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Abstract

Transmission Control Protocol (TCP) is considered one of the most important pro-

tocols in the Internet. An important mechanism in TCP is the congestion control

mechanism which controls TCP sending rate and makes TCP react to congestion

signals. Nowadays in heterogeneous networks, TCP may work in networks with some

links that have lossy nature (wireless networks for example). TCP treats all packet

loss as if they were due to congestion. Consequently, when used in networks that

have lossy links, TCP reduces sending rate aggressively when there are transmission

(non-congestion) errors in an uncongested network.

One solution to the problem is to discriminate between errors; to deal with con-

gestion errors by reducing TCP sending rate and use other actions for transmission

errors. In this work we investigate the problem and propose a solution using an

end-to-end error discriminator. The error discriminator will improve the current

congestion window mechanism in TCP and decide when to cut and how much to

cut the congestion window.

We have identified three areas where TCP interacts with drops: congestion win-

dow update mechanism, retransmission mechanism and timeout mechanism. All of

these mechanisms are part of the TCP congestion control mechanism. We propose

changes to each of these mechanisms in order to allow TCP to cope with transmission

errors. We propose a new TCP congestion window action (CWA) for transmission
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errors by delaying the window cut decision until TCP receives all duplicate acknowl-

edgments for a given window of data (packets in flight). This will give TCP a clear

image about the number of drops from this window. The congestion window size is

then reduced only by number of dropped packets. Also, we propose a safety mech-

anism to prevent this algorithm from causing congestion to the network by using

an extra congestion window threshold (tthresh) in order to save the safe area where

there are no drops of any kind. The second algorithm is a new retransmission ac-

tion to deal with multiple drops from the same window. This multiple drops action

(MDA) will prevent TCP from falling into consecutive timeout events by resending

all dropped packets from the same window. A third algorithm is used to calculate

a new back-off policy for TCP retransmission timeout based on the network’s avail-

able bandwidth. This new retransmission timeout action (RTA) helps relating the

length of the timeout event with current network conditions, especially with heavy

transmission error rates.

The three algorithms have been combined and incorporated into a delay based

error discriminator. The improvement of the new algorithm is measured along with

the impact on the network in terms of congestion drop rate, end-to-end delay, average

queue size and fairness of sharing the bottleneck bandwidth. The results show that

the proposed error discriminator along with the new actions toward transmission

errors has increased the performance of TCP. At the same time it has reduced the

load on the network compared to existing error discriminators. Also, the proposed

error discriminator has managed to deliver excellent fairness values for sharing the

bottleneck bandwidth.

Finally improvements to the basic error discriminator have been proposed by

using the multiple drops action (MDA) for both transmission and congestion errors.

The results showed improvements in the performance as well as decreases in the
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congestion loss rates when compared to a similar error discriminator.
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Chapter 1

Introduction

1.1 Introduction

The Internet today is a large set of interconnected heterogeneous networks [2]. Since

it was first introduced in the late sixties as ARPANET [2] (Advanced Research

Project Agency) many new network technologies and communication environments

have been integrated into the Internet infrastructure. One of the main improvements

is the introduction of wireless and mobile networks which have been connected to

existing wired networks adding to the heterogeneity of the Internet. The introduc-

tion of wireless links has brought with it many new challenges among them the high

rate of bit errors in wireless links compared to wired links [3].

TCP (Transmission Control Protocol [4]) is one of the most used transport pro-

tocols in the Internet [5]. Many widely used applications use TCP for sending data

like File Transfer Protocol [6] (FTP), Telnet [7] and Web-HTTP [8] connections.

TCP is a connection oriented end-to-end transmission protocol. It lies in the

transport layer of the OSI [9] reference model (Open System Interconnection refer-

ence model) and it is usually used to provide a reliable way of delivering data by
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using acknowledgments for sent packets.

An important mechanism in TCP is the congestion control mechanism [10, 11].

It controls the TCP sending rate and provides end-to-end congestion avoidance and

control. However, TCP congestion control was designed under the assumption that

congestion is the main cause of packet drops and that drops due to link errors

happen rarely [10]. This assumption was acceptable when the Internet was first

introduced in the sixties because of the small scale of computer networks and when

most networks used wired links [2] which usually have small error rates. In fact

Jacobson [10] in 1988 indicated that, in most networks, drops for reasons other than

congestion are far less than 1%.

However, today’s networks, specially the Internet, are of big scale and use many

new unreliable channels which may suffer from errors unrelated to congestion. For

example wireless, mobile and satellite networks may drop packet for reasons other

than congestion, like bad weather conditions and natural or artificial obstructions [3].

TCP was found to perform poorly over heterogeneous networks when transmis-

sion (non-congestion) errors exist [5, 12–19]. This is due to the fact that TCP is

unable to distinguish between congestion errors and transmission errors caused by

link failure and hence TCP reduces its sending rate for all errors, implicitly assuming

congestion exists in the connection path.

In our work we identify mainly three areas where TCP interacts with errors:

the congestion window mechanism, retransmission mechanism and retransmission

timeout mechanism. We study the effect of transmission errors on these mechanisms

and propose new algorithms (called transmission window actions) which can make

TCP cope with transmission errors.

In practice we cannot use the transmission window actions directly in TCP since

congestion and transmission drops may coexist. One solution is to discriminate
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between errors and deal with each error type differently. An error discriminator

will be added to TCP to replace the congestion control mechanism and to decide

on when and how to cut the sending rate. For that we use an end-to-end error

discriminator based on the packet round trip delay. The new transmission window

actions are added to the error discriminator and the impact on the network and on

the other flows are measured.

The resulted techniques are fully end-to-end techniques that require no changes

to the network or to the receivers (clients) and only the sender (server) TCP imple-

mentation needs to be changed. This will reduce significantly the scale of changes

required to adopt the new techniques in today’s Internet .

In this work we will refer to packet drops caused by congestion as congestion drops

and drops caused by link errors as transmission/non-congestion drops or wireless

drops since wireless links are important source for transmission drops in today’s

networks.

Also when we mention TCP during this thesis we mean Reno [11, 20] version

unless stated otherwise. The Reno version has been chosen to be base of our work

because it is considered the commonly used TCP version in the Internet [21,22]. Also

TCP-Reno implements the standard TCP requirements as presented in [4,20,23,24].

1.2 Motivation

The aim of this work is to participate in the efforts in progress to improve the

performance of TCP protocol over heterogeneous networks where transmission drops

may occur frequently .

Many studies like [5, 12–19] have shown that the performance of TCP degrades

noticeably when transmission errors occur because TCP cannot distinguish between
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congestion drops and transmission drops. This confusion has caused TCP to think

that all errors are caused by congestion and hence continuously slowdown and re-

duces its performance in order to reduce the assumed congestion in the connection

path. During this work we investigate the behaviour of TCP over unreliable links

and we advise solutions that can resolve the problem.

The motivation for this work is that it deals with a protocol that is considered

as the standard transport protocol in the Internet [5] since it is used to deliver huge

amount of the Internet content. For example, popular applications like FTP and

Internet browsers (HTTP) use TCP as the main transport carrier.

Moreover, with the increase of using mobile networks and the need to access

Internet content, which usually is delivered over TCP using mobile devices, the

issues related to TCP became of interest to the mobile and wireless networks research

community specially TCP performance over wireless networks.

Although many TCP performance issues have been researched and solutions have

been proposed, the introduction of new network channels like satellite and wireless

links and the increased use of TCP to carry data over such channels with higher

error rates compared with wired links, all of this has increased the need to study

and solve the potential problem when TCP works in such conditions. Because of

that TCP became under heavy revision; see for example excellent surveys in [22,25].

1.3 Aims and Objectives

Based on the motivations mentioned earlier the main aim of this work is to improve

TCP performance over heterogeneous networks. This main aim can be divided into

following smaller aims:

• To develop a new action toward transmission drops which can improve TCP
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performance and at the same time prevent causing more congestion because

of the error discriminator mismatch between error types.

• To propose an end-to-end solution which requires minimum changes to TCP

and no changes to the network by using a delay based error discrimination

which will allow TCP to implement different actions for errors occurring during

network congestion and for transmission errors.

In order to achieve these aims we have to achieve the following objectives:

• To conduct a comprehensive literature review in order to understand how

TCP works, which mechanisms are affected by packet drops and what different

solutions have been proposed to overcome the problem.

• To investigate the end-to-end solutions specially error discriminators and to

understand how they work and how they react to transmission errors.

• To develop an end-to-end reaction toward transmission errors which increases

TCP performance and at the same time apply gentle action on the network.

• To develop a simulation environment that will be used to simulate TCP be-

haviour when transmission errors exist and to use this simulator to evaluate the

impact of the proposed transmission drops algorithms on TCP performance.

• To develop an end-to-end error discriminator based on packet delay informa-

tion to discriminate between congestion and transmission errors.

• To add the proposed transmission drops algorithms to the error discriminator

and to evaluate the performance of the new technique and its impact on the

network and other TCP connections.
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1.4 Original Contributions

Primary contributions:

• Proposing a three stage TCP action for transmission drops over lossy net-

works (congestion window action, multiple drops retransmission action and

retransmission timeout action):

– Congestion Window Action (CWA): We present a new TCP congestion

window cut algorithm for transmission errors. TCP cuts the congestion

window to half of the original size after receiving three duplicate ac-

knowledgments which makes TCP performance decrease unnecessarily if

the drops were not caused by congestion. Instead of cutting the conges-

tion window after receiving three duplicate acknowledgments we delay

the cut decision until TCP receives all the duplicate acknowledgments

for a given window of data (packets in flight). This will give TCP a clear

image of the number of drops from this window. Then congestion window

size is reduced only by the number of dropped packets. The CWA can be

used by TCP error discriminators to create more gentle reaction toward

transmission errors. Also we propose a safety mechanism to prevent this

algorithm from causing congestion to the network by using extra conges-

tion window threshold tthresh to save the safe area where there are no

drops of any kind.

– Multiple Drops retransmission Action (MDA): TCP cannot deal with

multiple drops from the same window of data and when a burst of drops

occurs, either because of congestion or transmission errors, TCP reduces

its sending rate significantly and waits for retransmission timeout to re-

cover the lost packets. However, due to the bursty nature of transmission
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drops from sources like wireless networks [3,26] which can lead to multiple

packet drops from the same window, in our work we present a multiple

drops action which can retransmit multiple drops from the same window

of data.

– Retransmission Timeout Action (RTA): TCP uses an exponential back-

off policy in response to multiple drops of same packet in case of heavy

error rates which does not consider the actual network conditions (if the

network is congested or not). In our work we have developed a back-

off policy that makes use of the available bandwidth to compute a new

back-off level based on the link available capacity.

All these actions are combined to form a complete reaction to transmission

errors we call them transmission window actions (TWA).

• Developing and testing an end-to-end error discriminator based on packet

round trip time measurement and proper transmission window actions. This

error discriminator is sender based so it requires changes only to one side

(server side) of the connection and it is entirely end-to-end so it does not

require any change to the network which make it easily deployed in real net-

works.

• Improving the performance of the proposed error discriminator by using MDA

for both transmission and congestion drops.

• A simulation environment has been implemented to assess the impact of the

new proposal on the performance of TCP by comparing TCP-Reno with a

TCP version modified to include the proposed error discriminator along with

the new transmission window actions. Also the impact of the proposed scheme
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on the network and other TCP flows has bean analyzed and compared with

the impact of exiting error discriminators.

• We proposed and tested an analytical model to approximate TCP performance

when the congestion window cut factor is based on the error rate instead of a

fixed factor.

1.5 Thesis Outline

The remaining parts of this thesis are organized as follows:

In Chapter 2 we start by explaining TCP and how it works. We give a description

of TCP congestion control mechanism and its main components, namely slow start,

congestion avoidance, retransmission mechanism and timeout mechanism. Then

TCP reaction to transmission drops is investigated.

Chapter 3 describes different solutions to the problem presented in Chapter 2.

The solutions are categorized into three categories: end-to-end, split connection and

link layer solutions. An extended explanation of the end-to-end solutions is given.

In Chapter 4 we present three proposals to change TCP congestion control mech-

anism reaction to transmission drops. First a proposal to change the way TCP cuts

the congestion window after a transmission error has occurred (called the congestion

window action - CWA). Second a new mechanism to retransmit multiple drops from

the same window of data (called multiple drops action - MDA). Finally we describe

a new mechanism to calculate TCP retransmission timeout back-off level based on

the available bandwidth (called retransmission timeout action - RTA). Each mech-

anism is evaluated alone to show how it can improve TCP performance in presence

of transmission errors. The evaluation of these mechanisms combined is left to the

next chapter.
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Chapter 5 explains in detail the simulation model we used, the topology, the

experiment settings and parameters, how we generate the errors, what kind of traffic

we used in our experiments, how we validate our simulation and the use of confidence

intervals and relative precision to decide how many runs of each experiment we need.

After that we add the three algorithms presented in Chapter 4 CWA, MDA and the

RTA to TCP and call them the transmission window actions (TWA) and we use the

simulation model to evaluate them.

In Chapter 6 we present the design and evaluation of an end-to-end error dis-

criminator that uses the packet delay to discriminate between error types and uses

the proposed transmission window actions (TWA) in case of transmission errors.

The impact of the new actions on the error discriminator performance and on the

network is measured and evaluated. Also in this chapter we present an analyti-

cal model to approximate the performance of the error discriminator with the new

transmission window actions.

Chapter 7 describes improvements to the basic algorithm which lead to new

results. The main improvement is the use of the proposed multiple drops action

(MDA) in case of congestion as well as transmission errors. The resulting error

discriminator is called TCP-RTTM and is tested under different bandwidth, delay

values and error burst sizes.

In Chapter 8 we conclude the thesis by explaining the main work we did and the

possible areas for future work.
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Chapter 2

Transmission Control Protocol

and TCP Congestion Control

2.1 Introduction

In this chapter we will discuss the problem TCP performance faces when operat-

ing over heterogeneous networks where unreliable links can exist. We start by an

overview of TCP [4] and how it works. Then we talk about TCP congestion con-

trol mechanism [10] and its relation to the TCP performance degradation over lossy

links.

2.2 Transmission Control Protocol

TCP lies at the heart of two of the most widely used network architectures, the

OSI [9] and the TCP/IP [27]reference models. It is located in the Transport layer

in both models see figure 2.1 . The main aim of the transport layer is to give an

end-to-end data transport service to the upper layers and also to act in a way so
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Figure 2.1: TCP/IP and OSI Reference models. Source [2]

that the upper layers can function normally even if there are changes in lower layers

like hardware upgrade for example [2].

Two types of services are provided by the transport layer. One is based on the

simple idea of sending messages without any guarantee of whether it will arrive

at the destination or not and without any ordering of the sent messages [2]. This

type of service is useful if loosing some messages will not affect the validity of the

transmission like the case of video and audio streaming where some packets will not

affect the service, provided that the number of lost packets is in an acceptable range.

Also in this type of service (i.e. video and audio), retransmission of missing data is

not acceptable since it is a real time service where having most of the packets arrive

on time is much more important than retransmitting some packets in the middle.

The transport layer implements these types of services using the User Datagram
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Protocol, widely known as UDP [28]. UDP does not provide guarantees in terms

of message delivery and correctness and it does not provide ordering. Moreover,

UDP is suitable for applications that provide their own sequencing and flow control

mechanisms [2].

The second type of service provided by the transport layer is a guaranteed ser-

vice. Here the correctness and the ordering of delivered data are guaranteed. The

implementation of this service is done by TCP [2].

Transmission Control Protocol [4], widely known as TCP, is a transport layer

protocol to transport data through the network in a reliable and error free mode.

It delivers messages from one end to another and makes sure that all packets have

been delivered uncorrupted and in order. TCP is a connection oriented protocol, so,

before TCP starts transmitting data between two ends, it establishes an agreement

of how the connection should be operated. This is done by exchanging control

packets before the real data is transmitted [29] [2]. An analogy to this is when we

use the analogue phone and we need to dial the number before we can start talking.

Because of the nature of the IP routing used in the Internet, not all packets will

follow the same path from source to destination. This fact may cause packets to be

reordered so some packets may be received out of order. TCP should be prepared

to accept out of order packets and to expect delays in some packets. Normally TCP

will assume a time limit for each packet to reach a destination and the packet will

be considered lost after this time limit [29].

Other important functions of TCP are flow control and congestion control. In

flow control, TCP makes sure that there is a coordination between the sender and

the receiver so the sender will not send more than the capacity of the receiver buffer.

TCP should be able to coordinate the source and destination, so the source will not

overflow the destination buffer. To achieve this the receiver tells the sender its
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maximum buffer size during the connection establishment phase [29].

In congestion control, TCP detects congestion by using packet drops as a sign

of congestion in the network and then it tries to resolve congestion by reducing the

sender’s transmission rate to prevent creating permanent congestion. TCP should

have some awareness of the link status in order to avoid injecting the link with more

data than its capacity. Congestion control algorithms [10] [11] are used for this

purpose [29].

Moreover, in order for TCP to operate in an environment like the Internet,

TCP should be able to handle connections with variable round trip times (Round

trip time, RTT, is the time from a packet is sent until an acknowledgment is re-

ceived) [29]. Since, TCP is supposed to be able to connect any two hosts in the

Internet, no matter how far apart they are, it should be able to accept different

round trip times for different connections and even different round trip times for the

same connection. So it should be able to adjust its timeout mechanism to adopt

with the variation in round trip times [29]. Later in this chapter we will show how

TCP is able to handle variations in RTT.

These are some issues about TCP functionality. Next we explore in more detail

some important mechanisms in TCP.

2.3 Sliding Window (Congestion Window)

A sliding window algorithm is at the heart of reliability and congestion avoidance

services provided by TCP. An understanding of the sliding window algorithm used

in TCP will help to understand the congestion avoidance algorithm and how TCP

provides reliability and ordering.

In the TCP sliding window algorithm the sender maintains a window called

13
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Congestion Window or in short cwnd and gives a sequence number for each packet

in this window. cwnd determines how many packets can be sent before receiving

any acknowledgment. This way the cwnd controls TCP sending rate (the bigger the

cwnd the higher the sending rate and vice versa)

The sender keeps track of the last received acknowledgment and the last sent

packet. When the sender receives an acknowledgment it sends a new packet and

updates the last sent and last received variables . Also, the sender attaches a timer

with each sent packet. If the timer expires before receiving acknowledgment, the

packet can be resent [29].

On the other side, the receiver handles a window (a buffer) and three variables:

the window size, the sequence number of last packet received and the largest se-

quence number that can be accepted which is calculated by adding the buffer size

to the sequence number of last packet received [29]. When the receiver receives a

packet the packet sequence number should be bigger than the last received packet

sequence number and less than or equal to the largest sequence number that can

be accepted. If not then the packet is discarded because it is outside the receiver

window [29].

On the other hand, if the new packet lies inside the receiver window, the receiver

accepts the new packet and if the new packet is the next expected packet, then

it updates the last packet received variable and sends an acknowledgment for this

packet. However, sometimes the packet may arrive out of order; in this case the

receiver does not acknowledge the new packet. Instead it sends an acknowledgment

for the last in order received packet. This is called a duplicate acknowledgment.

For example, if the last packet received in order is 3 and we have received 5

and 6 before 4, then the receiver will send a duplicate acknowledgment carrying the

sequence number 3 to tell the sender that it is still waiting for packet 4. When
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packet 4 finally reaches the receiver, the receiver will issue an acknowledgment for

packet number 6 which will acknowledge all previous packets. On the other hand,

if packet 4 never reaches the receiver (i.e. lost in the path), the sender timer will

expire and it will send the packet again [29].

The main feature of this algorithm is that it controls the number of packets in

the network at any time by making the maximum number of packets the sender can

put in the network at one time equal to the window size and that the sender can

not deposit new packets in the network until it receives acknowledgments that the

old ones have been received (have left the network).

2.4 TCP Congestion Control

TCP applies five congestion control algorithms namely slow start, congestion avoid-

ance [10], retransmission mechanism (fast retransmission [11] and fast recovery [11])

and timeout mechanism [4]. The slow start and congestion avoidance algorithm,

were added to TCP in [23] and then a full description of the algorithms were first

documented for the Internet in [20]. After that, authors in [24, 30] specified all the

algorithms with more detail and they discussed more issues and concerns about situ-

ations where actions that should be taken by TCP after restarting ideal connections

and the requirements that the TCP receiver should guarantee in acknowledgments

(ACKs). Also they raised some security issues like the ability to attack a system that

runs TCP by forging duplicate acknowledgments or causing packets to be lost [24].

Throughout the thesis we will talk about each algorithm as required while fol-

lowing I will give a brief explanation of each algorithm.
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2.4.1 Slow Start

When TCP sends data it limits its sending rate to the minimum of its congestion

window size cwnd and the receiver buffer. However, it is found that if TCP starts

the connection by sending the whole window at once this may cause unnecessary

transient congestion and hence packet drops which will affect TCP performance

badly [10]. So when TCP starts sending for the first time or when it restarts a

broken connection it should send packets gradually.

The idea of the slow start mechanism is that instead of sending the whole window

at once the TCP starts by sending one packet and then increases the window size

exponentially until it reaches the maximum available window size (minimum of

sender window and receiver buffer). Slow start increases the congestion window

exponentially by doubling the congestion window size with each round trip time.

This is done by increasing the congestion window size by one packet for each new

acknowledgment [10].

Since slow start defines the initial behaviour of a TCP connections, one of its

aims is to discover the link capacity gradually by continually increasing the sending

rate until the link capacity is reached when drops occur. At this point TCP moves

to the next mechanism, congestion avoidance, which will handle the rest of the

connection life time. For this reason TCP defines a threshold called slow start

threshold (ssthresh) which defines the border between slow start and congestion

avoidance mode.

So TCP increases the cwnd exponentially until it reaches the ssthresh where it

switches to congestion avoidance mode as we will describe next.
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2.4.2 Congestion Avoidance

The congestion avoidance phase is the most important phase in the TCP life time

since it represents the equilibrium state of the connection life time. The equilibrium

state is defined as the state when a TCP sender puts a packet into the network as

another packet from the same connection leaves the network at the receiver [31].

Moreover, most of the effect of transmission errors will take place in this phase since

it is the longest phase.

When TCP starts sending data the congestion window starts to grow exponen-

tially during the slow start phase until a packet is dropped which indicates two

things: first that the link capacity has been reached, second that the congestion

avoidance phase has started. At this stage the TCP congestion avoidance mech-

anism takes control. The TCP congestion avoidance mechanism has mainly two

different and important jobs:

• One is to decide on the increase/decrease of the congestion window size (the

direction of the change).

• And another is to decide the value of the increase/decrease in the congestion

window (the amount of the change).

In order to decide the direction of the change TCP uses packet drops as a signal that

the congestion window should be decreased (downward direction) and the absence

of the drops, and hence receiving of new acknowledgment, as a signal that the

congestion window needs to be increased (upward direction).

TCP decides the amount of change (decrease/increase) based on the direction of

that change by using AIMD mechanism (Additive increase Multiplicative decrease)

[10]. TCP increases the congestion window linearly (Additive increase) by 1
window size

with each new acknowledgment received [24]. This is equivalent to increasing the
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Figure 2.2: Slow start and Congestion avoidance in presence of errors

congestion window by one packet each round trip time. In other words, TCP will

wait until the whole window is sent safely (i.e. without any drop) and then it

increases the window size by one packet.

However, if a drop occurred TCP takes this as an indication that the new window

exceeded the link capacity or that a new load has been introduced to the network

(for example new users start downloading FTP files). In this case TCP will reduce

congestion window size to half of its size before the drop occurred (multiplicative

decrease by factor if 0.5).

Figure 2.2 shows a typical TCP congestion widow behaviour (slow start and

congestion avoidance) in the presence of drops which cause timeouts and duplicate

acknowledgments. The y-axis represents the congestion window size in packets at

each round trip time. The numbers on the top of each curve are the values of the
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congestion window size before the errors occur and numbers on the bottom are the

size after TCP cuts the window.

The reason for choosing 0.5 as the cut factor in the case of duplicate acknowl-

edgments (DACKs) is presented in [10, P328]. The author argues that usually when

congestion happens that means a new connection has started and it usually will

use 50% of the network bandwidth and hence the available bandwidth is reduced

by 50% so TCP needs to reduce the window size by 50% to allow fair sharing of

the connection. This will reduce TCP performance in a multiplicative manner since

with each drop TCP multiplies the current window size by 0.5.

Other authors like [32] suggest to reduce the window size by other factors like

87.5% instead of 50%. However, TCP [23] has adopted the Jacobson [10] approach

by using 0.50 as the decrease factor.

The authors in [32] indicated that the aim of the AIMD mechanism is to achieve

two main objectives: first to achieve fairness among competing TCP flows. Second

to reach effective utilization of the bottleneck bandwidth. So using a multiplicative

decrease after drops will make the connections with bigger windows (i.e. bigger

share in the congestion) cut more data (for example a connection with window size

of 100 packets will cut 50 packets while a connection with 10 packets window will

cut 5 packets only) which will help to resolve the congestion faster and will increase

fairness among competing flows. Also multiplicative decrease will make sources

to slow down quickly when a congestion occurs in order to give congested routers

enough space to clear the congestion [33].

On the other hand, additive increase helps TCP to explore the link capacity in a

gentle way in order to avoid oscillation which can occur if aggressive multiplicative

increase is used [33]. However, the additive increase will ensure linear increase in

sending rate for all connections that have same round trip time.
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Figure 2.3: Packet Drop

It has been shown in works like [34] that the use of additive increase/multiplica-

tive decrease behaviour in TCP will result in fair share of the network resources and

less oscillation in TCP throughput [34].

2.4.3 Drop Detection

TCP uses two ways to detect drops, duplicate acknowledgment and retransmission

timeout. A duplicate acknowledgment is used to identify that a packet is missing.

For example in figure 2.3 a TCP sender sends six packets to a TCP receiver and

packet number three has been dropped by a congested router in the connection

path. When the receiver receives the first two packets it sends acknowledgments

for them (packets one and two). However packet three is missing and packet four

is received instead. When the receiver receives an out of order packet (i.e. packet
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four) it will not acknowledge it but instead it will resend the acknowledgment of the

last in order packet which is packet two. This acknowledgment is called duplicate

acknowledgment (DACK).

The receiver will continue to send duplicate acknowledgments with every out

of order packet (packets five and six in the figure) until it receives the required

packet (packet three). The sender resends the lost packet eventually (after the third

DACK as we see in figure 2.3). When the receiver receives packet three it will

acknowledge all received packets by sending an acknowledgment for the last packet

received in order (packet six) which indicates that it has received all packets up to

packet number six correctly.

As we said the TCP sender waits until it receives three consecutive duplicate

acknowledgments before deciding that there is a drop and resending the lost packet.

The number three has been chosen by TCP congestion control designers [11] and has

been accepted as a standard in most TCP versions. However, choosing the number

of duplicate acknowledgments for deciding drops will depend heavily on the network

topology and routing techniques used in the network and it is out of the scope of

our thesis.

Another way TCP uses to detect drops is the timeout mechanism which will be

explained next.

2.4.4 Timeout Mechanism

Retransmission timeout (RTO) for TCP was first described in RFC 793 by Postel [4,

P41]. RTO is one of the first methods defined to recover from losses in TCP due

to packet corruption or network congestion. It works as follows: when TCP sends

a packet it sets a local timer for this packet and if the timer expires before an

acknowledgment is received for this packet then TCP assumes the packet is lost.
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TCP then resends the packet and sets the congestion window to the minimum

allowed size (one segment).

However, calculating an accurate timeout is important because too long timeouts

will reduce TCP performance because TCP will wait long periods before restarting

to send again and, too short timeouts may increase the congestion in the network

because the network will not have enough time to resolve the congestion.

Moreover, in order for TCP to be able to work in environments with delay vari-

ations, TCP uses RTT to calculate the retransmission timeout. Postel [4] explained

how to calculate retransmission timeout based on the weighted average of the RTT

readings as follows:

AvgRTT = α× AvgRTT + (1− α)× RTT (2.1)

The weighted average is used to filter sudden fluctuations in the RTT and to

get the long term average. TCP specification recommends α to be between 0.8 and

0.9 [35] [29].

RTO takes the value of the average RTT providing that it is between an upper

limit of 1 minute and a lower limit of 1 second as presented in equation 2.2. β is a

constant value used as an estimation of RTT variation (fixed to 2) [4].

RTO = min (1mnt, max [βAvgRTT, 1sec]) (2.2)

However, using constants like β and one minute/second limits was found not

suitable for high speed and large networks which may suffer from delays either

higher or lower than one minute/second limit [23]. So, Jacobson in [10] proposed to

use a dynamic calculation of RTT variations as follows:
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RTT Var = θ × RTT Var + (1− θ) | RTT− AvgRTT | (2.3)

Where θ = 0.75 as suggested in [10]. The one minute/second limit has been removed

from RTO calculation as following:

RTO = AvgRTT + 4× RTT Var (2.4)

So the RTO is now the average round trip time plus four times the average round

trip time variation. The choice of 4 in equation 2.4 is based on results experienced

in real networks [29].

One problem during RTT sampling is the ambiguity that occurs when there is

retransmission (i.e does the acknowledgment belong to the original packet or the

retransmitted one). This problem is solved by Karn’s algorithm in [36] by simply

discarding any RTT reading during retransmission. The changes of Jacobson [10]

and Karn [36] have been added by Braden [23] as a must to be implemented in TCP.

Finally, Braden [23] discussed the implementation of RTO and he suggested two

variations. One is to use a retransmission queue to store all packets that have been

sent but not acknowledged yet and when a retransmission is required the packet

will be ready in the queue. Another option suggests not to use a retransmission

queue and instead to recreate each packet upon the resend request [23]. Clearly the

first option will ease the retransmission process but it will need more buffering and

processing power.

2.4.5 Retransmission Mechanism

As we said before, when TCP sends a packet it sets a timer for this packet. If no

acknowledgment is received before the timer is expired (i.e. retransmission timeout
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RTO occurred) the packet is sent again. However, the authors in [11] proposed a

faster way to recover a lost packet. Instead of waiting for the timer to expire, if

TCP receives enough duplicate acknowledgments (usually three DACKs) then we

can safely assume the packet is dropped and we can resend the packet without the

need to wait for the packet’s timer to expire. The sender then reduces its sending

rate in order to avoid increasing congestion.

So when the sender receives three duplicate acknowledgments it does the follow-

ing actions [20,24]:

• Slowdown the sending rate by reducing the congestion window size to half of

its size before the drop.

• Resends the lost packet.

• Reset retransmission timer in order to allow more time for the retransmitted

packet to reach the receiver before a timeout occurs.

• TCP waits for a new acknowledgment that acknowledges the resent packet

and all packets in flight at the same time.

• Also TCP increases the congestion window size by one segment for every du-

plicate acknowledgment received until a new acknowledgment is received. The

logic behind this is that since a duplicate acknowledgment tells us that one

packet (even if it is out of order) has been received by TCP-receiver and hence

it left the network then it is safe to put another packet in the network in its

place and hence TCP increases its congestion window with every duplicate

acknowledgment [20].

The first three actions are called fast retransmission. Third and forth actions are

called fast-recovery [11,20,24] and they are all part of the retransmission mechanism
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in TCP.

However, TCP can recover only one dropped packet per window of data [37]. If

more than one packet is dropped TCP will timeout and its performance will decrease

dramatically.

TCP cannot recover multiple drops because it exits retransmission mode (fast

retransmission/fast recovery) after any new acknowledgment. So if two or more

packets are dropped from the same window boundaries (i.e. multiple drops occur

from the same set of packets in flight) TCP resends the first one then directly

exits the retransmission mode after any new acknowledgment and this will prevent

resending the rest of the dropped packets.

However, TCP can deal with this problem using the retransmission timeout. So

since some packets are dropped but not yet acknowledged TCP will wait for their

acknowledgment which will not occur and so a retransmission timeout occurs and

then TCP will resend them again.

From that we can see that in the case of multiple packet drops the meaning of

the new acknowledgment has changed. TCP fast retransmission [11] assumes one

packet will be dropped per window and hence a new acknowledgment after packet

retransmission usually indicates that all packets have been received and hence it is

safe for TCP to exit retransmission mode. However, some times even if TCP receives

a new acknowledgment it may actually be an acknowledgment for part but not all

of the sent window. This acknowledgment is called a partial acknowledgment [37]

and TCP is not prepared to deal with it. So, if a burst of packets were dropped then

only the first packet will be treated by fast retransmission and the rest will trigger

timeouts.

However, although the timeout mechanism will guarantee resending of all

dropped packets it will also reduce the TCP congestion window (sending rate) to
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the minimum. Because of that it is desirable to avoid falling into timeout events by

resending all dropped packets as we will see later.

Figure 2.4 shows an example of this scenario. In this example packets 3 and

5 were dropped. The sender resends packet 3 after receiving 3 DACKs and then

a new acknowledgment (partial acknowledgment) is received. However TCP exits

fast retransmission even though packet 5 is dropped and not retransmitted and it

waits for a new acknowledgment for packet 5 which will not occur and eventually

will timeout. The timeout will trigger the retransmission of the dropped packet 5

and also unnecessary transmission of packets 6 and 7.

In chapter 4 we will propose a modification to TCP retransmission mechanism

in a way that allows TCP to resend all lost packets at the same time and reducing

unnecessary retransmissions as much as possible . This will help to improve TCP

performance specially with transmission errors where multiple packet drops can

occur for several reasons like mobile base station hand off or temporary signal fading

on wireless networks.

2.5 TCP Reaction to Transmission Drops

When talking about TCP performance over networks with lossy nature, most of the

literature is directed to wired-wireless, ad-hoc and mobile networks [25]. This is due

to the increase importance and usage of these type of networks and the fact that

they become an important part of today’s networks. Also this covers any network

with links of low quality and reliability (although the main application in practice

may still the wireless and mobile networks). Following we will explain the problem.
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Figure 2.4: TCP with multiple drops
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2.5.1 The Problem

The degradation of TCP performance when it operates over networks of a lossy

nature is a well known problem and it has been discussed in many publications, see

for example [5, 12–17, 19]. However, the first attempt to understand what causes

TCP to perform badly over wireless networks was done by Caceres et al. [13]. They

indicated that this problem has been mentioned in earlier publication, like [38–40]

but without explaining what causes TCP to reduce its throughput.

TCP uses errors as an indicator of congestion and, based on that, it reduces its

transmission rate. However, it confuses the congestion errors with errors caused by

unreliable links and assumes that congestion is occurring whenever a transmission

error is detected. Hence, TCP reduces its transmission rate even if there is no

congestion. So TCP deals with both kind of errors (i.e. congestion errors and

transmission errors) as congestion. In the case of transmission errors, like the ones

caused by wireless links, it is not required to reduce TCP throughput aggressively

as in the case of congestion. Many solutions, as we will see later in chapter 3, resend

the lost packet and will not reduce TCP performance (congestion window) at all.

The problem is not because of TCP itself as originally defined in [4]. The con-

gestion control mechanism which was introduced to TCP first in [10] is responsible

for causing this problem.

We identified three areas where congestion control mechanism affects TCP per-

formance negatively in the case of transmission errors: the congestion window cut

mechanism, the retransmission mechanism and the retransmission timeout mecha-

nism. In chapter 4 we will discuss this issue in more detail and we will propose

solutions to the problem.

Figure 2.5 shows the normal behaviour of TCP when there are no errors. The

first phase is the exponential increasing slow start then the congestion avoidance (lin-
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Figure 2.5: TCP behaviour in absence of errors

Figure 2.6: TCP with transmission errors
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ear increase). However, when TCP operates over links suffering from non-congestion

errors, like wireless errors, it cuts its congestion window size assuming that a con-

gestion is occurring as we can see in Figure 2.6.

The transmission error rate in figure 2.6 is 1% and we pointed out the first three

drops in the figure. In both figures the y-axis shows the congestion window size in

packets and the x-axis shows the connection round trip time.

2.6 Summary

TCP performance decreases when operating over heterogeneous networks with links

of lossy nature. In order to understand the problem, in this chapter, we started by

giving an explanation of TCP and its basic functionality.

We then explained some of the important components in TCP namely sliding

window algorithm, slow start, congestion avoidance, retransmission mechanism and

timeout mechanism.

Finally we explained how TCP reacts to transmission errors and what causes

TCP to perform badly over networks with lossy links. Research shows that TCP

confuses congestion and transmission errors, and thereby deals with transmission

errors as if they are signs of congestion in the network. This confusion causes TCP

to reduce its throughput aggressively over lossy links.

In the next chapter we will survey some of the end-to-end solutions to the problem

presented here.
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Enhancing TCP Performance:

Related Work

3.1 Introduction

In this chapter we will present different solutions to overcome the performance degra-

dation problem TCP faces when working over lossy links as we explained in chapter

2. Many solutions have been proposed but we will concentrate on end-to-end solu-

tions that require no help from the intermediate network.

3.2 Solutions for TCP Performance Over Lossy

Networks

Many solutions have been proposed to overcome the problem of TCP bad perfor-

mance over lossy links (like wireless networks). Some solutions were in the transport

layer and some solutions were in lower layers like the link layer.

Balakrishnan in [15] divided the solutions into two general categories: 1- solutions
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that make TCP unaware of the errors that happens in the link so TCP thinks that

it works on reliable links with no transmission errors, for example Snoop agents [14].

2- approaches to try to make TCP aware of the errors caused by the lossy link and

make TCP avoid using congestion mechanisms for this type of errors. However other

authors like [5] divide these solutions into the following more specific categories: Link

Layer, Split Connection and End-To-End solutions.

In the link layer solutions the aim is to completely hide the errors that occur in

the link so TCP will be unaware of them and hence it will not reduce its transmission

rate as a reaction to those errors. In general, link layer solutions are used for

wired-wireless networks and they can be located at the base station which connects

the wired network with the wireless link just before the receiver. They monitor

the packets that pass the base station from one end to another and keep record

(and sometimes copies) of the packets sent and set a retransmission timeout for

each packet. When the wireless link drops a packet either a timeout will occur or

duplicate acknowledgments will be received at the base station. The base station

then resends the lost packet and suppresses the duplicate acknowledgment at the

base station so TCP does not notice the drop and hence will not need to reduce its

transmission rate.

A good feature of this approach is that it preserves the end-to-end semantics

of TCP since it does not break the connection (i.e. the connection negotiation

and maintenance remains between the sender and the receiver only). However, the

problem is that sometimes this method cannot completely hide errors from the TCP

sender. For example when a mechanism like Snoop resends a dropped packet but

the packet is dropped again due to high error rates and then the TCP timeout for

this packet occurs before Snoop has a chance to resend it again. This could hap-

pen because of the mismatch between the TCP and Snoop retransmission timeout
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mechanisms. In principle the Snoop RTO should be shorter than the TCP RTO but

this is not always true [5, 15]. Moreover, sometimes Snoop’s aggressive retransmis-

sion may cause congestion at the base station which may reduce the link utilization.

Examples of Link layer solutions are TULIP [41], Snoop [14] and AIRMAIL [42].

In Split Connections protocols the aim is to divide the problem into two smaller

ones. This is done by separating the wired link connection from the wireless link

connection. This is usually done at the base station where two connections are

maintained. One normal TCP connection from the wired host to the base station

and another wireless connection from the base station to the mobile host where a

new protocol that can handle wireless errors is implemented. The base station plays

the role of the interface between the two connections [5] [17]. The TCP connection

from the sender ends at the base station and then the base station starts a new

connection with the receiver.

A good feature of this method is that we do not need to do any changes at the

sender because the sender does not need to deal with the errors on the wireless link.

However, the sender is not now negotiating the connection with the end receiver so

the connection between the sender and the receiver is broken and the end-to-end

semantics of TCP no longer hold. An example of this category is I-TCP [17] and

M-TCP [43].

The last category is the end-to-end solution. We will talk about this next in

more detail by explaining some solutions under this category.

3.3 End-to-End Solutions

In general, most of the end-to-end solutions, as the name indicates, try to deal with

the problem at the end point of the connection (sender and receiver) and do not
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expect help from the network so they look at the network as a black box. The main

advantage of this approach is that it does not add overhead to the network. However,

some proposed solutions from this category use some sort of indirect feedback from

the network as we will see later.

Mainly the following techniques try to find ways to recover from drops (con-

gestion and transmission) efficiently. Some of these solutions were designed for

a wireless environment and some were introduced before introduction of wireless

technology. However, since the aim of all these solutions is to recover from errors

efficiently, they can be a used for improving TCP performance over networks with

non-congestion errors.

3.4 Congestion Drops

In the following we will begin with techniques designed to recover from congestion

drops. Later we will present techniques designed for congestion and transmission

drops.

3.4.1 Retransmission Timeout (RTO)

In Retransmission Timeout TCP attaches a timer with each sent packet, and when

the timer expires before receiving acknowledgment for that packet, TCP resends the

lost packet and sets the congestion window to the minimum allowed size. For more

about how RTO is calculated using the RTT see section 2.4.4.

RTO is one of the first methods provided to TCP to recover from errors. However,

it is most efficient when the congestion is serious and the network needs more time to

drain the congested nodes. On the other hand, if the drops are caused by transient

congestion then it is better to resend the lost packet without waiting for a timeout
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to occur. This idea is the base of the fast-retransmission mechanism which we will

talk about in the next section.

3.4.2 Fast Retransmission (TCP-Reno)

In earlier implementations of congestion control mechanisms, there was an assump-

tion that errors due to segment damage are rare (less than 1% of the sent seg-

ments [10]) and so it is assumed that most of the segment loss is because of con-

gestion [20] [10]. As a result, when there is a high packet damage rate or when the

congestion loss rate exceeds 1%, the TCP performance will suffer badly. According

to Jacobson [11] TCP will lose between 50% and 75% of its throughput when the

error rate reaches 1%.

This shows how congestion control mechanisms are intolerant to high error rates.

This behaviour can be explained if we return to the combined slow start congestion

avoidance algorithm explained in Stevens [20] and Allman [24]. In the algorithm

Stevens [20] explained how TCP should react to congestion as follows: If there is

a duplicate acknowledgment then TCP should set the slow start threshold ssthresh

to half of current window size (the window size when the error happened) and then

enters the slow start mode when a timeout occurs. This way all drops will be

recovered by entering slow-start, however, TCP performance will decrease sharply.

For this reason, Jacobson [11] suggests that TCP can use the knowledge brought

by duplicate acknowledgment to resend the lost packet (a fast retransmission) and

then there is no need to enter slow start because the duplicate acknowledgments

indicate that these packet have left the network and there is more space for new

packets to be injected into the network [24] so no need to reduce the cwnd to

one segment by entering slow start. Instead, TCP enters congestion avoidance by

reducing the congestion window to the half of the current window size.
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Another reason for not using slow start is given by Stevens [20]. He noted that

because we know that there is still data flowing in the connection because of the

duplicate acknowledgments we received, we do not want to cut this flow by entering

slow start [20].

3.4.3 Fast Retransmission Phase (TCP-NewReno)

When Stevens [20], in the RFC 2001, explained the slow start algorithm, he indicated

that the first step in the algorithm is to initialize the slow start threshold variable

ssthresh to a high value (65535 bytes). Also Allman [24], in RFC 2581, indicated

that ssthresh could be set to an arbitrary high value. However, Heo [31] noted a

problem in this step of the algorithm that may affect TCP performance.

The problem is that during the start up phase of TCP connection (slow start), the

sending rate grows exponentially until the congestion window reaches the ssthresh.

So, giving ssthresh a high value will inject the network with high number of segments

in a short period of time.

However, the network may be unable to handle that amount of data at once

and, hence, some packets may be dropped due to congestion. Moreover, due to this

congestion, more than one segment may be dropped from the same window [31] and

this will create problems to the TCP fast retransmission mechanism proposed by

Jacobson [11].

The fast retransmission algorithm [11] can handle only one drop per window and

hence if more than one segment is dropped from the same window, only one will be

resent by fast retransmission and TCP will recover from the other losses by using

a retransmission timeout (RTO) which will initiate the slow start algorithm which

will reduce the congestion window size to its initial value (usually one segment) and

TCP performance will suffer badly [31].

36



Chapter 3 Enhancing TCP Performance: Related Work

To understand why the fast retransmission algorithm can not recover from multi-

ple drops, Stevens [20] indicated that the fast retransmission algorithm is terminated

whenever a new acknowledgment is received. This new acknowledgment is assumed

to acknowledge all packets sent after the lost segment up to the window size. How-

ever, if multiple segments were dropped, this acknowledgment will acknowledge only

the segments that have been received correctly up to the second drop. Hence, fast

transmission will be terminated before resending all lost segments and TCP will

enter a series of retransmission timeouts causing the performance to degrade.

As a solution, Heo [31], suggested a change in the fast retransmission algorithm

so it will not exit until it receives an acknowledgment for all dropped segments.

This is done by ignoring the new acknowledgments that acknowledge only part of

the sent segments and repeating fast retransmission until the sender receives an

acknowledgment for all sent segments. This way, there is no need to wait for the

retransmission timeout (RTO) to force resending the rest of the lost segments. Floyd

et al. [37] call the intermediate acknowledgments the partial acknowledgments.

A new variation of TCP was proposed based on these modifications and called

TCP-NewReno [37]. Also, Floyd et al. [37] has introduced two options of NewReno

regarding when to reset the retransmission timeout: the first option is called slow-

but-steady NewReno and the second is called impatient NewReno. In the former

the timeout clock is initialized after each partial acknowledgment. This way TCP

will stay in fast recovery mode as much as possible but as the name indicates, the

resending rate will be as low as one packet per round trip time (RTT). However, in

the impatient NewReno TCP will reset the RTO only after the first partial acknowl-

edgment so if there are too many packets dropped from the same window then RTO

will eventually expire before receiving a new acknowledgment and, hence, TCP will

enter slow start [37] and resend all dropped packets and cut the congestion window
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at the same time.

3.4.4 Selective Acknowledgment (TCP-Sack)

The original idea of using selective acknowledgments (SACK) was proposed initially

by Braden and Jacobson in [44]. However, detailed implementation and improve-

ments to the idea were proposed later by Mathis et al. in [45].

Selective acknowledgment is a change to the way the TCP receiver reacts to re-

ceiving new packets. Usually when the TCP receiver receives a new packet it sends

an acknowledgment to the sender that carries the received packet sequence number

which indicates to the sender that all previous packets up to this one have been

received successfully at the sender because of that it is called cumulative acknowl-

edgment [4]. This way new acknowledgments will be sent only if the packets are

received in order, otherwise the acknowledgment will be sent for the last in-order

packet received (duplicate acknowledgment).

However using selective acknowledgments, the receiver will send an acknowledg-

ment for each packet no matter in what order it has arrived. This way the sender

will have a clear idea of what packets have been received successfully and this will

solve the problem we described before when more than one packet is dropped from

the same window [45].

Also using selective acknowledgment will allow TCP to resend all lost packets

without the need to do unnecessary retransmission of packets already received [46].

Using selective acknowledgment does not require the overhead of extra traffic since

it is sent over normal acknowledgments [45] [46].

However, a disadvantage of the implementation explained in [45] is that it re-

quires the use of a retransmission queue to save unacknowledged segments. Also it

requires the TCP sender to keep a record of the received acknowledgments. This
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may requires more memory usage and perhaps more processing power for sorting and

comparing sequence numbers for segments in the queue specially when TCP uses

a large sending window (congestion window). Moreover, SACK is helpless when

retransmission timeout occurs; all segments in the retransmission queue will be re-

sent even if they have been sent before [45]. Last but not least, applying selective

acknowledgment requires changes to both sender and receiver sides which may be

hard in real networks.

On the other hand, accumulative acknowledgments which used in most TCP

variations is simple and allows easy management of incoming packets with no need

for extra memory or processing as in the case of selective acknowledgment. For

example it is easy to discover receipt of duplicate copies of a packet by simply com-

paring the packet sequence number with the last acknowledged packet number [4].

This way TCP does not need to keep a record of the received packets and only

needs to save the last in-order received packet sequence number. Another advan-

tage of this approach is that if an acknowledgment is dropped then it is enough to

receive another acknowledgment with higher sequence number since it acknowledges

all packets with lower sequence numbers.

3.5 Congestion and Transmission Drops

In this section we will present techniques designed to improve TCP performance for

congestion and transmission drops.

3.5.1 Congestion Predictors

In this type of solution, TCP uses techniques such as delays on the links (round trip

time) like the CARD [47] technique (CARD stands for Congestion Avoidance using

39



Chapter 3 Enhancing TCP Performance: Related Work

Round Trip Delay) or the connection throughput in the case of the Tri-s scheme [48]

and the Vegas scheme [49] to predict if there will be congestion and then control

the inflation and the deflation of the congestion window based on this prediction. If

the predictor does not see congestion happening in the near future then it suggests

increasing the congestion window. On the other hand, if the predictor notices that

congestion is coming then it suggests that TCP decrease the congestion window.

As we can see, unlike TCP, drops are not used here to control the growth of the

congestion window.

In theory, the perfect predictor will eliminate congestion errors since it will detect

and avoid congestion before it happens. So, if an error happens then it can be

considered to be caused by the link failure (like wireless errors) rather than by

congestion. We will see later how congestion predictors can be used to build error

discriminators. Following, brief explanations of some congestion predictors.

3.5.1.1 TCP-Vegas

TCP-Vegas [49,50] is a modification to the congestion control mechanism in standard

TCP [10,11]. It aims to reduce the congestion losses and to increase TCP throughput

by predicting the available capacity on the link and trying not to exceed it.

According to the Vegas authors in [49], Vegas has increased the throughput of

TCP up to 70% more than older implementations of TCP (TCP-Tahoe & TCP-

Reno). Also Vegas has reduced the losses in the link up to 50% [49].

We will give here an extended explanation of TCP-Vegas because of its impor-

tance and since some other solutions are based on Vegas as we will see later.

TCP-Vegas introduces changes to TCP in four areas as follows:

Timeout computation: The authors of Vegas have noticed from experiments over

the Internet that the timing mechanism used in previous implementations of TCP
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is not accurate and that computing round trip time (RTT) using current timing

mechanisms has given higher RTT estimations. This makes TCP take up to three

times longer to recover from losses [49]. A new mechanism has been introduced

based on using a time stamp for each packet and computing the round trip time by

comparing the packet’s time stamp with its acknowledgment time stamp. This way

a more accurate retransmission timeout can be computed.

Retransmission of lost packets: TCP-Vegas introduces a new retransmission

mechanism by changing the way TCP responds to duplicate acknowledgments.

TCP needs to receive three duplicate acknowledgments before it retransmits the

lost packet. However when Vegas receives the first duplicate acknowledgment for

a segment it compares the time stamp with the current time. If the difference is

more than the computed timeout then it triggers retransmission without waiting for

more duplicate acknowledgments to come [49]. As we can see this will add overhead

to the system to record a time stamp for each segment and save it until it receives

an acknowledgment. However, the authors indicated that the overhead of using

TCP-Vegas will not exceed 5% more than older implementations [49].

The other area in which TCP-Vegas provides changes is in congestion avoidance:

TCP-Vegas has made dramatic changes to the congestion avoidance mechanism used

in TCP by making TCP to increase/decrease the sending rate, not based on packet

drops as in TCP, but based on prediction of available link bandwidth.

Vegas estimates an expected throughput and an actual throughput for the con-

nection. The expected throughput is computed using the current window size and

the minimum RTT seen so far. The actual throughput is computed using current

window size and last RTT reading.

Then Vegas compares the expected throughput and the actual throughput and

updates the sender window according to the comparison results as following: If the
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actual throughput is less than the expected one then TCP is unable to utilize the link

because there is congestion and hence it should decreases the window size [49]. On

the other hand, if the actual throughput becomes closer to the expected throughput

then it is safe to increase the window size. The increase and decrease in the window

size is linear unlike TCP which uses Jacobson’s AIMD [10] mechanism (Additive

increase multiplicative decrease) to update the congestion window.

The Vegas algorithm is expected to prevent congestion from occurring and,

hence, reduce congestion drops dramatically.

Slow Start: In Vegas, the congestion predictor, explained above, is added to the

slow start mechanism. Another modification Vegas makes to slow start is that the

update of window size during slow start is not done every RTT; instead it takes two

RTTs before increasing the window size. This is done to give the algorithm chance

to measure the actual throughput between updating window size [49].

Hengartner et al. in [51] have reviewed each of the modifications Vegas did to

TCP. Their results show that the new retransmission technique has improved the

performance noticeably because it was able to avoid timeouts during multiple packet

drops from the same window. It does this by performing retransmission when its

new timeout mechanism expires even before receiving duplicate acknowledgments.

However, the results in [51] showed that TCP-Vegas suffers from performance

degradation when it coexists with versions of TCP that use the AIMD mechanism

like TCP-Reno. This is because the AIMD mechanism is more aggressive in grabbing

the link bandwidth because it keeps increasing the window size until an error occurs

while Vegas tries to prevent causing drops and hence it keeps smaller window size.

This indicates that the congestion predictor in Vegas sometimes has a negative

impact on the performance [51]. Also, we will see later how the authors in [52] have

confirmed this fact (i.e. Vegas predictor poor performance) when we talk about
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using the Vegas congestion predictor in an error discriminator.

3.5.1.2 TCP-Westwood

Mascolo et al. in [53] proposed a modification to the congestion avoidance algo-

rithm used in TCP-Reno, which uses duplicate acknowledgment and timeout as an

indicator for congestion and to update the sender window [10]. However, dupli-

cate acknowledgments do not give indication of the type of the error (congestion

or transmission error). For this reason Mascolo et al. [53] suggested that the TCP

sender should do continuous estimation of the bandwidth and update the window

size according to that estimation [53]. This way TCP will send in a rate that will

occupy the available bandwidth only and hence any error could be considered safely

as a transmission error. Westwood estimates the available bandwidth by monitoring

incoming acknowledgments and assumes this rate reflects available link capacity in

the forward path [53].

Also TCP-Westwood [53] suggested that TCP does not need to halve the win-

dow size when errors happen, like TCP-Reno. TCP-Reno halves the window size

whenever there is an error and hopes this action will solve the congestion and, at

the same time, it increases the congestion window linearly to utilize the available

bandwidth without more investigation of the link status. In contrast, after each

drop TCP-Westwood [53] uses the estimated bandwidth-delay product to set the

sender window according to the current congestion level [54].

The authors of TCP-Westwood [53] reported big improvements in TCP per-

formance, especially over networks suffering from transmission errors like Wired-

Wireless networks [53]. This improvement has been confirmed by Grieco & Mascolo

in [55]. Also the experimental results reported in both [53] and in [55] showed that

TCP-Westwood has maintained fair sharing of the bandwidth and it does not lead
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to starvation of TCP-Reno connections.

However Biaz et al. [56] did experiments on TCP-Westwood when coexisting with

non-TCP traffic on the reverse link and their results indicate that TCP-Westwood

could not estimate the link capacity correctly when a non-TCP traffic exists in the

reverse path. This result can be explained since bandwidth estimation in TCP-

Westwood is based on taking the average rate of received acknowledgments and,

since the added traffic in the reverse path could add additional delay to the received

acknowledgments, TCP-Westwood will underestimate the available bandwidth.

3.5.2 Error Discriminators

All methods that try to understand the cause of the error and to act differently to

each type of error based on that understanding are called error discriminators.

Some error discriminators deal with the network as a black box and do not need

any feedback from the network in order to discriminate errors. Other types of error

discriminators use help from intermediate networks in order to understand the cause

of the error.

In the following, we will talk about both types and we will start with error

discriminators that depend upon the network to help distinguishing errors. As far

as we know this is the first attempt to classify error discriminators.

3.5.2.1 Network Dependent Error Discriminators

Network dependent error discriminators are actually based at the end-point of the

connection but use help from the intermediate nodes. However, although they are

not totally end-to-end we mention them here for two reasons, first all network depen-

dent error discriminators explained in this section use already popular active queu-

ing mechanism techniques like the use of explicit congestion notification through
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RED [57] (Random early dropping) queues. Second reason, is that we want to com-

plete the picture about the error discrimination techniques since our work will use

an error discriminator as we will see later.

The advantage of this approach is that both end hosts can have detailed infor-

mation about the cause of drops and the network status.

However, if we want to apply this approach in a large network we may need a

wide-scale change to the network components (i.e. mainly we need to change the

routers if we want notification for congestion drops and we need changes in the

wireless base stations if we want wireless drop notification).

Following I will explain briefly some network dependent error discriminators.

3.5.2.2 TCP-Casablanca

The key idea TCP-Casablanca introduces [56] is as follows: Congestion errors and

transmission errors usually happen randomly and this is basically why it is difficult to

differentiate between them. However, if we can ”de-randomize” [56] the congestion

errors by making congestion errors take a non-random form then it will be easy to

discriminate the non-random congestion errors from the random wireless errors [56].

The mechanism works as follows: The sender marks each outgoing packet with

one of the marks (in/out) in a consistent pattern, for example by marking four

packets with (in) and the fifth packet (out) and so on. When congestion occurs

at intermediate nodes there should be a biased queue-management mechanism that

drops only the packets marked with the (out) mark. This way, the receiver receives

the packets with a consistent pattern of drops, because only packets marked with

(out) are dropped, so the receiver recognizes that the errors are congestion errors.

On the other hand, if a wireless error occurs, then the drops will be random

among all packets (in-marked and out-marked) and, hence, the receiver can recognize

45



Chapter 3 Enhancing TCP Performance: Related Work

that these random errors are wireless errors [56].

If the receiver diagnoses a wireless error it marks the acknowledgments with an

explicit loss notification (ELN). When the TCP sender receives a duplicate acknowl-

edgment, because of error, it checks if the acknowledgment contains ELN and, if so,

TCP considers the loss to be wireless loss; otherwise it considers it to be a congestion

error [56]. In case of congestion error TCP cut the congestion window, otherwise it

only resend the packet and does not cut the congestion window.

So, as we can see applying this mechanism requires mainly four changes to TCP

sender/receiver and the network: First adding an error discriminator at the sender

(which is called Casablanca) and acting according to the ELN signals it receives.

Second, the receiver should be able to deduce when a random or non-random drop

occurs and to send ELN if a random error occurs . Third, an active queuing mecha-

nism should be implemented in the bottleneck, which will drop only packets marked

with the (out) mark. Finally the packet format should be altered to add in/out

marking and ELN. The reset of the protocol is based on the NewReno [37] version

of TCP.

The authors indicated that the Casablanca discriminator has achieved high ac-

curacy in discriminating between congestion and transmission errors and, using it

in TCP, gave significant (above 100%) improvement in TCP performance [56]. Ac-

curacy is a crucial component in this error discriminator since it uses an aggressive

action toward non congestion drops by not cutting the congestion window size for

these drops and keeps it as big as it was before the drop.

3.5.2.3 TCP-Ifrane

TCP-Ifrane [56] is a sender based version of TCP-Casablanca [56]. In TCP- Ifrane

changes are made at the sender only and not the receiver. When the sender sends a
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packet it records whether this packet is marked as out or in. If the sender receives

a duplicate acknowledgment indicating that a packet is lost, it looks at its record

and sees if that packet was marked out or in when it was sent. If the packet was

marked out the error is considered to be congestion error otherwise it is considered

as wireless error [56]. TCP-Ifrane was found to give higher throughput than TCP-

Casablanca; this is because it has less congestion accuracy and hence it slows down

less than TCP-Casablanca [56]. However, the effect of TCP-Ifrane’s accuracy was

not studied by the authors in [56].

3.5.2.4 Explicit Congestion Notifications

Explicit congestion notification [58] was first introduced to help TCP avoid con-

gestion by allowing intermediate nodes to set a congestion notification bit in the

IP header whenever congestion is expected. The TCP sender will respond to this

notification by reducing its transmission rate. An Active Queue management mech-

anism (e.g. RED [57]) is placed at the congested nodes and becomes responsible for

marking packets when congestion is expected ( in case of RED the packets will be

marked when the queue reaches a particular threshold).

Using ECN requires changes in both the TCP sender and receiver. Also it

requires the use of AQM at the congested nodes. However, using ECN does not

require changing the TCP congestion mechanisms since TCP responds to ECN in

the same way as it responds to a packet drop.

Dawkins et al. in [59] has proposed the use of ECN to improve TCP perfor-

mance over wireless links by modifying the way TCP responds to ECN. Biaz [60]

explains the technique as follows: If a drop is detected by receiving duplicate ac-

knowledgments, then we look if we have received an ECN in the near past. If ECN

is received before the error happened, then this is a strong indication that this error
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is caused by congestion. This is based on the understanding that, in ECN-capable

connections, ECN should always happen before congestion drops. So, if the ECN

preceded the drop then TCP considers this drop to be congestion drop and acts by

reducing the senders window size in order to resolve the congestion.

However, if the drop happens while not preceded by ECN, its then considered

as a wireless error and and TCP does not reduce the senders window size [60].

However, we still need to retransmit the lost packet. The authors in [59] argue that

this approach will improve TCP performance over networks with transmission errors

like wireless networks specially those suffers from high error rates.

However, Biaz in [60] studied the possibility of using ECN to distinguish between

error types. He argues that this approach is not an accurate method to differentiate

between congestion and transmission errors and showed that transmission errors

can be random so that the probability that ECN will precede a congestion error is

approximately the same as the probability that ECN will precede a transmission

error [60].

So the authors in [60] proposed that instead of using ECN directly to infer the

type of the error; TCP should also look at the state of the sender. If the sender

was in congestion avoidance phase then the drop is probably a transmission drop.

However, if the sender was in slow start phase then the drop is considered congestion

drop. The new protocol is called TCP-Eaglet [60] and it showed improvement over

standard TCP performance.

3.5.2.5 TCP-Jersey

Xu et al. [61] has suggested using the estimated bandwidth instead of errors to tell

TCP when to decrease sender window size, which is an idea similar to Westwood [53]

but with a different implementation. The available bandwidth is estimated based
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on the rate of arrival acknowledgments. High acknowledgment arrival rate means

packets can get to the other end fast and hence high network capacity. Moreover, in

this approach the nodes in the middle should be able to mark packets when conges-

tion is expected in order to notify the sender [61]. So this method is a combination

of TCP-Westwood and ECN error discriminator [59] except that it differs in some

implementation details in both cases.

However, like TCP-Westwood, TCP-Jersey may suffer from performance degra-

dation when coexisting with non-TCP traffic on the reverse link because it cannot

estimate the link capacity correctly since the added traffic in the reverse path can

delay the acknowledgments, so it will underestimate the available bandwidth.

However, improvement has been done to TCP-Jersey to overcome this problem.

The improved version is called TCP-New Jersey [61] and it uses acknowledgment

timestamps [62] instead of acknowledgment arrival rate to calculate estimated band-

width which solves the problem of delayed acknowledgments because each acknowl-

edgment has a time stamp which allows the sender to calculate the forward path

delay. The authors indicated that simulation results of TCP-New Jersey gave good

results and show improvement in TCP performance particularly with reverse paths

that suffers from congestion and lossy links [61].

3.5.2.6 Network Independent Error Discriminators

This kind of solution implicitly infers the cause of packet drop without the need of

explicit notification from the network about the cause of the drop. In this kind, the

solution is based at the end hosts (or one of them). The advantage of using this

approach is to keep the changes to a minimum (to the end hosts) and there is no

need to make changes to the network components, which may require wide scale

changes. However, an obvious limitation to this approach is that the end hosts will
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not have detailed information about the status of the congestion or the transmission

drops and can only guess the situation using implicit signs from the network (like

packet delay for example).

Some of these solutions are based on using congestion predictors like Vegas [49]

or CARD [47] or Tri-s [48]. In this approach the discriminator works by taking input

from the congestion predictor about the congestion status when a drop occurs. If

the congestion predictor was predicting congestion then the drop is considered to

be congestion loss. However if the predictor was suggesting increasing the sending

rate, because it does not predict any congestion in the near future, then the drop is

considered to be caused by link error [52] .

Also we must notice that as [52] indicated, designing an accurate error predictor

is important since mistakes of distinguishing transmission errors from congestion

errors could cause unnecessary congestion which is usually avoidable by using normal

congestion control algorithms [52]. For example, if a congestion error is mistaken to

be a transmission error then TCP will not decrease the window size and this will

make the current congestion much worse.

Experiments were performed by Biaz and Vaidya [52] on three different error

discriminators based on congestion predictors: the CARD [47], Tri-s [48] and Vegas

[49]. Unfortunately the results obtained by Biaz and Vaidya experiments in [52] show

that these congestion predictors are no better than a random loss predictor. From

these results, Biaz came to the a conclusion that these three congestion predictors

are not suitable as an accurate error discriminator.

The reason which leads to the failure of these methods to make a good error

discriminator is that they assume that if one TCP increases its congestion window

then the network delay will increase. So they assume that one connection can affect

the whole network. Using this assumption, if TCP is able to gain high throughput
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then this is an indication that the network is not congested. On the other hand, if

TCP is able to gain only small part of the expected network throughput then this

means that a congestion exists.

However, in [63] the authors showed that when TCP increases its sending rate the

RTT could go either way (i.e. increase/decrease). They showed that the correlation

between a single connection sending rate and the RTT is weak [63]. This is because

usually a single connection forms a small part of the network aggregate traffic.

However, the authors in [63] also emphasized on the sensitivity of the network

delay to the total load, which makes the measured RTT a good indication of con-

gestion events and hence RTT can be used to build an effective error discriminator,

as we will see in chapter 6.

In the following section we will present briefly some error discriminators based

on congestion predictors and show how they work.

3.5.2.7 Error Discriminator Based on Vegas Congestion Predictor

Based on the Vegas predictor [49] described earlier, Biaz and Vaidya [52] proposed

an error discriminator that computes the difference between expected throughput

(link capacity) and the actual throughput in order to predict congestion and use this

difference to define a new variable fVegas. The difference is computed as follows: D

= expected throughput - actual throughput

If D > 0 this means that TCP throughput is less than what it should be to

utilize the link and this indicates that congestion exists in the connection path and

hence any drop is considered to be a congestion drop. On the other hand if D ≤ 0

this means that TCP throughput is actually able to utilize the link capacity and

hence there is no congestion and any error is considered to be a transmission error.

The simulation results in [52] show that the Vegas based error discriminator has
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achieved low to medium performance in terms of accuracy in defining error types. As

we said before, this due to the assumption that the network will respond noticeably

to the changes in a single connection window. This is not always true since, in large

networks, a single connection forms a small fraction of the whole traffic [52] and this

will affect the error discriminator ability to discover congestion errors.

This also applies to the next two error discriminators based on CARD [47] and

Tri-s [48] congestion predictors.

3.5.2.8 Error Discriminator Based on CARD Delay-Based Congestion

Predictor

Congestion Avoidance Round trip Delay (CARD) [47] is an approach to update the

TCP sender window size without the need to have any feedback from the network.

It is called [47] a black-box approach since it deals with the network as a black box

and does not require any explicit feedback from the network. It works by analysing

the relation between the round-trip delay and the throughput of the connection in

order to predict the optimum window size that gives maximum throughput with

minimum delay. The authors in [47] call it maximum Power where the power is the

ratio of throughput and delay : Power = (Throughput/Delay) [47]. The aim is to

have maximum Power.

Unlike TCP, this approach does not use errors to update the window size which

is approach similar to TCP-Vegas [50]. However Jain [47] did not provide a complete

TCP solution like TCP-Vegas, instead, it gives a mechanism that can be used to

replace Jacobson’s [10] congestion avoidance mechanism in TCP.

The CARD [47] measures the change of the increase/decrease rate in the con-

nection throughput and delay. When the network is fully utilized then any small

increase in the throughput will result in a big increase in the observed delay. This
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gives a good indication that the network is congested. However, when the network

capacity is under utilized then the increase in the throughput will result in a small

(or non) increase in the network delay.

Using this approach will add no overhead on the network since it requires no

feedback from the network [47]. This approach assumes there is a single connection

that can utilize the whole network capacity and hence increase/decrease the network

delay [47]. As we said before this assumption is not always valid in real networks.

Biaz et al. [52] designed an error discriminator based on the CARD [47] conges-

tion predictor. The discriminator uses the assumption used in CARD that if the

network is not congested then the rate of change in the delay will be zero. How-

ever, when the network starts building queues with the increase in the TCP window

size then the delay will change rapidly. The discriminator monitors the delay and

the window size changes; if both are increasing then the drop is considered to be

congestion drop otherwise the drops is considered transmission drop.

The results presented in [52] indicate that the error discriminator based on the

CARD predictor is poor in discriminating between error types [52]. Again this

because of the assumption used in CARD that a single TCP window size will affect

the network delay.

3.5.2.9 Error Discriminator Based on Tri-s Throughput-Based Conges-

tion Predictor

The Tri-s [48] congestion predictor proposed an approach to predict congestions in

the link based on the throughput rather than errors. Its difference than CARD [47]

approach is that Tri-s monitors only the changes in the connection throughput.

Also this approach tries to find the optimal window size only at the beginning of

the connection and fix it through the rest of the connection period. Only when a
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major change in the connection happens, like when a new connection starts or an

old connection terminates, the optimal window size is recalculated. Small changes

during the connection are dealt with by buffering in the network instead of changing

the sender window size [48].

An error discriminator based on this idea has been proposed in [52]. This is

based on the assumption that if the network is free of congestion then the con-

nection throughput will increase rapidly and hence any drop will be considered to

be a transmission drop. However, if there is a congestion in the network the TCP

throughput will decrease and any error will be considered to be a congestion drop.

The results presented in [52] show a poor discrimination level and this is for the

same reasons mentioned before for the Vegas and CARD based error discriminator.

3.5.2.10 TCP-Veno

TCP-Veno [21] applies changes to the Vegas [49] congestion predictors in order to

differentiate between congestive states [21] and non congestive states [21] of the

connection. If a packet drop occurs during a congestive state then it is considered

a congestion drop otherwise it is considered transmission drop.

TCP-Veno estimates the number of packets buffered in the network and if this

number exceeds a predefined threshold (3 in this case) then the the system enters

congestive state [21]. It uses Vegas [49] congestion predictors to estimate buffered

packets and, instead of updating the congestion window based on this information

like Vegas, it uses it to differentiate between errors and uses TCP AIMD to update

the congestion window.

The other change TCP-Veno proposes is to reduce the rate at which the con-

gestion window increases during the congestive state. So instead of increasing the

congestion window every RTT, the window is increased every other RTT if the
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system is in the congestive state [21].

The authors in [21] reported noticeable improvement (up to 80%) for TCP-Veno

over TCP-Reno in different scenarios. However, TCP-Veno suffers from the bad

performance of Vegas predictor mentioned before which may lead to classify errors

wrongly.

An important feature of TCP-Veno is that it cuts the congestion window even

for transmission errors by a fixed factor of 4/5 [21] which may reduce the effect of

poor discrimination ability. We could not find any other error discriminator that

uses a special action in case of transmission errors.

Later we will propose a method to cut the congestion window in case of transmis-

sion errors based on the number of dropped packets instead of using a fixed factor

as in TCP-Veno.

3.5.2.11 Receiver Based Error Discriminators

Most of the previous solutions are based in the sender side of the connection. Fol-

lowing we will describe some solutions which are designed to be in the receiver side

of the connection.

In [64] the authors proposed a receiver based error discriminator that uses a

heuristic method to discriminate between transmission and congestion losses. In

this method the authors assume that the lossy link will be always the bottleneck of

the connection, for example a low bandwidth last hop in a wired-wireless network.

Hence, in the case of congestion all packets will be queued in the bottleneck in the

wireless base station. So, when the base station sends the packets they will travel

back-to-back on the wireless link. As a result, the TCP receiver can compute the

inter arrival time of the packets and use it to determine the cause of the drop.

For example, if we have packets 1,2 and 3, then in normal cases there will be T
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time between consecutive packets. However, if one packet is dropped, say packet 2,

then the time between packet 1 and 3 will be at least 2T. From that the reciever

can know that a drop in the wireless links has occurred.

However, if packet 2 was dropped before the base station because of congestion,

then packets 1 and 3 will probably be queued in the base station because the wireless

link is the bottleneck, the time between packet 1 and 3 will be less than 2T and

hence the receiver can recognize that this error is due to congestion error [64].

The problem with this method is that it requires the wireless link to be the

bottleneck (the one with least bandwidth) [64]. Also, as we noticed from the example

above, this method works only if the wireless link is the last hop in the path and

directly before the TCP receiver and also if a non-stop stream of data is being sent

(bulk data) [64]. However, the simulation results in [64] showed that by using this

method TCP could discriminate between wireless and congestion errors, in most

cases, as good as a perfect error discriminator i.e. with accuracy around 100% of

discriminating both types of errors.

A similar approach has been proposed in WTCP (Wireless Transmission Control

Protocol) [65] but without the constraint that the base station should be the bot-

tleneck. This is achieved by computing an average inter arrival time at the receiver

(AvgT). When a drop occurs instead of comparing with T we compare with average

AvgT. If current inter arrival time is within a predefined threshold from AvgT then

the error is considered a transmission error otherwise it is considered a congestion

error. A promising result has been reported in [65] after using this approach.

Another receiver based error discriminator is proposed in [66] and called TCP-

Real. TCP-Real uses the rate of receiving data at the receiver to detect congestion.

It computes an expected receiving rate and an actual receiving rate based on the

congestion window size and minimum RTT and current RTT. If the actual receiving
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rate is less than the expected then the receiver signals the sender to increase its

congestion window and if the expected rate is less than the actual the receiver

signals the sender to reduce its congestion window (we can notice the similarity

with TCP-Vegas [49] which uses same concept but at the sender).

Because this method uses the receiver to calculate the congestion window size

it solves the problem when the return path is slower that the forward path by

considering the the available bandwidth on the forward path only [66]. Experimental

results in [66] shows that TCP-Real improves TCP performance when compared to

TCP-Reno and TCP-Tahoe specially with the increase in the error rate. However,

TCP-Real does not define a clear action for transmission drops and seems to keep

the congestion window open.

3.5.2.12 Fast Recovery Plus

Fast recovery plus [67] has introduced a modification to TCP fast retransmission [11]

and fast recovery [24] algorithms so it can discriminate between congestion and trans-

mission errors. The idea is simple; the TCP sender maintains a counter of how many

times the fast retransmission-fast recovery module is called by duplicate acknowl-

edgments before receiving a new acknowledgment. The authors in [67] assumes that

transmission errors will occur in small numbers per window of data compared to

congestion errors. So the counting of the number of fast retransmission-fast recov-

ery events can give an indication of the error type. If this number exceeds a preset

threshold then the error is considered to be a congestion error otherwise it is con-

sidered a transmission error. The author in [67] did not explain how to choose the

error threshold in order to decide the error type and we assume it is a fixed one that

will be chosen based on the system experimental results.

The results shown in [67] presents a good improvement in TCP throughput when
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Fast Recovery plus is used. However, like previous error discriminators, this method

does not consider an action in case of transmission errors.

3.5.2.13 Spike Error Discriminator

The authors in [68] did a series of experiments on UDP performance in the Internet

and they noticed that most congestion drops occur during specific periods related

to noticeable increase in the packet trip time from the sender to receiver. They

call these periods spike-train periods [68] since spikes appear in the packet trip time

graphs when congestions occur. These spikes were found highly correlated with

congestion events and hence congestion drops [68].

The authors in [1] used this idea to design an error discriminator which uses

spike-train periods [68]. They define two states, the spike-state and, non spike-state.

In the spike state the connection is considered in congestion state and any drop that

occurs during this period is considered a congestion drop. During the non spike-state

any drop is considered a transmission drop [1]. The system enters the spike-state if

the packet trip time exceeded a threshold called Bspikestart and ends when the packet

trip time becomes below Bspikend [1]. These thresholds are computed dynamically

according to current relative one way trip time (ROTT) reading as follows:

Bspikestart = ROTTmin + α(ROTTmax −ROTTmin) (3.1)

Bspikend = ROTTmin + β(ROTTmax −ROTTmin) (3.2)

Spike uses ROTT instead of round trip time (RTT) because it was designed for

UDP applications where there is no acknowledgment so the authors used the relative

one way trip time and since the sender and receiver clock may vary the term relative

is used.
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The Spike [1] error discriminator performed well under different scenarios where

congestion and transmission errors were present. It was able to achieve high link uti-

lization. However, its accuracy of distinguishing between error types was moderate

(around 50%) and this has led to increased congestion in several cases [1].

In chapter 6 we will use an improved error discriminator based on Spike [1].

3.6 Summary: Action toward transmission errors

In this chapter our aim was to give an overview of the efforts to improve TCP

performance in presence of errors (congestion and transmission). Some of the main

end-to-end solutions are presented here and more related solutions can be found

in [69–74].

From the solutions presented here wan can see that the main aim was to im-

prove TCP performance when congestion and transmission errors coexist. However,

we can categorize these solutions into two categories depending on how they solve

the problem. The first category tries to distinguish between congestion and trans-

mission errors and apply different actions for each case. All error discriminators

like TCP-Casablanca [56] can come under this category. We will call them two ac-

tions solutions because in concept they can apply different actions at each case (i.e.

congestion or transmission drops).

On the other hand other solutions apply one action which can only detects and

response to congestion and will do nothing if there are no congestion drops (and

only there are transmission errors). These kind of solutions usually apply techniques

which by nature respond to congestion only like for example using TCP-Vegas [49]

which uses expected and actual throughput to set the congestion window or TCP-

Westwood [53] which uses Bandwidth-Delay product to set the congestion window

59



Chapter 3 Enhancing TCP Performance: Related Work

size which will be affected mainly by the change in the available bandwidth due to

the congestion in the network. These solutions do not differentiate between error

types but only respond to congestion ( by increasing sending rate if there is no

congestion and decrease the sending rate if there is congestion) so we call them the

one action solutions.

However, in both one action and two actions solutions the TCP reaction to

transmission errors is simply not to cut the congestion window and to keep the

sending rate as it was before the error. Moreover, in the two action solutions when

the protocol discovers transmission errors it implicitly implies that it should increase

the congestion window (not just do nothing).

These assumptions give rise to questions about whether the current transmission

action is enough or not. Authors like [56] indicated that the current transmission

action used in error discriminators is a bad one. This is because it is simplistic and it

ignores two facts: first it is very hard to have an end-to-end error discriminator with

very high accuracy. Second, even with accurate error discriminators mismatches

between error types can occur. Because of that some studies like [1,56,72] indicated

that error discriminators usually increase the congestion loss rate noticeably.

Moreover, even the one action solutions can be affected by the lack of appro-

priate transmission action. This could happen when the technique used to discover

congestion in the network fails to do so and hence no action is taken in case of

congestion.

In our work we aim to propose a set of actions that can be added to error

discriminators to use in the case of transmission errors. These actions should provide

the following:

• These actions should be able to achieve the aim of any proposal which is to

improve TCP performance when congestion and transmission errors coexist.
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• These actions should be able to prevent increasing the congestion in the net-

work which may occur because of the first aim.

In the next chapter we will discuss these actions in detail.
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Chapter 4

Improving TCP Error

Discriminators Reaction to

Transmission Drops

4.1 Introduction

Many end-to-end proposals to improve TCP performance for transmission drops,

particularly error discriminators, have been based on the idea that if we can dis-

criminate between errors correctly then the reaction to transmission drops can be

as simple as to not cut the congestion window. See for examples [1,21,52,60,64,67].

Hence, the main aim was to design an accurate error discriminator.

Our proposal is that as well as trying to increase the error discriminator accuracy

we will also implement an efficient action for transmission drops which should have

the following properties:

• It will increase TCP performance in case of transmission drops by decreasing

the rate of cuts in TCP sending rate.
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• It will not increase the congestion rate because of error discriminator mis-

matches between error types (i.e. low accuracy).

The last point is the main reason why it is required to have an accurate error discrim-

inator. Since if the error discriminator wrongly identifies an error as a transmission

error when it is actually a congestion error then it will not cut the sending rate,

so leading to increased network congestion. However, to our knowledge, there is no

perfect end-to-end error discriminator (also this is supported by [75, P111]) which

can discriminate between errors with 100% accuracy. However, if we can maintain

an action that will not increase the congestion level on the network then even an

error discriminator with medium/low accuracy will be able to increase TCP perfor-

mance and can avoid causing unnecessary congestion on the network at the same

time.

When drops occur many mechanisms in TCP are affected. In particular three

main mechanisms: the congestion window update mechanism, the retransmission

mechanism and the timeout mechanism. In this chapter we will study the effect of

transmission drops on each of these mechanisms and we will propose improvements.

The idea, as we will explain in more detail later, is that we will not totally ignore

the errors if they have been classified as transmission errors, instead we will decrease

the TCP transmission rate based on number of dropped packets per window. Also

in the case of multiple transmission drops we will retransmit all packets dropped

from the same window. Moreover we will propose a timeout back-off computation

that takes current network conditions into consideration. All these actions will be

used to achieve the two aims mentioned earlier.

In this chapter we will explain the proposed algorithms and we will do experi-

ments to study their individual behaviour when transmission errors exist. In chap-

ter 5 we will test their combined effect on TCP when transmission errors exist.

63



Chapter 4 Improving TCP Error Discriminators Reaction to Transmission
Drops

Finally, in chapter 6 we will add them to an error discriminator and study the

behaviour when congestion and transmission errors coexist.

4.2 New TCP Reactions to Transmission Errors

In this section we will propose three algorithms to control TCP reaction to trans-

mission errors. These algorithms should be implemented in the TCP sender and we

propose that they should be used by TCP error discriminators in case of transmission

drops.

4.2.1 Congestion Window Action

4.2.1.1 Motivation

Do we need to cut the congestion window for transmission (non-congestion) errors?

And assuming we can discriminate between error types, what is the proper action

TCP should take when there is a transmission drop?.

The trivial action when transmission drops occur is to resend the lost packet

and avoid reducing the congestion window. This approach has been the base of

most sender based end-to-end solutions like [1,21,52,60,64,67].This is based on the

following reasoning: a general formula to compute TCP throughput by using the

round trip time and the window size is [3]:

Throughputi =
Wi

RTTi

(4.1)

where Wi is the window size in round trip time RTTi. So the average throughput

64



Chapter 4 Improving TCP Error Discriminators Reaction to Transmission
Drops

can be captured as following :

AvgThroughput =
AvgW

AvgRTT
(4.2)

So if we can keep the average window size as large as possible during the trans-

mission drops then the throughput should be higher than the conventional TCP

(where the window size is cut with every drop) assuming we have fixed AvgRTT

(i.e. the AvgRTT does not increase with the increase in congestion window). This

conclusion has been drawn based on the assumption that AvgRTT is independent

of AvgW [76]. However, we think that a trivial solution is not always the answer.

Sometimes it is better to cut the congestion window even for transmission drops.

In high speed networks TCP requires a big window size in order to make use of

the link available capacity. However, if a connection suffers from transmission errors,

the link layer will be busy resending the corrupted packets and hence its goodput

will decrease. At the same time TCP will keep the congestion window open because

the errors are transmission errors. This will create more delay since the link layer

will be forced to buffer the packets until they are retransmitted correctly or even to

drop them if the buffer size is not enough or after a timeout. So in practice it is

desirable to control the increase in the congestion window in case of transmission

errors for the following reasons:

• Controlling the increase of the congestion window even for transmission errors

can prevent undesirably large number of packet drops during transient con-

gestion phases. If congestion happens while the congestion window is large, a

large number of packets can be dropped which makes TCP enter a series of

timeout events. These timeout events will force TCP to wait idle and also will

increase exponentially with each successive timeout.
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• Uncontrolled increase in the congestion window can lead to increase in the

network load which will lead to increase in the RTT.

• Any increase in the RTT has mainly two side effects on TCP throughput:

– The rate of increase in the RTT can be more than the rate of increase in

the congestion window size and this will tend to cancel any gain in the

throughput. see equation 4.2.

– Another effect of the increase in the connection RTT is that it increases

TCP retransmission timeout timer and hence increasing the period TCP

should wait after errors. see equation 2.4.

• In many networks the link layer is responsible for buffering and retransmitting

lost packets caused by link failure. However, if the end point sender keeps

sending at high rates with no regard to transmission drops, the link layer will

be forced to buffer large amounts of data or even drop some of the packets

which will lead eventually to increasing the end-to-end RTT [56].

All these factors will result eventually in increasing the per-packet delay and

hence increasing the average round trip time for the whole connection (AvgRTT ).

From that we can see that if the error discriminator does not cut the congestion

window in the case of transmission drops the RTT may increase in a way that

could cancel any benefit gained from increasing the congestion window size. For

this reason the authors in [56] indicated that not cutting the congestion window for

transmission drops is a bad policy.

Our proposal is to reduce TCP congestion window size cwnd by the number of

dropped packets in the last window in the case of transmission errors in order to

prevent increasing network load, and hence increasing connection AvgRTT. And be-

cause we cut the congestion window for both congestion and transmission errors this
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will help to prevent increasing congestion in the case when the error discriminator

wrongly diagnosed a congestion drop as a transmission drop.

Finally, any packet drop, even transmission drops, indicates that the link cannot

handle this amount of extra packets at the moment. For this reason it is desirable

to reduce the congestion window by at least an equal amount of packets.

4.2.1.2 The Algorithm

We will call the proposed algorithm the congestion window action (CWA) and it

works as follows:

As we explained in chapter 2, in case of packet drops TCP cuts the congestion

window after receiving three duplicate acknowledgments, see figure 4.1.

We propose to delay the cut decision until TCP receives all duplicate acknowl-

edgments for the current window (i.e. the packets in flight during the drop) see

figure 4.2. The duplicate acknowledgment usually indicates a packet drop but

Figure 4.1: TCP duplicate acknowledgment action
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Figure 4.2: CWA duplicate acknowledgment action

also indicates that one packet has left the network (received by the other end). Us-

ing this information we can estimate how many packets were dropped per window

(droppedpackets = Windowsize− (No.ACKs + No.DACKs).

In order to make sure that we have received all duplicate acknowledgments TCP

should send a new packet after receiving a number of duplicate acknowledgments

and since this packet transmission happened after the previous window is sent its

acknowledgment will be the last to be received so when TCP receives number of

duplicate acknowledgments and then the acknowledgment for the closing packet it

knows it has received all duplicate acknowledgments for the current window.

We call this packet the closing packet since it closes the previous window. More-

over, we can use the retransmission of the first lost packet as the closing packet and

this way TCP can speed up the recovery process. Also for simplicity we assume the

closing acknowledgment will follow the same path as previous acknowledgments.

So in the case of transmission drops, instead of cutting the congestion window to
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half (as TCP) or not cutting it at all (as many error discriminators) we cut it only

by the number of dropped packets. This way TCP cuts the congestion window in a

rate related to the number of dropped packets. The benefit of this technique is that

it improves the performance (especially for small error rates) and avoids increasing

the congestion level at the same time by making TCP cut its sending rate even for

transmission errors.

The algorithm is presented in figure 4.3. In the algorithm TCP checks if the

current acknowledgment is a duplicate acknowledgment and if so it checks if it is

the third duplicate acknowledgment in a row. It then saves the sequence number

of last packet sent in last sent 3Dack and resends the lost packet. Then when the

receiver acknowledges the retransmitted packet TCP checks if it acknowledged all

packets up to last sent 3Dack and if it does not (i.e. last sent 3Dack > current ack)

then TCP computes the number of packets dropped and cuts the congestion window

accordingly. However if the received acknowledgment is for all packets sent (i.e

last sent 3Dack == current ack) then TCP does nothing since there was only one

drop and it was retransmitted and received safely. Moreover, if the retransmission

failed and we have a timeout event then TCP cut the congestion window to one.

The CWA should be used in case of transmission errors only. However, if the error

discriminator wrongly used CWA for congestion errors as well then the congestion in

the network may increase. To solve this problem we will define another threshold we

call it transmission drops threshold (tthresh). It will be used to record the congestion

window size (cwnd) when the first drop occurs. It will define the area between the

start of congestion avoidance phase (i.e. from ssthresh) and the first drop . Since

this is the first drop then we call the cwnd size up to tthresh the safe area.

The information tthresh provides is that before this point there are no drops

and so probably there is no congestion before this point and that after that point

69



Chapter 4 Improving TCP Error Discriminators Reaction to Transmission
Drops

1: Initialization: prev ack = -1; last sent 3Dack = -1
2: With every received acknowledgment Acki:
3: current ack = Acki

4: if (current ack == prev ack) then . Duplicate ack
5: dackcount = dackcount+1
6: if dackcount == 3 then . Packet drop
7: last sent 3Dack = Pmax

8: resend packet with seqNo = current ack+1 . No cut for cwnd
9: end if

10: end if
11: if (current ack > prev ack) then . no more DACKs
12: prev ack = current ack
13: if (last sent 3Dack > current ack) then . Some packets still not acknowledged
14: compute number of drops and reduce cwnd:
15: flight size = last sent 3Dack − current ack
16: num drops = flight size − dackcount
17: cwnd = cwnd − num drops
18: end if
19: end if
20: if timeout==true then
21: ssthresh = max(2,cwnd/2)
22: cwnd = 1
23: end if

Variables:
current ack : Sequence number of current acknowledgment.
prev ack : Sequence number of previous acknowledgment (new acknowledgment
only).
dackcount : Variable to keep track of how many duplicate acknowledgment TCP
received so far. This variable is set to 0 whenever a new acknowledgment is
received.
last sent 3Dack : Variable to store sequence number of last sent packet after
receiving 3 DACKs.
Pmax: Last sent packet.
flight size: Number of packets sent but not acknowledged yet.
num drops : Number of packets dropped from this flight.
cwnd : Congestion window size.
ssthresh: Slow Start threshold.
RTO : Retransmission timeout timer. Calculated based in the average RTT.

Figure 4.3: CWA Pseudo code
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drops occurred and hence there is chance of having congestion. Now when an error

discriminator claims that the designated error is a transmission error, then before the

error discriminator decides how to cut the congestion window CWA does another

check (so it is two level check, one by the error discriminator and one by CWA)

by comparing the congestion window when the drop is occur with the tthresh. If

the congestion window is greater than tthresh then there is a higher chance that

the error discriminator mismatch a congestion error for transmission error so the

error discriminator then reacts in a conservative way by considering the drop as a

congestion drop and cuts the congestion window to half (as normal TCP does). We

do this because our aim is to increase the diagnosis accuracy of congestion errors as

much as possible to avoid harming the network. However, if the error occurs while

the congestion window is less than tthresh then it is safe to consider the error a

transmission error.

However, although the use of tthresh heuristics can not guarantee improving the

performance, it will prevent creating congestions.

The CWA algorithm with tthresh is presented in figure 4.4. As we can see in

the algorithm 4.4, after the first drop the value of cwnd is saved in tthresh. Later

when another drop occurs the error discriminator will check if cwnd ≤ tthresh and

if so the drop is probably a transmission drop. Otherwise the drop is assumed to be

a congestion drop. Also, TCP should recalculate tthresh after each timeout event

because TCP will initialize the congestion window and will start building a new

window. This is done in the algorithm by using first drop which will be set to one

after each timeout and hence allowing tthresh to take a new cwnd.

Note that timeout is added to the above algorithms just to show what happens in

case of a timeout, however normally timeout will be in a separate function and will

be called only when the timer expires. Also note that in case of transmission errors
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1: Initialization: prev ack = -1; last sent 3Dack = -1; first drop = 1
2: With every received acknowledgment Acki:
3: current ack = Acki

4: if (current ack == prev ack) then . Duplicate ack
5: dackcount = dackcount+1
6: if dackcount == 3 then . Packet drop
7: last sent 3Dack = Pmax

8: resend packet with seqNo = current ack+1 . No cut for cwnd
9: if first drop then

10: tthresh = cwnd
11: first drop = 0
12: end if
13: end if
14: end if
15: if (current ack > prev ack) then . no more DACKs
16: prev ack = current ack
17: if (last sent 3Dack > current ack) then . Some packets still not acknowledged
18: compute number of drops and reduce cwnd:
19: flight size = last sent 3Dack − current ack
20: num drops = flight size − dackcount
21: if cwnd < tthresh then
22: cwnd = cwnd − num drops
23: else
24: cwnd = cwnd / 2
25: ssthresh = cwnd
26: end if
27: end if
28: end if
29: if timeout==true then
30: ssthresh = max(2,cwnd/2)
31: cwnd = 1
32: first drop = 1 . Initialize first drop after each timeout
33: end if

Variables:
first drop: Flag to indicate that first drop in this connection has occurred.

Figure 4.4: CWA+tthresh Pseudo code
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Figure 4.5: Simple Network Topology

we do not change ssthresh and only change the cwnd since the drop is not congestion

error and probably the link capacity (indicated by ssthreh) has not changed.

In the rest of this thesis we will use the final version of the algorithm

(CWA+tthresh) and we will call it CWA for simplicity.

Finally, one important aim of CWA is to increase TCP congestion window size

by reducing congestion window cut rate in case of transmission errors. However,

TCP only recovers the first dropped packet and leaves the rest to be recovered

by timeouts as we explained in section 2.4.5. CWA will be affected negatively in

this case because TCP resets the congestion window size to one segment after each

timeout so any cut by CWA will be canceled. For this reason, later, we will propose

an algorithm to recover multiple packet drops per window of data which aims to

reduce the effect of timeout events on CWA.

4.2.1.3 CWA Performance

An important aim of CWA is to improve TCP performance by keeping a bigger con-

gestion window in case of transmission errors. In order to measure the improvement

we will measure the average congestion window size during the connection life time.

We assume only transmission errors are present in the connection so we used a

simple topology presented in figure 4.5. Similar topologies are used by other authors

like [77] to test TCP modifications in presence of transmission errors only . Each

link bandwidth bw is fixed to 45Mbps (T3 link). The total link propagation delay
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is 12ms so each link delay dly takes 2ms. In chapter 6 we will test the final system

with different bandwidth and delay values.

Transmission errors are generated in the last link using a two state model to

simulate error and error-free phases and error rates range from 0.001 (0.1%) to

0.1 (10%) with increase of 1% each time. The same error range is used for all

experiments in this chapter except for RTA where we increased error rate up to 20%

to show the improvement under heavy errors as we will see later. In all experiments

we repeat the experiment a sufficient number of times each with different seed for

the random number generator. The 95% confidence intervals are very small and

not visible in the graphs (we repeat the experiment until the upper and lower limit

interval is no more than 5% from the average value) so we draw the average value

only in the graphs.

We run the experiment to measure the TCP congestion window and then we

add CWA to TCP (to replace the standard TCP reaction to errors which is to cut

the congestion window to half) and repeat the experiment with the modified TCP.

The chart in figure 4.6 shows that after adding CWA, TCP gained a higher average

congestion window. This is achieved by CWA preventing unnecessary congestion

window cuts and limiting the cuts to the number of lost packets in case of trans-

mission drops. Figure 4.6 uses log-linear scale because the values of the congestion

window size takes a large range so we use log-linear (or semi-log) scale to make it

easy to see low as well as high values in the y axis.

The increase in congestion window size increases TCP sending rate. Also it

will reduce the chance to have timeouts because with a bigger window TCP gets

more duplicate acknowledgments after drops. These duplicate acknowledgments will

trigger lost packet retransmission and will increase the congestion window during

the fast recovery phase.
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Figure 4.6: TCP vs. CWA. semi-log scale congestion window size (packets)

However, due to the fact that the increase in the error rate will increase timeout

durations as we will see later when we test the RTA algorithm, the congestion

window will not have a chance to grow after a timeout event because TCP will wait

idle for longer times. Moreover, with the increase in error rate many packets will

be dropped more than once and more longer retransmission timeouts will occur due

to multiple packet drops. This is another problem that decreases the performance

of CWA which is multiple drops per window of data. Since TCP resends only one

dropped packet per window the rest will be recovered through timeouts. This will

increase the number of timeout events which will affect the performance of CWA

negatively. In the following section we will solve this problem by using a multiple

drops action algorithm MDA.

Limitations: tthresh is proposed as a second line of defence against creating

unnecessary congestion caused by error discriminators which may diagnoses conges-

tion errors as transmission errors and hence not responding to congestion. tthresh
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tries to prevent this by monitoring drops and recording the congestion window size

(cwnd) when first drop occurs and consider it as an indication that this is where

congestions happens. So if later another drop occurs while the congestion window

is above this size then it is probably a congestion drop.

However, this method may reduce the TCP performance gain from using an error

discriminator if transmission errors occurred while cwnd > tthresh. This is because

if cwnd > tthresh the CWA uses standard TCP action by cutting the congestion

window to half.

However, using tthresh protects the network from unnecessary congestion caused

by error discriminators mistakes. Moreover, in the worst case scenario if all errors

where transmission errors and at the same time occurred while cwnd > tthresh and

hence treated by CWA as congestion errors, the performance will be at worst as

standard TCP (i.e. cut congestion window to half for each drop).

Moreover, we recalculate tthresh after each timeout event because timeout indi-

cates that tthresh value is probably not good to prevent creating congestion since a

timeout usually indicates severe congestion.

Also, since CWA only cuts the cwnd and not ssthresh this will help recovering

cwnd quickly because cwnd is increased exponentially when it is less than ssthresh

(as we explained in chapter 2 under Slow Start). This faster recovery will help to

balance the performance cut that is caused by tthresh.

4.2.2 Recovering From Multiple Drops

4.2.2.1 Motivation

TCP sends only the first packet dropped from a window of data and leaves the rest

to be recovered by the retransmission timeout mechanism after a waiting period of

76



Chapter 4 Improving TCP Error Discriminators Reaction to Transmission
Drops

time. However, multiple congestion drops can occur because of bursty behaviour

of TCP (exponential growth during slow start for example) or because of severe

congestion.

When more than one packet is dropped from the same window TCP resends

the first one dropped and then stops sending packets and remains idle until a time-

out occurs. This timeout will trigger resending the rest of the dropped packets.

However, this costs TCP valuable time in two ways: first the time it remains idle

without sending any data until the timeout occurs and second after any retrans-

mission timeout TCP reduces its congestion window to the minimum (usually one

segment).

To solve this problem for congestion drops, authors in [37] propose a change to

the fast retransmission mechanism in TCP in order to make TCP resend all packets

dropped from the same widow by resending one packet each round trip time; they

call it TCP-NewReno [37]. This method will allow TCP to stay in retransmission

mode until all lost packets are retransmitted. However, the problem here is that

TCP only resends one packet per RTT because it resends a packet for each partial

acknowledgment it receives (a partial acknowledgment is a new acknowledgment

that does not acknowledge all outstanding packets). So if N packets are dropped

from a window TCP will need N RTTs to recover that window.

Another solution proposed by [77] for wireless networks suffering transmission

errors is to resend all non acknowledged data after TCP receives the first partial

acknowledgment; they call it TCP Bulk Repeat [77]. This is based on the assumption

that if more than one packet is dropped from the same window then probably there

are more packets dropped also and hence it is better to resend the whole window

since we expect that other drops have happened. However, although this solution

will cause TCP to recover more quickly in heavy loss networks, it will increase the
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resending rate largely in networks with light/medium losses, especially when using

large TCP windows. For example if the window size is 200 packets and only the

first two packets were dropped then TCP Bulk Repeat will resend the rest of the

window (198 packets) unnecessarily.

4.2.2.2 The Algorithm

Wireless drops usually happen in bursts [3,26], a set of consecutive packets dropped

at once and, since an important source of non-congestion (transmission) drops in

today’s networks is wireless links, in our design we assume that most transmission

drops happen in bursts. Also, other authors like [77, 78] use the same assumption

(i.e. wireless errors occur in bursts) in their work.

Using similar concepts as in CWA, in this algorithm TCP will use the set of

duplicate acknowledgments which has been received after the first drop to estimate

the number of dropped packets per window and, assuming this number represents

consecutive dropped packets, we resend that number of packets starting from the first

packet dropped. As we did in the CWA algorithm, TCP will compute the number

of dropped packets by subtracting the number of duplicate acknowledgments from

the number of actual packets sent from that window. This will give us the number

of packets dropped from this window.

So after the first partial acknowledgment we do not send one packet like NewReno

[37] or the whole window like TCP Bulk Repeat [77]; instead we send only the num-

ber of drops we calculated. This way if the packets dropped were consecutive then we

might recover the whole window in one RTT with no unnecessary retransmissions.

However, if there are more dropped packets in this window or the dropped packets

were scattered then we will propose another retransmission mechanism which can

send them one by one as NewReno [37] or resend the rest of the window as Bulk
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Repeat [77] based on a simplified estimation of the network error rate. Figure 4.7

shows the TCP reaction to a burst of drops and Figure 4.8 shows the proposed idea.

As we can see from the figures the proposed idea will recover the window in less

time than both TCP and NewReno [37] and with less unnecessary retransmissions

than Bulk Repeat [77] providing that there is one burst of errors per window.

The algorithm is presented in figure 4.9.

This proposed algorithm is to be used by the error discriminator to recover from

multiple transmission drops per window. The main benefit is that it increases TCP

performance by increasing the resending rate for lost packets. It allows TCP resend

all packets lost from the same window and this will reduce timeouts especially when

a burst of packets are dropped on the lossy link. Reducing the number of timeout

events is important to improve TCP performance since each timeout event will

reset the congestion window to the minimum and will make TCP to wait idle.

However, in some cases the transmission errors are persistent as in the case of long

link disconnection, and even the retransmitted packets are dropped so there is no

point to keep retransmitting the lost packet so we need to wait (stop sending) for a

period of time to allow the connection to startup again. For this reason the algorithm

retransmits the lost packets only once per window and then it allows retransmission

timeout to occur between windows if the errors are persistent. The variable first dup

in the algorithm is used to allow resending the packets only once per window.

Although the algorithm is directed to transmission errors, we believe it can also

give good results with congestion drops so in chapter 6 we will test both cases.

4.2.2.3 Nonconsecutive Drops

If drops are not consecutive then MDA resends one packet per RTT (as in

NewReno [37]). This is a conservative approach but it will guarantee there is no
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Figure 4.7: TCP and burst of drops
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Figure 4.8: Proposed multi drop retransmission
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1: Initialization: prev ack = -1; last sent 3Dack = -1; first burst = 1
2: With every received acknowledgment Acki:
3: current ack = Acki

4: if (current ack == prev ack) then . Duplicate ack
5: dackcount = dackcount+1
6: if (dackcount == 3 && first burst) then . Packet drop
7: last sent 3Dack = Pmax

8: resend packet with seqNo = current ack+1 . No cut for cwnd
9: end if

10: end if
11: if (current ack > prev ack) then . no more DACKs
12: prev ack = current ack
13: if ((last sent 3Dack > current ack) && first burst) then
14: compute number of drops:
15: flight size = last sent 3Dack − current ack
16: num drops = flight size − dackcount
17: for i=1;i≤(num drops);i++ do
18: resend prev ack + i
19: end for
20: first burst = 0 . One retransmission per window
21: else
22: if (last sent 3Dack ≤ current ack) then
23: first burst = 1
24: end if
25: end if
26: end if
27: if timeout==true then
28: ssthresh = max(2,cwnd/2)
29: cwnd = 1
30: last sent 3Dack = -1
31: first burst = 1
32: end if

Variables:
first burst : Flag to indicate if this is the first burst of drops in this window or not

Figure 4.9: MDA Pseudo code
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unnecessary retransmission. In appendix B we present an idea to resend lost packets

either one per RTT or as a bulk based on error rate estimation per window. Because

we did not test this idea in our simulation we did not include it in the main text.

4.2.2.4 MDA Performance

In order to measure the improvement using MDA we will measure the number of

timeout events during the connection lifetime for TCP before and after adding MDA

since the MDA action is concerned about reducing the number of timeouts TCP

requires by trying to resend all dropped packets from the same window. We use the

same experiment settings as in CWA performance evaluation (section 4.2.1.3).

Figure 4.10: TCP vs. MDA. No.RTO

Figure 4.10 shows number of timeouts for TCP and MDA. As we can see the

number of timeouts in case of MDA is much less than in TCP. However, even when

using MDA, timeouts are sometimes expected to occur especially with higher error

rates where the same packet may be dropped more than once and as we explained
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Figure 4.11: Semi-log scale TCP vs. MDA. No.RTO

before MDA resends the packet only once per window to prevent unnecessary re-

transmission in case the connection will be dead for long time.

When we draw the logarithmic scale on the number of RTO we can see that the

two curves take the same shape as we can see in figure 4.11. This indicates that both

TCP and MDA suffer from the effect of multiplicative congestion window cuts used

in TCP (i.e. cutting congestion window to half after each drop) which will result

in smaller congestion window size and hence less acknowledgments which leads to

more timeouts. We solve this problem in the CWA action described in the previous

section. This shows us that CWA and MDA are complimentary to each other and

for that when we advise an action for the error discriminator we will combine them

together along with the RTA action.

Note that in figure 4.11 number of events for MDA start with value less than one

(0.3), this is because as we explained before that we run each experiment multiple

times and then we take the average of all runs so in this lower error rate the MDA
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was so effective in some runs the number of RTO was 0 and some of them was 1, so

the average was 0.3.

Moreover, we can notice that in figure 4.10 with the increase in the error rate

the number of timeouts start to settle around 250 (i.e. no big increase) in case

of TCP. The is natural because with the increase in the error rate the connection

dries quickly due to large number of dropped packets so the number of sent packets

decreases and hence number of timeouts does not increase too much.

Finally, the fact that even when TCP used MDA the number of timeout increases

shows that MDA is not able to completely hide the effect of multiple packet drops

from TCP leading TCP to fall into timeouts. However, MDA is certainly able to

reduce that effect on TCP especially under lower error rates which leads to the

reduction in timeout events we saw in figures 4.10 and 4.11.

4.2.3 Improving RTO back-off for Transmission Drops

4.2.3.1 Motivation

When a series of timeout events occur in sequence TCP increases its retransmission

timeout (RTO) exponentially (i.e. increases waiting time after drops). This increase

is called retransmission timeout back-off and it is an estimation of the time needed

for the network to empty its buffers after congestions [10,36]. The reason for choosing

exponential increase is to make the TCP sender more careful while the congestion

still exists [29]. However, if there is no congestion and the drops are transmission

drops this exponential back-off could lead to unnecessarily long periods of inactivity.

For this reason previous works like [73] [79] have proposed to give RTO a fixed

value in case of transmission drops and to ignore the TCP back-off policy.

However, unchanging RTO can lead to unwanted congestion caused by TCP
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ignoring the signs of a severe congestion (i.e. multiple timeouts) especially if the

error discriminator used is of low accuracy. Moreover, choosing what RTO value to

use will not be easy and will depend on how accurate RTO estimation was before

the first dropped packet.

The authors in [80] suggested that TCP should not rely on exponential back-

off in case of heavy drops and should use an estimation of the network available

bandwidth to compute RTO. In our work we will use the same idea but with different

implementation as we will explain later. Moreover, we will propose a method to

integrate the new mechanism into TCP by implementing it in an error discriminator

as we will see later in chapter 6.

Our proposal is that in the case of transmission errors the TCP error discrimi-

nator should increase waiting time (i.e. to back-off) with each timeout but in a way

that considers the network status by estimating the network available bandwidth

and to compute the back-off level based on that estimation. The resulting back-off

level will oscillate between exponential back-off and fixed value back-off based on

the estimated bandwidth.

The following section explains the proposed algorithm.

4.2.3.2 The Algorithm

After each timeout event TCP increases RTO (backs-off) as follows [30]:

RTO = RTO ∗ 2 (4.3)

So after n timeout events we can calculate RTO as following:

RTO = RTO ∗ 2n (4.4)
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where n also represents the number of failed retransmission attempts so far (i.e. no

new acknowledgments received).

In our work instead of doubling RTO with each failed retransmission we first

estimate the network available bandwidth and then instead of using n in equation

4.3 as the power of 2 we use a function f(n) which reflects the available bandwidth

just before the first timeout occurred. So after n timeout events the new back-off

policy will be computed as following:

RTO = RTO ∗ 2f(n) (4.5)

To calculate f(n) we will first estimate the available bandwidth. Following [53]

we estimate the available bandwidth bw by calculating the rate of received acknowl-

edgments where each acknowledgment represents one segment size that has been

delivered successfully (this is true even for duplicate acknowledgments). see equa-

tion 4.6.

bw =
segment size

Ti − T(i−1)

(4.6)

Where Ti is the time of receiving Acki and T(i−1) is the time of receiving Ack(i−1).

Using this equation we can estimate the available bandwidth bw as rate of packets

that can pass the network bottleneck successfully during a time equals to Ti−T(i−1).

The increase in this rate means the increase in the available bandwidth and vice

versa. The authors in [53] have tested the effectiveness of this bandwidth estimator

and they showed that it responds well to the increase and decrease in the available

bandwidth. Also authors like [31] [71] have presented a similar method to estimate

the network capacity.

We then calculate a weighted average of the available bandwidth readings bw in
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order to filter sudden changes and we call it avalb bw :

avalb bw = β × avalb bw + (1− β)× bw (4.7)

However, since the estimation of the bandwidth is very related to the estimation

of the network round trip time (RTT) we will use vales between 0.8 and 0.9 for β

which are the same values used in TCP to compute RTT (see section 2.4.4). The

final value that have been used for β was tuned during simulation.

Now using the readings from the bandwidth estimator we compute f(n) as fol-

lowing:

f(n) = n ∗ (1− avalb bw

max avalb bw
) (4.8)

where max avalb bw is the maximum value of the available bandwidth seen so

far.

The algorithm to calculate available bandwidth is presented in figure 4.12

1: Initialization: β = 0.9; current time =0; max avalb bw =0
2: With every acknowledgment Acki:
3: prev time = current time . T(i−1) = Ti

4: current time = get current time
5: bw = segment size / (current time - prev time)
6: avalb bw = β * avalb bw + (1-β) * bw
7: if avalb bw > max avalb bw then
8: max avalb bw = avalb bw
9: end if

Figure 4.12: Available bandwidth estimation

This algorithm should be called only after the TCP sender receives at least two

acknowledgments in order to be able to calculate T(i−1) = Ti. Also after calculating

the first bw value we should set avalb bw = bw.
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The algorithm to calculate RTO is presented in Figure 4.13.

1: Initialization: Fn = 0; ORTO = CRTO
2: After each timeout:
3: n = n+1
4: Fn = n * (1- (avalb bw/max avalb bw))
5: CRTO = ORTO * 2Fn

Variables:
n: Number of timeout events so far. Note TCP should initialize n to 0 when it
receives a new acknowledgment.
ORTO : Original timeout: timeout calculated based on RTT readings and without
back-off as in equation 2.4.
CRTO : Current timeout: timeout with back-off.

Figure 4.13: RTO back-off algorithm

The idea is that in case of transmission errors, the ratio avalb bw/max avalb bw

will be used to estimate the back-off level of the error discriminator retransmission

timeout. So if there is no congestion then the avalb bw will be very close to the

max avalb bw. As we can see in the algorithm in figure 4.13, this will result in

smaller Fn and hence a smaller retransmission timeout value (CRTO).

Now when the error discriminator decided that the error is a transmission error

then instead of using a long retransmission timeout as in TCP it uses a timeout

calculated based on the available bandwidth which make it more related to current

network conditions.

This will help TCP if there is no congestion and there are only transmission

drops since it will decrease waiting periods during timeout events and hence will

increase the retransmission rate which will give packets more chance to be delivered

over the lossy link. Also reducing the waiting time in case of non-congestion errors

will allow TCP to send the same amount of data in shorter periods.
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Moreover, since the congestion window after a timeout is reduced to one segment

the increase in retransmission rate will not increase the risk of congestion on the

network since the sender window is restricted to one packet only. This will make the

use of an error discriminator possible even with low discrimination accuracy since

TCP will start with a small congestion window after each RTO so even if the error

discriminator mismatches a congestion error for a transmission error the impact on

the network will be minimal.

Moreover, in case of congestion the estimated available bandwidth will decrease

and this will increase the value of Fn in the algorithm. So even if the error discrim-

inator mismatched congestion error for transmission error, the back-off will be high

and near to standard TCP (i.e exponential increase in the RTO).

Finally, we want to note that our work to use bandwidth estimation to compute

the back-off value is based on the work presented in [80]. However an important

difference between our method and the one in [80] is that it uses an additive increase

of the RTO instead of multiplicative increase as we used (i.e. it uses + instead of

* in equation 4.3). However, although using additive increase decreases the length

of RTO during heavy transmission losses, we do not think it is a good choice when

both congestion and transmission errors coexist because this low rare of increase in

RTO length will make the error discriminator to cause congestion in case of error

mismatch since the increase in the RTO will be small and the network will not

have time to flush the congestion. However, in our algorithm, using multiplicative

increase of RTO length will prevent this, as well as make minimum changes to

TCP implementation since TCP uses multiplicative increase to compute the back-

off level. Another difference is that in our implementation we calculate maximum

available bandwidth dynamically while in [80] the maximum bandwidth is limited

to 128 KBps. Also, in our work we propose a practical method to integrate the
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new mechanism into TCP by implementing it in an error discriminator as we will

see later in chapter 6 which will allow using it in low and high error rates and also

in presence of congestion errors. However, the scheme in [80] is proposed to work

under heavy errors only (special case).

Notes and issues:

• We call this algorithm the Retransmission Timeout Action (RTA).

• In the algorithm in figure 4.12 we recalculate the available bandwidth every

time TCP receives an acknowledgment. Typically the estimation should be

calculated only when TCP receives new acknowledgments since using duplicate

acknowledgments may result in lower estimation of the bandwidth since the

time between the last new acknowledgment and the first duplicate acknowl-

edgment is more than the time between two new acknowledgments. However,

we think that using the wighted average to calculate the available bandwidth

and the fact that consecutive duplicate acknowledgments after a drop will

probably have the same arrival rate as consecutive new acknowledgments; so

we decided to use new as well as duplicate acknowledgments in our algorithm.

4.2.3.3 RTA Performance

Here we will compare the total time TCP stays idle because of RTO before and

after adding the RTA. We use the same experiment settings as in CWA performance

evaluation (section 4.2.1.3) except that we will increase the error rate range up to

20% because with higher error rates TCP will have longer timeout events because

packets are dropped more than once.

The results are presented in figure 4.14. As we can see, when we use RTA

there is a noticeable decrease in the total length of RTO events especially with the
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Figure 4.14: RTO length

increase of the error rate (the improvement reaches 10% over 20% error rates). This

is due to the fact that back-off policy is most important when multiple drops of

the same packet occur which leads to multiple failed retransmission events. Each

failed retransmission increases the TCP waiting time exponentially. Since multiple

packet drop events increases with the increase in the error rate we can see how RTA

reduces the effect of multiple drops on TCP since the back-off (waiting time) is no

longer exponentially increasing with each drop but instead it depends more on the

actual network condition and estimated bandwidth. Figure 4.15 shows a snapshot of

TCP back-off and RTA back-off compared to the estimated bandwidth under heavy

transmission drop rate(20%). As we can see TCP back-off responds to the high

drop rate by increasing the back-off level to the highest value 64 regardless of the

network conditions. However, in case of RTA the back-off takes a value related to

the available bandwidth (bandwidth measured in Mbps) which changes according

to the changes in the network available bandwidth (i.e. it decrease with the increase
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Figure 4.15: Available bandwidth and backoff level

in the available bandwidth and vise versa).

However, under low error rates there is no improvement as we can see in fig-

ure 4.14 because under these low error rates we have less timeout events and it is

harder to have multiple drops of the same packet and hence TCP does not increase

RTO. However the algorithm still able to reduce RTO length and hence TCP idle

time with the increase of the error rate.

Limitations: The limitations we present here are related to the bandwidth esti-

mator proposed in [53] which we used in RTA. If the acknowledgments are dropped

the bandwidth estimation will not work probably. However, this problem came orig-

inally from TCP design. TCP uses acknowledgments to compute RTT and RTO. If

the acknowledgments are dropped TCP will not compute RTO properly and since

our algorithm will be added to TCP it will suffer the same problem.

However, the assumption that acknowledgments will be delivered in most cases is

supported by the fact that acknowledgments are usually very small packets compared
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to normal TCP packets (usually 4% of the normal TCP segment size) so there is less

chance to have them dropped because of transmission or congestion errors. Also,

in the case of acknowledgments drop, the RTA estimation of the bandwidth will

decrease so the performance will be similar to TCP and this will guarantee no harm

on the network since TCP backs-off exponentially.

4.3 Transmission Window Action (TWA)

In the previous sections we proposed three algorithms, CWA, MDA and RTA. We

will call these algorithms in combination the transmission window actions TWA.

Although the functionality of each algorithm is independent, these algorithms were

designed to form a transmission action for an error discriminator to help it to react

to transmission errors.

Figures 4.16 shows general design for error discriminator and figure 4.17 shows

Figure 4.16: Error discriminator general functionality

the changes after adding TWA.
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Figure 4.17: Error discriminator after adding TWA

It is of our interest to see CWA, MDA and RTA work together before adding

them to the error discriminator. So, in the next chapter we will test the performance

of TWA to see how it improves the performance in case of transmission errors only.

In chapter 6 we will add TWA to an error discriminator and test the performance

in presence of congestion and transmission errors.

4.4 Summary

The aim of any end-to-end TCP error discriminator is first to improve TCP per-

formance over lossy link and second to avoid causing any harm to the network by

not increasing the level of congestion. In our work we realize the need to have a

proper transmission window action (action in case of transmission errors) that will

help an end-to-end error discriminator to reach the above aims. We proposed three

algorithms: Congestion window action (CWA), Multiple drops action (MDA) and

Retransmission timeout action (RTA) and we call them the transmission window
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actions (TWA) and they will be used by error discriminators in case of transmission

errors.

The CWA computes how many packets were dropped in a single window by

subtracting number of duplicate acknowledgments from the window size. Then it

reduces the window size according to number of dropped packets only.

The MDA works by resending only the number of packets equal to number of

packets dropped. This will help to recover the TCP window in one RTT when

dropped packets are in sequence (burst of drops).

The RTA algorithm estimates the available bandwidth and uses this estimate to

decide the RTO back-off level instead of using exponential back-off as in TCP.

Each proposed algorithm helps to achieve the above two goals as follows:

• Goal:Increasing TCP throughput over lossy links:

– CWA algorithm increases the average congestion window size for trans-

mission errors because it does not cut the congestion window to half of

its original size after each error but makes the cut based on number of

dropped packets.

– MDA algorithm reduces number of RTO events by resending all lost pack-

ets in the same window.

– RTA algorithm reduces the length of RTO events for transmission errors

by estimating the available bandwidth so if there is no congestion or the

congestion is low then the back-off level will not increase exponentially

as in the case of TCP.

• Goal: Avoid increasing congestion in the network:

– CWA algorithm allows TCP to reduce the congestion window even for
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transmission errors which reduces the effect of error discriminator mis-

takes between congestion and transmission errors.

– MDA algorithm resends lost packets only once per RTT and allows RTO

to occur between windows which will allow TCP to slow down if there is

severe congestion or the transmission errors are persistent.

– RTA algorithm allows TCP to increase RTO based on the estimated

available bandwidth which will increase the RTO with the decrease in

the available bandwidth because of congestion.

These actions will help any end-to-end error discriminators to improve TCP

performance in case of transmission errors as we saw in this chapter. Also they will

help to prevent causing unnecessary congestion in the network as we will see later

in chapter 6.
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Simulation Model and

Performance Evaluation of TWA

5.1 Introduction

In this chapter we will explain the simulation model we used in our work. Then

we will do an evaluation of TWA to show the improvement it adds to TCP perfor-

mance in presence of transmission errors only. Also we will test each component of

TWA namly CWA, MDA and RTA to show the role of each one in improving the

performance.

In chapter 6 we will add TWA to an error discriminator where the tests will be

done in presence of congestion and transmission drops.

5.2 Simulation Model

In this section we will try to answer questions like: Why we use simulation to test

our proposal? and what simulation software we are using to build our simulation
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and why?

After that, we will explain the topology and simulation settings used during our

experiments.

Following we will start by explaining why we used simulation in our work.

5.2.1 Rationale Behind Simulation: Creating a Controlled

Environment

It is important to concentrate on the variables that have a direct relation to our

study and to eliminate or minimize the effect of other variables which have no direct

relation.

Achieving this goal is not easy in real life, especially in systems like computer net-

works which usually contain many elements. For example, link bandwidth, routers

processing power and buffering capacity are variables that may change from one

component to another and from time to time in the network and are hard to control

in a real system.

Because of that we need to create a controlled environment in which we can

control all the variables that may affect our experiment, simulation is one solution.

We can use simulation to create a simplified model of the network where we can

exclude unwanted variables by fixing them and allow only related variables to affect

the results. Also sometimes simulation is the only option to test new protocols

especially if the required change in the network is of wide scale [29].

However, simulation is not as good as real life experimentation because in sim-

ulation we exclude many variables that may be present in the real life. Moreover,

the quality of the simulator itself and how well it is programmed may also affect the

experimental results.

99



Chapter 5 Simulation Model and Performance Evaluation of TWA

Considering previous points we chose to base our simulator on ns2 [81] which is

one of the widely used simulators in computer networks research. Many studies have

used ns2 in evaluating new and existing protocols, for examples see [5,37,56,82,83].

Moreover, since my work is strongly related to TCP, it is interesting to know

that the TCP implementation in ns2 has been developed by the Computer Systems

and Engineering Group at the University of California1 who implemented some of

the first and popular versions of TCP like TCP-Tahoe in UNIX 4.3BSD-Tahoe and

TCP-Reno in UNIX 4.3BSD-Reno [20,84] and it is a direct implementation of TCP

specification as explained in [20,24]. This has added more motivations for using ns2

as a base for the simulation model.

5.2.2 Topology and Simulation Settings

We use a single bottleneck dumb-bell network topology commonly used in TCP

evaluation [85] and presented in figure 5.1. In this topology we have two kinds of

sources the TCP sources (TS) and UDP sources sources (US). In all experiments

the first TCP source (TS1) will apply the modified protocol we want to test.

Destinations for TCP sources are named TD and destinations for UDP sources

are named UD. The path to the destinations pass through two intermediate routers

R1 and R2. The routers use drop-tail queues and following [11] recommendations

we set all buffer sizes to at least the Bandwidth-Delay product of the bottleneck link

(Bandwidth-Delay product = bandwidth in bits per second multiplied by total delay

in seconds and divided by packet size [29]). This will prevent creating uncontrolled

congestion drops along the connection path. The path to TD1 contains transmission

errors at the last hop which will be used to test the proposed algorithms.

Link Bandwidth/Delay:

1 See copyright statement in file tcp.cc in ns2
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Figure 5.1: Network topology

In our experiments we vary the bandwidth and delay only when we want to mea-

sure their effect on the performance. However, our main focus is on the effect of

transmission errors so when we vary the error rate the bandwidth is fixed to a typ-

ical T3 connection (45Mbps) and the maximum total propagation delay is fixed to

48ms (this value represents our attempt to obtain an average delay for UK-Europe

connections as we will explain later). However, the actual total delay can vary due

to queuing delay even if the propagation delay was fixed.

The bandwidth of each source is presented in figure 5.1 as bws and the propaga-

tion delay is denoted as pdlys. The bottleneck bandwidth bwbn and delay pdlybn are

set according to whether we want to create congestion drops or not. If we do not

want congestion drops then bwbn is set to the aggregate bandwidth of all sources so

that bwbn = N * bws where N is number of sources. However, if we want to create
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congestion drops then we set bwbn to be no more than 80% of the sources aggregate

bandwidth and we tune pdlybn until we get the required level of congestion drops.

In this topology we create one bottleneck between R1 and R2 because of that

the bandwidth and delay of the links from R2 to destination nodes, bwd, pdlyd, takes

same values as the bandwidth and delay from sources to R1, bws, pdlys, in order to

prevent creating bottlenecks at the last links.

Traffic:

The traffic for TCP sources is generated using FTP applications in ns2. We assume

that FTP has always data ready to send (bulk data transfer). TCP packet size is

chosen to be 1KB (1024 bytes) which is close to the default value in ns2 (1000 bytes).

However, we set it to 1024 because the packet size is always rounded in TCP to the

lower multiple of 512 bytes [35, P897] [23]. Choosing the optimum packet size is an

open question and depends largely on the underlying network [86] so we do not deal

with it here. TCP congestion window size is set to the Bandwidth-Delay product.

It has been accepted that the traffic in the Internet is of bursty nature and

it shows self-similarity and correlation over large time scales [87]. This property

of Internet traffic is called Long Range Dependence (LRD) [87]. One method to

simulated LRD traffic is by using multiple On-Off sources where the length of On-

Off periods follows long tailed distribution like Pareto [87].

However, a more recent model to generate LRD traffic is proposed by Muscariello

et al [88]. The authors in [88] indicated that their model can approximate Internet

traffic (burstiness and correlation) by generating multiple sessions and each session

produces multiple flows and each flow produces multiple packets and this hierarchical

model of sessions, flows and packets arrival processes are Poisson each with different

arrival rates [88]. The authors showed that by multiplexing these Poisson arrival

processes this model was able to approximate real Internet traffic traces presented
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in [88].

So in our experiments the cross traffic is generated by multiplexing multiple UDP

sources which generate packets using Muscariello et al. [88] traffic generator.

We choose this traffic generator because we found it to generate traffic with high

degree of LRD. However, before using it in our simulator we validated that it is able

to approximate Internet traffic as we present in appendix C. Also it is simple and

easy to include in our simulator. This is largely because the authors provide the

source code [89] which can be added easily to ns2 C++ implementation.

The Error Model:

One of important sources of non-congestion (transmission) errors in today’s networks

are wireless links.

We model transmission errors using a two state Markovian chain which is a simple

model widely used to model existence of burstiness in wireless link errors [90]. Many

authors indicated the bursty nature of transmission drops in wireless networks [3,

26, 90] which can lead to multiple packet drops from the same window. The error

model consists of two states: a good state (error-free) g and bad state (error)b. The

system can be at one state at any time. The duration in each state is a random

number with exponential distribution.

Following [91], we calculate the average length of the good state, g, based on the

length of the bad state, b, and the required error rate e using following formula [91]:

g = b× 1− e

e
(5.1)

We calculate the average bad state length, b, based on the packet arrival rate

to the lossy link. For example if packets arrive to the lossy link at a rate equal to

1 packet every 0.001 seconds, then to have an average burst size of 10 packets we
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make b = 0.01 then we obtain the good state length using equation 5.1 based on

the required error rate e.

Many authors used a similar two state Markov model to approximate wireless

errors in their experiments; see for examples [56] [77] [72] [90] [61].

In most of our experiments we run the experiment for a minimum of 100 seconds

(100000 ms) and the collection of data starts after a 5 seconds in order to remove

any initial effects and to allow the network to settle. From our experience we found

that in most cases 100 seconds is enough to show all aspects of TCP behaviour.

Moreover since we run each experiment multiple times, we calculate the 95% confi-

dence interval and use it to decide if number of runs and length of runs is sufficient

as we will explain in more details in section 5.2.6.

This topology and all previous settings will be the basic design for all experiments

in the rest of the thesis. However, during each experiment we will specify any settings

specific to that experiment and any change we need to do in the general structure

described above in order to make it easy to replicate any experiment we did.

As we said before the main aspect we want to test is the effect of errors on

TCP performance and how our proposal will improve TCP performance and prevent

increasing congestion level. Although this topology may seems simple we think it is

sufficient to evaluate these aspects. A more complex topology will be used later to

study other aspects of TCP performance.

Moreover, although similar topologies are used by other authors like in [1,85,92]

to evaluate TCP variations, we must emphasize that all the results obtained are

limited to any limitation found in our topology and we hope we can explore more

complex topologies in future work.
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5.2.3 Round Trip Time - RTT

Round Trip time is the time between sending a packet and receiving its acknowledg-

ment by the sender (RTT = summation of the links propagation * 2 + processing

time in the intermediate nodes). Because RTT is important to the performance of

TCP since TCP performance depends heavily on the correct estimation of the RTT

in order to calculate the retransmission time out at the TCP sender, we gave RTT

careful consideration and we work to select the values of RTT in our experiments

based on data from real networks.

In order to decide the minimum and maximum values for the RTT in our exper-

iments we have extracted real Internet RTT readings from the Internet End-to-End

Performance Monitoring Project (IEPM) [93,94] which aims to monitor the perfor-

mance of the Internet using a tool called PingER (Ping End-to-end Reporting) [94].

PingER uses simple packet echoing massaging mechanism where the sender sends

a packet and waits for an echo from the receiver. Information like round trip time

and packet loss rate can be then calculated.

We have extracted data about round trip times that cover twenty four months

for the period from April 2005 to March 2007. These data are RTT readings from

two different sites in the UK to 76 different Internet sites in North America, South

America, Europe, East Asia and Africa. These data provide monthly readings of

the Average RTT for the monitored sites. We have extracted the monthly average

RTT for the period from April 2005 to March 2007 in order to decide the Max and

Min RTT that we will use in our experiments. Figure 5.2 shows the Min, Max

and Average RTT during the 24 months period (April 2005 to March 2007). The

Max RTT represent the maximum RTT reading for each month and the minimum

represent the minimum reading. The Average RTT represents the average RTT

during each month.
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Figure 5.2: Min, Max and Average RTT values

Based on the data we have got and the compilation we did, RTT was chosen to

be between 10ms to 700ms and during the experiments the RTT will vary between

these values. These values are expected to present the Minimum and Maximum

RTT that can be experienced in a real Internet connection.

When the RTT is fixed in the experiments it takes value of 48ms. This value was

chosen in same way as Min and Max RTT but by taking readings for connections

between UK and twelve different European countries . We take the average RTT

for each month and then we compute the average RTT of the twelve months. The

result is the average RTT between UK and the twelve European countries during

the year 2006.

5.2.4 Performance Metrics

Different performance metrics are used in our work depending on each experiment.

Following we list the metrics we used.
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Throughput/Goodput: Throughput is a metric to measure the transfered

volume of data in a given amount of time (for example number of bytes per second).

However, throughput includes both new and retransmitted data.

Goodput is a subset of the throughput which considers only the data that have

reached the destination safely without considering the retransmissions and it is a

more accurate metric to measure the performance when we want to know the rate

of actual data that has been delivered (which is what matters for the end user).

Because of that we use goodput as a main performance metric in our experiments.

However, since throughput is more common term we will use it to mean goodput

unless stated otherwise.

Also, in many cases we use Normalized Goodput which is the per-flow goodput

over the maximum achievable goodput and ranges from 0 to 1. The maximum

achievable goodput is the bottleneck bandwidth.

Congestion window size: Congestion window is a metric unique to TCP which

controls how many packets TCP can send before receiving acknowledgments. It is

tightly related to the TCP sending rate. So a bigger congestion window is desired

so the average congestion window size is an important metric to measure how fast

TCP is sending data.

Number/Length of timeout events (RTO): When drops occur and acknowl-

edgments stop arriving to the TCP sender, the sender waits for a timeout to occur to

restart sending. However, the length of this timeout period affects the performance

of the sender and the network at the same time. Too long timeouts will reduce TCP

performance and too short timeouts may increase the congestion in the network.

Also the frequency of timeouts is important since with each timeout event the TCP

congestion window is reset to one segment.

Congestion loss ratio: Is the number of dropped packets from the bottleneck
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router over total number of transmitted packets.

Transmission loss ratio: Is the number of dropped packets because of non-

congestion errors over the total number of transmitted packets.

Other performance metrics like fairness between different flows are used also in

some experiments as we will present later.

5.2.5 Simulation Validation

Since our simulation is based on ns2 [81] we assume that the underlying network

simulation functions are validated. This is based on the fact that ns2 is a widely

used simulator in computer network research [95] largely because it is an open source

software so any bug in the code can be traced and notified to ns2 developers and

the next release can have that update.

However, since most of our work is based on the TCP model in ns2 we use an

analytical model provided by Padhye et al. in [96] to validate it. The Padhye [96]

analytical model computes an approximation of TCP throughput taking into account

the factors that affects the performance like errors and round trip time. We use the

analytical model to compute the expected results and then compare them with our

experiments results.

The Padhye [96] model is:

Thput(e) ≈ 1

RTT
√

2ae
3

+ T0 ·min(1, 3
√

3ae
8

)e(1 + 32e2)
(5.2)

Where RTT is the round trip time, a is the number of packets acknowledged

by a single acknowledgment, e is the error rate and T0 is the duration of the first

(minimum) timeout occurred during the connection.

Mainly the model can be divided into two parts one to compute the effect of
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congestion window cuts on the performance and another to compute the timeout

effect. The first part in formula 5.2 is :

RTT

√
2ae

3
(5.3)

In this part the effects on congestion window size is calculated.

The second part considers the effect of the timeout:

T0 ·min(1, 3

√
3ae

8
)e(1 + 32e2) (5.4)

As we said, in order to validate TCP in ns2 we use formula 5.2 to compute TCP

expected throughput with different round trip time values from 32ms cross country

delay [75] up to 630ms global Internet delay and with packet drop rate of 1%. Then

we use ns2 to run an experiment using same conditions and compare the results as

we can see in figure 5.3.

Figure 5.3: Analytical and Experimental models comparison
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Since formula 5.2 is an approximation of the expected throughput we do not ex-

pect to get exact match between the experimental and analytical results. However,

the experiment results should follow a similar pattern as the analytical results and

it is clear from figure 5.3 that experimental and analytical results follow similar re-

action to packet drops and to RTT increase. Moreover, both results follow expected

behaviour of TCP since typically TCP throughput decreases with the increase in

RTT for fixed window size. One contribution of our work is the validation of TCP

model in ns2.

Since in our experiment our aim is to see how a single TCP connection reacts to

different RTT values and the drop rate so we used a subset of the topology presented

in figure 5.1. In this topology there is one TCP sender, dly takes values from 32ms to

630ms and the last link suffers from a transmission error rate of 1%. The bandwidth

in all links is set to 45 Mbps.

Moreover, Biaz et al. in [60] gave a general explanation of how to use the Pad-

hye [96] model to compute TCP performance after adding congestion and transmis-

sion errors. They explained how to introduce both error types as follows : consider

the transmission error rate to be et and the congestion error rate to be ec. Then the

error rate e in formula 5.2 is computed as following e = et + ec.

We believe that validating TCP in our simulator model gives validation to the

models we derived from it. Also, during our simulation we use extensive tracing for

many variables in order to spot any unexpected patterns. This process is continuous

and goes with each experiment. We will mention any unexpected behaviour and

explain it when we discuss experimental results.

Finally, we implement some mathematical functions in our simulation like the

correlation, covariance and slope functions. In order to validate these functions

we run the simulation using these functions and then compare the result we got
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with the result using the same function from a known mathematical software like

MatLab [97] or Ms-Excel [98]. By using this method we can ensure the correctness

of our implementation.

However, the reason why we implemented these functions directly in ns2 in-

stead of using external software was because we needed instant results during the

simulation itself since some algorithms use these functions.

5.2.6 Confidence Intervals and Relative Precision

Usually when we run a simulation we use different random numbers for each run in

order to produce different traffic and error patterns. Then we calculate an average

value of all outputs from all experiments we have done. This average is an estima-

tion of the actual average we get if we run the experiment for all possible random

numbers. However, since we cannot run the experiment for all random number we

need to know how accurate is our average (i.e. how close to the actual average).

Here comes the role of confidence levels which is a statistical method to give us

confidence on the simulation output average value.

According to [3] the simulation result can be considered accurate enough if we

have at least 95% confidence level. The 95% confidence intervals can be computed

by running the experiment multiple times as follows:

• First run the experiment for N times each with different seed for the random

number generator.

• Consider Xi the output of each run where 1 ≤ i ≤ N .

• Consider X̄ the average of Xi.

• Compute the standard deviation of all runs σ[X]. The standard deviation is

111



Chapter 5 Simulation Model and Performance Evaluation of TWA

computed using the following equation: σ[X] =

√∑N
i=1(Xi−X̄)2

N
.

• Compute the confidence intervals as following : CI = α×σ[X]√
N

. Where α de-

pends on the confidence level we desire which is in our case 95% and according

to [3] α = 1.96 for confidence level 95%.

Now, after computing CI we can say that we are 95% confident that the actual mean

is in the range X̄ − CI ≤ Actualmean ≤ X̄ + CI.

However, the confidence interval CI can be very large which indicates that we

need more runs of the experiment. For that we can use the relative precision RP [3]

which is the ratio of the confidence interval CI to the simulation average output X̄,

RP = CI
X̄

, and using it we can know when we can stop repeating the experiment.

Following [3] [99] [100] we choose RP be at most 10%. So the experiment should

be repeated until RP ≤ 10%. However, in many experiments we try to reduce RP

to be ≤ 5% which will give more accurate average value.

Figure 5.4: Experimental results with 95% confidence intervals

Following we will give an example of using 95% confidence level. We will run
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RTT Throughput Standard deviation Confidence Intervals Relative precision
32 2338.59 113.72 49.84 0.021
102 920.30 62.07 27.20 0.029
168 566.61 56.92 24.94 0.044
234 410.05 46.77 20.50 0.049
300 333.03 44.27 19.40 0.058
366 279 40.83 17.89 0.064
432 234.67 36.63 16.05 0.068
498 202.47 39.37 17.25 0.085
564 172.57 24.40 10.69 0.061
630 164.33 33.97 14.89 0.090

Table 5.1: Confidence intervals and relative precision for 95% confidence level

TCP with different RTT values (as we did in the previous section to validate TCP)

and this time we will add the 95% confidence intervals with relative precision no

more than 10%. Figure 5.4 shows the results. As we can see in most cases confidence

intervals are very small which indicates that we did repeat the experiment sufficient

number of times at each point.

Table 5.1 shows the 95% confidence intervals and relative precisions for the points

in the figure.

5.3 Performance Evaluation of TWA

In this section we will test the performance of the transmission window actions TWA

(CWA, MDA and RTA) presented in chapter 4. As we said in chapter 4 the main

objectives of TWA are to increase TCP throughput over lossy links and to avoid

increasing congestion in the network.

We will add TWA to TCP and test if it can improve TCP performance in presence

of transmission errors (first aim). We will use the topology explained in section 5.2.2

but the assumption here is that all drops can be correctly diagnosed by an error

discriminator and TWA will be called only for transmission (non-congestion) errors.
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Because of that bottleneck bandwidth will be equal to the aggregate bandwidth of

all senders (i.e. for N sources bwbn = N * bws) in order to avoid creating congestion.

Later in chapter 6 we will incorporate TWA in an error discriminator and show

how it can avoid increasing network congestion (second aim) as well as improving

the performance when transmission and congestion errors coexist.

In order to show the effect of adding TWA to TCP we compare it with the

throughput of TCP using the same topology and experimental conditions. We run

the experiment multiple times each time with different seed for the random number

generator so we can generate different traffic and error patters. Transmission error

rates generated as explained in section 5.2.2 and ranges from 0.001 to around 0.1

with 0.01 increase step (so exact errors rates used are 0.001, 0.011, 0.021, 0.031,

0.041, 0.051, 0.061, 0.071, 0.081, 0.091 and 0.101 error rates). This range covers low,

medium and high transmission error rates as presented in [1] for wireless networks.

We found that the experiment run time and number of runs are sufficient that

the 95% confidence intervals are very small and do not appear in the charts.

Figure 5.5 shows the performance of TCP before and after adding TWA in a

semi-log scale. Goodput is normalized by each flow fair share of the bottleneck

bandwidth.

Also we compare TWA with two TCP variations, TCP-NewReno [37] and TCP-

Sack [45] (both explained in chapter 3). However, TCP-NewReno and TCP-Sack

has an advantage over TCP that they can recover multiple drops from the same

window.

In figure 5.6 we present the performance with TCP-Sack [45]. In figure 5.7 we add

TCP-NewReno [37]. As we can see in all cases TWA has the highest performance.

However, we can notice that due to different techniques used by NewReno

and Sack to recover form multiple packet drops, Sack has a higher improvement
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Figure 5.5: TCP and TWA semi-log scale normalized goodput

Figure 5.6: TCP, TWA and Sack semi-log scale normalized goodput
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Figure 5.7: TCP, TWA and NewReno semi-log scale normalized goodput

over TCP. The reason why Sack has a higher performance than NewReno is that

NewReno is able to recover one packet every RTT while Sack is able to recover mul-

tiple dropped packets in a single RTT [46].Moreover, since NewReno can recover

one packet per RTT it has very small improvement over low error rates (over 0.001

error rate NewReno is higher than TCP around 6% and the peak improvement is

16% over 0.061 error rate) where number of drops is small compared to higher error

rates.

The average improvement of TWA over TCP is 105%. Although this improve-

ment seems high it is common to have similar improvements when TCP avoids

cutting the congestion window. For example TCP-Casablanca [56] has similar im-

provement, however, TCP-Casablanca [56] does not implement action for trans-

mission errors and hence avoids cutting congestion window in case of transmission

errors. However, the merit of our technique is that we do not avoid cutting the

congestion window completely which will help preventing congestion as we will see
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later.

The main reasons why TWA is able to also outperform both Sack and NewReno

although they can recover multiple dropped packets is that besides MDA which

allows TWA to recover multiple drops, TWA also applies CWA which reduces the

congestion window cut rate from 50% each time a drop occurs to a rate equal to the

number of dropped packets from each window. Also, the use of RTA in TWA has

reduced the length of timeout events.

To explore more the effect of each component of TWA (CWA, MDA and RTA)

we show in figure 5.8 how TWA increases the average cwnd size compared to TCP.

Figure 5.8: TCP and TWA average congestion window size

This increase is mainly due to the CWA component of TWA.

Also in figure 5.9 we show the decrease in number of RTO caused by applying

MDA. Finally, RTA reduces the length of RTO and hence the time TCP stays idle

as we can see in figure 5.10. All these factors contributed in the performance gain

presented in figure 5.5.
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Figure 5.9: Number of retransmission timeout events

Figure 5.10: Total idle time for TCP and TWA
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5.4 Summary

In this chapter we started by presenting our simulation model settings and the

techniques we used to validate it.

We then tested the performance of TCP after adding the new transmission win-

dow action TWA. The results show that TWA has a positive impact on TCP per-

formance in presence of transmission errors.

Then we tried to answer the question of why TWA is able to improve TCP

performance by looking at each algorithm that forms TWA namely: CWA, MDA

and RTA and seeing how each one contributes to improving the performance.

However, the TWA has been tested so far only in the presence of transmission

errors. Real systems may suffer from transmission as well as congestion drops. In

the following chapter we will add TWA to an end-to-end TCP error discriminator

to see how TWA affects the performance.
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Chapter 6

End-to-end TCP Sender Error

Discriminator with New

Transmission Drops Action

6.1 Introduction

Our aim in this chapter is to design an error discriminator which can discriminate

between errors that occur during congestion phases and errors that occur during

non-congestion phases, and use the transmission drop actions (TWA) we proposed

in chapter 4 to implement the error discriminator reaction to non-congestion (trans-

mission) drops. This will allow us to test the performance of TWA in the presence of

both congestion and transmission errors. Also it will allow us to see how TWA can

improve upon TCP performance and at the same time prevent/reduce any increase

in the network congestion level which could occur when we use error discriminators.

We call the proposed error discriminator TCP-RTT because it depends totally

on the round trip time (RTT) in its operation. In the following section we will
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describe the design of TCP-RTT.

6.2 TCP-RTT

Using round trip time RTT to predict congestion is not new; TCP-Vegas [49] for

example uses round trip time to compute expected throughput and to adjust con-

gestion window accordingly. It uses RTT and TCP window size to infer congestion

by varying the sender window size and measuring changes in network conditions (i.e.

RTT changes).

In our design we will use the increase in RTT as an indication of congestion.

Studies like [72,101] have reported the presence of strong positive correlation between

the increase in network load (congestion) and increase in round trip time in both

wired and wireless networks.

We aim here to design a congestion predictor based on RTT estimation and to

use it to aid TCP in order to improve its throughput by discriminating between

error types when transmission errors co-exist with congestion errors.

Our design will be based on a sender based end-to-end error discriminator called

the Spike [1] error discriminator (presented in section 3.5.2.13). The reason why

we based our design on Spike [1] is that it is sender based, totally end-to-end and

uses only delay information to predict congestion. Having an end-to-end solution

will limit the changes to the end points and leave the network unchanged. Also, we

want it to be sender based in order to limit the changes to the server side only, as

the number of servers is usually much lower than the number of clients. .

Also, Spike [1] has shown that it has moderate accuracy in many of the scenarios

presented in [1] so we can test the effect of adding the new transmission window

actions (TWA) on the network congestion level.
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Spike [1] defines two sates: Spike-state and non- spike-state. In the spike-state

the connection is considered to be in congestion state and any drop occurring during

this period is considered to be a congestion drop. During the non-spike-state any

drop is considered to be a transmission drop [1] see figure 6.1. The system enters

Figure 6.1: Spike states [1]

spike-state if the relative one way trip time (ROTT) exceeds a threshold, SpikeStart,

and ends when the ROTT becomes below SpikEnd [1]. SpikeStart and SpikEnd are

computed dynamically as follows:

SpikeStart = min(ROTT ) + α(max(ROTT )−min(ROTT )) (6.1)

SpikEnd = min(ROTT ) + β(max(ROTT )−min(ROTT )) (6.2)

where the best result is obtained when α is 0.5 ad β is 0.33 according to the authors
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in [1].

However, since there is no published implementation of Spike [1] error discrimi-

nator (as far as our search went), we have to design and implement the error discrim-

inator from scratch and then to add it to ns2 [81]. This gave us a good opportunity

to look at many aspects of the error discriminator functionality in great detail, and

it allowed us to understand how it actually works and to understand the many

difficulties an end-to-end error discriminator may face.

In the following section we will explain our design.

6.2.1 System Design

We propose a simple end-to-end error discriminator that will be used to incorpo-

rate the transmission window actions (TWA), as described in chapter 4 and tested

in chapter 5, in order to test the positive impact these algorithms have on TCP

performance and on network congestion.

We will present a congestion prediction mechanism that uses packet round trip

time to give TCP more information about the network congestion status and that

thereby enables TCP to discriminate between congestion drops and transmission

drops.

We will use packet delay information to predict congestion as follows:

• The packet delay is composed of:

– Link propagation delay

– Queuing delay

• The link propagation delay depends on the medium (the link) type, and we

assume that it is fixed for a single connection.
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• The queuing delay is the time the packet spends on the intermediate nodes

and it consists of two components: the queue waiting time and the service

time. In our work we are concerned with the total time the packet spends in

the intermediate node (queue waiting + service time) and we will refer to the

total as queuing delay.

• Any increase in the network load will affect the queuing delay. When a node

starts building a queue the Queuing delay will increase and hence the total

packet RTT will increase.

• In order to capture congestion the TCP sender will compute an exponential

weighted average of the RTT readings, AvgRTT. Using a weighted average

will allow us to control whether the recent sample or the old samples have

more effect on the AvgRTT.

We will define a variable called congestion edge (Cedge). The congestion edge

is basically the RTT value where we consider any drop occurring after this point to

be of high probability of being caused by congestion. First we compute a threshold

based on the network total delay, and then the value of congestion edge is computed

based on the minimum and maximum RTT experience so far, as follows:

Cedge = minRTT + midalpha ∗ (maxRTT −minRTT ). (6.3)

Using this formula, the Cedge will be a value between minRTT and maxRTT and

the value of midalpha will determine how close Cedge is to the minRTT or maxRTT.

When midalpha increases the Cedge will go toward the maxRTT and when midalpha

decreases Cedge will move toward minRTT. This feature has an important role in

the discriminator function because any increase in the Cedge value will tend to
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make the discriminator classify more errors as transmission errors and any decrease

in Cedge will tend to make the discriminator classify more errors as congestion.

Figure 6.2: RTT states

The system can then be either in congestion state or non-congestion state de-

pending on the current RTT value, as we can see in figure 6.2.

We assume that if the a drop happens and the RTT is below the Cedge then it is

safe to consider the drop as a transmission drop even if it is congestion drop. This

is because having a congestion drop under such low RTT (when compared to the

maxRTT experience so far) indicates that it is a transient congestion and it may

have been resolved allready.

However instead of using RTT, we use a weighted average RTT we call it Av-

gRTT. The AvgRTT is computed as in standard TCP by using an exponential

weighted average with weight = α, which decides if the average has high or low
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response to RTT readings (see [47, P69] for benefits of using weighted average)

AvgRTT = α ∗ AvgRTT + (1− α) ∗RTT. (6.4)

We do this to avoid effects of sudden changes in the RTT readings. Following

TCP specification [29,35] to compute average RTT we can set α between 0.8-0.9. In

our experiments we set α = 0.9 so that AvgRTT responds to genuine RTT changes

only.

Now when an error occurs the error discriminator does the following:

• First it computes the AvgRTT and Cedge.

• If AvgRTT > Cedge then the drop is congestion. In this case we follow stan-

dard TCP procedure by reducing the congestion window to half.

• If AvgRTT ≤ Cedge then the error is considered as a transmission error and

the transmission window actions (TWA) are used instead of TCP congestion

control.

One aim of this error discriminator is to avoid having a congestion collapse in

the network because of TCP-RTT not responding to network signals for congestions

(mainly packet dropping) and hence causing congestion collapse. TCP-RTT avoids

this by applying a technique that allows TCP to reduce its sending rate even for

transmission drops. When TCP-RTT diagnoses an error as a transmission error

it increases the retransmission rate in a balanced way, as follows: when a packet

is dropped and the average RTT is below the Cedge then the error is considered

potential transmission drop. TCP-RTT then applies CWA which does another check

to see if the current congestion window is bigger or smaller than the tthresh (a mark

for the first drops occurred). If the congestion window is bigger than the tthresh
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then the error is considered congestion, otherwise it is considered transmission error.

This way a two level check is done before deciding the error type. The first

level is by using the connection average RTT and the second level by using TCP

congestion window size. The congestion window size, combined with the tthresh

gives TCP a good indication of whether the drop is caused by congestion or not.

Using this method, we follow a conservative approach that prefers the network over

the single connection.

This way, in the case of heavy congestion the priority is given to congestion even

if there are transmission drops. Thus if the error discriminator mistakes congestion

drops for transmission drops, the network will not be affected; this will also not

affect the end user to a great extent because the congestion in the network will slow

down the sender in all cases.

Moreover, the MDA action will resend packets at only one per RTT, and this

means that no more resending will happen until a timeout occurs. This way, even if

TCP-RTT misclassifies the drop type, it will follow a conservative approach which

will allow a timeout to occur if there is serious congestion.

Also by using RTA, when congestion occurs in the network, even if the TCP-

RTT classifies the error to be transmission, the low bandwidth estimation will force

TCP-RTT to slowdown (timeout back-off) just like a traditional TCP and hence

reducing the chance to increase the congestion in the network.

As we said before TCP-RTT is based on Spike, so in the following we highlight

the main differences between our design and Spike:

• The Spike [1] error discriminator uses two thresholds to decide the start and

end of the Spike state. However, in our version, we use one threshold called

Cedge which creates a border between the congested and non-congested states.

This will simplify the algorithm and make it more pertinent to our aim, which
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is to discover congestion phases. Originally the Spike [68] scheme was designed

to discover different congestion levels [1] in order to control UDP sending rate.

In our case the important thing is to discover the existence of congestion and

not the level of congestion. For this reason we think that one threshold, Cedge,

is sufficient.

• The Spike [1] error discriminator uses the relative one way trip time as an

indicator of current network state and of whether or not we should enter

Spike state. However, this makes the system not immune to sudden and short

changes in the trip time caused by temporary congestions. So to filter sudden

changes in packet trip time readings we use an exponential weighted average

(EWA) of round trip time readings instead. This will reduce the oscillation

between the congested/non-congested states and make the system more stable.

• The original Spike [68] was designed for UDP applications where there is no

acknowledgment, so the authors used the relative one way trip time instead

of the round trip time. Also because the sender and receiver clock may vary,

the term relative is used. However, using the one way round trip time requires

changes in both the sender and the receiver to allow them both to communicate

the measured trip time. Since we use TCP, which uses acknowledgments, there

is no need to use the one way trip time and instead we use the round trip time

RTT where only the senders measure the trip time. However, we assume here

that the return path is not congested.

• The Spike [1] error discriminator measures the maximum experienced ROTT

and uses it during the whole connection life time. However this can cause

a fake notion of non-congestion state if we have multiple buffers as presented

in [1]. If a long congestion phase occurs or multiple buffers in the path became
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congested for a period of time then the max(ROTT ) in this case will get a very

high value, which will remain during the connection life time even if the buffers

are eventually emptied. However we solve the problem by recalculating the

maximum round trip time after each timeout event because a timeout event

indicates the occurrence of a congestion state which may have not been noticed

because of previous high RTT readings.

• The final and most important change is the addition of the CWA, MDA and

RTA (TWA) which will represent TCP reaction during non-congestion state.

We call the proposed error discriminator TCP-RTT because it depends totally

on the round trip time (RTT) in its operation. In the following section we will test

TCP-RTT performance.

6.3 Performance Results

There are two main aims we want to achieve from using TCP-RTT: one is increasing

TCP performance when congestion and transmission errors coexist. The other is to

prevent/reduce increasing network congestion level because of error discrimination

mismatches. We will try to show the achievement of these two aims in the following

experiments.

6.3.1 Experiment Settings and Assumptions

In the following experiments we used the topology and experimental settings ex-

plained previously in section 5.2. However, below we list some assumptions and

settings of this experiment:

• In these experiments we combine the transmission window actions (CWA,MDA
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and RTA) described in chapter 4 with the error discriminator in order to

implement better action for transmission drops.

• We use total propagation delay of 48ms. The bandwidth is fixed to 45Mbps.

Later we will apply different delay and bandwidth values.

• Transmission errors range from 0.001 to 0.101.

• Congestion drop rate at the bottleneck is adjusted experimentally to be around

0.001. According to the results and observations of [72], even a perfect error

discriminator will not give any noticeable improvement if the congestion drop

rate goes too much above 0.001. This is because with high congestion rates

TCP will be reducing its performance most of the time as a reaction to the

congestion, and any improvement will not be noticeable. The drop rate of each

connection will be proportional to its share of the bottleneck. However, the

congestion drop rates of the monitored flows were found around the desired

rate of 0.001.

• In the following experiments we repeat each experiment until the relative pre-

cision RP (RP: the ratio between the 95% confidence interval and the average

goodput) reach values between 5 and 10% as we explained in section 5.2.6.

Therefore we use confidence intervals and relative precision to determine how

many runs we need. In each run we change the seed for the system random

number generator. To ensure fair comparison we use the same set of seeds for

TCP-RTT runs and for TCP runs. In all the following experiments we draw

the 95% confidence intervals only if it is clear enough to appear on the chart.

However, in most experiments, we repeat the experiment until the confidence

intervals becomes no more than 5% of the average value, which in most cases

has no appearance of significance in the charts.
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• The traffic is generated in this experiment by using one TCP-RTT sender, one

TCP sender and four MMPP sources(see section 5.2 for explanation of MMPP

sources).

Using these settings we was able to generate a traffic with Hurst parameter of

around 80% in most cases.

• For simplicity, we assume that there are no drops on the reverse path (other

authors such as [70] use the same assumption).

• In some charts we will use the log scale in the y axis instead of the normal

linear scale if the values are spread over a large range. In this case the log scale

will help to clarify the behaviour and make the range more understandable.

6.3.1.1 Performance Metrics

In the following experiments we will be using four experimental metrics, which are:

Goodput, Congestion window size, Number of timeout events and Retransmission

timeout length.

6.3.2 Results With No Congestion

In this experiment we will test the performance of TCP-RTT in a network with

no congestion and with transmission errors only. This is important to show the

improvement gained by the new method in case of transmission errors and to test

the error discriminator response to transmission errors. If the error discriminator

diagnosed errors as congestion errors while they are actually transmission errors

then we do not expect any improvement in TCP performance. However, if the error

discriminator succeeds in discovering that there is no congestion but actually there

are transmission errors then we expect to see improvement in the performance. In
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this experiment we will use the same experimental assumptions and performance

metrics mentioned above, except that there are no congestion drops.

6.3.2.1 Goodput

One performance metric is goodput. As we said before, the goodput is the actual

throughput the user will see. Thus the increase in goodput will be reflected directly

on the application that uses TCP(like FTP for example). Figure 6.3 shows the

Figure 6.3: TCP vs. TCP-RTT normalized goodput

goodput normalized by the bottleneck bandwidth for TCP and TCP-RTT. Since

there is no congestion the bottleneck bandwidth is set to the aggregate bandwidth

of all senders. In this case we have one sender so the bottleneck bandwidth is set to

45Mbps.

As we can see in figure 6.3, TCP-RTT has higher goodput with different trans-

mission error rates. However, because the results are spread over a large range, it

appears that the improvement is only major at lower error rates and becomes minor
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with increases in the error rate.

However, when we take the log scale for the goodput, as in figure 6.4 , we can

Figure 6.4: TCP vs. TCP-RTT semi-log scale normalized goodput

see that the improvement covers all error rates.

The peak of TCP-RTT performance improvement is at 1% (about 70% higher

than TCP). Before and after 1% there is less improvement. The reason why there is

less improvement before 1% is that under such low transmission error rates there is

not much for the error discriminator to do as there is such a small number of errors.

Add to this that, if some of these errors are classified wrongly as congestion drops,

as indeed they may be, the performance of TCP-RTT will be reduced.

On the other hand when transmission errors increase to more than 1%, the

actual number of transmission errors becomes higher so that some drops will not be

recovered due to the high number of drops. This will cause timeouts, even with the

error discriminator, so the connection will be idle for longer periods due to longer

retransmission timeouts. However, TCP-RTT reduces these effects by using TWA
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and hence we can see improvement in the performance in figure 6.4.

6.3.2.2 Congestion Window

The congestion window size reflects the actual sending rate of TCP. The increase in

the congestion window size will result in increasing the goodput of TCP. In figure 6.5

we can see that the TCP-RTT average congestion window size is bigger over different

Figure 6.5: TCP vs. TCP-RTT semi-log scale congestion window size

error rates. This explains the increase in the goodput we noticed before in 6.4.

The improvement in the congestion window size indicates that TCP-RTT is able

to detect transmission errors and hence is able to prevent cutting the congestion

window to half, as TCP does. Instead TCP-RTT cuts the congestion window using

CWA, which cuts the window according to the number of dropped packets per

window.

Figure 6.6 shows a snapshot of the congestion window for TCP and TCP-RTT.

The figure shows the evolution of the congestion window size during the first
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Figure 6.6: Congestion window evolution

25 seconds of connection life time and as we can see the TCP-RTT has a bigger

congestion window most of the time.

Figure 6.6 shows two different behaviours of the TCP-RTT congestion window.

Firstly the congestion window is cut to half when a drop is considered as congestion

(for example at time 5), and secondly the congestion window is cut to the number

of dropped packets (as we can see around time 20).

6.3.2.3 Number of RTO Events

Each RTO (retransmission timeout) event will result in reducing the congestion

window size to minimum size (one segment). In figure 6.7 we can see that TCP-

RTT has reduced the number of RTO events. TCP-RTT reduces the number of

RTO events because of the multiple drop action (MDA) which tries to resend all

lost packets from the same window, thereby reducing the number of timeout events.
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Figure 6.7: TCP vs. TCP-RTT number of RTO events

However, as we indicated in chapter 4 that the increase in the number of timeouts

indicates that when the error rate increases and more packets are dropped, timeouts

may occur before MDA is able to resend all lost packets. Additionally, TCP-RTT

only uses MDA when it thinks that the a drop is transmission drop; when a drop is

considered congestion drop, MDA will not be used.

Moreover, timeouts are also expected to occur with higher error rates where

the same packet may be dropped more than once, and as we explained in chapter

4 that MDA resends the packet only once per window to prevent unnecessarily

retransmission when the link is dead for long time, so even with MDA timeouts can

occur when a packet is dropped multiple times.

All these factors lead to increase the number of timeouts, even with MDA. How-

ever, MDA was able to reduce the number of timeouts, especially for low error rates,

and this is reflected in the increase in the TCP-RTT performance that we saw.
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6.3.2.4 RTO Length

We measure here the total time TCP stays idle without activity, which is reflected

directly in the performance: the longer TCP stays idle, the lower the performance

(goodput) will be. As we said before, TCP-RTT uses MDA action to reduce the

number of timeouts by trying to resend all lost packets from the same window. This

will result in reducing the total length of RTO as well.

Also, the RTA action will reduce the idle time by computing the TCP back-off

level based on the available bandwidth, and in the case of transmission errors, the

available bandwidth should be higher than in the case of congestion errors. Both

the MDA and RTA will participate in reducing the total RTO length and hence in

increasing TCP performance.

Figure 6.8 shows RTO length for TCP and TCP-RTT for increasing transmission

Figure 6.8: TCP vs. TCP-RTT RTO length

error rates. As in the case of number of RTO, TCP-RTT is able to reduce total TCP

idle time leading to more activity periods and hence to more average goodput.
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6.3.2.5 The Effect of Packet Round Trip Time

The increase in the packet end-to-end delay (or round trip time) means that TCP

needs more time to increase its congestion window because TCP increases the con-

gestion window based on the rate of received acknowledgments and if these acknowl-

edgments take more time because of longer delays, this will cause the congestion

window increase to take longer.

However, the effects of RTT on TCP performance increase when there are drops

because longer RTT means more penalty on the TCP congestion window when errors

occur. If a drop occurs at low RTT, the recovery time will be less than when an

error occurs under higher RTT.

Here we will show the performance of TCP-RTT under different RTT values,

namely 24ms, 48ms and 96ms (note that we only control the propagation delay and

we do not control the queuing delay). The aim is to show that TCP-RTT is able to

work under different RTT values.

However, reducing RTT is not usually the job of TCP and it is mainly the job of

the network (Queuing mechanism, Routing protocols, etc.) to provide services with

lower delay and hence lower RTT.

Figure 6.9 shows that TCP-RTT goodput decreases with the increase in the RTT

value. However, TCP-RTT still outperforms standard TCP when they both have

the same RTT value.

6.3.3 Results With Congestion

In the previous section we showed the performance of TCP-RTT in case of trans-

mission errors only and there was no congestion in the connection path. However,

in real networks, both congestion and transmission errors may coexist in the same
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Figure 6.9: TCP-RTT under different RTT values

path. For this reason, in this section we measure the performance of TCP-RTT

with transmission errors and congestion errors created by cross traffic. We will use

the same experimental assumptions and performance metrics mentioned above in

section 6.3.1.

6.3.3.1 Goodput

Figure 6.10 shows the comparison between TCP and TCP-RTT when both suffer

from a congestion drop rate of 0.001 and transmission errors ranging from 0.001 to

0.10. When the transmission error rate is small (0.001), there is no improvement

because under such a small number of transmission errors the congestion losses dom-

inate TCP-RTT actions so that most of the time TCP-RTT responds to congestion

losses and cuts the sending rate. However, the improvements can be seen with the

increase in the transmission error rates.

Unlike in the previous experiments, in this experiment TCP-RTT is competing
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Figure 6.10: TCP vs. TCP-RTT semi-log normalized fair share goodput

with other cross traffic. Because of this, in figure 6.10 we use the normalized bot-

tleneck fair share of competing connections (i.e. we divide each connection goodput

by its fair share of the bottleneck bandwidth).

6.3.3.2 Congestion Window and Retransmission Timeout

With the increase in the packet drop rate TCP will get more congestion window

cuts and more timeout events. However, in case of TCP-RTT the discriminator

will avoid too many cuts in the case of transmission errors by using the CWA. Also

TCP-RTT will reduce number of times it falls into timeout events by using the MDA

action for transmission errors, thereby reducing the number of times for setting the

congestion window to minimum values because of timeout. Hence the effect of the

increased number of timeouts will be eased on the TCP sender.

Also the use of RTA will reduce the length of each RTO event in the case of

transmission errors if the network is not congested. Figures 6.11, 6.12 and 6.13
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show the improvements in the congestion window size, the number of retransmission

timeout events and the timeout length respectively.

Figure 6.11: semi-log congestion window size

As we can see in figure 6.11 TCP-RTT has higher congestion widow size which

explains the improvement in the goodput seen in figure 6.10. Moreover, in figure 6.12

TCP-RTT has reduced the number of RTO events which reduce TCP idle time

and reduce the cut on the congestion window size which happens after timeouts.

However, at 10% error rate TCP stops increasing the number of RTO events. This

is expected because with such a high error rate the connection dries quickly from

packets due to the large number of dropped packets; when the number of sent packets

decreases, the number of timeouts does not increase too much.

Moreover, the increase in the error rate will increase the probability of having

multiple packet drops in the same window, and this will have a negative effect on

TCP (timeout will increase exponentially). However, TCP-RTT will avoid using

the exponential back-off timeout procedure directly whenever the loss is detected
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Figure 6.12: Number of RTO events

Figure 6.13: Timeout length
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as transmission, and will use RTA action instead. This has led to reduction in the

timeout length for TCP-RTT with different error rates compared to TCP as we see

in figure 6.13.

A question may rise over why the number of RTO for TCP stops increasing at

10% in figure 6.12 and at the same time the timeout length still increases for TCP in

figure 6.13. The reason for this is the exponential back-off policy. Under high error

rates the sending rate decreases so does the number of RTO events. However, due

to the high error rates, a single packet may be dropped more than once, and this

triggers the exponential back-off in TCP. This will increase each RTO event length

so even if the number of RTO events is reduced, their lengths increases because of

the exponential back-off policy.

6.3.3.3 The Effect of The Error Model

In the previous experiment we used a bursty error model that produces more than

one consecutive packet drop on average each time errors occur.

In this section we will apply a uniform error model that produces one packet

drop on average each time an error occurs, specially under low error rates. For this

we use the standard error model in ns2 [81] (ErrorModel) and we use a uniform

random number generator to generate errors with a specific rate (like for example

1%). The uniform error module gives equal drop probability to each packet. This

will create uniformly distributed errors along the connection.

We repeated the same experiments (with congestion) and the results are pre-

sented in figure 6.14. We can see that TCP-RTT outperforms TCP under uniform

transmission errors. This indicates that under different error models, TCP-RTT

still outperforms TCP

Another observation is that under uniform errors, TCP gives less performance
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Figure 6.14: TCP vs. TCP-RTT semi-log normalized fair share goodput - Uniform
transmission errors

gain compared to when we used the bursty error model. Figure 6.15 compares the

performance of TCP under uniform errors (TCPU) and under bursty errors (TCPB).

The same thing also can also be observed in TCP-RTT, as we can see in figure 6.16.

We think that the reason why the performance is different with different error

models is related to the nature of the dropping pattern produced by each model. In

the case of bursty drops, the bursty model drops multiple packets each time it enters

an error state, so it needs less number of error states in order to reach the required

dropping rate (like 1% dropping rate for example) giving longer times between error

states.

However, the uniform model drops fewer packets (one packet on average) in each

error state, so it needs more error states, and hence TCP has less time to increase the

congestion window between drops. This will affect the way the congestion window

grows and will give it less chance to grow in the case of the uniform error model
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Figure 6.15: TCP performance under uniform and bursty transmission errors

Figure 6.16: TCP-RTT performance under uniform and bursty transmission errors

145



Chapter 6 End-to-end TCP Sender Error Discriminator with New
Transmission Drops Action

compared to the bursty error model since the time between dropping events is longer.

Figure 6.17: TCP congestion window size growth under uniform and bursty errors

In order to support our argument, in figure 6.17 we show a comparison between

the TCP congestion window growth under uniform error model (TCPU) and the

TCP congestion window growth under bursty error model (TCPB). The bursty

model creates less dropping events than the uniform model so the congestion window

has more opportunity to grow bigger before any dropping event occurs.

One finding from these results is that the frequency of dropping events can affect

TCP performance more than number of drops per event.

This can be explained because after each dropping event (no matter how many

packets are dropped) a maximum of one congestion window cut and one timeout

can occur. This is because when TCP discovers the first packet drop (single or

first one in a train), it will cut the congestion window and will then timeout if no

acknowledgment is received. Then, TCP retransmits the whole window which will
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recover the rest of the dropped packets.

So even if the number of dropped packets per error event is big the frequency

of these drop events will cause more damage than the actual number of packets

dropped.

Another observation is that under bursty errors, the number of timeouts is bigger.

We can notice that also in figure 6.17 as TCPB frequently takes a small value of one,

which indicates a timeout event. This is also expected because TCP can recover

only one packet and when more than one packet is dropped, it triggers a timeout.

Finally, although most of the previous effects on TCP also apply to TCP-RTT,

this did not affect the rate of improvement gained by TCP-RTT over TCP. Also,

we can notice from figure 6.16 that the type of the error model has a smaller effect

on TCP-RTT under low transmission rates (under 0.001% the difference between

TCP-RTTU and TCP-RTTB is about 5% compared to a 35% difference between

TCPB and TCPU). However with the increase in the transmission error rates, it

seems the error model type affects both protocols similarly.

6.4 Impact of TCP-RTT on the Network

The addition of TWA to the error discriminator plays an important function in

creating traffic with less variability compared to current error discriminators, which

jump between two extremes: one is to cut the congestion window and the other

is to avoid cutting at all. On the other hand, TWA will make TCP-RTT cut the

congestion window at a rate that is related to the number of dropped packets.

We anticipate that this technique will produce more stable connections which will

have a positive effect on the network. Figure 6.18 shows a comparison between the

congestion window oscillation of TCP-RTT and the Spike [1] error discriminator.
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Figure 6.18: Congestion window variability

As we can see, TCP-RTT reduces the variability in the congestion window size, and

hence the variability in the sending rate.

In the following section we will discuss the effect of TCP-RTT on the network in

terms of congestion drop rate at the bottleneck, average queue size at the bottleneck

and end-to-end delay. Also we will discuss the fairness of TCP-RTT when it shares

the bottleneck with other flows.

6.4.1 Impact on Network Congestion Loss Rate

One aim of this study is to create a transmission drop action that will prevent or

reduce the effect of actions taken by current error discriminators on the network

congestion drop rate. For this, in this section, we will compare the network bot-

tleneck congestion loss rate when using TCP-RTT (an error discriminator that has

the transmission window actions TWA) with Spike (an error discriminator with no

transmission action).
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We measure the congestion drop rate, which is the number of packets dropped

at the bottleneck divided by the total number of packets actually arrived at the

bottleneck router. In our study we used a single bottleneck network as described in

chapter 5.

6.4.1.1 Single Flow Case:

Here a single TCP-RTT connection will run concurrently with a mixed cross traffic

of TCP and UDP connections. We compare the congestion loss rate of TCP-RTT

with the congestion loss rate of the Spike [1] error discriminator. Also we use TCP

in the comparison as a reference, so that the one (i.e. TCP-RTT or Spike) that has

a closer congestion loss rate to standard TCP is preferable.

Figure 6.19: Network congestion loss rate (TCP, TCP-RTT and Spike)

Figure 6.19 shows that TCP-RTT has a much lower congestion loss rate com-

pared to Spike, especially under transmission error rates from 0.001 to 0.04. Also

starting from a 0.01 transmission error rate, the congestion loss rate of TCP-RTT

149



Chapter 6 End-to-end TCP Sender Error Discriminator with New
Transmission Drops Action

is as low as standard TCP, while Spike becomes closer to TCP starting from 0.05

transmission error rate.

Moreover, the reason that Spike reduces the congestion loss with the increase in

the transmission error rate is that fewer packets are being sent due to the increase

in the transmission error rate. Next, we will show how multiple flows from the same

protocol (i.e. TCP-RTT and Spike) will affect the congestion loss rate.

6.4.1.2 Multiple Flows Case:

Here we will test the aggregate effect of multiple instants of the same flow (i.e.

TCP, TCP-RTT or Spike) on the bottleneck congestion rate. This will give us an

indication of how TCP-RTT works when it is used in a wider scale.

In this scenario we will not increase the bottleneck bandwidth with the increase

in the number of flows in order to see the effect of the increase in the congestion loss

rate with the increase in the number of flows.

Figure 6.20: Network congestion loss rate for multiple flows
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Figure 6.20 shows the congestion loss rate caused by increasing the number of

flows. As we can see TCP-RTT has reduced the congestion loss rate to be as much

as standard TCP in most cases. We must keep in mind that this reduction in

congestion loss rate also comes with improvement in the performance, as we have

seen in the previous experiments. The slight increase in the congestion loss rate with

the increase in the number of flows is inevitable due to the fact that TCP-RTT will

miss some congestion drops as transmission drops, and will not cut the congestion

window as aggressively as TCP.

However, compared to Spike, it is clear that TCP-RTT has reduced the conges-

tion loss rate noticeably. The transmission loss rate used in this experiment is 1%.

Similar results were observed with different transmission error rates so we report

only results with 1% transmission error rates.

6.4.2 End-to-end Delay

Here we present the end-to-end delay and the bottleneck queue size for TCP, TCP-

RTT and Spike.

In figure 6.21 we present the end-to-end delay and in figure 6.22 we present the

average queue size. As we can see in these figures, TCP-RTT was able to reduce the

queue size, which resulted in a noticeable reduction in the end-to-end delay when

compared with SpikeR.

However, the reason why TCP-RTT has higher delay than standard TCP in

figure 6.21 is that, even though TCP-RTT has reduced the congestion loss rate when

compared to other error discriminators like SpikeR, it still increases the congestion

slightly when compared to TCP and hence increases the queue size. However, as we

saw before, TCP-RTT outperforms standard TCP and at the same time it does not

increase the congestion loss rate to very high levels. Also, from these results we can
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Figure 6.21: end-to-end delay

Figure 6.22: Average queue size
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see that TCP-RTT reduces the end-to-end delay and the average queue size when

compared with SpikeR.

Finally, in figure 6.22 we use the forward path end-to-end delay. We used the

forward path delay because the congestion takes place at the forward path only

(from sender to receiver).

6.4.3 TCP-RTT Fairness

What we mean by fairness here is when TCP-RTT allows other connections com-

peting with it on the bottleneck to have a fair share of the bottleneck bandwidth.

Standard TCP provides fairness by responding to congestion signs and reducing

its transmission rate. However, if the error discriminator cannot respond to con-

gestion drops then it will not reduce its sending rate, which will cause other flows

to throttle back constantly until most or even all bandwidth is eaten by the error

discriminator protocol.

However, we avoid this by making the error discriminator slow down for conges-

tion and transmission drops as well. Using this technique, TCP-RTT could provide

improvement to TCP performance but we still need to test its fairness toward other

traffic.

In order to do that we use the Jain fairness index [34], as follows:

F (X) =
(
∑m

i=1 Xi)
2

m(
∑m

i=1 X2
i )

(6.5)

where m is the number of competing TCP sources sharing the same bottleneck,

and Xi is the goodput (or throughput) for source i. So if there are m TCP sources

sharing the bottleneck in a fair manner then F(x) should be close to 1.

In figure 6.23 we show the fairness index for TCP-RTT and Spike. As we can

153



Chapter 6 End-to-end TCP Sender Error Discriminator with New
Transmission Drops Action

Figure 6.23: Fairness index - 180Mb bottleneck

see, TCP-RTT starts with lower fairness than Spike, however, with the increase in

the number of flows and hence the increase in congestion loss rate, TCP-RTT gained

higher fairness. On the other hand, Spike tends to have decreasing fairness with the

the increase in number of flows.

The reason why the fairness is low when number of flows is only two (first point

in the figure) is because TCP-RTT is not able to achieve high performance since it

suffers from transmission errors, unlike the second flow which does suffer from small

or no errors because of the small number of flows. However, with the increase in

number of flows all flows suffers from drops caused by the congestion.

It seems that TCP-RTT gets better in terms of fairness with the increase in

the congestion loss rate (represented here by increased number of flows). To show

this, we repeated the previous experiment but this time we decreased the bottleneck

bandwidth so that the congestion loss rate increases from 0.006 to 0.07 on average

(we increased the congestion loss rate by reducing the actual bottelneck bandwidth
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from 180Mb to 36Mb). Figure 6.24 shows the fairness comparison between TCP-

Figure 6.24: Fairness index - 36Mb bottleneck

RTT and Spike with the new bottleneck. As we can see, TCP-RTT has a higher

fairness index with the increase congestion loss rate.

TCP-RTT was able to achieve higher fairness because it responds to all error

types (congestion and transmission errors), while Spike only responds to what ap-

pears to be congestion errors. However, Spike may miss some congestion errors

which will prevent it from reducing its sending rate in a genuine congestion situa-

tion. Also, when a new flow starts sending, Spike may not give it the opportunity

to take a fair share from the bottleneck because Spike may miss the signals being

sent from the network indicating new flows (these signals are packet drops).

This is a good indication that the improvement gained by TCP-RTT has minimal

effect on the network and other individual traffic. This is confirmed by the fairness

results, which show that TCP-RTT is far from being greedy.

Notes:
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Since we did not find any published implementation of Spike [1], we implemented

Protocol Throughput improvement
Spike [1] 80%
Our implementation 77.7%

Table 6.1: Spike Throughput improvement

two versions: one based on TCP-Reno (SpikeR) which we used above and another

based on TCP-NewReno (SpikeNR), which we will use later in chapter 7. We then

validate our implementation by comparing the performance of SpikeNR with the

results published in [1]. The comparison shows that our implementation of Spike

gives similar results in terms of throughput improvement over TCP with the results

presented in [1]. Table 6.1 shows our comparison. The slight difference in the results

could be due to differences in some unknown variables in the experimental settings.

For example the exact value of transmission error rate is not presented in [1], the

author indicated that it approaches 0.03. However, the values we present in table 6.1

are for an error rate of 0.031.

Moreover, the results reported in this section were produced using the uniform

error model for the transmission errors. We found that SpikeR does not work as

expected when the bursty error model is used. The reason for this is that under

bursty errors, the performance will be dominated by the high number of timeout

events. This is because Reno can recover one packet only and leave the rest to be

recovered by timeouts. Thereby, SpikeR will not be able to improve the performance

since after each timeout event the congestion window will be cut to the minimum.

Later in chapter 7 we will add Spike to NewReno which will allow us to use

bursty errors since NewReno is able to recover multiple drops.
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6.5 Modeling TCP-RTT Behaviour

In this section we will present an analytical model to approximate TCP-RTT be-

haviour. The main attribute the model will try to capture is the congestion window

behaviour since it governs the TCP-RTT sending rate. We will derive our model

from a well-known model to approximate TCP behaviour presented in [102]. Other

authors, such as in [3], have studied this model and explained the reasoning that

leads to this model in a fairly easy way so we will follow similar reasoning in advising

our model. The model proposed by [102] to approximate the TCP sending rate is:

Averagesendingrate =
1

RTT
×

√
3

2p
(6.6)

where RTT is the round trip time and p is the average drop rate. This model

is known as the inverse square root p law [3]. The difference between this model

and our model will be that the model in 6.6 assumes standard TCP cut mechanism

where the congestion window is cut by 50% after each drop. However, TCP-RTT

uses CWA to cut the congestion window after each transmission drop. As described

in chapter 4, CWA only cuts the congestion window size by the number of dropped

packets from each window which depends on the error rate in the connection path.

So in our model, if the congestion window is W and the error rate is p, then the

congestion window cut will be a function of current congestion window and the

the error rate f(W, p). However, for simplicity, we will assume that the amount of

congestion window cut depends on the error rate directly so that f(W, p) = W ∗ p

In CWA after each drop the window size is decreased as follows:

nW = W − ndp. (6.7)
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where nW is the new window size, W is the old window size and ndp is the

number of dropped packets. Since ndp depends on the error rate, nW can be

computed as follows:

nW = W − f(W, p) (6.8)

nW = W − (W ∗ p) = W (1− p) (6.9)

This means that after each drop, CWA cuts the congestion window by W ∗ p.

Now according to [3], it is safe to assume that: in the steady state if the error

rate is p, then we expect to have 1/p packets on average to be sent before the next

drop occurs.

Also, after each cut the time needed to increase the window from W (1 − p) to

W is RTT ∗W ∗ p (i.e. since the amount of the last cut is W ∗ p packets, then we

need W ∗ p round trip time to return to original window size before the cut).

Figure 6.25 shows the typical behaviour of the congestion window when the

Figure 6.25: Congestion window increase/decrease behaviour
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cut factor is W ∗ p. From the figure 6.25, we can compute the area under the

congestion window increase slope by computing the area of the trapezoid created

by the congestion window increase/decrease behaviour. This area will give us the

number of packets sent before the drop occurred, as follows:

W ∗ p(W + W ∗ (1− p))

2
(6.10)

=
W ∗ p(2W −W ∗ p))

2
(6.11)

=
W ∗ p(W (2− p))

2
(6.12)

=
W 2 ∗ p(2− p)

2
(6.13)

The equation 6.13 will give us the number of sent packets during the period from

W ∗ (1− p) to W , which is equal to 1/p as we said before. So we can compute the

window size W , as follows:

W 2 ∗ p(2− p)

2
= 1/p (6.14)

W 2

2
=

1/p

p(2− p)
(6.15)

W =

√
2/p

p(2− p)
(6.16)

W =

√
2

p2(2− p)
(6.17)

As we said before, 1/p is the total number of packets transmitted before errors

occur. Also the time needed to transmit these packets is W ∗p∗RTT . So from this,
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the TCP-RTT sending rate (SR) can be computed using the following equation :

SR =
1/p

RTT ∗W ∗ p
=

1

RTT ∗W ∗ p2
(6.18)

By substituting W from equation 6.17 we get:

SR =
1

RTT ∗
√

2
p2(2−p)

∗ p2
=

1

RTT ∗ p

√
2− p

2
(6.19)

6.5.1 A More General Model

The model described above captures the congestion window behaviour in TCP-

RTT (i.e CWA) when there are only transmission drops. However, there are other

factors that affect the congestion window size namely drops caused by congestion

and timeout events. Each congestion drop will reduce the congestion widow by 50%,

and each timeout event will reduce the congestion window to minimum size (usually

one segment). We will generalize the model in equation 6.19 to include these effects.

First we will define the effective cut rate (ECR) of the congestion window. In

ECR we try to combine the effect of the CWA (transmission drops), the congestion

drops and the timeout events. To compute the ECR we need the number of packets

diagnosed as transmission drops Td, the number of packets diagnosed as congestion

drops Cd and the number of timeout events Te and then we compute the average

cut rate as follows:

ECR =
p ∗ Td + 0.5 ∗ Cd + 1 ∗ Te

Td + Cd + Te
(6.20)

Where p ∗ Td represents the cut rate of the CWA, 0.5 ∗ Cd represents the cut

rate of the congestion drops and 1 ∗ Te represents the cut rate of timeout events.
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And we divide it by the total number of cuts (Td + Cd + Te). This will give us

an estimation of the congestion window average cut rate during the connection life

time.

Now we follow the same reasoning that we used to compute equation 6.19 but

this time we use ECR instead of p in f(W, p) so that the the congestion window

cut factor is now f(W, ECR).

From equation 6.14 we use ECR as follows:

W 2 ∗ ECR(2− ECR)

2
= 1/p (6.21)

W 2

2
=

1/p

ECR(2− ECR)
(6.22)

W =

√
2/p

ECR(2− ECR)
(6.23)

W =

√
2

p ∗ ECR(2− ECR)
(6.24)

As we can see, we still use 1/p to calculate the total number of packets transmit-

ted before an error occurs. Now the TCP-RTT sending rate (SR) can be computed

using the following equation:

SR =
1/p

RTT ∗W ∗ ECR
=

1

RTT ∗W ∗ p ∗ ECR
(6.25)

By substituting W from equation 6.24 we get:

SR =
1

RTT ∗
√

2
p∗ECR(2−ECR)

∗ p ∗ ECR
=

1

RTT

√
2− ECR

2 ∗ p ∗ ECR
(6.26)

Equation 6.26 is an approximation of the sending rate of TCP-RTT and it is
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not supposed to give an exact estimation but to give an average estimation of the

sending rate.

In figures 6.26, 6.27 and 6.28 we compare the results from using the equation 6.26

with average runs from simulations of TCP-RTT with increasing RTT and trans-

mission error rates of 1%, 5% and 10% and with no congestion in the path (although

the effect of congestion drops is still included because the error discriminator mis-

matches some transmission errors as congestion drops). As we can see, the model

gives a good approximation of the average sending rate of TCP-RTT with different

error rates and different RTT values.

However, in some cases the analytical and experimental results differ slightly in

the figures. This is due to the fact that, although we tried to include many aspects

of TCP-RTT performance in the model, we did not include them all.

For example, at high error rates such as 10% (figure 6.28) the proposed model

seems to underestimate TCP-RTT performance. We think the reason for this is

that, with the increase in the error rate, the effect of the multiple drops action

MDA and the retransmission timeout action RTA increases. This in turn is because

of the increase in the number of packets dropped and the increased chance that the

same packet will be dropped more than once, and hence increasing the back-off level

of TCP. However, these extra effects have not been included in the proposed model

and are left for future work.

6.6 Summary

In this chapter our aim was to add the proposed transmission window actions (TWA)

to an error discriminator and to test its performance. We presented a new error

discriminator called TCP-RTT and we added TWA to implement its action in the
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Figure 6.26: Goodput - increasing RTT - 1% error rate - TCP-RTT and Analytical
model

Figure 6.27: Goodput - increasing RTT - 5% error rate - TCP-RTT and Analytical
model

Figure 6.28: Goodput - increasing RTT - 10% error rate - TCP-RTT and Analytical
model

163



Chapter 6 End-to-end TCP Sender Error Discriminator with New
Transmission Drops Action

case of transmission errors. In the case of congestion errors TCP-RTT acts like

normal TCP.

Throughout the chapter we tested the performance of TCP-RTT to see if it can

achieve two aims. First to see if it outperforms TCP in terms of goodput which is

the aim of any error discriminator, and second to see if it will reduce any increase

in the network congestion loss rate compared to existing error discriminators.

By comparing TCP-RTT with standard TCP we showed that TCP-RTT actually

is able to gain higher goodput than TCP with different transmission error rates.

Also by comparing TCP-RTT with the Spike error discriminator, it is clear that

TCP-RTT has reduced the congestion loss rate noticeably. So it improves the TCP

performance with less effect on the network.

The addition of TWA to the error discriminator plays an important role in cre-

ating traffic with less variability compared to current error discriminators, which

jump between two extremes: cut congestion window or avoid cutting at all. On the

other hand, TWA will make TCP-RTT cut the congestion window whenever drops

occur at a rate which depends on the error type. We believe that this technique has

produced more stable flows, which has a positive effect on the network.

Also, we showed that TCP-RTT has a high fairness index in sharing bottleneck

bandwidth in our topology with an increased numbers of flows.

One other result from this chapter is that the error patterns (bursty or non-

bursty) can affect TCP-RTT performance noticeably. We saw that the frequency of

dropping events can affect TCP-RTT performance more than the number of drops

per event.

Finally, in an effort to gain more understanding of how TCP-RTT works, we

proposed an analytical model to approximate the TCP-RTT sending rate under

different error rates and round trip times. The results from the analytical model
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have been compared with the experimental results and they show consistency and

similarity with each other.
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Chapter 7

Allowing Multiple Drops Action

for Congestion Losses

7.1 Introduction

In general, error discriminators use different sets of actions (contradictory to some

extent) when they diagnose transmission drops different from actions used in the

case of congestion losses. Because of this, in the previous experiments TCP-RTT

used the CWA, MDA and RTA actions only when the errors were diagnosed as

transmission errors.

The MDA action is concerned with resending multiple transmission drops from

the same window. However, authors like [103] indicated that due to the bursty

nature of TCP traffic, caused by reasons like slow start and delay acknowledgments

which lead to injecting the network with sudden bursts of data, multiple packet

drops per window can be caused also by congestion in the network.

Because of this, we suggest here the use of our multiple drops action MDA in

the case of both congestion and transmission drops; we expect it to give TCP-RTT
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more gain in terms of performance (goodput). However, we will study the impact

of this change on the network and fairness toward other flows.

7.2 Results

In the following experiments the error discriminator uses MDA whether the error

is considered congestion or transmission. The CWA and the RTA actions are used

only for transmission errors. The experiment settings and assumptions are the same

as in section 6.3.1 with a minimum round trip delay of 12ms. We call the new

approach TCP-RTTM. In the following experiment TCP-RTTM will be subjected

to both congestion and transmission errors.

As we can see in figure 7.1, MDA action to congestion drops has improved

Figure 7.1: TCP vs. TCP-RTTM normalized fair share goodput

the performance of TCP-RTTM noticeably over standard TCP. Under small error

rates TCP-RTTM seems to take slightly more than its fair share goodput. This

raises question about TCP-RTTM fairness which we will study later in this chapter.
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However, as we can see in figure 7.1, the increase in the fair share is small (the

increase is only 0.02)

Figure 7.2: TCP vs. TCP-RTT vs. TCP-RTTM normalized fair share goodput

Also, figure 7.2 shows a comparison between TCP-RTT and TCP-RTTM, and as

we can see that TCP-RTTM improves the performance under low error rates (unlike

TCP-RTT). This is because under low error rates the main factor that affects the

performance is the congestion drops, and TCP-RTTM can handle them better than

TCP-RTT.

Using MDA will reduce the chance of falling into timeout because TCP-RTTM

will try to resend all drops packets, not only for transmission drops but also for

congestion drops. This is the main factor that has led to the higher performance

of TCP-RTTM. This improvement continues with the increase in the transmission

error rate.

Another factor that has made adding MDA invaluable is related to the fact that

TCP-RTT suffers from slightly higher congestion drop rates compared to standard
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TCP. This is because of the increase in the retransmission rate and the increase in

the congestion window (sending rate) caused by using CWA and MDA in the case

of transmission errors. So because of this increase in the congestion adding MDA,

which retransmits all lost packets from the same window, has reduced the effect of

this increase on TCP-RTTM performance.

In this experiment the congestion error rate is around 0.01.

7.3 Impact of TCP-RTTM on the Network

Here we will discuss the effect of TCP-RTTM on the network performance (Conges-

tion drop rate, end-to-end delay and bottleneck average queue size), and on other

flows that share the bottleneck.

7.3.1 Impact on Network Congestion Loss Rate

One aim of this study is to create a transmission drop action that will prevent or

reduce the effect of actions taken by current error discriminators on the network

congestion drop rate. For this reason, in this section, we will compare the effect

of TCP-RTTM and the SpikeNR error discriminator on the congestion loss rate.

The SpikeNR is an end-to-end error discriminator based on the NewReno version

of TCP. The reason for comparing with SpikeNR is that it is capable of handling

multiple packet drops in case of congestion just like TCP-RTTM.

7.3.1.1 Single Flow Case

Here a single TCP-RTTM connection will run concurrently with a mixed cross traffic

of TCP and UDP connections. We compare the congestion loss rate of TCP-RTTM

and the SpikeNR [1] error discriminator.
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Figure 7.3: Network congestion loss rate (TCP-RTT and Spike)

Figure 7.3 shows that TCP-RTTM has a lower congestion loss rate compared to

SpikeNR, especially under transmission error rates from 0.001 to 0.04.

However, the congestion loss rate of SpikeNR becomes less than TCP-RTTM

when the transmission loss rate exceeds 4%. We think this is caused by SpikeNR

falling into longer timeout events caused by high transmission loss rate and hence

less packets are being sent. This is supported by the fact that we found SpikeNR

has a lower sending rate than TCP-RTTM under such error rates.

Next we will show how multiple flows from the same protocols (i.e. TCP-RTTM

and SpikeNR) will affect the congestion loss rate.

7.3.1.2 Multiple Flows Case

Here we will test the aggregate effect of multiple instants of the same flow (i.e.

TCP-RTTM or SpikeNR) on the bottleneck congestion rate. This will give us an

indication how TCP-RTTM works when it is used on a wider scale.
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In this scenario we will not increase the bottleneck bandwidth with the increase

in the number of flows in order to increase in the congestion rate with the increase

in the number of flows.

Figure 7.4: Network congestion loss rate for multiple flows

Figure 7.4 shows the congestion loss rate caused by increasing the number of

flows. As we can see, TCP-RTTM has reduced the congestion loss rate compared to

SpikeNR. The increase in the congestion loss rate with the increase in the number

of flows is inevitable due to the fact that TCP-RTTM will miss some congestion

drops as transmission drops and will not cut the congestion window as aggressively

as TCP.

However, compared to SpikeNR it is clear that TCP-RTTM has reduced the

congestion loss rate noticeably. The transmission loss rate used in this experiment

is 1%. Similar results were observed with different transmission error rates so we

report only the results with 1% transmission error rates.
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7.3.2 End-to-End Delay

Here we show the end-to-end delay and bottleneck queue size when we use TCP-

RTTM and SpikeNR.

In figure 7.5 we show the average queue size. As we can see in the figures TCP-

Figure 7.5: Average queue size

RTTM was able to reduce the queue size, which has resulted in a reduction in the

end-to-end delay compared to SpikeNR as we can see in figure 7.6. In figure 7.6

we use the forward path end-to-end delay because the congestion takes place in the

forward bath (from sender to receiver).

7.3.3 TCP-RTTM Fairness

As we did in TCP-RTT, for TCP-RTTM we will use the Jain fairness index [34] to

compare the fairness of TCP-RTTM and SpikeNR.

As we can see in figure 7.7, TCP-RTTM has a constant high fairness index. On

the other hand, SpikeNR tends to have decreasing fairness with the increase in the
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Figure 7.6: end-to-end delay

Figure 7.7: Fairness index - TCP-RTTM and SpikeNR
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number of flows.

TCP-RTTM has been able to achieve high fairness because it responds to all error

types (congestion and transmission errors) while SpikeNR only responds to what

appears to be congestion errors. However, SpikeNR may miss some congestion errors,

which will prevent it from reducing its sending rate in a genuine congestion situation.

Also when a new flow starts sending, SpikeNR may not give it the opportunity to

take a fair share from the bottleneck because it may miss the signals being sent from

the network indicating new flows (these signals are packet drops).

This is a good indication that the improvement gained by TCP-RTTM has

no negative effect on the network throughput or other individual traffic goodput.

Also, this indicates that any increase in the network congestion level caused by

the throughput increase of TCP-RTTM is actually a result of increased network

resource utilization rather than the greediness of TCP-RTTM. This is confirmed by

the fairness results of TCP-RTTM.

7.3.4 Cedge Configuration - Varying midalpha

Both TCP-RTT and TCP-RTTM use the equation 6.3 to calculate the value of

Cedge and then use this value to determine the error type (congestion/transmission

error) based on whether the current RTT value is higher or lower than Cedge.

As we explained in chapter 6, Cedge is a value between minRTT and maxRTT

and the value of midalpha will determine how close Cedge is to the minRTT or

maxRTT (see equation 6.3). When midalpha increases the Cedge in equation 6.3

will move toward the maxRTT and when midalpha decreases Cedge will move toward

minRTT. This feature has an important role in the discriminator function because

any increase in the Cedge value will tend to make the discriminator classify more

errors as transmission errors and any decrease in Cedge will make the discriminator
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classify more errors as congestion.

In this section we will see the effect of different midalpha values. We will test the

performance of TCP-RTTM when midalpha takes the values: 0.15, 0.25 and 0.50.

We choose these values because 0.15 has been found from previous experiments to

give minimum impact on the network. The 0.25 and 0.5 values represent the quarter

and half way points between minRTT and maxRTT.

Figures 7.8, 7.9 and 7.10 show the performance improvement gained by TCP-

RTTM over standard TCP, and at the same time they show the impact on the

network in terms of the increase in the congestion drop rate and the increase in the

average queue size at the bottleneck. As we can see, above 1% transmission error rate

the improvement in performance is more than the increase in the congestion drop

rate and the increase in the queue size. This indicates that under most error rates

TCP-RTTM adds improvement to TCP performance over and above the negative

impact on the network in terms of the increase of the congestion drop rate and the

increase in queue size. This is true for different values of midalpha (0.15, 0.25 and

0.5).

At very low error rates (0.001) the goodput improvement is less than the

increase in congestion drop rate, especially with higher midalpha (for example

midalpha = 0.5 in figure 7.10). The reason is that under low transmission error

rates the main factor affecting the performance is the congestion drop rate, which

is in this case around 1%. With midalpha = 0.50, TCP-RTTM tends to classify

more packets as transmission errors and so the chance of misclassifying congestion

drop as transmission drops will increase, and this will increase the congestion in the

bottleneck. This explains why we see a higher congestion drop rate in figure 7.10.

However, even with high increases in the congestion drop rate in the case of

midalpha = 0.50 (reached 90%), the actual congestion drop rate value is still not
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Figure 7.8: Improvement in goodput and impact on the network-midalpha = 0.15

Figure 7.9: Improvement in goodput and impact on the network-midalpha = 0.25

Figure 7.10: Improvement in goodput and impact on the network-midalpha = 0.50
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more than 3.3% (the congestion drop rate for TCP is 1.7%), and also it decreases

with the increase in the transmission error rate. Figure 7.11 shows the actual values

Figure 7.11: Congestion drop rate

for congestion drop rates for midalpha = 0.25 and midalpha = 0.5 (congestion drop

rates in the case of midalpha = 0.15 are very close to midalpha = 0.25 so we did

not include them in the graph).

When we increase midalpha the increase in the queue size is small in all cases

and so is the packets delay at the bottleneck.

7.4 Different RTT and Bandwidth Values

TCP-RTTM uses a delay based error discriminator that uses the RTT increase/de-

crease to decide the error type. Also the RTA mechanism in TCP-RTT estimates

the available bandwidth in order to compute the back-off level during the timeout

events. So in this section we will vary the RTT and the bandwidth values to see

how this affects the performance of TCP-RTTM.
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7.4.1 Different RTT Values

Figure 7.12 shows the performance of TCP and TCP-RTTM with different RTT

Figure 7.12: Performance with different RTT values - semi-log scale normalized fair
share goodput

values. The performance of TCP and TCP-RTTM depends heavily on the RTT

value because with the increase in RTT, TCP and TCP-RTTM need more time to

increase congestion window size and hence errors will have a larger effect in higher

RTT values. However, these results show that TCP-RTTM still outperforms TCP

for different RTT values. In figure 7.12 both TCP and TCP-RTTM suffers from

congestion error rates of around 0.005 and also from a transmission drop rate of

0.01.

7.4.2 Different Bandwidth Values

In this experiment the bandwidth takes three different values according to three

widely used standards T1(1.5Mbps), T2(6.5Mbps) and T3(45Mbps) carriers [2]. The
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transmission error rate is 0.01 and the congestion error rate is around 0.005. The

RTT is around 124ms, which is the average presented in figure 5.2 in section 5.2.3.

Figure 7.13 shows that the improvement increases with the increase in the available

Figure 7.13: Performance with different bandwidths

bandwidth since there is more room for retransmission. Also, the increase in the

bandwidth will give the window more room to increase, however the drop rate will

limit this increase and because of this both TCP and TCP-RTTM could not fully

utilize the available bandwidth.

7.5 The Effect of Error Burst Size

TCP-RTTM showed performance improvement over standard TCP. However, in

this section we will compare TCP-RTTM with some of the protocols presented in

chapter 3.

By this comparison we will see how TCP-RTTM uses the MDA algorithm to

respond to different transmission error burst sizes. This is important because with
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the increase in the burst size it will be harder for TCP to recover from drops because

TCP cannot recover from multiple drops from the same window and will timeout

after the first drop.

However, using the MDA technique, TCP-RTTM is able to improve TCP perfor-

mance with increasing error burst sizes and also with existing congestion (congestion

drops around 1%).

Figure 7.14 shows a comparison between TCP-NewReno [37] (NReno in the

Figure 7.14: Performance with different transmission error burst size

figure) , TCP-Westwood [53] (WW in the figure) and TCP-RTTM (RTTM in the

figure). As we explained in chapter 3 TCP-NewReno is able to recover from multiple

congestion errors from the same window of data, whereas TCP-Westwood is aimed

at improving TCP performance, especially for transmission errors.

As we can see in figure 7.14 when the error burst size is small (1 and 2 packets

per burst of errors) the performance of TCP-RTTM and TCP-NewReno are close.

However it appears that the TCP-NewReno multiple drops retransmission technique
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has slightly higher performance over MDA with small burst size (1 and 2 packets).

On the other hand, we can see that when the burst size increases (4,8 and 16

packets) TCP-NewReno cannot cope and TCP-RTTM gives better performance.

We think this is because TCP-NewReno only resends one packet per RTT, however,

when multiple packets are dropped, the timeout mechanism will work before TCP-

NewReno is able to resend all dropped packets.

Also in figure 7.14 we include the performance of TCP-Westwood as it aims to im-

prove TCP performance for transmission errors. We can see TCP-Westwood starts

with lower performance than TCP-NewReno and TCP-RTTM. This is because of

the way Westwood computes the TCP sending window, as we explained in chapter 3.

TCP-Westwood uses the Bandwidth-Delay product to compute the sender window

size, and because in our experiments we simulate congestion as well as transmis-

sion errors, TCP-Westwood will estimate a low available bandwidth (because of the

congestion) and hence smaller window size. On the other hand TCP-RTTM and

TCP-NewReno uses the AIMD (additive increase/multiplicative decrease) mecha-

nism which increases the window size until error occurs. This results in higher

window sizes, especially with low burst sizes (note: when we run the same ex-

periment with higher delay values this big difference between Westwood and the

other protocols became very small. This indicates that delays have a big impact

on the AIMD mechanism when errors occur because with higher delays AIMD has

difficulty recovering from errors). However, Westwood seems to respond in a bet-

ter way, compared to NewReno, to the increase of burst size since the increase is

only in the transmission errors (which Westwood can handle better) and not in the

congestion errors that are fixed.

The conclusion from figure 7.14 is that RTTM can handle higher transmission

error bursts sizes when compared to TCP-NewReno and TCP-Westwood.
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Another comparison we conducted here is between TCP-RTTM and another

protocol called TCP-Westwood-nr [104] which is actually the result of combining

NewReno and Westwood into one protocol in order to gain the benefits of both

multiple drops retransmission and the ability to deal with transmission errors.

Figure 7.15 shows the comparison between TCP-RTTM and TCP-Westwood-

Figure 7.15: Performance with different transmission error burst size 2

nr (WW-NR). The results shows a high degree of similarity between RTTM and

Westwood-nr performance (except under low burst sizes where NewReno performs

better as we mentioned before). However, RTTM has an advantage in that it re-

sponds to transmission errors by cutting the congestion window using the CWA

which can prevent further congestions in the network, in the case of congestion er-

rors being mismatched as transmission errors. This shows that RTTM is able to

achieve a performance close to Westwood-nr even if it cuts the congestion window

in case of transmission errors.

Finally, we want to note that in these experiments we used packets as error
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units instead of time (i.e. instead of using time to measure good and bad states

in the error model, we used packets). This was done because we found it easier to

apply specific burst sizes this way. However a side effect is that the reduction in

performance was bigger than in the case when the error burst is measured in time

where average drop rate was slightly lower. This is because when the bad state is

measured in time, sometimes the system can be in the bad state but there are no

packets to drop. However, when the bad state is measured in packets then it always

drops the required number of packets (i.e. the system stays in the bad state until

the required number of packets are dropped).

Also, we want to note that since TCP-Westwood and TCP-Westwood-nr are not

included in the ns2 version that we used in our work (ns2.29), we added them to ns2

implementation and the source code was obtained from the TCP-Westwood official

homepage [104].

7.6 System Limitations

The performance of TCP-RTT and TCP-RTTM will depend heavily on the com-

putation of Cedge as presented in section 7.3.4. Cedge depends on the computed

RTT and a fixed value for midalpha. From extensive simulations we found that

midalpha = 0.15 gives the best results in terms of performance and in diagnosing

of congestion errors, and hence in the reduction of the congestion loss rate.

However, even when using the same network conditions, TCP-RTT and TCP-

RTTM congestion loss rates were slightly higher than standard TCP. This is due

to the fact that the retransmission rates of TCP-RTT and TCP-RTTM were higher

than TCP. Moreover, due to the increase in the performance gained by using TCP-

RTT, the bottleneck utilization increases, and hence the congestion drops may in-
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creases. Authors such as [72] have noticed the same phenomena when using the

TCP-Casablanca [72] error discriminator and TCP-NewReno [37] under similar net-

work conditions.

However, TCP-RTT and TCP-RTTM produced less congestion loss rates when

compared to similar error discriminators (SpikeR and SpikeNR).

7.7 Summary

In this chapter we proposed an extension to TCP-RTT (proposed in chapter 6)

where we use multiple drops action (MDA) not only for transmission errors but also

for congestion errors. We call it TCP-RTTM.

We tested the improvement gained by TCP-RTTM and the effect of the error

discriminator on the network. TCP-RTTM was found to produce less congestion

loss rates when compared to a similar error discriminator with no transmission drop

actions (TWA). Also TCP-RTTM gave high fairness index values no matter how

many flows were competing in the bottleneck.

The potential effect of different midalpha values on the congestion loss rate was

discussed. Then we applied different bandwidth and round trip values to see how

they affected the performance. The round trip time values were chosen based on

real Internet traces. In all cases TCP-RTTM was able to outperform standard TCP

in terms of goodput.

Also we compared the effect of the error burst size on the performance of TCP-

RTTM and we compared it with the same effect on the performance of two other

protocols that are designed to tolerate error bursts. The results showed that TCP-

RTTM was able to match the performance of these protocols.

Finally, we discussed some limitations and constraints on the design and perfor-
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mance of TCP-RTT and TCP-RTTM.
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Chapter 8

Conclusion

8.1 Conclusions

Many solutions have been proposed to overcome the problem of TCP performance

degradation in heterogeneous networks where congestion and transmission errors

may coexist. One class of solutions are the end-to-end error discriminators which

can be added to TCP to improve its congestion control mechanism and so improve

the performance. The benefit of using such a technique is that it requires changes

to the end point only so no changes are required in the network. Also if it is applied

to the sender side then the changes may be minimal, as the number of servers is

usually much lower than the number of clients.

However, current error discriminators simply suppress TCP and prevent it from

cutting the congestion window in the case of transmission errors. This has resulted

in increasing the network congestion loss rate when using such mechanisms. In the

following we summarize the main findings and contributions of this thesis:

• Through presenting different error discriminators it has been identified that

current transmission actions used in error discriminators are not sufficient,
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and might lead to increases in the network congestion loss rate as presented

in many studies.

• Three areas where TCP interacts with drops have been identified : congestion

window mechanism, retransmission mechanism and timeout mechanism.

• A new congestion window action (CWA) to deal with transmission errors has

been proposed. This mechanism will be used by the error discriminator in the

case of transmission errors to cut the congestion window according to number

of dropped packets. This technique reduces the variability in the sending rate

found in current error discriminators, which is caused by moving the congestion

window, and hence the sending rate, between two extremes: one is to cut the

congestion window in the case of congestion drops, and the other is to avoid

cutting at all in the case of transmission errors.

• A new multiple drops action (MDA) has been proposed to help TCP to recover

from multiple drops from the same window of data, and hence to reduce the

number of timeout events.

• A proposal to add bandwidth estimation to the error discriminator in order

to calculate the retransmission timeout back-off. This technique helps the

error discriminator to reduce the idle time by reducing the back-off time if the

bandwidth is available and the drops are actually transmission drops and not

a result of congestion.

• The three algorithms, CWA, MDA and RTA are then added to a new end-

to-end error discriminator, called TCP-RTT. Simulation results show that

the proposed error discriminator with the new transmission window actions

has achieved higher goodput than TCP. Moreover, TCP-RTT has much lower
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congestion loss rates, less end-to-end delay and created smaller queue size than

Spike error discriminator [1]. Also the fairness of TCP-RTT is compared with

the fairness of Spike and the results show that TCP-RTT has a better sharing

of bottleneck bandwidth than Spike. The proposed error discriminator, TCP-

RTT, is a sender side solution (server) so there is no need to change the network

or the clients’ side.

• An analytical model to approximate TCP performance has been extended to

approximate TCP-RTT performance. The new model considers the case where

the congestion window cut factor is variable and is based on the error rate. The

analytical model has been tested and the results show that it can approximate

TCP-RTT performance.

• In the last chapter we proposed an extension to TCP-RTT to allow it to use

the MDA action in the case of congestion drops as well as transmission er-

rors. The new technique (TCP-RTTM) has been found to improve TCP-RTT

performance in our experiments. Also the impact on the network congestion

loss rate was compared with similar error discriminator and was found to be

better in many cases.

The addition of transmission window actions (TWA) to the error discriminator

plays an important role in creating traffic with less variability compared to current

error discriminators which cause TCP sending rate to jump between cutting the

congestion window size in case of congestion errors and avoiding cutting it at all

in the case of transmission errors. TWA makes TCP-RTT to cut the congestion

window even for transmission errors at a rate related to the number of dropped

packets. This technique has produced a more stable congestion window responses

which improves TCP performance and at the same time has a positive effect on the
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network compared with existing error discriminators like Spike and SpikeNR.

Moreover, TCP-RTT has reduced the network congestion loss rate and the end-

to-end delay; it is anticipated that this will improve the service provided by the

network to other flows especially flows that require low delay or low drop rates.

8.2 Proposals for Extensions and Future Work

• Although the new transmission drops actions have improved TCP perfor-

mance, they come with a number of limitations. For example, in CWA since

tthresh records the congestion window size when the first drop occurs, and

since CWA does not know if the drop is congestion drop or transmission drop,

the performance of the algorithm will depend on when transmission errors oc-

cur after a timeout. If transmission errors keep occurring early enough, tthresh

will take a small value and hence many errors will be considered congestion

drops so the performance will be like normal TCP. One solution to this problem

is that if the network suffers from constantly high transmission errors then we

delay assigning tthresh to congestion window, so instead of assigning tthresh

to congestion window after first drop we wait for the second or third drop.

This can be implemented as a parameter in CWA which can be configured by

the network operator who will evaluate the state of the connection (i.e. noisy

or not). The implementation and the test of this solution are left for future

work.

• We assumed the forward and backward link have the same speed when com-

puting the bandwidth estimation in RTA which can give a false indication of

high bandwidth if the backward path is faster than the forward path and vice

versa. Although this is an inherent problem with TCP and not specific to
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RTA since TCP increases its sending rate based on acknowledgments arrival

rate, future work should study the potential effects of path speed asymmetry

on the bandwidth estimation used in RTA.

• So far we added the TWA to end-to-end error discriminators which uses im-

plicit feedback from the network like round trip time. We also want to test the

effect of adding TWA to error discriminators that uses explicit feedback from

the network like the ECN based error discriminator [105] and test it with our

transmission window actions.

• In our topology we used drop tail queue in the bottleneck. However, since our

error discriminator uses delay to infer congestion we want to test the effect of

AQM (like RED [57]) on the proposed solutions.

• Improve the proposed analytical model to include the effects of MDA and

RTA. The current model includes only the effects of CWA, congestion drops

and timeout event.

• Congestion and packet loss in the backward path can increase the RTT sig-

nificantly and hence gives a false indication of congestion in the forward path.

Some solutions can be applied like using time stamps to measure the RTT.

We want in the future work to apply time stamps to measure the RTT and

conduct an analysis of TCP-RTT performance when applying this solutions.

• An improvement to the TCP-RTT error discrimination mechanism can be

done by making it monitor whether the congestion increases or decreases. In

the future work we plan to use the slope of the round trip time (RTT) readings

and see if the slope increase or decrease ratios can be used as an indication of

the direction of the congestion.
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• The performance of TCP-RTT and TCP-RTTM will depend heavily on the

computation of Cedge as presented in chapter 6. Cedge depends on the com-

puted RTT and a fixed value for midalpha. We are interested in the future

work to see if it is possible to automatically choose midalpha based on corre-

lations found in the round trip time readings.

• In future work we want to investigate more complex scenarios like: different

topology settings with multiple bottlenecks, other traffic models and cross

traffic with flows that has specific quality of service requirements like video

and audio.

• In future work we want to expand our comparisons to cover more error dis-

criminators than the ones used in chapters 6 and 7.
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Standard TCP Reaction to Drops

Following algorithm shows the standard TCP reaction to drops as described in [20]:
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1: if (AckSeqNo == last ack) then reported = reported+1
2: if reported == 3 then . Packet drop
3: resend packet with seqNo=AckSeqNo+1
4: cwnd = cwnd / 2
5: ssthresh = cwnd
6: end if
7: end if
8: if timeout==true then
9: ssthresh = cwnd/2 . Actually ssthresh = min(2,cwnd/2)

10: cwnd = 1
11: end if
12: recalculate RTO

Variables:
AckSeqNo: Sequence number of the received acknowledgment.
last ack : Sequence number of the last acknowledged packet (last new acknowledg-
ment).
reported : Variable that keeps track of how many duplicate acknowledgment TCP
received so far. This variable is set to 0 whenever a new acknowledgment is received.
cwnd : Congestion window size.
ssthresh: Slow Start threshold
RTO : Retransmission timeout timer. Calculated based in the average RTT.

Figure A.1: Standard TCP reaction to drops
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MDA - The Case of Non Sequence

Errors

MDA is designed to recovers multiple drops per window when they happen in se-

quence. However, we present here an idea for the case when error are not in sequence.

In this case we have two options, either to follow TCP-Newreno [37] and to resend

the dropped packets one per round trip time which will take long time if we have

too many dropped packets but it will prevent multiple retransmission of already

received packets. Other method is to resend all the window as Bulk Repeat [77]

which is good if we have too many drops per window but if the error rate is low it

will cause a lot of unnecessary retransmission of packets.

Our proposal is to combine the two options. We will use number of dropped

packets to estimate dropping rate per window. Then based on that we choose which

action to choose (i.e. one packet per RTT or resend all the window).

We will define α which represent the error rate, so that if drops rate per window

is lower than α then we use slower but more conservative method of resending packet

per RTT since the number of errors is low. However, if the number of errors per
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window exceeded α then TCP can resends all window at once. The algorithm is the

same as MDA with following additions:

• We count number of partial acknowledgments and after receiving the second

partial acknowledgment which indicates that the first retransmission did not

cover all lost packets because they were not consecutive we estimate the error

rate roughly based on number of dropped packets per window as following:

error rate =
num drops

window size

• If error rate ≥ α then there are many errors and it is OK to resend the whole

window starting from the prev ack+1 until last sent 3Dack.

• However if the error rate < α then we resend one packet per round trip time

since we have only small drops.

The flowchart in figure B.1 Shows the updated MDA algorithm.

Choosing α depends on the network operator needs and the state of the lossy

link. If the connection has high rate of errors then it is better to choose lower

values for alpha to allow TCP to do more retransmission. However, if the error rate

is low then a higher value for α is preferable to prevent TCP from retransmitting

unnecessary packets.

As we said the computation of error rate is a rough computation and we do not

claim it represent the actual drop rate in the network. However, the use of this

method will be as a final resort and after MDA fail to recover all drops.

Also an improvement to the way to compute error rate is to use a weighted

average of error rate measurement from different windows instead of a single mea-

surement as we did above which will prevent affected by sudden changes in the
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error rate .

Finally, here we presented the idea and we plan to add it to MDA and test it in

the future work.
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Traffic Generation

Here we will show that MMPP traffic generator [88] which we used in our simulator

has the ability to approximate burstiness and correlation over large time scales found

in Internet traffic. The correlation in Internet traffic is widely known as long range

dependence (LRD).

We use a simple topology presented in figure C.1 with one sender that uses an

MMPP traffic generator. Then we count number of arrival packets to the first router

R1 during time T where T takes different values namely 1, 0.1 and 0.01 seconds.

The resulted traffic is then fed to an external tool we developed using MATLAB

and uses the Aggregated Variance Method as described in [106] to calculate the

Hurts parameter which is used to measure the level of LRD in the traffic [106] .

As a reference we use also a ready made tool called SELFIS [107] (SELF similarity

analysIS) which uses several methods to to calculate the Hurts parameter (If all

methods indicates that the traffic is LRD then we report results using Aggregated

Variance method only).

Table C.1 shows the Hurst parameter for different intervals using our tool (called

AV) and SELFIS. A Hurst parameter > 0.5 indicates presence of LRD in the traf-
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Figure C.1: Simple Topology

Time Interval (seconds) Hurst Parameter
AV estimator SELFIS

1 0.68 0.69
0.1 0.76 0.78
0.01 0.77 0.79

Table C.1: MMPP traffic generator Hurst parameter for different intervals

fic [106]. As we can see all results indicates that MMPP traffic generator can generate

LRD traffic. The small difference between the results obtained using our Av estima-

tor and SELFIS is probably due to different methods of implementing mathematical

and statistical functions and the differences in programming language (MATLAB

uses C/C++ and SELFIS uses Java).

Following we include the MATLAB code for the AV tool, the ideas in this

MatLab code is based on the documentation of Aggregated variance method in [106]:
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AV estimator for Long Range Dependence

1 % M Alnuem 2007

2 echo o f f ;

3 clear a l l ;

4 clc ;

5 [ t r a f f i c ] = text r ead ( ’ t r a f f i c 0 . 01 s−100sRun . t r ’ , ’%f ’ ) ; %Input f i l e

6 [ i , j ] = s ize ( t r a f f i c ) ;

7 n=i ;

8 mlimit=n/2 %maximum s i z e m can take

9 count1 = 0 ;

10 i =2;

11 %C i s the constant t ha t determains next m s i z e e

12 %so m( i+1)=mi∗C ( see Taqqu e t a l . ,1995)

13 C=2;

14 %Here we cacu l a t e d i f f e r e n t s i z e s o f m

15 while ( i <= mlimit )

16 count1 = count1+1;

17 mvec ( count1)= i ;

18 i=i ∗C;

19 end

20 %mvec

21 [ t , mvecs ize ] = s ize (mvec ) ;

22 for bk=1: mvecs ize % for b i g k=1 to number o f m s i z e s

23 m=mvec (bk ) ; % current m

24 nm = n/m;

25 Xm=1:nm;

26 %for k =1 , 2 . . . .N/m Ca lcu la t e Xm( k ) .

27 %see (Taqqu e t a l . ,1995) equat ion 3.1

28 for k=1:nm

29 count2 =0;

30 for i =(k−1)∗m+1:k∗m

31 count2=count2+1;

32 X( count2)= t r a f f i c ( i ) ;

33 end

34 Xm(k)=mean(X) ;

35 end

36 %Calcu la t e sample var iance f o r b l o c k m.
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37 %see ( Taqqu e t a l . ,1995) equat ion 3.2

38 var iance (bk)= var (Xm) ;

39

40 end

41

42 % Fol lowing we c a l c u l a t e the log−l o g s c a l e f o r he var iance and m

43 % Then we c a l c l a t e the s l op o f the b e s t f i t

44 %l i n e and use t h i s s l op to c a l c u l a t e H

45 logm = log10 (mvec ) ;

46 l ogvar = log10 ( var i ance ) ;

47 sumX=sum( logm ) ;

48 sumY=sum( l ogvar ) ;

49 squareX=power ( logm , 2 ) ;

50 ssquareX=sum( squareX ) ;

51 XY=logm .∗ l ogvar ;

52 sumXY=sum(XY) ;

53 [m, n ] = s ize (mvec ) ;

54 s l op=(sumXY − (sumX∗sumY/n ) ) / ( ssquareX−(power (sumX,2 ) / n ) )% Ca lcu l a t ing the Slop

55 H =( s l op /2)+1; % Ca lcu l a t ing H according to taqqu95 s l op = 2H −2

56 H

57 %Fol lowin we draw the b e s t f i t l i n e in a log−l o g char t f o r the var iance and m

58 %We have the s l op so nes t we c a l c u l a t e the i n t e r c e p t po in t b

59 b=(sumY−s l op ∗sumX)/n ;

60 Xaccess = logm ;

61 for i =1:n

62 Yaccess ( i )= s l op ∗logm( i )+b ;

63 end

64

65 plot ( logm , logvar , ’ ∗ ’ , Xaccess , Yaccess , ’ r .− ’ ) ;

66 t i t l e ( ’ Aggregated Variance Method ’ ) ;

67 xlabel ( ’ log10 (m) ’ ) ;

68 ylabel ( ’ log10 ( var i ance ) ’ ) ;
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TCP-RTT Source Code

Following a subset of TCP-RTT source code.

1 /∗

2 TCP−RTT. M alnuem 2007

3

4 Here I w i l l implement the ac t i ons toward transmiss ion er ror s + the RTT error d i s c r imina tor .

5 The ac t i ons implements here are

6 −CWA : conges t ion window ac t ion

7 −MDA: Mu l t i p l e drops ac t ion

8 −RTA: Retransmission timeout ac t ion

9

10 Note t ha t some func t i ons used here are i n h e r i t e d from the c l a s s TcpAgent in TCP. cc and

11 from Tcp−Reno . cc in ns2

12

13 ∗/

14

15 #include <s t d i o . h>

16 #include <s t d l i b . h>

17 #include <sys / types . h>

18 #include ” ip . h”

19 #include ” tcp . h”

20 #include ” f l a g s . h”

21 #include ”random . h”

22 #include ” base t rac e . h”

23 #include ” hdr qs . h”
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24

25 stat ic c l a s s edtaTcpClass : pub l i c Tc lClass {

26 pub l i c :

27 edtaTcpClass ( ) : Tc lClass ( ”Agent/TCP/Reno/ edta ” ) {}

28 TclObject ∗ c r e a t e ( int , const char∗const ∗) {

29 return (new edtaTcpAgent ( ) ) ;

30 }

31 } class TA ;

32

33 edtaTcpAgent : : edtaTcpAgent ( ) : RenoTcpAgent ( ) ,

34 window edge ( 0 ) ,

35 window edge time ( 0 . 0 ) ,

36 num dupack (0 ) ,

37 dup f l ag ( 0 ) ,

38 dup f l i g h t ( 0 ) ,

39 f i r s t d u p (1 ) ,

40 l a s t s e n t (−1) , l a s t a ck (−1) , tmpls (−1) ,

41 num backoffs ( 0 ) ,

42 i d e l t im e ( 0 . 0 ) ,

43 prev packet t ime ( 0 . 0 ) ,

44 cu r r en t pacek t t ime ( 0 . 0 ) ,

45 avg i d e l t ime ( 0 . 0 ) ,

46 pkt count ( 0 . 0 ) ,

47 t t h r e s h ( 0 . 0 ) ,

48 f i r s t d r o p (1 ) ,

49 ack t ime (0 ) ,

50 avg ra t e ( 0 ) ,

51 maxavg rate ( 0 ) ,

52 n t ba cko f f ( 0 ) ,

53 bu i l k r e p e a t ( 0 ) ,

54 s i n g l e c u t ( 0 ) ,

55 congdp (0 ) ,

56 wiredp (0 ) ,

57 AvgRTT (0 ) ,

58 a lpha ( 0 . 9 ) ,

59 maxp ( 0 . 9 ) ,

60 ncongd (0 ) ,

61 nwired (0 ) ,

62 vRTT (0 ) ,
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63 method (0 ) ,

64 midalpha ( 0 . 1 5 ) ,

65 l a s t dupack (0 ) ,

66 l a s t r e c o r e d e d (−1) ,

67 p avg de lay ( 0 ) ,

68 p de lay ( 0 ) ,

69 MDA congestion ( 0 ) ,

70 t th r e sh enab l ed (1 )

71 {

72 bind ( ” i d e l t im e ” , &i d e l t im e ) ;

73 // bind (” a v g i d e l t ime ” , &av g i d e l t ime ) ;

74 bind ( ” num backoffs ” , &num backoffs ) ;

75 bind ( ”CWA enabled” , &CWA enabled ) ;

76 bind ( ”MDA enabled” , &MDA enabled ) ;

77 bind ( ”RTA enabled” , &RTA enabled ) ;

78 bind ( ” s i n g l e c u t ” , &s i n g l e c u t ) ;

79 bind ( ” t t h r e s h ” , &t th r e s h ) ;

80 bind ( ” n t ba cko f f ” ,& n t ba cko f f ) ;

81 bind ( ” t b a c k o f f ” ,& t b a c k o f f ) ;

82 bind ( ” avg ra t e ” ,& avg ra t e ) ;

83 bind ( ”maxavg rate ” ,&maxavg rate ) ;

84 bind ( ”AvgRTT ” , &AvgRTT ) ;

85 bind ( ” congdp ” , &congdp ) ;

86 bind ( ”wiredp ” , &wiredp ) ;

87 bind ( ”ncongd ” , &ncongd ) ;

88 bind ( ” nwired ” , &nwired ) ;

89 bind ( ” a lpha ” , &alpha ) ;

90 bind ( ”maxp ” , &maxp ) ;

91 bind ( ”CeilRTT ” , &CeilRTT ) ;

92 bind ( ”FloorRTT ” , &FloorRTT ) ;

93 bind ( ”method ” , &method ) ;

94 bind ( ”midalpha ” , &midalpha ) ;

95 bind ( ” sentpacke t s ” ,& sentpacke t s ) ;

96 bind ( ” p avg de lay ” ,&p avg de lay ) ;

97 bind ( ”MDA congestion” ,&MDA congestion ) ;

98 bind ( ” t th r e sh enab l ed ” ,& t th r e sh enab l ed ) ;

99 out f = fopen ( ”out . t r ” , ”w” ) ;

100 cdropf = fopen ( ” congout . t r ” , ”w” ) ;

101 wdropsf = fopen ( ”wireout . t r ” , ”w” ) ;
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102 cdropf2 = fopen ( ” congout2 . t r ” , ”w” ) ;

103 wdropsf2 = fopen ( ”wireout2 . t r ” , ”w” ) ;

104 a l l d r op s = fopen ( ” a l l d r op s . t r ” , ”w” ) ;

105 CeilRTT = 0 . 0 ;

106 FloorRTT =10000;

107 Waction =0;

108

109 }

110

111 void edtaTcpAgent : : t cpp r i n t ( char∗ t op r i n t )

112 {

113

114 f p r i n t f ( outf , t op r i n t ) ;

115 }

116

117

118 void edtaTcpAgent : :MDA( Packet ∗pkt )

119 {

120 hdr tcp ∗ tcphdr = hdr tcp : : a c c e s s ( pkt ) ;

121 char s [ 5 0 ] ;

122 s p r i n t f ( s , ” Pa r t i a l Ack : ,%d,%d\n” , tcphdr−>seqno ( ) , l a s t s e n t ) ;

123 t cpp r i n t ( s ) ;

124 int i n c = 0 ;

125 i f (CWA enabled ) // l a s t ack+1 has been sent

126 i n c =1;

127 else

128 i n c =0;

129 i f ( f i r s t p a r t i a l )

130 // This w i l l run only when the f i r s t

131 // p a r t i a l acknowledgment a r r i v e s

132 {

133 double f l i g h t s i z e = l a s t s en t−l a s t a ck ;

134 i f ( f l i g h t s i z e > 0)

135 {

136 double percent droped =double ( Tphase window/ f l i g h t s i z e ) ;

137 char d [ 5 0 ] ;

138 s p r i n t f (d , ” in 1 , percent droped :% f \n” , percent droped ) ;

139 t cpp r i n t (d ) ;

140
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141 i f ( percent droped >= 0 .05 )

142 {

143 s p r i n t f (d , ” in 2\n” ) ;

144 t cpp r i n t (d ) ;

145 bu i l k r e p e a t =1;}

146 else { bu i l k r e p e a t =0;

147 s p r i n t f (d , ” in 3\n” ) ;

148 t cpp r i n t (d ) ; }

149 }

150 bu i l k r e p e a t =0;

151 i f ( ! bu i l k r e p e a t )

152 for ( int i=1+inc ; i <=(Tphase window+1); i++)

153 resned ( l a s t a ck+i ) ;

154 char f [ 3 5 0 ] ;

155 s p r i n t f ( f , ” f l i g h t 1 :%f , Tphase window:%d , dupAck:%d , bu i l k r ep ea t :%d ,T/F:% f \n” ,

156 f l i g h t s i z e , Tphase window , dup count , bu i l k r epea t ,

157 Tphase window/ f l i g h t s i z e ) ;

158 t cpp r i n t ( f ) ;

159 output ( t s eqno ++ ,0);

160 }

161 else // resend at l e a s t one packet

162 { bu i l k r e p e a t =0;

163 i f ( ! bu i l k r e p e a t )

164 {

165 resned ( l a s t a ck+1+inc ) ;

166 output ( t s eqno ++ ,0);

167 }

168 }

169

170 bu i l k r e p e a t =0;

171 r e s e t r t x t im e r ( 1 , 0 ) ;

172 i f ( bu i l k r e p e a t )

173 {

174 t s eqno = l a s t a ck+1+inc ;

175 }

176

177 }

178

179 void edtaTcpAgent : : i n i t i a l c h e c k s ( Packet ∗pkt )
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180 {

181 hdr tcp ∗ tcphdr = hdr tcp : : a c c e s s ( pkt ) ;

182 ++nackpack ;

183 t s p e e r = tcphdr−>t s ( ) ;

184 r e c v h e l p e r ( pkt ) ;

185 r e c v f r t o h e l p e r ( pkt ) ;

186 i f ( tcphdr−>seqno ( ) == la s t a ck ) // Dup l ica te Acknowledgment

187 {

188 ++num dupack ;

189 ++dup count ;

190 i f ( dup count==3)

191 {

192 dup f l i g h t = maxseq − tcphdr−>seqno ( ) ;

193 dup f l ag = 1 ;

194 Tphase = 1 ; //Entering t rnsmiss ion phase

195 f i r s t p a r t i a l = 1 ;

196 i f ( f i r s t d u p )

197 {

198 i f (CWA enabled )

199 f a s t r e t r a n s ( 0 ) ;

200 //CWA − resend and de lay the cut

201 // u n t i l l we r e c i e v e f i r s t p a r t i a l

202 //acknowledgment

203 else

204 f a s t r e t r a n s ( 1 ) ;

205 // Reno case− cut a f t e r f i r s t 3 dup l i c a t e acknowledgment

206 l a s t s e n t = maxseq ;

207 }

208 i f (CWA enabled && f i r s t d r o p )

209 // f i r s t drop in t h i s

210 // in t h i s connect ion or

211 // a f t e r a t imeout

212 {

213 t t h r e s h = cwnd ;

214 f i r s t d r o p = 0 ;

215 }

216 }

217 i f ( dup f l ag )

218 {
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219 −−dup f l i g h t ;

220 i f ( dup f l i g h t == 0)

221 {

222 char s [ 5 0 ] ;

223 s p r i n t f ( s , ”end o f Dups\n” ) ;

224 // t c pp r i n t ( s ) ;

225 dup f l ag= 0 ;

226 }

227 }

228 }

229 }

230

231 int edtaTcpAgent : : Twindow ( )

232 {

233 i f ( f i r s t p a r t i a l )

234 // This w i l l run only when

235 // the f i r s t p a r t i a l acknowledgment a r r i v e s

236 {

237 int f l i g h t s i z e = l a s t s en t−l a s t a ck ;

238 int window = f l i g h t s i z e −dup count ; // Number o f dropped packe t s

239 i f (window>0)

240 return ( f l i g h t s i z e −dup count ) ;

241 else

242 return ( 0 ) ;

243 }

244 else

245 return ( Tphase window ) ;

246 }

247

248 void edtaTcpAgent : : bw est ( )

249 { //Computing the bandwidth f o r RTO back−o f f

250 double oack t ime =ack t ime ;

251 ack t ime = Scheduler : : i n s t ance ( ) . c l o ck ( ) ;

252 double r a t e =(( s i z e ∗8)/( ack time−oack t ime ) ) /1024 ;

253 double alpha = 0 . 9 ;

254 avg ra t e = ( avg ra t e ∗ alpha ) + ( ra t e ∗(1−alpha ) ) ;

255 i f ( maxavg rate < avg ra t e )

256 maxavg rate = avg ra t e ;

257 }
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258

259 void edtaTcpAgent : : packe t de lay ( Packet ∗pkt )

260 {

261 hdr tcp ∗ tcpheader = hdr tcp : : a c c e s s ( pkt ) ;

262 i f ( ! ( tcpheader−>seqno ( ) == la s t a ck ) )

263 {

264 double now = Scheduler : : i n s t anc e ( ) . c l o ck ( ) ;

265 double Ackts = tcpheader−>t s ( ) ;

266 double Go = Ackts − tcpheader−>t s e cho ( ) ; // forward path Delay

267 p de lay+=Go;

268 p avg de lay= ( p de lay/++pkt count )∗1000 ;

269 // mu l t i p l y ∗1000 to Convert from seconds to ms

270 }

271 }

272

273 // This func t i on shou ld be c a l l e d from r t t t imeou t () in TCP. cc in ns2

274 void edtaTcpAgent : :RTA(){

275 i f ( maxavg rate >0)

276 {

277 nback o f f s = log2 ( t b a c k o f f ) ;

278 double pavg rate = 1−( avg ra t e / maxavg rate ) ;

279 nback o f f s = nback o f f s ∗ pavg rate ;

280 n t ba cko f f = pow(2 , nback o f f s ) ;

281 }

282 else { n t ba cko f f = t b a c k o f f ;}

283 }

284

285 //RTT−Error Discr iminat ion func t ion

286 void edtaTcpAgent : :ED( Packet ∗pkt )

287 {

288 double now = Scheduler : : i n s t anc e ( ) . c l o ck ( ) ;

289 hdr tcp ∗ tcpheader = hdr tcp : : a c c e s s ( pkt ) ;

290 // F i r s t compute the AvgRTT

291 oldRTT = newRTT;

292 newRTT= now − tcpheader−>t s e cho ( ) ;

293 double Ackts = tcpheader−>t s ( ) ;

294 //newRTT = newRTT/ t c p t i c k ;

295 newRTT = newRTT∗1000 ; //Convert from secondes to ms

296 double newGo = Ackts − tcpheader−>t s e cho ( ) ; // forward path Delay
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297 //newGo = newGo/ t c p t i c k ;

298 newGo = newGo∗1000 ;

299 oldAvg =AvgRTT ;

300 i f ( tcpheader−>seqno ( ) != l a s t a c k )

301 AvgRTT = alpha ∗AvgRTT +(1−a lpha )∗newRTT;

302 vRTT = (vRTT ∗( a lpha ) ) + ( fabs (newRTT−AvgRTT )∗((1− a lpha ) ) ) ;

303 double va r i = newRTT−AvgRTT ;

304 i f ( ( FloorRTT > newRTT) && (newRTT>0) )

305 FloorRTT = newRTT;

306 i f (CeilRTT < newRTT)

307 i f ( tcpheader−>seqno ( ) != l a s t a c k )

308 CeilRTT = newRTT;

309 double mid = FloorRTT + midalpha ∗(CeilRTT −FloorRTT ) ; // Cedge

310 i f (AvgRTT >=mid)

311 congdp = 1 ;

312 else

313 congdp =0;

314 wiredp = 1−congdp ;

315 i f ( tcpheader−>seqno ( ) == l a s t a c k )

316 i f ( dupacks == 0)

317 {

318 // f p r i n t f ( out f , ” , F i r s t DupAck ” ) ;

319 dupRTT1 = oldRTT ;

320 dupRTT2 = newRTT;

321 }

322

323 i f ( congdp )

324 {

325 CWA enabled=0;

326 MDA enabled=MDA congestion ;

327 // enab le / d i s a b l e MDA for conges t ion l o s s e s as we l l

328 RTA enabled=0;

329 }

330 else

331 {

332 CWA enabled=1;

333 MDA enabled=1;

334 RTA enabled=1;

335 }
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336 }

337

338 void edtaTcpAgent : : recv ( Packet ∗pkt , Handler ∗)

339 {

340 hdr tcp ∗ tcphdr = hdr tcp : : a c c e s s ( pkt ) ;

341 double now = Scheduler : : i n s t anc e ( ) . c l o ck ( ) ;

342 cu r r en t pacek t t ime = now ;

343 packet de lay ( pkt ) ; // compute the forward path Delay f o r t ranc ing .

344 ED( pkt ) ; // Ca l l the error d i s c r imina tor

345 i n i t i a l c h e c k s ( pkt ) ;

346 i f (RTA enabled )

347 bw est ( ) ; // bandwidth es t imat ion

348 else //Reno case

349 avg ra t e = 0 ;

350 // This way TCP w i l l use exponen t i a l back o f f as in Reno

351 ////// Fol lowing New Acknowledgment Block ////////

352 i f ( tcphdr−>seqno ( ) > l a s t a ck ) {

353 // New Acknowldgment − or Par t i a l acknowledgment

354 prev packet t ime = cur r en t pacek t t ime ;

355 l a s t a ck = tcphdr−>seqno ( ) ;

356 r ecv newack he lpe r ( pkt ) ;

357 // This func t i on i s i n h e r i t e d from TCP. cc in ns2

358 dupwnd = 0 ; // Exi t f a s t recovery

359 i f ( l a s t s e n t > tcphdr−>seqno ( ) )

360 // p a r t i a l acknowledgment − Entering transmiss ion er ror s phase

361 {

362 Tphase window=Twindow ( ) ;

363 // compute Tphase window which

364 //depends on number o f droppes packe t s

365 //Tphase window w i l l be used by MDA to resend

366 //number o f packe t s equ la to Tphase window

367 // and w i l l be used by CWA to cut cwnd acoording to Tphase window

368 i f (CWA enabled )

369 // trnamsiss ion error s conges t ion window ac t ion

370 f a s t r e t r a n s ( 2 ) ;

371 i f (MDA enabled ) // Mu l t i p l e drop ac t ion

372 MDA( pkt ) ;

373 f i r s t d u p = 0 ;

374 } else {// A new Acknowledgment t ha t acknowledge a l l ou t s tand ing data
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375 f i r s t d u p =1;

376 Tphase = 0 ;

377 dup count=0;

378 dup f l ag =0;

379 dup f l i g h t =0;

380 }

381 // dup f l a g =0;

382 // d u p f l i g h t =0;

383 // dup count=0;

384 f i r s t p a r t i a l = 0 ;

385 Packet : : f r e e ( pkt ) ;

386 send much (0 , 0 , maxburst ) ;

387 // send as much as min(cwwnd , r e c i e v e r window) a l l ows .

388 }

389

390 void

391 edtaTcpAgent : : win cut ( int method , double amount )

392 {

393 ++ncwndcuts ;

394 i f (method == 1 )

395 {

396 cwnd = amount ;

397 // In case o f t ransmiss ion error we keep the s s t h r e s h as i t i s because

398 //Equi l i br ium poin t probab ly has not changed

399 // s s t h r e s h = ( in t ) amount ;

400 }

401 else i f (method ==2)

402 s s t h r e s h = ( int ) amount ;

403 else i f (method ==3)

404 {

405 cwnd = amount ;

406 s s t h r e s h = ( int ) amount ;

407 }

408 i f ( cwnd < 1)

409 cwnd = 1 ;

410 i f ( s s t h r e s h < 2)

411 s s t h r e s h = 2 ;

412 i f ( ( method ==1) | | ( method ==3))

413 cong ac t i on = TRUE;
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414 }

415

416 void edtaTcpAgent : : reduce cwnd ( int r educ t i on type )

417 {

418 int same window = ( r e c ov e r < l a s t a ck ) ;

419 // are we in the same window

420 i f ( ! s i n g l e c u t )

421 same window=1;

422 // i f ( r ecover > l a s t a c k )

423 //{

424 i f ( ( r educ t i on type == 1) && ( same window ) ) // conges t ion drop

425 {

426 r e c ov e r = maxseq ;

427 // recover i s l a s t s e en but

428 //we keep i t f o r c ompa t i b i l i t y with o ther tcp ns2 codes .

429 tmpls = maxseq ;

430 l a s t cwnd ac t i on = CWND ACTION DUPACK;

431 // t h i s v a r i a b l e i s

432 // requ i red f o r compa tab i l i t y wi the f i l e tcp . cc in ns2

433 int o ld win = windowd ( ) ;

434 double new win = windowd ( ) / 2 ;

435 // char s [ 5 0 ] ;

436 // s p r i n t f ( s ,” Wincutbefore1 : ,%d,%d\n” , i n t ( cwnd ) , i n t ( s s t h r e s h ) ) ;

437 // t c pp r i n t ( s ) ;

438 win cut (3 , new win ) ;

439 // s p r i n t f ( s ,” Wincutafter1 : ,%d,%d\n” , i n t ( cwnd ) , i n t ( s s t h r e s h ) ) ;

440 // t c pp r i n t ( s ) ;

441 }

442

443 i f ( ( r educ t i on type == 2) && ( same window ) ) // Transmission drop

444 {

445 r e c ov e r = maxseq ;

446 // recover i s l a s t s e en but

447 //we keep i t f o r compa tab i l i t y with o ther tcp ns2 codes .

448 l a s t cwnd ac t i on = CWND ACTION DUPACK;

449 // t h i s v a r i a b l e i s

450 // requ i red f o r compa tab i l i t y wi the f i l e tcp . cc in ns2

451 // char s [ 5 0 ] ;

452 // s p r i n t f ( s ,” Wincutbefore2 : ,%d,%d\n” , i n t ( cwnd ) , i n t ( s s t h r e s h ) ) ;
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453 // t c pp r i n t ( s ) ;

454 i f ( ( cwnd < t t h r e s h ) | | ! ( t th r e sh enab l ed ) )

455 //and the error i s t ransmiss ion error according to the ED

456 {

457 int new win = cwnd −Tphase window ;

458 // other opt ion i s to do : new win = windowd()−Tphase window

459 i f ( new win<1)

460 new win=1;

461 double now = Scheduler : : i n s t anc e ( ) . c l o ck ( ) ;

462 win cut (1 , new win ) ;

463 }

464 else

465 // reduce cwnd ( 1 ) ;

466 {

467 //win cut (3 , cwnd /2) ;

468 int o ld win = windowd ( ) ;

469 double new win = windowd ( ) / 2 ;

470 win cut (1 , new win ) ;

471 // We cut the conges t ion window (and not not the s s t h r e s )

472 // only s ince there i s a chance the error i s t ransmiss ion error .

473 }

474 }

475 //}

476 }

477

478 void edtaTcpAgent : : resned ( int seqno )

479 {

480 char s [ 5 0 ] ;

481 double now = Scheduler : : i n s t anc e ( ) . c l o ck ( ) ;

482 s p r i n t f ( s , ”Resending at : ,% f ,%d\n” ,now , seqno ) ;

483 t cpp r i n t ( s ) ;

484 output ( seqno , TCP REASON DUPACK) ;

485 }

486

487 void edtaTcpAgent : : f a s t r e c o v e r y ( )

488 {

489 dupwnd = numdupacks ;

490 }

491
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492 void

493 edtaTcpAgent : : f a s t r e t r a n s ( int r educ t i on type )

494 //Transmission ac t ion Fast Retransmission

495 {

496

497 // in t r educ t i on t ype= 1;

498 // 1 : reduce cwnd to ha l f , s s t h r e s h to h a l f

499 reduce cwnd ( r educ t i on type ) ;

500 resned ( l a s t a ck +1);

501 f a s t r e c o v e r y ( ) ;

502 r e s e t r t x t im e r ( 1 , 0 ) ;

503 f i r s t d u p =0;

504 i f ( l a s t a ck+1> l a s t r e c o r e d e d )

505 {

506 i f ( congdp | | ( ( cwnd >= t th r e s h ) && ( t th r e sh enab l ed ) ) )

507 f p r i n t f ( cdropf , ”%d\n” , l a s t a c k + 1 ) ;

508 else

509 f p r i n t f ( wdropsf , ”%d\n” , l a s t a c k + 1 ) ;

510 f p r i n t f ( a l l d rop s , ”%d\n” , l a s t a c k + 1 ) ;

511 // Fol lowing to record a l l drops cons idered

512 // conges t ion by the error d i s c r imina tor

513 // ( i . e . wi thout us ing t t h r ea sh )

514 i f ( congdp )

515 f p r i n t f ( cdropf2 , ”%d\n” , l a s t a c k + 1 ) ;

516 else

517 f p r i n t f ( wdropsf2 , ”%d\n” , l a s t a c k + 1 ) ;

518 }

519 l a s t r e c o r e d e d =l a s t a ck+1 ;

520 return ;

521 }

228


	cover_sheet_thesis1.pdf
	University of Bradford eThesis


