords 5 5 5

Total Weight of all words 1664 829 1121

Rank in IRUGA 1 2 8

Rank in Okapi 3 1 2

Rank in Bayesian 2 3 1

5.5.2 Recall and precision of the three fitness functions

To overcome the randomness of selecting the documents in the initial generation creation of

the GA unit of IRUGA, this experiment is performed by using TPBTIR. The advantage of

TPBTIR over IRUGA is that the former evaluates all the documents in the search space and

retrieves the best among the whole set, while the second approach selects a set of documents

randomly and applies the operators of the GA unit to produce the best among them.

The first measure to be considered is the precision at top N. The results illustrated in Figure

5-5 show the advantage of TPFF over other functions. It starts by a precision of 0.95 at the

top 10 retrieved documents. This means that the number of relevant documents within the

first 10 retrieved documents ranges between 9 and 10. A few of the queries have the number

of relevant documents less than 10, causing this percentage to be below one. This score

decreases until it reaches 0.31 when retrieving 100 documents. That means, within the top

Chapter 5: Discussion 186

100 retrieved documents, only 31 of them are relevant. The reason behind this low

percentage at P@100 is either that the number of relevant documents is small, so the

relevant documents are displayed at high rank, or this function is not able to rank the

relative documents at high position as it assigns them a low evaluation value, thus causing

some relevant documents to be retrieved at very low rank. Knowing that the average number

of relevant documents per query is 19.24, the first option is more likely to be the actual

reason for this percentage. In general, the average improvement achieved by TPEF is

37.21% over OKAPI-BM25 and 84.81 % over Bayesian as shown in Table 5-5.

Figure 5-4: The precision improvement of TPFF over other functions

The second measure to be analyzed is the recall at top N. This measure shows how many

relevant documents are retrieved at the top position of the displayed results. The aim is to

retrieve all the relevant documents and to display them at the top. TPEF managed to achieve

99% of this aim by retrieving 99% of the relevant documents as depicted in Figure 5-6 and

numerically represented in Table 5-6. Knowing that 2% of the queries have more than 100

relevant documents justifies the reason why not 100% is achieved here. However, the

improvement of TPEF is noticeable where it ranges between 16.44% when compared with

Bayesian inference network, and 18.87 % when compared with OKAPI-BM25.

Chapter 5: Discussion 187

Table 5-5: Percentage of precision improvement of TPFF over other functions

Measure TPEF OKAPI

% of

Improvement Bayesian

% of

Improvment.

P@0 1.00 1.00 0 1.00 0

P@10 0.95 0.64 49.46 0.54 74.63

P@20 0.78 0.50 54.79 0.40 94.22

P@30 0.67 0.44 52.11 0.33 105.92

P@40 0.57 0.39 47.76 0.27 108.33

P@50 0.05 0.35 43.02 0.25 99.81

P@60 0.44 0.32 37.25 0.23 95.53

P@70 0.40 0.30 35.41 0.21 93.53

P@80 0.36 0.27 32.59 0.19 87.16

P@90 0.33 0.25 29.74 0.18 86.38

P@100 0.31 0.24 27.15 0.17 87.38

Average 0.57 0.43 37.21 0.34 84.81

Figure 5-5: The recall improvement of TPFF over other functions

The last measure to be investigated is the precision-recall measure. It computes the total

number of documents retrieved when retrieving multiples of 10% of the total relevant

documents. That is, in order to retrieve the first 10% of the relevant documents, how many

additional irrelevant documents are retrieved? Figure 5-7 shows that all three functions start

at good points that are between 0.96 and 0.97 for P@R10. But when retrieving more

Chapter 5: Discussion 188

Table 5-6: Percentage of recall improvement of TPFF over other functions

Measure TPEF Bayesian

% of

Improvment. OKAPI

% of

Improvment.

R@0 0.01 0.01 0 0.01 0

R@10 0.71 0.54 31.48 0.59 20.34

R@20 0.85 0.71 19.72 0.72 18.06

R@30 0.92 0.78 17.95 0.76 21.05

R@40 0.95 0.81 17.28 0.79 20.25

R@50 0.96 0.83 15.66 0.80 20.00

R@60 0.97 0.83 16.87 0.80 21.25

R@70 0.98 0.83 18.07 0.80 22.50

R@80 0.98 0.83 18.07 0.80 22.50

R@90 0.99 0.83 19.28 0.80 23.75

R@100 0.99 0.93 6.45 0.84 17.86

Average 0.85 0.72 16.44 0.70 18.87

relevant documents the performance drops gradually for both Bayesian and OKAPI

functions, while the performance of TPEF drops slightly until it reaches 0.91 when

retrieving all the related documents as illustrated in Table 5-7. That means, when retrieving

all the related documents only 9% of the retrieved documents are irrelevant, and these

irrelevant documents appear at the bottom of the displayed results. The results achieved are

very near to the user’s expectation since he or she is expecting all top ranked documents to

be relevant, and most of the relevant documents appear in top position.

Figure 5-6: The precision- recall improvement of TPFF over other functions

mailto:R@20
mailto:R@20
mailto:R@20
mailto:R@20
mailto:R@20

Chapter 5: Discussion 189

Table 5-7: Percentage of precision- recall improvement of TPFF over other functions

Measure TPEF OKAPI

% of

Improvement. Bayesian

% of

Improvement.

P@R0 1.00 1.00 0 1.00 0

P@R10 0.97 0.97 0.27 0.96 1.31

P@R20 0.97 0.96 1.25 0.94 3.40

P@R30 0.96 0.93 3.51 0.93 3.23

P@R40 0.96 0.91 5.36 0.93 3.09

P@R50 0.95 0.88 7.98 0.92 2.93

P@R60 0.95 0.84 12.72 0.91 4.11

P@R70 0.94 0.82 14.80 0.88 6.98

P@R80 0.93 0.80 16.40 0.86 8.28

P@R90 0.92 0.76 20.91 0.83 10.71

P@R100 0.91 0.71 28.61 0.80 14.14

Average 0.95 0.87 10.16 0.91 5.29

5.5.3 IRUGA Vs TIR Using the Three Evaluation Functions

To summarize the experiments performed so far in this chapter, the results are presented

together in Table 5-8. This table shows that the best performance achieved is when using the

TPBTIR model. This model achieves a best precision of 0.57, a highest recall of 0.85, and a

highest precision-recall of 0.95. This approach achieves the best performance due to the

combination of the high performance evaluation function and the natural behaviour of the

TIR which parses the whole document set in order to obtain the best document among the

data set. However, this high achievement is accomplished at the expense of the time spent

by the user waiting for the system to evaluate every single document to get such results.

Table 5-8: Summary of TPDTIR and IRUGA performance

Model
Evaluation

Function
P@N R@N P@R

TPBTIR TPEF 0.57 0.85 0.95

TIR Bayesian 0.34 0.72 0.9

TIR OKAPI-BM25 0.43 0.70 0.87

IRUGA TPEF 0.49 0.80 0.95

IRUGA Bayesian 0.25 0.71 0.91

IRUGA OKAPI-BM25 0.32 0.68 0.85

IRUGA is a good alternative to TPBTIR when the processing time is concerned, and

produces precision-recall that is very close to TPBTIR’s. Although its performance is

slightly lower than TPBTIR in terms of P@N and R@N measures, the results are still

relatively high and much better than those of the OKAPI-BM25 and the Bayesian inference

mailto:P@N
mailto:R@N
mailto:P@R

Chapter 5: Discussion 190

network models.

5.6 Discussion

This section discusses the results obtained by different experiments conducted in the

previous chapter and this chapter. The experiments performed in Chapter 4 compare

IRUGA performance with other GA-based IR models. The comparison is performed

between different techniques of implementing GA operators, while the experiments done in

this chapter compared the performance of IRUGA with TIR models using several evaluation

functions. The results obtained show a high improvement of IRUGA over TIR models in

terms of the processing time. Applying the term proximity functions to TIR produces a high

performance TPBTIR model which slightly outperforms IRUGA in terms of the three recall

and precision measures defined earlier. On the other hand, applying the two well known

evaluation functions, namely, the OKAPI-BM25 and Bayesian inference network models, to

the TIR model results in an IR system that has a lower performance than IRUGA in terms of

these three measures.

This section will discuss the results that have been achieved, indicating the strengths in

IRUGA and TPBTIR that led to these impressive results, the performance of the enhanced

inverted index of IRUGA against other indexing models, then finally discusses the

performance of IRUGA and TPBTIR in terms of the three measures.

5.6.1 The Performance of the Enhanced Inverted Index

Both IRUGA and TPBTIR are built on top of the enhanced inverted index. For each indexed

term, this index stores a list of documents referencing it in addition to its position within the

document and within the sentence. Moreover it stores the HTML tag weight for these terms.

This indexing model gives the flexibility to associate as much data as possible to the term

without much affecting the storage space or retrieval speed. In contrast, vector space

requires a huge amount of space (Snasel, Moravec and Pokorny, 2005), expressed as n × m,

where n and m are total number of terms and total number of documents in the search space

respectively. In Section 5.5 it is shown that this indexing technique saves 99.5% of the space

that would be used by the vector space. This finding supports the main drawback of the

vector space model mentioned in (Snasel, Moravec and Pokorny, 2005), which states that

Chapter 5: Discussion 191

the document vector has a big dimension and requires huge storage volume if stored as

classical vectors. Moreover, this type of indexing increases the load on the system resources

by increasing the computation cost during the document evaluation process (Dong et al,

2008). Latent semantic indexing (LSI) was another option to use as an indexing model.

However, the data set used in this research consists of 128213 unique words distributed over

8344 documents. Applying LSI to this data set reduces the noise and removes the

redundancy from the indexed terms (Dong et al, 2008). However, constructing this index

consumes a longer time since it will parse whole documents to build the initial vector space

and obtain the singular value decomposition before constructing another compressed

semantic version of the vector space matrix that includes only the important terms and

removes the noise and redundant terms. In addition, this model has the same drawback as

the vector space, that is the limitation of storing additional data associated with each term.

5.6.2 Performance of IRUGA and TPBTIR

Several experiments are applied to IRUGA and TPBTIR to compare their performance with

the existing techniques. In this section, IRUGA and TPBTIR will be compared with GA-

based IR approaches as well as other TIR approaches. Despite the huge amount of research

that is investigating IR performance, it is found that only a few of them mention explicitly

the numerical results of precision, recall and precision-recall achieved by their techniques.

Hence, this chapter will focus on these approaches and compare them with IRUGA and

TPBTIR. Moreover, from the GA point of view, since the research in literature on GA

approaches focuses on one or two operators only per study, it is difficult to compare the

performance of IRUGA with each existing technique. Hence, the comparison will be based

on the evaluation measures mentioned in Section 4.4 and the techniques applied by these

studies are highlighted.

5.6.3 Convergence speed

This measure is applicable for GA-based approaches; hence, TPBTIR will be excluded from

this comparison. One of the objectives of IRUGA is to enhance the speed of retrieving the

results. This speed can be controlled in two ways. The first one is to speed up the process of

creating each generation. This is mainly affected by the complexity of the fitness function

Chapter 5: Discussion 192

and the crossover operator in addition to the processor speed. Since this measure is not

mentioned by other research work it will not be considered in this study.

The second method of measuring the speed is to minimize the number of generations, or in

other words: to tune the GA operators in order to speed up the convergence. Although this

measure is not tackled explicitly by researchers, it is pointed out as an advantage of a

specific technique that allows fast convergence (Yang, Korfhage and Rasmussen, 1992;

Pathak, Gordon and Fan, 2000). In Section 4.7.1, a comparison is done between different

techniques of GA operators and is summarized in Table 4-29. These figures are obtained

from the experiments applied to IRUGA when compared with other techniques. Since such

results are not mentioned explicitly by other researchers, it is going to be induced from their

work.

In literature, the number of generations is mentioned as a parameter of the GA model where

it ranges between 20 (Kim and Zhang, 2000) and 500 (Vrajitoru, 2007). However, few of

them include the number of generations in the results graphically (Losee, 1996) or in tabular

form (Vrajitoru, 1997). (Losee, 1996) represented the results graphically where the

maximum number of generations was 90 for the first experiment and 60 for the second one,

whereas the number of generations in (Kim and Zhang, 2003) is 30 when examining the

HTML tag weight using GA. These studies show that IRUGA converges faster. On the other

hand, (Kim and Zhang, 2000) plotted the results of average fitness per generation and show

that the maximum number of generations is 20 which somehow indicates the speed of

convergence for this model. This is slightly better than IRUGA’s, but it quality of the results

in terms of precision and recall are lower. Nevertheless, there is no special importance given

to this factor. Therefore these figures will not reflect the actual speed of convergence but

can provide an idea about where IRUGA fits for this measure. (Húsek et al 2005) produces

recall of 1 when the number of generation is very huge where it is 1200. While (Radwan et

al, 2006; Aly, 2007) converges within 100 generations. Much apart from these is the number

of generations required for (Marghny and Ali, 2005) approach to divert wich is 12000

generations. OF course, this gives an idea about the slow perforemance of such approach

which aims to produce high evarage mean quality of the retrieved documents. And the

achieved quality is 25%.

Chapter 5: Discussion 193

The average number of generations formed by IRUGA was 22.26. The main reason of the

combination of the low number of generation and high precision and recall is the way the

IRUGA’s hybrid crossover is implemented. As illustrated in Table 4-5, this crossover

technique is faster than non-ordered crossover by 20.5% and faster than one-point crossover

which produces two offspring by 48.71%. However, it was slower than 2-point crossover by

63%. However, the later performance was very poor in terms of recall and precision as

shown in Section 4.7.4.1. The reason is that this technique pushes the high quality genes

towards the left of the chromosome by ordering the genes and by combining the best genes

of both parents into one offspring.

5.6.4 Precision at top N (P@N) Measure

The average precision for the 11-point measure achieved by TPBTIR and IRUGA are 0.57

and 0.47 respectively when considering all queries. However, this measure is heavily

affected by the number of relevant documents per query, and here is the explanation: P@0

means the precision at first retrieved document and IRUGA always retrieves a relevant

document at the first position, so IRUGA doesn’t have a problem at this point. The issue is

in the following points. P@10 is considered as an example. This measure represents the

percentage of the relevant documents within the first 10 retrieved documents. If the total

number of relevant documents is less than 10 then this value will always be less than 1. But

if the total number of relevant documents is greater than 10, then this value can reach 1 if all

top 10 retrieved documents are relevant. Since 53% of the queries used by IRUGA have a

relevant number of documents of less than 10, then there is a probability of 53% for P@10

not to reach 100%. Thus, this measure can be evaluated again for the documents having N >

10. In this case, P@10 jumps from 0.85 to 1 and the average precision jumps from 0.49 to

0.62. Similarly, this measure jumps from 0.95 for TPBTIR to 1 at P@10 and the average

precision jumps from 0.57 to 0.71.

From the literature, it is shown that many researches apply the common fintess functions

which is TF-IDF. In fact, this function is based on statistical factors only, namely, term

frequency, number of documents referencing this term and total number of documents in the

search space. Moreover, this function favours the documents with high term frequency

regardless of the document size since the second factor (IDF) is constant for all documents

Chapter 5: Discussion 194

under consideration. To overcome this drawback, Vrajitoru used the normalized form of TF-

IDF by dividing each component by the document size. So the document is now evaluated

based on the percentage of the term frequency within the document. In general, still this

formula not enough to completely evaluate the document. When applying this formula to

HTML documents, (Cutler et al, 1999) introduced an additional vector called: Class

Importance Vector CIV concept. The values within this vector represent a weight assigned

to the HTML tags under consideration. This vector is multiplied by the term frequency

vector TFV in order to measure the relevance of a document.

(Kim and Zhang, 2003) has adopted GA to evaluate the weight to be assigned for HTML

tags and applied these weights to three know evaluation functions, namely, TF-TDF, 2-

poisson model, and Bayesian inference network model, (Refer to table 7-1 for listing of

these formula). Among these three formulas, the best result is achieved by the 2-poisson

model, and it was 0.63 for P@10 and 0.46 for P@20. In spite of that, these results are still

far from the results achieved by IRUGA, namely, 0.86 and 0.69 for the same measures.

An example is presented in this context to compare the quality of documents retrieved by

TPFF with that retrieved by TF-IDF. This example is applied on query number 7 in

Appendix C. This query is: “caltech computer science department”. The first document

retrieved by both IRUGA and TF-IDF model are depicted in Figure 5-8 and Figure 5-9. (For

simplicity they are referred as D1 and D2 respectively). D1 has the 4 keywords of the query,

while D2 has only 3. D2 is retrieved in position 564 in IRUGA model since it has very low

relativity (score of 0.3284 using TPFF), while document1 come in position 14 using TF-IDF

model. Details of calculating TF-IDF for D2 is presented in Table 5-9, where N is the total

number of document in the space which is 8349. This example proves one of the major

drawbacks of TF-IDF and its variations since it concentrates on the popularity of the

keywords among the document set as it favours terms that are less referenced and gives

them higher weight. Once again this is considered as a global factor, and makes the

relevance depending on the data set rather than depending on the content of the document

itself.

Chapter 5: Discussion 195

5-9: Factors used to calculate TF-IDF for document 2

WORD
N (total document referencing the

term)
log(N/df) freq. TF-IDF /word

CALTECH 142 1.7693461 77 136.239651

COMPUTER 4494 0.2690014 5 1.345006965

DEPARTMENT 2911 0.4575923 0 0

SCIENCE 3612 0.3638867 6 2.183320316

Document TF-IDF 139.7679783

Figure 5-7: The first doc retrieved by IRUGA for query 7 of table 7-2.

From another prospective, it is shown that the documents presented using the vector space

model are evaluated using TF-IFD, or other well known similarity measure which are

compatible with the vector representation such as cosine measure (Aly, 2007), Jaccard

coefficient and Dice coefficient (Klabbankoh and Pinngern, 2008; Saini, Sharma, and

Gupta, 2011) (refer to Table 7-1 in appendix A for the formulas of these models). This

representation may produce reasonable results according to the mathematical evaluations

where (Klabbankoh and Pinngern, 2008) achieved maximum precision of 0.746 and (Saini,

Sharma, and Gupta, 2011) achieved precision of 0.705. However, these formulas are

restricted to statistical factors which depend on the density of the terms within the document

itself or within the collection. Similarly is the probabilistic model in which the probabilistic

Chapter 5: Discussion 196

theories are applied to evaluate the document based on the entered keywords. The approach

proposed by (Zhang, Wei and Meng, 2012) applies the probabilistic information retrieval

model to capture the correlations between the unspecified and specified values of leaf nodes

as well as the user preferences based on the XML data and query history, where leaf nodes

corresponds to product details. This model is applied on used car dataset consisting of

100000 car parts and achieved average precision of 0.79. However, this approach is more

suitable for question-answering systems than general document retrieval system.

Moving further toward other types of factors used to evaluate the documents it found that

(Cummins and O’Riordan, 2006) has categorized the factors into local factors and global

factors, and proposed an evaluation function (formula 6 in table 7-2) that is composed of all

of these factors, then compared it with both TF-IDF and BM25 formulas. This evaluation

function performs better than them but with maximum average precision of 0.588 on a

collection of 1033 documents. However, this document set is not big enough to prove

efficiency.

Another factor to be considered in evaluating the document is the term proximity. (Tian et

al, 2006) applied several term proximity concepts in evaluating the document. These

concepts include Mimum Term Distance (MTD), First Appearance of MTD (FAM) and

Local Appearance Density LAD. This technique is applied on 20 documents and found that

the precision ranges beteen 0.85 for P@1 and 0.4 for P@20. This technique shows

enhancement in the precision compared with above techniques. The best improvment is

achieved by MTD concept. Hence it is adopted in this work as part of the proposed fitness

function.

Applying the HTML tags, it is found that (Cutler et al, 1999) and (Kim and Zhang, 2000)

have achieved precision of 0.254 and 0.2412 respectively. These two approaches are applied

to HTML documents using the vector space model for document representation. GA was

applied in these systems to find the best HTML tag weight. In (Cutler et al, 1999), the

results are mainly controlled by the crossover technique in addition to the method of

evaluating individuals. The crossover is done for each consecutive pair of the parent

population with a probability of 0.75 and it is performed using a binary mask to exchange

the 1’s bits of parent chromosomes. However, using binary masks for crossover causes the

Chapter 5: Discussion 197

5-8: The first doc retrieved by TF-IDF formula for query 7 of table 7-2

Chapter 5: Discussion 198

destruction of the building blocks as explained in Chapter 2. The results of this approach

show the advantage of using the HTML tags over the plain text in evaluating the document

using this measure. Since chromosomes in IRUGA are implemented using the ordered

technique, where the genes are order from highest to lowest performance, the binary mask

crossover is not suitable for it, because the offspring will be constructed by selecting

random genes from all location from the parent, knowing that the weak genes are

concentrated on the right side of the chromosome, then there is probability of 50% that some

of these will be inherited to the offspring which will reduce its performance.

The advantages of TPFF over aforementioned formulas can be summarized in the type of

factors considered in evaluating the document and their formalization. One of the factors

that feature TPFF from all of the above formulas is the percentage of query keywords that

exist within the retrieved document. This feature is given high weight among other factors.

Its effect is clearly notified by the above example. Another feature of TPFF is the ability to

determine the degree of relevance of the document to the query independently from other

documents in the space. Moreover, IRUGA considers the term distance and assigns a higher

score for documents having shortest distance between query keywords in addition to

considering the position within the HTML tags and the location within the document.

However, IRUGA applied the hybrid crossover. This technique generates one offspring per

crossover operation which minimizes the chance of delaying the convergence since the best

genes are grouped together using the one-point crossover and ordered within the

chromosome. In addition, this technique avoids falling into local optima.

In fact, the performance of IRUGA is not tested against multiple data sets, but as the

evaluation of document is done independently of other documents in the set, then it is

expected to have consistent performance regardless of the data set type as long as the

document type is HTML documents.

5.6.5 Recall at top N (R@N) Measure

Few authors used this measure to evaluate their GA approach. However, it is introduced by

Cho and Richards (2004). Their technique applied Formal Concept Analysis to Web

documents which are related to a specific domain. In this technique, the system builds a

Chapter 5: Discussion 199

concept map tree based on the user queries. Upon the user query, it checks the Concept Tree

Map (CTM) against the query. Based on the query, the system provides the user with

information. If the user decides that the result is unacceptable, the system then proposes a

list of concepts related to the user’s query. If the list still does not include acceptable results,

the user adds a new concept. The high performance of this system is achieved when it is

applied to a narrow domain. One of the measures used to evaluate this approach is R@N. It

achieved a maximum average of 0.319. However, this score is much less than that of

IRUGA and TPBTIR which achieved average R@N of 0.74 and 0.85 respectively. Although

(Klabbankoh and Pinngern, 2008) achieved high recall of 0.976, it uses very simple

implementation technique, where the data set is set of 5 documents, each is composed of

small sentence (less than 10 words). It applied vector space model and binary representation

to compare between Dice coefficient, Cosine coefficient and Jaccard coefficient. Hence then

technique is not robust enough to be compared with IRUGA. (Alzahrani and Salim, 2009)

achieves recall of 0.7 when using the fuzzy IR rather than the GA approach. It is applied on

a set of 500 Arabic documents using 15 queries. This approach indexed the terms within the

document by building unique term pairs. For each pair of terms, a term-to-term correlation

factor that defines the extent of relevance between these two pairs is computed. Then the

documents are evaluated by measuring the degree of similarity between the document under

consideration and the query document. Although this model is tested on HTML document

set, but the author treat the HTML as stop words. In addition, this approach constructs a

term-to-term correlation matrix thesaurus which includes all unique pairs of terms extracted

from the document set and the document query set. As mentioned by the author that one

disadvantage of this technique is that it consumes long time and large space to implement.

Moreover, still its performance is behind IRUGA’s by 5.7%. As a conclusion, IRUGA

achieved minimum enhancement of recall by 5.7%.

5.6.6 Precision at Recall (P@R) Measure

Many studies investigated the precision at recall measure for their GA approaches. The

maximum value is always achieved at 10%. In addition, some studies (Vrajitoru, 1998;

Cutler et al, 1999; Kim and Zhang, 2000; Horng and Yeh, 2000; Aly, 2007) used the 11-

point measure for evaluating the results obtained while others represent the results at fewer

Chapter 5: Discussion 200

points such as 10% of P@R (Kim and Zhang, 2000). Therefore, IRUGA will be compared

with the existing techniques based on the evaluation measure used for that technique.

Just to remind the reader that both IRUGA and TPBTIR achieved a score of 1 at 10% of

P@R and 0.95 on average on the 11 points of the P@R measure.

Vrajitoru (1998) built a GA approach using the vector space model and evaluates the

documents using the normalized version of classical TFIDF formula: ndf nidf. This

approach is characterized by a new technique for crossover called dissociated crossover. In

this technique, two offspring are generated differently from the same two parents using 2-

point crossover, but the genes between the two crosspoints are treated differently. The first

offspring is generated by the simple 2-point crossover, while in the second offspring, the

genes are replaced by 0’s. However, replacing these locations by zeros reduces the

performance of the chromosomes. The effect of such a technique is examined against the

precision of two data sets: CACM and CISI. This technique was evaluated using the non-

interpolated average precision-recall of 0.429 for CACM, and 0.2182 for CISI data set. This

is lower than that of IRUGA’s by 96.6%, which implies that dissociated crossover technique

is not suitable for all data sets as stated by the author, and it produces high diversity of

performance depending on the data set.

Another technique to be discussed is the one developed by Kim and Zhang (2000). This

technique managed to achieve 0.7152 at 10% of P@R. This implies that there are many

impurities in the top ranked retrieved documents. In fact this score means that to retrieve

10% of the relevant documents there are around 30% within this 10% that are not relevant.

Having this percentage appearing at the top ranked retrieved documents reflects the

weakness of such an approach. Consequently, the 11-point measure for P@R of this

approach is relatively as low as 0.286.

Close to the results of this study is the approach developed by (Aly, 2007). This approach

uses the vector space model in representing the documents and applies the cosine similarity

function as a fitness function. The crossover technique applied is the simple one-point

crossover, where the genes are exchanged between the parents after the crosspoint to

produce the offspring. This approach achieved 0.297 for the 11-points P@R which is close

to the results achieved by the above Kim and Zhang (2000) approach. These results reflect

Chapter 5: Discussion 201

the low performance of these techniques.

Horng and Yeh (2000) used GA as part of their IR model to tune the weights of keywords.

This model uses the vector space and was applied to plain Chinese document in addition to

applying relevance feedback from the user. This technique produces one offspring from the

crossover operator. Two types of crossover technique are applied. The first one is the

weight-selection which uses random recombination from the parent classifier, and the

second one is Natural crossover where the offspring Q
z
 is generated from parents Q

x
 and Q

y

such that Q
z
 = , where and wi is the

weight of the keyword ki. This technique produces offspring which have similar or better

performance than the best parent. Several experiments are conducted in this study, but the

best results achieved an average of 0.7003 using the P@R measure. The IRUGA’s

performance is better than this technique by 65.6%.

Another approach that applies this measure is developed by Desjardins, Godin, and Proulx

(2005). They represent the documents by “concepts”. These concepts are defined by the sets

of correlated terms rather than by raw terms. In their approach, they used GA to discover the

best sets of co-occurrent terms, and then investigated the results when applied to IR. This

study didn’t mention the average P@R explicitly; rather, it only presented the results of a

precision-recall curve through a diagram. From this diagram, it is noted that the maximum

P@R achieved is 0.225 compared to maximum of 1 for IRUGA which means that the

enhancement of this measure achieved by IRUGA is 344%

Considering 9-points from 0.1 to 0.9, (Radwan et al 2006) applied their GA technique to 3

data sets and get relatively high results compared with others. They tested their technique on

CISI, CACM and NPL data sets which range in size between 1460, 3204 and 11429

documents. The results obtained are 0.437, 0.334, and 0.401 respectively. However, this

approach used the plain text type of documents which are indexed by the vector space

model. The terms are weighted using the Salton and Buckley formula (formula number 10

in table 9-1). The evaluation of documents is done using the fitness function which

evaluates the difference between term weights of a given chromosome and the query vector.

This approach differs from IRUGA by the document type and document representation.

Chapter 5: Discussion 202

Hence, this approach follows the algebraic category based on the TIR classification

explained in Chapter 2. The IRUGA’s performance is better than this technique by 117.4%.

One of the approaches that use precision-recall measure combines GA with simulated

algorithm based on the vector space model (Xu, Deli and Yu, 2009). The maximum

achieved score for precision-recall measure is 0.75 for P-R@10 and drops to 0.6 for P-

R@100. This approach is implemented using VSM and classical TF-IDF evaluation

function to cluster web documents in order to improving web mining. This approach faces

the shortage of vector space and TF-IDF explained earlier. And its performance is lower

than IRUGA by 33%.

Last approach to be discussed here is the one developed by (Saini, Sharma, and Gupta,

2011). This approach proposes a new semantic based similarity measure in which each

phrased term is or single term word is assigned a weight based on its semantic importance

considering. Different similarity measure are applied such as semantic similarity measure,

Jaccard and cosine to form the semantic-based-combined-similarity-measure. This approach

is implemented using GA with classical operators (crossover with probability of 0.6 and

mutation with probability of 0.02. and Roulette wheel method for parent selection). It is

noted that the precision-recall achieved is 0.932 for P-R@10 which is very good score

compared to other IR systems investigated above, but the performance drops dramatically to

0.19 for P-R@100 when retrieving all relevant documents, compared with IRUGA that

achieves 0.87. Hence, IRUGA achieves an enhancement of about 69.3% over this approach.

The summary of the performance of the IR techniques discussed in terms of the three

measures is presented in table 7-1, where the techniques are classified as GA based (GA)

and Non-GA-based (NGA) which can be one of the categories described in Section 2.3. The

first two rows show the superior results of both IRUGA and TPBTIR when both are

applying the TPEF function using the 11-point measure. The performance of the three

measures is enhanced by more than ranges between 5.7% and 344%. The performance of

IRUGA for P@10 and P@20 (N<3) are also mentioned to be compared with the approach

proposed by (Kim and Zhang, 2003), since this study represents the results at these points.

In this table, it is noted that the approach developed by (Sehgal et al, 2009), has the highest

P@N score (0.823). In fact this study is implemented on plain text using the VSM indexing

Chapter 5: Discussion 203

model and applies the feature value version of TF-IDF. Moreover, it does not mention the

window size to assure its compatibility to our comparisons.

The novelty of IRUGA appears in the measure of precision-recall, where it achieves a score

of 0.95 that is not achieved by any other technique as per the investigated literature. This

represents the purity of top retrieved documents, where all relevant retrieved documents are

appearing at the top rank.

Table 5-10: Summary of the performance of the IR techniques discussed

Model
Classification

(GA/NGA)
Notes P@N R@N P@R

TPBTIR NGA

TPEF; 11-points

measure
0.57 0.85 0.96

N<3 0.865

IRUGA GA

TPEF; 11-points

measure
0.49 0.74 0.95

N<3 0.775 0.32 1

N=1 0.86 0.63 1

N=10 0.22 0.86 0.87

Vrajitoru, 1998 (ACAM data set) GA 11-points measure

0.415

Vrajitoru, 1998 (CISI data set) GA 11-points measure

0.218

Cutler, et al, 1999 NGA 11-points measure 0.255

Kim and Zhang, 2000 GA 11-points measure 0.241

0.286

Vrajitoru, 2000 (CISI data set) GA

0.383

Horng and Yeh, 2000 GA 11-points measure

0.7

Kim and Zhang, 2003 GA N<3 0.545

Cho and Richards, 2004 NGA
window size not

mentioned
0.685 0.371

Desjardins, Godin, and Proulx,

2005
GA

maximum value

achieved
0.225

Húsek et al 2005 GA 11-points measure 0.75 1

mailto:R@N
mailto:P@R

Chapter 5: Discussion 204

Radwan et al, 2006 GA
Interpolated

measure
0.437

Aly, 2007 GA 11-points measure

0.297

Yeh et al, 2007 GA
N=1 0.58

N=10 0.2

0.19

Klabbankoh and Pinngern,

2008
GA

Pmute=0.01 0.746

Pmute=0.3

0.976

Manning, Raghavan, Schütze, 2009 NGA 11-points measure 0.246

Xu, Deli and Yu, 2009 GA N=1

0.75

Yan et al, 2009 GA
N=1

0.9

N=10

0.07

Alzahrani and Salim, 2009 NGA 11-points measure 0.705 0.7

Sehgal et al, 2009 NGA 0.823 0.857

Dashti and Zad, 2010 GA

Penev and Wong, 2010 NGA P@3 0.6

Saini, Sharma, and Gupta, 2011 GA
N=1

0.932

N=10

0.19

5.7 IRUGA Vs Commercial Search Engines

This section discusses the factors applied by IRUGA to retrieve the documents and

compares it to that of the commercial search engines. The factors used by IRUGA to

retrieve a document are explained in section 3.4.5. Actually, the factors applied by IRUGA

make the evaluation of the document independent of any other document in the document

set. These factors are the percentage of the query keywords that exist in the document, the

minimum term distance (MTD) between word, the location of MTD within the document,

and the average HTML tag weigh for the keywords. According to (Green, 2004), Google

concentrates mainly on the incoming link to the web page and outgoing link from this page,

and applies PageRank concept to rank the retrieved documents accordingly. Therefore, the

techniques applied by CSE evaluate the document depending on other documents in the

search space. However, it is found that this factor is heavily affected by commercial aspects.

As per (Gavin, 2005; Smith, 2007), there are special sites that provide sites with high

PageRank, where site owner can include a link to these sites and can request these sites to

include a link to his site so that the new site will have high PageRank and consequently this

Chapter 5: Discussion 205

new site will appear at high position by the CSE.

Additional factors are considered by CSE when retrieving a document. These include: the

goal of CSE is to make money, UI is extremely important, real-time/fast expectation,

content of web page not sufficient to imply meaning, result ranking cannot assume

independence, must consider maliciousness, no quality control on pages (quality varies),

web is large (practically infinite), millions of heterogeneous users.

In fact, the technique of this thesis if not proposed to completely replace the search engine

of CSE; rather, it is proposed to be combined with the existing technique applied by CSE.

5.8 Summary

This chapter compares IRUGA with the traditional IR approaches that are widely used in

web search, highlighting their main drawback, namely, the extensive computation when

evaluating the entire document set in response to the user query. In order to cope with those

types of approach, a similar model (TPBTIR) is proposed in this chapter which applies the

TPEF function to measure the relevance of all the documents set before ranking them and

displaying them to the user.

Several experiments are conducted in this chapter to study TPBTIR performance. The first

experiment shows the high performance achieved by TPBTIR in terms of the three precision

and recall measures. The second experiment compares IRUGA and TPBTIR when both are

using the TPEF function in evaluating the documents. There is a level of confidence that,

when considering all documents in the space while measuring recall and precision using

term-proximity function, the results of TPBTIR are better than IRUGA’s. This is because of

the probabilistic and random behaviour of IRUGA, which misses some good quality

documents while creating the initial population, giving the advantage for TPBTIR to include

them all. However, these high measures achieved by TPBTIR are at the expense of the time

elapsed before presenting the results to the user, and this leads to the third experiment that

examines the time required to produce the results using IRUGA and TPBTIR. Depending on

the criteria of selecting the document for evaluation, the performance differs. It is found that

the time required by IRUGA is constant since it depends on the population size and the

chromosome length regardless of the number of the documents in the search space that

Chapter 5: Discussion 206

satisfy the selection criteria, while the time consumed by TPBTIR is completely dependent

on the number of documents that satisfy these criteria, and if there is a high number of

documents having such criteria, this will require a longer time to produce the results. In fact,

this is the most important drawback of TPBTIR which makes it impractical for a large set

such as the web. The fourth experiment compares the performance of the proposed TPEF

against two well known evaluation functions in this arena, namely, the Okapi-BM25 and

Bayesian inference network model functions. These comparisons are done in two directions.

The first one analyzes the quality of the documents retrieved by comparing the first

retrieved document by each function. The results obtained favour the first technique which

is TPEF as the documents retrieved are more relevant and can be evaluated independently of

other documents in the search space. The second direction of the evaluation is to study the

performance in terms of precision and recall measures. Once again the TPEF outperforms

these two functions, since the improvement ranges between 37.21% and 84.81% for the

precision measure, 16.44% and 18.87% for the recall measure and 5.29% and 10.16% for

the P@R measure.

Despite the slightly lower performance of IRUGA as compared to TPBTIR in terms of

recall and precision, the performance of IRUGA is still much better when time is concerned

where the processing time depends on constant factors, namely, the population size and the

chromosome length, whereas in TPBTIR it is completely dependent on the size of the

document set, which makes it impractical for web search domain. Moreover, IRUGA’s

performance is of a high level and is very acceptable when compared with other similar GA-

based IR approaches, as illustrated in the previous chapter, where the recall reached 86% at

top 100 retrieved document and the precision reaches 86% at top 10 retrieved documents.

Comparing the results achieved with other GA-based IR systems are discussed in the in this

chapter as well. IRUGA has been compared with several research works in the IR domain

that adopted the GA model. The comparison was done for four measures. The first one is the

speed of convergence where the maximum number of generations is examined. IRUGA was

one of the fastest convergence techniques since it converges on average after 22.26

generations, while this measure is not applicable for TPBTIR. That means it doesn’t fall into

local optima. Rather, it converges into global optima with a very reasonable solution. The

second measure is Precision at Rank N (P@N) where the common measurement is the 11-

Chapter 5: Discussion 207

point average precision. The precision achieved for IRUGA using this measure is 0.49 with

enhancement of 92.1% over other IR techniques, while the precision of TPBTIR is 0.57

with enhancement of 123.5%. The achieved recall is 0.74 for IRUGA with enhancement of

99.4%, assuming that this measure uses the 11-point average recall. The third measure is

Recall at Rank N (R@N). IRUGA achieved 0.74 and TPBTIR achieved 0.85. Finally, the

common measure is the precision at recall (P@R) measure. Both IRUGA and TPBTIR

achieved very high scores reaching 0.95 and 0.96 respectively. This implies that both

models enhanced the precision-recall by at least 35.7 %.

These results meet the aim of this thesis which is to enhance recall and precision for IR

systems using GA. Moreover, it puts IRUGA in the top position among similar GA-based

IR models, while TPBTIR can be excluded from these results as it has low time

performance when applied in the web search domain.

Chapter 6: Conclusions and Future Work 208

6. C

hapter Six: Conclusions and Future Work

6.1 Introduction

This thesis proposes two IR models; the first one is IRUGA, which is a GA-based IR

approach. This approach introduces modified GA operators that allow IRUGA to achieve

high performance. The second IR model is TPBTIR, which is based on a traditional IR

approach. Both are used to enhance the precision and recall of the web search by means of

improving the document representation where an enhanced inverted index is developed for

this purpose. Moreover, these two models use the same proposed evaluation function for

measuring the document relativity to the user query.

This chapter includes a summary of the IRUGA and TPBTIR design in Section 8.2,

followed by listing the contributions of this thesis to the knowledge in Section 8.3. This

chapter ends in section 8.4 by outlining some limitations of the proposed models and

highlighting future research work that may build on the work described in this thesis.

6.2 Summary: IRUGA and TPBTIR Design and Performance

6.2.1 IRUGA design and performance

IRUGA is composed of two main parts. The first one is the document representation, and

the second one is the GA engine which matches the user query with a set of documents

relevant to this query and displays the resulted document in descending order.

The document representation model adopted in IRUGA is the enhanced inverted index

which customizes the known inverted index to match the requirements of IRUGA.

What distinguishes IRUGA from other GA-based IR techniques is the elaboration done on

all GA operators and the suggested evaluation function (fitness function). These operators

include initial generation creation, parent selection, crossover and mutation, while

documents are favoured for selection according to a fitness value obtained by fitness

Chapter 6: Conclusions and Future Work 209

function. IRUGA is applied to a set of 8344 HTML documents which forms sample of web

documents. Moreover, the GA unit of IRUGA is controlled by a set of parameters which are

the population size, chromosome length, crossover probability, mutation probability, and

termination criteria. According to the empirical study, these parameters are set to be 125 for

population size, 125 for chromosome length, 1 for the crossover probability and the

mutation rate is 0.7, while the GA unit terminates when the difference in fitness value

between two consecutive populations is below threshold, or the maximum number of

generations reaches 50.

To decide which technique needs to be adopted for each operator, an extensive empirical

study is conducted to analyze the behaviour of existing techniques from the performance

and time perspective. However, it is found that some techniques can be further improved to

produce better results. The initial selection technique used to implement the initial selection

operator is the selective random selection technique, while the binary tournament selection

technique is applied as the parent selection operator. A new technique is developed for the

crossover operator which is the hybrid crossover technique. The classical random mutation

technique is applied in IRUGA.

Moreover, an innovative evaluation function which is adopted here as a fitness function is

called term-proximity evaluation function (TPEF). It is developed to best reflect the

document’s relevance to the user query. This fitness function is based on the local factors

obtained from the document itself to make the document evaluation independent from other

documents in the collection and to speed up the evaluation process of the document.

Moreover, term proximity concept is applied in this function which favours documents

having query keywords adjacent to each other and having these keywords appearing as close

as possible to the beginning of the document. In addition to that, documents having all query

keywords are preferred by this function.

Four measures are used to evaluate IRUGA. The first one is the time of convergence. The

other three measures are based on the precision (P) and recall (R) concept, where precision

is the percentage of relevant retrieved documents to the total retrieved documents, and recall

is the percentage of relevant retrieved to the total relevant documents. The first measure of

these three is the precision at top N measure (P@N). This measure obtains the number of

Chapter 6: Conclusions and Future Work 210

relevant documents at top N ranked documents. The second one is the recall at top N

measure (R@N). This measure obtains the percentage of relevant document to the total

relevant at top N ranked documents. The third one is the precision at N recall (P@R) which

evaluates the precision for each 10% of the relevant retrieved documents.

IRUGA achieved significant results in these measures for all operators when compared with

other GA-based IR systems. For each operator, a comparison is done between several

known techniques based on these measures. When comparing the performance of IRUGA

with other GA -based IR models, it is found that IRUGA achieved an enhancement of

237.97% for the P@N measure, 136.49 for the recall measure, and 95.71% for the precision-

recall measure.

For the convergence speed, which represents the average number of generations required to

generate the final results, it is found that this average for IRUGA is 22.3. Compared with

that of other GA–based models in literature, it is found that their average ranges between 20

and 500. This raises IRUGA to the top of these approaches where better results are obtained

faster without falling into local optima. This implies also that IRUGA is less

computationally costly than those approaches.

To demonstrate the beauty of the developed TPEF function which evaluates each document

and measures its relevance to the user query, a comparison is done between two known

fitness functions in this domain and the proposed TPEF function. The comparison is done

by analyzing the first document retrieved by each one of these functions. The results

obtained show the high relevance of the top ranked document retrieved by TPEF as

compared with that obtained by other models.

6.2.2 TPBTIR design and performance

TPBTIR is another model proposed in this thesis as an IR approach. This model uses the

same enhanced inverted indexing model and the same TPEF evaluation function applied in

IRUGA. However, what distinguishes this model is that the evaluation is applied on all

documents in the set. This is to overcome the probability feature of the GA unit of IRUGA

which may miss some high quality documents due to the randomness of selection of the

initial population. Therefore, TPBTIR evaluates all the documents in a set and obtains the

Chapter 6: Conclusions and Future Work 211

best one of them. Therefore, it is found that if the document set is relatively small (less than

20,000 documents), then this approach has very high performance in terms of recall and

precision. On the other hand, if the document set is very large, such as the web (which is the

aim of this thesis), then the performance of TPBTIR drops dramatically in term of the time

required to generate the results, making it inefficient for large-scale space. Nevertheless, its

performance in terms of recall and precision measures is slightly better than IRUGA’s.

6.3 Contributions

The main contributions of this thesis are the following:

 It develops a customized enhanced inverted index that replaces the common vector

space indexing model. The enhanced inverted index facilitates the addition of as

much information associated to each indexed word as needed. It encapsulated the

word frequency, weight, offset within the sentence and within the document. It is

fast to build where the time complexity of building the index using this technique is

O(n) compared with O(n
2
) used by vector space model and O(n

3
) required by latent

semantic indexing model. It consumes very little time to retrieve the needed data

which is O(n), and it requires very little storage space compared with the vector

space model. It is shown in Chapter 3 that the developed inverted index reduced the

required storage space by 99.5%.

 It provides an extensive survey for the existing GA operators that are applied to the

IR domain and highlights their strengths and weaknesses. This thesis provided a

qualitative comparison between GA operators of the techniques applied in IR

domain which researches can benefit from. In addition, this analysis helped in

designing an effective combination of operators that helped achieving an

enhancement ranging between 20.6% and 237.97% for the precision measure and

enhancement ranging between 3.43% and 136.49% for recall measure.

 It develops an innovative evaluation function for evaluating the documents. This

function has several features. The first one is the usage of the ratio of the existing

query keyword within the document to the total query keywords. In addition, this

function is characterized by utilizing the term proximity concept. The third feature of

Chapter 6: Conclusions and Future Work 212

this function is the usage of local factors only. In contrast to global factors,

evaluating local factors prevents accessing all documents in the space which speeds

up the document evaluation process. This function is featured also by having an

upper limit. Therefore, the last two characteristics enable the judgment of the

document independently of the rest of the documents in the collection. Comparing

TPFF with OKAPI-BM25, it is found that TPFF achieved enhancement in average

recall by 27.55% and average precision of 30.58%. Compared with Bayesian, TPFF

achieved enhancement of 22.52% for recall and 70.43% for the precision.

 It develops a Hybrid crossover operator that has a significant effect on speeding up

the convergence process of GA without falling into local optima and it provides high

quality chromosomes; in addition, this technique doubles the quality of the produced

chromosomes since the best genes of both parents are inherited to the offspring.

Compared with the non-ordered crossover, 2-point crossover and crossover

technique which produce two offspring, it is found that the hybrid crossover

technique achieved maximum enhancement of 237.97% for the precision measure

and maximum enhancement of 136.49% for the recall measure.

 It proposes the TPBTIR system as a traditional IR approach which uses the same

indexing unit of IRUGA and the same evaluation function. This model is compared

with IRUGA and shows better results in terms of recall and precision. TPBTIR

shows to be better than IRUGA by 16.32 % in terms of precision and 6.25% in terms

of recall, but its time performance is poor for large collections, which, and favours

TPBTIR for a. Since IRUGA is better than other GA-based IR modes and TPBTIR

is better than IRUGA, this implies that TPBTIR is better than IRUGA for a small

collection (less than 20,000 documents) and IRUGA is better solution for large

collections such as web search.

Details of the above contributions are explained in the following subsection.

6.3.1 Effectiveness of the enhanced inverted index

Vector space indexing model forms the majority of the document representation algorithm

that is applied in IR systems. The drawbacks of this model are mainly the huge storage

space required to store the index, the limitation of adding the required data associated to

Chapter 6: Conclusions and Future Work 213

each indexed term and the long retrieval time of needed data since scanning the document

database is performed sequentially. These drawbacks were behind the selection of a more

efficient indexing technique. This thesis suggests the inverted index over other indexing

techniques because it is fast to construct, requires small storage space, allows adding as

much needed data per indexed word easily without affecting the retrieval process, and

retrieve the needed data. According to the experiments conducted in this thesis, it is found

that the storage space required by the enhanced inverted index is less than that required by

the vector space by almost 99%. Moreover, storing and retrieving the needed data takes a

constant time as the targeted data is accessed directly rather than searching for the needed

data sequentially.

6.3.2 Potential for improvement of the GA operators

Chapter 3 has analyzed several techniques in literature applying GA operators. This analysis

is conducted in order to find the most suitable ones that enable IRUGA to achieve its aims.

Starting from the creation of the initial generation, the proposed technique is selective

random selection, which selects the documents that have at least one keyword from the

query. Such technique of initial selection reduces the domain by almost 66%. This leads to

speeding up the convergence and minimizing the processing cost. Moving to the next

operator, which is parent selection, it is found that the tournament selection is more suitable

for IRUGA as it reduces the time of computing the probability slot for each individual; also

it allows better parents to participate in the crossover process. Among 12 crossover

techniques analysed in literature review, IRUGA proposed the hybrid crossover which is

applied with probability of one. Finally it is found that the most suitable mutation technique

is to replace a random gene with a better performing randomly selected gene to maintain the

quality of the genes within the chromosome. Applying this technique with probability equal

to 0.7 produces slight improvement in precision and recall which reaching to 3.47% and

5.1%. Chapter 3 conducted several experiments to set proper parameter values for the

IRUGA’s GA unit operators. These parameter values proved their influence on the results

obtained when IRUGA produced better than expected results.

6.3.3 Effectiveness of the proposed hybrid crossover technique

In chapter 3, a new crossover operator is presented. This crossover technique is called

Chapter 6: Conclusions and Future Work 214

hybrid crossover. The concept behind this technique is to collect as many good performance

genes as possible in one chromosome, then maintain and push these genes into the next

generation. So IRUGA guarantees that the best building block of these genes is not broken

or destroyed throughout the crossover operation from generation to generation. This

operator played a vital role in speeding up the convergence without falling into local optima.

It managed to improve the speed of converges by 25.79% compared to the 2-point crossover

technique and by 94.97% compared to the 1-point crossover technique that produces two

offspring. However, the non-ordered crossover produced the results mush faster (by

38.68%) than the hybrid crossover, but these results are lacking in their efficiency in terms

of recall and precision measure since the hybrid crossover enhanced the precision by

61.36% and enhanced the recall by 65.6%.

6.3.4 Effectiveness of improvement of the GA operators

Chapter 4 includes extensive experiments that are applied to the GA operators. The

proposed techniques are compared with the existing ones in terms of the three measures,

precision at top N (P@N), recall at top N (R@N) and precision at recall (P@R). Each

operator is examined using these three measures and the results are presented graphically

and numerically. In all cases, the GA unit operators of IRUGA outperform the performance

of other existing techniques. Results summarized in table 4-29 show that IRUGA achieved

enhancement ranging between 20.60% and 237.97% for P@N is measure excluding the

mutation technique, and enhancement ranging between 3.43% and 136.49% for R@N

measure and enhancement ranging between 4.6% and 130.07% for P@R measure excluding

the mutation technique which achieved very low enhancement.

6.3.5 Efficiency of the term-proximity fitness function

Chapter 3 introduced two evaluation functions which are selected as the fitness function of

IRUGA. The first one is the multi-terminal function which used a combination of local and

global factors. However, this function does not achieve the expected results. Hence, a

second function was developed. This function is called Term-Proximity Fitness Function

(TPFF). This function is constructed using local factors only. From the experiments

conducted, this function was able to distinguish the relevant documents effectively. This

function was compared with two very well known functions in the IR domain, namely,

Chapter 6: Conclusions and Future Work 215

OKAPI-BM25 and the Bayesian Inference Network model. The results obtained using both

IRUGA and TPBTIR approaches show the superiority of TPFF. Details of these

improvements are demonstrated in Table 5-8 (in Chapter 5) reflecting enhancement of TPFF

using IRUGA by 96% over using Bayesian Inference Network model and by 53.125% using

the OKAPI-BM25 in terms of P@N measure. For R@N measure, IRUGA enhanced the

results by 12.68% compared to Bayesian inference network model and by 17.65% compared

to OKAPI-BM25. In terms of precision-recall measure, it is found that TPFF achieved

enhancement of 4.4% compared to the Bayesian model and enhancement of 11.76%

compared to the OKAPI model.

6.3.6 Efficiency of IRUGA and TPBTIR

As shown in Chapter 4, IRUGA achieved great enhancement for the three measures (P@N,

R@N, and P@R) for all operators when compared with other GA-based IR techniques. For

each operator, the comparison was performed between several known techniques based on

the mentioned measures. When comparing these techniques for each operator of the GA unit

of IRUGA separately, the highest improvement for P@N measure is 237.97%, for R@N

measure is 136.49%, and for P@R measure is 130.07%, while when comparing IRUGA

with other GA-based and TIR-based approaches, it is found that the improvement is 92.1%

for P@N, 99.4% for R@N and 35.7% for P@R. And this is exactly the aim of this thesis: to

enhance recall and precision in web search using GA.

Beside IRUGA, Chapter 5 proposed a traditional IR model (TPBTIR) which uses the same

indexing unit and the same TPFF evaluation function of IRUGA. However, this model

differs from IRUGA in the number of evaluated documents. TPBTIR evaluates the entire

document set to obtain the best documents among the set, in contrast to IRUGA which

evaluates only the selected documents of the initial population. TPBTIR shows very high

results that compete and outperform IRUGA in terms of the three of the measures discussed

above. This high performance is restricted by the document set size. The performance of

TPBTIR drops dramatically if the collection size is huge, such as in the web. Therefore, this

approach is recommended for small collection size that is less than 20,000 documents, while

IRUGA is the most suitable GA-based technique to be applied on web search, where its time

performance is independent of the collection size.

Chapter 6: Conclusions and Future Work 216

6.4 Limitations and Future Work

IRUGA is developed to solve the web search problem, which is to retrieve only and all

relevant documents in response to the user query. GA is adopted to be one of two main units

of IRUGA. In the web, the number of documents that need to be evaluation is huge. As per

Google, for a given query there may be more than one million relevant documents. In order

for IRUGA to simulate such commercial search engines, it needs to be applied to a very

large collection. At least a set of 200,000 documents could be enough to test it, since this is

the maximum size used by researchers to examine their techniques (refer to table 5-3).

However, such a large set of document could not be obtained for various reasons.

Nevertheless, a document set of 8344 was used to examine the proposed technique.

The proposed evaluation function in Chapter 3 assumes that the keywords within the query

are unique; i.e. no word is duplicated in the query. In fact, this forms a sort of limitation that

needs to be generalized by allowing duplicate keywords to be included in the query.

Searching the web is a wide area which opens up broad prospects for researchers to carry

out the development of many techniques and algorithms that aim at improving the quality of

the results extracted from the search space. These techniques differ in many factors, such as

type of documents, size of document collection, document evaluation techniques and the

approach (traditional IR, probabilistic IR, evolutionary, etc). One of these approaches is

Genetic Algorithm. It has been adopted for this model due to the outstanding features

mentioned in the previous chapter. Despite the potential enhancements done by IRUGA,

there are still opportunities for further improvement. Moreover, these improvements

consume time required to retrieve the needed documents, the quality of retrieved documents

or the recall and precision of the overall retrieved documents.

Recently, XML documents have been introduced in the web. Consequently, IRUGA can be

modified to index such documents. The evaluation function can also be adjusted to match

such a document type.

Another area of improvement for this research is to increase the document set in order to

accurately simulate the web search environment. The large document set will demonstrate

the advantage of IRUGA in terms of time performance compared with traditional IR and

Chapter 6: Conclusions and Future Work 217

TPBTIR. In traditional IR, all documents D S
+
, where S

+
 is the total search space, need to

be evaluated, ranked and then displayed to the user, while the number of evaluated

documents in GA depends on the population size Ps and the chromosome length Cl. When

Ps × Cl is much smaller than S
+
, the advantage of IRUGA appears clearly, and it is the case

when applying IRUGA to web search space that has a huge document set.

The evaluation function proposed in this thesis forms a wide area of improvement. One of

the factors of this function is the minimum distance between query keywords within the

document. In fact, evaluating this factor is the main source of the IRUGA’s slowness. In the

worst case, calculating this factor requires O(n × m), where n is the query length and m is

document length. This scenario occurs when the query keywords form the whole document

making the complexity as high as O(n
2
). There is a need to improve the algorithm by

calculating the minimum distance in shorter time and thus reduces the retrieval time.

Moreover, there is an open area to control the chromosome length in such a way that it

includes the maximum number of relevant documents only. By doing this, the chromosome

will have the ultimate P@N score. In this case N will be the chromosome length which

results in a score of 1 for each 10% of the chromosome length. Besides, if it has all the

relevant documents, then the recall will be 1 for R@N score. By developing such a

technique, both measures will have a score of 1. Consequently, P@R measure will also

achieve a score of 1. This is because for each 10% of relevant documents retrieved, all the

documents within this range are relevant. This is still the ultimate aim of any developed

search mechanism.

Bibliography 218

 BIBLIOGRAPHY
Aickelin, U. (1999). Genetic algorithms for multiple- choice optimisation problems.

Viewed 16 November 2011, http://eprints.nottingham.ac.uk/306/1/99thesis.pdf

Alam, H., Kumar, A., Nakamura, M., Rahman, F., Tarnikova, Y. and Wilcox, C. (2003).

Structured and unstructured document summarization: Design of a commercial

summarizer using lexical chains. In proceedings of the 7th international conference

on document analysis and recognition IEEE. pp. 1147–1152..

Al-Dallal, A. and Shaker, R. (2009). Genetic algorithm in web search using inverted

index representation. IEEE-GCC Conference and Exhibition, 2009 5th, pp. 1-5.

Kuwait City.

Alfonseca, M. (1991). Genetic algorithms. In proceedings of the international conference

on APL, pp. 1-6. ACM Press.

Aly, A. (2007). Applying genetic algorithm in query improvement problem. Information

Technologies and Knowledge , vol.1, pp. 309-316.

Alzahrani, S.M.; Salim, N., (2009), On the use of fuzzy information retrieval for gauging

similarity of Arabic documents, Applications of Digital Information and Web

Technologies, ICADIWT '09. Second International Conference on the Digital

Object, pp.: 539 – 544. IEEE Conference Publications.

Application development: PL/SQL, Java or C++? (2002, March). viewed 30 November,

2011, from Search Oracle: http://searchoracle.techtarget.com/answer/Application-

development-PL/SQL-Java-or-C

Asllani, A. and Lari, A. (2007). Using genetic algorithm for dynamic and multiple criteria

web-site optimizations. European Journal of Operational Research, vol. 176, no.3,

pp. 1767-1777.

Ashraf, F., Ozyer, T. and Alhajj, R. (2008), Employing Clustering Techniques for

Automatic Information Extraction From HTML Documents, IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 38,

HYPERLINK "http://intl.ieeexplore.ieee.org.v-

ezproxy.brunel.ac.uk:2048/xpl/tocresult.jsp?isnumber=4603093" no. 5 pp. 660 –

673

Atsumi, M. (1997). Extraction of user’s interests from web pages based on genetic

algorithm. IPSJ SIG, vol. 97, no. 51, pp. 13-18.

Azcarraga, A., Liu, M.D. and Setiono, R.(2012) Keyword extraction using

backpropagation neural networks and rule extraction, The 2012 International Joint

Conference on Neural Networks (IJCNN), pp. 1 – 7. IEEE Conference Publications

Beasley, D., Bull, D. R. and Martin, R. R. (1993). An overview of genetic algorithms:

part 1. Fundamentals University Computing, vol. 15, no. 2, pp. 58-69.

Beasley, D., Bull, D. R. and Martin, R. R. (1993). An overview of genetic algorithms:

part 2, Research Topics. University Computing, vol. 15, no. 4, pp. 170-181.

Bedi, P. and Chawla, S. (2007). Improving information retrieval precision using query

log mining and information scent. Information Technology Journal , vol. 6, no. 4,

pp. 584-588.

Bibliography 219

Bhatia, M. and Khalid, K. (2007). Contextual proximity based term-weighting for

improved web information retrieval. Proceedings of KSEM 2007, pp. 267-278.

Lecture notes of AI-4798, Springer.

Billhardt, H., Borrajo, D. and Maojo, V. (2002). Using genetic algorithms to find

suboptimal retrieval expert combinations. In Proceedings of SAC, pp. 657-662.

Bini, T.A., Lange, A., Sunye, M.S. and Silva, F., Stableness in large join query

optimization, International Symposium on Computer and Information Sciences,

2009. ISCIS 2009. 24th , pp.639-644, 14-16 Sept. 2009 [online]. Available

at: http://intl.ieeexplore.ieee.org.v-

ezproxy.brunel.ac.uk:2048/stamp/stamp.jsp?tp=andarnumber=5291898andisnumbe

r=5291799 [Accessed 24/9/2012]

Callen, B. (2005). Search engine optimization made easy [Online]. Available at:

http://www.seoelite.com [Accessed 16/4/2007]

Carlberger, J., Dalianis, H., Hassel, M. and Knutsson, O. (2001). Improving precision in

information retrieval for Swedish using stemming. Proceedings of NODALIDA '01 -

13th Nordic conference on computational linguistics. Uppsala, Sweden.

Carroll, J. and Lee, T, A genetic algorithm for segmentation and information retrieval of

SEC regulatory filings, Proceedings of the 2008 international conference on Digital

government research, Publisher: Digital Government Society of North America

Carthy, D. C. J., Drummond, A., Dunnion, J. and Sheppard, J. (2003), The use of data

mining in the design and implementation of an incident report retrieval system, in

Systems and Information Engineering Design Symposium, Charlottesville, pp. 13-

18.

Chakraborty, U. K., Deb, K., and Chakraborty, M. (1996). Analysis of selection

algorithms: A markov chain approach. Evolutionary Computation, vol. 4, no. 2, pp.

133-167.

Chen, H. (1995). Machine learning for information retrieval: neural networks, symbolic

learning, and genetic algorithms. Journal of the American Society for Information

Science, vol. 46, no. 3, pp. 194-216.

Chen, H., and Dhar, V. (1991). Cognitive process as basis for intelligent retrieval

systems design. Information Processing and Management , vol. 27, pp. 405-432.

Chiaramella Y. (2001). Information retrieval and structured documents. Lectures Notes in

Computer Science, 1980: pp. 291–314.

Chinneck, J. w. 2006, Heuristic for discrete search: Genetic algorithms and Simulated

annealing, chapter from: Practical Optimization: A Gentle Introduction, [online].

Available at, HYPERLINK

"http://www.sce.carleton.ca/faculty/chinneck/po/Chapter14.pdf"

http://www.sce.carleton.ca/faculty/chinneck/po/Chapter14.pdf [Accessed

22/9/2012]

Cho, w., and Richards, D. (2004). Improvement of precision and recall for information

retrieval in a narrow domain: reuse of concepts by formal concept analysis.

IEEE/WIC/ACM International Conference on Web Intelligence, pp. 370-376.

Beijing, China: WI.

Collard, P., and Escazut, C. (1995). Genetic operators in a dual genetic algorithm.

Proceedings, Seventh International Conference on Tools with Artificial

Intelligence, pp. 12-19.

Bibliography 220

Cooper, J., and Hinde, C. (2003). Improving genetic algorithms’ efficiency using

intelligent fitness functions. In P. Chung, C. Hinde, and M. Ali (Ed.), 16th

International conference on industrial and engineering applications of artificial

intelligence and expert systems, IEA/AIE ’03, pp. 636–644. Loughborough, UK:

Springer, Berlin.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., et al.

(1998). To extract symbolic knowledge from the world wide web. Proceedings of

15th National conference on artificial intelligence (AAAI98).

Crestani F., Lalmas M., Van Rijsbergen C. j. and Campbell I. (1998) “Is this document

relevant?…probably”: a survey of probabilistic models in information retrieval,

ACM Computing Surveys (CSUR), vol. 30 no .4, pp. 528-552.

Cummins, R., and O'Riordan, C. (2006). Evolving local and global weighting schemes in

information retrieval. (Boston, Ed.) Information retrieval , vol. 9, no. 3, pp. 311-

330.

Cutler, M., Deng, H., Maniccam, S., and Meng, W. (1999). A new study on using HTML

structures to improve retrieval, Tools with Artificial Intelligence. Proceedings. 11th

IEEE International conference on on tools with AI, pp. 406 - 409.

Cutler, M., Shih, Y., and Meng, W. (1997). Using the structure of HTML documents to

improve retrieval. The USENIX Symposium on Internet Technologies and Systems,

pp. 241–251. Monterey, California.

Dashti, F., and Zad, S. A. (2010). Optimizing the data search results in web using genetic

algorithm. International journal of advanced engineering sciences and

technologies, vol. 1, no. 1, pp. 016 – 022.

Deb, K. (1998). Genetic algorithm in search and optimization: the technique and

applications. Proceedings of international workshop on soft computing and

intelligent systems, pp. 58–87. Calcutta, India.

Description of LSI. (2009), [online]. Available at

http://en.wikipedia.org/wiki/Latent_semantic_indexing [Accessed 1/12/2009]

Desjardins, G., Godin, R., and Proulx, R. A. (2005). Genetic algorithm for text mining.

Proceedings of the 6th international conference on data mining, text mining and

their business applications, vol. 35, pp. 133-142.

Dong, H., Hussain, F. K., and Chang, E. (2008). A survey in traditional information

retrieval models. Second IEEE International conference on digital ecosystems and

technologies, pp. 397 - 402.

Dong L., and and Watters C (2004). Improving efficiency and relevance ranking in

information retrieval. In Proceedings of the 2004 IEEE/WIC/ACM International

Conference on Web Intelligence (WI2005), pp. 648– 651.

Drias, H., Khennak, I. and Boukhedra, A. (2009), A hybrid genetic algorithm for large

scale information retrieval, International Conference on Intelligent Computing and

Intelligent Systems, ICIS 2009. vol. 1, pp. 842 - 846, IEEE Conference Publications

Fan, W., Fox, E., Pathak, P., and Wu, H. (2004). The effects of fitness functions on

genetic programming-based ranking discovery for Web search. Research Articles,

Journal of the American Society for Information Science and Technology, vol. 55,

no. 7, pp. 628-636.

Frid, B., Logounova, L., Michailov, A., Nusinzon, O., and Zeltser, L. (1997). High

precision information retrieval with natural language processing

Bibliography 221

techniques.[Online]. Available at http://zeltser.com/info-retrieval/ [Accessed

26/9/2009]

Latent semantic indexing, (2011). [online]. Available at:

http://en.wikipedia.org/wiki/Latent_semantic_indexing [Accessed 1/12/2009]

Fuhr, N. (1992). Probabilistic models in information retrieval. Computer Journal, vol. 35

no. 3, pp. 244-255.

Fuhr, N., and Buckley, C. (1991). A probabilistic learning approach for document

indexing. ACM Transactions on Information Systems , pp. 223-248.

Gancarski, A. L., and Henriques, P. R. (2002). Information Retrieval from structured

documents represented by attribute grammars. International conference on

information systems modelling,. Rep. Cheque.

Gavin, P. (2005), Text Link Ads: The definitive guide to link buying, Text Link Ads Inc.

Glover, E. (2007). The real world web search problem: bridging the gap between

academic and commercial understanding of issues and methods. [online], Available

at:http://langtech.jrc.ec.europa.eu/mmdss2007/htdocs/Presentations/Docs/MDSS_G

lover.pdf [Accessed 26/4/2012]

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley.

Goldberg, D. E., and Deb, K. (1991). A comparative analysis of selection schemes used

in genetic algorithms. Foundations of Genetic Algorithms, pp. 69–93. San Mateo

CA: Morgan Kaufmann.

Gordon, M. (1988). Probabilistic and genetic algorithms in document retrieval.

Communication of the ACM, vol. 31, no. 10, pp. 1208-1218.

Green, J.J. (2004). Google PageRank and related technologies, [online]. Available at:

http://www.lazworld.com/whitepapers/PageRank-Technologies.pdf [Accessed

22/9/2012]

Guezouli, L. and Kadache, A. (2012), Information retrieval model based on neural

networks using neighbourhood, International Conference on Information

Technology and e-Services (ICITeS), pp. 1 – 5. IEEE Conference Publications.

Hemalatha, M. and Sathya Srinivas, D. (2009). Hybrid neural network model for web

document clustering, Second International Conference on the Applications of

Digital Information and Web Technologies, ICADIWT '09, pp.531 - 538. IEEE

Conference Publications.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence.

Cambridge, Massachusetts, London, England: University of Michigan Press, Ann

Arbor, MI.

Horng, J. -T., and Yeh, C.-C. (2000). Applying genetic algorithms to query optimization

in document retrieval. Information Process Management , vol. 36, no. 5, pp. 737–

759.

Húsek, D., Snášel, V., Owais, J., and Krömer, P. (2005). Using genetic algorithms for

boolean queries optimization. Proceeding of the Ninth IASTED International

Conference internet and multimedia ststems and applications, pp. 178-184.

Honolulu, Hawaii, USA.

Bibliography 222

ixCreateStopWordList. (2002). Avialable at: Onix Text Retrieval Toolkit:

http://www.lextek.com/manuals/onix/ixCreateStopWordList.html [Accessed

1/12/2009]

Kamps, J. (2004). Improving retrieval effectiveness by reranking documents based on

controlled vocabulary. The 21th European Conference on In-formation Retrieval.

pp. 283–295. Springer-Verlag Berlin Heidelberg.

Karthik, M., Marikkannan, M., and Kannan, A. (2008). An intelligent system for

semantic information retrieval information from textual web documents. In S. N.

Srihari, Computational forensics: second international workshop, IWCF 2008,

Washington, DC, USA, August 7-8, pp. 135–146, Springer.

Kazarlis, S. A., Papadakis, S. E., and Theocharis, J. B. (2001). Microgenetic algorithms

as generalized hill-climbing operators for GA optimization. IEEE Transaction on

Evolutionary Compution,vol 5, pp. 204-217.

Kim, J., and Croft, W. B. (2009). Retrieval experiments using pseudo-desktop

collections. In Proceedings of the 18th ACM conference on Information and

knowledge management, pp. 1297-1306.

Kim, S., and Zhang, B-T. (2003). Genetic mining of html structures for effective web-

document retrieval. Applied Intelligence, vol.18, no.3, pp.243-256.

Kim, S., and Zhang, B.-T. (2000). Web-Document retrieval by genetic learning of

importance factors for HTML Tags. In Proceedings of PRICAI Workshop on Text

and Web Mining, pp. 13-23.

Klabbankoh, B., and Pinngern, O. (2008). Applied Genetic Algorithms In Information

Retrieval. Retrieved Aug 22, 2009, from http://www.ils.unc.edu/~losee/gene1.pdf

Kleinberg, J., and Tomkins, A. (1999). Applications of linear algebra in information

retrieval and hypertext analysis. In ACM PODS Conference Proceedings , pp. 185–

193.

Kobayashi, M., and Takeda, K. (2000). Information retrieval on the Web. ACM

Computer. Surveys, vol 32, no. 2, pp.144–173.

Kopec, D. and Marsland, T.A. (2012), Artificial Intelligence: Search Methods, [online].

Available at:

http://spider.sci.brooklyn.cuny.edu/~kopec/Publications/Publications/O_5_AI.pdf

[Accessed 21/9/2012]

Kofax. (2011). Retrieved 6 2011, 1, from Kofax: http://www.kofax.com/glossary

Kosala, R., and Blockeel, H. (2000). Web mining research: A survey. SIGKDD

Explorations, vol. 2, no. 1, pp. 1-15.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means.

MA, USA.: MIT Press, Cambridge.

Kui, F. and Juan, W., (2012), An Optimized Features Extraction Algorithm on VSM, 9th

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 29-

31 May, pp. 1471 - 1473.

Kushchu, I. (2005). Web-based evolutionary and adaptive information retrieval. IEEE

Transactions on Evolutionary Computation, vol. 9, no.2, pp. 117 - 125.

Lashkari, A.H., Mahdavi, F. Ghomi, V (2009), V.A Boolean Model in Information

Retrieval for Search Engines , International Conference on Information

Management and Engineering,. ICIME '09. pp: 385 – 389, IEEE Conference

Publications.

Bibliography 223

LEE, W. (2007). Hierarchical web structure mining. [online]. Available at:

http://www.ieice.org/~de/DEWS/DEWS2006/doc/2A-v1.pdf [Accessed 4/4/2007]

Lewandowski, D. (2005). Web Searching, search engines and information retrieval,

Information Services and Use, vol. 18, no.3, pp. 137-147

Lili Yan, L., Chen, H, Ji, W. Lu, Y. and Li, J (2009), Optimal VSM Model and Multi-

Object Quantum-Inspired Genetic Algorithm for Web Information Retrieval,

International Symposium on Computer Network and Multimedia Technology, 2009.

CNMT 2009, pp. 1 – 4, IEEE Conference Publications

Liu, B. (2006). Web Data Mining. Springer-Verlag New York, LLC.

Liu, D.-R., Keyword C.-K. and Wu, M.-Y. (2008), Context-based knowledge support for

problem-solving by rule-inference and case-based reasoning, Machine Learning

and Cybernetics, 2008 International Conference on , 12-15 July, vol.6, pp.3205-

3210. 2008

Lopez-Pujalte, C., Guerrero-Bote, V. P., and de Moya-Anegon, F. (2003). Genetic

algorithms in relevance feedback: a second test and new contributions. Information

Processing and Management , vol. 39, pp. 669–687.

Lopez-Pujalte, C., Guerrero-Bote, V. P., and de Moya-Anegon, F. (2003). Order-based

fitness functions for genetic algorithms applied to relevance feedback. Journal of

the American , vol. 54, no. 2, pp. 152–160.

Lops, P., de Gemmis, M., Semeraro, G., Musto, C., and Narducci, F. (2012). Content-

based and collaborative techniques for tag recommendation: an empirical

evaluation. Journal of Intelligent Information Systems, pp. 1-21, Springer

Netherlands.

Losee, R. M. (1996). Learning syntactic rules and tags with genetic algorithms for

information retrieval and filtering: an empirical basis for grammatical rules.

Information Processing and Management , vol. 32, no. 2, pp. 185-197.

Man, K.F., Tang, K.S., and Kwong, S. (1996), Genetic Algorithms: Concepts and

Applications, IEEE Transitions on Industrial Electronics, vol. 43, no. 5 pp. 519-

534

Manning, C. D., Raghavan, P., and Schütze, H. (2009). An introduction to information

retrieval. Cambridge, England: Cambridge University Press.

Marghny, M. H., and Ali, A. F. (2005). Web mining based on genetic algorithm. AIML

05 Conference. Cicc, Cairo, Egypt.

Marques Periera, R. A., Molinari, A., and Pasi, G. (2005). Contextual weighted

representations and indexing models for the retrieval of HTML documents. Soft

Computing , vol. 9, pp. 481-492.

Martín-Bautista, M. J., and Vila, M. A. (1998). Applying genetic algorithms to the

feature selection problem in information retrieval. In Lecture Notes On Artificial

Intelligence (LNAI) , pp. 272-281. Springer-Verlag.

Milutinovic V., Cvetkovic D., and Mirkovic J. (2000). Genetic search based on multiple

mutations. IEEE Computer , pp. 118-119.

Minaei-Bidgoli, B., and Punch, W. (2003). Using genetic algorithms for data mining

optimization in an educational web-based system. Genetic and Evolutionary

Computation Conference, pp. 2252–2263. Chicago, USA.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence , vol. 18, pp. 203-

226.

Bibliography 224

Muhlenbein, H., and Schlierkamp-Voosen, D. (1993). Predictive models for the breeder

genetic algorithm: I. Continuous parameter optimization. Evolutionary

Computation, vol. 1, no. 1, pp. 25-49.

Nirkhi, S., and Hande, K. (2008). Optimization of context disambiguation in web search

results . International Conference on Computer Science and Information

Technology, ICCSIT '08., pp. 820 - 824.

Noreault, T., McGill, M., and Koll, M. B. (1980). A performance evaluation of similarity

measures, document term weighting schemes and representations in a Boolean

environment. Proceedings of the 3rd annual ACM conference on research and

development in information retrieval, pp. 57-76. Cambridge, England.

Pandey, H. M., Dixit, A. and Mehrotra, D. (2012), Genetic algorithms: concepts, issues

and a case study of grammar induction, September 2012 , CUBE '12: Proceedings

of the CUBE International Information Technology Conference

Pathak, P., Gordon, M., and Fan, W. (2000). Effective information retrieval using genetic

algorithms based matching functions adaption. 33rd hawaii international

conference on science (HICS). Hawaii, USA.

Penev, A., and Wong, R. K. (2010). Structure vs. content in hierarchical corpora.

Information retrieval, vol. 13, no. 6, pp. 636-656. Springer Science+ Business

Media, LLC 2010

Petridis, V., Kazarlis, S., and Bakirtzis, A. (1998). Varying fitness functions in genetic

algorithm constrained optimization: the cutting stock and unit commitment

problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

Cybernetics, vol. 28, no. 5, pp. 629–640.

Picarougne, F., Monmarch´e, N., Oliver, A., and Venturini, G. (2002). Geniminer: Web

mining with a genetic based algorithm. Proceedings of the IADIS International

Conference WWW/Internet, pp. 263–270. Lisbon, Portugal .

Picarougne, F., Monmarch´e, N., Oliver, A., and Venturini, G. (2002). Web mining with

genetic algorithm. Eleventh International World Wide Web Conference. Honolulu,

Hawai.

Picarougne, F., Monmarch´e, N., Oliver, A., Venturini, G. (2002). Geniminer: Web

mining with a genetic based algorithm. In: Proceedings of the IADIS International

Conference WWW/Internet, pp. 263–270. Lisbon, Portugal.

Pohl, S., Zobel, J. and Moffat, A (2010), Extended Boolean retrieval for systematic

biomedical reviews, Proceedings of the Thirty-Third Australasian Conference on

Computer Science, vol. 102, pp. 117-126

Quinlan, J. (1986, 1993). Induction of decision trees. Machine Learning , 1, 81-106.

Radwan, A. A., abdel Latef, B. A., Ali, A. A., and Sadeq, O. A. (2006). Using genetic

algorithm to improve information retrieval systems. proceedings of world academy

of science, engineering and technology, vol. 17, pp. 6-12.

Raghavan, V., and Agarwal, B. (1987). Optimal determination of user-oriented clusters:

An application for the reproductive plan. Proceedings of the second international

conference on genetic algorithms and their applications, pp. 241-246. Hillsdale,

NJ: Lawrence Erlbaum Associates.

Rech, J., and Althoff, K.-D. (2004), Artificial intelligence and software engineering -

status and future trends. Special issue on artificial intelligence and software

Engineering, KI vol. 3, pp. 5–11

Bibliography 225

Russell, S., Norvig, R., (2010), Artificial intelligence: A modern Approach, Third

Edition, Pearson Education , Inc.

Rylander, B. (2001). Computational complexity and the genetic algorithm. A dissertation

presented in partial fulfillment of the requirements for the degree of doctor of

philosophy. University of Idaho.

Saini, M. Sharma, D. Gupta, P.K . (2011), Enhancing information retrieval efficiency

using semantic-based-combined-similarity-measure. International Conference on

Image Information Processing (ICIIP), pp. 1 - 4. IEEE Conference Publications

Salton, G., and Buckley, C. (1990). Improving retrieval performance by relevance

feedback. Journal of the American Society for Information Science, vol. 41, no. 4,

pp. 288-297.

Salton, G., and Buckley, C. (1988). Term weighting approaches in automatic text

retrieval. Information Processing and Management, vol. 24, no. 5, pp. 513-523.

Sehgal, A.K., Das, S., Noto, K., Saier, M.K. and Elkan, C., (2009) Identifying Relevant

Data for a Biological Database: Handcrafted Rules versus Machine Learning,

IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8,

HYPERLINK "http://intl.ieeexplore.ieee.org.v-

ezproxy.brunel.ac.uk:2048/xpl/tocresult.jsp?isnumber=5730188" no. 3, pp. 851 -

857

Simon, P. and Sathya, S.S. (2009), Genetic algorithm for information retrieval,

International Conference on Intelligent Agent & Multi-Agent Systems,. IAMA 2009.

pp. 1 – 6, IEEE Conference Publications

Sivanandam, S. N., and Deepa, S. N. (2008). Introduction to Genetic Algorithms. New

York: Springer Berlin Heidelberg.

Smith, J. (2007), Red hot traffic in 10 days, [online],Available at:

http://www.danielherzner.com/ebooks/redhottraffic.pdf. [Accessed 13/8/2007]

Snasel, V., Moravec, P., and Pokorny, J. (2005). WordNet ontology based model for web

retrieval. Proceedings of international workshop on challenges in web information

retrieval and integration, pp. 220–225. Washington, D.C.: IEEE Computer Society.

Song, W., and Park, S. C. (2009). Genetic algorithm for text clustering based on latent

semantic indexing. Computers and Mathematics with Applications , vol. 57, no.11,

pp. 1901-1907.

Sparck Jones, K., Walker, S., and Robertson, S.E. (2000). A probabilistic model of

information retrieval: development and comparative experiments - Part 1.

Information Processing and Management, vol. 36, no. 6, pp. 779-808.

Spears, W. M., and De Jong, K. A. (1991). An analysis of multipoint crossover. In G.

Rawlins, Foundations of Genetic Algorithms, pp. 301–315. CA: Morgan Kaufman.

Steinbach, M., Karypis, G., and Kumar, V. (2000). A comparison of document clustering

techniques. TextMining Workshop. KDD.

Stop Word List 1. (2002). Retrieved December 1, 2009, from Onix Text Retrieval

Toolkit: http://www.lextek.com/manuals/onix/stopwords1.html

T. H. Haveliwala, A. G., Haveliwala, T. h., Gionis, A., Klein, D., and Indy, P. (2002).

Evaluating strategies for similarity search on the web. In Proceedings of the 11th

International World Wide Web Conference, pp. 432–442.

Tate, D. E., and Smith, A. E. (1995). A genetic approach to the quadratic assignment

problem. Computers and. Operations. Research, vol. 22, pp. 73-83.

Bibliography 226

The 4 Universities Data Set. (1998). [online]. Available at :

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/ [Accessed

12/11/2009]

Tian, C., Tezuka, T., Oyama, S., Tajima, K., and Tanaka, K. (2006). Improving web

retrieval precision based on semantic relationships and proximity of query

keywords’. (S. Bressan, J. K¨ung, and R. Wagner, Eds.) DEXA 2006. LNCS , no.

4080, pp. 54–63.

Uematsu, Y., Inoue, T., Fujioka, F., Kataoka, R., and Ohwada, H. (2008). Proximity

scoring using sentence-based inverted index for practical full-text search. Research

and Advanced Technology for Digital Libraries , no. 5173, pp. 308-319.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning , vol. 4,

pp. 161-186.

Vrajitoru, D. (1998). Crossover improvement for the genetic algorithm in information

retrieval. Information Processing and Management , vol. 34, no. 4, pp. 405-415.

Vrajitoru, D. (1997). Genetic algorithms in information retrieval. AIDRI97: Learning;

From Natural Principles to Artificial Methods.

Vrajitoru, D. (2000). Large population or many generations for genetic algorithms ?

implications in information retrieval. In F. Crestani, and G. Pasi (Ed.), Soft

Computing in Information Retrieval. Techniques and Applications (pp. 199-222).

Physica-Verlag, Heidelberg.

Vrajitoru, D. (2007). Natural Selection and Mating Constraints with Genetic Algorithms.

[online]. Available at: http://www.cs.iusb.edu/~danav/papers/dv_sm05.pdf

[Accessed 3/4/2008]

Wang, Z., and Feng, B. (2005). Optimal genetic query algorithm for information

retrieval. In J. C. al, Parallel and Distributed Processing and Applications, Lecture

Notes in Computer Science, vol. 3358, pp. 888-892. Springer-Verlag Berlin

Heidelberg.

Xu, Q., Shen, H., Dai, Y., Cui, B., and Zhou, X. (2008). Achieving effective multi-term

queries for fast DHT information retrieval. In Lecture Notes in Computer Science

pp. 20-35. Springer Berlin / Heidelberg.

 HYPERLINK "http://dl.acm.org.v-

ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435598158&coll=DL&dl=ACM

&CFID=129606728&CFTOKEN=41966658" Xu , Y., HYPERLINK

"http://dl.acm.org.v-

ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435599094&coll=DL&dl=ACM

&CFID=129606728&CFTOKEN=41966658" Deli , Y. and HYPERLINK

"http://dl.acm.org.v-

ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81435604114&coll=DL&dl=ACM

&CFID=129606728&CFTOKEN=41966658" Yu , L. (2009), Efficient annealing -

inspired genetic algorithm for information retrieval from web-document June 2009,

GEC '09: Proceedings of the first ACM/SIGEVO Summit on Genetic and

Evolutionary Computation, Publisher: ACM

Yang, J., and Korfhage, ,. R. (1993). Query optimization in information retrieval using

genetic algorithms. Proceedings of the fifth International Conference on Genetic

Algorithms, pp. 603-613.

Bibliography 227

Yang, J.-J., Korfhage, R., and Rasmussen, E. M. (1992). Query improvement in

information retrieval using genetic algorithms - A report on the experiments of the

TREC project. In Proceedings of the first text retrieval conference, pp. 31-58.

Yeh, J.-Y., Lin, J.-Y., Ke, H.-R., and Yang, W.-P. (2007). Learning to rank for

information retrieval using genetic programming. In Proceedings of ACM SIGIR

2007 Workshop on Learning to Rank for Information Retrieval (LR4IR '07), pp. 41-

48. Amsterdam, Netherlands.

Yoshioka, M. and HYPERLINK "http://dl.acm.org.v-

ezproxy.brunel.ac.uk:2048/author_page.cfm?id=81100124421&coll=DL&dl=ACM

&CFID=126621907&CFTOKEN=99656279" Haraguchi , M., (2005), On a

combination of probabilistic and boolean IR models for WWW document retrieval,

Transactions on Asian Language Information Processing (TALIP) , vol. 4, no. 3,

pp. 340 - 356 Publisher: ACM

Zaman, A.N.K.; Brown, C.G.(2010) , Latent semantic indexing and large dataset: Study

of term-weighting schemes, 2010 Fifth on International Conference Digital

information Management (ICDIM) , 5-8 July, pp.1-4

Zhang, B., Chen, Y., Fan, W., Fox, E. A., Gonalves, M., Cristo, M., et al. (2005).

Intelligent gp fusion from multiple sources for text classification. CIKM ’05:

Proceedings of the 14th ACM international conference on Information and

knowledge management, pp. 477–484. New York, NY, USA.

Zhang, X. (2009). Effective Search in Online Knowledge Communities: A Genetic

Algorithm Approach. Retrieved from MSc Thesis, Virginia Polytechnic Institute

and State, Blacksburg, Virginia, USA.

Zhang, X., Wei, K., and Meng, X., (2012), A XML query results ranking approach based

on probabilistic information retrieval model, 9th International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD), 2012, pp. 915 – 919. IEEE Conference

Publications

Appendices 228

7. A

PPENDICES

Appendix A: Term Weight Formulas Used In GA

Systems

Table 7-1: description of the terminals used in weighting and fitness functions

Terminal Description

i Term i in the document.

j Document j in space.

 Weight of term i in document j

 Frequency of term i in user query Q.

Total number of terms in Q.

Frequency of term-i in document-j.

Size of document-j (total number of words in document-j)

Number of unique terms in document-j

HTML tag weight of term-i in document-j.

 Total number of documents in space.

Frequency of term i in document j

Total number of documents having term-i.

Total number of all terms in space.

 Total number of term-i in space.

rtf raw term frequency

l length of the document vectors

lavg average length of the document vectors

k1, b tuning parameters

lwt local weight (within-document weight) –the weight used is
simple term frequency

gwt global weight –the weight used is simple term frequency

Query row term frequency within a document

Cf frequency of a term in the collection

H constant

dim Number of Dimensions

rad radius

amp amplitude

hhl height half life

ahl amplitude half life

ck Coordinates

fd retrieved document

α, β coefficients in precision fitness

dt minimum frequency component when a term
occurs in a document

|D| Total number of documents retrieved

r(d) Function returns relevance of document, 1 if relevant, and 0

Appendices 229

otherwise.

A Parameter which determines the value of factors to be used.

Table 7-2: Term weighting formulas used in GA systems

Formula

Number
Term Weighting Function Reference

1

(Billhardt et

al, 2002)

2 TF-IDF

(Cummins

and

O’Riordan,

2006; Kim

and Zhang,

2003)

3 Okapi

(Cummins

and

O’Riordan,

2006)

4 BM25

(Cummins

and

O’Riordan,

2006)

5 local and global weighting schemes

(Cummins

and

O’Riordan,

2006)

6

(Cummins

and

O’Riordan,

2006)

7

(Vrajitoru,

2000)

8 Bayesian inference network model:

(Kim and

Zhang, 2003)

9 2-poisson model

Where

(Kim and

Zhang, 2003)

10 Salton and Buckley:

(Radwan et al

2006; Aly,

2007)

Appendices 230

11

f (t, d) is the frequency of feature t occurring in d. | D| is the total number

of documents. IG (Ci, t) is the information gain of t on category Ci. is

the position weight of t in the page.

(Kui and

Juan, 2012)

Appendices 231

Appendix B: Fitness Functions Used In GA Systems

Fitness functions used in GA systems to measure the document relativity to the user

query are presented in the Table 9-3.

Table 7-3

