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ABSTRACT 
 

 

In geometrical metrology, morphological filters are useful tools for the surface 

texture analysis and functional prediction. Although they are generally accepted and 

regarded as the complement to mean-line based filters, they are not universally 

adopted in practice due to a number of fatal limitations in their implementations — 

they are restricted to planar surfaces, uniform sampled surfaces, time-consuming and 

suffered from end distortions and limited sizes of structuring elements. 

A novel morphological method is proposed based on the alpha shape with the 

advantages over traditional methods that it enables arbitrary large ball radii, and 

applies to freeform surfaces and non-uniform sampled surfaces. A practical algorithm 

is developed based on the theoretical link between the alpha hull and morphological 

envelopes. The performance bottleneck due to the costly 3D Delaunay triangulation is 

solved by the divide-and-conquer optimization. 

Aiming to overcome the deficits of the alpha shape method that the structuring 

element has to be circular and the computation relies on the Delaunay triangulation, a 

set of definitions, propositions and comments for searching contact points is proposed 

and mathematically proved based on alpha shape theory, followed by the construction 

of a recursive algorithm. The algorithm could precisely capture contact points without 

performing the Delaunay triangulation. By correlating the convex hull and 

morphological envelopes, the Graham scan algorithm, originally developed for the 

convex hull, is modified to compute morphological profile envelopes with an 

excellent performance achieved. 

The three novel methods along with the two traditional methods are compared 

and analyzed to evaluate their advantages and disadvantages. The end effects of 

morphological filtration on open surfaces are discussed and four end effect correction 

methods are explored. Case studies are presented to demonstrate the feasibility and 

capabilities of using the proposed discrete algorithms. 
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1. INTRODUCTION 

 

1.1 Background 

The surface of a component is an interface limiting the body of the component 

and separating it from the surrounding medium, which governs the functional 

behaviours of the product, whether that be a mechanical, tribological, hydrodynamic, 

optical, thermal, chemical or biological property, all of which are of tremendous 

importance to product performance (Jiang 2009; Bruzzone et al. 2008). Surfaces have 

always been fundamentally important in traditional industries. A good surface allows 

automobile engines to have reduced running-in times and to be more fuel efficient 

with reduced emission. It also enables optical components to have smoother surfaces 

such that they scatter less light and have better optical qualities (Jiang et al. 2007a). 

They are even more significant to modern cutting-edge technologies, such as 

nanotechnology, biotechnology and energy-technology. Following the trend of 

miniaturization of these products nowadays, either the reduction of object geometry or 

the refinement of micro and nano-details on macro objects, surfaces and their 

properties become the dominant factor in the functionality of products (Whitehouse 

2012).  

Many emerging products and devices are based on achieving surfaces with special 

functionalities. Manufactured items such as micro- and nanometre scale transistors, 

micro electro mechanical systems (MEMS) and nano electro mechanical systems 

(NEMS), microfluidic devices, optics components with freeform geometry and 

structured surface products are clear evidence of products where the surface plays the 

functional role (Jiang et al. 2007b). Hydrophobic products, such as roof tiles and 

fabrics, can be obtained by texturing the surfaces to achieve the lotus effect (Bruzzone 

et al. 2008). For optics in ground- and space-based telescopes, in defence- and 

satellite-based image based imaging systems and in large laser facilities, smooth 

surfaces with complex optical shapes are required with precision reaching the level of 

atomic magnitude. Similar accuracy is also demanded in implantable medical devices, 

e.g. artificial hip and knee joints, where micrometre form and nanometre roughness 

requirements are specified in order to reduce the generation of wear debris (Jiang & 
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Whitehouse, 2012). Figure 1.1 shows a BioMEMS with selective surface textures for 

the generation of droplets having a 20 pl volume (De Chiffre et al. 2003).  Figure 1.2 

presents an F-theta lens with the shape error less than 0.3 µm peak-to-valley and the 

surface roughness 
a

S  less than 4 nm (Brinksmeier & Preuss 2012). 

 

 

Figure 1.1 BioMEMS 

 

 

Figure 1.2 F-theta lens 

 

Surfaces and their measurement, provide a link between the manufacture of these 

engineering components and their use (Whitehouse 1978). Surface metrology is the 

study of surface topography − measurement of small scale geometrical features on 

surfaces. It has profound influences on manufacture quality as it plays two important 

roles. See Figure 1.3. On one hand, it helps to control the manufacture process: 

monitor changes in the surface texture and indicate changes in the manufacturing 

process such as machine tool vibration and tool wear (Peters et al. 1979; Trumpold 
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2001). On the other hand, it helps functional prediction: characterize geometrical 

features that will directly impact on tribology and physical properties of the whole 

system (Unsworth 1995; Sayles 2001; Whitehouse 2001), for instance, the friction of 

two contact surfaces and the optical fatigue of one reflecting surface. Controlling the 

manufacture helps repeatability and hence quality of conformance. Functional 

prediction helps performance and assists in its optimization (Whitehouse 2002). 

 

 

Figure 1.3 Surface measurement helps manufacture and function 

 

1.2 Filtration techniques for geometrical metrology 

1.2.1 Motivation 

The early use of surface measurement was mainly to control the manufacturing 

process. In practice what happened was that a component was made and tried out. If it 

functioned satisfactorily, the same manufacturing conditions were used to make the 

next part and so on for all subsequent parts (Whitehouse 1978). It soon became 

apparent that the control of surface texture was being used as an effective go-gauge 

for the process. The surface texture is a fingerprint of all process stages of the 

manufacturing process. The effects of process and machine tool are always present in 

surface textures. The former is called the roughness and the latter the waviness. The 

roughness is inevitable – it is the mark of the process, but the waviness – usually of 

longer wavelength – is a result of a problem of the machine tool and in principle could 

be avoided. Also, in addition to roughness and waviness, even longer wavelengths can 

be introduced into the surface geometry by weight deflection or long-term thermal 

effects. These cause errors in the general shape of the part, that is, deviation from the 

shape required and specified by the designer (Whitehouse 2002). 

Filtration is the means by which various components of the surface texture, 

namely roughness, waviness and form, are extracted from the measured data for 
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further characterization, see Figure 1.4. By separating surface profile into various 

bands, it is possible to map the frequency spectrum of each band to the manufacturing 

process that generated it (Raja et al. 2002). 

 

 

Figure 1.4 Geometrical components of a surface profile. (a) roughness; (b) waviness; 

(c) form 

 

On the other hand, surface analysis techniques, including the filtration techniques, 

were also motivated by predicting and optimizing the functional performance. One of 

the initiatives of surface metrology was the need for studying tribological properties 

and optical properties of components. Surfaces of components were considered 

important in terms of friction and optical reflection. Much emphasis was placed on 

friction because it is fundamental in the performance of moving systems. Wear is 

often the result of too much friction, and lubrication is mainly devoted to reducing 

friction. Contact mechanisms are fundamental and the geometry of contact depends 

strongly on the surface topography (Jiang et al. 2007a). Some surface parameters have 

been attempted to link the function.  For example, extreme statistics may be related 

with the corrosion and fatigue of components and average statistics may contribute to 

conductivity and reflectivity (Whitehouse 2001). 

Although filtration techniques are primarily used for the analysis of surface 

textures, with increased data densities in dimension metrology, they are being applied 

as a means of data smoothing. For example, dimensional measurements performed by 

the Coordinate Measurement Machine (CMM) equipped with optical scanning probes 

typically include all measured data in an “as collected” manner. As data densities 
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have increased, there has been an increased awareness that there is a great deal of 

noise in these high density datasets. This noise can be the result of such things as the 

surface roughness of the component being measured, or caused by the dirt or 

machining chips on the component, or due to the errors in the measurement system, 

e.g. vibration or electronic noise etc. In many cases it is desirable to filter out this 

noise to achieve a more stable dataset that is perhaps more indicative of the attributes 

that are to be assessed (Malburg 2002). 

1.2.2 Historical development 

The 1950s saw two attempts to separate the waviness from the profile so that the 

roughness could be characterized. One was graphical, simulating electrical filters in 

the meter circuit (Muralikrishnan & Raja 2009). The raw profile was divided into 

segments of equal length, and in each segment a mean line was drawn that captures 

the slope of the profile in that segment. The roughness profile was obtained by 

considering the deviation from the mean line. Thus it was designated the mean line 

system (M-system). The other was mechanically simulating the contact of a converse 

surface, e.g. a shaft, with the face of the anvil of a micrometer gauge (Whitehouse 

2002). It appeared as a large circle rolling across over the profile from above and was 

entitled the envelope system (E-system). 

The first practical mean-line filter used in surface texture measurement is the 

analogue filter proposed by Reason et al (1944). Reason issued a comprehensive 

description and analysis of the M-system. He was the first to make the distinction 

between form deviation, waviness and roughness, when specifying the quality of 

shafts and holes. The analogue filter was constructed by a two-resistor-capacity (2RC) 

network. Reason reported the phase error and profile deformation due to filtering, but 

he considered its effect is negligible in computing 
a

R  and 
q

R . 

Von Weingraber (1956) concentrated his effort on developing the Envelope 

system. The E-system bases the reference lines upon the loci of centres of circles of 

different radii rolled along the profile. As Figure 1.5 demonstrates, the locus of the 

centre of the larger circle gives the curve of form, while that of the smaller circle gives 

the contacting profile. The area between the ideal geometrical profile and the curve of 

form represents the errors of form; the area between the curve of form and the 
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contacting profile represents the waviness; and the area between the contacting profile 

and the measured profile represents the roughness (Thomas 1999). 

 

 

Figure 1.5 Terminology of the E-system of reference lines in which the filters are two 

circles of radius r and R rolling along the profile (Olsen 1963) 

 

 

Figure 1.6 Probe for E-system: T1 Skid, T2 stylus 

 

The difficulty appeared in building practical instruments as two elements are 

needed: a spherical skid to approximate the ‘enveloping circle’ and a needle-shaped 

stylus moving in a diametral hole of the skid to measure the roughness as deviation 

with respect to the “generated envelope”, see Figure 1.6. The advantages of the E-

system were claimed to be that it is more physically significant in that many 

engineering properties of a surface are determined by its peaks. Standard radii were 

25 mm for roughness and 250 mm for waviness, though other radii have been 

proposed (Radhakrishnan 1972). The standing objection opposed by Reason was that 

the choice of the rolling circle radius is as arbitrary as the choice of cut-off in the M-
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system and no practical instrument using mechanical filters could be made at that 

time. 

The discussion about the reference systems lasted for at least one decade between 

1955 and 1966 (Peters 2001). Around 1960, with the advent of digital processing 

techniques, the M-system became pre-eminent. In 1963, Whitehouse and Reason 

(1963) simulated the 2RC filter digitally. They described the filter using a weighting 

function that depended on the cut-off wavelength. A cut-off wavelength serves a 

similar purpose as the size of a segment in graphical analysis. In 1967, Whitehouse 

(1967/68) formally introduced the phase-corrected filter and digital filters were also 

made. It was adopted by the international standard and formally referred as the 

“standard wave filter”. This phase-corrected digital filter was a significant step 

forward in the development of mean-line filters because it had a major impact upon 

the interpretation of surface roughness. 

The phase-corrected digital filter still has problems, one being that it distorted the 

profile at the ends. In 1986, the three main surface texture instrument manufactures 

(Hommelwerk, Mahr and Taylor Hobson) had reached a consensus, with the Gaussian 

filter being chosen as the new filter for separating differing wavelengths. This 

recommendation was adopted by ISO, resulting in ISO 11562 (1996) in which the 

Gaussian filter is given as the standardized phase-corrected profile filter for surface 

texture. 

The Gaussian filter, although a good general filter, is not applicable for all 

functional aspects of a surface, for example in contact phenomena, where the E-

system method is more relevant. The advent of fast practical computers, which can be 

used in association with measurement instruments, had virtually eliminated the need 

for any hardware implementation for the E-system (Tholath & Radhakrishnan 1999). 

Furthermore, there were growing evidences showing that the E-system method can 

give better results in functional prediction of surface finish in the analysis of mating 

surfaces, such as contact, friction, wear, lubrication and failure mechanism (Westberg 

1997). The M-system techniques are usually used to separate form, waviness and 

roughness, nevertheless there was little correlation between roughness parameters and 

functional requirements in that functional behaviour of components are more related 

with geometrical properties of their surfaces. In this aspect the logic of the E-system 

was sounder in comparison to the M-system. This concept also gained great ground in 
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form measurement. CMMs using spherical probe tips are essentially performing this 

procedure of filtering in measurements. 

The French industry adopted an alternative approach to filtration to the M-system 

and the E-system, called roughness and waviness (R&W), also known as the motif 

method, which sets out to extract functionally significant features from surface 

profiles for a particular application. The conceptual foundation of the method is 

described by Fahl (1982). The method began as a purely graphical approach, where an 

experienced operator would draw on a profile graph an upper envelope that 

subjectively joined the highest peaks of the profile. Base on this procedure, 

“insignificant” peaks are combined to form “significant” ones, from which surface 

texture parameters could be calculated. From the standpoint of classification, the 

motif method does not belong to the M-system, but a simulation of the E-system 

(Jiang et al. 2007a). 

Both the M-system and the E-system approaches have their advantages and 

limitations. Arguing that one is better than the other without any concrete proof from 

the application area is not convincing (Radhakrishnan & Weckenmann 1998). 

Actually rather than competing with each other, the M-system and the E-system are 

complementary to each other, contributing to a better solution to surface measurement. 

1.2.3 Recent development 

In the last two decades, more advanced filtration techniques emerged as a result 

of urgent needs for the analysis of surfaces with complex geometry and high precision 

produced by modern manufacturing technologies. 

The M-system was greatly enriched by incorporating advanced mathematical 

theories. The Gaussian regression filter overcame the problem of end distortion and 

poor performance of the Gaussian filter in the presence of significant form component 

(Seewig 2006), while the robust Gaussian filter solved the problem of outlier 

distortion in addition (Brinkmann et al. 2001; Zeng et al. 2010). The Spline filter is a 

pure digital filter, more suitable for form measurement (Krystek 1996a). Based on 
p

L  

approximation, the robust Spline filter is insensitive with respect to the outliers 

(Krystek 2005; Goto et al. 2005; Zeng et al. 2011a). By applying wavelet theory, the 

Spline-wavelet filters provide a multi-resolution access to partitioning a surface into 

multiple wavelength bands (Jiang et al. 2000). More recently, a method of Gaussian 
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filtering for freeform surface was developed by solving the diffusion equation which 

overcomes geometrical distortion in the presence of non-zero Gaussian curvature 

(Jiang et al. 2011a). 

Meanwhile the E-system also experienced significant improvements. By 

introducing mathematical morphology, morphological filters emerged the superset of 

the early envelope filter, but offering more tools and capabilities (Srinivasan 1998). 

The basic variation of morphological filters includes the closing filter and the opening 

filter. They could be combined to achieve superimposed effects, referred to as 

alternating symmetrical filters. Scale-space techniques further developed 

morphological filters. Similar to wavelet based techniques in the M-system, scale-

space techniques provide a multi-resolution analysis to surface textures whereby 

various scales of geometrical features can be extracted from a surface and assessed 

separately (Scott 2000). 

In 1996, ISO set up a group, under the convenorship of Scott (ISO/TC 213 1996). 

This work has resulted in the establishment of a standardized framework for filters, 

giving a mathematical foundation for filtration, together with a toolbox of different 

filters (Srinivasan 2000 et al.; Krystek et al. 2000). Information concerning these 

filters has been or is about to be published as a series of technique specifications (ISO 

16610 series 2010), to allow metrologists to access the usefulness of the 

recommended filters. So far, only profile filters have been published, including the 

following classes of filters. 

(1) Linear filters. The M-system filters belong to this category, such as the Gaussian 

filter, the Spline filter and the Spline-wavelet filter. 

(2) Robust filters. Filters that are robust against specific profile phenomena such as 

spikes, scratches and steps, including the robust Gaussian filter and the robust 

Spline filter. 

(3) Morphological filters. The E-system filters belong to this category and include 

closing and opening filters using either a disk or a horizontal line segment. 

(4) Segmentation filters. Filters that partition a profile into portions according to 

specific rules. The motif approach belongs to this class. 
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1.3 Aims and objectives 

During the last two decades, in contrast to fabulous progress achieved in the 

Gaussian filter, the Spline filter and their robust versions, there was not such an echo 

in respect to morphological filters. Even though morphological filters are generally 

accepted and regarded as the complement to mean-line based filters, they are not 

universally adopted due to a number of limitations caused by their current 

implementation and lack of capabilities requested by modern product technologies, 

which as a consequence restrict the prevalence of morphological filters.  

This thesis aims to develop efficient discrete algorithms for morphological filters 

with capabilities of evaluating modern surfaces including freeform surfaces, non-

uniform sampled surfaces and closed surfaces and explore their applications in the 

field of geometrical metrology. The major objectives that this thesis attempts to 

address are outlined below: 

(1) Review the development of filtration techniques in geometrical metrology, 

especially morphological filters. Investigate conventional implementations of 

morphological filters and survey their applications in the field of geometrical 

metrology. 

(2) Develop discrete algorithms for morphological filters. The algorithms are 

expected to overcome the deficits of traditional methods. It should be efficient in 

performance, robust against possible singularities, available for arbitrary large size 

of structuring element, applicable for complex surfaces, including freeform 

surfaces, non-uniform sampled surfaces (e.g. surfaces sampled by a CMM) and 

closed surfaces. 

(3) Evaluate and verify the designed algorithms. Compare the designed algorithms 

with conventional methods in terms of their capabilities, computations, 

performances and limitations. 

(4) Investigate the end effects of morphological filtering on open surfaces and create 

correction methods for end effects. 

(5) Explore the applications of the designed methods in the field of geometrical 

metrology, including surface metrology and dimensional metrology. 
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1.4 Structure of thesis 

The thesis is structured in the following fashion. 

In Chapter 2, we review the four basic morphological operations, namely dilation, 

erosion, closing and opening as well as the granulometry transform. They are the 

foundation of mathematical morphology. Morphological image processing techniques 

are also stated in a brief manner. Afterwards the basic principles and practical 

applications of morphological operations are recalled, including the dilation and 

erosion operation, the closing and opening filter, the alternating symmetrical filter and 

scale-space techniques. Following that, the conventional supporting algorithms for 

morphological filters are reviewed. 

Aiming at the limitations of traditional methods, Chapter 3 proposes a novel 

method, which utilizes the theoretical link between the alpha hull and morphological 

operations. This chapter first gives a brief introduction to alpha shape theory and then 

presents the link between the alpha hull and morphological envelopes. Based on their 

relationship, a practical algorithm is developed that corrects possible singularities 

caused by data spikes and reduces the amount of calculation for open 

profiles/surfaces. Aiming to improve the performance of the proposed alpha shape 

method, an optimization is constructed using the divide-and-conquer approach. 

In Chapter 4, another two novel algorithms are proposed based on searching 

contact points on the surface, namely those points on the surface being in contact with 

the structuring element in the traversing process. This chapter first analyzes the 

limitations of the alpha shape method. Then a series of definitions, propositions and 

comments related with the search of contact points are proposed and mathematically 

proved based on alpha shape theory. A recursive algorithm is developed on the basis 

of these comments. 

The other method is proposed by linking morphological envelopes with the 

convex hull. Viewing the convex hull as a special morphological envelope, the 

Graham scan algorithm, originally developed for the convex hull, is modified to 

calculate morphological profile envelopes. 

Chapter 5 makes a detailed comparison of the proposed algorithms with the 

existing algorithms in four aspects: algorithm verification, algorithm analysis, 
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performance evaluation and areal extension. By examining these aspects, a thorough 

insight into the merits and shortcomings of these algorithms is obtained. 

Chapter 6 studies the end effects of morphological filtration on open surfaces. 

Four methods for end effects correction are developed comprising infinity padding, 

point symmetrical reflection, line symmetrical reflection, polynomial extrapolation 

and linear prediction. These methods are coupled with an optimization technique of 

using contact points aiming to improve computation efficiency. A discussion is made 

to derive their pros and cons. 

Chapter 7 illustrates four case studies of the application of the proposed methods. 

First the proposed areal methods are used to extract topographical features from 

engineering surfaces, including surfaces measured from a tooth implant, a femoral 

component of artificial knee joint and a bullet. Then they are applied to the filtration 

of freeform and non-uniform sampled surfaces. Following that, morphological filters 

are employed in roundness measurement using the alpha shape method. Finally the 

methods searching for contact points in association with high accuracy instruments 

are utilized to evaluate the underlying form of the textured surface of hip replacement 

taper junction. 

The thesis concludes in Chapter 8 by summarising the accomplished work in this 

research and discussing the future work. 
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2. LITERATURE REVIEW 

 
Morphological filters are defined on the basis of four basic morphological 

operations, namely dilation, erosion, opening and closing. These operations are the 

foundation of mathematical morphology. Mathematical Morphology was firstly used 

for image processing and gradually extended to other disciplines, including surface 

metrology and dimensional metrology. This chapter will review several basic 

concepts of mathematical morphology. Afterwards definitions, specifications and 

applications of morphological filters will be discussed. Finally, existing algorithms for 

morphological filters will be presented and analyzed in details. 

 

2.1 Mathematical morphology 

Mathematical morphology is a mathematical discipline established by two French 

researchers Jorge Matheron and Jean Serra in the 1960s. An overview of their work is 

given in Serra (1982). The central idea of mathematical morphology is to examine the 

geometrical structure of an image by matching it with small patterns at various 

locations in the image. By varying the size and the shape of the matching patterns, 

called the structuring elements, one can extract useful information about the shape of 

the different parts of the image and their interrelation (Heijmans 1995). Four basic 

morphological operations, namely dilation, erosion, opening and closing, form the 

foundation of mathematical morphology. 

2.1.1 Morphological operations 

Dilation combines two sets using the vector addition of set elements. The dilation 

of A  by B  is 

( , )D A B A B
∨

= ⊕ ,                                                  (2.1) 

where B
∨

 is the reflection of B  through the origin of B . 

It is defined on the basis of vector addition, also known as the Minkowski 

addition, which was first introduced by Minkowski (1903). The Minkowski addition 

of two input sets A and B  is the set: 
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{ | ,  & }A B c c a b a A b B⊕ = = + ⊆ ⊆ .                            (2.2) 

Figure 2.1 presents an example of dilating a square by a disk. The dilation of the 

light colour square by a disk results in the dark colour square with round corners. 

 

 

Figure 2.1 Dilation of a square by a disk 

 

Erosion is the morphological dual to dilation. It combines two sets using the 

vector subtraction of set elements. The erosion of  A  by B  is 

( , )     E A B A B
∨

= ,                                               (2.3) 

where 

    A B A B= + .                                               (2.4) 

 

and A  is the complementation of A . 

An example of erosion is illustrated in Figure 2.2. The erosion of the light colour 

square by a disk generates the dark colour square. 

 

 

Figure 2.2 Erosion of a square by a disk 

 

Opening and closing are dilation and erosion combined pairs in sequence. The 

opening of A  by B  is obtained by applying the erosion followed by the dilation, 

( , ) ( ( , ), )O A B D E A B B
∨

= .                                                    (2.5) 

 



 31

In Figure 2.3, the opening of the light colour square by a disk generates the dark 

colour square with round corners. 

 

 

Figure 2.3 Opening of a square by a disk 

 

Closing is the morphological dual to opening. The closing of A  by B  is given by 

applying the dilation followed by the erosion, 

( , ) ( ( , ), )C A B E D A B B
∨

= .                                                    (2.6) 

 

In Figure 2.4, the closing of the light colour shape (union of two squares) by a 

disk results in the union of the light colour shape and the dark colour areas. 

 

 

Figure 2.4 Closing of an union of two squares by a disk 

 

2.1.2 Granulometry 

The granulometry was first introduced by Matheron (1975) to compute the size 

distribution of grains in the input set. The concept of the granulometry may be likened 

to the sifting of rocks in a gravel heap. The rocks are sifted through screens of 

increasing size, leaving only the rocks that are too big to pass through the sieve. The 

process of sifting the rocks at a particular size is analogous to the opening of an image 

using a particular size of structuring element. The residual after each opening is often 
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collated into a granulometrical curve, revealing useful information about the 

distribution of object size in the image (Soille 1999). 

Figure 2.5 illustrates an example of using the granulometry to extract shapes 

(Asano 1999). The original image consisting of different scales of shapes is filtered by 

a sequence of opening with increasing size. Since the opening removes the portion of 

the image smaller than the structuring element, the difference of the image opened by 

the structuring elements of size n  and 1n +  contains the portion whose size is exactly 

n . Thus various sizes of shapes can be extracted from the differences. 

 

 

Figure 2.5 Granulometry and size distribution 

 

2.1.3 Morphological image processing techniques 

Mathematical morphology had a wide application in image processing from its 

birth. In image processing and analysis, it is important to extract features of objects, 

describe shapes and recognize patterns. Such tasks often refer to geometric concepts, 

such as size, shape and orientation. Mathematical morphology takes these concepts 

from set theory, geometry, and topography and analyzes geometrical structures in an 

image. The following lists several commonly used morphological image processing 

techniques (Shih 2009). 
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• Boundary extraction. It extracts the boundary of an image and empty object 

inside. For a binary image A , it requires first the eroding of A  by a structuring 

element B  and then taking the set difference between A  and its erosion. The size 

of structuring elements determines the thickness of the object contour. 

• Region filling. It is to fill value 1 into the entire object region of a binary image. 

Region filling starts by assigning 1 to pixel p  inside the object boundary, and 

then grows by performing iterative dilations until the iteration converges. 

• Thinning and Thickening. Thinning reduces objects to the thickness of one pixel, 

but does not change the object’s connectivity. Thickening is the morphological 

dual to thinning. It is used to grow some concavities in an object, but it does not 

cause merging of disconnected objects. 

• Skeletonization. It is similar to thinning, but explores in greater details the 

structure of an object. The skeleton emphasizes certain properties of images, for 

instance, curvatures of the contour correspond to topological properties of the 

skeleton. 

• Pruning. The skeleton of a pattern after thinning usually appears as extra short 

noisy branches. Pruning is used to clean up these noises as a post processing 

technique. 

2.1.4 Morphological operations on sets and functions 

In the literature of morphological image processing, both the input set and the 

structuring element of morphological operations are treated as the sets. In binary 

morphology, the sets are defined in 2
ℝ . In grey-scale morphology the morphological 

operations are invoked on the functions defined over a domain in 2
ℝ  (Srinivasan 

1998). Morphological operations on functions can be mathematically linked to 

morphological operations on sets through “fill” transforms (Dougherty 1992). Fill 

transforms convert the curve defined by the function to a two-dimensional set and the 

surface defined by the function to a three-dimensional set (ISO 16610-40 2010). If the 

function curve or surface is closed, then the fill transform produce the interior region 

of the closed curve or surface. Figure 2.6 shows such an example. If the function 

curve or surface is not closed, then a special fill transform called the “umbra 

transform” may be applicable. Figure 2.7 demonstrates an example of the umbra 
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transform. In this example, a curve ( )f x  is defined over a finite interval of x . Its 

umbra is the entire two-dimensional region under the curve of the function ( )f x . 

Similarly, the umbra of a surface ( , )f x y  is the entire three-dimensional region under 

the surface of the function ( , )f x y . In general, morphological operations of functions 

of n  variables can be shown to be equivalent to the corresponding operations on sets 

in 1n+
ℝ . Thus, morphological operations of functions can be derived and justified 

from the set definitions. 

 

 

Figure 2.6 Fill transform of a closed curve on the left to a two-dimensional set on the 

right 

 

 

 

Figure 2.7 Umbra transform of an open curve on the left to a two-dimensional set on 

the right 

 

2.2 Morphological filters 

Morphological filters are evolved from the early envelope filter proposed by Von 

Weingraber (1956), which is performed by rolling a ball over the surface. The locus 

of the centre of the rolling ball followed by an offset of the ball radius gives the 

envelope and it was then considered as the reference line. See Figure 2.8. The 



 35

deviation from the envelope was fine texture or roughness. The envelope filter is quite 

different from mean-line based filters in that the envelope is mainly determined by 

geometrically prominent peaks on the surface while mean line based filters generate 

the reference line by an averaging process. In contrast to mean-line based filters, the 

envelope filter could give better results in function-oriented specification of surface 

finish due to the two following reasons (Dietzsch et al. 2008): 

(1) The envelope system depends on geometrical characteristics of the workpiece, 

which are closely related to functional requirements of workpieces: sliding, 

adhering, sealing, assembly etc. 

(2) With the M-system, there is only little correlation between the standardized 

surface roughness parameters and functional requirements, while the E-system 

offers a common reference system to associate all the geometrical elements, 

including dimension, orientation, form, waviness and roughness. 

 

 

Figure 2.8 Profile and surface envelope (Haesing 1964) 

 
 

2.2.1 Closing and opening filters 

In ISO 16610-41 (2010), morphological filters are defined on the basis of 

morphological operations and related properties: “Morphological filters are 

morphological operations that are monotonically increase and idempotent”. 

Morphological operations have some basic properties as they are listed below: 

Let ( , )F A B  denote a morphological operation where A  is the input set and B  the 

structuring element. 



 36

(1) Rigid motion invariant: an operation does not change under rigid body 

transformation. If  ( , ) ( , )tF A B F tA B=  where t  is any rigid body transformation, 

then ( , )F A B is rigid motion invariant. 

(2) Monotonically increasing: an operation preserves the set containment condition on 

its operands. If 1 2 1 2( , ) ( , )A A F A B F A B⊃ ⇒ ⊃ , then ( , )F A B  is monotonically 

increasing. 

(3) Idempotent: applying the operation one more times does not change the outcome. 

If ( ( , ), ) ( , )F F A B B F A B= , then ( , )F A B is idempotent.  

(4) Extensive: the outcome of the operation contains the input. If ( , )F A B A⊃ , then 

( , )F A B is extensive. 

(5) Anti-extensive: the outcome of the operation is contained in the input. If 

( , )F A B A⊂ , then ( , )F A B is anti-extensive. 

The properties of the four morphological operations are listed in Table 2.1 (ISO 

16610-1 2010). From the table, it can be seen that closing and opening are both 

monotonically increasing and idempotent, and dilation and erosion are monotonically 

increasing but not idempotent. Hence according to the definition of morphological 

filters, opening and closing are two types of morphological filters whereas dilation 

and erosion are not. 

 

Table 2.1 Summary of properties of morphological operation 

 Dilation Erosion Closing Opening 

Rigid motion invariant Yes Yes Yes Yes 

Monotonically increasing Yes Yes Yes Yes 

Idempotent No No Yes Yes 

Extensive Yes No Yes No 

Anti-extensive No Yes No Yes 

 

ISO 16610 also defines envelope filters that they are rigid motion invariant, 

monotonically increasing, idempotent and extensive/anti-extensive (extensive for 

upper enveloper and anti-extensive for lower enveloper). Closing is the upper 

envelope filter since its output envelops the input profile or surface. Similarly, 

opening is the lower envelope filter. They differ from the traditional envelope which 
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in essence is the dilation offset by disk radius towards profiles. As is clearly shown in 

Figure 2.9, the resulting closing envelope (the solid curve) is a concave structure, 

whereas the offset dilation envelope (the dotted curve) is a convex structure. 
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Figure 2.9 The morphological closing profile and the obsolete envelope profile 

 

Figure 2.10 and Figure 2.11 illustrate two examples of applying the closing and 

opening operation on an open profile with the disk structuring element respectively. 

The closing filter is obtained by placing an infinite number of identical disks in 

contact with the profile from above along all the profile and taking the lower 

boundary of the disks (Scott 2000). On the contrary the opening filter is achieved by 

placing an infinite number of identical disks in contact with the profile from below 

along all the profile and taking the upper boundary of the disks. 

 

 

 

Workpiece

Workpiece surface profile

Closing envelope

 

Figure 2.10 The closing envelope of an open profile by a disk 
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Workpiece

Workpiece surface profile

Opening envelope

 

Figure 2.11 The opening envelope of an open profile by a disk 

 

It is obviously revealed that the closing filter suppresses the valleys on the profile 

which are smaller than the disk radius in size, meanwhile the peaks remain 

unchanged. Conversely the opening filter suppresses the peaks on the profile which 

are smaller than the disk radius in size, while it retains the valleys. The selection of 

the disk radius depends on the size of physical features on the surface of workpiece. 

Except circular structuring elements, the other most commonly used structuring 

element presented in ISO 16610 is flat structuring elements, for instance, the 

horizontal line segment for profile data. If not particularly stated, the circular 

structuring element shall be the default option (ISO 16610-41 2010). 

Table 2.2 lists the “For-Against-Interesting” arguments of morphological filters 

(ISO 16610-1 2010). 

 

Table 2.2 “For-Against-Interesting” Arguments of morphological filters 

For Against Interesting 

Definition of mechanical surface 

Simulates contact phenomena 

Does not distort Chebyshev Fits 

Closed Profiles: no end effects 

Nested set of mathematical Models 

No need to remove form 

Compact support 

Random data spacing possible 

Faster than Gaussian 

Range of application not fully 

established 

Outlier sensitive 

Different to Fourier Wavelenghs 

Non-linear filter 

Default filter for establishment of 

datums 
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2.2.2 Alternating symmetrical filters 

ISO 16610-49 (2010) gives the definition of the alternating symmetrical filter that 

it satisfies the sieve criterion and can eliminate the peaks and valleys below a given 

scale. The scale is a nesting index. The sieve criterion is a criterion where two 

mappings applied one after another to a profile/surface is entirely equivalent to 

applying one mapping with the highest scale. It is like the process of sifting solid 

particles by two sieves with different mesh openings. The remains left by two sieves 

are the same as those left with bigger mesh openings. 

The alternating symmetrical filter combines the opening and closing of a 

particular scale in certain sequences. The opening and closing filter will remove peaks 

and valleys whose widths are less than the given scale respectively. Serra (1982) 

showed that there are only four possibilities for composing the opening ()
j

O  and 

closing ()
j

C  with a given scale j  and they are morphological filters satisfying the 

sieve criterion. The four possible combinations are listed below: 

( );
j j j

m O C=
 

( );
j j j

n C O=
 

( ( ()));
j j j j

r C O C=
 

( ( ()))
j j j j

s O C O=
 

Thus it is possible to use four different types of combinations for alternating 

symmetrical filters: the closing-opening filter (M-sieve), the opening-closing filter (N-

sieve), the closing-opening-closing filter (R-sieve) and the opening-closing-opening 

filter (S-sieve). If not particular stated, the M-sieve is the default option. 

Table 2.3 lists the “For-Against-Interesting” arguments of alternating symmetrical 

filters (ISO 16610-1). 

Table 2.3 “For-Against-Interesting” arguments of alternating symmetrical filters 

For Against Interesting 

Well defined 

Nested set of mathematical models 

Naturally robust 

Easy to compute 

Multi-resolution type analysis possible 

End effects easy to handle 

Form removal not necessary 

Defined similar to cut-off wavelengths 

Range of application not fully 

established 

Published algorithms slower than 

Gaussian 

Different to Fourier Wavelengths 

Non-linear filter 

Ball defined by curvature not 

wavelength 

Sampling theorems (Not Nyquist) 

Reconstruction possible 
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2.2.3 Scale-space techniques 

Scale-space techniques are a type of sieving techniques, which could date back to 

the morphological granulometry (Matheron 1989). It is similar to the process of 

sieving small solid particles with a series of sieves with increasing mesh openings. 

The sieve with the smallest opening is used firstly. The grains that are bigger than the 

mesh opening are kept and counted. The remnant grains are then sifted by the bigger 

sieve and this process continues until all the sieves are used. In this way grains are 

classified according to the size of mesh openings. 

 Scale-space techniques could decompose a signal (profile/surface) into objects of 

different scale. It uses alternating symmetrical filters of increasing scales to construct 

a ladder structure as shown in Figure 2.12. The first rung 0S  is the original signal. At 

each rung in the ladder the signal is filtered by an alternating symmetrical filter at the 

scale order 1i + ( 1i
M + ) to obtain the next space scale representation of the signal 1i

S +  

which becomes the next rung and a component 1i
d +  that is the difference between the 

two rungs. In this manner signals at different scales are separated from each other.  

 

 

Figure 2.12 The ladder structure of scale space 

 

Scale-space techniques provide a multi-resolution method to decompose signals 

with wavelet-based filters being another type of multi-scale approach in surface 

metrology (Jiang et al. 2001; Xiao et al. 2001). The scale of the alternating 

symmetrical filter at each rung works like a cut-off value sλ . Therefore a 

“transmission bandwidth” can be defined by calculating the height difference between 

two rungs: 
i j

S S− . The scale i  is equivalent to the cut-off value sλ  and the scale j  

is equivalent to the cut-off value cλ . 

In comparison to the famous Nyquist theorem used to sample and reconstruct a 

signal in the frequency domain (Nyquist 1928), for morphological operations and 

filters, no universal equidistant sampling can be found without loss of information. 
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However, there are a number of morphological sample theorems which limit the 

amount of information that is lost. Scale-space techniques are one of these theorems. 

The original signal could be sampled with various scales and can be reconstructed by 

reversing the ladder structure mentioned above: 

0

1

n

n i

i

S S d
=

= +∑      (2.7) 

The cut-off wavelengths of the multi-scale analysis are always in a constant ratio 

of 2 to each other. This value is yielded by the experiences in dealing with multi-scale 

analysis. This ratio is nearly optimal since this value is, on one hand, large enough to 

clearly differentiate the details of different levels; on the other hand, it is not so large 

that significant details are lost (Krystek 2004). Based on this recognition, 

morphological scale-space techniques also choose a ratio of the scales of 

approximately 2: 1 µm, 2 µm, 5 µm, 10 µm, 20 µm, 50 µm, 100 µm, 200 µm, 500 µm, 

1mm, 2mm, 5mm, 10mm, ⋯ . This series has an additional advantage that it is 

consistent with the recommended stylus tip radii of surface texture (ISO 3274 1996). 

The smallest value of this series is limited by the morphological sampling theorem 

and therefore can not be smaller than the value of the sampling interval in length. It is 

sensible to let the series start with the value of stylus tip radius used for the 

measurement. In principle, there is no upper limit to values for the scale series. 

 

2.3 Applications of morphological operations 

Although morphological operations are not as commonly used as the mean-line 

based filtration techniques, they are of great value if not consciously recognized in 

practice.  

2.3.1 Applications of the dilation and erosion operation 

• Surface scanning 

The scanning of the workpiece surface using a tactile probe, e.g. the analog probe 

or the touch trigger probe, is a very common practice in geometrical measurement and 

a hardware implementation of morphological dilation operation (Krystek 2004). The 

workpiece surface as the input set is dilated by the structuring element, the probe tip 

to generate the morphological output, the measured surface, which is also called the 
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traced surface. Figure 2.13 illustrates the scanning process of a tactile probe. The 

scanning measurement is conducted by traversing the tip over the surface. The tip 

centre data are recorded at each sampling position and these sampled data form a 

discrete presentation of the measured surface. In ISO 3274 (1996), the traced surface 

profile is defined as “locus of the centre of a stylus tip which features an ideal 

geometrical form (conical with spherical tip) and nominal dimensions with nominal 

tracing force, as it traverses the surface within the intersection plane”. 

In common practice, the probe tip employed for scanning used to be small in size. 

However, the tip size still influences the precision measurement of workpiece 

surfaces. Figure 2.14 demonstrates the effect of the probe tip traversing over the 

workpiece surface. By comparing the traced profile with the real workpiece profile in 

the figure, it is evident that the probe tip tends to round off peaks on the profile 

making it broader, nevertheless the peak height remains constant. The valleys on the 

profile are smoothed by the tip becoming narrow, meanwhile the valley height is 

reduced as well (Dagnall 1998). This effect introduces distortion into measurement of 

workpiece surfaces and is called as the mechanical filtration effect of tips. For the 

measurement of workpiece surfaces, especially for the freeform shaped workpieces, 

the distortions caused by the tip mechanical filtration effect appreciably influences the 

precision of measurement. Thus the correction to the traced surface is desired in order 

to restore to the real workpiece surface. However the traced surface is unable to be 

perfectly reconstructed to the real surface, but only to an approximate one, i.e. the real 

mechanical surface. 

 

 

 

Workpiece

Traced surface profile

 

Figure 2.13 A probe tip scanning over the workpiece surface 
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Figure 2.14 Mechanical filtration effects of the probe tip 

 

• Real mechanical surface reconstruction 

ISO 14406 (2003) presents the definition of mechanical surface: “boundary of the 

erosion, by a sphere of radius r , of the locus of the centre of an ideal tactile sphere, 

also with radius r , rolled over the real surface of a workpiece.” Figure 2.15 

demonstrates the reconstruction process. Use an ideal sphere with the same size to the 

probe tip to roll over the traced profile, i.e. the dilated profile by the probe tip (which 

is already presented in Figure 2.13), the locus of the sphere centre is treated as the 

mechanical surface. Rolling the ball from the below of the traced surface is in essence 

an erosion operation. 

 

Workpiece

Traced surface profile

Reconstructed surface  profile

 

Figure 2.15 Reconstruction of the mechanical surface 

 

It is obvious that the morphological erosion operation is unable to perfectly 

reconstruct the original real surface of the workpiece. It was reported that 

morphological operations can only reconstruct those portions of the surface where 
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their local curvatures are larger than that of the probe tip (Roger et al. 2005; Dietzsch 

et al. 2007). This indicates that the real mechanical surface differs from the real 

surface at the locations where the local surface curvature is small than the tip. Thus 

the reconstructed real mechanical surface varies with the probe tip size. Figure 2.16 

presents such an example. Large probe tips tend to reduce and smooth the surface 

irregularities, while small tips enable the reconstructed surface to be more 

approximate to the real surface. The smaller the tip is, the closer the real mechanical 

surface approximates to the real surface. 

 

 

 

Workpiece

Real surface profile

Reconstructed surface profile with large probe tip

Reconstructed surface profile with small probe tip

 

Figure 2.16 Reconstructed real mechanical surfaces vary with the tip size 

 

In industry, the practical implementation of the reconstruction of the real 

mechanical surface varies from the application requirements. For surface texture 

instruments, for instance, the profilometer and the atomic force microscope, the 

reconstruction is usually performed by morphological image processing techniques 

(David & Fransiska 1993; Villarrubia 1996), whereas in dimensional metrology, for 

example, coordinate measurement, the reconstruction is usually implemented by the 

probe radius compensation. Compared to surface texture instruments, sampling of 

coordinate measurement machine (CMM) is usually less dense and the probe tip much 

bigger.  As Figure 2.17 illustrates a couple of sampling positions, the contact points of 

the probe tip to the workpiece surface are obtained by compensating the tip radius in 

the direction of the surface normal at the contact point. The normal vectors for 

compensation are achieved either by estimating from the measured tip centre data in 

the case that the surface is densely scanned and nominal data is unavailable (Mayer et 

al. 1997; Wozniak et al. 2009), or by using the nominal vector at the matching point 

on the nominal surface model of the workpiece, e.g. the CAD model (Liang & Lin 
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2002; Yin et al. 2003). Although dimensional metrology and surface metrology 

employ different routes, both of them are essentially morphological reconstruction to 

the real surface. 

 

 

Figure 2.17 The radius compensation of CMM measurement 

 

2.3.2 Applications of the closing and opening filter 

• Form approximation 

It has been illustrated that morphological envelopes could be utilized to 

approximate the form of functional surfaces for conformable interfaces (Malburg 

2003), for instance a soft gasket in contact with a solid block in order to provide 

sealing function. The long wavelength component of the block surface could be 

tolerated by the compatibility of the gasket material while the middle wavelength 

components result in highly localized contacts. See Figure 2.18. The morphological 

closing envelope with the circular disk structuring element is used to approximate the 

conformable gasket surface such that the void areas between the conformable surface 

and the rigid surface can be obtained to characterize the sealing or load distribution. 

The radius of the circular structuring element should be chosen based on the 

compression and bending properties of the conformable component. 
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Figure 2.18 Conformable surface form approximation 

 

• Uncertainty zone for possible reconstruction 

The workpiece surface is the set of features that physically exist and separate the 

entire workpiece from the surrounding medium. The inspection of geometrical 

information of the workpiece surface is conducted by measuring the surface at certain 

sampling interval, using either the contact measurement instruments (e.g. CMM) or 

non-contact ones (e.g. interferometer). Either of them generates a series of sampled 

points, which form a discrete representation of the original surface. It should be 

noticed that the sampled points in this scenario differ from those presented in the 

preceding cases in that they are supposed to be the contact points on the real 

workpiece surface, instead of the tip centre points for tactile measurement. For non-

contact measurement, the sample data are all “contact points”. It may be desired to 

reconstruct the original continuous workpiece surface from the discrete sample points. 

In the theory of signal processing, the Nyquist theorem indicates that an infinitely 

long band-limited signal could be perfectly reconstructed without loss of information 

from the discrete data sampled at regularly spaced intervals if that interval is smaller 

than half of the minimal wavelength comprised by the original signal. In mathematical 

morphology, there is no theorem equivalent to the Nyquist theorem in that a universal 

equidistant sampling scheme can be found without loss of information, however there 

are a number of morphological sampling theorems to limit the amount of information 

lost (Haralick et al. 1989). 

Figure 2.19 illustrates an example of determining the uncertainty zone for the 

reconstruction of the original surface from a sequence of sampled points taken by a 
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circular disk structuring element. The morphological sampling theorem takes the 

prerequisite that the surface profile Z  under the examination remains unchanged after 

applying the opening and closing operation by a particular structuring element SE  

(e.g. a disk) of a given size (e.g. the disk radius), i.e. ( , ) ( , )C Z SE Z O Z SE= = . If the 

original surface Z  is sampled with a sampling interval strictly less than the size of  

SE , yielding a sampled surface 
s

Z , the original profile is supposed to lie in the 

region constructed by the opening envelope ( )
s

O Z  and the closing envelope ( )
s

C Z . 

This region defines the uncertainty zone in which the original profile lies, i.e. 

( , ) ( , )
s s

C Z SE Z O Z SE≤ ≤  (ISO 14406 2003). 

 

 

Figure 2.19 The uncertainty zone for possible reconstruction 

 

• Volume-scale analysis 

Volume-scale analysis, also known as the variation method, is an areal fractal 

method (Dubuc et al. 1989). It estimates the volume between morphological opening 

and closing envelopes about a surface using square horizontal flat structuring 

elements. The size of the structuring elements is varied and the change of volume is 

recorded. The logarithm of the volume is plotted against the scale of the elements, i.e. 

the length of the sides of the square structuring elements. See Figure 2.20. As the 

scale increases so does the volume. The fractal dimension is the slope of the plot, d , 

plus two, which can be used to indicate the geometric complexity of or intricacy 

components of a fractal or partially fractal surface (ISO 25178-2 2007). 
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Figure 2.20 Volume-scale plot of a surface 

 

2.3.3 Applications of the alternating symmetrical filter 

In engineering, surfaces with stratified functional properties are very common, for 

instance, the inner surface of cylinder liners for automotive engines. These kinds of 

surfaces are composed of deep valleys superimposed by plateaux. The plateaux 

support force, bearing and friction while the valleys serve as lubricant reservoirs and 

distribution circuits. The traditional method for the analysis of these surfaces is 

performed by applying the two-stage Gaussian filter, the so-called 
k

R  filter. However 

there are several drawbacks of this method (Jiang 2010). Firstly, it was derived from 

the empirical foundation with a significant assumption: the surface contains a 

relatively small amount of waviness. It is ambiguous and confusing. Secondly, 

running-in and running-out sections are generated from the Gaussian filter. These 

sections truncate the profile and only the remained of the measurement data after the 

truncation are used in evaluation. Thirdly, the form component needs to be removed 

from the profile before the Gaussian filter could be applied to the data. 

In contrast, morphological filters are suited for this kind of surfaces (Lou et al. 

2011). Using morphological filters, the profile does not need to be pre-processed to 

remove the form. The roughness profile can be obtained over the complete 

measurement length if the end effects are cared for, therefore the roughness profile 

does not have running-in and running-out sections being “removed”. Figure 2.21 

presents such an example. The experimental profile was extracted from a plateau 

honed surface. The morphological alternating symmetrical filter, combination of first 

the closing filter and then the opening filter, with disk radius 5 mm, is employed to 

generate the reference line. As illustrated in Figure 2.21, the special alternating 
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symmetrical filter reference line basically follows the form of the closing envelope, 

which is suitable for surfaces where valley features play a dominant role. The closing 

filter suppresses all the valleys on the original profile that are smaller than the disk 

radius and the opening filter removes all the peaks on the resulting closing envelope 

accordingly. The roughness profile is obtained by subtracting the reference line from 

the original profile. 
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Figure 2.21 Roughness profile resulting from the alternating sequential filter with 

disk radius 5 mm 

 

Other similar examples include the decomposition of the surface topography of an 

internal combustion engine cylinder to characterize wear, whereby the plateau 

roughness and valley was separated and analyzed respectively (Decenciere & Jeulin 

2001).  

The alternating symmetrical filter uses the structuring element with same size for 

both opening and closing. The size of the structuring element can even vary according 

to the requirement of real practices (Kumar & Shunmugam 2005; 2006). Such a kind 

of filter is referred to as the alternating sequential filter in mathematical morphology. 
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2.3.4 Applications of scale-space techniques 

Examples of using scale-space technique were illustrated in ISO 16610-49 (2010). 

Figure 2.22 shows a profile which is from a milled surface and was measured with a 5 

µm tip stylus. The series of scale values (0.01 mm, 0.02 mm, 0.05 mm, 0.1 mm, 0.2 

mm, 0.5 mm, 1 mm, 2 mm, 5 mm) was used starting with the first value (0.01 mm) 

larger than the stylus tip radius (5 µm). 

 

 

Figure 2.22 Successively smoothed profiles from a milled surface using a circular 

disk 

 

 

Figure 2.23 Differences on a profile from a milled surface using a circular disk 

 

Figure 2.23 shows the differences between successively smoothing. The 

deflective milling mark can easily be identified at scales 2 mm and 5 mm and milling 

marks at scales 0.5 mm and 0.2 mm. 
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Muralikrishnan & Raja (2005) employed scale-space techniques to analyze the 

cylinder liner whose inner is a plateau honed surface. It is similar to the case 

presented by Decenciere & Jeulin (2001). But the notable difference between the two 

cases is the size of features on the surface was not known in advance while in the 

former case the size of features was estimated by physical comments. 

 

2.4 Existing algorithms for morphological filters 

2.4.1 Naive algorithm 

Morphological operations were initially employed in image processing as 

nonlinear methods. The data processed by morphological operations are the sets 

composed by image pixels in form of regular grids. For metrological applications, the 

profile and areal data is usually viewed as the function of one and two variables 

defined on the sets. Shunmugam & Radhakrishnan (1974) presented an algorithm in a 

similar manner to image processing. This method is a direct implementation to 

morphological operations, thus we call it the “naive” algorithm for convenience. 

The naive algorithm was originally developed to compute the covering envelope 

of the disk as it rolls over the profile. The envelope is the locus of the centre of the 

rolling disk, usually compensated by the disk radius. The uncompensated envelope is 

in essence the morphological dilation of the profile data. If the disk rolls over the 

profile from below, the envelope of the rolling disk is the erosion of the profile. Thus 

according to the definition of morphological operations (Serra 1982), morphological 

closing and opening could be obtained by combining the dilation and erosion pairs in 

sequence, either dilation followed by erosion or vice versa. 

 The naive algorithm takes discrete representation of the input profile and the 

structuring element as illustrated in Figure 2.24 (The structuring element is a disk in 

this example). The disk ordinates 
i

e  are computed from the disk centre to the two 

ends. These ordinates are placed over the profile ordinates with the disk ordinate 1e  

over the profile point 
j

p   with height ordinate 
j

z . The ordinate where the mapping 

pair ( ) ( ){ }, |
i j

e z i j=  gives the maximum value max( )
i j

e z+ determines the height of 

the disk centre. The envelope ordinate is given by ( )1max( )
i j

e z e+ − . This procedure 
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is repeated for all the profile ordinates to obtain the whole envelope. In this sense, the 

naive algorithm conforms to the definition of the morphological dilation and erosion 

which are defined as the Minkowski addition and subtraction of the input set and the 

structuring element respectively. 

 

 

Figure 2.24 Computation of the profile upper envelope 
 

ISO 16610-41 (2010) also presents a basic method to compute discrete 

morphological filters. The Matlab implementation of this method was presented by 

Srinivasan (1998). It puts the origin of the structuring element at every point of the 

input profile, as illustrated for a few positions of a circular structuring element for 

dilation in Figure 2.25. The extreme value at each position is collected and they form 

the output envelope. The extreme heights for input points are the results of adding the 

ordinates of input profile points with the ordinates of sample points on the disk, as 

marked by the top-most stars at vertical lines in the figure. 

 

 

Figure 2.25 Dilation of the profile with a circular structuring element 
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Essentially the basic approach presented by ISO 16610 is equivalent to the one 

proposed by Shunmugam & Radhakrishnan (1974). They both take discrete forms of 

the input profile and the structuring element and compute the envelope ordinate at 

each sampling position. Figure 2.26 presents the pseudocode of the naive algorithm 

for morphological dilation. Due to the duality of morphological dilation and erosion, 

the erosion of opening profiles could be easily computed by first flipping the 

structuring element and later flipping the dilation result, i.e.,  

( , ) ( , )Erosion X B Dilation X B= − − .                                           (2.8) 

Combining morphological dilation and erosion in two opposite sequences results 

in morphological closing and opening. Figure 2.27 illustrates an example of applying 

the closing filter to a profile using the naive algorithm. The experimental profile 

consists of 250 sample data with sampling interval 5 µm. The profile is filtered by a 

0.5 mm disk. 

 

  

Figure 2.26 The Naive algorithm for morphological dilation operation 
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Figure 2.27 The closing envelope computed by the naive algorithm 
 

Algorithm Dilation(X, B) 

{Given a profile dataset X with n points and the structuring} 

{element B, compute the dilation D of  X  by B.} 

 

j = 1; 

m = B.length/2; 

while j <= n do 

D(j) = max(z(j-m) : z(j+m) + B); 
end while; 

return D; 
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Several optimization techniques were proposed to improve the efficiency of the 

naive algorithm (Radhakrishnan & Von Weingraber 1969; Tholath & Radhakrishnan 

1999). These methods identify the “prominent” peaks on the surface and only 

consider the peak points instead of all the points on the surface while calculating the 

envelope, thus the computation efficiency was improved. However these methods 

took several prerequisites, for example the radius of the rolling ball is assumed to be 

larger than the maximum height of surface irregularities, and there was no evidence 

showing that they could give the correct results. 

Another possible solution for morphological filters is also indicated by ISO 

16610-41 (2010):“any technique that can compute Minkowski addition and 

subtraction can be used to compute closing and opening morphological filters and the 

respective envelope filters”. However existing algorithms for Minkowski operations 

run in time complexity 2( log )O n n  (O'Rourke 1994), therefore they are not suitable 

for the computation of morphological filters. 

2.4.2 Motif combination algorithm 

Scott (1992) proposed an alternative way to calculate the profile envelope using 

the motif combination. A couple of definitions were given as the data type used in the 

algorithm. 

Events: an event splits the profile into a number of discrete sections. The events 

might be the highest points on all the local peaks or all the upcrossing of the profile 

through a reference line or even every sample point of the profile. They are numbered 

in order along the profile. The initial set of events is all the sample points on the 

profile. 

Motif: a motif ( ),i j , where i j< , consists of that section of the profile between 

the i th and j th events. 

Motif Combination Test: it is performed on two adjacent motifs (say, two motifs 

( ),i j and ( ),j k ) with the common event (say, j ) to determine if the common event 

is significant or not. If the event is not significant, two adjacent motifs to that event 

are combined (say, motifs ( ),i j and ( ),j k are combined to form a new motif ( ),i k ) 

and thus the event is eliminated. For rolling a disk on the profile, the functional motif 
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combination test is to check if the disk is possible to contact the common event by 

placing the disk on two adjacent motifs. 

The motif combination algorithm starts with the set of all events, namely all the 

sample data on the profile, and then it eliminates the insignificant events by 

repeatedly applying the motif combination test until all adjacent motifs pass the test. 

Scott found a set of criteria that the motif combination had to satisfy so that the order 

of the motif combinations did not matter, they all resulted in the same final motifs. 

Both the rolling disk and the sliding line segment satisfy these criteria. The 

pseudocode of the motif combination algorithm is presented in Figure 2.28. 

 

 

Figure 2.28 The motif combination algorithm for morphological filters 

 

The profile motif combination method results in a sequence of final motifs which 

are significant. The set of events specifying these motifs are the points which may 

contact the disk while it is traversing the profile. With the significant motifs, the 

envelope ordinates of the circular structuring element are computed by interpolating 

points on the arcs determined by the motifs at each sampling position. For the line 

segment structuring element, the profile envelope ordinates are given by the smaller 

one of the two events of each final motif. Using this method, the same experimental 

Algorithm MotifCombination(X, B) 

{Given a dataset X with n points and the structuring} 

{element B, compute the final motifs motifs } 

 

Chain list motifs= {(p1, p2), (p2, p3), …, (pn-1, pn)};  

while 1 

if CombineMotifs(motifs, B) 

break; 

end if; 

end while; 

return motifs; 

       

Procedure CombineMotifs(motifs, B) 

flag = false; 

motif1 = motifs(1); 

for i = 2 to motifs.length 

motif2 = motifs(i); 

        if CombineTest(motif1, motif2, B) 

motif1 = {motif1.Start, motif2.End}; 

motifs.Remove(motif2); 

flag = true; 

end if; 

end for; 

return flag; 
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profile data used previously is filtered by the morphological closing filter with the 

disk of the same radius. Figure 2.29 illustrates the closing envelope along with the 

upper envelope covering the final significant motifs. 
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Figure 2.29 The closing envelope and the upper envelope covering the final 

significant motifs computed by the motif combination algorithm 

 

2.4.3 Limitations 

The naive method of morphological filters, although easy to implement, has a 

couple of limitations. It is restricted to “planar” surfaces in that it models the surface 

as the height variation with respect to sampling positions, which is similar to the grey 

tone image. These surfaces are actually two-dimension manifolds embedded in the 

Euclidean spaces 3
ℝ  (Jiang et al. 2011a). With the advancement of modern 

manufacturing techniques, freeform surfaces with complex geometry emerge, for 

example, the surface of the F-theta lens, where no rotational or translational symmetry 

can be observed. For freeform surfaces, the data might be specified by coordinate 

pairs/triplets rather than regular surface heights. The naive method does not work for 

freeform surfaces. Even for planar surfaces, they are not robust against rotation in 

space. Another shortcoming lies in the destructive end effects for surfaces in the 

presence of a significant form component. With the advancement of measurement 

capability of current instruments, there is a trend that the measured data consist of 

both the dimensional information (size, form etc.) and that of the surface texture. As a 

result, the filtration will be badly distorted in boundary regions when using structuring 

elements of a large size. 
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A further issue regarding the naive method is its inaccuracy in capturing the 

contact points of the measured surface with the structuring element, which are 

physically important because these points could provide a general indication of 

surface portions which are most likely to be active in the initial stages of wear. The 

detection of the contact points by the naive method is impractical due to the fact that 

this method is dependent on the numerical comparison between the original data and 

the closing or opening envelope, namely the measured points on the original profile 

that do not change with the closing or opening operation. This comparison is limited 

to the accuracy of the algorithm and sensitivity to round off errors in calculation. This 

situation is further worse when sampling the structuring element discretely. 

Besides the limitations mentioned above, morphological filters also suffer from 

two practical issues raised in the employment of the naive method. For one thing, for 

areal surface dataset with a large quantity of measured points, the method is extremely 

time-consuming. Even using the current available commercial surface analysis 

software, e.g. Mountain Map (Digital Surf), the performance is far from satisfactory. 

Not to mention the size of structuring elements is also restricted from growing too big 

due to the fact that the computational time is in logarithmical proportion to the size of 

structuring elements. For example, Mountain Map costs a couple of seconds for 

computing the morphological closing envelope of a 20 µm × 20 µm surface with 

512× 512 points using a ball with radius 2 µm, but around ten minutes when the ball 

radius goes up to 40 µm, and the ball radius available is limited in that it cannot go 

beyond 40 µm. For another, the existing methods are acting in a similar manner to 

image processing where the data are treated as uniformly distributed pixels, and are 

unsuited to non-uniform sampled data. This further limits their usage in the field of 

dimensional metrology where adaptive sampling is allowed. 

The motif combination method achieved much better performance. However it is 

limited to profile data. For areal data, no literature can be found for calculating 

morphological envelopes. Even though there exist areal extensions to profile motifs 

(Scott 1998; Scott 2004; Barre & Lopez 2000), areal motifs can not be employed to 

compute morphological filters due to the fact that the combination of areal motifs is 

totally different from the functionality of morphological areal filters, e.g. rolling a ball 

over the surface. 
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2.5 Summary 

The basis of morphological filters is in mathematical morphology. The 

morphological closing filter and open filter are derived from morphological 

operations; scale-space techniques originate from the granulometry transform. 

Initially mathematical morphology was mainly developed in image processing, it was 

then introduced into other disciplines, including geometrical metrology. Compared to 

the mean-line filtration techniques, morphological filters are more relevant to 

geometrical properties of surfaces and are thus suitable for the functional prediction of 

surfaces. 

Morphological filters are generally accepted and regarded as the complement to 

mean-line filters. They have found many applications in real practice. The scanning 

process of a tactile probe and the reconstruction of real mechanical surface are 

dilation and erosion operations respectively. The closing and opening filter could 

suppress valleys and peaks on surfaces respectively. They are able to approximate the 

form of functional surfaces. The region constructed by the closing and opening 

envelopes provides an uncertainty zone for possible reconstruction of original 

surfaces from discrete sampled data, with limited loss of information. The volume-

scale fractal analysis is conducted on the basis of computing morphological opening 

and closing envelopes. The alternating symmetrical filter is an optimal alternative to 

the two-stage Gaussian filter for the evaluation of stratified functional surfaces. Scale-

space techniques can decompose the surface into different scales in a similar manner 

to wavelet based techniques. 

The existing implementations of morphological filters have a number of 

shortcomings. They are either limited to planar surfaces, unsuitable for uniform 

sampled surfaces or hard to extend to areal data. The poor performance in case of 

huge areal data (e.g. surfaces larger than 1024 × 1024) and large structuring element is 

another deficit. Some of them badly suffer from the end distortion in the presence of 

data consisting of significant form component. Due to these limitations, 

morphological filters are not universally adopted in practice. 

Motivated by modern manufacturing and measuring technologies, there is a big 

demand for morphological filters with capabilities in dealing with surfaces with 

complex geometry and adaptive sampling, accuracy in capturing the contact points on 

surfaces, and efficiency in computing large datasets. 
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3. MORPHOLOGICAL METHOD BASED ON THE 

ALPHA SHAPE  

 
In this chapter, a novel morphological method is proposed with the aim of 

overcoming the deficits of traditional methods. The closing and opening envelopes 

with the circular structuring element are generated by rolling a ball over the surface 

from above and below respectively. These envelopes are closely related to the hull 

obtained by rolling the ball over the discrete point set sampled on the surface, which 

is a special geometrical structure called the “alpha hull”. This chapter will first give an 

introduction to the alpha hull and its related geometrical structure, the “alpha shape”. 

Afterward the link between the alpha hull and morphological operations will be 

presented. Following that, a practical algorithm for morphological filters will be 

developed on the basis of alpha shape theory. The nomenclature for this chapter is 

given by Table 3.1. 

 

Table 3.1 Nomenclature 

dX R⊂  Point set X  in 
dR  

b∂  The boundary of b  

( )S Xα  The alpha shape of the point set X  with the alpha ball radius α  

T
σ  k-simplex where 1T k= +  

( )DT X  Delaunay triangulation of the point set X  

( )C Xα  
The alpha complex of the point set X  with the alpha ball radius α  

cX
 

The complement of X  

( )H Xα  
The alpha hull of X  

 

3.1 Alpha shape for shape description 

The alpha shape was introduced by Edelsbrunner in the 1980’s aiming to describe 

the specific “shape” of a finite point set with a real parameter controlling the desired 

level of details (Edelsbrunner & Muche 1994). Conceptually the alpha shape is a 

generalization of the convex hull of a point set. Imagine a huge block of styrofoam 
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making up the space containing some solid particles. To use a spherical eraser of 

radius α  to carve out all the styrofoam blocks from inside and outside without 

bumping into the solid particles (see Figure 3.1), it will eventually end up with an 

object with arcs, caps and points. The boundary of the resulting object is called the 

alpha hull. If the round faces of the object are straightened by line segments for arcs 

and triangles for caps, another geometrical structure, the alpha shape, forms (Fischer 

2000). 

 

 

Figure 3.1 Alpha hull and alpha shape of planar points 

 

3.1.1 Alpha shape 

In the context of the alpha shape, the sphere eraser in the above example is called 

the alpha ball. It is formally defined as an open ball of radius α . Given a point set 

dX R⊂ , a certain alpha ball  b  is empty if b X = ∅∩ . With this, a k-simplex 
T

σ  is 

said to be α -exposed if there exists an empty alpha ball b with T b X= ∂ ∩  

( 1T k= + ) where b∂  is the surface of the sphere (for d=3) or the circle (for d=2) 

bounding b , respectively. For 0 α≤ ≤ ∞ , the alpha hull of X , denoted by ( )H Xα , is 

defined as the complement of the union of all empty α-balls. 

Definition 3.1 ( )S Xα∂ , the boundary of the alpha shape of the point set X ,  consists 

of all k-simplices of X  for 0 k d≤ <  which are α -exposed,  

( ) { | , 1,  }T TS X T X T k exposedα σ σ α∂ = ⊂ = + −                             (3.1) 
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3.1.2 Delaunay triangulation 

The computation of the alpha shape is based on the Delaunay triangulation which 

is one of the most exhaustively examined problems in computational geometry 

(O'Rourke 1994). Given a point set dX R⊂ , the Delaunay triangulation is a 

triangulation ( )DT X  such that no point in X  is inside the circumsphere of any d-

simplices 
T

σ  with T X⊂ . The relationship between the Delaunay triangulation and 

the alpha shape is that the boundary of the alpha shape Sα∂
 
is a subset of the 

Delaunay triangulation of X , namely 

( ) ( )S X DT Xα∂ ⊂ .                                                      
 
(3.2) 

3.1.3 Alpha complex 

The relationship (3.2) means all the simplices in ( )DT X  are candidates for the 

alpha shape.  In order to further find which simplex in ( )DT X  belongs to ( )S Xα∂ , 

another concept, the alpha complex ( )C Xα , was introduced by Edelsbrunner & 

Muche (1994). 

Set 
T

ρ  the radius of the smallest circumsphere 
T

b  of 
T

σ . For 3k = , 
T

b  is the 

circumsphere; For 2k = , 
T

b  is the great circle; And for 1k = , the two points in T  are 

antipodal on 
T

b . 

For a given point set dX R⊂ , the alpha complex ( )C Xα  is the following 

simplicial subcomplex of ( )DT X . A simplex ( )
T

DT Xσ ∈  ( 1T k= + , 0 k d≤ ≤ ) is 

in ( )C Xα  if: 

•  
T

ρ α<  and 
T

ρ -ball is empty, or 

•  
T

σ  is a face of other simplex in ( )C Xα . 

The link between the alpha complex and the alpha shape is: the boundary of the 

alpha complex makes up the boundary of the alpha shape, i.e. 

( ) ( ) ( )C X S X DT Xα α∂ = ∂ ∈ .                                                 (3.3) 
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3.2 Link between the alpha hull and morphological operations 

The boundary of the alpha hull is obtained by rolling the alpha ball over the point 

set. By intuition the alpha hull seems very similar to the secondary morphological 

operations, opening and closing, as the alpha ball acts as a spherical structuring 

element and the input set as the points set. In fact a theoretical link exists between the 

alpha hull and morphological opening and closing, as proved by Worring and 

Smedulers (1994). They extended Edelsbrunner’s work, proposed the alpha graph and 

utilized it to describe the boundary of the point set. They also found the relationship 

between the alpha graph and the opening scale space from mathematical morphology. 

Based on that, it was proved that the alpha hull is equivalent to the closing of X  with 

a generalized ball of radius 1 α− . Hence from the duality of the closing and the 

opening, the alpha hull is the complement of the opening of cX  with the same ball as 

the structuring element. 

3.3 Proposed algorithm based on alpha shape 

In surface metrology and dimensional metrology, surfaces are measured by 

measurement instruments. The measured points are a discrete representation of the 

surface. Viewing this sampled data as a finite point set in the context of the alpha 

shape and according to the link between the alpha hull and morphological operations, 

we employ the alpha shape to compute morphological filters for surfaces. 

3.3.1 Spike detection and points interpolation 

In practical measurement of surfaces, it may happen that sharp spikes exist in 

sample data. Sometimes the space between the peak point and the pit point is quite 

large so that the ball will run into the interior of the profile/surface. This is not 

allowed in reality because the real surface is physically continuous and won’t allow 

the ball to enter. The difference between the physical continuity of the surface and the 

discrete representation of the sample data is the quintessence of this problem. 

To correct these singularities, sharp spikes should be detected and enough points 

linearly interpolated on the ridge of the spike to prevent the ball from passing through. 

The whole process is elaborately depicted in Figure 3.2 for the case of profile data.  

1p , 2p , …, 10p  are the sample points on the original profile. 3 4 5p p p  forms a local 

peak. 3p  and 4p  are spacing so far from each other that the ball could roll into the 
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profile interior. In this case the additional points 1i , 2i  (and more if needed) are 

linearly interpolated to reduce the gap between 3p  and 4p . For areal data, surfaces 

can degenerate to profiles if considering them as the composition of parallel profile 

sections. There is a trivial difference between the closing envelope and the opening 

envelope in their spike detection. For the closing envelope, it suffices to detect peak 

spikes in that the closing envelope is only determined by peaks, and valleys could be 

ignored. As opposed it is enough to search valleys for the opening envelope because 

the opening envelope is only affected by valleys. 

 

 

Figure 3.2 Spikes detection in measured data 

 

3.3.2 Alpha shape computation 

With the justified data, the next step of the computation is to triangulate the 

dataset by the Delaunay triangulation and subsequently obtain the facets of the 

boundary of the alpha shape, which are also contained in the boundary of the alpha 

complex Cα∂  according to Section 3.1. 

Delaunay triangulation results in a series of k-simplices σ  ( 2k =  for profiles, 

which are triangles, and 3k =  for surfaces, which are tetrahedrons). These k -

simplices can be categorized into two groups:  k -simplices 
p

σ  whose circumsphere 

radius is larger than the radius of the rolling ball α , and k -simplices 
np

σ  whose 

circumsphere radius is no larger than the radius of the rolling ball α . 

p
σ  consists of two parts: the ( 1)k − -simplices 

int
σ  interior to 

p
σ , and the 

( 1)k − -simplices 
reg

σ  that bounds its super k -simplices 
p

σ . See Figure 3.3. We 
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called 
reg

σ  the regular facets. 
np

σ  is comprised of three components: the ( 1)k − -

simplices 
ext

σ  out to Cα , part of the regular facets '

regσ  shared by both 
p

σ and 
np

σ , 

and the  ( 1)k − -simplices 
sing

σ  that are the other part of Cα∂ . We call  
sing

σ  the 

singular facets.  
sing

σ  differs from 
reg

σ  in that it does not bound any super k -

simplices.
sing

σ  satisfies two conditions as follows: 

• The radius of its smallest circumsphere is smaller than α . 

• The smallest circumsphere is empty. 

The regular facets 
reg

σ  and the singular facets 
sing

σ  form the whole boundary of 

the alpha complex, i.e. the boundary of the alpha shape, as the equation (3.5) presents. 

reg sing
S Cα α σ σ∂ = ∂ = +                                 (3.5) 

 

 

Figure 3.3 Regular and singular faces 

 

The skeleton of the algorithm for computing the regular facets and the singular 

facets of Sα∂  is given by Figure 3.4. The DelaunayTri operation generates a list of k-

simplex σk+1 (k=2 for profile data and k=3 for areal data). The algorithm loops to 

check if each (k-1)-simplex σk is the regular facet σreg or the singular facet σsing. The 

regular facets and the singular facets are computed separately so that they could be 

handled respectively by later manipulations. The CircumSphere operation computes 

the radius of the circumsphere of σk+1. SmallCircumSphere operation calculates the 

radius of the smallest circumsphere of σk. The Unique operation checks if σk’s super 
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simplices σk+1 with their circumsphere radius larger than α are unique. The 

IsSphereEmpty operation detects if the circumsphere of σk  is empty.  

Aiming to improve the algorithm efficiency, a useful property of the alpha shape 

is applied to speed up the IsSphereEmpty operation, i.e. empty ball testing. This 

property is that to test whether the circumsphere of a facet is empty it suffices to 

check whether the opposite vertices of its super simplices are out to the circumsphere 

boundary. It is much more efficient than checking all other points, which could be 

huge in the case of areal data. Figure 3.5 illustrates an example of the sample points of 

a surface along with the facets of Sα∂ . In fact, the vertices of these boundary facets 

are the points on the surface that contact the ball (disk) as it is rolling over the surface 

all around. 

 

  

Figure 3.4 Skeleton of the algorithm to compute the facets of the boundary of the 

alpha shape 
 

Procedure AlphaShape (X, α) 

{Given a justified dataset X and the chosen ball radius α, computes} 

{two lists σreg, σsing  of the regular facets and the singular facets } 

{of the boundary of the alpha shape of X.} 

Begin 

σk+1 =DelaunayTri(X); 

i=1; j=1; 

for each σk do 

r=CircumSphere(σk+1); 

if r<α 

if Unique(σk) 

σreg(i)= σk; 

i=i+1; 

end if; 

continue; 

end if; 

r=SmallCircumSphere(σk); 

if r<α 

if IsSphereEmpty(σk) 

σsing(j)= σk; 

j=j+1; 

continue; 

end if; 

end if;  

end for; 

return (σreg, σsing); 

end AlphaShapes; 
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Figure 3.5 Areal sample points of a surface and the facets of the boundary of the 

alpha shape 

   

3.3.3 Facets reduction 

Having the facets of Sα∂ , opening and closing envelopes could be calculated. For 

open profiles/surfaces, not all but parts of the facets of Sα∂  are needed for the 

computation of an envelope. For closing envelopes, only the upper part of the regular 

facets is of interest, and vice versa for opening envelopes. Therefore the number of 

the regular facets used for the envelope computation could be reduced by extracting 

those facets which are possible candidates for the computation. 

Supposing there are no re-entrant features on the surface, regular facets can be 

separated according to their normals. We define the normal of a facet as the vector 

that is perpendicular to the facet and pointing from the interior of boundary shape to 

its outside. The regular facet has a unique super simplex. The opposite vertex in its 

super simplex could help to justify the normal vector from two possible candidate 

perpendicular vectors. Figure 3.6 illustrates how a facet normal is achieved for profile 

data. 1 2p p  is one of the regular facets. 
o

p  is the opposite vertex of its super simplex 

1 2 o
p p p . The facet 1 2p p  has two possible normal vectors, 1n pointing outward, and 2n  

pointing inward. The vector e  which is from 
o

p  to one of the facet vertices ( 1p  or 

2p ) determines the outward direction. Being consistent with the orientation of e , 1n  

is chosen as the normal of the facet 1 2p p . This method could be also reasonably 

extended to areal data. 
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Figure 3.6 Determination of the normal of a regular facet 

 

Once the normals of the regular facets are settled, the separation of the upper part 

and lower of regular facets is available. The regular facets are connected and their 

normals are oriented consistently. As to the upper part of the regular facets, their facet 

normals are oriented upward, and vice versa. Thus this property could be used to 

separate the upper part and lower part of the regular facets. Figure 3.7 demonstrates 

the separation of the upper regular facets and the lower regular facets. 1f , 2f , ⋯ , 5f  

are part of the regular facets of the boundary of the alpha shape, with 1n , 2n , ⋯ , 5n  

being their normals respectively. Suppose the ball is rolling from 1f  to 5f . The 

normal of first three facets 1n , 2n , 3n  are oriented consistently (all of them are 

pointing upward). Then the ball continues to roll to the facet 4f , the facet normal 4n  

turns to orient downward, and 5n  keeps consistent with 4n , orienting downward also. 

Hence the facets can be separated into two parts: 1f , 2f , 3f  are the upper facets, and 

4f , 5f  are the lower facets. For the computation of the closing envelope, the lower 

facets 4f , 5f  are neglected because they have no impact on the computation of the 

closing envelope. 

For the singular facets, this idea does not make sense for two reasons. On one 

hand, the singular facet may have more than one super simplex, therefore unable to 

determine its normal. On the other hand, even though a singular facet only has one 

super simplex, it is still hard to determine the normal because the singular facets could 

be disconnected and the vector e  used in figure 3.6 cannot indicate the outward or 

inward orientation.  
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Figure 3.7 Separation of the upper regular facets and the lower regular facets 

 

3.3.4 Envelope coordinate calculation 

The final step is the calculation of the envelope coordinates. For each sample 

point, there is a one-to-one corresponding point on the envelope. These points form a 

discrete representation of the envelope. Each facet of the boundary of the alpha shape 

determines its counterpart on the alpha hull. Due to the fact that the target envelope is 

contained in the alpha hull, we project the sample points onto the alpha hull in the 

direction of the local gradient vector and record the extreme project coordinates, 

namely the envelope point for this sample point.  

For “planar” open surfaces, all of the local gradient vectors are supposed to be 

perpendicular to the reference plane, i.e. the amplitude direction. Figure 3.8 illustrates 

the acquisition of the closing envelope points by projecting them onto the alpha hull 

for the planar open profile data (a) and areal data (b) respectively. In Figure 3.8(a), the 

facet f  determines an arc �1 2p p  from the point 1p  to 2p , which is a part of the alpha 

hull. The sample point p has its sampling position s  between the sampling position 

1s  and 2s  for 1p  and 2p  respectively. p is projected to the arc �1 2p p  in the amplitude 

direction to obtain the envelope point v . In Figure 3.8(b), the facet f  determines a 

cap �1 2 3p p p  as a part of the alpha hull. The sample point p has its sampling position 

s  inside the triangle area 1 2 3s s s∆ . 1s , 2s  and 3s  are the sampling position for 1p , 2p  

and 3p  respectively. p is projected to the cap �1 2 3p p p  in the direction of amplitude to 

obtain the envelope point v . The extreme projection heights for all the sample 

positions are recorded (Highest heights for the closing envelope and lowest heights 
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for the opening envelope). These extreme projection coordinates are the final results 

for the target envelope. 

 

 

Figure 3.8 The acquisition of the closing envelope points by projecting onto the alpha 

hull for the planar open profile (a) and open surface (b). 

 

Similar to the naive algorithm and the motif combination algorithm presented in 

Chapter 2, the alpha shape algorithm was performed on the same experimental profile 

data with a 0.5 mm disk. Figure 3.9 shows the resultant closing envelope as well as 

the alpha shape boundary facets marked by the line segments. 
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Figure 3.9 The closing envelope and the alpha shape facets computed by the alpha 

shape algorithm 
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3.4 Divide and conquer optimization 

The alpha shape method could overcome the deficits of the naive algorithm, there 

is, however, a performance bottleneck. The Delaunay triangulation on which the alpha 

shape method depends is costly in both computation time and memory for large areal 

datasets. Practical experiments show the surface that the alpha shape method can 

calculate is limited to 1024 × 1024 points in size and the computation of surfaces 

which exceeds this size is easy to get the “out of memory” error. Thus a more efficient 

method is required to overcome this constraint. 

Aiming to break the computation constraint of the 3D Delaunay triangulation, the 

divide and conquer optimization is introduced into the computation of morphological 

filters. The basic scheme of the divide and conquer approach is to break a problem 

into several sub-problems that are similar to the original problem but smaller in size, 

solve the sub-problems recursively and then combine these solutions to create a 

solution to the original problem (Cormen et al. 1989). 

In the context of the alpha shape method, the vertices of the alpha facets are 

physically important because they are those points on the surface which are in contact 

with the rolling ball. We call them the contact points. In mathematical morphology, 

these points are the ones on the surface which remain unchanged before and after 

morphological closing and opening operations. The morphological envelope of a 

surface is determined by these contact points. Thus in order to reduce the computation 

of morphological envelopes, the surface could be represented by its contact points 

instead of all of the sampled points. 

By applying the divide and conquer method, the surface could be divided into a 

series of small sub-surfaces. Each sub-surface is rolled by the ball to generate a set of 

contact points. Afterward the resulting contact points from each sub-surface are 

merged to reconstruct a super set of contact points. Roll the ball over this combined 

set and an updated set of contact points is yielded with the fake contact points 

removed on joint sections. In such a manner, the contact points of the original surface 

are found. 

As aforementioned, the alpha shape method depends upon the 3D Delaunay 

triangulation of the sampled points of the surface. Engineering surfaces usually 

contain a large amount of data, especially using high speed optical instruments. The 
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3D Delaunay triangulation for such kind of super large datasets is both time and 

memory consuming. It was reported that the data structure of the 3D Delaunay 

triangulation is not suitable for dataset of millions of points (Bernardini et al. 1999). 

Using the divide and conquer method, the surface with a huge number of data points 

is partitioned into small sub-surfaces recursively, until the computation of 3D 

Delaunay triangulation is fast enough for each sub-surface. 

Following the three typical steps of the divide and conquer paradigm, i.e. divide, 

conquer, combine, at each level of the recursion, the details of each step are illustrated 

below. Figure 3.10 presents an example surface (100 x 100 points) as well as its 

boundary alpha shape facets generated by the alpha shape method. The example 

surface is then divided into four smaller sub-surfaces with 50 x 50 points for each 

individual one, see Figure 3.11. The search of contact points on these sub-surfaces is 

conquered by applying the alpha shape method. Figure 3.12 graphs the contact points 

and the boundary alpha shape facets of four sub-surfaces respectively. Finally the 

contact points of four sub-surfaces are merged together and the alpha shape method is 

applied to the combined set to generate the final boundary alpha shape facets, see 

Figure 3.13. It is notable in the figures that the contact points on joint section before 

merging are no longer in the set after the merge. The comparison of the indices of 

vertices of boundary facets demonstrated in Figure 3.13 and those presented in Figure 

3.10(b), which are generated by applying the alpha shape method directly, indicates 

the boundary facets computed by the two methods coincide with each other. For 

convenience of demonstration, this example only illustrates one recursion. For large 

areal surfaces, more recursions might be demanded. 
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          (a)      (b) 

Figure 3.10 An example surface and it boundary alpha shape facets. (a) Raw surface. 

(b) Boundary facets superimposed on the surface. 

 

 

Figure 3.11 Four divided sub-surfaces 
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Figure 3.12 Contact points and boundary alpha shape facets of four sub-surfaces 

 

 

Figure 3.13 The merged contact point set and final boundary alpha shape facets 

 

3.5 Summary 

Aiming to solve the limitations of existing algorithms for morphological filters, a 

novel approach is proposed based on the alpha shape, providing the merits that 
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arbitrary large ball radii are available, freeform surfaces and non-uniform sampled 

surface applicable. The proposed approach utilizes the theoretical link between the 

alpha hull and the morphological closing and opening envelopes. A practical 

algorithm was developed that corrects possible singularities caused by data spikes and 

reduces the amount of computation for open surfaces. The alpha shape method 

depends on the Delaunay triangulation, with an additional merit that the triangulation 

data can be reused for multiple attempts of the ball radius. It could save a great deal of 

computing time considering in practice a multitude of trials may be made for choosing 

an appropriate ball radius. 

The alpha shape method has the bottleneck in computation in the case of large 

areal datasets in that the 3D Delaunay triangulation is costly. An optimization method 

is developed based on the divide-and-conquer procedure to improve the performance 

of the alpha shape algorithm, which will be validated in Chapter 6. 
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4. ALGORITHMS SEARCHING CONTACT POINTS 

ON THE SURFACE 

 
The alpha shape algorithm is much superior to the naive algorithm in that it 

provides more capabilities in dealing with modern surfaces. The divide and conquer 

optimization helps to improve its performance in the case of computing large areal 

datasets. However they still depend on the Delaunay triangulation, which might be 

redundant for the computation of a single morphological envelope. This chapter 

explores novel algorithms searching contact points on the surface without performing 

the Delaunay triangulation. 

 

4.1 Redundant information of the Delaunay triangulation 

In Edelsbrunner’s theory the alpha shape is extracted from the Delaunay 

triangulation. The whole family of alpha shapes can be generated from Delaunay 

triangulation, from the point set itself ( 0α → ) to the convex hull of the point set 

( α → ∞ ). Therefore the Delaunay triangulation data could be reused for multiple 

attempts of ball radii for the same dataset. It is an advantage for the computation of 

morphological envelopes in that there is no need to perform the Delaunay 

triangulation every time for various radii attempts on the same dataset. Thus the reuse 

of triangulation saves a great deal of computing time. It meanwhile could be a 

drawback because the Delaunay triangulation is costly for large areal datasets. Given 

a single radius, the Delaunay triangulation contains much more information than is 

necessary to generate the corresponding alpha shape with the given radius. For large 

areal data, the 3D Delaunay triangulation consumes a great deal of computational time 

and memory. Thus in this sense it is a waste of time to achieve the desired alpha shape 

with redundant computation.  

The divide-and-conquer optimization method provides a practical solution to 

overcome this problem. However it is not a fundamental change to the alpha shape 

method because the Delaunay triangulation is still required. An alternative solution is 

to find the alpha shape facets without performing the Delaunay triangulation. In fact 

the vertices of the alpha shape facets are those points on the surface that contact the 
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ball as it rolls over the surface, namely the contact points. By investigating these 

special points, it is possible to find the alpha shape facets. 

 

4.2 Definition, propositions and comments of contact points 

4.2.1 Mathematical definition of contact points 

In physics, the contact points are those points on the surface which are in contact 

with the moving structuring element. Thus these points give an indication which 

surface portions in the neighbourhood of these contact points are most likely to be 

active in the contact phenomenon. By identifying the contact points, those areas of a 

surface that may be especially susceptible to wear at process start-up can be readily 

identified and remedial action taken if necessary. 

As mentioned in Chapter 3.4, from a point of view of mathematical morphology, 

the contact points are those points on the surface which remain constant before and 

after morphological closing/opening operations. Based on the mapping between the 

alpha hull and morphological opening and closing envelopes, the formal mathematical 

definition of the contact point is given by Definition 4.1 as follows: 

Definition 4.1 Given the sampled point set ( 2,3)dX d⊆ =ℝ  and δ α≤ ≤ ∞ ( δ : 

sampling interval), the contact points ( )P α  are those sampled points { | }
i i

p p X∈  

that are on the boundary of the alpha shape ( )H Xα∂ : 

{ }( ) | , ( )i i iP p p X p H Xαα = ∈ ∈∂ . 

4.2.2 Propositions of contact points 

Proposition 4.1 Given the point set ( 2,3)dX d⊆ =ℝ  and 1δ α≤ ≤ ∞ , 2δ α≤ ≤ ∞ , if 

1 2α α≤ , then 2 1( ) ( )P Pα α⊆ . 

Proof. 
1 21 2 ( ) ( )H X H Xα αα α≤ ⇒ ⊆  (Fischer 2000). By Definition 4.1, 

{ }
11( ) | , ( )

i i i
P p p X p H Xαα = ∈ ∈∂ , { }

22( ) | , ( )
i i i

P p p X p H Xαα = ∈ ∈∂ . Hence 

1 2
( ) ( )H X H Xα α⊆  implies 2 1( ) ( )P Pα α⊆ . 

Proposition 4.2 Given the point set ( 2,3)dX d⊆ =ℝ  and δ α≤ ≤ ∞ . The convex 

hull points must all be contact points. 
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Proof. Let α ′ → ∞ , hence  lim ( ) ( )H X Conv Xα α′ ′→∞ = . By Definition 4.1  

{ }( ) | , ( )i i iP p p X p H Xαα ′′ = ∈ ∈∂ , then { }( ) | , ( )i i iP p p X p Conv Xα ′ = ∈ ∈∂ , 

namely ( )P α ′  is the convex point set. By Proposition 4.1, ( ) ( )P Pα α α α′ ′≤ ⇒ ⊆ . 

Thus the convex hull points must be contained in ( )P α . 
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(d) 

Figure 4.1 The Delaunay triangulation of the planar point set and the boundary facets 

of the alpha shapes of various disk radii: (a) 1α =  mm; (b) 0.5α =  mm; (c) 0.4α =  

mm; (d) 0.3α =  mm 

 

Figure 4.1 presents an example illustrating the boundary facets of the alpha 

shapes with different disk radii for planar point set. The scattered points marked by 

spots are connected by the Delaunay triangulation simplices as presented by joint 

triangles. The boundary facets of the alpha shapes are extracted from the Delaunay 

triangulation, graphed as the bold dotted lines. Four sub-figures present the 

corresponding alpha shape boundary facets with radius 1 mm, 0.5 mm, 0.4 mm and 

0.3 mm respectively. In Figure 4.1(a), the boundary facets are the outmost faces of the 

Delaunay triangulation, which are actually the convex hull faces. If the vertices of the 
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boundary alpha shape facets are examined, i.e. the contact points of the alpha ball 

(disk), it can be found that the contact points of Figure 4.1(a) with radius 1 mm are 

contained in Figure 4.1(b) with radius 0.5 mm. In sequence, this relationship is also 

true for Figure 4.1(b) and Figure 4.1(c), Figure 4.1(c) and Figure 4.1(d). This fact is 

consistent with Proposition 1 and 2. 

4.2.3 Comments for searching contact points 

Following the definition of the contact point and two associated propositions, a 

set of comments are proposed with proofs attached for the search of contact points. 

For convenience of explanation, we take the morphological closing profile filter and 

the circular structuring element (disk) as the objective for illustration. These 

comments can easily be extended to the opening filter, planar structuring elements and 

areal data. In the context of the statement below, a  and b  are two known contact 

points, r  is the given radius of the ball (disk). 

Comment 4.1 If there are points lying above 
ab

σ  (left/positive side of ab
���

), then the 

contact point is the furthest point orthogonal to ab
���

. 

Proof. Suppose there exist some points above 
ab

σ . See Figure 4.2. The furthest point 

2p  is the convex point  for the point set { , , }
i

a b p  (Barber et al. 1996). By Proposition 

4.2, the convex point must be the contact point. Thus 2p  must be the contact point. 

 

 

Figure 4.2 Search the furthest point orthogonal to ab
���

 

 

Comment 4.2 If there are no points lying above 
ab

σ and there exist points { }
i

p  in the 

circular section �ab  of the alpha ball with radius 1
2max{ , }r abα = , then the contact 

point c  is the one among the points { }
i

p  in �ab , which satisfies the condition: the 



 

 

79

circumscribed circle of  
abc

σ  have the largest radius among the circumscribed circles 

of { }
iabp

σ . 

Proof. First consider the case 2ab r≤ . See Figure 4.3. a , b  could determine an 

unique alpha ball B  with radius r . Since there exist points in the circular section 

�ab (the shadowed part in the figure), { }
i

B X p= ≠ ∅∩ , thus 
ab

σ  is not α-expose. By 

Definition 3.1, ( )
ab r

H Xσ ∉∂ . Let { }iρ  be the radius of the circumscribed circle of 

{ }
iabp

σ  and c  the point with max( )
i

ρ . The circumcircle of 
abc

σ  must be empty, thus 

max( )( )
i

c H Xρ∈∂ . By Proposition 1, max( ) (max( )) ( )
i i

r P P rρ ρ> ⇒ ⊆ . By 

Definition 3.1, (max( ))
i

c P ρ∈ . Thus ( )c P r∈ , c  is the contact point. 

Then consider the other case 2ab r> . See Figure 4.4. Since 2ab r> , fit an alpha 

ball with radius 1
2 ab  passing through the points a , b with the centre at the middle 

of 
ab

σ . Similar to the previous case, we could prove 1
2( )c P ab∈ . Then by 

Proposition 4.1, 1 1
2 2( ) ( )ab r P ab P r> ⇒ ⊆ , thus ( )c P r∈ , c  is the contact point. 

 

 

Figure 4.3 Search the contact point with 2ab r≤  
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Figure 4.4 Search the contact point with 2ab r>  

 

Comment 4.2 If there are points { }ip  lying below 
ab

σ  (right/negative side of ab
���

) 

and no point above, 
iabp

σ  has an unique circumscribed circle with radius α . If the 

centre of the circumscribed circle is on the positive side of 
ab

σ , the circle has the 

positive radius α+ , otherwise the negative radius α− .  

See Figure 4.5. 
iabp

σ  has its circumcircle centre 1o  above 
ab

σ , thus it has a 

positive radius. Conversely, the centre of the circumcircle of 
2abc

σ  lies below 
ab

σ , 

therefore the radius is negative. The critical case is that of 
abp

σ  which has its 

circumcircle centre o  at the centrepoint of 
ab

σ . In this case it is taken that the radius 

is positive. 
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Figure 4.5 The signed circumscribed circle radius 

 

Comment 4.3 If 2ab r>  and there are no points lying above 
ab

σ  and also no points 

in the circular section �ab  of the alpha ball with radius 1
2 abα = , then the contact 

point is the one c  that satisfies the condition: the circumscribe circle of 
abc

σ  has the 

largest radius among the circumscribed circles of { }
iabp

σ .  

Proof. See Figure 4.6. There is no point in the circular section �ab , thus the centre of 

circumscribed circles of  { }
iabp

σ  locates at the negative side of the chord ab .  Thus 

their radii are negative. The circumscribe circle with the largest radius (smallest in 

absolute value) must be empty, thus ( )c H S
α

∈∂ . ( )rr c H Sα > ⇒ ∈∂ . By 

Proposition 4.1, we have ( )c P r∈ . 

 



 

 

82

 

Figure 4.6 Search the contact point with 2ab r>  

 

Comment 4.4 If 2ab r≤  and there are no points lying above 
ab

σ and also no points 

in the circular section �ab  of the alpha ball with radius r , then ( )
ab r

H Xσ ∈∂ . 

Proof. a , b  could determine an alpha ball B  with radius r. If there is no point lying 

above 
ab

σ  and no point in the circular section �ab , then B X = ∅∩ . Thus 
ab

σ  is α-

expose. By Definition 1, ( )
ab r

H Xσ ∈∂ . 

By introducing the signed circumcircle radius, Comment 4.2 and Comment 4.3 

could be merged into one operation: calculate the signed circumcircles and find the 

point with the biggest radius. That point is the contact point.  To determine the 

termination of the searching procedure, Comment 4 suggests three conditions. These 

conditions, however, can be easily examined by the point distribution below 
ab

σ . See 

Figure 4.7. First of all, ab  has to be smaller than 2r , which means the alpha ball 

(disk) is larger than the smallest circumcircle of 
ab

σ . In Figure 4.7, there are 7 sample 

points between a  and b . They fall into three categories: 

(1) Points lying in the circular segment �ab  of the alpha ball, such as 3p  and 7p in 

the figure. These points may be contact points. They are featured by the positive 

radii { }iρ  of the circumcircle of { }
iabp

σ  and 
i

rρ >= . 
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(2) Points lying in the circular section �ab  of the smallest circumcircle of 
ab

σ , but 

not in category (1), such as 1p , 4p  and 6p . These points cannot be contact 

points, as they have positive radii { }iρ  of the circumcircle of { }
iabp

σ , but 
i

rρ < . 

Thus in this case 0
i

rρ≤ < . 

(3) Points not contained in categories (1) and (2), such as 2p  and 5p  in the figure. 

These points cannot be contact points, as they have negative radii { }iρ  of the 

circumcircle of { }
iabp

σ , i.e., 0
i

ρ < . 

To sum up, the searching procedure exits and ( )
ab r

H Xσ ∈∂  when no points lie 

above 
ab

σ , 2ab r≤  and 
i

rρ < . 

 

 

Figure 4.7 The distribution of sample points below ab  

 

Proposition 4.1, 4.2 and Comment 4.1-4.4 establish the searching order for the 

contact points. It first targets the convex hull points, which corresponds to rolling a 

disk with infinitely large radius over the profile. If no convex hull point is found 

above the evaluating facet, the contact point is sought by computing the signed 

circumcircles radii. The contact point is the one that has the largest circumcircle 

radius. This is equivalent to rolling a disk with a proper size larger than the given 

radius r  but less than the infinitely large radius. Finally if the profile segment in 

evaluation could hold an empty disk with radius r  by its two ends, namely the disk 

has no contact with other sample points, then the simplex composed by these two 
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known contact points is a facet of the alpha shape and the recursion procedure is 

completed. In summary the search for the contact points uses the disk with radius 

ranging from infinitely big down to r . 

 

4.3 Recursive algorithm 

Based on the proposed propositions and comments of the contact points, a 

practical recursive algorithm is constructed. Instead of performing the Delaunay 

triangulation, the algorithm searches for the facets encompassed by the contact points 

by recursion. The algorithm for profile data is first presented and then extended to 

areal data. 

4.3.1 Profile algorithm 

The pseudocode of the algorithm to compute the contact points for morphological 

closing profile filter is presented in Figure 4.8. The algorithm starts with the left end 

point a  and the right end point b  of the profile, which are guaranteed to be the initial 

contact point as they are points on the convex hull. The algorithm then starts to search 

the contact points between a and b  by applying Comment 4.1 to 4.4 in sequence. 

Once a contact point is found, say c , it is treated as a partition point and the profile 

( , )a b  is partitioned into two segments ( , )a c  and ( , )c b . The same process is repeated 

on the two partitioned segments ( , )a c  and ( , )c b . The algorithm keeps partitioning 

the segments into smaller ones recursively until the segment being evaluated satisfies 

the condition specified by Comment 4.4 and that segment is accepted as the boundary 

facet. The vertices of all final boundary facets are then defined as the contact points 

and the envelope ordinates are achieved by interpolating points on the arcs determined 

by the final boundary facets. 
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Figure 4.8 The recursive algorithm for the morphological closing profile filter 
 

Although the presented algorithm is specific to the circular structuring element, it 

is even easier to apply the basic algorithm to the horizontal line segment structuring 

element. See Figure 4.9. In this case the contact point is examined by checking the 

highest point (say c  in { }1 2, ,p p c ) between two known contact points (say a , b ). If 

that point is lower than two given contact points (say a , b  is lower than c ) and the 

horizontal distance between the two contact points is smaller than the length of the 

given line segment (say ab L< ), the recursion procedure exits and the simplex 

composed by those two contact points is taken as the facet. The envelope ordinates are 

determined by the lower height of the two contact points. 

Figure 4.10 illustrates an example closing envelope computed by the recursive 

algorithm. It employs the same experimental data and the disk radius as used in the 

previous chapters. The contact points are circled in the figure. 

 

Algorithm ContactPoints(X, r) 

{Given a profile X and the chosen disk radius r,}  

{ computes the contact points Contacts.} 

 

a ← the left end point of X. 

b ← the right end point of X. 

Partition(a, b); 

 

Procedure Partition (a, b) 

if {pi} above ab 

 c ←  the furthest point from ab in {pi}; 

else 
 calculate the signed circumcircles radii R of {ab pi } ; 

 c ←  the point with max(R); 

 if ab <= 2r & max(R) < r 

      Contacts. add(a, b); 

      return; 

 end if   

end 

 
Partition (a, c); 

Partition (c, b); 

end procedure 

end algorithm 
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Figure 4.9 Examining the contact points by line segment structuring element 

 

0.2 0.4 0.6 0.8 1 1.2

-2

0

2

4

Length / mm

H
e
ig

h
t 

/ µ
m

 

 

Original profile

Contact points

Closing envelope

 

Figure 4.10 The closing envelope and contact points computed by the recursive 

algorithm 
 

4.3.2 Areal algorithm 

It is obvious that the propositions and comments also hold for areal data if the 

disk is replaced by a ball and the circumcircle is replaced by a circumsphere. In such a 

case, instead of starting with the initial points for the recursion procedure as the left 

and right profile ends in scenario of profile data, it is easier to start with the convex 

hull faces for areal data and thereafter perform the recursion procedure on each 

convex hull face. Figure 4.11 illustrates an example surface with 50 ×  50 points on 

which the convex hull faces are presented as the triangular meshes. For each face of 

the convex hull, the algorithm searches the contact points by computing the signed 

circumsphere radius and performs the partition procedure in a similar manner to that 

of profile data. For instance, starting with a convex hull face 
abc

σ , a contact point d  

is found by seeking the largest circumsphere radius of { }
iabcp

σ , where { }ip  are the 

sample points inside the circumsphere of 
abc

σ . Then 
abc

σ  is removed and partitioned 
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into three new simplices 
abd

σ , 
bcd

σ  and 
cad

σ . The partition process is repeated on 

each new generated simplex until the simplex in evaluation can hold an empty 

circumsphere. 

The highlighted triangle in Figure 4.11 denotes one of convex hull faces. The 

resulting boundary facets are highlighted in Figure 4.12. The searching process 

completes when the partition of all convex hull faces are finished. Finally the vertices 

of the obtained boundary facets are the desired contact points, as shown in Figure 

4.13. Similar to the profile data, the closing envelope coordinates are computed by 

interpolating points on the caps determined by the final boundary facets. Figure 4.14 

illustrates the resulting closing envelope of the original surface. 

 

 

Figure 4.11 The convex hull faces of the surface areal data 
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Figure 4.12 The facets generated by applying the partition procedure on one of the 

convex hull faces 

 

 

 

Figure 4.13 The final boundary facets resulting from the partition procedures 
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(a) 

 

(b) 

Figure 4.14 The generated closing envelope. (a) Normal view. (b) Inverted view 

 

4.4 Modified Graham scan algorithm 

The recursive method and the alpha shape method are based on the relationship 

between morphological envelopes and the alpha hull. Nevertheless another 

relationship between morphological envelopes and a geometrical structure — the 

convex hull is targeted. 

Morphological operations, as created, were first utilized to examine the 

geometrical structure of rock cross sections (Matheron & Serra 2002). It then led to a 

new quantitative approach in image analysis. This image processing method was 

introduced into surface texture analysis as a non-linear filtering technique (Srinivasan 

1998). The measured data uniformly sampled on the surface are treated in a similar 

manner to image pixels. In fact the naive algorithm is a typical image processing 

method. It however inherits some limitations by dealing with the measured data as 

image pixels. Image has to be planar, unable to rotate in space, while the workpiece 

surface is a physical object existing in space, invariant under translation and rotation. 

It is thus more reasonable to view the sampled data as the point set in space rather 

than image pixels. As illustrated in Figure 2.10, the closing envelope is obtained by 

rolling a disk over profile from above and taking the lower boundary of the disks. If 

consider the set of sample points as the discrete representation of the physical profile, 

it is equivalent to roll the disk over these discrete points. This operation turns out to be 

a computational geometry problem instead of an image processing issue. 
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Figure 4.15 Pivoting the infinitely extending line around the point set yields the 

convex hull 

 

In computational geometry, the convex hull is the most ubiquitous structure, 

playing a central role in many engineering computations. Intuitively the convex hull 

of a point set in 2D is obtained by pivoting an infinitely extending line around the 

point set, see Figure 4.15. The line-segment envelope bounding the point set is called 

the convex hull. In the mathematical morphology point of view, the point set is 

equivalent to the image being processed and the infinitely extending line serves as the 

structuring element. If replacing the infinitely extending line by the desired 

geometrical object, for example, a disk, the convex hull becomes the morphological 

envelopes. In this sense, the convex hull could be viewed as a special morphological 

envelope with the infinitely extending line or the disk with infinitely large radius 

being the structuring element. Based on that, it is possible to correlate the convex hull 

computation technique with the morphological envelope calculation. 

Among various convex hull calculation methods, the Graham scan algorithm was 

a very efficient method for planar point set (Graham 1972). As illustrated in Figure 

4.16, the algorithm sorts the points by angle counter-clockwise firstly. Then the 

algorithm proceeds to consider each of the sorted points in sequence. It maintains a 

stack structure to hold the points on the convex hull found so far. For each point, it is 

determined whether moving from the two previously considered points to this point is 

a "left turn" or a "right turn". If it is a "right turn", it means that the second-to-last 

point is not part of the convex hull and should be removed from the stack. For 

example, in the figure, 3p , 4p  and 5p  forms a “right turn”, thus 4p  is popped out 

from the stack. Then the renewed chain, 2p , 3p  and 5p , forms a “left turn”, and 5p  is 
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pushed into the stack. This process is continued as long as the set of the last three 

points is a "right turn". As soon as a "left turn" is encountered, the point is pushed into 

the stack and the algorithm moves on to the next point in the sorted array. In the end, 

the points contained in the stack are all the convex hull points. 

 

 

Figure 4.16 The Graham scan algorithm for convex hull 

 

 

To compute morphological profile envelopes, we modify the Graham scan 

algorithm aiming to search the contact points. The modified algorithm does not sort 

the data as is required in the convex hull computation since the profile points are 

already naturally “sorted” in the sequence of sampling, but directly searches the 

contact points on the profile. Similar to the original convex hull method, the modified 

algorithm maintains a stack structure to contain the contact points. 

The algorithm pseudocode is presented in Figure 4.17. At the beginning, the stack 

keeps the first two sample points as the initial elements. Then it processes the rest of 

points incrementally. Each time the coming point is evaluated with the top element 
t

p  

and the second top element 1t
p −  in the stack. The chain composed by the three points 

is checked whether the structuring element could contact the middle point 1t
p − . If it is 

unable to touch 1t
p − , the point in evaluation is pushed into the stack, otherwise the top 

element of the stack is popped out. The contact test is performed repeatedly until the 

test succeeds. Thus in this manner when all the points are processed, the points in the 

final stack are all the contact points. 
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Figure 4.17 Modified Graham scan algorithm for morphological filters 

 

The envelope is calculated in a similar way to the previously presented 

algorithms. Figure 4.18 demonstrates the closing envelope of the experimental profile 

with disk radius 0.5 mm, computed by the modified Graham scan algorithm. The star 

marks in the figure are the contact points on the profile. 
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Figure 4.18 The closing envelope and contact points computed by the Graham scan 

algorithm 

 

The presented Graham scan algorithm works well for profile data, however it 

would be hard to extend it to areal data. In that case, the scanning is performed by 

rolling a ball. There is no existing efficient Graham scan algorithm for 3D point set 

(Devadoss & O’Rourke 2011). However an algorithm called the ball pivoting 

Algorithm GrahamScan(X, B) 

{Given a point set {pi|i<n} and the structuring} 

{ element B, computes the contact points.} 

 

Stack stack = (p1, p2); t indexes top. 

i = 3; 

while i <= n do 

if  t < 2 

Push(stack, pi); 

continue; 

end if; 

if CheckContact(pt-1, pt, pi, B) 

 Push(stack, pi); 

 i = i + 1; 

else 

 Pop(stack); 

end if; 

end while; 

return stack; 
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algorithm (Bernardini et al. 1999) was developed to reconstruct the surface from the 

discrete point cloud. It simulates rolling a ball over the areal point set. In this sense 

this method could be viewed as the extension of the modified Graham scan algorithm 

for profile data. This problem is this algorithm is poor in performance for large ball 

radius. 

 

4.5 Summary 

The alpha shape method solved the deficits of the traditional algorithms, however 

it has some limitations, for instance, the structuring element is restricted to be circular 

and the Delaunay triangulation is costly for large areal datasets. The recursive 

algorithm overcomes these limitations based on searching for the contact points on the 

surface. The definition of the contact point is given and a set of propositions and 

comments are proposed and mathematically proved based on alpha shape theory. 

With these propositions and comments, the recursive algorithm for morphological 

filters is developed for both profile data and areal data. The recursive algorithm does 

not require the Delaunay triangulation and is applicable for both circular and flat 

structuring elements, meanwhile it retains the merits of the alpha shape method. 

By correlating the convex hull and morphological envelopes, the Graham scan 

algorithm for the convex hull computation is modified and adapted to compute the 

morphological operations. This algorithm outputs the same contact points as the 

recursive algorithm. The limitation of this method is that it only applies to the profile 

data. 
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5. ALGORITHM DISCUSSION AND COMPARISON 

 
In the preceding chapters five different algorithms, two existing ones, the naive 

algorithm, the motif combination algorithm and three proposed ones, the alpha shape 

algorithm, the recursive algorithm and the modified Graham scan algorithm have been 

presented. These five algorithms achieve the same goal, whereas they are derived 

from distinct origins and have their respective advantages and disadvantages. Thus in 

order to expose their merits and shortcomings, we proceed to discuss these algorithms 

in following perspectives: algorithm verification, algorithm analysis, performance 

evaluation and area extension. 

 

5.1 Algorithm verification 

For the purpose of verifying the algorithms, they are applied to a milled surface 

profile. The profile contains 1000 points with sampling interval 10 µm. The profile is 

filtered by the morphological closing filter with disk radius 500 mm. The results from 

the five algorithms are graphed in Figure 5.1. It is clear from the figure that the five 

envelopes overlap except at the two ends of the profile. It indicates that the algorithms 

are in agreement with each other. The edge distortion is caused by the end effect of 

filtration on the open surface data. The end effect correction will be discussed in 

Chapter 6. 

The same profile is thereafter filtered by the line-segment structuring element 

with length 1 mm. The alpha shape method is not applicable because this method is 

limited to circular structuring elements. As illustrated in Figure 5.2, except at the end 

region of the profile, four resulting envelopes from the naive algorithm, the recursive 

algorithm, the modified Graham scan algorithm and the recursive algorithm are 

matched except at the two ends. 

To verify the algorithms on areal data, the naive algorithm, the alpha shape 

algorithm and the recursive algorithm are applied to an experimental surface with 

100× 100 points. See Figure 5.3(a). The surface is 1× 1 mm
2
 in area with sampling 

interval 0.01 mm. The surface was filtered by the morphological closing filter with 
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ball radius 0.15 mm. Figure 5.3(b) presents the closing envelope resulting from the 

naive algorithm. The resulting envelope computed by the alpha shape method and the 

recursive algorithm is illustrated in figure 5.3(c). Figure 5.3(d) presents the 

comparison of two envelopes. The comparison reveals that the two results are 

basically in agreement except at the boundary region of the surface, which is caused 

by the end effect of filtration on the open surface data. 

 

 

Figure 5.1 Morphological closing profile envelopes generated by the five algorithms 

with disk radius 150 mm 

 

 

Figure 5.2 Morphological closing profile envelopes generated by the four algorithms 

with line segment 1 mm 
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(a) 

 

(b) 

 

(c) 
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 (d) 

 

(e) 

Figure 5.3 Morphological closing areal envelopes generated by the naive algorithm 

and the alpha shape algorithm (and the recursive algorithm) respectively. (a) Raw 

surface. (b) Closing envelope computed by the naive algorithm. (c) Closing envelope 

computed by the alpha shape algorithm and the recursive algorithm. (d) Deviation 

surface obtained by subtracting the closing envelope resulted from the naive algorithm 

from the one generated by the alpha shape algorithm. (e) Inverted deviation surface 

 

5.2 Algorithm analysis 

The naive algorithm, being a direct approach following the definition of 

morphological dilation and erosion, combines them to yield morphological closing 

and opening. This algorithm, which may be optimized by certain techniques 

(Sedaaghi 1997), is widely used in image processing. However it has some fatal 

limitations. For one thing, it is time-consuming for large datasets and large structuring 

elements. The maximum size of the structuring element is limited due to the huge 

computation requirement, while for many real applications they may desire the 



 

 98

structuring element size much larger than the profile length. For another, it is limited 

to planar data and uniform sampled data. 

The motif combination algorithm emphasises the elimination of the insignificant 

motifs and obtains only the significant ones. It is an iterative process in that the motifs 

are merged repeatedly until no more combinations occur. The final events are the 

contact points on the profile. This algorithm is consistent with the functionality of 

morphological filters in that the features on the profile smaller than the structuring 

element in size are removed by the filter. By defining the motif combination test 

criterion, i.e. how two adjacent motifs are combined, various types of structuring 

elements are available, for instance, circular disks and horizontal line-segments. 

Although the structuring element is restricted to the convex object and is not allowed 

to tilt, it could satisfy most of the applications (Scott 1992). 

The approach based on the alpha shape utilizes the relationship between the alpha 

hull and morphological operations that the boundary of the hull obtained by rolling 

the alpha ball over the point set is identical to the closing/opening envelope. Therefore 

the algorithm for computing the alpha shape could be used to calculate morphological 

closing and opening filters. This algorithm is based on the Delaunay triangulation. 

The triangulation data could be reused for multiple attempts of various disk radii. It 

could save a great deal of computing time since in real practice a multitude of trials 

may be made for an appropriate disk radius. Another merit is that it is suitable for 

non-uniform sampled data, bringing more generality over the naive algorithm. 

Although the link puts the restriction that the structuring element must be circular, the 

circular disk is most commonly used and is regarded as the default structuring element 

in ISO 16610. 

In comparison to the naive algorithm as a typical image processing technique, 

which treats the measured data as image pixels, the modified Graham scan algorithm 

views the data as the point set in space. Regarding the measured data as the input set 

and the infinitely extending line as the structuring element, the convex hull could be 

viewed as a special morphological envelope. It links computational geometry 

techniques with the calculation of morphological envelopes. The Graham scan 

algorithm originally developed for the convex hull computation is modified and 

adapted to calculate morphological envelopes. The method is an incremental 

algorithm in that the profile data is processed in sequence and adding data will cause 
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the correction of the processed data. It simulates moving the structuring element over 

the profile and obtains the contact points. In this aspect it resembles the motif 

combination approach though they compute the contact points in different ways.  

The alpha shape method depends on the Delaunay triangulation. The triangulation 

provides the information for generating the whole family of alpha shapes. It saves 

time for multiple trials of ball radii. However the Delaunay triangulation is costly for 

large datasets. For a given radius, the Delaunay triangulation is redundant for the 

computation of the desired alpha shape related with the given radius. The recursive 

algorithm solved this problem. It searches the contact points based on a series of 

comments. The algorithm partitions the profile into small segments and searches the 

contact point recursively until the two ends of the profile segment in evaluation could 

hold an empty disk with the given radius, similar for areal data. 

The later four methods are geometrical algorithms, which output the contact 

points accurately. The naive algorithm, to catch the contact points, has to detect the 

points which do not change with the morphological closing or opening operations. 

Thus the results are limited to the accuracy of algorithm and are sensitive to round off 

errors in the calculation. This situation is further worsened by discretely sampling the 

disk. 

Table 5.1 lists the thorough comparison of the algorithms, in which the 

computational performance and the real extension will be discussed as follows. 

 

Table 5.1 The comparison of five algorithms 

Algorithm Analysis 
Computation 

complexity 
Areal extension 

Naive algorithm 
Direct method 

(image processing) 
2( )O n

 
Yes, costly 

Motif combination 

algorithm 
Iterative method ( )O n

 No 

Alpha shape algorithm 
Delaunay 

triangulation 
( log )O n n

 
Yes, 3D Delaunay 

triangulation 

Recursive algorithm Recursive method 

2( )O n worse,  

( log )O n n  expected 
Yes 

Modified Graham 

scan algorithm 
Incremental method ( )O n

 Yes, costly 
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5.3 Performance evaluation 

To evaluate the performance of the five algorithms, it is necessary to analyze the 

time complexity of the algorithms. For the naive algorithm, the worse case is when 

the size of the structuring element is equal to or larger than twice of the profile length. 

The calculation of each envelope ordinate involves the whole profile data, thus its 

time complexity is 2( )O n . The alpha shape method depends on the Delaunay 

triangulation with time complexity ( log )O n n  for both 2D and 3D data, therefore its 

time complexity is ( log )O n n . For the motif combination approach, the iterative 

process has the time complexity ( )O n . The Graham scan algorithm does not need 

data sorting as required in the computation of the convex hull which may cost 

( log )O n n  time, thus the computation of the contact points is also in ( )O n  time. The 

Graham scan algorithm has the same time complexity as the motif combination 

algorithm; nonetheless it requires less memory because it is incremental and does not 

need to handle all the data simultaneously. The recursive algorithm, in the worse case 

that each set of divided segments of data is as skewed as possible, has the time 

complexity 2( )O n  although it rarely occurs in real practice. Its expected time 

complexity is ( log )O n n . 

To assess the actual performance, experiments are carried out on the profile data 

with the point amount varying from 5000 points to 80,000 points. The profile data is 

sampled from a metal sheet surface in form of the propeller blade. It is measured with 

a Talysurf PGI (Taylor Hobson, UK) with sampling interval 1 µm. The morphological 

closing filter with disk radius 5 mm was performed on the profiles using the five 

algorithms. These algorithms were implemented by Visual C++ and ran on a 

computer with 3.16 GHz Intel Core Duo CPU and 3 GB RAM. The performance data 

are listed in Table 5.2. 
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Table 5.2 Algorithm running times over various amounts of profile data with the 

same disk radius 

  Data amount 5,000 10,000 40,000 80,000 

Naive algorithm 0.0010s 1.0294s 4.8391s 9.9274s 

Motif Combination algorithm 0.0076s 0.0157s 0.0609s 0.1238s 

Alpha Shape algorithm 0.0124s 0.0508s 1.0112s 2.1531s 

Modified Graham Scan algorithm 0.0079s 0.0158s 0.0636s 0.1253s 

Recursive algorithm 0.0010s 0.0025s 0.0916s 0.1038s 

 

The running time presented in Table 5.2 verifies the theoretical analysis of the 

time complexity of the algorithms. The naive algorithm is most time consuming, 

spending nearly 10 seconds for the 80,000 dataset. The alpha shape method is more 

efficient than the naive algorithm reducing the running time to about 2 seconds for the 

80,000 dataset. The alpha shape method is dependent on the Delaunay triangulation 

which is costly in its data structure support, compared with the other algorithms. The 

motif combination algorithm and the modified Graham scan algorithm are much more 

efficient, only spending 0.1 second. The recursive algorithm also achieved good 

performance and even better than the motif combination algorithm and the Graham 

scan algorithm in some cases, although it has the worse theoretical computation 

complexity than the other two methods. This is because practical programming 

techniques used to implement algorithms have impacts on their performance. 

Algorithms with efficient data structures and memory operations usually have better 

performance. 

Another experiment was carried out with an aim to assess the algorithm 

performances with the variation of structuring element size (disk radius in this 

experiment). The experiment was performed on the 80,000 dataset with the disk 

radius varying from 0.5 mm to 10 mm. The experimental data is presented in Table 

5.3 and plotted in Figure 5.4. It is evident in the figure that the running time of the 

naive algorithm grows rapidly as the disk radius increases. The alpha shape algorithm 

and the recursive algorithm behave in an opposite manner: their running time 

decreases as the disk radius grows. It is reasonable considering the number of the 

alpha shape boundary facets decreases as the disk radius increases. For the recursive 
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algorithm, the recursion number reduces either with the increase of disk radius, which 

is evidenced by the fact that better performances can be observed with this algorithm 

when disk radius grows to 5 mm and 10 mm. As to the motif combination approach 

and the modified Graham scan approach, the disk radius variation has little impact on 

their performances. 

 

Table 5.3 Algorithm running times with various disk radii and the same profile data 

  Disk radius 0.5mm 1mm 5mm 10mm 

Naive algorithm 1.0167s 2.0086s 9.9274s 19.3092s 

Motif Combination algorithm 0.1537s 0.1386s 0.1238s 0.1200s 

Alpha Shape algorithm 2.4061s 2.2214s 2.1531s 2.0540s 

Modified Graham Scan algorithm 0.1293s 0.1302s 0.1253s 0.1259s 

Recursive algorithm 2.2728s 1.5197s 0.1038s 0.0190s 
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Figure 5.4 Algorithm running times on the same profile data using various disk radii 

 

Experiments were also carried out for areal data aiming to evaluate the 

performance of the naive algorithm, the alpha shape method with and without the 

divide and conquer optimization and the recursive algorithm. The sample matrices for 
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areal data range from 100 ×  100 to 1000 ×  1000 points. They are filtered by 

morphological closing filter using a 10 mm ball respectively. The algorithm running 

time are illustrated in Table 5.4. It is evident that the proposed recursive algorithm 

achieved superior performance over the other two, especially for large areal data. The 

alpha shape method has better performance than the naive algorithm. However its 

running time rises rapidly with the increase of the areal data size due to the costly 3D 

Delaunay triangulation. The divide and conquer optimization significantly improved 

its performance. In this test, the minimum sub-divided surface is of 128 × 128 points 

in size. Experiments show that this size is a balanced selection in that the divide and 

conquer method achieves good performance with this configuration since the 

Delaunay triangulation on this size of dataset usually costs less than 1 second and it 

will not produce too much recursions. The naive algorithm is even worse with large 

areal datasets, rising sharply with the increasing data size. It spent more than 12 hours 

in dealing with the 1000 × 1000 dataset. 

 

Table 5.4 Algorithm running time over various amounts of areal data with the same 

ball radius 

Data amount 100 × 100 250 × 250 500 × 500 750 × 750 1000× 1000 

Naive algorithm  2.79 s 100.87 s 1822.6 s 10334.9 s 46208.8 s 

Alpha shape algorithm 0.85 s 10.3 s 73.1 s 292.6 s 715.4 s 

Alpha shape algorithm 

with the divide and 

conquer optimization 

1.06 s 7.14 s 27.83 s 62.72 s 111.62 s 

Recursive algorithm  0.16 s 1.42 s 19.7 s 57.6 s 250.4 s 

 

Similarly, the experiment was carried to test the performance of the areal 

algorithms in response to the variation of the structuring element size (ball radius in 

this experiment). The experimental data listed in Table 5.5 reveals the same trend as 

to the situation of the profile data. The running time of the naive algorithm grows 

rapidly as the disk radius increases. The recursive algorithm decreases in its running 

time as the disk radius grows. The computation time of the alpha shape method runs 

steadily in that the Delaunay triangulation makes up the majority of the computation 

and the alpha shape facet extraction costs much less. 
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Table 5.5 Algorithm running time with various ball radii and the same areal data (512 

x 512) 

Ball radius 0.5 mm 1 mm 5 mm 50 mm 

Naive algorithm  520.6 s 1786 s 1948 s 5155 s 

Alpha shape algorithm 80.23 s 80.21 s 78.78 s 78.54 s 

Alpha shape algorithm with the 

divide and conquer optimization 
32.69 s 31.91 s 30.72 s 30.91 s 

Recursive algorithm  249.53 s 80.69 s 13.05 s 2.74 s 

 

5.4 Areal extension 

All the five algorithms work for morphological profile filters. It could be easily 

recognized that the naive algorithm could apply to areal data by replacing the profile 

structuring element with its areal counterpart. For instance, the disk used in profile 

data becomes the ball in areal data. In this case, extreme points are achieved by 

evaluating the vector sum of the ball and the areal data in range overlapped by the 

ball. 

The alpha shape method is also able to extend to the areal data if replacing the 

disk with the ball. Instead of a series of 2-simplices resulted by the 2D Delaunay 

triangulation, the 3D Delaunay triangulation yields a series of 3-simplices. 

Subsequently by checking the smallest circumsphere of these 3-simplices, the 

boundary facets of the alpha shape are obtained. Then the spatial envelope coordinates 

are achieved by interpolating points on the caps determined by the alpha shape 

boundary facets. 

The motif combination algorithm has no obvious extension to the areal data 

because the motif combination test could be complex in the spatial case. Although 

there are areal extensions to profile motifs (Scott 1998; Scott 2004; Barre & Lopez 

2000), the motif combination of areal motifs are quite different from morphological 

areal filter in functionality.  

For the modified Graham scan algorithm, there is no existing extension for 3D 

data. An algorithm called the ball pivoting algorithm (Bernardini 1999) was 

developed to reconstruct the surface from the discrete point cloud. It simulates rolling 

a ball over the areal point set. In this sense this method could be viewed as the 
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extension of the modified Graham scan algorithm for profile data. As already 

presented, the recursive algorithm could handle areal data.  

 

5.5 Summary 

In this chapter, the comparison of the five algorithms is discussed in four aspects: 

algorithm verification, algorithm analysis, performance evaluation and areal 

extension. The experimental results show that the five algorithms are in agreement 

with each other except at the end regions. The naive algorithm is a direct 

implementation to morphological operations but it is time consuming for large 

datasets and large structuring elements. It has several limitations, such as the size of 

the structuring element is restricted and unable to handle freeform surfaces and 

unsuitable for non-uniform sampled surfaces. Opposed to these limitations, the alpha 

shape algorithm provides more feasibility and flexibility as well as easy extension to 

areal data. The divide and conquer optimization helps to improve its performance. 

The motif combination approach and the Graham scan approach are most efficient in 

performance with the linear time complexity. However they are hard to extend to 

areal data. Experiments show that the recursive algorithm is also an efficient method 

for profiles. A great merit of the recursive algorithm is that it is easy to extend to areal 

data which would be efficient for large areal datasets and large structuring elements. 
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6. END EFFECTS CORRECTION 

 
End effects are common in the filtration of open surfaces. They are unintentional 

changes in the filtration response in the end portions of an open surface. ISO 16610-

28 (2010) presents a couple of end effects correction methods for linear filtration 

techniques. In this chapter, methods are proposed to correct the end effects of 

morphological filters for open surfaces. 

 

6.1 End effects for open surface filtering 

End effects appear in the end portions of the surface measured by the nesting 

index, for instance, half length of the cut-off wavelength for the Gaussian filter, or 

half length of the structuring element used in morphological filters. As a consequence, 

the confidential area of the reference surface obtained by filtration techniques which 

is valid for surface characterization is confined to the middle portion with the end 

effect regions removed. The truncation caused by end effects produces negative 

impact on filtering because the assessment data is shortened. This means that no 

longer the entire measured data set is available for further evaluation, or that a longer 

measurement length is needed at all. This is particularly inconvenient in the case of 

long cut-off wavelengths or large sizes of structuring elements. 

Figure 6.1 presents the end effect of Gaussian filtering on the experimental open 

profile with cut-off wavelength 0.08 mm. In contrast, the reference line generated by 

the first order Gaussian regression filter is also presented in the figure, which does not 

have the end effect. It is evident that the end effect exists on two end portions within 

half length of the cut-off wavelength (0.04 mm), which is marked by the bold vertical 

lines in the figure. 

There are similarity and difference between the end effects of morphological 

filters and the Gaussian filter. The similarity is the end effect of morphological filters 

occurs within the range of half length of structuring element, while it differs from the 

Gaussian filter in that not all those regions of the morphological envelope are 

distorted, but only a portion of it. Figure 6.2 illustrates such an example. The same 
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experimental profile is applied by the morphological closing filter with disk radius 0.2 

mm. Two closing envelopes are presented in the figure, one without end correction, 

and one with correction by applying the linear prediction method which will be 

discussed in Chapter 6.5. It could be noticed that the closing envelope at two ends are 

not totally distorted, but only a small portion of the end region. 
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Figure 6.1 The end effect of the Gaussian filter on an open profile 
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Figure 6.2 The end effect of the morphological closing filter on an open profile 

 

6.2 Infinity padding 

A common and simple solution for mean-line filters is to add sufficient zeros to 

two ends of the profile, referred as zero-padding (ISO 16610-28 2010). As to 
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morphological filters, the solution is similar to zero-padding: the profile is assumed to 

drop down to the negative/positive infinity outside of the profile for dilation/erosion 

respectively, known as infinity padding (ISO 16610-41 2010). It pads sufficient 

extreme ordinates for half size of the structuring element on both ends. Figure 6.3 

illustrates the infinity padding method for the computation of the dilation operation 

using a disk. A surface profile ( )z x  with measuring length 
t

l  is padded with zeros 

over length l  at the left side and right side of the profile,  

( )
min( ), 0

( ), 0

min( ),

t

t t

z l x

z x z x x l

z l x l l

− ≤ <


= ≤ <
 ≤ ≤ +

ɶ     (6.1),  

where min( , )
t

l r l=  and r  is the disk radius or half length of the horizontal line 

segment. The extreme value at the negative infinity is replaced by the minimum value 

of profile heights for practical computation. Vice versa, values equal to the maximum 

height are padded in the end portions of the surface for the computation of the erosion 

operation. 

 

 

Figure 6.3 Infinity padding on two ends of the profile for the computation of the 

dilation operation 

 

As presented in Chapter 2.4.1, the naive algorithm employs infinity padding such 

that the dilation or erosion ordinates in the profile ends could be calculated. A 

practical example of the closing envelope generated by the naive algorithm and 

infinity padding is illustrated in Figure 2.27. 
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As regarding to the other methods, i.e. the motif combination algorithm, the alpha 

shape algorithm, the recursive algorithm and the modified Graham scan algorithm, 

they do not pad extra points to extend the surface. They assume that the raw surface is 

confined to the measured region, namely no surface exists outside the measured 

portion. Nevertheless, for planar surfaces, this situation could also be viewed that the 

surface drops down to the negative infinity for the closing operation and rises up to 

the positive infinity for the opening operation, which is similar to the infinity padding 

even though they do not really pad extra points. It is obvious that the moving 

structuring element will contact the end points of the measured profile, thus the 

envelope will overlap with the measured profile at the two ends. This could be 

verified in the examples presented in the preceding chapters.  

Figure 6.4 illustrates the experimental profile extended by infinity padding and its 

resultant closing envelope with disk radius 0.5 mm, obtained by the alpha shape 

method. It is shown in the figure that the resulting envelope is identical to the one 

presented in Figure 3.8 within the range of the raw profile, whereby the envelope is 

obtained without padding extra points. 
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Figure 6.4 The profile extended by infinity padding and the closing envelope 

generated by the alpha shape algorithm 

 

6.3 Symmetrical reflection 

A measured profile is extended by symmetric extension on the left hand and right 

hand respectively. The reflection could be about the axis or the end points. 
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6.3.1 Line symmetrical reflection 

A surface profile ( )z x  with measuring length 
t

l  is extended by horizontal 

reflection on the left hand and right respectively, and is defined by 

( )
( )
( )

( )

, 0

, 0

2 ,

t

t t t

z x l x

z x z x x l

z l x l x l l

− − ≤ <


= ≤ <
 − ≤ ≤ +

ɶ     (6.2), 

where min( , )
t

l r l=  and r  is the disk radius or half length of the line segment. 

Figure 6.5 presents an example of line symmetrical reflection. The example 

profile is extended by reflection with the given disk radius 0.5 mm.  The extended 

profile is then filtered by the morphological closing filter. The achieved 

morphological closing envelope is truncated by removing the portion on the extended 

length. The remaining portion within the range of measured length yields the final 

envelope. It could be recognized in the figure that the resulting envelope differs from 

the one generated by infinity padding (see Figure 6.4) in the end portions of the 

profile while it is the same in other regions. 
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Figure 6.5 The line symmetrical reflection of the profile 

 

Although reflecting the profile is an easy solution in an implementation point of 

view, it raises a computational issue. Reflection will aggravate computation 

performance, especially in the case of large datasets, because the input data of 

morphological filtration is significantly enlarged by the extension. This problem could 

be solved by reflecting the contact points on the profile instead of the raw profile data. 
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As stated in Chapter 3.5, the morphological envelope is determined by the contact 

points on the surface and other sample points have no influence upon it. Therefore 

reflecting the profile is identical to reflecting contact points in respect of end effects 

correction. Meanwhile reflecting contact points will not increase computation too 

much because the contact points are usually much less than the sample points. 

 Figure 6.6 demonstrates an example of reflecting contact points on a profile. At 

the beginning, all the contact points are located on the measured profile. Then the 

obtained contact points are reflected in a line symmetrical manner at the two ends 

within the region of disk radius. The newly created contact points are merged with the 

original contact points to generate an enlarged contact point set, which will be filtered 

again to yield the updated contact point set with those fake ones removed on joint 

portions. Finally the morphological envelope is computed using these updated contact 

points. 
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Figure 6.6 The line symmetrical reflection of the contact points on the profile 

 

6.3.2 Point symmetrical reflection 

A surface profile ( )z x  with measuring length 
t

l  is extended by horizontal 

reflection in conjunction with vertical reflection on the left hand and right hand 

respectively, and is defined by: 

( )
( )

( )
( ) ( )

2 0 ( ), 0

, 0

2 2 ,

t

t t t t

z x z x l x

z x z x x l

z x l z l x l x l l

× = − − − ≤ <


= ≤ <
 × = − − ≤ ≤ +

ɶ    (6.3), 
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 where min( , )
t

l r l=  and r  is the disk radius or half length of the line segment. 

Figure 6.7 presents an example of point symmetrical reflection. All the steps to 

produce morphological envelopes are same to the line symmetrical reflection, except 

the profile is reflected in a point symmetry manner. Similarly the point symmetrical 

reflection could also be optimized by only reflecting contact points in order to 

improve the algorithm performance. See Figure 6.8. 
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Figure 6.7 Point symmetrical reflection of the profile 

 

0 2 4 6 8 10 12

-20

-15

-10

-5

0

5

10

Length / mm

H
e
ig

h
t 

/ µ
m

 

 

Reflected contact points

Raw profile

Extended closing envelope

 

Figure 6.8 Point symmetrical reflection of the contact points on the profile 

 

6.4 Polynomial extrapolation 

A measured profile is extended by fitting a polynomial curve on the left hand and 

right hand using the least square method. 
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6.4.1 First order polynomial extrapolation 

A polynomial in first order, ax b+ , which equal to a least square line, is fitted to 

the profile ( )z x  within the left and right end effect regions with length l : 

( )
2

,
0

( ) min
l l

l

l l
a b

z x a x b dx− − →∫  and ( )
2

,
( ) min

t

r r

t

l

r r
a b

l l

z x a x b dx
−

− − →∫ . (6.4) 

The profile is then extended to 

( )
, 0

( ), 0

,

l l

t

r r t t

a x b l x

z x z x x l

a x b l x l l

+ − ≤ <


= ≤ <
 + ≤ ≤ +

ɶ ,    (6.5) 

where min( , )
t

l r l=  and r  is the disk radius or half length of the line segment. 
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Figure 6.9 First order polynomial extrapolation to the profile 
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Figure 6.10 First order polynomial extrapolation based on the contact points on the 

profile 

 

Figure 6.9 presents an example of the extension to a profile by linear 

extrapolation and its closing envelope with disk radius 1 mm. Figure 6.10 differs from 

Figure 6.9 in that the least square line is based on the contact points within the 

evaluation length l  on the left and right end, aiming to reduce computation. The 

points of the extended profile are extrapolated on the least square line at sampling 

positions which reflects those of the corresponding contact points. 

6.4.2 Second order polynomial extrapolation 

A polynomial curve with second order, 2
ax bx c+ + , is fitted to the profile within 

the left and right end effect regions: 

( )
2

2

, ,
0

( ) min
l l l

l

l l l
a b c

z x a x b x c dx− − − →∫  and ( )
2

2

, ,
( ) min

t

r r r

t

l

r r r
a b c

l l

z x a x b x c dx
−

− − − →∫ . (6.6) 

The profile is now extended to 

( )

2

2

0

( ) 0

l l l

t

r r r t t

a x b x c l x

z x z x x l

a x b x c l x l l

 + + − ≤ <


= ≤ <
 + + ≤ ≤ +

ɶ ,    (6.7) 

where min( , )
t

l r l=  and r  is the disk radius or half length of the line segment. 

Figure 6.11 present an example of the extension to a profile by second order 

extrapolation and its closing envelope with disk radius 1 mm. In Figure 6.12, the least 

square curve is determined on the basis of the contact points within the evaluation 
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length l  on the left and right end. The points of the extended profile are extrapolated 

on the least square curve at sampling positions by reflecting those of the 

corresponding contact points.  
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Figure 6.11 Second order polynomial extrapolation to the profile 
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Figure 6.12 Second order polynomial extrapolation based on the contact points on the 

profile 

 

6.5 Linear prediction 

Linear prediction is a technique to predict the value of sample 
n

s  using a linear 

combination of p  most recent past samples, where p  is called the prediction order 

(Makhoul 1975; Gopinath & Rangaraj 1993; Gary 2003; Vaidyanathan 2008). 
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The estimate of 
n

s  has the form: 
1

p

n k n k

k

s a s −
=

= −∑ . The error (residual) between the 

actual value and the estimated value is  

1

p

n n n n k n k

k

e s s s a s −
=

= − = +∑ .    (6.8) 

The parameters 
k

a  are obtained by minimizing the mean or total squared error  

{ }

2

2

1 i

p

n n k n k
a

n n k

E e s a s min−
=

 
= = + → 

 
∑ ∑ ∑ .    (6.9) 

E  is minimized by setting 0
i

E

a

∂
=

∂
, 1

i
a p≤ ≤ : 

 
1

2 0
p

n k n k n i

n ki

E
s a s s

a
− −

=

  ∂
= + =  ∂   
∑ ∑ i .   (6.10) 

Thus it leads to 

 
1

p

k n k n i n n i

k n n

a s s s s− − −
=

= −∑ ∑ ∑ ,       (6.11)                               

which is a set of p  equations with p  unknowns and can be solved for the predictor 

efficiencies { },1ka i p≤ ≤ .  

Assume that the error E  is minimized over the infinite duration n−∞ < < +∞ , 

then Equations (6.9) reduce to: 

1

( ) ( )
p

k

k

a R i k R i
=

− = −∑ ,       (6.12) 

where ( ) n n i

n

R i s s
∞

+
=−∞

= ∑  is the autocorrelation function of the signal 
n

s .  

Thus the linear prediction technique could be employed to extend the measured 

profile using the data already sampled. Figure 6.13 presents the extension of the 

experimental profile using the linear prediction with prediction order 10 and the 

resulting closing envelope with disk radius 1 mm. 
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Figure 6.13 Tenth order linear prediction to the profile 

 

6.6 Discussion 

End effects are common in the filtration of open surfaces. They will cause 

distortions to the resulting surface generated by the filter and further influence the 

evaluation of surface textures. Both mean-line based filters (e.g. the Gaussian filter) 

and morphological filters have end effects. However they are different in respect to 

the generation of end effects. The Gaussian filter is a typical convolution operation of 

the measured surface and the Gaussian weighting function. The distortions are caused 

by the convolution operation of the data in the end regions of the surface within the 

length of half of the cut-wavelength. Thus the whole end regions of the open surface 

experience this distortion. Morphological filters have the similar problem, however 

they behaviour somewhat differently. Theoretically, the end effect regions of 

morphological filters are related to the size of structuring element, for example, the 

disk radius. Nevertheless it is easily noticed that the distortion does not occur to all 

the problematic end regions, but only a portion of them. The reason is end effects of 

morphological filters are determined by geometrical properties of the end regions and 

the structuring elements. Certain portions of end regions close to the central part of 

surface may not be affected. In this aspect, end effects of morphological filters are not 

as serious as that of the Gaussian filter. 

Another notable difference between morphological filters and mean-line based 

filters in terms of end effects is the necessity of correction. As aforementioned, it is 

necessary to correct end effect of open surface filtration for surface texture separation, 

whereas morphological filters could serve in other purposes, for instance, contact 
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functional evaluation related with contact phenomenon. In some cases the end effect 

correction is not necessary as it is in the roughness evaluation. The reason is that the 

geometrical algorithms for morphological filters by themselves assume that there 

exists no extension beside the surface being evaluated, which is physically natural for 

functional analysis. A good example will be presented in Chapter 7.1, which set out to 

extract topographical features on engineering surfaces. 

 

6.7 Summary 

This chapter lists a couple of correction methods. In general, the central idea of 

these correction methods is to extend the measured surface to their neighbourhood, 

trying to reproduce their geometrical properties using the given measured data. 

Infinity padding used in the naive algorithm is a limited method, which takes the 

prerequisite that the surface is planar. The reflection methods with two options, either 

the point symmetry or the line symmetry, are suitable for surfaces with linear slope. 

The appropriate selection of two options depends on whether the method could better 

follow the trend of the surface. Polynomial extrapolation and linear prediction are 

more robust in surface extension as against to infinity padding and reflections. They 

can handle surfaces with more complex geometry. As illustrated in the above 

examples, the contact points of the surface may help to reduce the computation 

enlarged by the data extension. 

Last but not least, it is obvious that these end effect correction methods for profile 

data could be easily extended to areal data. The areal extension of linear prediction 

can be found in the references (Digalakis 1993; Marple 2000). 
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7. CASE STUDIES 

 
 

In this chapter, four case studies are presented to demonstrate the feasibility and 

applicability of the proposed morphological methods. At the beginning, the proposed 

areal methods are utilized to extract topographical features from engineering surfaces, 

including surfaces measured from a tooth implant, a femoral component of artificial 

knee joint and a bullet. Afterward they are employed to perform the filtration on a 

freeform surface and a non-uniform sampled surface. Following that, the 

morphological filters are employed in roundness filtration. Finally the algorithms 

searching for contact points are applied to the assessment of the underlying form of 

the textured surface of hip replacement taper junction. 

 

7.1 Extraction of topographical features from engineering surfaces 

7.1.1 Surface topography analysis 

Surface topography is comprised of different surface components, i.e. roughness, 

waviness and form, and multi-scales of topographical features, such as random 

peaks/pits and ridges/valleys. Topographical features are functionally critical for 

component performance. For example, during the functional operation of interacting 

surfaces, peaks and ridges will act as sites of high contact stresses and abrasion. 

Consequently wear particles and debris will be generated by such kind of surface 

topographical features, whereas pits and valleys will affect lubrication and fluid 

retention properties (Jiang et al. 2011b). Thus the functional assessment of surface 

topography must not only appropriately separate roughness, waviness and form error, 

but also extract the topographical features from surfaces. 

In surface texture analysis, the separation of roughness and waviness components 

is usually conducted by the filtration techniques. The mean-line based filters, for 

instance, the Gaussian filter, as well as the average statistical parameters are widely 

used techniques to detect the manufacturing process. However, the significant events 

on the surface, such as peaks and pits, are usually smoothed during the filtration 
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process. It is these topographical features that play more important roles in functional 

performance. In contrast, morphological filters are more relevant to geometrical 

features of surfaces and suitable for functional prediction of components in terms of 

tribology. As a result, morphological filters are valid candidates for the extraction of 

topographical features. 

7.1.2 Methodology 

The naive algorithm for morphological filters however has two limitations on its 

application on surface topography analysis. For one thing, the maximum size of the 

structuring element is limited due to the huge computation requirement, whereas for 

many real applications they may desire the structuring element size much larger than 

the size of the surface in evaluation. For another, the naive algorithm in its 

implementation has the end effect corrected by infinity padding. 

The end effect correction by infinity padding will cause distortion to the 

extraction of topographical features. Refer to Figure 7.1 as an example. The profile in 

evaluation is a simulated data in form of the parabola curve superimposed by the 

intentionally made pits, see Figure 7.1(a). To extract the pit features, using the 

traditional method, the simulated profile is applied by the morphological closing filter 

with disk radius 5 mm to yield a closing envelope which is graphed in the figure as 

the dash line. The closing envelope is then subtracted from the original profile to 

obtain a residual profile. It is obvious in Figure 7.1(b) that this end effect corrected 

profile has distortions at the two end of the profile on which the pit features are not 

properly extracted. It will definitely influence the precise evaluation of topographic 

features, especially for surfaces having significant form components. 

In comparison to the naive algorithm, the alpha shape method and the recursive 

method are more competent in using large structuring elements. Another merit of 

these algorithms is that the obtained morphological envelope follows the form of the 

surface all over including the boundary regions, thus there are no distortions to the 

extraction of topographical features. As presented in the example of Figure 7.1, the 

closing envelope obtained by the alpha shape method, which is graphed by the dotted 

line in the figure, follows the profile with no distortions at the profile end. As a result, 

the pit features on the profile are extracted without distortion. 
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 (b) 

Figure 7.1 Morphological closing envelopes generated by the traditional method and 

the alpha shape method. (a) raw profile and closing envelopes; (b) Residual profiles 

obtained by subtracting the closing envelopes from the raw profile 

 

7.1.3 Application 

Aiming to verify the capability of the proposed morphological methods, a set of 

typical engineering surfaces from the bioengineering industry and the weapon 

industry are selected as the objectives for the extraction of topographical features. 

Figure 7.2(a) presents a surface measured from a tooth implant, which is widely 

used to facilitate osseointegration of human/animal tissues (Wang et al. 2011). It was 

made from titanium materials and produced by fine grinding, sandblasting and acid 

etching. The specific surface texture has a critical role on the component’s 

functionality in terms of cellular adhesion and proliferation. Using the proposed 

morphological areal methods, a morphological closing filter with ball radius 5 mm is 

first applied to the raw measured surface to generate a closing envelope, see Figure 

7.2(b). The residual surface obtained by subtracting the closing envelope from the raw 

surface is illustrated in Figure 7.2(c). It is evident from the residual surface that the 



 

 122

manufacture marks have been successfully extracted and could be used for further 

functional evaluation. 

 

 

(a) 

 

(b) 
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(c) 

Figure 7.2 The titanium tooth implant surface. (a) Raw measured surface; (b)  

Closing envelope; (c) Residual surface 

 

Figure 7.3(a) illustrates a surface measured from a worn artificial knee femoral 

component. The femoral component is critical for the knee joint system because it not 

only enables leg bending motions, but is also able to resist long term wear in service. 

The wear property of the knee femoral component surface is of paramount importance 

for the lifetime of the whole artificial knee joint system. It is shown in the figure that 

the surface topography consists of the roughness component and wear marks. It is 

reported that in comparison to roughness and waviness components, the wear rates of 

surfaces in the operational service are more affected by topographical features like 

pits, valleys, scratches (Jiang & Blunt 2004). From the functional evaluation point of 

view, these topographical features will impact directly on wear mechanics and 

physical properties of the component. 

To reduce the effect of roughness, the alternating symmetrical filter with ball 

radius 1 mm is applied to generate a smoothed surface, as shown in Figure 7.3(b). 

Afterwards, a morphological closing filter with ball radius 50 mm is applied to 

generate a closing envelope. See Figure 7.3(c). By comparing the closing envelope 

and the smoothed surface, the residual surface is obtained, on which wear marks are 

clearly presented. See Figure 7.3(d). 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 7.3 The worn surface of an artificial knee femoral component. (a) Raw 

measured surface; (b) Smoothed surface; (c) Closing envelope; (d) Residual surface 

 

Figure 7.4(a) illustrates a used bullet surface on which some wear and 

deformation marks can be observed. When a bullet is fired and travelling through the 

barrel which is usually manufactured to have spiral grooves to stabilize the flight of 

the bullet and improve its accuracy, the bullet rubs against the inner surface of the 

barrel driven by the massive propellant, and the bullet surface is deformed and worn 

during this process. It follows that by examining the surface topography of bullet it is 

able to identify the flaws of bullets and gun barrels. A reference surface is obtained by 

applying the morphological alternating filter, first a closing with ball radius 50 mm 

followed by an opening with ball radius 1 mm. Then the topographical features are 

extracted in the residual surface and these deform and wear marks can be analysed for 

the purpose of characterisation. It should be noticed that the radial mark presented on 

the surface is not the wear mark but the clamping section of the bullet and its case. 
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(a) 

 
(b) 

 
(c) 

Figure 7.4 The used bullet surface. (a) Raw measured surface; (b) Reference surface; 

(c) Surface with extracted topographical features 
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7.2 Filtration of freeform and non-uniform sampled surfaces 

Three experimental surfaces are employed to illustrate the capabilities of the 

proposed areal methods for morphological filters on freeform surfaces and 

nonuniform sampled surfaces respectively. In Figure 7.5(a), a saddle surface is 

presented, which has a number of tiny bumps and also some “twisted” underlying 

waves on the surface topography. Morphological symmetrical filters (closing 

followed by opening) are applied to this surface with ball radius 0.5 mm and 2 mm 

respectively. Figure 7.5(b) and Figure 7.5(c) illustrate the generated surfaces. It is 

evident that bump features are suppressed by the filter in Figure 7.5(b) and wave 

features are also smoothed in Figure 7.5(c). By comparing the three surfaces, these 

special topographical features of the surface can be analysed. 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 7.5 The surface in saddle shape. (a) The raw surface; (b) The surface 

generated by a ball with radius 0.5 mm; (c) The surface generated by a ball with 

radius 2 mm 

 

In the second experiment, Figure 7.6(a) is a surface measured from an optical F-

theta lens, which is widely used in laser printers and scanners. F-theta lenses are 

designed to have a smooth and continuous freeform figure to achieve specific optical 
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functions and usually have ultra-precision geometry with sub-micrometre shape error 

and nanometre roughness. Using a morphological closing filter with ball radius 2.5 

mm, a covering envelope surface is generated. See Figure 7.6(b). The surface 

presented in Figure 7.6(c) is the residual surface obtained by subtracting the envelope 

surface from the original surface. The defects of the materials and the manufacturing 

marks possibly produced by the diamond fly-cutting are easy to detect on the residual 

surface. 

 

 

(a) 

 

(b) 



 

 130

 

(c) 

Figure 7.6 The F-theta surface. (a) Raw surface; (b) Closing envelope; (c) Residual 

surface 

 

Another experiment was performed on a milled surface. The surface area is 5.11 x 

5.11 µm
2
 with 2962 sampling points. As marked by the dots in Figure 7.7(a), these 

sampling points are non-uniform sampled on the surface. The morphological closing 

filter with a 15 µm ball, using either the alpha shape algorithm or the recursive 

algorithm, was performed on these non-uniform sampled points. The resulting 

envelope points are illustrated in Figure 7.7(b), shown as the dots above the original 

surface. The ability of filtration on non-uniform samples can be useful in coordinate 

measurement for freeform surfaces whereby CMMs may sample the surface 

adaptively according to local curvatures of the surface. 
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(a) 

 

 
 (b) 

Figure 7.7 Morphological closing filter on the non-uniform sampled surface: (a) The 

original surface with the non-uniform sampled points; (b) The original surface with 

the closing envelope points 

 

7.3 Roundness filtration 

Having presented the application of morphological filters to open surfaces, it is 

interesting to examine if they could be applied to closed surfaces. Unlike open 

profiles measured on planar surfaces, roundness profiles, such as those obtained using 

a rotating-spindle stationary probe roundness instrument, are closed profiles in shape. 

The roundness data should also be partitioned into different wavelength regimes to 

better understand process parameters and functional performance (Muralikrishnan & 

Raja 2009). 

Conventionally, the data measured by roundness instruments are radius 

suppressed, which means the data only reflects the radial deviation while is insensitive 
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to the radius itself. In such a situation, the Gaussian filter and the spline filter have 

been successfully employed to decompose roundness data (Krystek 1996b; Zeng et al. 

2011b). However there is no literature showing that morphological filters can be 

applied for roundness filtration, even though theoretically it is possible. They should 

work on the unsuppressed roundness profiles, which means the component’s radius 

and radius deviations are compounded together. Both the state of art roundness 

instruments and the Coordinate Measurement Machine (CMM) can provide such kind 

of data. 

Using a disk with suitable size and rolling it over the roundness profile, the 

resulting boundary profile formed by the rolling disk is the morphological envelope. 

The naive algorithm was developed on the pre-requisite that surfaces are assumed to 

be open and planar and it cannot be extended to closed surfaces. Nevertheless the 

proposed alpha shape method can solve this limitation and is suitable for roundness 

filtration in that it does not need to take care of the joint portion of the start and end of 

the roundness data, as is requested by the motif combination method and the modified 

Graham scan method. 

The procedures of using the alpha shape method to compute morphological 

envelopes for roundness data is listed as following: 

1. Perform the Delaunay triangulation of the roundness data as Figure 7.8 illustrates. 
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Figure 7.8 The Delaunay triangulation of roundness data 
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2. Extract the alpha shape boundary facets in terming of the given radius. See Figure 

7.9. 

 

  0.5

  1

  1.5

  2

  2.5

30

210

60

240

90

270

120

300

150

330

180 0

 

Figure 7.9 The extraction of alpha shape boundary facets of the roundness data 

 

3. The closing envelope is determined by the external facets while the opening 

envelope depends on the internal facets. The ordinates of the envelope are 

obtained by interpolating points on the arcs determined by these facets. Figure 

7.10 presents the closing envelope resulted from the external facets. 
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Figure 7.10 The closing envelope of the roundness data 
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Figure 7.11 presents an example of applying the morphological alternating 

symmetrical filter (closing followed by opening) on a roundness profile measured 

from a cylinder part by a CMM. The cylinder is about 10 mm in radius and the 

roundness data is filtered with a disk of radius 1 mm. It should be noticed that for 

convenience of visualization both the roundness profile and the morphological 

envelope are radius suppressed (reduced by 9 mm). 
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Figure 7.11 The morphological envelope obtained by the alternating symmetrical 

filter with disk radius 1 mm (Part radius suppressed) 

7.4 Evaluation of hip replacement taper junctions 

In hip replacement the introduction of modular large head metal-on-metal 

(LHMoM) hips promised low wear rates and reduce chances of dislocation couple 

with an increased range of motion compared to the conventional metal-on-metal hips. 

The clinical experience of the use of LHMoM hip replacements shows that they 

exhibit a significantly higher revision rate compared to other types of implant, at 5 

years the revision rate is 7.8% compared to 6.3% for hip resurfacings and 2% for 

conventional cemented implants (Medical Device Alert 2010).  The difference in 

revision rate between resurfacings and LHMoM hips has been attributed to the 

neck/taper junction (Bolland et al. 2011), thus the specification and measurement of 

this area of the component is key to the understanding of the operation of the implant 

and the failure mechanisms at this interface. 
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The interlocking male taper surface that mates with the femoral head female 

counterpart has a structured micro-threaded surface, see Figure 7.12. The specification 

of such surfaces is not well understood but has been shown to be important as possible 

corrosion and wear at this interface have been identified as a possible source of debris 

that could cause tissue reaction and progress to implant failure. Analysis of this 

structured conical surface requires the extraction and examination of the conical form 

and contact. In this example vertical measurements are performed axially relative to 

the aligned component axis such that the outputted value of profile straightness can 

then be used as a measure of conical form. 

 

  
Figure 7.12 Total hip replacement femoral stem with highlighted micro-threaded 

taper surface 

 

The combined effect of form and roughness has long been recognised in the 

measurement of the form of machined rough surfaces (Radhakrishnan 1970).  The 

effect of the surface structure on the resulting form value can be disproportionate, thus 

the size of the probe relative to texture spacing has to be large (Whitehouse 1994; 

Reason 1966). Thus current industry practice in the measurement of hip stem tapers is 

to attempt to perform this task through use of mechanical filtering, by using a large 

diameter ruby stylus on a CMM.  However, this is largely performed on a trial and 

error basis and makes no account of how much useful data is being discounted or 

erroneous data included through the bridging of surface contact points. Furthermore 

the use of such a large stylus method is suboptimal as the required component 

accuracy is on the limit of that of the CMM (< 1µm). This coupled with the 

difficulties in locating data points when using a prohibitively large measurement 

stylus means that this method is far from ideal. 

Aiming to the deficits of the mechanical filtering by traversing the stylus on 

CMM, the morphological method is developed to improve measurement accuracy and 

to extract the contact points. To achieve this, a number of new hip replacement 
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femoral stems were measured, a series of linear measurements are performed on each 

component, axially along the neck taper. The measurements were performed using a 

Talyrond 365 roundness machine (Taylor Hobson, UK) with a 5 µm diamond stylus. 

Figure 7.13 presents such an example profile with sampling length 8 mm and 

sampling interval 0.25 µm. For convenience of visualization, the profile was first 

translated and rotated by the angle of the least square line of the profile. See Figure 

7.14. Afterwards, the morphological closing filter is applied to the rotated data with 

disk radius 5 mm. The contact points are extracted from the texture imposed by the 

presence of the micro-threaded surface profile. Finally the form error of the 

straightness of the profile was calculated by applying the minimum zone method 

(Venkaiah & Shunmugam 2007) to the contact point set. The obtained straightness is 

1.43 µm in the example. 
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Figure 7.13 Surface profile measured along the neck taper 

 

0 1 2 3 4 5 6 7 8
-10

-5

0

5

10

x / mm

H
e
ig

h
t 
/ µ

m

 

 

Surface profile Contact points Minimum zone

 
Figure 7.14 The extracted contact points and the minimum zone 

 

The morphological filtering method searching the contact points allows for the 

optimization of mechanical traversing process by the determination of what 

equivalent stylus size would be required to perform this task. The use of a roundness 
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machine and morphological filter allows for data to be captured at a higher density 

and accuracy (Gauge resolution ~30 nm) with a greater level of control in the 

extraction of the true envelope profile. 

 

7.5 Summary 

This chapter presented four case studies. The proposed areal morphological 

methods are applied to the extraction of topographical features from engineer 

surfaces. They overcome the shortcomings of traditional algorithms, such as the 

restriction of the size of structuring elements and end distortions to the extraction of 

topographical features. A series of surfaces from the bioengineering industry and the 

weapon industry were analyzed. The experimental results show that topographical 

features are successfully extracted, enabling further functional analysis to the 

components. Afterwards the morphological filtration is applied to two freeform 

surfaces and a non-uniform sampled surface. These capabilities will be useful in 

coordinate measurement of freeform surfaces, where adaptive sampling might be 

required. Following that, the morphological filter is applied in roundness filtration. 

Finally the morphological method searching contact points is employed to evaluate 

the underlying form of the textured surface of hip replacement taper junction. In 

industry the evaluation is done by traversing the surface with a large diameter ruby 

stylus on a CMM, which is neither stable nor precise. The use of surface texture 

instrument and the proposed morphological method guarantees the precision of 

measurement and accuracy of evaluation and allows for more accurate specification of 

component form which has been shown to be of prime importance to component 

performance. 
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8. CONCLUSIONS AND FUTURE WORK 
 

8.1 Conclusions 

In response to the emergence of advanced surfaces produced by modern 

manufacturing technologies, efficient and competent supporting algorithms for 

morphological filters are required. The aim of this thesis is to investigate and develop 

efficient discrete algorithms for morphological filtration on modern surfaces including 

freeform surfaces, nonuniform sampled surfaces and closed surfaces, and explore 

their applications in the field of surface metrology and dimensional metrology.  

The research work accomplished in this thesis is listed below. 

1. The literature review is conducted mainly in the field of morphological filters for 

geometrical metrology. Compared to the mean-line filtering techniques, such as 

the Gaussian filter, morphological filters are more relevant to geometrical 

properties of surfaces and suitable for the prediction of contact related functions. 

Although morphological filters are useful and generally accepted, the 

conventional implementation has a number of fatal drawbacks. The naive 

algorithm is time-consuming, especially for large datasets and large structuring 

elements and it does not support non-uniform sampled surfaces and freeform 

surfaces. The motif combination algorithm, although an efficient method for 

profile data, is hard to be extended to areal data. 

2. A novel approach based on the alpha shape is proposed with the merits that 

enables arbitrary large ball radii and applies to freeform surfaces, non-uniform 

sampled surfaces and closed surfaces. The proposed approach utilizes the 

theoretical link between the alpha hull and the morphological closing and opening 

operations. A practical algorithm has been developed that corrects possible 

singularities caused by data spikes and reduces the amount of computation for 

open surfaces/profiles. The proposed alpha shape method is dependent on the 

Delaunay triangulation, bringing in an additional merit that the triangulation data 

is reusable for the computation of multiple radius attempts, saving a great deal of 

computation time. The performance bottleneck due to the costly 3D Delaunay 

triangulation on large areal datasets is solved by the divide-and-conquer method. 
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3. Aiming to overcome the limitations of the alpha shape method that the structuring 

element is restricted to be circular and the computation relies on the Delaunay 

triangulation, a novel method is proposed by searching contact points on the 

surface. The formal definition of the contact point is presented and a set of 

associated propositions and comments are proposed and mathematically proved 

based on alpha shape theory. With these propositions and comments, a recursive 

algorithm for morphological filters has been developed for both profile data and 

areal data. The proposed algorithm does not require the Delaunay triangulation 

and is applicable for both circular and flat structuring elements. Meanwhile it 

retains the merits of the alpha shape method. 

4. The naive algorithm is a typical image processing method. We introduced 

computational geometry techniques into the computation of morphological filters 

by correlating the convex hull and morphological envelopes. Viewing the convex 

hull as a special morphological envelope, the Graham scan algorithm, originally 

developed for the convex hull, is modified to compute morphological profile 

envelopes, which achieves an excellent performance. 

5. The three proposed methods, the alpha shape algorithm, the recursive algorithm 

and the modified Graham scan algorithm, along with the two traditional methods, 

the naive algorithm and the motif combination algorithm have been compared 

and analyzed in four aspects: algorithm verification, algorithm analysis, 

performance evaluation and areal extension. By looking into these aspects, the 

merits and shortcomings of these algorithms are evaluated and compared. 

6. Morphological filters have end effects on the end regions of open surfaces in a 

similar manner to the mean-line based filters. However they differ in their 

essences. In comparison to end effects of the Gaussian filter which is caused by 

the convolution operation, end effects of morphological filters are related to the 

geometrical property of the boundary regions of the surface. Four methods are 

proposed to correct end effects of morphological filters, namely infinity padding, 

symmetrical reflection (point or line style), polynomial extrapolation and linear 

prediction. Contact points could be employed in the computation to improve the 

performance. These methods are further analyzed and discussed to derive their 

advantages and disadvantages. 
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7. Case studies are presented to demonstrate the capabilities of the proposed 

algorithms. The proposed areal algorithms for morphological filters (the alpha 

shape algorithm and the recursive algorithm) are utilized to extract the 

topographical features from engineering surfaces, including surfaces measured 

from a tooth implant, a femoral component of artificial knee joint and a bullet. 

These methods are also applied to the filtration of freeform and non-uniform 

sampled surfaces. These abilities could be useful in coordinate measurement for 

freeform surfaces where surfaces might be adaptively sampled. The alpha shape 

algorithm can be modified in order to apply morphological filters to the 

roundness filtration, whereas the naive algorithm is not qualified for this task. The 

contact points are employed to evaluate the underlying form of the textured 

surface of hip replacement taper junction. The use of surface texture instrument 

and the proposed morphological method guarantees the precision of measurement 

and accuracy of evaluation and allows for more accurate specification of 

component form. 

To sum up, the three proposed algorithms provide morphological filters with the 

capabilities in dealing with modern surfaces, which match the current trend of the 

development of production technologies. The alpha shape algorithm is more robust 

for surfaces with complex shapes. The divide and conquer method solved the 

performance bottleneck of the alpha shape algorithm when dealing with surfaces 

larger than 1024 × 1024 points in size. In comparison, the recursive method is novel 

and achieved better performance. The modified Graham-scan algorithm with high 

efficiency is very suited for filtering profiles and capturing contact points with 

excellent performance. The end effects of morphological filters are determined by 

geometrical properties of boundary regions of open surfaces and structuring elements. 

Except for open surface filtration, morphological methods have more extensive 

applications in geometrical metrology, including topographical feature extraction, 

roundness filtration and contact function evaluation. 

8.2 Future work 

In this thesis, three novel discrete algorithms, i.e. the alpha shape algorithm, the 

recursive algorithm and the modified Graham scan algorithm, have been proposed and 

developed. In comparison to the traditional methods, they are more competent in 
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processing modern complex surfaces with better performance. Case studies have 

demonstrated the feasibility and superiority of these proposed methods. There is, 

however, a key research issue for future work. 

The recursive algorithm computes the morphological envelope by searching 

contact points. It achieves better performance than the alpha shape method, especially 

when ball radii are large. However it needs to be further optimized in two aspects: 

(1) Improve its performance. Currently it employs recursion for the partition process. 

Recursion is implemented as a method to call itself to solve sub-tasks. As the 

recursion level goes deep, the manipulation and maintenance of stack increase 

drastically and it may invoke the risk of stack overflow. In practical programming, 

recursion is usually replaced by iteration.  

(2) Improve its robustness against possible arbitrary geometrical features on surfaces. 

State-of-the-art manufacturing technologies (e.g. the 3D printing) and advanced 

measurement instruments (e.g. tomography) have enabled the production and 

inspection of high-added-value components with real 3D complex geometrical 

structures. The application of morphological methods on this kind of surfaces is 

challenging. The recursive algorithm therefore should to be enhanced in dealing 

with this kind of surfaces. 
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