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ABSTRACT 

HOLOCENE PALEO-ENVIRONMENTAL VARIABILITY RECONSTRUCTED 

FROM A LAKE SEDIMENT RECORD FROM SOUTHEAST GREENLAND 

 

MAY 2013 

 

GREGORY A. DE WET, B.S., BATES COLLEGE 

 

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 

Directed by: Distinguished Professor Raymond S. Bradley 

 

 

 

Arctic climate variability over the Holocene has been both extensive and, at times, 

abrupt. Current understanding of these changes is still quite limited with few high-

resolution paleoclimate records available for this period.  In order to place observed and 

predicted 21
st
 century climate change in perspective, reliable and highly resolved paleo-

reconstructions of Arctic climate are essential. Using an 8.5 m sediment core from 

Nanerersarpik Lake, this project will characterize climate changes during the Holocene, 

including the deglacial transition, the rapid changes that are known to have occurred 

around 8,200 years ago, the transition from Holocene thermal maximum (HTM) to the 

colder Neoglacial period, and intervals of abrupt climate change during the late Holocene 

such as the Medieval Warm Period and Little Ice Age.  

     The 8.5 m sediment core from Nanerersarpik contains a dense gray clay in the lower 

0.5m. The upper 8.0m of sediment is light brown and organic-rich with centimeter to 

half-centimeter laminations, interrupted by mass-movement events.  Paleoenvironmental 

conditions have been interpreted using magnetic susceptibility, grain size, biogenic silica, 

TOC, C/N, organic lipid biomarkers, and δ
13

Corg, as well as with high-resolution spectral 

reflectance and scanning XRF profiles.  These parameters allow us to interpret changes in 
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autochthonous productivity and clastic input throughout the Holocene.  A chronology for 

the record has been established using 7 radiocarbon dates. The age-model indicates 

Nanerersarpik Lake contains an ~8,500-yr sediment record with a linear age/depth 

relationship and a sedimentation rate of 0.1cm/yr, allowing for potentially decadal scale 

resolution of environmental changes.  

An abrupt transition from dense glacial clay to laminated organic rich sediment 

occurs near the base of the core. This is interpreted as marking the retreat of glacial ice 

from the catchment around 8,250 cal yr BP. High frequency variations dominate the 

spectral, scanning XRF, and magnetic susceptibility data and indicate some correlation 

with Holocene climate intervals.  Biogenic silica and TOC analysis indicate broad scale 

changes in primary productivity generally consistent with known Holocene climatic 

intervals: the deglacial period, the Holocene Thermal Maximum, and the Neoglacial, with 

high variability during the late Holocene. High resolution biogenic silica data over the 

past 1500 cal yr BP show some correspondence to Greenland Ice Core paleotemperature 

reconstructions, suggesting biogenic silica may be responding to temperature on short 

timescales and should be used as a paleo-environmental proxy in future studies. 

Alkenones and glycerol dialkyl glycerol tetraethers were present in Nanerersarpik 

sediments, suggesting this location or others in SE Greenland might be suitable for future 

high-resolution paleotemperature studies using biomarkers.  
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CHAPTER I 

INTRODUCTION 

1.1) Introduction and objectives: 

Modern climate, especially at high latitudes, is changing rapidly in response to 

anthropogenic greenhouse gas emissions. Observed and predicted 21
st
 century climate 

change must be put in perspective through analysis of reliable and highly resolved paleo-

reconstructions of past climate (Kaplan and Wolfe, 2006). The Arctic in particular is 

predicted to respond substantially to projected warming (Callaghan et al., 2010) through 

the amplification of climate feedbacks specific to the region (Overland et al., 2008; 

Serreze et al., 2009). The Holocene epoch (11,500 cal yr B.P. to the present) presents a 

unique opportunity to understand Arctic climate as atmospheric and ocean circulation 

patterns were similar to their current configuration and natural insolation forcing caused 

significant environmental changes (Johnsen et al., 2001; Mayeweski et al., 2004; 

Kaufman et al., 2004) without the overprint of significant anthropogenic influence. High-

resolution paleoclimate reconstructions of Arctic climate during this period therefore 

allow projected changes to be contextualized and increase our understanding of how 

high-latitude climate will respond in the future. However, our current understanding of 

Holocene climate change is still quite limited with few high-resolution terrestrial 

paleoclimate records available for this period. The goal of this project is to produce a 

highly-resolved paleoclimate record from climatically sensitive Southeast Greenland to 

address this issue.  

Within the Arctic, much of the existing evidence for how climate has varied in the 

past has been reconstructed from marine sediments or ice cores. While marine sediment 

cores have documented climate change during the Holocene (Andersen et al., 2004; 
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Justwan et al., 2008; Jennings et al., 2011), and are useful in that they generally record a 

more regional signal and can be very highly resolved, they do not necessarily record how 

these changes have been manifested on land. Greenland ice core records, while extremely 

highly resolved (Johnsen et al., 2001; Thomas et al., 2007; Kobashi et al., 2011), record 

local conditions on the ice sheet and are therefore not always indicative of regional 

climate. Lake sediments can provide an important bridge between these two archives and 

shed light on terrestrial environmental variability in the Arctic. The margins of the 

Greenland Ice Sheet (GIS) are an excellent area to analyze lakes as they are not only 

ubiquitous features of the landscape, but also may record multiple climate signals related 

to changes related to the GIS, atmospheric pattern variability, and ocean current changes. 

Furthermore, the coasts are expected to experience large temperature changes in the 

future (Kattsov et al., 2007; Bitz et al., 2010).   

Lake records are useful as archives of past climate; however, the links between 

environmental changes and lacustrine proxies can be complex. Climate changes are 

filtered through both the lake catchment and in-situ lacustrine processes before being 

recorded in the sediment (Anderson et al., 2012). In spite of this potential disconnect, 

many lake systems have proven to be robust recorders of climate change in the Arctic if 

these processes can be accounted for and understood (e.g. Kaufman et al., 2004; Kaplan 

and Wolfe, 2006; Massa et al., 2012). Lake sediments are powerful in that a multitude of 

relevant paleoclimate proxies can be applied to them that respond to numerous different 

facets of climate change and they can also act as independent internal checks on the 

accuracy of the reconstructions (Meyers, 1983; Meyers and Ishiwatari, 1993; Smol and 

Cumming, 2000). Well dated, multiproxy paleoclimate reconstructions from lakes in the 
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Arctic can greatly increase our understanding of paleoenvironmental variability in the 

region.  

The objective of this investigation is to produce a continuous, high-resolution 

paleoclimate reconstruction from southeastern Greenland based on analysis of a lake 

sediment core from Nanerersarpik Lake (Figure 1.1) A multiproxy analysis was carried 

out using physical, chemical, and biological proxies. Rates of primary production were 

estimated from total organic carbon (TOC), total nitrogen (TN), lipid biomarker, and 

biogenic silica (BSi) concentrations, and carbon and nitrogen isotope values. 

Clastic/minerogenic input was analyzed using magnetic susceptibility (MS), sediment 

elemental composition, and sediment density. Paleotemperatures were estimated using 

established transfer functions based on concentrations of long-chain alkenones and 

branched glycerol dialkyl glycerol tetraethers. Based on these proxies, periods of known 

climate change during the Holocene have been identified; the local transition from glacial 

to deglacial conditions, the transition from Holocene thermal maximum (HTM) to the 

colder Neoglacial period, as well as shorter-lived intervals throughout the Holocene such 

as the Medieval Climate Anomaly and the Little Ice Age.  

The Nanerersarpik Lake record is part of a regional reconstruction of SE 

Greenland Holocene paleoclimate,  in conjunction with records from three other lakes 

within 50km of the study site (Flower Valley Lake, Kulusuk Lake, and Lower Sermilik 

Lake) (Figure 1.1). Colleagues at the University of Massachusetts, Amherst (Dr. Nicholas 

Balascio and Masters student Sam Davin), are investigating the other SE Greenland 

lakes.  Nanerersarpik paleo-environmental data are also compared to previously 
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published records from throughout the Arctic to determine the local timing and 

magnitude of Holocene climate change at this site.  

 

1.2) Modern local climate 

 Temperature and precipitation data have been collected at a meteorological station 

in the settlement of Tasiilaq on Angmassalik Island (Figure 1.1) for the past 118 years 

(Cappelen et al., 2010) Generally, the majority of precipitation occurs during the winter 

and fall (Figure 1.2 and Table 1.1). February has been the coldest month on average 

during this time span (-7.9°C) and July the warmest (6.9°C). May, June, July, and August 

have average temperatures above freezing.   

 

Table 1.1: Tasiilaq Met. Station Data (1895-2010) 

Month Average Temp. 

(°C) 

Average Precipitation(mm) 

January -7.3 91.0 

February -7.9 79.0 

March -6.9 83.6 

April -3.4 62.8 

May 1.3 57.4 

June 4.9 44.4 

July 6.9 43.8 

August 6.3 58.4 

September 3.6 85.7 

October -0.6 95.4 

November -4.1 86.3 

December -6.1 82.8 

 

1.3) Regional Climate Context  

1.3.1) Marine climate forcings 
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Understanding climate variability of the SE Greenland region is valuable due to 

its location at the crux of influence of multiple climate systems, climate signals 

associated with the GIS, ocean circulation variability, as well as important modes of 

atmospheric circulation. Located less than 50km from the coast and only 100m from a 

large fjord, Nanerersarpik is proximal to multiple important marine systems that 

influence both regional and global climate, such as the regions of formation of North 

Atlantic Deep Water (NADW) (Broecker and Denton, 1989). NADW variability and 

subsequent changes to the Atlantic Meridional Overturn Circulation (AMOC) have 

caused abrupt climate change during the Holocene, such as the so called “8.2 event” 

(Alley et al., 1997, Clark et al., 2002). It also is just onshore from the boundary between 

the polar waters of the East Greenland Current and the warmer Atlantic waters of the 

Irminger Current (Justwan et al., 2008; Jennings et al., 2011). Depending on the strength 

and intensity of the Irminger, warm Atlantic waters can be transported as far north as 

Baffin Bay (Zweng and Munchow, 2006) and have been attributed to 1°C warmer 

summer temperatures in SW Greenland (Hanna et al., 2009).  Both of these currents have 

responded/contributed to Holocene climate change and shifts in their intensity can 

dramatically affect regional climate (Masson-Delmotte et al., 2012).  

 

1.3.2 The Greenland Ice Sheet 

The GIS exerts significant influence over both regional and global climate due its 

high reflectivity and potential contribution of freshwater to the North Atlantic (Masson-

Delmotte et al., 2012), as well as controls on regional atmospheric circulation (Steffen 

and Box, 2001). Changes to both the thickness of the interior Greenland Ice Sheet, 
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(Vinther et al., 2009) and its margins, have occurred during the Holocene (eg. Briner et 

al., 2010) and are likely to continue with rising Arctic temperatures (Gregory et al., 2004; 

Masson-Delmotte et al., 2012). More locally, Nanerersarpik is proximal to the margin of 

the GIS and paleo-environmental data from the lake may shed light on the Holocene 

history of the ice sheet in SE Greenland. Furthermore, high resolution studies such as this 

help to answer the question of whether abrupt and sometimes short lived climate change 

events recorded in ice cores are present and can be identified in lacustrine archives.  

 

1.3.3 The North Atlantic Oscillation and other atmospheric patterns 

Changes related to large-scale atmospheric modes such as the North Atlantic 

Oscillation (NAO) and the Atlantic Multidedal Oscillation (AMO) also play a major in 

Greenland climate (eg. Hurrell and Deser, 2009; Von Gunten et al., 2012). For instance, 

large changes in N. Atlantic surface air temperature, wind patterns, and precipitation can 

occur from shifts in the phase of the NAO. NAO variability can also indirectly change 

climate by affecting sea ice cover and high latitude deep water formation in the Arctic 

(Hurrell and Deser, 2009). Generally, the modern NAO describes the balance of air 

masses between the Azores high pressure center and Icelandic low. The NAO is 

considered to be in a positive phase when the pressure gradient between the Icelandic 

Low and the Azores high is large. This positive phase broadly translates to stronger heat 

and moisture transport across the mid-Atlantic resulting in warmer temperatures and 

higher precipitation in Northern Europe and colder, drier air over Northeastern Canada 

and Greenland. While the NAO has can vary on short times scales (daily) it has been 
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shown that one phase can remain dominant for extended periods of time and affect 

climate in the North Atlantic (eg. Trouet et al., 2009).  

 

1.4) Regional Holocene Climate History 

Broadly, climate trends in the Arctic during the Holocene are well-established, 

although the timing and intensity of the intervals discussed below are not spatially 

uniform and only beginning to be understood (Mayewski et al., 2004; Kaufman et al., 

2004; Wanner et al., 2008).  

 

1.4.1) Last Glacial Maximum (LGM) and deglaciation history 

 While the extent of glaciation in SE Greenland during the Last Glacial Maximum 

(22-17 ka BP) is generally understood, the thickness of ice in the region is still unclear, 

with some authors (Dowdeswell et al., 1994; Landvik, 1994; Funder et al., 1998) calling 

for a limited ice sheet with numerous nunataks and the ice margin estimated to reach only 

part way out along the continental shelf. Others suggest the ice sheet was more extensive 

and nearly reached the continental shelf break (Stein et al., 1996; Kuijpers et al., 2003; 

Hakansson et al., 2007; Roberts et al., 2008). On nearby Amassalik Island (30km to the 

SW) Humlum and Christiansen (2008) found evidence for a well-defined trimline of 

glacial erosion up to altitudes of 600-900m, suggesting that peaks above this elevation 

were exposed during the LGM. Trimline features were also observed proximal to 

Nanerersarpik, where rounded, striated topography gives way to jagged, alpine features 

above ~800m.  
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 The GIS is interpreted to have reached its present margins in the region by 7-8ka 

BP (Funder and Hansen, 1996; Christiansen et al., 1999) and Humlum and Christiansen 

(2008) suggest that Angmassalik Island was largely deglaciated by this time. Local 

deglaciation was more complex, with no estimates available for the Nanerersarpik region 

specifically. The preponderance of glaciers in the area today, though restricted to high 

mountain cirques, suggests that valley and mountain glaciers likely persisted beyond the 

retreat of the ice sheet itself, though whether they survived the Early Holocene is 

uncertain. 

 

1.4.2) Holocene Thermal Maximum 

 The HTM is a warm interval during the Early Holocene that was driven largely by 

increased summer insolation (7.5% higher in summer 9000 years ago than today at 70°N 

(Kutzbach, 1981). This external forcing was manifested differently across the Arctic due 

to effects of the residual Laurentide Ice Sheet and local and regional feedbacks. In 

general, peak warmth in Greenland occurred between 9 and 5ka (Wagner et al., 2000; 

Kaufman et al., 2004; Klug et al., 2008; Perren et al., 2012). In parts of Southern and 

Western Greenland for example, the HTM marked the most productive (and inferred 

warmest) interval of the entire Holocene (Kaplan et al., 2004; Axford et al., 2013). The 

Holocene Thermal Maximum was extremely dry in Greenland, with arid conditions 

lasting up to ~5-6 cal kyr BP (Wagner et al., 2000; McGowan et al., 2003; Anderson and 

Leng, 2004; Anderson and Stedmon, 2007).  

 

1.4.3) Neoglaciation  
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Summer insolation values decreased steadily throughout the Holocene leading to 

a transition from the HTM to a colder interval known as the Neoglacial period. This is 

generally recorded by lake sediment proxies as a decrease in primary production and 

increased aridity and windiness (eg. Massa et al., 2012; Axford et al., 2013). Paleoclimate 

reconstructions from multiple sites around Greenland found the culmination of this 

Neoglacial period took place during the late Holocene as part of the Little Ice Age 

(Wagner et al., 2002; Kaplan et al., 2004; Perren et al., 2012).  

In some areas of the North Atlantic and the Arctic, Neoglacial cooling was 

interrupted by a millennial scale warming event known as the Medieval Climate 

Anomaly (Mayewski et al., 2004; Mann et al., 2009; Kobashi et al., 2012).  This short-

lived warming was followed by a return to colder conditions known as the Little Ice Age, 

forced by lower summer insolation in the Northern Hemisphere, highly variable solar 

activity, and numerous large volcanic eruptions (Overpeck et al., 1997; Wanner et al., 

2008; Mann et al., 2009; Kaufman et al., 2009; Marcott et al., 2013).  
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CHAPTER II 

STUDY AREA 

2.1) Regional Setting 

Nanerersarpik Lake is located on the shore of Angmassalik Fjord in Southeast 

Greenland (66°54’47.58’’N, 37°08’44.98’’W) near the Innuit settlement of Kummiut 

approximately 45 kilometers from the coast (Figure 1.1). The regional underlying 

bedrock is part of the Nagssugtoqidian mobile belt complex of 2700 m.y. old gneisses 

and at the study site consists mainly of quartzo-feldspathic gneiss and some supracrustal 

metasediments (Bridgwater, 1976).  

The lake sits 100m above Angmassalik fjord on a shoulder of bedrock (Figure 

2.1). The surrounding catchment is small and steep-sided, totaling 5.7km
2
. The lake basin 

is bordered on the northern and eastern sides by low bedrock ridges of approx. 150m 

height (Figure 2.2). Glacial erratics are present along the summits of these features. The 

ridges slope steeply down to the basin floor, grading into vegetated fan/delta deposits that 

extend ~20m from the base of the ridges into the lake (Figure 2.3). Immediately to the 

west is a much higher ridge (average height of 900m). The slope of exposed bedrock is 

partially covered in places with talus material, and at least 4 large talus fans extend 

directly into Nanerersarpik (Figure 2.4).  

A small U-shaped notch is present in the bedrock ridge making up the 

northwestern boundary of the lake catchment (Figure 2.5). From this notch the only 

relatively significant source of flowing water enters the lake, a small (0.5m wide) stream 

(note: observation was made in mid-summer, many more inputs likely present in spring 

during the nival melt). Along the small valley incised by the stream below the notch is 
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the greatest concentration of glacial erratics present in the catchment. To the south, the 

basin is more open and the ground rises to only a few meters above the lake level 

(Figures 2.1 and 2.6). 

 The lake itself is quite clear and has a surface area of 0.62 km
2 

(Figures 2.1 & 

2.7). Lake bottom bathymetry reveals a single main basin (Figure 2.8). Cores were 

collected from the deepest part of the basin (54m water depth) in the southern half of the 

lake (star in Figure 2.9). Hydrolab data collected in the spring of 2010 show the lake as 

being only slightly oxygen limited in the deepest part of the lake (Figure 2.10). The 

current outflow of Nanerersarpik is located along the southeastern shore between a break 

in a low bedrock ridge. The outflow is a ~10 m wide shallow braided channel system that 

pools in a small pond before entering Ammassalik Fjord (Figure 2.11).  
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CHAPTER III 

METHODS 

3.1) Core Collection 

 Coring was conducted at Nanerersarpik Lake in the Spring of 2010 by Dr. 

Raymond Bradley and other colleagues from UMass, Amherst when the lake was ice-

covered. The majority of the cores were collected using a Uwitec tripod-mounted 

percussion coring system. Coring took place at adjacent “A” and “B” sites, with 4 core 

sections recovered from each site. The B core drives were taken at depths known to 

overlap missing sections of A to ensure a complete sediment record (Figure 3.1). A ~1m 

long surface core was also taken using a Nansen Percussion corer. To ensure complete 

recovery of surface sediments a ~1m surface core was also taken using a Uwitec gravity 

corer.  

 After collection, the cores were transported to University of Massachusetts, 

Amherst and stored in a refrigerated core storage room.  

 

3.2) Composite core record and removal of turbidites/instantaneous slump events 

 A composite record was created from the A and B cores from Nanerersarpik Lake 

(Figure 3.1). Overlapping core intervals were identified through correlation of similar 

stratigraphic layers identified by the magnetic susceptibility profiles of each core section 

(Figure 3.2). Layers with characteristic high magnetic susceptibility values (generally 

turbidites) made the identification of multiple congruent layers possible.  

 Once this preliminary composite core was assembled, turbidites/mass movement 

events were identified and removed using 3 primary criteria: high magnetic susceptibility 
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values (above the baseline of ~20-30 SI x 10
-5

) (Figure 3.2), a visually identifiable fining 

upward sequence (Figure 3.3), and high Ti counts (from the Itrax core scanner) (Figure 

3.4). In this way a total of 42 turbidites/mass movement events were identified and 

removed from the composite Nanerersarpik sediment record that was then interpreted for 

paleoenvironmental analysis (Figure 3.5) (Table 3.1). It should be noted that 3 of these 

events did not display the fining upward sequence typically displayed by turbidites but 

were identified as anomalous events that were not part of normal pelagic sedimentation 

and were subsequently removed from the final composite paleoclimate record. The 

largest turbidite removed was 77cm long and the smallest was 0.5cm. It is possible that 

not all sub-cm scale instantaneous sedimentation events were removed from the 

composite record. Overall, 303cm of sediment were positively attributed to turbidites and 

removed, shortening the length of the composite core from 841cm to 538cm (Figure 3.6).  

 

Table 3.1) Turbidite depths and ages 

Turbidite # Core Section Section Depth (cm) 
Composite 

Depth (cm) 

Age (cal yr 

BP) 

1 DB1-A1A (51-56)(2.5-17) 51-71 774 

2 A1A 28-29 82-83 906 

3 A1A 39-44.5 93-98.5 1045 

4 A1A 53-58.5 107-112.5 1162 

5 A1A 63-70 117-124 1192 

6 A1A 71-74.5 125.5-128.5 1206 

7 A1A 83-84.5 137-138.5 1324 

8 A1A 86.5-89.5 140.5-143.5 1346 

9 A1A 94-96 148-150 1405 

10 A1B 18-20.5 202-204.5 2364 

11 A1B 25-26.5 209-210.5 2444 

12 A1B-B1B1 (30-33)(56.5-57) 214-218 2454 

13 B1B1 58-62 219-223 2459 

14 B1B1 77.5-81 238.5-242 2513 
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15 B1B2 5.5-7.5 266-268 2627 

16 B1B2 11.5-13.5 272-274 2691 

17 B1B2-A2A 17.5-19.5 & 49 278-280.5 2767 

18 A2A 52-54.5 283.5-286 2820 

19 A2A 61-62.5 292.5-294 2950 

20 A2A 77.5-78 309-309.5 3251 

21 A2A 83-111 314.5-342.5 3348 

22 A2B-B2A (10.5-19)(56-57) 382-392 4376 

23 B2A 59.5-62 394.5-397 4436 

24 B2A 67-70 402-405 4570 

25 B2A 73.5-84 408.5-419 4659 

26 B2A 93.5-94 428.5-429 4927 

27 B2A 101.5-102.5 436.5-437.5 5135 

28 B2A 108-109 443-444 5284 

29 B2B 3.5-5.5 444.5-446.5 5298 

30 B2B-A3A (6-10.5)(12-84) 447-524 5298 

31 A3A 88.5-96.5 528.5-536.5 5403 

32 A3A 104-106 544-546 5611 

33 A3A 124.5-129.5 564.5-569.5 6113 

34 A3B-B3A1 (5-9.5)(90.5) 585-592 6434 

35 B3A1 103-104.5 604.5-606 6692 

36 B3A1 118.5-129 620-630.5 6891 

37 B3A2 5.5-7 637.5-639 7120 

38 B3A2-A4A (22.5-24.5)(28-40) 654.5-669 7442 

39 A4A 57-60.5 686-689.5 7795 

40 A4A 62-65 691-694 7817 

41 A4A 70-78.5 699-707.5 7913 

42 A4A 86.5-87.5 715.5-716.5 8074 

 

3.3) Sampling for radiocarbon analysis  

 Age estimates for the Nanerersarpik sediment record are based on 7 AMS 

radiocarbon samples of organic material taken from the core. Six of the samples of 

organic material were visually identified while the deepest sample was a mixture of 

organic material picked from a 1cm slice of hydrated sediment identified under a 
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microscope. The samples were analyzed at the Keck Carbon Cycle AMS Facility, Earth 

System Science Department, UC Irvine.  

 

3.4) Non-destructive analysis:  

3.4.1) Geotek core scanner 

All split core sections were scanned on a Geotek Multi-Sensor Core Logger 

(MSCL) both at the University of Minnesota and at the University of Massachusetts, 

Amherst. Due to the coherency of the results only data from the core scanning at the 

University of Minnesota are reported here. Cores images were taken using a Nikon AF 

Nikkor 50mm f/1.8 D lens equipped with a Tiffen circular polarizer.   

 The core sections were also scanned for magnetic susceptibility using a 

Bartington MS2E surface scanning magnetic susceptibility sensor. Spectral reflectance 

was collected using a Konica Minolta CM-2600d Spectrophotometer with a MAV 8mm 

aperture. Scans were conducted at 0.5cm intervals.  

3.4.2) Itrax XRF core scanner 

 All split core sections were also scanned on an Itrax XRF core-scanner (Cox 

Analytical Systems: http://coxsys.se/?cat=7) located at University of Massachusetts, 

Amherst. The Itrax provides elemental information as well as X-radiograph images. 

Cores were scanned at a resolution of 200 microns.  X-radiograph and XRF settings for 

all runs are shown below in Table 3.2. 

Table 3.2: Itrax XRF core scanner run settings 

Voltage Current 
Exposure 

time 
Step size 

XRF 

exposure 

time 

XRF 

voltage 

XRF 

current 
Tube 

60kV 50 mA 1000ms 200microns 10 s 30 kV 55 mA Mo 

 

http://coxsys.se/?cat=7
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3.5) Discrete sample analysis: 

3.5.1) Elemental Analyzer/Isotopic Ratio Mass Spectrometer (EA/IRMS) analysis 

 Discrete sediment samples were taken from the composite sediment record at 5cm 

intervals for biogeochemical analysis. Sediment was placed in glass vials, covered with 

Kim Wipes, and freeze-dried for 48 hours in a Virtis Freezmobile 12, 25, 35 Research 

Scale Freeze dryer. The samples were then homogenized using glass stirring rods cleaned 

in between each use with a three-step organic solvent rinse of increasing polarity (hexane, 

dichloromethane, methanol) to minimize contamination. Homogenized samples were 

then transferred to 50ml Falcon centrifuge tubes and acidified using 1M HCl to remove 

any carbonate. Samples were then diluted with de-ionized water and dried overnight in a 

60°C oven. This process was repeated until a pH of 5 was reached.  

 Between 5 and 10 mg of freeze-dried and acidified sediment were weighed using 

an analytical mass balance and transferred to combusted silver capsules for bulk 

geochemical analyses. Modern vegetation samples collected in July of 2012 from SE 

Greenland were powdered using a mortar and pestle and also weighed and transferred to 

silver capsules for geochemical analysis. Total organic carbon content (TOC), total 

nitrogen content (TN), δ
15

N, and δ
13

C were analyzed using a Costech ECS 4010 

Elemental Analyzer interfaced with a Thermo Delta V Advantage isotopic ratio mass 

spectrometer. All isotopic ratio values are reported relative to VPDB for δ
13

C and AIR 

for δ
15

N. 

 

3.5.2) Biogenic Silica 

3.5.2.1) Sub-sampling scheme 
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Biogenic silica (opal) concentrations were determined using a combination of 

traditional wet chemistry extractions (eg. Mortlock and Froelich, 1989) and less time-

consuming Fourier Transform Infrared Spectroscopy (FTIRS) spectral analysis (Vogel et 

al., 2008; Rosén et al., 2010).  12 samples were analyzed traditionally to create a 

calibration model applied to samples measured using FTIRS. The 12 samples were 

selected as groups of 4 from 3 distinct sections of the core known to have varying 

amounts of total organic carbon to attempt to minimize model bias. Preliminary FTIRS 

biogenic silica analysis was carried out on the same samples taken for bulk geochemical 

analysis (5cm sampling interval). Two further rounds of biogenic silica analysis have also 

been completed on the upper 2m of the composite record to increase sampling density for 

the past ~3kyr BP to every centimeter.  

3.5.2.2) Traditional leaching method 

For biogenic silica analysis using the traditional extraction method the procedures 

utilized by the University of Minnesota were followed 

(http://lrc.geo.umn.edu/laccore/assets/pdf/sops/bsi.pdf).  

Briefly, samples were combined with NaOH and placed in a hot water bath at 85° 

and aliquots removed at exact intervals of 5, 15, 30, 60, 90, 120, and 200 minutes. The 

digested samples were then combined with a Molybdate solution and reducing solution. 

Absorbance was then measured on a spectrophotometer at a wavelength of 812nm. 

Absorbance values were then converted to % biogenic silica according to the University 

of Minnesota procedure.  

3.5.2.3) Biogenic silica analysis using the FTIRS 

http://lrc.geo.umn.edu/laccore/assets/pdf/sops/bsi.pdf
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FTIRS can be used to calculated biogenic silica concentrations in sediments due 

to the fact that the vibrations in molecules containing polar bonds are excited by infrared 

(IR) radiation (Vogel et al., 2008). Different molecules are excited by IR radiation and 

absorb different wavelengths depending on the structure and atomic composition of that 

polar bond. Observed spectral absorbance at certain wavelengths is measured by a 

spectrophotometer and can be attributed to specific molecules.   

For each sample 0.01g of sediment was freeze dried and homogenized. The 

sediment was then mixed with 0.5g of potassium bromide (KBr) using a mortar and 

pestle. KBr is spectrally neutral in the IR region and minimizes optical effects, such as 

distortion, that might influence the observed absorbance (Griffiths and De Haseth, 1986). 

FTIRS analysis was carried out using a Bruker Vertex 70 FTIR spectrometer with a 

diffuse reflectance attachment (Harrick Inc., USA). Data was collected for wavelengths 

between 2,666 and 25,000 nm (3,750- 400 cm
-1

). A background scan of pure KBr was 

conducted during analysis every 12 samples on average to minimize instrument drift. 

Measured FTIR spectra were then normalized using a baseline correction to 

correct for internal variations of the FTIRS that can cause baseline shifts or tilting of the 

measured spectra. By setting two points (3,750 and 2,210 cm
-1

) equal to zero for each 

sample, a constant baseline is maintained. For Nanerersarpik Lake samples, peak areas 

from 1000 to 1150 cm
-1

 were integrated, which can be attributed to SiO (Farmer, 1974). 

This portion of the spectra was chosen because it is influenced by only a small number of 

other molecules, contains the maxima of SiO absorbance at 1,100cm
-1

(Moenke, 1974; 

Vogel et al., 2008; Rosén et al., 2010), and provided the best agreement with the 

traditional method (see below).  
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3.5.2.4) Biogenic silica calibration 

 12 samples were analyzed using the traditional wet chemistry extraction method 

(after Morlock and Froelich, 1989). Due to contamination during the extraction process, 

only 10 samples were included in the calibration model. The 10 samples where BSi 

concentrations were measured were then plotted against measured FTIRS peak areas 

from the same samples to provide a linear regression equation relating measured % BSi 

from the traditional method and measured peak areas from the FTIRS (Figure 3.7). The 

linear regression provided a significant correlation with an r
2
 of 0.91 and was applied to 

all BSi samples measured on the FTIRS.  

 

3.5.3) Lipid geochemical analysis 

 15 samples were chosen from throughout the entire composite Nanerersarpik 

record for lipid biomarker analysis in the University of Massachusetts biogeochemistry 

laboratory. Samples were placed in Whirl-Pack sample bags, covered with Kim-wipes, 

frozen in a conventional freezer overnight and then freeze-dried for at least 48 hours. 

Samples were then homogenized in the sample bag to prevent outside contamination.  

3.5.3.1) Lipid extraction 

 13 sediment samples, measuring between 3 and 10 grams, and taken from upper, 

organic-rich section of the composite Nanerersarpik core, were loaded into ASE cells for 

lipid extraction. Larger amounts of sediment (between 19 and 30 grams) were measured 

for 2 samples taken from the lower, more clastic section of the core due to the low 

organic content these sediments. A small amount of diatomaceous earth (~10% of total 

sediment sample) was added when loading ASE cells. Samples were then extracted using 
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a Dionex automated solvent extractor (ASE) with 60mL Ichem vials at a temperature of 

100°C with a dichloromethane/methanol (9:1, v/v) mixture. The resulting Total Lipid 

Extract (TLE) was dried under a constant stream of N2 gas using a TurboVAP. A small 

amount of 2:1 DCM:MeOH was then added to each sample and the TLE was transferred 

to 4mL vials. The TLE was then dried again using a TurboVAP and weighed to 

determine the mass of lipids extracted. 8 samples with large amounts of TLE (generally 

greater than 0.02g) were split in half so they could be accommodated by alumina oxide 

column chromatography.  

3.5.3.2) Alumina oxide column chromatography 

 After extraction, the TLE was separated into polar (1:1 DCM:MeOH, v/v), ketone 

(1:1 DCM:Hexane v/v), and apolar (9:1 Hexane:DCM v/v) fractions using alumina oxide 

column chromatography. Alumina oxide columns consist of 5 ¾ inch glass Pasteur 

pipettes filled at the bottom with a small amount of packed quartz wool. The pipettes 

were then filled aprox. ¾ of the way with activated alumina oxide (heated at 150°C for 

two hours and allowed to cool for 1.5 hours) and rinsed with ~4ml of 9:1 Hexane/DCM 

(v/v). Three different solvent mixes (9:1 Hexane/DCM (v/v) for apolar fraction, 1:1 

Hexane/DCM (v/v) for ketone fraction, and 1:1 DCM/MeOH(v/v) for polar fraction) 

were run through the column to separate the TLE. For each fraction, 1ml of the specific 

solvent mix was added to the TLE and then run through the column. This process was 

repeated 3 times for each fraction, resulting in 4 rinses total per fraction. A new 4mL vial 

was placed under the column for each fraction. Polar fractions were then filtered for 

analysis on a high-performance liquid chromatograph (HPLC) using a 0.45μm PTFE 

syringe filter with 99:1 hexane:propanol (v/v) and derivatized using 50μl of acetonitrile 
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and 50μl of bistrimethylsiyltrifluoroacetamide (BSTFA) at 60-70°C for one hour before 

analysis. 100μl of a squalene internal standard (concentration of 9.402μg/μl) was added 

to the ketone and polar fractions and 0.01μl of a C46 internal standard was added to all 

polar fractions.  

3.5.3.4) Compound identification and quantification 

 Biomarker compounds were identified from the polar, apolar, and ketone fractions 

using a Hewlett Packard 6890 series gas chromatograph – mass spectrometer (GC-MS) 

equipped with a 5% phenyl methyl siloxane column (HP-5, 60m x 320μm x 0.25μm). 

The GC-MS used a temperature ramp which began at 70°C, and increased at a rate of 

20°C min
-1

 to 130°C, and then increased at a rate of 4°C min
-1

 to 320°C. The final 320°C 

temperature was held constant for 20 minutes. Mass scans were made over the interval 

from 50 to 600 m/z. Compounds were identified based on their characteristic mass spectra 

fragmentation patterns, relative retention times taken from the gas chromatograph, and by 

comparison with literature.  

 Compounds were quantified using a Hewlett Packard 6890 series GC-flame 

ionization detector (GC-FID) equipped with the same capillary column as the GC-MS. 

The temperature program used for the GC-FID began at 70°C and then increased at a rate 

of 10°C min
-1

 to 130°C and then ramped at a rate of 4°C min
-1

 to 320°C for 10 minutes. 

Concentrations of individual compounds were calculated by comparing integrated peak 

areas with the peak area of the added squalene internal standard.  

 Polar fractions were also analyzed on an Agilent 1260 HPLC coupled to an 

Agilent 6120 MSD. Glycerol dialkyl glycerol tetraethers were identified and quantified 

using the methods of Hopmans et al. (2000) with some modifications (Schouten et al., 
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2007). The HPLC utilized a Prevail Cyano column (150mm x 2.1mm, 3μm) using 99:1 

hexane:propanol (v/v) eluent for separation. The eluent was increased linearly after 7 

minutes up to 1.8% isopropanol for the next 45 minutes with a flow rate of 0.2mL min
-1

. 

Scanning was carried out in selected ion monitoring (SIM) mode. 
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Figure 3.6: Linear regression model relating calculated BSi%s using the traditional leaching method 
(Mortlock and Froelick, 1989) and measured FTIRS peak areas. T e resulting equation was applied to all 

measured FTIRS peak areas to determine BSi% downcore.
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CHAPTER IV 

RESULTS 

4.1) Chronology 

 Seven AMS radiocarbon dated samples were used to create the age/depth model 

for the Nanerersarpik Lake sediment record (Table 4.1) (Figure 4.1). Two further 

radiocarbon ages on macrofossils were excluded from this analysis as they were taken 

from turbidites and returned older ages, stratigraphically above younger ages, and are 

interpreted as reworked material from the catchment. The model was created using 

CLAM modeling code (v.2.1, Blauw, 2010) for the open source software “R” (R 

Development Core Team, 2010). CLAM calculates a “best fit” curve based on the 

weighted average of 1000 iterations of age probability distributions. The 95% confidence 

intervals are based on 2σ range of the average of the iterations. Radiocarbon ages were 

calibrated using the northern hemisphere IntCal09.
14

C calibration curve (Reimer et al., 

2009). All ages are presented as calendar years before present (cal yr BP) or calendar 

thousand years before present (cal kyr BP). 

As noted above, the Nanerersarpik lake sediment record contains numerous (~42) 

mass movement events such as slumps or turbidites. To account for the instantaneous 

nature of their deposition these mass movement events were removed prior to creating 

the age/depth model. Nanerersarpik’s sedimentation rate is generally linear with a slight 

change in slope between samples at depths 149cm and 189.5cm. The oldest calibrated 

sample returned an age between ~7.6 and 8.2 cal kyr BP (95% confidence interval). This 

sample was taken from aprox. 20cm below a major lithologic boundary interpreted as the 
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transition from a glacio-fluvial system to normal lacustrine sedimentation (see below). 

This basal age suggests the transition occurred sometime just prior to 8.2 cal kyr BP.  

 

 

Table 4.1: Radiocarbon dating sample results 

Sample ID Composite 

core depth 

(cm) 

14
C age 

14
C age 

error 

Minimum 

Age (cal 

yr BP) 

Maximum 

Age (cal 

yr BP) 

Probability 

(%) 

NAN10DA 39 610 20 579 652 75.2 

NAN10GA1 106.5 1690 20 1537 1628 82.8 

NAN10GA1 149 2420 40 2348 2543 70.7 

NANB1B2 189.5 2480 20 2466 2622 64.3 

NAN10GA2 240.5 3435 20 3636 3725 84.3 

NAN10GA3 319 5255 20 5935 6024 64.1 

NAN10GA4 408.5 7120 130 7686 8182 95 

 

Analyses of calculated accumulation rates (yr/cm) are hampered by the presence 

of only 7 dating points, which produces unrealistic, angular changes in accumulation rate 

(Figure 4.2). Broadly, however, accumulation rates during the earliest part of the 

Holocene were high (~0.05 cm yr
-1

). A decrease in accumulation rate is recorded 

beginning at ~6 cal kyr BP to the lowest values of the entire record (~0.034 cm yr
-1

). It 

then rose to Early Holocene levels around 3.7 cal kyr BP, and continued to increase to the 

highest rates of the entire record (apart from one short-lived maxima at ~2.5 cal kyr BP) 

by 1.5 cal kyr BP. A small decrease in accumulation rate is recorded over the last ~600 

years.  
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4.2) Sediment Composition and Geotek Core Scanner Data 

The sediment record from Nanerersarpik Lake over the Holocene consists broadly 

of two major sedimentary units: a dense, minerogenic, gray clayey silt (bottom ~1m) 

(Figure 4.3) defined here as Unit A, and laminated organic-rich gyttja (upper 4.5m) 

(Figure 4.4) defined as Unit B. These two facies represent dramatically different 

sedimentary environments at Nanerersarpik Lake and are indicative of the largest scale 

change in paleo-environment in the catchment. 

 

Unit A) 10.7? - 8.25cal kyr BP 

Unit A consists of a gray clayey silt facies with highly variable grain sizes ranging 

up to gravel and pebbles. Magnetic susceptibility is multiple orders of magnitude higher 

in Unit A relative to Unit B (~300 vs. ~25 SI x10
-6

). It is also more dense and compact 

than the organic rich facies above it (Figure 4.5). It should be noted that although an 

AMS radiocarbon date just above the stratigraphic transition from Unit A to Unit B 

constrains the upper age of this sedimentary unit, no dated samples were recovered from 

this section and therefore the calculated sedimentation rates and extrapolated age for the 

base of Unit A must be treated with caution. 

 

Unit B) 8.25 cal kyr BP- Present 

Unit B encompasses the entirety of normal pelagic sedimentation at Nanerersarpik 

Lake. The beginning of this interval is marked by an abrupt facies change from the clastic 

material of Unit A to laminated brown organic-rich sediment that continues without a 

major facies change through the top of the core. Throughout this section both MS and 
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bulk density display high frequency but low amplitude variations. In general MS remains 

relatively much lower than Unit A, but does not reach a value of zero suggesting some 

background level of magnetic material input to the lake (Figure 4.5). 

 

4.3) Scanning XRF data) 

 The Itrax XRF scanner located at University of Massachusetts, Amherst, 

identifies elements based on their response to excitation by X-rays. Different elements 

emit characteristic wavelengths of fluorescence which are detected by the Itrax (e.g. 

Spofforth et al., 2008). Elemental intensities are then reported as counts per second. The 

Itrax is outfitted with a 3 kW Molybdenum target tube to generate X-rays, which allows 

for identification of a wide range of elements ranging from Al to Pb. Interpretation of 

elemental counts can vary on a lake to lake basis. Generally however, certain elements 

can be attributed to characteristic sources, e.g. Ti to a clastic, terrigenous source.  Ti, K, 

Mn, and Si have been shown to be terrestrially sourced in some lakes and linked to 

erosional parameters (eg. Olsen et al., 2012). Broadly, most terrestrial elements 

correspond well with each other, although they do display different relationships in the 

very bottom of the core (blue circles in Figure 4.6) 

4.3.1) Unit A 

 Due to the highly clastic nature of Unit A, titanium, potassium, calcium, and 

manganese all have maximum counts per second during this interval (Figure 4.7). Fe 

counts are consistently much lower in Unit A than the rest of the record, while S counts 

are generally also low with some variability. Si counts are highest in Unit A but display a 
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decreasing trend through time (Figure 4.8). These results suggest a highly erosive 

environment during this time, with little organic matter accumulation.  

4.3.2) Unit B  

 Ti and Mn counts display a slowly increasing trend until about 7 cal kyr BP and 

then decline through the rest of the Early Holocene. Increases are recorded beginning 

around 6 cal kyr BP, culminating in maxima around 3.6 cal kyr BP. During the Late 

Holocene minima occur at ~3 and 1.7 cal kyr BP, with maxima at 2.6, 1.2 and 0.7 cal kyr 

BP. Ca and K concentrations follow a generally similar signal, with a notable Ca 

exception centered on 1.8 cal kyr BP and two positive K excursions at 7.5 and 0.7 cal kyr 

BP (Figure 4.7).  Si decreases slowly from maxima in Unit A and remains low with little 

variability throughout most of the rest of the Holocene with a notable increase at 1.7 cal 

kyr BP. Both Fe and S concentrations increase from Unit A to Unit B, with more 

variation recorded in the S record (Figure 4.8). It should be noted however, that sulfur 

counts are extremely low in the composite core which could lead to decreased 

measurement accuracy.  

   

4.4) Biogeochemical Data 

 The accumulation of organic matter in lakes provides an important link to 

past productivity both in the lake and the surrounding catchment. Generally, the vast 

majority of organic material preserved in lake sediments comes from plants, either non-

vascular organisms like phytoplankton, or vascular plants such as grasses and trees 

(Meyers and Lallier-Vergés, 1999). Proxies such as the weight percent of organic carbon 

(TOC) and weight percent of nitrogen (TN) can shed light on the amount of primary 
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productivity occurring in the lake and catchment (albeit potentially also affected by other 

factors, such as transport and preservation). TOC is commonly used in high latitude 

paleo-limnology studies where small changes in temperature and/or precipitation can 

dramatically affect vegetation both in the catchment and in-situ (e.g. Kaplan et al., 2002; 

Perren et al., 2012; Axford et al., 2013). Carbon and nitrogen isotopic values, as well as 

the ratio of TOC/TN (C/N) can help determine the source of organic matter preserved in 

lake sediments (Meyers and Ishiwatari, 2003). All C/N values presented here have been 

multiplied by 1.167 to account for the ratio of atomic weights of nitrogen and carbon and 

are therefore atomic C/N ratios (Meyers and Teranes, 2001). Phytoplankton generally 

have low C/N ratios (4-10), while vascular plants have C/N ratios of 20 or greater 

(Meyers and Lallier-Vergés, 1999). Generally, lacustrine algae and C3 land plants have 

similar δ
13

C values ranging from -30‰ to -25‰ (Meyers and Ishiwatari, 1993).  

4.4.1) Unit A 

Unit A is characterized by low to non-existent values of total organic carbon and 

total nitrogen (Figures 4.9 & Figure 4.10). δ
13

C values are relatively less negative in Unit 

A versus Unit B, varying between -23‰ and -26‰. δ
15

N values record limited variations, 

with maxima just above 0‰ and minima of ~-3.6‰ Due to the lack of organic material 

in this section of the core the isotopic values presented here must be treated with caution 

and are generally not used in climate interpretations.  

4.4.2) Unit B  

Unit B is characterized by higher concentrations of all primary productivity 

biogeochemical proxies than in Unit A. Total organic carbon weight percent (TOC) 

during this interval is highly variable, with the greatest concentrations reaching just over 
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5% and low values of approx. 1.7%. Initially TOC increases above the transition from 

Unit A from near zero values at 8.25 cal kyr BP to an Early Holocene maximum of 

~4.6% by 7.1 cal kyr BP.  Organic carbon concentrations then decrease throughout the 

mid-Early Holocene, reaching values just under 2.5% by 5.5 cal kyr BP. TOC then 

slowly increases over the next 2 thousand years to just over 5%. A steep decline is then 

noted, with the lowest value of Unit B (1.7%) recorded at ~1.75 cal kyr BP. High 

variability dominates the TOC signal of the Late Holocene, with values ranging from 2-

5.2%. The δ
13

C record is also highly variable through Unit B, ranging from -28.7‰ to -

23‰ with one excursion to ~
-
18.7‰. Generally isotopically light values are accompanied 

by high TOC percentages, with a notable exception at ~1.75 cal kyr BP (Figure 4.9) 

Nitrogen weight percent (TN) is also highly variable within this unit, ranging 

from 0.04% up to 0.59% (Figure 4.10). Nitrogen concentrations increase sharply at the 

base of Unit B just above the facies transition. They then decrease slightly and remain 

relatively lower during much of the next 4,000 years until about 3.2 cal kyr BP when they 

increase to ~0.38‰ and remain variable throughout the rest of the record. A distinct 

increasing trend in TN is seen over the last 230 years. δ
15

N values from the beginning of 

Unit B (~8.25 cal kyr BP) until ~4 cal kyr BP record high variability, with some values at 

or just above 0‰, while others reach heavily depleted values of -8.5‰ with one data 

point of -21‰. After 4 cal kyr BP δ
15

N stabilizes somewhat, with most values falling at 

or just above 0‰ with only three samples depleted to ~-5‰.  

 

4.5) Biogenic silica  
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 Biogenic silica (BSi) is an amorphous form of silicon, formed through biogenic 

precipitation by siliceous organisms such as diatoms, radiolarians, and sponges and has 

been shown to be an accurate measure of the past abundance of siliceous microfossil 

abundances in lakes (Conley, 1988). BSi has proved to be a useful lacustrine primary 

productivity proxy on long time scales (Williams et al., 1997; Colman et al., 1999; Rosén 

et al., 2010). It has been shown to vary on short time scales with temperature and hasbeen 

calibrated as a proxy for summer temperature (Blass et al., 2007; McKay et al., 2008).  

4.5.1) Nanerersarpik biogenic silica record 

 Calculated biogenic silica concentrations for the Nanerersarpik Lake record are 

presented in Figure 4.11. BSi values increased rapidly from zero in Unit A to nearly 13% 

by 7.7cal kyr BP. Opal concentrations were highly variable during the Early Holocene, 

with maxima at 6.2 cal kyr BP (15.5%) and at 3.4 cal kyr BP (18.4%). The lowest value 

of this period was recorded at 5 cal kyr BP (just over 2%). It should be noted that during 

this Early Holocene interval the sampling resolution for BSi is every 5cm, and likely does 

not capture the full range of variability from this period.  

 During the Late Holocene BSi values were also highly variable, with the highest 

and lowest concentrations of BSi separated by ~200 years. From high values approx. 3.4 

cal kyr BP, BSi decreased with high frequency fluctuations until ~1.5 cal kyr BP. Opal 

concentrations then increased rapidly to theesecond highest concentration seen in the 

entire record (~21%) by 1.3cal kyr BP. From this peak, they declined until about 250 cal 

yr BP, reaching the lowest concentration in Unit B at this time (1%). A sharply increasing 

trend over the more modern period culminates in the highest values of the entire record 

(>25%) at 60 cal yr BP.  
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4.6) Organic biomarker results 

 15 sediment samples from the Nanerersarpik Lake record were analyzed for lipid 

biomarkers. To date, aliphatic hydrocarbons (n-alkanes), long chain 1,15 n-alkyl diols, 

long-chain alkenones, and glycerol dialkyl glycerol tetraethers have been identified and 

quantified from the processed total lipid extracts.   

4.6.1) Polar fraction analysis 

 ½ of the polar fraction of the TLE for 15 samples from Nanerersarpik Lake was 

analyzed on the HPLC in the University of Massachusetts biogeochemistry laboratory to 

determine concentrations of both isoprenoid glycerol dialkyl glycerol tetraethers 

(GDGTs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs) (Figure 4.12). 

Isoprenoid GDGTs are membrane lipids synthesized by a wide range of Archea. 

BrGDGTs are thought to be produced mainly by anaerobic soil bacteria, although it is 

possible they are produced in lakes as well.  

 While absolute concentrations of these compounds can be meaningful, generally 

ratios or indices of different concentrations of GDGTs are more relevant. The Branched 

and Isoprenoid Tetraether (BIT) index compares the relative abundance of soil derived 

(branched) GDGTs against GDGT IV (Crenarcheol) and can be used as a proxy of 

terrestrial vs. aquatic input (Castañeda and Schouten, 2011). BIT index values range from 

0-1, 1 indicating a purely terrestrial source, 0 being purely aquatic. Nanerersarpik BIT 

Index values are shown in Figure 4.13, suggesting a dominantly terrestrial biomarker 

source.  
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 BrGDGTs can also be analyzed based on the Cyclisation of Branched Tetraethers 

(CBT) and the Methylation of Branched Tetraethers (MBT). CBT is interpreted as a 

proxy for soil pH based on empirical observations. MBT is influenced primarily by soil 

temperature, and somewhat by soil pH. Temperature reconstructions using brGDGTs 

therefore take into about both MBT and CBT and are based on calibration sets of globally 

distributed soils (Table 4.2, modified from Castañeda and Schouten, 2011). MBT/CBT 

temperature estimates based on published calibrations are shown in Figure 4.14. 

Generally, MBT/CBT shows little variance in temperature over the Holocene at 

Nanerersarpik, with all three calibrations producing similar trends.  

Table 4.2: GDGT calibration data sets and transfer functions  

Calibration Equation n r
2
 Geographical 

location 

Reference 

CBT = 3.33-0.38 x pH 134 0.7 Global soils Weijers et al. 

(2007b) 

MBT = 0.122 + 0.187 x CBT + 0.020 

x MAAT 

134 0.7 Global soils Weijers et al. 

(2007b) 

MAAT = 50.47 -74.18 x (fGDGTIII) – 

31.60 x (fGDGTII) – 34.69 x 

(fGDGTI)
*
 

38 0.94 East Africa Tierney et al. 

(2010b) 

T = 6.803 – 7.062 x CBT + 37.09 

MBT 

139 0.62 Global lakes Sun et al. 

(2011) 

T = 47.4 – (20.9x GDGT I) – (37.1 x 

GDGT II) – (53.5 x GDGT III) 

90 0.88 Scandinavian 

lakes 

Pearson et al. 

(2011) 

* “f” denotes the fractional abundances of the brGDGTs relative to the total brGDGTs.  

 Other polar compounds beyond GDGTs are also of interest when analyzing lake 

sediments. Sterols, and their saturated counterparts, stanols, can have varying numbers 

and locations of double bonds, alternate positions of methyl groups, and different carbon 

numbers, all of which can be indicative of certain groups of organisms (Castañeda and 

Schouten, 2011). Dinostanol is found in many dinoflagellate species and has been used as 

to characterize concentrations of dinoflagellates in lake sediments (Volkman, 2003). 
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Loliolide (and its counterpart isololiolide) are anoxic degradation products of a pigment 

present in diatoms and have been used as biomarkers of diatom abundance. Similarly 

long-chain alkenones are known to be produced by haptophyte algae and can also be used 

a biomarker. Results for the abundances of these compounds, as well as the relative 

abundance of each organism, are presented in Figures 4.15 and 4.16.  

4.6.2) A-polar fraction analysis 

 Within the apolar fraction of the TLE, aliphatic hydrocarbons (n-alkanes) are 

simple straight chain hydrocarbons that vary in length based on source organism. Longer 

chain n-alkanes (C27 – C35) are found in the leaf waxes of higher plants. Mid chain length 

n-alkanes (C23 –C25) are found in emergent aquatic plants, while their short chain (C17 –

C21) homologues are characteristic of aquatic algae. The concentrations of these 

compounds, and associated ratios and indices, are indicative of the source of organic 

material in sediments (Castaneda and Schouten, 2011). N-alkane data from Nanerersarpik 

Lake are shown in Figure 4.16. Long-chain n-alkanes are dominant throughout the record 

and also suggest terrestrially-sourced organic matter.  

4.6.3) Ketone fraction analysis 

 Within the ketone fraction of the TLE, long-chain alkenones (LCAs) were 

identified in Nanerersarpik Lake sediments. LCAs are composed of C37-C39 di, tri, and 

tetra-unsaturated methyl and ethyl ketones (Figure 4.18) and are produced by haptophyte 

algae. The ratio of the abundance of these alkenones varies depending on temperature 

(increasing tri-unsaturated ketone with increasing temperature) and can be analyzed as a 

paleo-temperature proxy. Similar to the MBT/CBT proxy described above, temperature 

reconstructions are based on calibrated data sets utilizing globally distributed data. This 
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relationship of alkenone concentration and temperature is described by the U
k

37 Index 

first described by Brassell et al. (1986). Subsequent variations have been introduced, and 

different transfer functions calculated based on new calibration data. Presented in Figure 

4.19 are alkenone based temperature reconstructions using two marine calibrations 

(Muller, 1998; Conte, 2006) and 3 lake-based calibrations (Zink et al., 2001; Chu et al., 

2005; D’Andrea et al., 2011). The lake based calibrations use the U
k

37 index while the 

marine calibrations use the U
k’

37 index which does not include the C37:4 ketone (equations 

shown in Table 4.3, modified from Castañeda and Schouten, 2011). Alkenones from 

Nanerersarpik sediments generally contain all 3 ketones, likely making the U
k

37 the most 

applicable (Figure 4.20). 

U
 k

37 = (C37:2 - C37:4) / (C37:2 + C37:3 + C37:4) 

U
k’

37 = (C37:2) / (C37:2 + C37:3) 

Table 4.3: Alkenone temperature transfer functions  

Calibration equation n r
2 

Calibrated to 
Geographical 

location 
Reference 

U
k

37 = 0.0211T-0.725 9 0.68 
Summer lake 

temp 
Germany 

Zink et al. 

(2001) 

U
k’

37= 0.0328T + 

0.126 
38 0.83 

Mean annual air 

temp 
China 

Chu et al. 

(2005) 

T = 39.9U
k

37 + 36.418 21 0.75 
in-situ water 

temp 

Lake George, 

North Dakota 

Toney et al. 

(2010) 

T = 40.8 U
k

37 + 31.8 34 0.96 
in-situ water 

temp 

Braya Sø 

(Greenland) 

D’Andrea et 

al. (2011) 

U
k’

37= 0.033T + 0.044 370 0.98 
Annual mean 

SST 

Global 

marine 

Müller et al. 

(1998) 

(T = −0.957 + 

54.293(U
K′

37) − 

52.894(U
K′

37)
2
 + 

28.321(U
K′

37)
3
 

576 0.97 
Annual mean 

SST 

Global 

marine 

Conte et al. 

(2006) 
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Figure 4.16: Relative abundances 

of lacustrine primary producers 

reconstructed from charateristic 

biomarkers in Nanerersarpik 

Lake sediments. 
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CHAPTER V 

DISCUSSION 

 Interpretations of paleo-environmental conditions at Nanerersarpik Lake 

throughout the Holocene are based primarily on concentrations of organic carbon and 

biogenic silica. These proxies were used due to the relatively high resolution of available 

samples and their sensitivity to potential environmental/climate changes. C/N ratios and 

concentrations of total nitrogen also support these primary proxies. Biomarker data and 

elemental counts from the Itrax were taken into account, although these proxies are 

limited by low sampling density (biomarkers) and the complex nature of minerogenic 

input at Nanerersarpik Lake (Itrax data). Due to inconclusive changes in magnetic 

susceptibility, δ
13

C, and δ
15

N these parameters are generally not discussed below.  

5.1) Biomarker paleotemperature reconstructions 

5.1.1) Alkenone based U
k

37 paleotemperatures 

 While alkenone based temperature reconstructions have been widely applied in 

marine settings, their application in lacustrine settings has only begun more recently. 

D’Andrea et al. (2011) have shown alkenoes to accurately record temperature in West 

Greenland, but only after calibrating modern alkenone concentrations and creating a lake-

specific transfer function. Application of this transfer function to Nanerersarpik Lake 

alkenone concentrations produces unrealistic warm temperatures with extremely high 

temperature variability over the Holocene (temperature range of ~15°C) (Figure 4.19). A 

similar U
k

37 calibration from lakes in North Dakota (Toney et al., 2010) returns slightly 

cooler temperatures, but high variability and unrealistically warmth remains.  
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 Interestingly, U
k’

37 reconstructions, which do not include the C37:4 unsaturated 

ketone in their transfer functions (abundant in Nanerersarpik Lake samples (Figure 4.20), 

return lower temperatures with low variability until the late Holocene (Figure 4.19). 

While these reconstructions show greater agreement with brGDGT paleotemperatures 

derived using MBT/CBT (Figure 5.1) (discussed below) and are also most similar to 

mean summer air temperatures in the region today, they are likely inaccurate as they do 

not account for the high concentrations of C37:4  at Nanerersarpik. These results suggest 

that lake specific calibrations may be needed before the accurate application of the 

alkenone based paleotemperature proxy can be applied. 

5.1.2) brGDGT based paleotemperatures 

 Temperature reconstructions from Nanerersarpik based on the MBT/CBT proxy 

also display little variance until the Late Holocene (Figure 5.1, warm colors). As BIT 

Index values indicate GDGTs in Nanerersarpik lake sediments are primarily produced by 

soil bacteria, soil temperatures changes might be expected to be less variable than lake or 

air temperatures. Even taking this into account, the lack of warming across the deglacial 

transition for instance, seems to suggest that brGDGTs have a limited response to 

environmental changes at Nanerersarpik Lake.   

 In conclusion, the biomarker temperatures reconstructed here, whether from 

alkenones or GDGTs, should be treated with extreme caution. It is likely that a lake-

specific calibration is required to create an accurate transfer function. Applying 

calibrations from other lakes, even in Western Greenland, appears to yield unrealistic 

temperatures. The high concentrations of alkenones in Nanererarpik Lake suggest that a 

paleotemperature reconstruction may be possible, but an in-depth modern calibration and 
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better understanding of the ecology of alkenone producing algae are necessary before 

absolute reconstructed temperatures can be reconstructed with any degree of confidence.  

5.2) Organic matter source and terrestrial dilution 

 To correctly interpret the paleo-environmental signal recorded by organic matter 

in a lake sediment core the source of that organic matter must be understood. Synthesis of 

multiple lines of evidence from Nanererarpik Lake suggests that the source of organic 

matter varied through time, with autotochthonous signals periodically overprinted by 

terrestrial vascular plants.  

5.2.1) Bulk geochemical proxies 

 Downcore C/N ratios generally fall either in between the characteristic values of 

lacustrine algae or C3 land plants or fall towards the terrestrial side (Figure 5.2) (~10-30) 

These values suggest that organic material in Nanerersarpik Lake is coming from mixed 

sources with a slight preference for terrestrial material. Interestingly, samples with low 

TOC (red circles on plot) generally have higher C/N ratios as well as δ
13

C values. This 

suggests that the organic matter from these samples was not only terrestrial in origin, but 

also likely diluted by clastic input, resulting in the low overall organic carbon values.  

 To further investigate the terrestrial/clastic overprinting of the organic carbon 

signal TOC was compared with clastic mineral inputs taken from the Itrax core scanner 

(Figure 5.3). Calcium is highly abundant in the supracrustal rocks underlying 

Nanerersarpik (Bridgewater, 1976) and is interpreted as an erosional signal from the 

catchment. It appears that for some parts of the record Ca and TOC follow similar trends, 

but in many cases peak TOC values are recorded when Ca counts are relatively low (blue 

outlined boxes on Figure 5.3). Additionally, in many of the outlined peaks where TOC is 
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low, a corresponding increase in C/N is observed, also suggesting the organic matter in 

this sample is terrestrially-sourced (Figure 5.4). In other parts of the record, low TOC 

values are seen when Ca counts are relatively high (red boxes in Figure 5.3) suggesting a 

complex interaction between terrestrial and aquatic organic matter as well as terrestrial 

minerogenic material.  

5.2.2) Lipid biomarker evidence 

 While biomarker analysis was only carried out on 15 downcore samples from 

Nanerersarpik Lake, n-alkane and BIT Index information can also contribute to an 

understanding of the source of organic matter. BIT index values for the post-glacial 

sediment all fall very close to 1, suggesting a dominantly terrestrial source (Figure 4.13) 

(the low BIT Index values in the glacial-fluvial facies are likely due to the fact that little 

soil development had taken place during the deglacial period and the brGDGT producing 

soil bacteria had not yet fully colonized the catchment). While the BIT Index firmly 

suggests a terrestrial source, it should be noted that it compares soil –derived brGDGTs 

against the concentration of GDGT IV, interpreted as being produced by aquatic archea 

called Thaumarchaeota. It is possible that Thaumarchaeota concentrations are simply low 

in Nanerersarpik while brGDGT producing bacteria are abundant in the surrounding 

catchment, leading to the high BIT index values.  

 The concentrations of n-alkanes in our sediment record also suggest a dominantly 

terrestrial source of organic matter with higher abundances of long-chain n-alkanes 

throughout the record (Figure 5.5). All chain lengths seem to track TOC well throughout 

the record, which could be a result of overall increased productivity in the catchment but 

could also be influenced by the overprint of high concentrations of terrestrial organic 
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matter being transported to the lake and therefore may not accurately record overall 

aquatic and terrestrial vegetation development in the catchment and lake.  

The main conclusion from these data is that the organic matter in Nanerersarpik is 

likely representing a mixed signal of both terrestrial and aquatic sources, and is 

periodically diluted by clastic material. It appears that this overprinting of terrestrial 

material generally artificially decreases the values of organic matter. This is not always 

the case, however, and at times high terrestrial input apparently brings higher 

concentrations of terrestrial vegetation into the lake and artificially increases TOC 

concentrations. As discussed below, although a climate signal may be interpreted from 

the TOC record from Nanerersarpik Lake, the complex nature of the source and signal 

record by this proxy must be taken into account.  

5.3) Biogenic silica, the same terrestrial dilution problem? 

 Analysis of biogenic silica records from sediment cores are a potentially powerful 

proxy for reconstructing past variations in lake productivity as they are thought to suffer 

from fewer interpretative issues than organic carbon concentrations: e.g fewer number of 

potential sources (Conley, 1988), more likely to respond on short time-scales to climate 

changes (Williams et al., 1997; Blass et al., 2007; McKay et al., 2008), and less likely to 

degrade over time. Lacustrine diatom concentrations should be responding primarily to 

higher summer temperatures, which would decrease seasonal ice coverage and bring 

about more favorable growing conditions, resulting in higher overall BSi concentrations 

in sediments (Conley, 1988). Furthermore, by utilizing relatively new FTIRS analytical 

techniques, BSi can be measured at high resolution quickly and for relatively low cost 

compared to traditional methods (Vogel et al., 2008; Rosén et al. 2010).  
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 BSi analysis is not without limitations, however. As noted by Swann et al., (2006) 

large scale changes in lake chemistry can result in diatom dissolution at the sediment 

water interface, affecting concentrations in the sediment. While the spectral 

characteristics of biogenic Si bonded to O are well understood, not all BSi studies 

integrate the same spectral peak areas when creating lake-specific calibration models. 

While internal consistency should eliminate this issue for specific lake studies, 

comparisons across lakes could be hampered. More research is needed to refine this 

method and test/improve cross-laboratory agreement.  

 Additionally, BSi concentrations at Nanerersarpik Lake are subject to the same 

issue of terrestrial dilution experienced by organic carbon. This relationship is apparent 

when biogenic silica is plotted against inputs of clastic minerals from the XRF (Figure 

5.6), especially for the earlier part of the record when BSi sampling density is low 

(Figure 5.7). Importantly however, unlike TOC concentrations, which can be either 

diluted or increased by clastic material, BSi is only sourced from the lake and therefore is 

not subject to concentration increases from terrestrial material, only dilution.   

 Analysis of broad scale trends in TOC and BSi concentrations can help remove 

some of the uncertainty associated with terrestrial dilution. Also, since BSi can only be 

decreased by clastic input and not artificially increased, analysis of how BSi maxima 

change over time may  help remove some of this uncertainty. With these considerations 

in mind the majority of the discussion of Holocene climate intervals presented below will 

focus on the TOC and BSi records from Nanerersarpik.  

 

5.4) Paleoclimate record from Nanerersarpik Lake 
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 Reconstructed climate intervals during the Holocene are presented in Figure 5.8. 

Deglaciation of the lake catchment occurred sometime around 8.25 cal kyr BP, as the last 

remnants of LGM glacial ice retreated into a fjord to the north. The Holocene Thermal 

Maximum at Nanerersarpik lasted from ~8.25 to between 3 and 4 cal kyr BP, with warm 

but dry conditions. The transition to Neoglacial conditions is cautiously interpreted as an 

initial humidification followed by cooling temperatures and decreased primary 

productivity. The Neoglacial was interrupted by a short-lived Medieval Climate Anomaly 

(~1300-1000 cal yr BP) when primary productivity increased. The MCA was followed by 

a return to colder conditions during the Little Ice Age (~1000-250 cal yr BP) when 

biogenic silica values reached their lowest point since the transition from glacial 

conditions. The most recent part of the Nanerersarpik Lake record was characterized by 

the highest values of TOC and BSi of the entire Holocene.  

 It should be noted that these interpreations are based on proxy records that are 

undeniably influenced by more than purely climate at Nanerersarpik Lake and are not 

meant to be definitive boundaries, rather the interpretation made to the best of the 

available data. Higher sampling density would improve the determination of these 

intervals, although the complex and multi-faceted nature of the sedimentary record at 

Nanerersarpik may still preclude exact definitions.    

5.4.1) Local Deglaciation 

 During the LGM, the Nanerersarpik catchment, along with most of the rest of SE 

Greenland, was covered by the Greenland Ice Sheet. As this ice began to retreat during 

the Early Holocene it is likely that valley glaciers remained in the valleys and fjords of 

the area, fed by still-existing glaciers at higher elevations. As glacial ice thinned and 
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pulled back up Amassalik Fjord, the shoulder where Nanerersarpik sits today would have 

become unglaciated, resulting in the first deposition of sediment at Nanerersarpik Lake 

sometime before ~8.25 cal kyr BP. As noted earlier, the lack of dated samples from the 

basal glaciofluvial sediment of Unit A of precludes accurate dating of the base of this 

facies.  

The dense, variable grain sizes, and high minerogenic character of facies Unit A 

suggests that this sediment was likely deposited while some remnant of glacial ice were 

still influencing the catchment. It is likely this glacial ice was sourced from the fjord 

directly to the north of the lake (Figure 5.9). A small U-shaped notch in the bedrock ridge 

forming the northern edge of the catchment today likely represents the entry/exit point for 

this ice from the fjord (Figure 5.10). The small valley below the notch has the greatest 

concentration of glacial erratics found in the entire catchment (Figure 5.11), suggesting 

glacial activity was highest in this part of the catchment.  

Sometime before 7,850 years ago (radiocarbon date from organic Unit B ~20cm 

above facies transition) this remnant glacial ice pulled back over the northern ridge and 

ceased to influence the lake catchment at Nanerersarpik. Based on the constructed age 

model, the date for this final deglaciation of the catchment is ~8.25 cal kyr BP. The 

transition is accompanied by dramatic increases in the concentrations of all organic-

related proxies: TOC, TN, BSi, and lipid biomarkers (Figures 5.8 & 5.5).   

5.4.2) The Holocene Thermal Maximum  

While summer insolation values had already reached their early Holocene 

maxima by ~8 cal kyr BP, remnant glacial ice in Nanerersarpik prevented the effects of 

the warming to be registered by the lake. Directly after deglaciation however, this high 
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insolation is manifested as high concentrations of both organic carbon and biogenic 

silica. TOC notably then decreased for much of the rest of the Middle Holocene, early 

maxima between 7 and 8 cal kyr BP. BSi remained elevated longer into the middle 

Holocene, but also showed consistently lower values from approx. 5.5 to 4 cal kyr BP. 

Some of this decline in primary productivity proxy concentrations during the middle part 

of the Early Holocene may have been related to arid conditions, noted by numerous 

studies to have affected Greenland at this time (e.g. Wagner et al., 2000; McGowan et al., 

2003; Anderson et al., 2004; Perren et al., 2012; Massa et al., 2012), A similar pattern of 

organic carbon concentrations was seen in a Holocene lake record from western 

Greenland (Figure 5.12), suggesting similar patterns of catchment vegetation 

development (Willemse & Törnqvist, 1999). It could also be a result of the terrestrial 

dilution during this period. Many of the minima in both TOC and especially BSi fall 

during periods of elevated deposition of clastic minerals such as Ca and K (Figure 5.7). 

C/N ratios during much of this interval are high, rarely falling near the value of pure 

lacustrine algae, and suggesting large amounts of terrestrial influence.  

  While greater sampling density would help to resolve the issue of terrestrial input 

overprinting the sedimentary record, versus an actual decline in primary productivity due 

to arid conditions, the increases in both BSi and TOC beginning at 4.2 cal kyr BP could 

be related to increased rainfall and higher primary productivity. A similar response to soil 

formation and nutrient availability was also observed in a Holocene lake record from NE 

Greenland (Klug et al., 2008). C/N values during the interval from 4.2-3 cal kyr BP were 

unstable and generally above 10, but not consistently in the >17 range expected of purely 

vascular plants. Increased precipitation could have washed more nutrients into the lake 
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(TN and S counts also increase during this interval, Figures 4.8 & 4.10) and caused 

higher aquatic productivity. The TOC maxima recorded at ~3.3 cal kyr BP has a 

relatively low corresponding C/N value, suggesting a mixed, if not purely aquatic source. 

Interestingly, coeval with this maxima are the highest concentrations of the C17 n-alkane 

(produced by lacustrine algae) recorded in the entire record. BSi is low at this point, but it 

should be noted that dinostanol concentrations, a biomarker for dinoflagellate algae, are 

higher than the concentrations of isololiolide and loliolide at this time (diatom 

biomarkers), suggesting that perhaps algae were briefly outcompeting diatoms due to 

high nutrient availability (Castañeda and Schouten, 2011). The sampling density of 

biomarkers precludes this from being definitive evidence but supports the hypothesis of 

increased nutrient transport to the lake.   

 Subsequent declines in all primary productivity proxies after this maxima ~3.3-

3.5 cal kyr BP are interpreted as the transition to Neoglacial conditions in at 

Nanerersarpik Lake.  

5.4.3) The Neoglacial period  

 The onset of Neoglaciation at Nanerersarpik is difficult to precisely date as the 

manifestation of this period was complex in Greenland. If precipitation changes did in 

fact cause the changes in concentration of primary productivity proxies as presented 

above, the onset of increased precipitation would place the beginning of the Neoglacial at 

~4.2 cal kyr BP. Marked decreased in proxies (attributed to the deterioration of climate 

conditions in the catchment) occurred later, between ~3.5 and 3 cal kyr BP. TOC 

concentrations remained low throughout the proposed Neoglacial until they rebounded 

during the Medieval time, ~1300 cal yr BP. Biogenic silica values, sampled at high 
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density for parts of this interval, display high variability but generally also show a 

decreasing trend until 1300 cal yr BP (Figure 5.8).  

 The timing of the Neoglacial transition is generally synchronous with published 

proxy records from elsewhere on Greenland and the surrounding North Atlantic.  In 

Southern Greenland, Massa et al. (2012) noted a substantial cooling trend beginning 

around 3 cal kyr BP. Kaplan et al. (2002) and Andresen et al. (2004) also noted decreases 

in BSi percentages after 3 cal kyr BP. A study by Wagner et al. (2000) in East Greenland 

also found the culmination of Neoglacial conditions from ~3ky -1 cal kyr BP. At nearby 

Lower Sermilik Lake, Davin (2013, unpublished Masters thesis) and Humlum and 

Christiansen (2008) found that the Mittivaket glacier reappeared around this time. 

Jennings et al. (2011) found evidence for increased advection of polar East Greenland 

current water at ~3.5 cal kyr BP, with a subsequent decrease in warm Atlantic Irminger 

current water reaching SE Greenland, which would compound the cooling effect of 

decreased summer insolation at this time. 

5.4.4) The Medieval Climate Anomaly  

The Medieval Climate Anomaly (MCA) at Nanerersarpik is manifested as 

increases in both TOC and BSi percentages from approx. 1300-1000 cal yr BP (Figure 

5.13). BSi concentrations reached their second highest values of the entire Holocene 

during this interval and interrupted the decreasing trend seen during the Neoglacial. 

While the TOC maximum observed around 1060 cal yr BP is not the highest value seen 

during the late Holocene, the corresponding C/N ratio from this time is much lower (i.e. 

more likely to represent both algal and terrestrial sources) than the maxima at ~625 cal yr 

BP for instance, which was likely influenced by high amounts of terrestrial organic 
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carbon washing into the lake. Kaplan et al. (2002) also found similar timing of a MCA 

signal in Southern Greenland (higher BSi, LOI%).  

5.4.5) The Little Ice Age 

The Little Ice Age signal at Nanerersarpik is convoluted as TOC values are high 

in this interval, but are overprinted by terrestrial sources as evidenced by high C/N ratios 

and high clastic mineral input (Figure 5.14). BSi values also display high variability but 

do exhibit a generally decreasing trend from ~1000 to 250 cal yr BP, when they reached 

the lowest values recorded in the entire post glacial record. This overall decreasing trend 

is consistent with decreasing summer insolation at high northern latitudes and the 

expression of the Little Ice Age across the Arctic (Kaufman et al., 2004). 

5.4.6) Modern warming 

 The termination of the Little Ice Age was recorded by rapidly increasing values of 

both TOC and BSi ~200 cal yr BP. Low corresponding C/N values suggest this TOC 

increase was the result of increased primary productivity and not terrestrial overprinting. 

Both TOC and BSi reach maximum values during this most recent interval, possibly 

suggesting modern conditions have no analogue throughout the Holocene, although 

increased sampling density throughout the Holocene Thermal Maximum is needed to 

confirm this assertion.  

5.5) Potential response of BSi to temperature on short timescales 

 Biogenic silica concentrations have been used a proxy for climate by multiple 

studies on highly varying time scales. Paleoclimate reconstructions from Lake Baikal 

(Williams et al., 1997) and Lake Elgygytn (Melles et al., 2013) have shown BSi to 

respond on glacial/interglacial timescales. In the shorter term, Kaplan et al. (2002) and 
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Andresen et al. (2004) have shown BSi concentrations responded to Holocene climate 

changes. McKay et al. (2008) quantitatively reconstructed summer air temperature in 

Alaska over the past 80 years, showing that BSi concentrations can respond on extremely 

short (~annual) timescales. Interestingly, BSi concentrations over the past ~1500 years 

from Nanerersarpik show striking similarity to ice core-based temperature 

reconstructions from GISP2 (Kobashi et al., 2011) and Agassiz/Renland (Vinther et al., 

2009) (Figures 5.15-5.17). While it was argued above that decreases in BSi concentration 

during the mid-Holocene were caused by terrestrial overprinting of the biogenic silica 

signal, the relationship between BSi concentrations and clastic mineral input appears to 

break down in the late Holocene (Figure 5.18), suggesting that the variability seen in the 

BSi record for the past 1500 cal yr BP may be primarily a response to temperature 

changes. Some vestige of this relationship may also be evident further back in time, but 

more sampling is needed to confirm or deny this (Figure 5.19) Interestingly the 

Nanerersarpik biogenic silica record bears some similarities with reconstructed 

temperatures from Braya Sø in Western Greenland (von Gunten et al., 2011) (Figure 

5.20). Braya Sø temperatures have been linked to fluctuations in the Atlantic 

Multidecadal Oscillation, which also influences SE Greenland temperatures. This 

observation is meant to highlight the potential of high-resolution records across different 

regions. The record from Nanerersarpik as it stands is currently not sufficiently dated or 

sampled at high enough resolution to make such comparisons definitive.   

 More research is needed to confirm linkages such as the ones described above. 

While planned high resolution BSi sampling downcore may shed light on the validity of 

these relationship, the highly unstable nature of the Nanerersarpik catchment may 
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preclude its usefulness. The purpose of this section is merely to highlight the potential for 

high-resolution paleoclimate studies utilizing biogenic silica primarily analyzed using the 

FTIRS.  

5.6) Future work 

 Planned future work at Nanerersarpik is focused on increasing the period of high 

resolution sampling biogenic silica sampling further back in time. More biomarker 

samples have also been extracted going back to ~4 cal kyr BP to better approximate 

temperature and organic carbon sources during the Late Holocene. Improvement of the 

age model is also desirable, with tephrochronology as an alternative to radiocarbon 

dating.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

74 
  

 

CHAPTER VI 

CONCLUSIONS 

 The analyzed sediment core from Nanerersarpik Lake records a complex paleo-

environmental signal influenced by a numerous factors, some of which appear to be 

climate related and other which are likely caused by the unstable nature of the catchment.  

This complexity potentially precludes the reconstruction of a simple paleoclimate 

reconstruction from this site. However, by understanding when terrestrial overprinting 

occurs and taking it into account, the timing of known paleoclimatic intervals can be 

estimated at Nanerersarpik Lake. Based primarily on organic carbon and biogenic silica 

accumulations, but supported by numerous other proxies, deglaciation of the catchment 

occurred ~8.25 cal kyr BP. The Holocene Thermal Maximum was registered at 

Nanerersarpik from 8.25 cal kyr BP to sometime between 3 and 4.2 cal kyr BP, when a 

multi-faceted transition to Neoglacial conditions occurred. High concentrations of BSi 

during were observed during the Medieval Climate Anomaly (1300-1000 cal yr BP), 

which was followed by a return to harsher conditions during the Little Ice Age. Dramatic 

rises in primary productivity occurred during the most recent ~250 years of the record.  

 Biogenic silica analysis using the FTIRS provided a relatively robust and 

inexpensive technique to measure concentrations downcore at a high resolution and 

comparison with ice core temperature reconstructions during the Late Holocene suggest 

BSi may be responding on short timescales to temperature. It is recommended that future 

lake studies utilize this analytical method to supplement paleo-environmental 

reconstructions. Alkenones and brGDGTs were present and easily identifiable in 



 
 

75 
  

Nanerersarpik Lake sediments. Without a lake-specific calibration however, 

reconstructed paleo-temperatures are likely inaccurate.   
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Figure 5.11: Image of one of 

many glacial erratics present 

in catchment near notch in 

northwestern bedrock ridge. 
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