
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

5-2013

High-Performance Processing of Continuous
Uncertain Data
Thanh Thi Lac Tran
University of Massachusetts Amherst, ttran@cs.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Tran, Thanh Thi Lac, "High-Performance Processing of Continuous Uncertain Data" (2013). Open Access Dissertations. 768.
https://doi.org/10.7275/3zs2-hp50 https://scholarworks.umass.edu/open_access_dissertations/768

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/3zs2-hp50
https://scholarworks.umass.edu/open_access_dissertations/768?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

HIGH-PERFORMANCE PROCESSING OF
CONTINUOUS UNCERTAIN DATA

A Dissertation Presented

by

THANH T. L. TRAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2013

Computer Science

© Copyright by Thanh T. L. Tran 2013

All Rights Reserved

HIGH-PERFORMANCE PROCESSING OF
CONTINUOUS UNCERTAIN DATA

A Dissertation Presented

by

THANH T. L. TRAN

Approved as to style and content by:

Yanlei Diao, Chair

Jim Kurose, Member

Anna Liu, Member

Andrew McGregor, Member

Charles Sutton, Member

Lori A. Clarke, Department Chair
Computer Science

ACKNOWLEDGMENTS

This thesis would not have been possible without the guidance and support of

my advisor Prof. Yanlei Diao. She introduced me to the world of database research

and taught me much about research skills over the years. I am grateful for her close

mentorship, her countless hours spent to help define and shape this work. I would also

like to thank her for teaching me to always strive for clarity and precision in writing

papers and giving presentations, which is undoubtedly valuable to me in many years

to come.

I am grateful for having Profs. Jim Kurose, Anna Liu, Andrew McGregor, and Dr.

Charles Sutton on my thesis committee. I would like to thank Prof. Jim Kurose for his

input on the CASA case study and valuable comments on improving the presentation

of this thesis. I am grateful to Prof. Andrew McGregor for his help and many insights

on the approximation algorithms, and for his sense of humor that brought more fun

to the work. I am thankful to Dr. Charles Sutton for collaborating in the work on

RFID data inference and user-defined functions, and answering my questions about

machine learning in general. I thank Prof. Anna Liu for her invaluable input on the

statistical techniques for various parts of this work.

During my study, I had an opportunity to do a summer internship at AT&T Labs.

I would like to thank Drs. Graham Cormode, Magda Procopiuc, and Divesh Srivas-

tava for their great mentorship, the experience of working on a different interesting

research problem, and also an enjoyable summer.

I have benefited from the teaching of many professors at UMass, Amherst. I

especially thank Prof. Andrew Barto for his kindness and guidance during my early

iv

time at UMass. I thank Prof. Prashant Shenoy for his helpful comments on my RFID

work. I am grateful to Profs. Gerome Miklau and Alexandra Meliou for input and

discussions about many aspects of database research.

I would like to thank all members of the Database Lab, past and present. Many

thanks to Liping Peng for her close collaboration on the CLARO project and also

her friendship. I particularly thank Boduo Li for doing the hard work of performing

the experiment in the CASA case study. I thank Wentian Lu, Chao Li, Michael Hay,

Rick Cocci, Haopeng Zhang, Ed Mazur, Vani Gupta, Abhishek Roy, Kevin Conor,

Yue Wang, Ravali Pochampally for discussing ideas, offering technical comments and

help, and making the lab a nice place to work.

I thank Rachel Lavery and Leeanne Leclerc for their help with paperwork and

administrative issues during my time at UMass.

I am thankful to the Vietnam Education Fellowship for the financial support for

the first two years of my program. My work was also supported by the National

Science Foundation under the grants CNS-0626873, IIS-0746939, and IIS-0812347.

I am grateful to my Viet friends in Amherst. Thanks to all for the support, the

fun occasions and many laughters, which have kept me sane and healthy. I enjoy the

good food and the outdoor activities we have shared together.

Finally, I am greatly indebted to my parents and my sisters. I thank my sisters

for always caring and being a joy to talk with. I thank my parents for supporting me

through many ups and downs, being patient with me and my many years away from

home. I cannot thank them enough for their love and sacrifice in bringing me and

my sisters up. I dedicate this thesis to them.

v

ABSTRACT

HIGH-PERFORMANCE PROCESSING OF
CONTINUOUS UNCERTAIN DATA

MAY 2013

THANH T. L. TRAN

B.E., UNIVERSITY OF MELBOURNE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yanlei Diao

Uncertain data has arisen in a growing number of applications such as sensor

networks, RFID systems, weather radar networks, and digital sky surveys. The fact

that the raw data in these applications is often incomplete, imprecise and even mis-

leading has two implications: (i) the raw data is not suitable for direct querying, (ii)

feeding the uncertain data into existing systems produces results of unknown quality.

This thesis presents a system for uncertain data processing that has two key

functionalities, (i) capturing and transforming raw noisy data to rich queriable tuples

that carry attributes needed for query processing with quantified uncertainty, and (ii)

performing query processing on such tuples, which captures changes of uncertainty

as data goes through various query operators. The proposed system considers data

naturally captured by continuous distributions, which is prevalent in sensing and

scientific applications.

vi

The first part of the thesis addresses data capture and transformation by propos-

ing a probabilistic modeling and inference approach. Since this task is application-

specific and requires domain knowledge, this approach is demonstrated for RFID data

from mobile readers. More specifically, the proposed solution involves an inference

and cleaning substrate to transform raw RFID data streams to object location tuple

streams where locations are inferred from raw noisy data and their uncertain values

are captured by probability distributions.

The second, also the main part, of this thesis examines query processing for un-

certain data modeled by continuous random variables. The proposed system includes

new data models and algorithms for relational processing, with a focus on aggrega-

tion and conditioning operations. For operations of high complexity, optimizations

including approximations with guaranteed error bounds are considered. Then com-

plex queries involving a mix of operations are addressed by query planning, which

given a query, finds an efficient plan that meets user-defined accuracy requirements.

Besides relational processing, this thesis also provides the support for user-defined

functions (UDFs) on uncertain data, which aims to compute the output distribu-

tion given uncertain input and a black-box UDF. The proposed solution employs

a learning-based approach using Gaussian processes to compute approximate output

with error bounds, and a suite of optimizations for high performance in online settings

such as data stream processing and interactive data analysis.

The techniques proposed in this thesis are thoroughly evaluated using both syn-

thetic data with controlled properties and various real-world datasets from the do-

mains of severe weather monitoring, object tracking using RFID readers, and com-

putational astrophysics. The experimental results show that these techniques can

yield high accuracy, meet stream speeds, and outperform existing techniques such as

Monte Carlo sampling for many important workloads.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Motivations . 1
1.2 Thesis Statement . 5
1.3 Thesis Contributions . 7
1.4 Thesis Layout . 11

2. SYSTEM ARCHITECTURE . 13

2.1 Operations in Two-Layer Architecture . 14

3. DATA CAPTURE AND TRANSFORMATION 17

3.1 Related Work . 17
3.2 Modeling and Inference Approach . 19

3.2.1 Modeling and Inference for Sensor Data Streams 20
3.2.2 Approximating Result Distributions . 22

3.3 Modeling and Inferring RFID Data Streams . 24

3.3.1 Background . 24
3.3.2 A Probabilistic Data Generation Model . 27

3.3.2.1 Components of the Model . 28
3.3.2.2 Formal Definition . 31
3.3.2.3 Parameter Estimation Using Learning 32

3.3.3 Efficient, Scalable Inference over Streams . 33

viii

3.3.3.1 Particle Filtering . 33
3.3.3.2 Optimizations for Accuracy and Performance 36

3.3.4 Experimental Results . 43

3.4 Alternative Approaches to Data Capture and Transformation 53

4. DATA MODELS AND QUERY SEMANTICS . 57

4.1 Related Work . 57
4.2 Gaussian Mixture Model . 59
4.3 Mixed-type Data Model . 62
4.4 Formal Semantics of Relational Processing under Mixed-type

Model . 65

4.4.1 Projection . 67
4.4.2 Selection . 68
4.4.3 Cross Product . 69
4.4.4 Join using Probabilistic Views . 69
4.4.5 Aggregation . 72
4.4.6 Group-by Aggregation . 74
4.4.7 Equivalence to Possible Worlds Semantics . 74

5. RELATIONAL PROCESSING OF CONTINUOUS
UNCERTAIN DATA . 75

5.1 Related Work . 76
5.2 Basic Relational Processing under Mixed-type Model 78

5.2.1 Selections . 78
5.2.2 Projections . 79
5.2.3 Joins . 79

5.3 An Evaluation Framework for Aggregation . 80
5.4 Aggregation under Gaussian Mixture Model . 82

5.4.1 A Basic Algorithm . 83
5.4.2 Exact Derivation of Result Distributions . 85

5.4.2.1 Approximation of Result Distributions 86
5.4.2.2 Hybrid Solution . 88

5.5 Aggregation under Mixed-type Model . 88

5.5.1 Approximate Representation for CDFs . 89
5.5.2 Bounded-Error Monte-Carlo Simulation . 90

ix

5.5.3 Distributions of MAX and MIN . 91
5.5.4 Distributions of SUM and COUNT . 95

5.6 Experimental Results for Aggregation . 98

5.6.1 Aggregation under Gaussian Mixture Models 98
5.6.2 Aggregation under Mixed-type Model . 101
5.6.3 Case Study: Tornado Detection . 104

5.7 Query Planning under Mixed-type Models . 106

5.7.1 Arranging Operators in a Query Plan . 106
5.7.2 Query Planning . 108

5.8 Experimental Results for Query Planning . 114
5.9 An Experiment Validating the Two-layer Approach 117

6. SUPPORTING USER-DEFINED FUNCTIONS ON
UNCERTAIN DATA . 120

6.1 Overview . 120
6.2 An Evaluation Framework . 125
6.3 Monte Carlo Approach . 126

6.3.1 Computing the Output Distribution . 127
6.3.2 Filtering with Selection Predicates . 127

6.4 Emulating UDFs with Gaussian Processes . 128

6.4.1 Intuition for GPs . 129
6.4.2 Definition of GPs . 130
6.4.3 Inference for New Input Points . 132
6.4.4 Learning the Hyperparameters . 133

6.5 Uncertainty in Query Results . 134

6.5.1 Computing the Output Distribution . 134
6.5.2 Error Bounds Using Discrepancy Measure 136
6.5.3 Error Bounds for KS Measure . 141

6.6 An Optimized Online Algorithm . 142

6.6.1 Local Inference . 143
6.6.2 Online Tuning . 146
6.6.3 Online Retraining . 147
6.6.4 A Complete Online Algorithm . 148
6.6.5 Hybrid Solution . 150

x

6.6.6 Online Filtering . 151

6.7 Performance Evaluation . 151

6.7.1 Experimental Setup . 152
6.7.2 Evaluating GP Techniques . 153
6.7.3 GP versus Monte Carlo Approach . 158
6.7.4 Case Study: UDFs in Astrophysics . 161

6.8 Related Work . 162

7. CONCLUSION AND FUTURE WORK . 165

7.1 Thesis Summary . 165
7.2 Future Work . 167

APPENDIX: MATHEMATICAL PROOFS . 172

BIBLIOGRAPHY . 180

xi

LIST OF TABLES

Table Page

3.1 Summary of notation used in RFID modeling and inference. 27

5.1 Result of a real tonadic dataset of 947s from 84 scans. 105

6.1 Main notation used in GP techniques. 134

xii

LIST OF FIGURES

Figure Page

2.1 Architecture of an uncertainty-aware data management system. 14

3.1 Model of reader and object locations. The shaded region at top
contains the reader motion model and reader location sensing
model. The lightly-shaded region at bottom contains the RFID
sensor model. 28

3.2 Weighting samples of object and reader locations. 34

3.3 Motivation and data structures for factored particles. 37

3.4 Intuitions and data structures for spatial indexing. 41

3.5 Sensor model calibration. 45

3.6 Inference evaluation for synthetic RFID data. 47

3.7 Evaluation of our inference technique, an improved version of
SMURF, and uniform sampling using a real RFID lab
deployment. 49

3.8 Scalability results for synthetic RFID data. 51

3.9 Result on the accuracy and performance tradeoff of particle
filtering. 52

4.1 Simplified stream processing in the CASA radar system 59

4.2 Gaussian Mixture Models for real-world data collected from the
target applications of claro . 60

4.3 Execution of Q1 in the mixed-type model. 64

4.4 Selection under the mixed-type model . 68

xiii

4.5 Compare equi-joins in the discrete domain (using PWS) and in the
continuous domain (using a probabilistic view). 71

5.1 Aggregation of continuous random variables . 82

5.2 Aggregation in the discrete setting (using PWS) and in the
continuous setting (using integration). 83

5.3 Example characteristic function for sum of 10 tuples. 87

5.4 StepCDF and illustration of the basic steps of the MAX algorithm 92

5.5 Updating step of the SUM algorithm . 97

5.6 Experimental results for aggregation under GMMs, and
histogram-based sampling H(k) (with µ=50) and
discretization. 99

5.7 Experimental results for MAX, SUM under mixed-type models. 102

5.8 Radial velocity maps of a true tornadic region from CASA and
claro. 105

5.9 Query plan arrangement in the mixed type model. 107

5.10 Query planning for queries Q1-Q4 . 112

5.11 Experimental results for query planning. 115

5.12 Experiment on validating the two-layer architecture 118

6.1 Example of GP regression. (a) prior functions, (b) posterior functions
conditioning on training data . 130

6.2 GP inference for uncertain input. (a) Computation steps (b)
Approximate function with bounding envelope (c) Computing
probability for interval [a, b] from CDFs . 135

6.3 Choosing a subset of training points for local inference 144

6.4 A family of functions of different smoothness and shape used in
evaluation. 152

6.5 Experimental results for profiling of the GP approach 154

xiv

6.6 Experimental results for evaluating the GP approach using synthetic
data and functions . 156

6.7 Experimental results for comparing the GP and MC approaches using
synthetic data and functions . 159

6.8 Results for real astrophysics functions and SDSS data 161

xv

CHAPTER 1

INTRODUCTION

Recent advances of sensing technology have enabled many scientific and monitor-

ing applications such as sensor networks [27, 28, 57], radio frequency identification

(RFID) networks [21, 50, 78, 100], GPS systems [52], severe weather monitoring

[30, 58], and computational astrophysics [92, 91]. While these applications have been

shown to be important in many domains, they raise new challenges for data man-

agement. A big challenge is that data resulting from real-world measurements is in-

herently noisy, incomplete, and even misleading, hence referred to as uncertain data.

Capturing uncertainty from raw input data to query processing results then becomes

a key component of data management systems (DBMSs). However, existing DBMSs

either are not ready to process raw uncertain data or cannot quantify the uncertainty

of query results, hence are of limited use for these applications. This chapter presents

the motivating applications and then sets the objectives for this thesis.

1.1 Motivations

We now consider three specific applications that motivate this thesis work, in-

cluding object tracking and monitoring using RFID technology, computational astro-

physics using digital sky surveys, and severe weather monitoring using radar networks.

A. RFID tracking and monitoring. The first motivating application is object

tracking and monitoring using RFID technology, in particular, wide-range mobile

readers that enable cost-effective deployments in areas such as retail management

healthcare, pharmaceuticals [36], and library management [32, 80]. For example, a

1

mobile RFID reader, as attached to a robot or a handheld device, can be deployed

to repeatedly scan a storage area. The collected RFID readings contain the tag ids

of observed objects, and optionally the reader locations of the mobile reader. These

RFID readings have two important characteristics. First, the observed data is in-

complete and noisy, since the read rate of RFID readers is far less than 100% due to

environmental factors such as occluding metal objects, interference, and contention

among tags [33]. Second, while the monitoring application wants precise object loca-

tions for further processing, the observed data simply contains observed tag ids—this

is a fundamental limitation of the identification technology. As a result, the raw data

is not directly queriable for those queries that require object locations in processing.

Despite these data quality issues, the monitoring application needs accurate ob-

ject locations to derive high-level information. We illustrate such needs using a fire

monitoring application. Assume that raw RFID readings can be transformed into a

stream of tuples each containing (time, tag id of Oi, (x, y, z)p), where (x, y, z)p

denotes the uncertain (x, y, z) location of the object Oi. The following query Q1

detects potential violations of a fire code, which states that display of solid merchan-

dise shall not exceed 200 pounds per square foot of shelf area. This is a group-by

aggregation query, that considers tuples in each 5 second window, groups them based

on the square foot area, computes the total weight of the objects in each group. It

then reports the area and the total weight for each group whose weight exceeds 200

pounds. The query is written as follows as if the object location were precise.

Q1: Select Rstream(R2.area, sum(R2.weight))

From (Select Rstream(*, area(R.(x,y,z)) As area,

weight(R.tag id) As weight)

From RFIDStream R [Now])

R2 [Range 5 seconds]

Group By R2.area

Having sum(R2.weight) > 200 pounds

2

Due to the nature of this application, it is important to capture the quality of

the detection results. For example, in the above query, the user may want to know

for each result tuple, how likely sum(weight) > 200 evaluates to true, or what the

distribution of sum(weight) looks like.

B. Computational astrophysics. There have been several recent initiatives to

apply relational techniques to computational astrophysics such as the Sloan digital

sky survey (SDSS) [89], and the SciDB project [85]. As detailed in the recent work [91],

massive astrophysical surveys will soon generate observations of 108 stars and galaxies

at nightly data rates of 0.5TB to 20TB. The observations are inherently noisy as the

objects can be too dim to be recognized in a single image. Repeated observations

(up to a thousand times) allow scientists to model the location, brightness, and color

of objects using appropriate distributions, for example, represented as (id, time,

(x, y)p, luminosityp, colorp). This data cooking process has transformed the raw

data into attributes needed for query processing. However, query processing of the

resulting uncertain data remains underaddressed in the literature. More specifically,

queries can be issued to detect dynamic features, transient events, and anomalous

behaviors. Query Q2 below detects regions of the sky that have high luminosity from

the observations in the past hour. It groups the objects into the predefined regions

and for the regions with the maximum luminosity above a threshold, it reports the

maximum luminosity.

Q2: Select group id, max(S.luminosity)

From Observations S [Range 1 hour]

Group By AreaId(S.(x,y), AreaDef) as group id

Having max(S.luminosity) > 20

The fact that luminosity is an uncertain attribute characterized by continuous

distributions complicates the computation of the query. Moreover, this computation

needs to be performed in real time as tuples arrive, posing additional challenges in

processing the uncertain data.

3

Besides relational processing as illustrated in the above query, this application

makes intensive use of user-defined functions (UDFs), which process and analyze the

data using complex, domain-specific algorithms. In practice, UDFs can be provided

in any form of external code, e.g., C programs, and hence treated mainly as black

boxes in traditional databases. The following query Q3 shows a simple example of the

use of UDFs in astrophysics. Q3 computes the age of each galaxy given its redshift

using the UDF GalAge. Since redshift is uncertain, the output GalAge(redshift)

is also uncertain, characterized by a distribution.

Q3: Select G.objD, GalAge(G.redshift)

From Galaxy G

These UDFs are often expensive to compute due to their complexity of processing.

Unfortunately, the support for UDFs on uncertain data is largely lacking in today’s

data management systems.

C. Severe weather monitoring. Our third application is severe weather moni-

toring. The Engineering Research Center for Collaborative Adaptive Sensing of the

Atmosphere (CASA) [15] is leading an effort to create distributed radar sensor net-

works with the goal to detect and monitor hazardous weather events like storms and

tornados [58]. A fundamental problem that emerges in this system is the possibility

of detection errors caused by the uncertainty in the data generated by the radars and

transformed in various processing stages. Data uncertainty can arise from environ-

mental noise, device noise, and inaccuracies of various radar components. The raw

radar data is generated at a high volume of 205 Mb per second. The current system

deals with this high-volume noisy data by means of taking average over the data,

which may result in loss of precision.

Given the raw data, the first task in the CASA data processing workflow is to

derive attributes needed for query processing and model those attributes using prob-

ability distributions to capture the data uncertainty. For example, this may result in a

4

data stream with the format (time, azimuth, distance, velocityp, reflectivityp). The

current system performs initial data cooking to compute the needed attributes, but

does not quantify their uncertainty. After sufficient data cooking, the transformed

data then needs to be processed through subsequent operators, mainly aggregations,

and eventually fed into the tornado detection algorithm. Data uncertainty can propa-

gate through the entire system, making tornado detection results error-prone. Given

the potential social impact of such a system, it is absolutely vital that the system cap-

ture the data quality at various processing stages and the uncertainty of its detection

results.

1.2 Thesis Statement

The three applications above present a number of challenges to existing database

management systems. In these applications, the raw data resulted from sensing pro-

cesses is significantly different from the traditional data. More specifically, the differ-

ences include the following:

(i) Observed data is inherently incomplete and noisy due to the limitations of the

sensing technology and many environmental factors, and the noise varies with time

and location.

(ii) Observed data is different from data needed for further processing. For ex-

ample, in RFID tracking and monitoring, the observed data contains object tag ids

while the data of interest to monitoring applications concerns object locations. In

computational astrophysics, the observed data is the image of the sky generated by

telescopes while the data of interest is the properties of the stars and galaxies such

as luminosity and color. And in weather monitoring, the observed data is raw signal

data whereas data needed for further processing is a numeric description of each unit

area of space in terms of reflectivity, wind speed, etc. Hence, given the raw data, the

5

supporting database system needs to handle both the mismatch between observed

data and data of interest, and the noise in observed data.

(iii) After raw data is transformed into a suitable format, it needs to undergo

sophisticated query processing to derive final query answers. The challenge is to

capture uncertainty as data propagates through query operators until the final results.

(iv) The nature of the sensing applications adds performance requirements. Since

data often arrives as data streams and requires online analysis, data processing needs

to keep up with stream speed. Besides, as can be seen in the above applications,

the raw data is particularly of higher volume than in traditional sensing applications,

e.g., 205Mb/sec from a single radar node, which requires the processing of raw data

to keep up with such high data rates.

This thesis presents the design of a system, named claro, that provides an end-

to-end solution from raw data collection to query processing to final result generation.

To support uncertainty as a first-class citizen, claro models uncertain data using

continuous random variables, which are natural to most types of sensing and sci-

entific data. More specifically, the claro system offers two main functionalities:

(i) capturing and transforming raw, noisy data to rich, queriable tuples with quanti-

fied uncertainty, and (ii) performing complex query processing on the resulting tuples

and capturing the uncertainty as it propagates through processing operations. claro

aims to compute the distributions of final processing results, either exact or approxi-

mate with bounded errors. It also aims to meet user-specified accuracy requirements,

and at the same time be efficient for data streams or interactive analysis, and scale

to high-volume data.

6

1.3 Thesis Contributions

This section summarizes the contributions achieved in the design and development

of the claro system for uncertain data processing. These contributions address the

two main functionalities of claro.

1. Transforming raw noisy data into queriable tuples with quantified

uncertainty. Specifically, this contribution involves deriving tuple attributes needed

for query processing and characterizing uncertainty in these attributes using contin-

uous probability distributions. This thesis proposes a general approach using prob-

abilistic modeling and inference to recover the data of interest from the raw noisy

data. Since this task is application-specific and requires domain knowledge, this pro-

posed approach is demonstrated for the application of object tracking and monitoring

using mobile RFID readers. The contribution is a complete solution for efficient, scal-

able cleaning and transformation of mobile RFID data streams while offering high

precision results. More specifically, this involves (1) modeling precisely how mobile

RFID data is generated from the true state of the physical world, e.g., true object

locations, through the sensing process, and (2) inferring likely estimates of the true

state as noisy, raw data streams arrive. These two tasks are described in more detail

as follows.

• Modeling the data generation process. claro presents a probabilistic model

that captures the underlying data generation process, including the key compo-

nents such as reader motion, object dynamics, and noisy sensing of these objects

by the reader. In particular, the proposed model employs a flexible parametric

RFID sensor model that can be automatically and accurately configured for a vari-

ety of environments using a standard learning technique. In contrast, existing work

resorts to manual calibration of the sensor model for each RFID deployment envi-

ronment [32, 44, 50], precisely because they lack such a flexible parametric sensor

model.

7

• Efficient, scalable inference. To generate clean location event streams from

noisy, raw RFID data streams, claro applies a sampling-based inference technique,

called particle filtering, to the model developed above. The basic application of this

technique requires a prohibitively large number of samples to cope with the number

of objects typical in our target environment, and hence is inadequate for stream

processing. The second contribution made in this work is to enhance particle

filtering to scale to large numbers of objects and keep up with high-volume streams

while offering high precision inference results. To do so, the claro system presents

three advanced techniques, namely, particle factorization, spatial indexing, and

belief compression, which together lead to a solution that uses only a small number

of samples at any instant by focusing on a subset of the objects, while maintaining

high inference accuracy.

Besides RFID data, claro employs some alternative techniques for data capture

and transformation for extremely high-volume raw data such as radar network data.

These techniques involve statistical models for time series data and their approxima-

tions for improved efficiency.

2. Relational query processing of continuous uncertain tuples. After

data capture and transformation, tuples carrying continuous probability distributions

propagate through various query processing operations. While the type of sensor

data may vary in our applications, query processing can be supported by a unified

framework, because data processing in these applications involves a common set of

relational operators such as selection, aggregation, join, group-by. The claro system

aims to capture uncertainty of both intermediate and final results. More specifically,

claro characterizes the full probability distributions of the output of each processing

operator, either exact or approximate with bounded errors. From these distributions,

the confidence regions and error bounds can be generated when needed.

8

claro is designed to be a probabilistic data management system that supports

query processing of continuous-valued uncertain data, in either stored databases or

data streams. It provides data models, formal semantics and processing techniques of

relational operators, and query planning for complex queries. The main contributions

are as follows.

• Data model . The foundation of claro is a unique data model, named mixed-

type model. In this model, continuous uncertain attributes follow Gaussian mixture

distributions, which can model complex real-world distributions [39]. They also

allow us to develop efficient solutions for many relational operators. Besides the

attribute-level uncertainty captured by such distributions, the mixed-type model

can also capture tuple-level uncertainty regarding the existence of a tuple.

• Formal semantics . In like manner that the possible worlds semantics (PWS) [23]

laid the foundation for query processing on discrete uncertain data, claro defines

formal semantics for relational processing under its chosen model for continuous

uncertain data. This formal semantics, based on measure theory, is shown to be

equivalent to PWS when used in the discrete case.

• Aggregates of Gaussian mixture distributions. The chosen data model en-

ables the design of efficient techniques for aggregates such as sum and avg. Specif-

ically, when the tuple existence is certain, there are exact result distributions of

aggregates, which eliminates the use of integrals. In workloads when the exact

solution is slow, claro derives approximate distributions with bounded errors for

improved efficiency. These techniques, when used as a hybrid solution, can meet

arbitrary accuracy requirements while achieving high throughput.

• Aggregates under the mixed-type model. Given uncertain attributes, condi-

tioning operations, e.g., selection and group-by, can introduce uncertainty regard-

ing tuple existence, which complicates the computation for aggregates. the claro

system proposes an approximate evaluation framework for the mixed-type model

9

that includes tuple existence probabilities. Within this framework, claro sup-

ports deterministic and randomized approximation algorithms with error bounds

for common aggregates like max, min, sum, and count.

• Query planning. A unique aspect of claro is its ability to meet arbitrary

accuracy requirements even for complex queries. Given a complex query involving

various operations, claro arranges the operators to first apply the closed-form

solutions and then approximation algorithms if needed. Starting from the first

approximate operator in the query plan, we quantify the errors of this operator as

well as all subsequent operators. These results allow us to provision an error bound

for each operator to meet an overall query accuracy requirement.

3. Supporting user-defined functions on uncertain data. Besides queries

expressed with relational operations, we observe that user-defined functions (UDFs)

are prevalent in many scientific applications. These UDFs can be provided in any form

of external code, hence treated mainly as black boxes. Given a UDF and uncertain

input, the claro system aims to compute the distribution of each output tuple.

To this end, claro explores a learning-based approach by modeling UDFs using

a technique called Gaussian processes (GPs). The key idea is that over time, one

can use past function evaluations to build an approximate model of the black-box

function, and use the model to avoid most expensive function evaluations in the future.

Within this framework, claro innovates by using novel techniques to compute output

distributions of a UDF modeled as a GP, when given uncertain input, and providing

new theoretical results to bound errors of output distributions.

Further, claro proposes an efficient online algorithm to compute approximate

output distributions that satisfy application accuracy requirements. This algorithm

employs a suite of novel optimizations for the GP learning and inference modules,

namely local inference, online tuning, and online training to improve performance and

accuracy.

10

Finally, the claro system adopts Monte Carlo sampling as an alternative to

compute UDFs on uncertain data, especially for fast functions, and suggest a hy-

brid solution of using direct Monte Carlo sampling and Gaussian process modeling.

Specifically, this solution aims to choose the more efficient approach depending on

the characteristics of UDFs such as their evaluation time and complexity.

4. System prototyping and performance evaluation. Lastly, this thesis

work involves implementing a prototype system, performing evaluation of the pro-

posed techniques, and comparing them with the state-of-the-art solutions. The eval-

uation uses both synthetic data with controlled properties and a variety of real-world

workloads and datasets from a RFID object tracking lab deployment, CASA real

radar traces, and a dataset from the SDSS project. The experimental results show

that the proposed techniques outperform the state of the art such as Monte Carlo

sampling for most important workloads. For the CASA case study, the proposed

techniques can enable the tornado detection system to produce detection results at

stream speed with improved quality. For the real data and queries from the ap-

plications of object tracking and computational astrophysics, claro can meet high

accuracy requirements while achieving throughput of thousands of tuples per second

or higher for most workloads tested.

1.4 Thesis Layout

This chapter has presented the overview of the thesis, including the motivating

applications, the objectives, and the technical contributions. The rest of this thesis

is outlined as follows. Chapter 2 describes the architecture of the claro system.

Chapter 3 examines the techniques for data capture and transformation to derive

rich, queriable tuples with quantified uncertainty from raw, noisy data. Chapter 4

proposes the data models and the formal semantics of relational operations under the

chosen models. Then, the techniques for relational query processing are discussed in

11

Chapter 5. Chapter 6 considers complex operations presented in the form of user-

defined functions (UDFs) and proposes efficient techniques to compute their output on

uncertain input. Chapter 7 summarizes this thesis work and states possible directions

for future work.

12

CHAPTER 2

SYSTEM ARCHITECTURE

This chapter presents the architectural design of the claro system for uncertain

data processing. At a high level, claro adopts a two-layer architecture. The first

layer involves cleaning and transformation of raw data, while the second performs

query processing for relational operations and more complex operations such as user-

defined functions.

This two-layer architecture is adopted due to the following reasons. First, raw

data cleaning and transformation is application-specific and often requires extensive

domain knowledge. Hence, this task may need to be addressed by different techniques

for different applications. As a result, in many scientific applications, this is often

done by the scientists directly. For example, in the Sloan digital sky surveys (SDSS)

project [89], the scientists have their own data cooking procedure. Specifically, they

repeatedly take raw images of the sky using telescopes and cook this data to obtain

various properties of the stars and galaxies. The resulting data capture the prop-

erties such as location, redshift, color, using Gaussian distributions. Second, query

processing often involves common operations across applications, since a large num-

ber of analytical queries can be expressed using relational operations or mathematical

user-defined functions. Therefore, the techniques proposed in this thesis can be used

in any applications as long as the queries are written using some known structures

(as will be discussed in Section 5.7). Overall, compared to any one-layer approach,

which does the above two tasks at once, the proposed architecture is more modular,

13

Confidence

region

T1

T2

A1

A3

A2

J1

A4T3

Mean

Variance

Bounds

Figure 2.1. Architecture of an uncertainty-aware data management system.

hence facilitating application deployment and software usage. It also allows for new

operations to be incorporated easily.

2.1 Operations in Two-Layer Architecture

This section discusses the system architecture in more detail by considering each

layer separately. The claro system employs the general box-arrow paradigm [14]

for query processing. In this paradigm, a box represents an operator and boxes are

connected using arrows that represent the data flow from one operator to another.

This box-arrow diagram can be either compiled from a query (e.g., Q1, Q2 and Q3 in

Section 1.1) or obtained from a scientific workflow (e.g., the workflow in the CASA

radar system). Figure 2.1 illustrates the operations in the claro system. claro

extends the box-arrow architecture in the two following aspects.

A. Data capture and transformation (T) operators. The task of capturing

uncertainty of raw data is encapsulated in a new “data capture and transformation”

(T) operator. Allocated for each sensor device, a T operator can serve as an ingress

operator for the stream processing network. It offers two functions:

14

First, it transforms raw data into a format suitable for further processing, e.g., a

tuple stream with each tuple carrying an object location in the RFID application, or

each tuple carrying velocity for each voxel in the weather monitoring application.

Second, it includes a probability density function (pdf) in each output tuple. It

is important to note that in the sensing applications presented in Chapter 1, it is

impossible to know the ground truth of the data of interest; rather, one has only the

observations generated through the sensing process. The distributions of the output

tuples then capture the prediction of the data of interest given the observed data. It

is evident, as experimentally shown later in Section 5.8, that to analyze uncertainty

of further processing results, the pdf of each tuple is needed—merely having mean,

variance cannot fully capture uncertainty of subsequent query processing results.

In Figure 2.1, these capture and transformation operators are denoted as the

T operators. Note that if the tuples produced by a T operator are independent,

the pdf in each tuple completely characterizes its distribution. The pdf can also

be used to capture the correlated attributes in a tuple. For example, the x and y

locations in the RFID application are likely to be correlated and can be characterized

by a bivariate distribution. There are also scenarios where the produced tuples are

correlated, in particular, temporally correlated. The temporally correlated tuples, X1,

X2, ..., Xn, each carry a conditional distribution p(Xn|Xn−1, ..., Xn−k) where k ≥ 1.

This way, a subsequent operator can construct their joint distribution, when needed,

by multiplying these conditional distributions. This case is however not considered

further in the scope of this thesis, and is left to future work.

B. Query processing operators. Tuples outputed from the T operators are

fed into downstream query operators for further processing. The claro system

considers two classes of operations: relational operations and user-defined functions.

For relational operations, claro supports selection, projection, join, aggregation, and

group-by aggregation because they are common in query processing and particularly

15

useful to the sensing and scientific applications. This thesis will particularly focus

on aggregation in different scenarios since it is a complex operation that has been

under-addressed in existing work. Besides their uses in the RFID application and

computational astrophysics as illustrated in Section 1.1, these operators can also

model various processing steps in the radar system. For instance, the averaging

operation in moment data generation can be modeled using aggregation, and the

merging of two radar streams is a special form of join.

In the claro system, a query operator takes a set of input tuples and produces

a set of ouput tuples that contain one of the following items:

• If the query operator is the last operator, its output tuples can carry full distribu-

tions, or alternatively, statistics such as the confidence region (a set of values whose

confidence is over a threshold), mean, variance, or error bounds, depending on the

application.

• If the query operator is an intermediate one and its output tuples are independent,

each output tuple then carries its own distribution. The output tuples can be

computed exactly or approximately with bounded errors.

Figure 2.1 illustrates these operators, where A stands for aggregate operators and

J stands for joins.

The second class of query processing operations that the claro system supports

is user-defined functions (UDFs), which may be given as black boxes. Then the box-

arrow diagram can be extended by adding the boxes representing these UDFs, where

appropriate. When the inputs to a UDF are characterized by some distributions, it

outputs are also characterized by distributions.

These two sets of operations for query processing are discussed in detail in Chap-

ters 5 and 6 respectively.

16

CHAPTER 3

DATA CAPTURE AND TRANSFORMATION

This chapter addresses the first functionality of the claro system, which aims

to capture and transform raw, noisy data into rich, queriable tuples with quantified

uncertainty. The related work on this topic is first surveyed, then the main approach

involving probabilistic modeling and inference used in claro is discussed. For con-

creteness, this proposed approach is demonstrated for one of the target applications,

RFID tracking and monitoring. Besides, some alternative techniques for the task of

data cleaning and transformation are considered.

3.1 Related Work

This section surveys the related work on data capture and transformation for the

domains close to the target applications of the claro system. In general, this thesis

work differs from recent work in the database community that applies statistical or

machine learning techniques to sensor types such as temperature and light [28, 29],

GPS readings [52], and RFID data from static readers [34, 50]. This is because the

new types of sensor data in the applications mentioned in Section 1.1 require different,

and often more complex, statistical models, and pose more demanding performance

requirements. More specifically, the observed data is often of high volume and reveals

the data of interest indirectly. The following discusses different lines of related work

in more detail.

Sensor data management [28, 29, 37, 64, 87] has attracted much research lately.

The sensor data can describe environmental phenomena such as temperature and

17

light. Techniques for data acquisition [64] and model-based processing [28] are geared

towards queries natural to such data, e.g., aggregation. Such techniques consider

data that is directly queriable, which is not the case that needs data capture and

transformation as in the claro system. Model-based views over sensor streams

[52] employ probabilistic inference but are restricted to GPS readings, which already

reveal object locations, and consider small numbers of objects.

RFID stream processing. The HiFi project [34] offers a declarative framework for

RFID data cleaning and processing. Its techniques focus on temporal and spatial

smoothing of readings generated by a fixed set of static readers. SMURF [50] is a

particular cleaning approach employed in HiFi; however, it does not have the benefits

as the approach proposed for mobile readers in claro, as empirically demonstrated

in Section 3.3.4.

RFID databases. RFID data management issues including inference are discussed

in [19]. Cascadia [100] supports RFID-based pervasive computing with a language

for specifying event patterns and techniques for extracting events from raw data and

archiving them in a database. Application rules are also used to archive and compress

RFID data into databases [99]. Inside RFID databases, advanced data compression

techniques are available [42], data cleansing is integrated with query processing [75],

and high-level information is recovered from incomplete, noisy data using known

constraints and prior statistical knowledge [102]. However, these lines of work assume

the use of static readers, and thus can only know that the objects are in a wide read

range, not the fine-grained object locations as required by the applications presented

in Section 1.1.

Object and person tracking [60, 71, 84] focuses on tracking moving targets when the

association between observed features and object identities is uncertain. In the RFID

setting, however, object identities are given as part of the readings; the challenge is

to translate high-volume, noisy readings into clean, precise location events. Hence,

18

models from this research area are not suitable for the problem tackled in claro.

Some probabilistic models are developed for GPS readings [60, 71], but these do not

apply to the problem under study either, because unlike GPS, RFID readings do

not reveal locations directly. Moreover, the work in this area is designed for small

numbers of objects (of the order of 10 objects), and does not scale to a warehouse

setting. Graphical models have also been used to predict locations and goals of

a single user from GPS readings [60, 71]. These techniques are inadequate for the

target applications because GPS readings reveal (noisy) locations (but RFID readings

do not) and the techniques proposed for a single person do not scale to many objects.

Robotics. The structure of the proposed model is similar to FastSLAM [65] that

also uses a factorized particle filter for inference. Unlike the sensors used in Fast-

SLAM, however, RFID indicates only whether an object is nearby, not its location.

The logistic sensor model employed in this thesis work requires the use of different

factorization and indexing techniques than FastSLAM. RFID-equipped robots have

been recently used to estimate locations of robots [54] or RFID-affixed objects [32, 44].

This line of work is not designed to support scalable stream query processing—it does

not support online inference over RFID streams [32] or does so only for a small set

of objects [44]. In contrast, this work employs a suite of techniques to scale inference

to large numbers of objects at stream speeds. Second, modeling in previous work

is limited—the sensor model is manually calibrated, which is problematic because

reader performance depends greatly on the characteristics of the environment. The

reader motion model is also omitted in [32], which loses the ability to correct reader

location noise.

3.2 Modeling and Inference Approach

The foundation for building an uncertainty-aware DBMS is to capture the uncer-

tainty while processing raw data close to the sensors that produce the data. This is a

19

task of the data capture and transformation (T) operator in the claro system. This

is also referred to as data cooking in many scientific applications. Specifically, the

objective of this process is to transform raw data to queriable data with quantified

uncertainty. As mentioned in Chapter 2, this uncertainty captures the prediction of

the transformed data, as it is impossible to observe the ground truth in the sensing

applications.

This section describes a general approach to data capture and transformation by

using machine learning modeling and inference techniques. We model the data in the

transformed format as continuous random variables that cannot be directly observed

(hidden variables X), and the data in the input format as continuous or discrete

random variables that can be observed (evidence variables O). The task of data

transformation and quantifying data uncertainty amounts to computing the condi-

tional distribution p(X|O). While this problem has traditionally been the purview

of statistical machine learning [51], it poses a tremendous challenge to existing tech-

niques due to the performance requirements of stream systems or interactive analysis.

For instance, the experimental results in Section 3.3.4 show that to transform a raw

RFID data stream to an object location stream, a standard probabilistic inference

technique can process only 0.1 reading per second for 20 objects —this is neither

efficient nor scalable for the data stream applications that we aim to support.

The main goal in the design of the data capture and transformation operator in

claro is to choose appropriate statistical machine learning techniques and further

optimize them so that they can be applied for high-volume data streams. Below, we

describe the statistical techniques and optimizations employed in the claro system.

3.2.1 Modeling and Inference for Sensor Data Streams

The design of a data capture and transformation (T) operator consists of two

steps: First, we model the underlying data generation process using a machine learning

20

technique, called graphical modeling, that captures how a sensor produces data from

the true state of the world with various types of noise. Second, we employ probabilistic

inference to transform observed data into data of interest based on the data generation

model.

Modeling. The first step in the design of a T operator is to develop a probabilistic

model that captures the dynamic and noisy data generation process. Formally, the

model is a joint probability distribution over all hidden and evidence variables in the

problem domain. For example, in the case of mobile RFID readers, hidden variables

X are the object locations, and evidence variables O are the readings of objects,

readings of shelf tags with known locations, and the reported reader location. Edges

in the model capture dependencies among variables, e.g., the true object location and

reader location jointly determining if a given object is observed at time t.

The resulting graphical model is further divided into several components that

describe how data is generated from the state of the world, e.g., the RFID sensing

process, and how the state of the world changes, e.g., the object locations change.

Each component is described using a local probability distribution. For instance, a

distribution for RFID sensing can be devised using logistic regression over factors

such as the distance and angle between the reader and an object. Then, the theory

of graphical modeling allows one to write the complete joint distribution using the

product of these local distributions.

Inference. The second step is to, at time t, compute the distribution of hidden

variables Xt given observations O1..t from the joint distribution for the data generation

process. In the RFID application, p(Xt|O1..t) captures the distribution of true object

locations given their observations by an RFID reader. The challenge is to perform

accurate inference at stream speed and for a large number of objects.

This problem is approached by adopting a sampling-based inference since exact

inference is often intractable. A common method, called particle filtering, maintains

21

a list of samples, or particles, of the state of all hidden variables, and weights the

samples based on all observations obtained thus far. Over time the weighted particles

become an approximation of the target conditional distribution.

One of the objectives in this work is to employ optimizations for the inference

algorithms when possible to achieve efficiency and scalability for high-volume data

or streaming data. Section 3.3 describes the new optimizations, namely particle fac-

torization, spatial indexing, and belief compression, for a particle filter tailored for

the RFID domain. One factor that affects the inference results of sampling-based

techniques is the number of samples, or particles, used. The user can choose a large

number of samples to guarantee that inference results are highly accurate. When

efficiency is highly desirable, a better approach is to explore the tradeoff between

speed and accuracy. Section 3.3.4 discusses this tradeoff in more detail.

3.2.2 Approximating Result Distributions

An issue raised after inference is how to generate output tuples with sufficient

statistics about uncertainty. For the RFID data, each tuple in the output stream

describes the estimated location of an object. Some applications may require only

a confidence region of the estimated location, e.g., with 90% confidence that the

object is in a certain range. Some other applications, however, may require further

processing of the location stream. To capture uncertainty of such processing, each

tuple in the location stream must carry the full distribution of the object location.

We call the distribution in each tuple the tuple-level distribution.

A direct way to generate a tuple-level distribution is to include in each tuple the

weighted samples (particles) used in inference. However, an obvious problem with

this approach is that every tuple now carries, e.g., tens to hundreds of samples. This

will increase the stream volume by one or two orders of magnitude. In addition, it

22

will slow down further query processing because those samples need to be processed

one at a time.

For both time and space efficiency, the claro system converts a sample-based

tuple level distribution into an approximate parametric distribution such as a Gaus-

sian distribution or more flexible distributions. claro does so by minimizing the KL

divergence (a standard measure of “distance” between distributions) KL(p̂‖q), where

p̂ is the sample-based tuple level distribution, and q is the target parametric distri-

bution. Assume p̂ to be a list of value-weight pairs, {(xi, wi)}. Consider a Gaussian

distribution N (µ, σ2) for q. Then,

KL(p̂‖q) =
∑

i

wi · log
wi

q(xi)

=
∑

i

wi · log(wi · σ ·
√

2π) +
∑

i

wi ·
(xi − µ)2

2σ2

Minimizing KL(p̂‖q) allows us to find the optimal Gaussian parameters to represent

p̂. That is, µ =
∑

i wi · xi and σ2 =
∑

i wi · (xi − µ)2. Hence, we can efficiently

convert a sample-based distribution to the closest Gaussian using two scans of the

list of samples. Similar formulas are available to convert sample-based distributions

into multivariate Gaussians.

While approximating a sample-based distribution using a Gaussian distribution

is efficient, there are scenarios where we have to consider more flexible, parametric

distributions to reduce the error of such approximation. In the RFID application, an

object may have recently moved from one location to another. The samples for this

object’s location can be temporarily spread over two locations, hence a mixture of

Gaussians may be a better fit than a single Gaussian. Approximating these samples

using a single Gaussian is obviously inaccurate. Then a mixture of two Gaussians may

be more appropriate, in which one component of the mixture corresponds to the possi-

bility that the object has not moved, while the other represents possible new locations

23

of the object. Selecting the number of mixture components, that is, the number of

“humps” in the mixture, can be done using standard model selection techniques such

as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [3].

Both of these techniques attempt to choose a number of components that explain the

data well while penalizing models that require many mixture components.

3.3 Modeling and Inferring RFID Data Streams

This section demonstrates the approach proposed above to the RFID tracking and

monitoring application in order to transform raw RFID data streams to tuple streams

containing object locations. 1

3.3.1 Background

In Section 1.1, we have introduced the RFID object tracking application. In this

section, we present the data capture and transformation problem for RFID data in a

more precise way, which makes the context for our technical discussion on modeling

and inference.

Given a stream of raw readings of RFID tags and a sequence of reader loca-

tions, both of which can be noisy, we wish to derive a clean, precise and queriable

event stream where RFID tag observations are augmented with the locations of the

corresponding objects. This high-level problem can be further described using the

underlying physical world, the data streams from a mobile reader, and the desired

output stream.

The Physical World. The physical world being monitored is a large storage

area comprising shelves S and a set of objects O. Both shelves and objects are

affixed with RFID tags. Since the shelves are at fixed locations, we assume that the

precise locations of their tags are known a priori. However, the object locations are

1The work described in this section was originally presented in [94].

24

unknown and must be determined as part of the cleaning and transformation process.

Typically, objects stay on the same shelf but can sometimes move from one shelf to

another. The facts of interest to the application are the (x, y, z) location of each

object Oi at each time instant t.

A mobile RFID reader provides the only means to observe the physical world.

Mobile readers come in two flavors—handheld readers that are used by humans to

scan and monitor tagged objects (e.g., on shelves), and readers that be mounted on

robots for automated monitoring and order processing (e.g., Kiva systems [55]). The

mobile reader periodically scans the storage area. In each round, the reader produces

readings that contain the tag ids of observed objects (usually a subset of O) and tag

ids of observed shelves (also a subset of S). In addition, the (x, y, z) location of the

reader itself at time t can be computed using a positioning technology such as indoor

GPS or ultrasound [90].

Data Streams from Mobile Readers. Various readings from a mobile reader

have the following characteristics:

No information about object locations. Since an RFID stream only consists of tag

ids and observation times, the object locations are not observed directly.

Noisy object readings. Object readings are highly noisy. First, if an object is on

the boundary of the sensing area, in the so-called minor detection range, the read rate

is far less than 100%. Even if the object is close to the reader, in the so-called major

detection range, objects can be missed due to environmental factors such as occluding

metal objects and contention among tags. Objects can also be read unexpectedly due

to reflection of radio waves by obstructing objects. Finally, mobile readers have

lower read rates than fixed readers because they tend to read objects from arbitrary

orientations, and certain orientations can result in poor read rates.

Uncertainty in reader locations. The exact reader location is usually uncertain.

For example, even when handheld readers are coupled with indoor positioning systems

25

such as ultrasound locationing, the reported locations are imprecise (e.g., accuracy

is about tens of centimeters for moving objects [90]). As another example, a robotic

reader can measure its location using dead reckoning, essentially by counting the

number of times that its wheels have revolved. But such location estimates may

contain significant noise because the robot can drift sideways due to inertia or forward

due to wheel slippage, as we observed in our lab deployment.

While the exact data format varies with the reader, in this work we assume that

readings are produced in two separate streams: the RFID reading stream has read-

ings (time, tag id of object Oi or tag id of shelf Sj) and the reader location

stream has reports (time, (x, y, z)). In practice, these streams may be slightly

out-of-sync in time. In our model, however, a time step (also called an epoch) is

fairly coarse-grained, e.g., a second. This allows us to generate synchronized streams

via simple low-level processing, such as assigning the same time to RFID readings

produced in one epoch and taking average of multiple location updates in an epoch

to produce a single update. Therefore, we consider only synchronized streams in the

rest of the chapter.

Output Event Stream. The goal of data transformation is to translate noisy,

primitive data streams from a mobile RFID reader into clean, precise event streams

with location information. In the output stream, each event reports the location of

an object as follows: (time, tag id of Oi, (x, y, z) of Oi). Events are output

for not only observed objects but also objects with missed readings. In other words,

the output stream not only augments the input streams with object locations but

also mitigates the effect of missed readings.

Finally note that as the reader moves, it may observe an object several times from

different locations. Combining such multiple readings provides valuable information

about the object location. To avoid fluctuating values in the output, our system

outputs an event for an object only at particular points: for example, within t seconds

26

Rt True reader location at time t. Vector containing (x, y, z) position and
orientation.

R̂t Noisy observation of reader location at time t.
Oti True location of object i at time t. Vector containing (x, y, z) position.

Ôti Binary variable indicating whether object i is observed at time t
Si True location of shelf tag i

Ŝti Binary variable indicating whether shelf tag i is observed at time t
R Matrix of all true reader locations [R1R2 . . . RT]

R̂ Matrix of all observed reader locations [R̂1R̂2 . . . R̂T]
Ot Matrix of all true object locations at time t
O Matrix of all true object locations at all time steps

Ôt Binary vector [Ôt,1 . . . Ôt,M] of all readings at time t

Ô Matrix of all object readings at all time steps

Table 3.1. Summary of notation used in RFID modeling and inference.

after an object was read, upon completion of a shelf scan, or upon completion of a

full area scan. The choice of when to output reports is left to the discretion of the

application.

3.3.2 A Probabilistic Data Generation Model

We present a probabilistic model that captures how raw data streams are gener-

ated by a mobile RFID reader from the true state of the world. Given the complexity

of the problem, our model incorporates the motion of the reader, the object dynamics,

and most importantly, the noisy sensing of objects and reader locations.

Formally, the world is modeled as a vector of random variables, which are

represented as nodes in Figure 3.1. There are two types of variables: evidence variables

that we observe in the data, and hidden variables that we wish to infer from the

information contained in the evidence. In our application, the hidden variables are

the true reader location Rt and the object locations Oti, which are represented by

the unshaded nodes in Figure 3.1. The evidence variables are the reported reader

location R̂t and the object readings Ôti, which are indicated by the shaded nodes in

Figure 3.1. For definitions of all the notation used in this section, see Table 6.1.

27

R
t R

t+1

O
t,1

O
t,2

S
1

O
t,1

O
t,2

O
t+1,1

O
t+1,2

O
t+1,1

O
t+1,2

t t+1R
t

^ ^
R

t+1

^

^ ^

^

S
t,1

^
S

t+1,1
^

shelf tags

(time independent)

reader motion and location sensing

sensor

model

Figure 3.1. Model of reader and object locations. The shaded region at top contains
the reader motion model and reader location sensing model. The lightly-shaded region
at bottom contains the RFID sensor model.

The goal of this section is to define a joint probability distribution p(R,O, R̂, Ô)

over both hidden and observed variables. Then, given observed values R̂ and Ô, this

joint model induces a conditional distribution p(R,O|R̂, Ô) over the true locations,

which can be used to predict the objects’ locations. We describe various components

of the proposed model in Section 3.3.2.1, how they can be combined into a single

joint distribution in Section 3.3.2.2, and how model parameters can be estimated in

Section 3.3.2.3.

3.3.2.1 Components of the Model

Our joint model over the entire world is divided into four components that sepa-

rately model different aspects of the domain. We explain each of the component in

detail below.

28

RFID sensor model: Given that the read rate of an RFID reader is less than

100%, it is natural to model the reader’s sensing region in a probabilistic manner: each

point in the sensing region has a non-zero probability that represents the likelihood

of an object being read at that location. To determine the probabilistic values for

different points, we can represent the sensing region as the likelihood of reading a tag

based on the factors including the distance and angle to the reader.

Formally, we introduce a flexible parametric model that describes how the read

rate of an RFID reader decays with distance and angle. Given the true location Rt

of the reader and Oti of the object i, the sensor model is a conditional distribution

p(Ôti|Oti, Rt) that models the probability of reading the tag of the object i. If we

denote the reader location by the vector [rx
t , r

y
t , r

z
t], and the reader angle in relation

to the reference coordinate frame by rφ
t , then we can compute the distance dti and

the angle θti between the reader and the tag as follows:

δ = Ot,i − [rx
t , r

y
t , r

z
t]

dti =
√

δT δ

cos θti =
δT [cos rφ

t , sin rφ
t]

dti

Empirically, we have found that the read rate decreases approximately quadrati-

cally with distance and with angle, so that the probability can be written as a function

like
∑2

c=0 ac(dti)
c+
∑2

c=1 bc(θti)
c, where the {ac} and {bc} are coefficients. But strictly

speaking, this quadratic function cannot be a probability distribution, because it is

not restricted to [0, 1]. To fix this, we compose the quadratic function with the sig-

moid function f(x) = 1/(1 + e−x), which has the effect of squashing a real number

into the interval (0, 1). This yields a logistic regression model, which is a standard

technique for probabilistic binary classification from the statistics literature. Putting

this together, the sensor model is captured by:

29

p(Ôti = 0|dti, θti) =
1

1 + exp{∑2
c=0 ac(dti)c +

∑2
c=1 bc(θti)c}

(3.1)

The coefficients ac and bc are real-valued model parameters that are learned from data

in a calibration step, discussed in Section 3.3.2.3 below. We expect that the distance

coefficients {ac} will be negative, so that the read rate decreases with distance. We

use the same sensor model for both the object tags and the shelf tags. The only

difference is that for the shelf tags, we write the distribution as p(Ŝi = 0|dti, θti), but

the same model and coefficients are used in both cases.

As our results in Section 3.3.4 show, our sensor model is a flexible parametric

form that can fit a variety of sensing regions, including conical and spherical regions

(examples of learned sensor models are shown in Figures 3.5 and 3.7(b)).

Reader motion model: This model describes how the reader moves. We assume

that the reader moves with a constant velocity that varies somewhat over time. In

other words, the new location is the old location plus a noisy version of the average

velocity. Formally, the new location Rt can be computed from the old location as

Rt = Rt−1 + ∆ + ε, where ∆ is the average velocity of the reader, and ε is the noise.

The motion noise ε is modeled by a Gaussian random vector with zero means and

diagonal covariance matrix Σm.

Reader location sensing model: This model describes the noise in our observa-

tions of the reader’s location. For example, an RFID-equipped robot may compute its

location by dead reckoning, that is, basically by counting how many times its wheels

have revolved. We assume that this measurement noise is Gaussian with mean µs

and covariance Σs. A more complex noise model is not necessary here, because errors

in the reader location can be corrected by information from the static shelf tags as

shown in our experiments.

Object location model: Objects in a warehouse are assumed to be stationary

but can occasionally change locations; the object location can change with a proba-

30

bility α at each time t, in which case the new location is distributed uniformly across

all shelves. This model can be written as a conditional distribution p(Oti|Ot−1,i).

It contains no distinguishing information about the object’s new location, but such

information is not needed: The object location model is used to temporarily create

samples that will be weighted based on the actual observations in the inference pro-

cess; the new object location will be eventually inferred from the readings from that

location.

3.3.2.2 Formal Definition

Now we examine how the component models can be combined to define a joint

model over the entire domain. By way of illustration, we first describe how the

data would be generated if the world behaved according to our model: Assume that the

initial reader location R1 is known. Sample initial object locations O1 from a uniform

distribution over the shelf. Then for each time step t, perform the following five steps.

(1) Generate the new reader location Rt from the previous location Rt−1 by sampling

from the reader motion model p(Rt|Rt−1). (2) Generate a noisy observation R̂t of

the reader location from the reader location sensing model p(R̂t|Rt). (3) Generate

new object locations Ot from the object location model p(Ot|Ot−1). (4) Decide

whether each object is observed using the sensor model. Each object i is observed

with probability p(Ôti|Rt, Oti). (5) Decide whether each shelf tag is observed using

the sensor model. Each shelf tag i is observed with probability p(Ŝti|Rt, St).

We next give the formal description of our model. Any distribution that can be

sampled in the manner above can be factorized into a product of the local probability

distributions.

31

p(R, R̂,O, Ô|S) = p(R1,O1)
∏

t

p(Rt|Rt−1)p(R̂t|Rt)

×
∏

i∈O

p(Oti|Ot−1,i)p(Ôti|Rt, Oti) ×
∏

i∈S

p(Ŝti|Rt, St). (3.2)

The factorization of Eq. (3.2) can be depicted as a directed acyclic graph called a

directed graphical model or a Bayesian network, as shown in Figure 3.1. Our model

is a particular case of a dynamic Bayesian network (DBN) [66], but with conditional

probability functions specially designed for our problem.

3.3.2.3 Parameter Estimation Using Learning

In this section, we describe the self-calibration step that aims to estimate the

model parameters from the observed data. The parameters of our model are the

coefficients {ac}∪{bc} of the sensor model, the average reader velocity ∆, the variance

Σm of the reader velocity, and the mean µs and variance Σs of the noise in reader

location sensing. The sensor model in particular depends not only on the type of the

reader used, but also on the specifics of the environment such as metal objects and

density of tags. For example, readers perform dramatically differently when there

are metal shelves, or when many tags are close together. One way to calibrate the

sensor model is to perform calibration in the lab [44, 32, 50], in which the read rate

is measured when a reader and an RFID tag are placed at various known distances

and angles. Such manual lab calibration is not only tedious but also inaccurate in

real deployments due to the change of environmental factors.

An important benefit of having a flexible parametric model is that we can auto-

matically learn the model parameters using a small training data set collected from

the same environment in which the system is to be fielded. The training data includes

the observed reader locations and readings of a small set of tags, some of which are

shelf tags with known locations. We perform parameter estimation using Expectation-

Maximization (EM), a standard method for parameter estimation in the presence of

32

hidden variables. In Section 3.3.4, we show that only a small number of shelf tags

(e.g., less than 20) are needed to learn accurate sensor models.

3.3.3 Efficient, Scalable Inference over Streams

As noisy, raw data streams emanate from a mobile RFID reader, the task of

translating them into a clean, precise event stream with location information is treated

as an inference process in our work. Inference is essentially to estimate the true

locations of objects for each time t even if there are no readings returned for some

of the objects. Formally speaking, from the joint distribution p(R,O, R̂, Ô) defined

previously over both the physical world and noisy readings, inference is to compute

the conditional distribution p(R,O|R̂, Ô). This conditional distribution can be used

to predict true object locations and optionally the true reader location.

Exact inference for our model is very challenging, because the true conditional

distribution has a complex shape. Instead, we sample from the distribution approx-

imately using a generic machine learning algorithm called particle filtering. How

to apply particle filtering to our particular problem is described in Section 3.3.3.1.

However, a naive implementation of particle filtering does not scale to the very large

number of objects that would be expected in a real warehouse. We then propose

optimizations to improve accuracy and performance as described in Section 3.3.3.2.

3.3.3.1 Particle Filtering

In this section, we describe the main intuitions behind sampling-based inference for

our probblem. We also give a formal description of how the generic particle filtering

algorithm [31] is applied to our particular probability distribution, which provides a

technical context for the later extensions.

The basic idea is to maintain a weighted list of samples, each of which contains

a hypothesis about the true location of each object as well as a hypothesis about

the true reader location. Each sample has an associated weight, representing the

33

O

reader position

sensing

region

O

reader movement

reader

position 1

reader

position 2

(a) five initial samples

of object O's location

(b) more likely samples

of object O's location

(c) a likely sample of the reader

position given a shelf tag S

x

x

x

x

x Ox

x

x

x

x

reader position?

S

x
xx

Figure 3.2. Weighting samples of object and reader locations.

likelihood of the sample being true. The weight of a sample is assigned based on the

following intuitions.

As Figure 3.2(a) shows, if a reader detects the tag of object O once, the tag must

be in the vicinity of the reader. We can generate multiple samples about the tag

location in the reader’s sensing region (or a slightly larger area) but cannot further

distinguish these samples. However, if the reader detects the tag again from a nearby

position, then the samples that reside in the intersection of the sensing regions at the

two reader positions will be assigned higher weights (Figure 3.2(b)). Regarding the

reader location, samples are weighted based on the likelihood of seeing all observed

objects from that location. Of particular importance are the shelf tags with known

locations. As Figure 3.2(c) shows, an observed shelf tag S can be used to distinguish

good samples of the reader location, from which the reader can detect the shelf tag,

from those bad samples of the reader location, from which the reader cannot.

At the next time step, these samples are updated to reflect expected changes of

reader and object locations. Their weights are adjusted based on the new observations

from that step. At any point, we can use this weighted list of samples as a distribution

over the hidden variables, i.e., the true object locations and reader location, given

the observations—exactly the result that inference aims to compute.

Formally, we denote a set of samples (termed particles in the literature) at time t

using x1
t , · · · , x

(J)
t . We denote the j-th particle by a vector x

(j)
t = (R

(j)
t , O

(j)
t,1 , . . . , O

(j)
t,n),

where R
(j)
t is a hypothesis about the reader location and O

(j)
t,i is a hypothesis about

34

an object location. Let the weight of x
(j)
t be w

(j)
t . The particle filtering algorithm in

our application is:

Step 1 Initialization. Generate a set of initial particles {x(j)
1 |j = 1 . . . J} from

the prior distribution p(R1,O1).

Step 2 Update. Let the vector yt contain all of the observations at time t. Then

for each time step t:

• Sampling. For each particle x
(j)
t−1, generate a new particle x

(j)
t from a proposal

distribution q(xt|x(j)
t−1, yt). The proposal distribution is an arbitrary distribution

chosen to be easy to sample from. In this work, we use the reader motion model

and object location model for sampling.

• Weighting. Compute a new particle weight

w
(j)
t = Cw

(j)
t−1 ·

p(x
(j)
t |x(j)

t−1, yt)

q(x
(j)
t |x(j)

t−1, yt)
, (3.3)

where C is a constant with respect to j, chosen so that
∑

j w
(j)
t = 1. This

weight adjusts for the fact that the particles were sampled from the proposal

distribution, rather than the true distribution of the model.

• Re-sample from the particles to reproduce the ones of high weight. Each of

the new particles is selected by sampling from the set of old particles with

replacement. A particle is selected with probability equal to its weight.

Step 3 Inference output. At any time step, the posterior distribution over the

hidden variables can be estimated by a weighted average of the particles. More

formally,

p(Oti | R̂1...t, Ô1...t) ≈
J
∑

j=1

w
(j)
t 1

{Oti=O
(j)
ti }

, (3.4)

where 1{a=b} is an indicator function that is 1 if and only if a = b. A similar formula

is used for the reader location. From these distributions, it is easy to compute any

desired statistics, such as the mean, the variance, or a confidence region.

35

Sensible initialization of the particles is also important, because otherwise many

samples will begin far away from the object’s actual location. In this work, we create

new particles for an object when it is seen for the first time, or at a location far

away from the previous location that it was observed. At the current location, we

initialize the particle locations using a uniform distribution over the read range of

the reader location. The width of the region for initialization is chosen to be an

over-estimate of the true range of the reader. We call this initialization sensor model

based initialization.

A subtlety arises when an object is detected in a new location not far from the

previous location. This can result from object movement within a small area (e.g.,

shuffling on a shelf) or erroneous readings due to the reflection of radio waves by a

metal object. If the distance between the old and new locations is very small, we just

use the existing particles and weight them as before. If the distance is significant, we

keep half of the old particles and “move” the other half by initializing them at the

new location. This way, the particles will spread out, but over time weighting and

resampling will favor the particles close to the object’s true location.

3.3.3.2 Optimizations for Accuracy and Performance

In this section, we describe three novel ways to augment the basic particle filtering

algorithm to improve both accuracy and performance, including particle factorization,

spatial indexing, and belief compression. The main ideas are:

• We first propose an advanced technique, particle factorization, to reduce the num-

ber of samples needed for accurate inference for a large number of objects.

• We then augment the factorized particle filter with spatial indexing structures to

limit the set of objects that are actually processed at each time step.

36

Object 1

B A

Object 2

B

A

Reader Particle

Reader location
Weight

Object Particle

Tag ID
Object location
Reader location index
Weight

R

1

2

J

Particle
Num

(a) Motivation

Index of Object
Particles

O1 O2 On

O11

O12

O1J

O21

O22

O2J

On1

On2

OnJ

Reader
Particles

(c) Index of factored particles(b) Factored particles

Figure 3.3. Motivation and data structures for factored particles.

• At some point in inference, the samples for an object may stabilize in a small region.

In this case, we compress the sample representation of the object location into a

parametric distribution to save both space and time needed for inference.

A. Particle Factorization

As mentioned above, every particle includes a sample of the locations of all ob-

jects. To get good accuracy, intuitively we expect to use a large number of particles

when there are many objects. This is because even if a particle contains good lo-

cation estimates for some objects, it may contain bad locations for other objects,

simply through random chance in the sampling procedure. Figure 3.3(a) illustrates

an example of this: Particle A (the dark stars) contains a good sampled location for

Object 1 but not for Object 2. On the other hand, particle B (the light stars) contains

a good sampled location for Object 2 but not Object 1. As the number of objects

grows, it becomes more likely that most particles will happen to have sampled a bad

location for some object. One way to overcome this problem is simply to use more

particles, but this becomes prohibitively expensive, e.g., exponential, when there are

large numbers of objects.

We propose an advanced technique, called particle factorization, that enables the

particle filter to scale dramatically in the number of objects. The idea is to break a

37

large particle over all the objects into smaller particles over individual objects. This

allows us to combine good particles from different objects and, essentially, to represent

an exponentially large number of unfactored particles in the amount of space linear

in the number of objects. The challenge is to ensure that the operations required by

the particle filter can still be performed in this factored representation.

First we describe the data structures that we use to maintain these factored par-

ticles. As shown in Figure 3.3(b), we maintain a list of reader particles, each of which

contains a hypothesis about the reader location and an associated weight. Each ob-

ject particle contains a hypothesis of the object location and the reader location, a

weight, and the object’s tag id. We also maintain an index of object particles that

maps from an object’s tag id to the list of object particles for that tag id; further, each

object particle refers to the corresponding reader particle via the contained pointer

(see Figure 3.3(c)).

In addition to maintaining factorized particles, we also maintain factorized weights.

Each reader particle R
(j)
t has an associated weight w

(j)
rt . The reader particle also has

a list of associated object particles O
(j,1)
ti . . . O

(j,K)
ti for each object i. Each of these ob-

ject particles has a weight w
(jk)
ti . The semantics of the factored weights is: If we were

to expand the factored representation into the exponentially-long list of unfactored

particles, then the weight of the unfactored particle is the factored reader weight

times all of the factored object weights.

Now we explain how these data structures can be used to efficiently implement

the factorized particle filter. First, the sampling step can be performed entirely on

the factored representation, which includes sampling the new reader location and

sampling the object locations. To sample from the proposal distribution, for each

reader particle, we sample a new reader location from the reader motion model,

and then for each associated object particle, we sample its location from the object

location model. Second, the weights of the new particles can also be computed

38

in a factored manner. The important point is that in the factored representation,

the weight of a particle for object i does not depend on weights of particles for any

other objects. To compute the new weights, the new incremental weight for each

reader particle w
(j)
rt can be computed as p(R̂t|R(j)

t)
∏

i∈S p(Ŝti|R(j)
t , St). The new

incremental weight for an object particle O
(j,k)
ti is p(Ôti|R(j)

t , O
(j)
ti). It can be shown

that this weighting step is equivalent to the standard particle filtering weight step

applied to the full set of unfactored particles. Mathematically, this is because our

proposal distribution and our model factorize in the same way as our data structures

do. To see this, consider the weight update in Formula (3.3) for unfactored particles:

w
(j)
t = Cw

(j)
t−1 ·

p(R
(j)
t ,O

(j)
t |R(j)

t−1,O
(j)
t−1, R̂t−1, Ôt−1)

q(R
(j)
t ,O

(j)
t |R(j)

t−1,O
(j)
t−1, R̂t−1, Ôt−1)

= Cw
(j)
t−1p(R̂t|R(j)

t)
∏

i∈S

p(Ŝti|R(j)
t , St)

N
∏

i=1

p(Ôti|R(j)
t , O

(j)
ti)

= Cw
(j)
t−1 · w

(j)
rt

N
∏

i=1

w
(j)
ti (3.5)

where in the second line, we substitute definitions; and in the last line we simply define

w
(j)
rt and w

(j)
ti to be the corresponding terms from the previous equation. This equation

shows that the weights can be computed separately for each object, with the same

result as if the weight had been computed for the exponential number of unfactored

particles that is implicit in our representation. Finally, performing resampling in

this representation is more complicated. First we describe resampling for the object

particles. Recall that each reader particle is associated with a list of object particles.

For each of these lists, we perform resampling separately, sampling an object particle

with probability proportional to its weight. When we resample reader locations,

on the other hand, we want to favor reader particles that are associated with good

object particles. To accomplish this, we consider not only the weight of the reader

particle, but also the aggregate weight of its associated object particles. Formally,

we resample a reader particle R
(j)
t with probability w

(j)
rt

∏N
i=1

∑K(j)
k=1 w

(j,k)
ti . When we

39

resample a reader location particle, we copy the locations of all the associated object

particles. Although this is a computationally expensive operation, resampling the

reader location occurs infrequently, so this cost is amortized.

Our factorization scheme is related to that of [68], but the main difference is

that [68] avoids the issue of factorized weights by resampling at every time step. In

contrast, by maintaining factorized weights, our method avoids the cost of resampling

at most time steps.

B. Spatial Indexing

Even with factored particles, the inference algorithm presented so far must process

all the objects in the world at every time step. This is because the weighting step

described in Section 3.3.3.1 is performed for all objects, whether their tags were read

or not. In this section, we introduce spatial indexing as a further approximation that

dramatically reduces the processing cost. It is important to note that spatial indexing

is possible only after the particles have already been factorized.

The main insight is that even if the number of objects is large, only a much

smaller number of them are near the reader at any given time. If we can restrict the

processing to only those objects near the reader, a significant amount of work can be

saved. This intuition is more precisely described by the diagram in Figure 3.4(a),

which classifies objects based on their distance from the reader location at time t (x

axis) and the result of RFID sensing at t (y axis). There are four cases:

Case 1: If an object is read at time t, no matter how far it is from the reader, it

should be processed in inference.

Case 2: If an object is not read at t but was read before near the current reader

location, the object needs to be processed so that the particle filter can downweight

the particles of the object that are very close to the current reader location.

40

(b) Index from sensing

regions to objects

bounding box for

reader location (x,y,z)

objects with particles

in the bounding box

(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3)

current reader location (x,y,z)

Spatial Index

(c) Spatial index over sensing regions

Case 1 Case 1

Case 4

Object Location

objects processed:

objects ignored:

(a) Processed and ignored objects at time t given reader location (x,y,z)

RFID

Sensing

read at t

not read

at t

near (x,y,z) far from (x,y,z)

Case 3

Case 2

Case 2: not read at t but read before near (x,y,z)

Case 1: read at t

Case 3: near (x,y,z) but never read

Case 4: far from (x,y,z) and not read at t

Figure 3.4. Intuitions and data structures for spatial indexing.

Case 3: If an object is near the reader but has never been detected from its current

location, it is simply invisible to the inference procedure since RFID sensing is the

only means of observing the world.

Case 4: Last, the object is far from the reader and indeed not detected at t.

According to our sensor model, such objects have a very small (but nonzero) read

probability, but rounding this probability to zero appears to be a good approximation.

Therefore, we design a spatial index to distinguish Case 2 from Case 4 so that we

can save work for objects belonging to Case 4. For each reported reader location, we

construct a bounding box of the sensing region. Then our index has two components.

The first component, shown in Figure 3.4(b), maps from bounding boxes to the set

of objects that have at least one particle within the bounding box. The second

component, shown in Figure 3.4(c), is a standard spatial index (a simplified R*-tree

[8]) over the bounding boxes.

At each time during inference, we construct a bounding box of the current sensing

region and probe the spatial index to retrieve all potentially overlapping bounding

41

boxes inserted in the past. For each of those boxes, we retrieve all contained objects.

This gives us the full set of objects belonging to Case 2. We run particle filtering as

usual, but restrict sampling and weighting only to the objects in Cases 1 and 2.

C. Belief Compression

We next present a compression technique that can be embedded in our factor-

ized particle filter to further reduce space consumption and improve inference speed.

Recall that a weighted set of particles for each object defines a distribution over the

object’s location. The main advantage of the particle representation is the ability

to represent arbitrary distributions. For example, when an object is first detected,

its location could be anywhere within a large and oddly-shaped area. But as more

readings arrive, often the location particles stabilize to a small region. If this occurs,

the object location could be represented much more compactly by a parametric distri-

bution. For example, the particle-based representation may require 1000 particles,

but a three-dimension Gaussian requires only 9 real numbers to store its parame-

ters. Therefore, compression to the parametric distribution saves considerable space.

Compression can also save time as it often allows inference to use fewer particles on

the compressed representation.

Per-object based compression. We first describe how an object’s particles

can be compressed. Suppose that a weighted set of particles over the location of

object i defines a distribution p̂(Ot,i) as in Eq. (3.4), and we wish to compress this

into a Gaussian q(Ot,i) with mean µ and covariance matrix Σ. This can be done by

minimizing the KL divergence KL(p̂‖q), which is a standard measure of “distance”

between distributions. When q is Gaussian, the KL amounts essentially to a weighted

average of the squared distance between µ and the particles comprising p̂. It can be

shown that the optimal choice of q uses the sample mean and empirical covariance

matrix, that is, µ =
∑

j w
(j)
t,i O

(j)
t,i and Σ =

∑

j w
(j)
t,i (O

(j)
t,i − µ)(O

(j)
t,i − µ)T . The KL

42

divergence at these parameters measures how much is lost by compression, in the

sense of the expected squared error (e.g., in squared feet) of the resulting Gaussian.

Several methods are possible for choosing individual objects to compress. One

possibility is to compress an object whenever its tag has not been read for several

time steps. This is applicable if an object leaving the read range means that it will not

be observed for a long time; we implement this decision in the experiments below. An

alternative method is to rank the uncompressed objects by the KL of the compressed

representation, and compress the objects that would have the least compression error.

This method can be further augmented with a threshold. That is, we only compress

the particle representation if the KL is below the threshold.

Decompression (sampling) and re-compression. Later on, when a com-

pressed object has its tag read again, we need to perform the particle filtering steps

on the compressed representation. To do this, we sample a small number of parti-

cles from the Gaussian to decompress the representation. Empirically, we find that

many fewer particles are required for accurate inference after decompression than for

the original particle filter, because the compressed representation tends to be well-

behaved. When the object leaves scope, if its particles are still well-represented by a

Gaussian, it can be re-compressed.

A final note is that if the beliefs for all objects are compressed, then the proposed

technique is an instance of the Boyen-Koller algorithm [11]. However, by employing

compression only for selected objects, this technique can combine the benefits of the

Gaussian and particle-based representations.

3.3.4 Experimental Results

We have implemented the proposed inference techniques in a prototype system

in Java. In this section, we present a detailed analysis of this system using both

real traces from mobile RFID readers and large-scale synthetic data in a simulated

43

warehouse scenario. Overall, the experimental results show that our system can (1)

offer clean event streams with accurate location information (e.g., within a range of a

few inches) and is robust to noise; (2) offer significant error reduction (e.g., an average

of 54%) over SMURF [50], a state-of-the-art RFID data cleaning technique; (3) scale

to tens of thousands of objects at a constant rate of over 1500 readings per second,

while naive particle filtering cannot scale beyond 20 objects.

Query and Metrics. In these experiments, we ran the location update query

described in Section 3.3.1 over the event stream generated by our system. This

query examines the most recent event of each object, and if the location in this event

differs from the previous event, outputs the tag id and new object location. To

avoid fluctuating values in output, our system produced a location event 60 seconds

after an object came into the scope of the reader during the current scan (although

inference was running in real time). The accuracy of query output was measured using

inference error, which is the average distance between reported object locations and

true object locations. The performance metric is the average time that our system

takes to process each RFID reading, indicating our system throughput.

Simulator. To obtain early insight into factors on performance and perform

scalability tests, we developed a simulator for a warehouse scenario that produces

synthetic RFID streams with various controlled properties. The simulated warehouse

consists of consecutive shelves aligned on the y axis, with objects evenly spaced on

the shelves. Both shelves and objects are affixed with RFID tags. For simplicity, we

assume the same height for all tags and hence ignore the z axis. An RFID reader is

mounted on a robot that moves down the y axis facing the shelves. In every epoch,

it travels about 0.1 foot (which can be varied), stops, senses its current location and

reads objects on the current shelf with added noise, and sends both its sensed location

and the RFID readings to our system.

44

(a) True sensor model used
by the simulator

(b) Learned sensor model
using 20 shelf tags

(c) Learned sensor model
using 4 shelf tags

Figure 3.5. Sensor model calibration.

RFID readings were generated using a cone-shaped sensor model as shown in

Figure 3.5(a) (where white is for high read rates). The sensor model has a 30 degree

open angle for the major detection range that has a uniform read rate, RRmajor,

and an additional 15 degree angle for the minor detection range whose read rate

degrades from RRmajor down to 0. The parameters for data generation include: (1)

RRmajor, by default 100%, (2) read frequency RF , by default once every second, (3)

the Gaussian model for reader motion, by default µm=0, σm=.01 for both x and y

dimensions, and (4) the Gaussian model for reader location sensing, by default µs=0,

σm=.01 for both x and y. Each trace contains readings from a single pass of scan of

all the tags unless stated otherwise.

A. Model Calibration and Initial System Evaluation

In the section, we evaluate our system for its ability to calibrate the probabilistic

model based on the characteristics of an RFID deployment, and test its sensitivity to

some main factors. As a baseline, we also ran a method called uniform that uniformly

randomly samples an object’s location over the overlapping area of the sensor model

and the shelf. This baseline is used as a bound on the worst-case inference error. We

used simulated data in this set of experiments.

45

Learning RFID sensor model. As noted in Section 3.3.2.1, the most challeng-

ing part of modeling is the sensor model because it varies with the type of reader,

environmental noise, etc. To evaluate our probabilistic sensor model, we used a small

trace containing readings of 20 tags to learn the model using EM. To investigate the

amount of information needed for learning, we varied the number of tags with known

locations, assumed to be shelf tags, from 0 to 20. When fewer than 20 tags were used

as shelf tags, the rest of the tags were treated as object tags whose true locations are

unknown. Figure 3.5(a) shows the true sensor model used in simulation and Figure

3.5(b) shows the sensor models learned with 20 shelf tags. As observed, the sensor

model learned from 20 shelf tags is very close to the true model. Such approximation

degrades only gradually as we reduce the number of shelf tags. We also observe that

even with 4 shelf tags, we can learn a sensor model quite close to the true model, as

showed in Figure 3.5(c). When no shelf tags are used, the learned model deviates

from all others because EM in this case is likely to be stuck in some local maxima.

After training, we used the learned sensor models to perform inference over a test

trace with 10 object tags and 4 shelf tags, using 1000 particles per object. Most

learned models (except the one using 0 shelf tag) result in small inference errors

that are comparable to the results using the true model, and much better than the

baseline, as shown in Figure 3.6(a). This shows that our system can indeed learn

accurate sensor models from small traces with a few tags of known locations.

Handling RFID sensing noise. We then investigate the sensitivity of our

system to RFID sensing noise, for which we varied the read rate in the reader’s major

detection range, RRmajor, from 100% to 50%. Figure 3.6(b) shows the results using

a trace with 16 object tags and 4 shelf tags. Our system again performs much better

than the baseline, and degrades its accuracy only slowly as RRmajor is reduced. This

is because inference can intelligently exploit the facts from the past to smooth noisy

46

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

In
fe

re
n
ce

 E
rr

o
r

in
 X

Y
 P

la
n
e

(f
t)

Number of Shelf Tags Used In Learning

Uniform
Learned Sensor Model

True Sensor Model

(a) Using sensor models learned with
varying numbers of shelf tags

 0

 0.5

 1

 1.5

 2

50 60 70 80 90 100

In
fe

re
n
ce

 E
rr

o
r

in
 X

Y
 P

la
n
e

(f
t)

Read Rate (%)

Uniform
Inference

(b) Varying read rate in the reader’s
major detection range

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fe

re
n
ce

 E
rr

o
r

in
 X

Y
 P

la
n
e

(f
t)

Systematic Error Along Y

uniform
motion model Off

model On - learned
model On - true

(c) Varying systematic error along Y
(µy

s) in reader location sensing (σy
s=.2)

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

In
fe

re
n
ce

 E
rr

o
r

in
 X

Y
 P

la
n
e

(f
t)

Distance of Movements (ft)

Uniform
Inference

(d) Moving objects: varying moving
distances

Figure 3.6. Inference evaluation for synthetic RFID data.

object readings and derive object locations, hence not highly sensitive to the changes

of the read rate.

Handling reader location noise. We next evaluate our system’s ability to

handle reader location noise. We generated traces by varying the parameters of the

reader location sensing model: the systematic error along the y axis µy
s was varied

from 0 to 1, indicating a constant distance between the measured location and the

true location; the random noise σy
s was set to 0.01 or 0.2, denoting little or high

variation. Given the amount of noise present, we used 5000 particles per object to

stabilize the performance. Figure 3.6(c) shows the results of σy
s = 0.2 (the figure for

σy
s = 0.01 is similar, hence omitted).

47

Our system’s ability to correct reader location noise is demonstrated by the dif-

ference between the curve (“motion model On-true”), which is our system using the

true location sensing parameters, and the curve (“motion model Off”), which is a

simplified method that uses the reported location as true location in inference. As µy
s

increases, our system is very effective in correcting the systematic error, mostly via

the evidence of shelf tags. In contrast, the lack of motion model leads to degradation

almost linearly in µy
s . Finally, the curve (“motion model On-learned”) shows that we

can very well approximate the best performance by learning the parameters of the

location sensing model from a small training trace.

Handling moving objects. Next, we evaluate how the inference accuracy is

affected by moving objects. The simulated data was generated by choosing a case of

objects after some time interval and moving it to a new location. The time interval

used here was 1600 seconds (our system is insensitive to this value). We varied the

distance that the objects traveled from 0.5 to 20 ft. As shown in Figure 3.6(d), the

inference error is sensitive to the middle range of distance, e.g., from 2 to 6 ft, where

the new location is relatively close to the old location. In this case, it is hard to tell

if an object has moved or not due to the reasons explained in Section 3.3.3.1. Since

our method temporarily spreads the particles between the new and old locations,

its accuracy is affected before the object is read enough times in the new location.

When the distance of movement is large, our method discards all the old particles and

recreates them from the new location, resulting in low inference error and insensitivity

to further increased distance.

B. Evaluation Using a Real RFID Lab Deployment

To evaluate our system in real-world settings, we generated a lab RFID deployment

as shown in Figure 3.3.4. We erected two parallel shelves (assumed to be along the y

axis), containing 80 EPC Gen2 Class 1 tags spaced four inches apart. Each shelf has

five evenly-spaced reference tags whose true positions are known. We constructed a

48

(a) A robot-mounted reader scan-
ning two rows of tags

(b) Learned sensor model
for our lab RFID reader

Timeout Our System SMURF (improved) Uniform Sampling
(ms) X(ft) Y(ft) XY(ft) X(ft) Y(ft) XY(ft) X(ft) Y(ft) XY(ft)

250 (SS) 0.16 0.36 0.39 0.33 0.61 0.69 0.33 1.32 1.36
500 (SS) 0.18 0.47 0.51 0.33 0.60 0.68 0.33 1.57 1.60
750 (SS) 0.20 0.50 0.54 0.33 0.68 0.76 0.33 1.63 1.66

250 (LS) 0.21 0.37 0.43 1.30 0.61 1.44 1.33 1.32 1.87
500 (LS) 0.20 0.48 0.52 1.31 0.59 1.44 1.33 1.57 2.06
750 (LS) 0.21 0.49 0.53 1.31 0.68 1.48 1.32 1.63 2.09

(c) Inference error of three algorithms. SS denotes a small imagined shelf (0.66x4ft) and LS a large
imagined shelf (2.6x4ft).

Figure 3.7. Evaluation of our inference technique, an improved version of SMURF,
and uniform sampling using a real RFID lab deployment.

mobile reader by mounting a bi-static antenna connected to a ThingMagic Mercury5

RFID reader on an iRobot Create robot. The robot was programmed to scan one

row of tags and turn around to scan the other, at a speed of .1 foot/sec with readings

performed once per second. The robot computed its location using dead reckoning,

with error in reported location up to 1 foot away from its true location. To emulate

various read rates, we varied the reader’s timeout setting—the amount of time a tag is

given to respond after the initial signal is sent by the reader—from .25 to .75 second.

We used the shelf tags to create a training trace to learn the sensor model for our

antenna. The result in Figure 3.7(b) shows that our antenna’s read area is spherical

with a wide minor range, whose read rate is inversely related to an object’s angle from

49

the center of the antenna; this agrees well with manually calibrated sensor models for

similar Thingmagic readers [62].

We next compare our system to SMURF [50] using our lab traces. SMURF is

an adaptive smoothing technique that for each epoch, decides if a tag has moved

away from the sensing area when there is a missed reading. Given that SMURF

cannot directly translate RFID readings into location events, we augmented it with

additional sampling: In each epoch, if SMURF decides that the tag is still in range

using smoothing, a location of the tag is obtained by randomly sampling over the

intersection of the read range and the shelf. At some point, if SMURF decides that

the tag is no longer in scope, all sampled locations generated in those consecutive

epochs are averaged to produce a location estimate. Since SMURF cannot learn the

sensor model from data, we further offer the read range based on our learned model

to enable sampling of the tag location.

Figure 3.7(c) shows results of our system, the improved SMURF, and uniform.

The first three rows of results are from runs using a small imagined shelf, and the

next three rows using a large imagined shelf. Since the read range can be large, such

shelf information helps restrict the area for location sampling in all three algorithms.

As can be seen, the accuracy of our system is within 0.39 to 0.54 foot. The error of

SMURF is 1.3 to 1.7 times of our system when the shelf area is small and over 2.7

times when the shelf area is large. Overall, our system offers an average of 49% error

reduction over SMURF.

These differences are due to two reasons: First, SMURF cannot correct the error in

reported reader location present in our traces. While smoothing is effective, sampling

of object location is always performed from the reported reader location. This ex-

plains the difference between our system and SMURF along y where the robot drifted

significantly away from the reported location. Second, object location sampling we

added to SMURF is rather primitive compared to the sampling-based inference used

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 100 1000 10000

In
fe

re
n
ce

 E
rr

o
r

in
 X

Y
 P

la
n
e

(f
t)

Number of Objects

Unfactorized
Factorized

Factorized+Index
Factorized+Index+Compression

(a) Scalability test - inference error

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

T
im

e
p
er

 E
v
en

t
(m

s)

Number of Objects

Unfactorized
Factorized

Factorized+Index
Factorized+Index+Compression

(b) Scalability test - CPU time

Figure 3.8. Scalability results for synthetic RFID data.

in our system. The difference in their effects is shown by the error along x: the error

of SMURF is strictly half of the shelf size in x, as inaccurate as uniform sampling.

C. Scalability Evaluation Using Simulation

We next show how our system improves over basic particle filtering in scalability

while maintaining high accuracy using the three advanced techniques presented in

Section 3.3.3. In scalability tests, we assume that the application has an accuracy

requirement of within .5 foot from the true location. We created synthetic streams

from two rounds of scan of a large warehouse. All measurements were obtained from

a 3Ghz dual-core Xeon processor with 6GB memory for use in Java.

Varying number of objects. We increased the number of objects from 10 to

20,000 and ran all three advanced techniques as well as the basic filter. For each

technique, we selected the number of particles so as to meet the .5 foot accuracy

requirement. For our factorized filter, we used 1000 particles for each object. The

basic filter, however, uses unfactorized particles and needs a very large number of

them, as explained in Section 3.3.3.2. We used up to 100,000 particles for the basic

filter for which the experiment managed to finish.

Figures 3.8(a) and 3.8(b) report on the inference error and average time taken

to process each reading (on a log scale). As can be seen, given 20 objects, the

51

�� � �� � �� � �� � �� � �� � �� � �
� � � � � � � � � � � �	
� ��
��� ��
���� �
��� ��

� � � � � � ! " � # � $ % &
� � � ' (� %) $ * � &� � � ' (� %) $ * � &� � � � ' (� %) $ * � &

(a) Inference error

� � ��� �� � �
� � � � � � � � � � � �+� ,�-�� .�
�� ,/�

� � � � � � ! " � # � $ % &
� � � � ' (� %) $ * � &� � � ' (� %) $ * � &� � � ' (� %) $ * � &

(b) CPU Time

Figure 3.9. Result on the accuracy and performance tradeoff of particle filtering.

basic filter takes about 10 second to process each reading, by using 100,000 particles

yet still violating the accuracy requirement. The factorized filter, by using 1000

particles per object, well meets the accuracy requirement and improves processing

cost significantly. However, this cost still degrades fast as the object count increases.

Adding a spatial index to the factorized filter reduces the objects processed at each

time to a small number, yielding a much reduced cost at a constant 10 msec per

reading. Finally, belief compression is applied whenever an object leaves the scope

of the reader. Then inference over the compressed representation in a subsequent

round of scan in the warehouse can use fewer particles (in this case only 10) after

decompression, leading a drastically reduced cost of 0.1 msec per reading. Neither

spatial indexing nor belief compression causes obvious degradation in accuracy.

D. Exploring Accuracy and Performance Tradeoff

In the above experiments, we used a large number of samples, i.e., 1000 particles

(before any belief compression) for inference, so that the accuracy is high. In gen-

eral, sampling-based inference presents a fundamental tradeoff between accuracy and

performance: more samples yield higher accuracy but also higher computation cost.

Figures 3.9(a) and 3.9(b) show the results of performing inference for a noisy trace of

RFID readings, with varying number of particles for inference. In particular, these

figures confirm that the inference error reduces but the computation cost increases as

52

we increase the number of particles used for each object. Hence, given the application

requirements, the system should choose the number of particles that yields the best

performance. We now discuss one way to achieve this using the information of the

shelf tags with known locations. The idea is to treat the shelf tags as other object

tags, and also run inference for these shelf tags to estimate their locations. Then since

we know the true locations of these tags, we can determine the inference accuracy,

which in turns helps decide if the number of particles used is sufficient for the required

accuracy level. That is, if the accuracy is low, we can increase the number of particles

and run inference again until we reach a desired accuracy level. On the other hand,

we can reduce the number of particles to reduce inference time. This idea can be

implemented in real time, just as the time the shelf tags are read, which results in

the dynamical exploration of speed and accuracy. The detailed implementation and

evaluation is however left to future work.

3.4 Alternative Approaches to Data Capture and Transfor-

mation

This section examines some alternative techniques that can be applied to clean

and transform raw input data to high-level information in other sensing applications.

A. Samples. In many applications, the observed raw data is comprised of sam-

ples of the true data, e.g., measurements of temperature, light. Here, the data of

interest is revealed through the samples; however, the user may be also interested in

the underlying distribution that generates the samples, to quantify the uncertainty of

subsequent processing. Given these samples, a model of choice, e.g., Gaussian mix-

ture models (GMMs), can be generated using existing tools for density estimation

or function fitting. If an application models data using other distributions, e.g., the

Gamma distribution, it is easy to generate samples from this distribution and then

53

fit a GMM as described above. More details about model fitting using GMMs are

deferred to Chapter 4.

B. Correlated time series. Time series data is prevalent in many applications

including our weather monitoring application. Values in a time series are temporally

correlated so cannot be viewed as samples to fit e.g., GMMs. The following two

techniques can be applied in this case.

Fast Fourier transform. The fast Fourier transform (FFT) translates a correlated

data sequence in the time domain to an uncorrelated sequence in the frequency do-

main. The latter is essentially a discrete distribution that can be used to fit a GMM.

Although FFT has O(n log n) complexity, where n is the sequence length, doing so for

short subsequences of data does not incur high overhead. In fact, the CASA system

has already applied FFT to the streams arriving at 175 Mb/sec.

Autoregressive moving average model. Another method is to use the autoregressive

moving average (ARMA) model, which restricts data correlation to the past n time

steps. Given such models, we can perform sampling at the frequency of once every

n+1 values and feed the samples to fit our models of choice, e.g., GMMs.

We now describe this technique in more detail in the context of the tornado

detection application. Here the raw data stream contains pulse data from each radar

and the transformed stream contains a tuple for each voxel that has moment data

including reflectivity, velocity, etc. for that voxel.

Our idea of modeling the data generation process and augmenting the transformed

stream with a distribution for each tuple still applies. However, this application

presents two challenges to graphical modeling that aims to completely characterize

the data generation process. The first challenge is the complexity of the data gener-

ation process. As mentioned in Section 1.1, the quality of observed data is affected

by many factors such as environmental noise, instability of transmit frequency, and

inaccuracy of the system clock, the positioner, and the antenna. Precisely describ-

54

ing a data generation process involving all these factors requires significant domain

knowledge. The second challenge is that the data volume in this application is ex-

tremely high, e.g., 1.66 million data items (205Mb) per second. It is an open question

if sampling-based inference, even with optimizations, can keep up with such stream

speeds. We observe that in this application, the transformation from the raw data

to the moment data is deterministic and based on precise formulas (unlike the RFID

application). Hence, we can obtain the transformed moment data stream and char-

acterize its uncertainty using a relatively simple time series model. For a concrete

example, consider the velocity data for a particular voxel. We denote the obtained

velocity series using variables O1, ..., Ot, and their true values using variables X1, ...,

Xt. We can describe the uncertainty of velocity data using p(X1, ..., Xt|O1, ..., Ot).

To do so, we consider the ARMA model that captures how Xt relates to the previous

variables (autoregression) and the noise factors in the recent period (moving average)

[13]. Formally,

Xt =

p
∑

i=1

aiXt−i +

q
∑

i=1

biεt−i + εt + C

where εt is the noise term for time t, and C is a constant. There are well known

numeric methods that given observed data, find the ARMA(p,q) model together with

the coefficients that best fits the data. These fitting methods, however, may take

many passes over the data to find the best fitting. Hence, they may still be slow for

the stream volume in the CASA system.

For improved efficiency, we reduce the overhead of modeling to the minimum

using two techniques. First, we model Xt simply using the moving average model

(MA) with no autoregression. This assumption is likely to hold for a short sequence

of data: due to frequent sampling, a short sequence of data tends to describe the

same phenomena, hence obviating the need of autoregression, but with correlated

noise factors. As such, the work needed for modeling is to identify sequences where

the MA assumption holds. Based on statistical theory, sequences obeying the MA

55

assumption can be identified by computing their k-lag autocorrelations, which can be

performed using at most two scans of the input sequence. Second, if we know that

the first query operator on the transformed stream is aggregation such as average

and sum, which is true in the CASA system, we do not need to fit the MA model

precisely. This is because we can use the Central Limit Theorem to obtain asymptotic

results for aggregation, disregarding the precise input distributions, as long as the MA

assumption holds.

56

CHAPTER 4

DATA MODELS AND QUERY SEMANTICS

This chapter presents the data models that lay the foundation for query processing

in the claro system. As mentioned in Chapter 1, claro aims to support continuous-

valued uncertain data. The data model employed for this uncertain data is Gaussian

mixture models. When this data is propagated through different operations, it may

generate discrete distributions as illustrated later in this chapter. Hence, claro also

extends this data model to a more general data model, called the mixed-type model,

to capture the results of these operations.

4.1 Related Work

This section gives an overview of existing data models for uncertain data in both

the contexts of probabilistic databases and data streams.

Probabilistic databases have been an area of intensive recent research [4, 9, 12,

20, 23, 56, 72, 79, 82, 86, 98]. In a probabilistic database, each tuple exists with a

probability; such tuple existence is essentially characterized by a Bernoulli distribu-

tion. Each tuple may further contain a distribution over a set of values, or a discrete

distribution. Given such tuple models in a discrete and finite domain, a probabilis-

tic database is a probability distribution over all database instances called possible

worlds [23]. This approach however is not directly applied to continuous-valued un-

certain data considered in claro, since the values of continuous distributions are

uncountable and the probability of each possible world is simply zero.

57

Probabilistic stream processing has also gained research attention recently.

Existing work [22, 48, 53] adopts the finite and discrete tuple model as in probabilistic

databases. Specifically, each uncertain tuple or attribute is specified by its possible

finite set of values and the corresponding probabilities. Due to the nature of the

sensing and scientific applications mentioned in Chapter 1, which consider continuous-

valued data, it is neither straightforward nor precise to adopt these discrete data

models.

Models and views of sensor data. Recent work on sensor networks [28, 43]

builds statistical models to capture correlation among attributes and their changes

over time. Given a query, such models enable reduced costs of data acquisition and

communication. FunctionDB [93] transforms discrete sensor observations into contin-

uous functions and supports querying over these functions. This has some similarity

to this thesis work; however, the choice of data models particularly enables more

efficient processing to suit application-specific requirements, as shown in Chapter 5.

Probabilistic databases with continuous uncertainty. Two recent workshop

papers [2, 91] consider the extension of probabilistic databases to support continuous-

valued attributes. They propose modeling uncertain attributes by continuous random

variables (or their probability density functions) and give examples for Gaussians and

multivariate Gaussians. While mainly presenting the motivation or initial design,

they made similar arguments to this thesis work for a suitable model for continuous

random variables and the need to compute distributions of query answers. However,

these lines of work currently do not have a complete discussion on the data models,

and lack processing algorithms and performance evaluation.

58

Initial
Computation

Average

Average

Tornado
Detection

Storm
Detection

Radar 1

H.F.S.

L.F.S.

H&L.F.S.

H(L).F.S. : High (Low) Frequency Segment

 Raw Data Series A Velocity Tuple A Reflectivity Tuple

Unfolding

Average

FFT

FFT

Velocity Analysis

Reflectivity Analysis

...

...

...
Figure 4.1. Simplified stream processing in the CASA radar system

4.2 Gaussian Mixture Model

To support continuous-valued data, the claro system employs a data model

based on Gaussian Mixture distributions, which can capture a variety of uncertainties

and further allow fast relational processing. We describe this data model next.

Gaussian Mixture Models (or distributions), abbreviated as GMMs, are tradition-

ally used for data clustering and density estimation. As an instance of probability

mixture models, a GMM describes a probability distribution using a convex combi-

nation of Gaussian distributions.

Definition 4.2.1. A Gaussian Mixture Model for a continuous random variable X is

a mixture of m Gaussian variables X1, X2, · · · , Xm. The probability density function

(pdf) of X is:

fX(x) =
m
∑

i=1

pifXi
(x),

fXi
(x) =

1

σi

√
2π

e
−

(x−µi)
2

2σ2
i (Xi ∼ N(µi, σ

2
i)),

where 0 ≤ pi ≤ 1,
∑m

i=1 pi = 1, and each mixture component is a Gaussian distribution

with mean µi and variance σ2
i .

59

(a) CASA: Velocity distribution
after FFT in Area(430, 281.9) in
a tornadic event

(b) CASA: Velocity distribution
after FFT in Area(430, 282.3) in
a tornadic event

(c) RFID: Location distribution of
a recently moved object detected
using RFID readers

Figure 4.2. Gaussian Mixture Models for real-world data collected from the target
applications of claro

Definition 4.2.2. A multivariate Gaussian Mixture Model for a random vector X

naturally follows from the definition of multivariate Gaussian distributions.

fX(x) =
m
∑

i=1

pifXi
(x),

fXi
(x) =

1

(2π)k/2|Σi|1/2
e−

1
2
(x−µi)

T Σ−1
i (x−µi) (Xi ∼ N(µi, Σi)),

where k is the size of the random vector, and each mixture component is a k-variate

Gaussian distribution with mean µi and covariance matrix Σi.

The claro system adopts Gaussian Mixture Models due to several key benefits of

these models. First, GMMs are a natural extension of Gaussian distributions, which

are widely used in scientific sensing and financial applications. They can be easily

60

accepted by end users such as the CASA scientists, who have collaborated in the

tornado detection case study in this work.

Second, theoretical results have shown that GMMs can approximate any continu-

ous distribution arbitrarily well [39]. Hence, they are suitable for modeling complex

real-world distributions. For the tornado detection application, a detected bimodal

distribution of velocity at the boundary between a positive velocity area and a nega-

tive velocity area is shown in Figure 4.2(a). In contrast, Figure 4.2(b) shows a velocity

distribution in a positive velocity area, where one Gaussian component captures the

high concentration of velocity and the other captures the noise widely spread across

the entire spectrum. For the RFID application, Figure 4.2(c) shows the inferred lo-

cation distribution of a recently moved object. Here, the bivariate, bimodal GMM

represents the possibilities of the old and new locations using two mixture compo-

nents, each component is a bivariate Gaussian modeling the joint distribution of x

and y locations.

The third benefit of GMMs is efficient computation based on Gaussian properties

and advanced statistical theory. First, the mean and variance of GMMs can be

computed directly from those of the mixture components:

E[X] =
m
∑

i=1

piE[Xi] (4.1)

V ar[X] =
m
∑

i=1

pi(V ar[Xi] + (E[Xi])
2) − (E[X])2 (4.2)

Furthermore, the cumulative distribution function (cdf) of a GMM with a single

variable has an analytic expression based on the known error function. Values of

the error function can be approximated very accurately using numerical methods. In

fact, these values are precomputed in most numerical libraries. Hence, computing
∫ b

a
fX(x)dx = FX(b)-FX(a) using the cdf incurs little cost. Other computational

61

benefits of GMMs, such as the characteristic functions, product distributions, and

linear transformation, are described in the later relevant sections.

Gaussian Mixture Models can be generated from real-world data in a variety of

ways. A discussion of how to generate distributions, which is applicable to GMMs,

from different types of input data are presented in Chapter 3. We now outline a few

methods that can be used to obtain GMMs. Recent work [52] and this thesis work, as

shown in Chapter 3, have employed graphical models to infer distributions from noisy

raw data. Since these distributions are often represented using weighted samples,

GMMs can be generated from these samples using standard density estimation or

function fitting methods. Time series techniques can also be used to generate GMMs

from temporally correlated input data . In our case study of tornado detection, a Fast

Fourier Transform (FFT) is used to translate a correlated data sequence in the time

domain to an uncorrelated sequence in the frequency domain. The latter is essentially

a discrete sample that can be used to fit a GMM.

4.3 Mixed-type Data Model

Input model (GMM-based). An uncertain database or data stream is an

infinite sequence of tuples that conform to the schema Ad ∪ Ap. The attributes in

Ad are deterministic attributes, such as the tuple id and the fixed x-y location of a

sensor. The attributes in Ap are continuous-valued uncertain attributes, such as the

temperature and the wind velocity in an area. In each tuple, the attributes in Ap are

modeled by a vector of continuous random variables X. If the schema further has that

the attributes in Ap can be partitioned into independent attributes, Ap
i , and groups

of correlated attributes, Ap
j , we can model Ap

i using a Gaussian mixture distribution,

denoted by fi(xi), and model Ap
j using a multivariate Gaussian mixture distribution,

denoted by fj(xj). Then the tuple distribution can be written as:

62

fX(x) =
∏

i

fi(xi)
∏

j

fj(xj),

which is a multivariate Gaussian mixture distribution.

Mixed-type model for relational processing. To support relational process-

ing of uncertain data in the input model, we propose a richer model that characterizes

the uncertainty associated with tuples in intermediate and final query results. Our

model, called the mixed-type model, essentially states that with probability p, the

tuple exists and when it exists, the deterministic attributes take their original values

and the uncertain attributes follow a joint distribution.

Definition 4.3.1. Given a tuple with m continuous uncertain attributes, denoted by

Ax, n discrete uncertain attributes, denoted by Ay, and other deterministic attributes

Ad, its mixed-type distribution g is a pair (p, f): p ∈ [0, 1] is the tuple existence

probability (TEP), and f is the joint density function for all uncertain attributes,

defined as f(x,y) = fAx|Ay(x|y) · P [Ay = y]. Further, g characterizes a random

vector (X,Y,Z) over (Rm × U
n × Ad) ∪ {⊥}, where

P [(X,Y,Z) = ⊥] = (1 − p),

P
[

X ⊆ I,Y = y,Z = Ad
]

= p ·
∫

I

f(x,y)dx, I ⊆ R
m,y ∈ U

n.

In the above definition, ⊥ denotes the non-existence case of the tuple. The input

model is a special case of the definition where p = 1 and n = 0.

Several notes on the mixed-type model can be made as follows. First, this data

model combines the tuple-level uncertainty (i.e., TEP) with the attribute-level uncer-

tainty. In fact, the TEP requires every attribute of the tuple, when used in query pro-

cessing, to be modeled by a random variable: if an attribute was deterministic before,

it is now modeled by a Bernoulli variable for taking its original value with probability

p and ⊥ otherwise; for the uncertain attributes, their random variables now model

63

σ(sum>200)

x
p

weight

1

2

3

1

2

3

Gi
0.99

weight_sumGi

0.58

Gi

sumGi(weight)

(a) Input (b) Group Gi

(c) Aggregate

(d) Having clause

...

30

...

40

10 iL≤ x ≤(i+1)L

CGi 0.9

...

0.6

0.7

30

...

40

10

weight TEP

TEP

weight_sum TEP

Figure 4.3. Execution of Q1 in the mixed-type model.

the joint event that the tuple exists and the attributes follow a distribution. Second,

discrete uncertain attributes can emerge as derived attributes in relational process-

ing, for example, as the result of aggregating a set of Bernoulli variables. Third, we

have a general definition of the joint attribute distribution. In any implementation, it

can be factorized based on the independence among attributes where each individual

distribution is captured by a known parametric distribution like Gaussian mixture

models or an approximate representation as proposed in Chapter 5.

In some scenarios, tuples in a stream can be correlated. Inter-tuple correlation

can be modeled using joint tuple distributions or lineage [9]. The current data model

in claro does not include such correlations for two reasons: First, while raw data is

often temporally correlated, the methods that the claro system employs to trans-

form raw data to tuples with distributions, such as graphical models and Fast Fourier

Transform, have already taken such correlation into account. Second, given stringent

performance requirements, stream systems may sometimes have to sacrifice inter-

tuple correlations. For instance, the CASA tornado detection system ignores spatial

correlation in any data processing before the final tornado detection, and existing

probabilistic stream systems such as [52] ignore inter-tuple correlation, all for perfor-

mance reasons. This work can be viewed as an optimization of the general systems

when query processing does not produce correlated intermediate results. A thorough

treatment of tuple correlations in stream processing is subject to future work.

64

We now consider an example of the mixed-type data model. Figure 4.3 illus-

trates the execution of query Q1, mentioned in Section 1.1, under the mixed-type

model. There are three input tuples to the query, where the weight is a deterministic

attribute, and the x location is a continuous-valued uncertain attribute. The group-

by operation involves repeated conditioning operations on the input tuples, with a

different condition for each group. For instance, the condition of the ith group is

x ∈ [iL, (i + 1)L], where L denotes the length of a unit area. This conditioning oper-

ation for the ith group results in the table depicted in Figure 4.3(b): The truncated

distribution for the x attribute is omitted since it is not used later in the query, but

the probability mass covered by the truncated distribution in each tuple becomes its

existence probability (i.e., TEP) in this group. The TEP translates the aggregate,

sum(weight), into a weighted sum of Bernoulli variables. The aggregate result in-

cludes a discrete distribution of the weight sum. Finally, the Having clause, modeled

by a selection in relational algebra, conditions the tuple in Figure 4.3(c) with the

predicate sum(weight) > 200. This will yield the reduced support of the distribution

of the weight sum (where the support is the region where the pdf is non-zero) and

reduced TEP of the aggregate result, as illustrated in Figure 4.3(d).

4.4 Formal Semantics of Relational Processing under Mixed-

type Model

We now propose the formal semantics of relational operations under the mixed-

type data model. (Note that for mixed-type tuples, a continuous uncertain attribute

can follow any distribution, not restrictedly a Gaussian mixture model.) The formal

semantics is crucial because it states the intended answer of each operation under

the chosen data model, hence ensuring the correctness of query processing. A key

observation is that the possible worlds semantics (PWS) does not apply to continuous

random variables. First, the values of a continuous random variable are uncountable.

65

Second, the probability of each possible world is simply zero. Hence, we cannot

construct possible worlds by enumerating values of a continuous random variable and

merge the results of the possible worlds to get the result distribution. To address

this issue, we propose to use measure theory to quantify the probabilities associated

with subsets of values taken from a random variable. We first state the definition of

probability space [16].

Definition 4.4.1. Probability Space. In measure theory, a probability space of a

random variable X is a triple (SX ,FX , PX) where SX is the sample space consisting of

all possible values of X, FX is the σ-field over SX , and PX is the probability measure

capturing the probability of any set in the σ-field.

A σ-field over SX is a non-empty collection of subsets of SX that contains the

empty set, is closed under complementation and countable unions of its members.

There can be many σ-fields associated with a sample space. For probability space of

a random variable, we are concerned only with the smallest one that contains all of

the open sets in the sample space S. For example, if SX is the real line, then FX is

chosen to contain all sets of the form [a, b], (a, b], (a, b), and [a, b) and their unions,

for all real numbers a and b (the closed intervals are due to complementation). The

measure of the entire sample space is 1, or PX(SX) = 1.

We now define the probability space of our mixed-type distributions. To focus on

the main idea, we first omit discrete random variables and discuss the extension to

them near the end of this section.

Definition 4.4.2. Probability Space of Mixed-type Distributions. Consider a

random vector X described by a mixed-type distribution (p, f) where p is the existence

probability and f is the density function over R
m. The probability space for X is

characterized by: (1) the sample space SX = R
m ∪ {⊥}, where ⊥ denotes the non-

existence case, (2) the σ-field FX over SX, and (3) the probability measure PX such

66

that given any set A in the σ-field FX, PX(A) = (1 − p) (⊥ ∈ A) + p
∫

A\{⊥}
f(x)dx,

where (·) is the indicator function.

We next use measure theory to define the semantics of the relational operations.

As known, the relational operations consider sets of tuples, or more precisely, take

a set of tuples (e.g., a relational table) as input, and return another set of tuples as

output. Denote the set of input tuples I and the set of output tuples O. Our goal is

to define the probability space of the output tuples in O, given the probability space

of input tuples in I.

4.4.1 Projection

Projection is performed for each input tuple in the set I separately to get the

corresponding output tuple in O. Now consider an input tuple in I, denoted by a

random vector (X,Y), where X and Y correspond to the attributes in that input

tuple (X and Y can represent more than one attribute). Let (p, fXY) denote the

mixed-type distribution of this tuple. We now consider the projection of (X,Y) onto

Y, i.e., projecting out X.

Suppose that the domain of X is R
|X|, and the domain of Y is R

|Y|. The probabil-

ity space of the projection result has three items, the sample space SY = R
|Y| ∪{⊥},

the σ-field FY over SY, and the probability measure defined for any set A in FY as

follows.

1. If A = {⊥}, then PY(A) = 1 − p.

2. If A ⊂ R
|Y|, then

PY(A) = p

∫

A

∫

R|X|

fXY(x,y)dxdy.

3. For any set A that contains both ⊥ and a subset of the domain, its probability

is the sum of the probabilities of the two cases.

In fact, the third case, as a property of measure theory, holds for all other opera-

tions; we will not mention it explicitly hereafter.

67

1-p

⊥

p

 a1 a2 b2 b1

1-pq

⊥

pq

 a2 b2

a2 ≤ X ≤ b2

f f'

Figure 4.4. Selection under the mixed-type model

4.4.2 Selection

Similarly to projection, selection is performed for each tuple in the input set I.

Consider an input tuple with the attributes X, a random vector following a mixed-

type distribution (p, fX). Let the probability space of X be (SX,FX, PX), where

SX = R
|X| ∪ {⊥}. Now let X̄ be the output of the selection X ∈ I, where I is the

selection region. The probability space of X̄ has the same sample space and σ-field as

those of X. To define the probability measure, we first define the selection probability,

q, to be the probability mass of fX under the region I, i.e., q =
∫

R|X|∩I
fX(x)dx.

Consider a set A in the σ-field FX̄.

1. If A = {⊥}, then

PX̄(A) = (1 − p) + p

∫

R|X|\I

fX(x)dx = 1 − pq.

2. If A ⊂ R
|X|, then PX̄(A) = p

∫

A∩I
f(x)dx.

Figure 4.4 illustrates the result of a selection of a tuple, with one uncertain at-

tribute X. This uncertain attribute follows a mixed-type distribution (p, f) where

the support of f is [a1, b1]. The sample space here is the real line and ⊥ The selection

on X using the condition a2 ≤ X ≤ b2 results in another distribution with reduced

support [a2, b2] and reduced TEP as defined above in the probability measure. In

Section 5.2, we will describe the steps to obtain the result distributions.

68

4.4.3 Cross Product

Cross product operates on two sets of tuples, say I and I ′. Specifically, cross

product involves pairing each tuple in I with each tuple in I ′. In this work, we

assume the tuples in I and I ′ are independent of each other.

Consider two independent random vectors, X and Y, representing a tuple in I and

a tuple in I ′ respectively. Let their corresponding probability spaces be (SX,FX, PX),

and (SY,FY, PY). The cross product of X and Y corresponds to the joint distribution

of the pair (X,Y). We now characterize the probability space of X × Y, denoted

as (SXY,FXY, PXY). The probability space SXY is (R|X| × R
|Y|) ∪ {⊥}. Due to

our convention of all-or-none existence among the variables, we define that the cross

product exists when both X and Y exists. Therefore,

1. If A = {⊥}, then PXY(A) = 1 − pXpY.

2. For any A ⊂ (R|X| × R
|Y|),

PXY(A) = pXpY

∫∫

A

fX(x)fY(y)dxdy.

4.4.4 Join using Probabilistic Views

We now consider equi-join under the mixed-type data model. We note that equi-

join is rare for continuous uncertain data because any pair of two values from two

continuous uncertain tuples has a probability of 0. However, a special case is that

one wants to (i) join two sets of tuples R and S on the attributes X, (ii) then retrieve

the attributes Y from S where (iii) Y depend on X. We illustrate this operation

using a concrete example. The query below triggers an alert when a flammable object

is exposed to a high temperature. This query takes two inputs: a location stream

with attributes (time, obj id, (x, y)p), where p denotes a probabilistic attribute, for

flammable objects, and a temperature sensor stream with attributes (time, sensor id,

69

(x, y), temp), and joins them based on the location (x, y). It then returns the tem-

perature of each object. The query is written as if the x and y locations were precise.

Select Rstream(R.tag id, R.x, R.y, T.temp)

From FlammableObject [Now] As R,

Temperature [Partition By sensor id Rows 1] As T

Where T.temp > 60 ℃ and

R.x = T.x and R.y = T.y

We first introduce the concept of a probabilistic view. Let the attributes Y depend

on some other attributes X as follows. For a given x, there is a distribution of Y,

fY(y|X = x). Then we say that Y view-depends on X and the collection of these

distributions for all values of x is a probabilistic view. We denote the existence of the

view with pY|X=x. For x where the view is defined, pY|X=x = 1; otherwise, pY|X=x = 0.

Now given a tuple with the attributes X following a distribution (pX, fX), the join

of this tuple with the view is characterized by the joint distribution that pairs each

value of X with the corresponding distribution of Y from the view.

Let the probability space for the random vector X of the join be (SX,FX, PX),

and the mixed-type distribution of X be (pX, fX). Let the probability space for the

random variable Y given X = x (in the probabilistic view) be (SY|x,FY|x, PY|x) and

its distribution be (pY|X=x, fY|X=x). Then the joint probability space for (X,Y) is

characterized with the sample space SX × SY|x, the σ-field FXY, and the probability

measure PXY, where for A ∈ FXY:

1. If A = {⊥}, then PXY(A) = 1 − pX · q,

where q =
∫

R|X| pY|X=xfX(x)dx.

2. If A ⊂ (R|X| × R
|Y|), then

PXY(A) = pX

∫∫

A

pY|X=xfX(x)fY|X=x(y)dxdy.

70

Tag id Prob

0.5

0.5

20

10

Loc

0x333

Loc

10

20

0.1

0.2

0.3

Prob

0.4

50

70

Temp

30

50

20

Loc

10

10

204 0x333

0x3333

Tag id

0x333

0x333

2

1

PW

T1 Object Location

T2 Temperature

T3 Possible Worlds
x

f
Loc

(x)

µ
i

t

f
Temp

(t)

!
i

70 0.4

50 0.6

0.850

0.230

ProbTemp

(a) Discrete Domain (b) Continuous Domain

fLoc(x)

fTemp(t|Loc=10)

x

t

Joint Distribution of (Loc, Temp)

Location Distribution

45
x

f
Loc

(x)

µ
i
 t58

15

Probabilistic View of Temperature given Location

fTemp(t|Loc=20)

Figure 4.5. Compare equi-joins in the discrete domain (using PWS) and in the
continuous domain (using a probabilistic view).

Figure 4.5 illustrates the execution of the above example query for both discrete

and continuous domains, assuming one-dimensional location x. The known possible

worlds semantics is used for the discrete case. We now illustrate the continuous case.

Let (pi, fXi(x)) be the mixed-type distribution for object i, where fXi(x) is the

distribution of its location. Assume that at location x, a temperature sensor ob-

verses the temperature fT |x(t). The collection of all of these observations forms a

probabilistic view of temperature given object location. In general, a probabilistic

view can be characterized with both a distribution and an existence probability pT |x.

Depending on the implementation choice, pT |x can be set to 1, if there are enough

observations for the view. Then, the query computes the temperature of each object

in the location stream, which is a join with the probabilistic view. Using the above

definition, we can quantify the probability space of the joint distribution of location

and temperature for each object i with existence probability pi and density function

fi(x, t) = fXi(x) · fT |xi
(t). For the general case when the view may not exist for

some locations (i.e., pT |x ≤ 1), let qi =
∫

R
fXi(x)pT |xdx; then qi denotes the existence

71

probability of the view given object i. In this case, the new TEP of the join result is

p′i = piqi.
1

4.4.5 Aggregation

Since aggregation is performed on a set of input tuples I given a common attribute,

we first project each tuple in I on the aggregate attribute—the random variables

considered in this section denote the aggregate attribute of the input tuples.

SUM. First we consider the sum of two tuples, Y = X1 + X2, where X1 and X2

denote the aggregate attribute in the two tuples, respectively. Under our assumption,

X1 and X2 are independent. Xi, i = {1, 2} follows a mixed-type distribution (pXi
, fXi

)

and has the probability space (R ∪ {⊥},FXi
, PXi

), i = 1, 2. Then, the sum Y has

probability space characterized with the same sample space SY = R ∪ {⊥}. Since

X1 and X2 can either exist or not, there are four combinations of how X1 and X2

contribute to the sum. The probability measure is hence defined for any A ∈ FY as

follows.

1. If A = {⊥}, then PY (A) = (1 − pX1)(1 − pX2).
2. If A ⊂ R, then, PY (A) =

pX1(1 − pX2) ·
∫

x∈A
fX1(x)dx + (1 − pX1)pX2 ·

∫

x∈A
fX2(x)dx

+pX1pX2 ·
∫

x1+x2∈A
fX1(x1)fX2(x2)dx1dx2.

In general, sum of n independent random variables can be obtained using induction.

COUNT. In our model, count is equivalent to the sum of Bernoulli random

variables. The above semantics for sum can be directly adapted to count by replacing

the probability density functions (pdfs) with the probability mass functions (pmfs),

and replacing integration with summation. Also, the sample space of count is the set

1The processing techniques for join using probabilistic views were presented in [97].

72

of natural numbers N and does not include ⊥ — count is 0 when none of the tuples

exists. This is the same as the possible worlds semantics.

MIN and MAX. The semantics for these aggregates are defined similarly to that

for sum; the only difference is the integration region in the last term of the probability

measure. For example, for max, the integration region is max(x1, x2) ∈ A.

AVERAGE. Since the average can be written as avg=sum/count, and count is

probabilistic due to the uncertainty of tuple existence, avg is more complicated than

sum and cannot be defined using induction. Generally, it is defined by enumerating

all combinations of the input tuples’ existence. Consider Y = avg(X1, X2, X3). Given

a set A in the σ-field of Y ,

1. If A = {⊥}, PY (A) = (1 − pX1)(1 − pX2)(1 − pX3)
2. If A ⊂ R, then

PY (A) = pX1(1 − pX2)(1 − pX3)

∫

x∈A
fX1(x1)dx1

+(1 − pX1)pX2(1 − pX3)

∫

x∈A
fX2(x2)dx2

+(1 − pX1)(1 − pX2)pX3

∫

x∈A
fX3(x3)dx3

+pX1pX2(1 − pX3)

∫

(x1+x2)/2∈A
fX1(x1)fX2(x2)dx1dx2

+pX1(1 − pX2)pX3

∫

(x1+x3)/2∈A
fX1(x1)fX3(x3)dx1dx3

+(1 − pX1)pX2pX3

∫

(x2+x3)/2∈A
fX2(x2)fX3(x3)dx2dx3

+pX1pX2pX3

∫

(x1+x2+x3)/3∈A
fX1(x1)fX2(x2)fX3(x3)dx1dx2dx3

If there are more than 3 random variables, the semantics is defined similarly by

enumerating a number of terms exponential in the number of input tuples. This

hence gives the semantics of aggregation for any table by considering all tuples in

that table.

73

4.4.6 Group-by Aggregation

Group-by aggregation involves repeated selections, with a different condition per

group. If selections involve deterministic attributes, then the participation of a tuple

in a group is certain. Aggregation of a set of tuples in a group is defined as above. If

selections involve uncertain attributes, we will first use the definition of selection to

obtain the selection results, and then use the definition of aggregation to obtain the

results of group-by aggregation.

Now consider queries Q1 and Q2 in Section 1.1, which are group-by aggregation

queries. Since they are similar, we discuss Q2 here. Each object in the input stream

is characterized with the distributions of its location fX(x) and luminosity fY (y);

the tuple existence probability p is assumed to be 1. The objective is to define the

probability space of max(S.luminosity) for each group. Let the condition of the i-th

group be x ∈ [iL, (i + 1)L], where L denotes the group length. For object i, the

selection probability is qi =
∫

x∈[iL,(i+1)L]
fXi(x)dx. The new TEP of object i in this

group is pi = qi. The result distribution of Xi has a probability space defined as in

Section 4.4.2. Then we can characterize the distribution of max(S.luminosity), which

is Mi = maxk(fYk
(y) · (k ∈ Group(i))), using the semantics for max.

4.4.7 Equivalence to Possible Worlds Semantics

For discrete random variables characterized by probability mass functions (pmfs),

instead of probability density functions (pdfs), the above definitions can still apply

by modifying the definition of probability measure, i.e., replacing integration with

summation in the formulas for probability measure. This is the same as the possi-

ble worlds semantics (PWS), which has been defined for discrete random variables in

existing work [23]. Hence, our proposed semantics is consistent with the PWS. In gen-

eral, for mixed-type distributions involving both discrete and continuous attributes,

the formulas for probability measures include both integration and summation.

74

CHAPTER 5

RELATIONAL PROCESSING OF CONTINUOUS
UNCERTAIN DATA

After uncertain tuples are generated from the raw data from each sensor device

and captured by continuous distributions, as described in Chapter 3, they go through

various operators to produce final results. This chapter addresses common relational

operators, including selection, projection, aggregation, and join, which provide gen-

eral support for the target applications of the claro system. Given uncertain data,

claro quantifies the result uncertainty of each query operator by computing a dis-

tribution for each result tuple.

This chapter starts by surveying existing techniques for relational processing of

uncertain data. Then the new techniques for processing uncertain data under the

data models of the claro system are presented. These techniques can be applied

to both data streams and stored databases. More specifically, this chapter covers

standard relational operations with a main focus on aggregates since they are complex

operations without efficient existing solutions. Since aggregation has high complexity

in general, claro aims to devise exact solutions or fast approximate solutions for

performance. Finally, query planning, which considers multiple relational operations

in the context of complex queries, is discussed at the end of the chapter. Given that

some operations may produce approximate results, claro quantifies the errors of

the subsequent operations after the first approximation, and then provisions an error

75

bound for each of those approximate operations so that an overall user-specified query

accuracy requirement can be met. 1

5.1 Related Work

There has been a recent surge of research on probabilistic databases [5, 7, 12, 17,

20, 23, 56, 59, 67, 81, 98, 101] and probabilistic stream processing [22, 48, 53]. In

Chapter 4, we have stated the related work regarding data modeling. In this section,

we survey closely related work from the data processing perspective.

As mentioned in Chapter 4, most of existing work models each tuple using a

discrete random variable and evaluates queries over such tuples in a set of possible

worlds. Under this possible worlds semantics, the following lines of work present

different approaches to query processing.

Processing discrete uncertain data. Query evaluation applies a query to each

possible world, and adds the probabilities of all possible worlds that return the same

answer, yielding a distribution of possible query answers. Due to the discrete and

finite nature, the query result distribution can be obtained by directly using axioms of

probability [9, 23]. Existing work [23, 24] has identified cases when one can compute

the result distribution directly from the probabilities of base tuples, which are the

input to the query, and when one has to consider all possible worlds. For efficiency,

existing studies attempt to avoid the computation of the result distribution by simply

returning a ranked list of results [77] or using lineage to decouple and postpone

the computation of result probabilities [9, 82]. These techniques are not directly

applicable to the claro system, which aims to compute full result distributions in

an efficient way.

1The work in this chapter was originally presented in [95, 96, 97].

76

Computing moments of aggregates. The existing line of work [22, 47, 49] con-

siders inputs modeled by discrete distributions and aims to characterize the moments

of the result distribution, such as mean, variance and some higher order moments. In

particular, the objective is to compute aggregates for probabilistic data streams in the

one-pass data stream model by considering the expectation of max and min [22, 47, 49],

the expectation and variance of sum, and some higher moments of count [22]. How-

ever, this thesis work aims to compute the full result distributions, and hence cannot

use these techniques.

Processing continuous uncertain data. There has been significantly less work

on continuous random variables [20, 38, 46, 88]. The work [20] considers aggregation

over n random variables (e.g., n uncertain tuples) and handles two variables at a time

using convolution, resulting in a total of (n− 1) integrals. Since the number of tuples

for a single aggregation can be large, this algorithm is inefficient for stream processing.

The two studies [38, 46] examine sampling techniques to handle continuous random

variables, which is discussed more closely below. The work [88] considers the dis-

cretization approach for common relational operations while excluding aggregation.

The approximation error resulting from discretization is not quantified in [88].

Sampling techniques. The two papers [38, 46] consider sampling by generating

samples over the distribution of n random variables, runing query processing using

these samples, and collecting the results of these samples into a result distribution. A

main concern with these algorithms is that they may need a large number of samples

to achieve accuracy for arbitrary real-world distributions, hence can be too slow for

high-volume streams in the sensing applications, e.g., up to 200Mb/sec for radar data.

The above techniques do not directly apply to the problem tackled in claro for

three reasons: (i) The continuous nature of sensor data indicates that such data is bet-

ter modeled using continuous random variables and its techniques are fundamentally

different from those for discrete variables. (ii) The goal to capture result uncertainty

77

dictates the need of sufficient knowledge about the entire result distribution—such

distributions are particularly important for computation of composed operators. This

need precludes claro from using existing techniques that compromise the result dis-

tribution for simplified query processing. (iii) A main objective of claro is to sup-

port processing with high throughput while satisfying accuracy requirements, hence

precluding existing solutions that have high cost or yield approximations that are

hard to bound.

5.2 Basic Relational Processing under Mixed-type Model

We have presented the formal semantics, which states the intended answers of

relational operations under the mixed-type data model in Section 4.4. In this section,

we describe how the standard operations including selections, projections, and joins

can be evaluated. As will be seen, for a substantial subset of operations, there are

exact, closed-form solutions.

5.2.1 Selections

We first consider selections under the mixed-type data model. A selection involves

applying a condition on some attribute of a mixed-type tuple. In Section 4.4.2,

we define the semantics of selection by characterizing its result distribution using

probability space. We now state how to obtain this result distribution.

Let t be a tuple following a mixed-type distribution g = (p, f), and let S be the

support of f(x) such that S is a subset of the domain of f , and f(x) 6= 0 for any

x in S. Consider a selection that applies a range condition x ∈ I to (one or many)

uncertain attributes in t. Let t̄ denote the result tuple. Then, its distribution is also

mixed-type, denoted as ḡ = (p̄, f̄) and computed as follows.

1. Compute the selection probability q, which is the probability mass of f in the

selection range I, q =
∫

S∩I
f(x)dx.

78

2. Compute the new tuple existence probability, p̄ = p · q.

3. Truncate the joint distribution so that its support is restricted to the intersection

of the original support S and the selection range I, S̄ = S ∩ I.

4. Normalize the truncated distribution, f̄(x) = f(x)/q.

Note that a group-by operation applies repeated selections with a different con-

dition for every group, hence the above process can be applied to compute the result

distribution of each tuple in a group. We will mention conditioning operations when

referring to both selections and group-bys later.

5.2.2 Projections

A projection is equivalent to integrating over the attributes that are projected out,

or not in the projection list. For example, if an attribute xi from the attributes x is

projected out, the new distribution is f ′(x\{xi}) =
∫

R
f(x)dxi. If f is a GMM, this is

a marginalization of a multivariate GMM to get a GMM of lower dimension. Under

the mixed-type data model, the result tuple follows a mixed-type distribution with

the same tuple existence probability while the continuous distribution is the result of

marginalization.

5.2.3 Joins

The (traditional) type of join pairs tuples from two inputs for inequality com-

parison. (Note that the equality comparison of two continuous random variables

corresponds to events with probability 0.) This join is modeled by a cross-product

followed by a selection [88].

The claro system supports such joins with closed-form result distributions under

the mixed-type model. More specifically, if two join attributes are uncertain and

follow mixed-type distributions (p1, f1) and (p2, f2), then the join result follows a

mixed-type distribution (p, f) where p = p1 · p2, and f = f1 · f2. If f1 and f2 are

79

GMMs, then f is a multivariate GMM. Then any subsequent selection for a specific

region can be performed as detailed in Section 5.2.1. 2

5.3 An Evaluation Framework for Aggregation

In this section, we address aggregation of continuous-valued uncertain tuples. The

nature of computation for aggregates such as sum and avg is multivariate integration,

which is inherently expensive. Figure 5.1 shows an example of avg of continuous ran-

dom varibles. A state-of-the-art approach is integral-based [20], which integrates two

variables at a time, resulting in the use of n-1 integrals to aggregate n variables. An

alternative sampling-based approach [38, 88] generates samples from the input distri-

butions and computes aggregates from these samples. However, it is hard to know the

right number of samples to exploit the tradeoff between accuracy and performance,

as we will show in the experiments. Another approach is to discretize continuous

distributions and use existing algorithms for discrete distributions to compute sum

and avg [53]. This has a time complexity O(nD3), where n is the number of tuples

and D is the domain size of each tuple, hence becoming inefficient for large domains

like what continuous variables require.

This thesis work departs from existing approaches by exploring statistical theory

to obtain exact result distributions, whenever possible, while completely eliminating

the use of integrals. When the exact result distributions are complex, we provide

an efficient approximation technique to simplify their formulas while satisfying given

accuracy requirements. In other cases when it is hard to obtain the closed-form

solutions, we seek approximation algorithms to directly compute the distribution of

aggregates with bounded errors.

2Other types of join in claro were presented in [97].

80

We next present an evaluation framework including metrics and objectives that

we will be used in the below approximation algorithms for aggregation.

A. Metrics. We introduce two common distance metrics to approximate the

distributions of aggregates.

The point-based Variation Distance (VD), similar in idea to the VD in [38], is used

as a distance metric for two continuous distributions.

Definition 5.3.1. Given two probability density functions (pdf ’s) f(x) and g(x), the

VD is defined as:

VD(f, g) =
1

2

∫

R

|f(x) − g(x)|dx.

The constant 1/2 ensures that VD is in [0,1].

Another distance metric based on a standard measure in statistics, is the Kolmogorov-

Smirnov (KS) distance.

Definition 5.3.2. Given two one-dimensional cumulative distribution functions (CDF’s)

F, G : R → [0, 1], the KS distance is defined as:

KS(F, G) = sup
x

|F (x) − G(x)|.

The following proposition states the relationship between the two distance metrics.

The proof is shown in the Appendix.

Proposition 5.3.1. The KS distance of two CDF’s, KS(F , G) and the variation

distance of the corresponding pdf’s, VD(f, g), satisfy KS(F , G) ≤ VD(f, g). In some

cases, KS(F , G) can be arbitrarily smaller than VD(f, g).

Since KS(F , G) ≤ VD(f, g) always holds, any approximation algorithm that sat-

isfies the error bound ε using the VD metric also has a KS distance bounded above by

ε. Therefore, approximation algorithms using the VD metric can be readily included

in an evaluation framework that employs the KS distance as the metric.

81

0

0.2

0.4

0.6

3 8 13

0

0.2

0.4

0.6

0 5 10 15 20 25

0

0.2

0.4

0.6

15 20 25 30 35

f1

t2

t3

t1

f2

f3

0

0.2

0.4

0.6

8 13 18 23

Figure 5.1. Aggregation of continuous random variables

In the following sections, we derive approximation algorithms using the KS dis-

tance. We also support the variation distance to compare our techniques with a

state-of-the-art technique that uses this metric [38].

B. Approximation Objective. We next state the definition of (ε, δ) approxima-

tion using KS distance as the metric. (The definition using VD follows directly.)

Definition 5.3.3. A (randomized) algorithm computes an (ε, δ) approximation if

the KS distance between the approximate distribution and its corresponding exact

distribution is at most ε with probability 1 − δ.

δ = 0 corresponds to deterministic algorithms.

5.4 Aggregation under Gaussian Mixture Model

We now address aggregation of uncertain tuples whose existence is certain, i.e.,

the existence probabilities are 1, and the tuples follow Gaussian mixture models. This

includes the input model of claro, hence a common case in the target applications.

We focus on sum and avg because they are crucial to these applications but have not

been sufficiently addressed in the literature.3

3The technique for min and max in claro is similar to that in [20], hence omitted in this
thesis.

82

0.7

0.6

0.2

0.8

0.5

0.4

Prob

0.5

0.3

7

18

12

16

22

18

Velocity

28

10

Tuple

t1

t2

t3

t4

0

0.2

0.4

0.6

3 8 13

0

0.2

0.4

0.6

10 15 20 25

0

0.2

0.4

0.6

0 5 10 15 20 25
0

0.2

0.4

0.6

15 20 25 30 35

t1

t2

t3

t4

0.072

Prob

0.012

...

0.028

19.00

Avg(Velocity)

13.75

...

14.752

1

PW

16

...

0

0.2

0.4

0.6

8 13 18 23

PWS Integration

(a) Discrete (b) Continous

f1

f2

f3

f4

y =
x
1
+!+ x

4

4
"U

PY (U) = ! f

1
(x

1
)! f

4
(x

4
)dx

1
!dx

4""

Figure 5.2. Aggregation in the discrete setting (using PWS) and in the continuous
setting (using integration).

5.4.1 A Basic Algorithm

We first introduce characteristic functions and describe a basic algorithm to de-

rive the result distribution for sum of a set of tuples. The modification to avg is

straightforward and hence omitted in the following discussion.

In probability theory, characteristic functions (CFs) are used to “characterize”

distributions. Specifically, the CF of a random variable U is defined as (chapter 2,

[16]):

ΦU(t) = E[eiUt], (5.1)

where E denotes the expected value and i is the complex number
√
−1. The pdf of

U then can be obtained by the inverse transformation of the CF:

fU(x) =
1

2π

∫ +∞

−∞

e−itxΦU(t)dt. (5.2)

Now let us consider sum(A), with the attribute A in n tuples modeled using random

variables X1, ..., Xn. Let U = X1 + X2 + ... + Xn. The CF of U is:

83

ΦU(t) = E[eiUt] = E[ei(X1+X2+...+Xn)t]

= E[eiX1teiX2t...eiXnt]

= ΦX1(t)ΦX2(t)...ΦXn
(t) (5.3)

That is, the CF of U can be written as the product of the CFs of the input tuples

based on the independence assumption. This suggests a simple algorithm for sum: (1)

Get the CF of each input tuple and take the product of these functions according to

Eq. 5.3. (2) For a given value x, apply the inverse transformation at x to yield fU(x)

according to Eq. 5.2. In particular, we call the inverse transformation in the second

step a parameterized integral because it takes an argument x.

In the context of Gaussian Mixture Models (GMMs), the CFs can be expressed

in closed form. For example, for a Gaussian mixture of two components:

f(x) = p1
1

σ1

√
2π

e
−

(x−µ1)2

2σ2
1 + p2

1

σ2

√
2π

e
−

(x−µ2)2

2σ2
2 ,

its CF can be written directly as:

ΦX(t) = p1e
iµ1t− 1

2
σ2
1t2 + p2e

iµ2t− 1
2
σ2
2t2 .

Thus, Step 1 of the above algorithm does not involve any integration. The only

integral required is the one for inverse transformation in Step 2. This analysis holds

for all common distributions whose characteristic functions are known. This gives

a boost in performance compared to the two-variable convolution method, which

requires n-1 parameterized integrals [20].

The main drawback of this approach is that the formula of the result distribution

involves an unresolved parameterized integral, which requires a high cost to compute

and hence can be inefficient for our data stream applications. To get sufficient knowl-

edge of the result distribution (e.g., calculating its mean and variance), one needs to

84

repeat the inverse transformation for a large number of points. To understand the

cost of such repeated integration, we used a numerical solution called adaptive

quadrature [83] to compute integrals. The task is to average over 10 tuples and com-

pute the pdf values for 20 points. Even with manual optimizations, the throughput

obtained is less than 200 tuples/second. This indicates that this technique is ineffi-

cient for the applications of claro. Moreover, it is unknown if the result distribution

is a GMM.

5.4.2 Exact Derivation of Result Distributions

The discussion in the previous section motivated us to seek a solution without

using numerical integration. For GMMs, it turns out that we can obtain the closed-

form solution to the inverse transformation. In addition, when input tuples are

Gaussian mixtures and independent, the result of sum over those tuples is also a

Gaussian mixture that can be directly obtained from the input tuples.

Theorem 5.4.1. Let each Xi, (i = 1..n) be a mixture of im components identified by

the parameters (pij , µij , σij), (j = 1..im). The result distribution for U =
∑n

i=1 Xi is

a Gaussian mixture of
∏n

i=1 im components, each of which corresponds to a unique

combination that takes one component from each input Gaussian mixture {ij}, (i =

1..n, j ∈ {1..im}) and is identified by (pk, µk, σk):

pk =
n
∏

i=1

pij ; µk =
n
∑

i=1

µij ; σk =

√

√

√

√

n
∑

i=1

σ2
ij
. (5.4)

The theorem can be proved by mathematical manipulation of the inverse trans-

formation formula, as shown in the appendix. The result subsumes the well-known

linear property of Gaussian distributions. However, in the context of GMMs, we are

not aware of any state-of-the-art books on mixture models [35, 39] showing this result.

This technique gives an exact solution so the accuracy is guaranteed. Let N be the

number of input tuples and M be the average number of mixture components in each

85

input tuple. The result formula size is then O(MN). Computing each component

takes O(N) thus, the time complexity is O(NMN). As such, the result formula grows

exponentially in the number of aggregated tuples, raising a scalability issue with this

technique. We next describe approximation techniques to address this issue.

5.4.2.1 Approximation of Result Distributions

We next propose to approximate the exact result distribution by performing func-

tion fitting in the Characteristic Function (CF) space. This is based on the property

that the CF of sum can be compactly represented as a product of n individual CFs

(Eq. 5.3), rather than an exponential number of components (Eq. 5.4). Our goal is

to find some Gaussian mixture distribution whose CF best fits this product function.

Algorithm 1 Sketch of the CF fitting algorithm for approximation

1: Obtain the expression of the CF of the sum, Φ
sum

(t) =
∏n

i=1 ΦXi
(t). This is a

complex function.
2: Take P points {ti}, (i = 1..P) from the domain of Φ

sum
(t), and compute

{Φ
sum

(ti)}, (i = 1..P).
3: Start with K = 1. Consider a Gaussian mixture of K components. The corre-

sponding CF is Φ(t).
4: Run least squares fitting to minimize:
∑P

i=1

[

(Re(Φ(ti) − Φsum(ti)))
2 + (Im(Φ(ti) − Φsum(ti)))

2
]

.

5: Get the fitting residual. If this is smaller than a threshold ε, return the fitted
Gaussian mixture. Otherwise, increase K by one by default and go to step 3.

We devise an approximation algorithm, named Characteristic Function (CF)

fitting, which is sketched in Algorithm 1. The algorithm starts with one component

Gaussian mixture, running the least squares fitting. If the fitting residual is below

a threshold, it returns the fitted parameters; otherwise it increases the number of

components and repeats fitting. Note that the objective function for fitting contains

both real and imaginary parts, since the CFs are complex functions and both parts

contribute to the result pdf via inverse transformation. This algorithm eliminates the

exponential cost as for exact derivation, and incurs a cost polynomial in the number

86

Figure 5.3. Example characteristic function for sum of 10 tuples.

of tuples n, the number of components per tuple (Steps 1 and 2), and the size of the

result distribution K (Steps 3 and 4).

Optimizations. We further employ a suite of optimizations based on statistical

theory to improve performance and accuracy. The first optimization regards the

choice of an appropriate range in the domain of the CF Φ
sum

(t) for fitting. The

formula of Φ
sum

(t) indicates that it approaches 0 fast as t moves from the center 0.

Figure 5.3 shows an example CF for sum of 10 tuples, with both the real and imaginary

parts of the CF. Given this observation, we set the range for fitting to be a small

region centered around 0 so that the points taken can better capture the shape of the

function to be fitted.

The second optimization concerns the initial guess of the parameters of a K-

component Gaussian mixture. Due to the oscillating behavior of the CF, the fitting

result is quite sensitive to this initial guess and can get stuck in local optima. We use

Theorem 5.4.1 to precompute a small number of result components whose means are

spread out and use them as the initial guess for fitting.

Test Condition for Convergence. We determine whether the fitting result

satisfies a KS requirement ε by approximately computing the distance between the

the approximate distribution and the true distribution. To do so, we approximate the

inverse transformation to obtain the CDF’s by using the points in fitting to estimate

the integrals. Specifically, we check if the following condition holds to stop fitting.

87

P
∑

i=1

[Re(Φ(ti) − Φ
sum

(ti)) + Im((Φ(ti) − Φ
sum

(ti))]
∆t

ti
≤ ε

where ti (i = 1..P) are points used in fitting. This holds because for points outside

this range, the values of the CFs are close to 0. A similar condition can also be

derived if VD is used as the metric.

Relation to the Central Limit Theorem. The Central Limit Theorem (CLT)

is a special case of the CF fitting algorithm. The CLT states that the sum of a

sufficiently large number of independent random variables is normally distributed [16].

This gives an asymptotic result but the CF fitting algorithm dynamically determines

when this result can apply. For example, a weather monitoring system sometimes

requires a small number of stream segments to be averaged, for which our algorithm

determines that the CLT does not apply, whereas when the number of tuples is

sufficiently large (e.g., greater than 20), the result distribution starts to become a

single smooth Gaussian.

5.4.2.2 Hybrid Solution

The two algorithms for aggregation, exact derivation and CF fitting, can be com-

bined into a hybrid solution to exploit their advantages. When the number of tuples

is small, we use exact derivation since it is fast and its formula is not complex. When

the number of tuples is large enough, we switch to CF fitting. This way, we take

the advantage of each algorithm in the range it performs best. We observe that the

switching points among the two mainly depend on the number of tuples and less so

on other data characteristics, as shown in Section 5.6.1.

5.5 Aggregation under Mixed-type Model

We have considered aggregation when the existence of tuples is certain. However,

in the presence of conditioning operations, e.g., selections, the existence probabilities

88

of tuples become less than 1, precluding the above closed-form solution and its ap-

proximation for aggregation. In this section, we seek to directly devise approximation

algorithms for aggregation of conditioned tuples.

5.5.1 Approximate Representation for CDFs

We first extend the approximation framework to include a new approximate rep-

resentation for approximation algorithms to compute aggregates. We employ cumu-

lative distribution functions (CDFs) to approximate distributions of aggregates due

to two desirable properties of a CDF: (1) it is a non-decreasing function ranging from

0 to 1, and (2) it can be defined at any point in the real domain; e.g., the CDF of

a discrete random variable can be represented as a step function. We employ two

specific CDF functions, StepCDF and LinCDF, for approximate representations.

Definition 5.5.1. Given a set of points P = {(x1, y1), . . . , (xk, yk)} where x1 ≤ x2 ≤

. . . ≤ xk and 0 ≤ y1 ≤ . . . ≤ yk = 1, StepCDFP is the piecewise constant function

that interpolates between the points whereas LinCDFP is a piecewise linear function

that interpolates between the points:

StepCDFP (x) =

0 if x < x1

yi if xi ≤ x < xi+1

1 if x ≥ xk

LinCDFP (x) =

0 if x < x1

yi + x−xi

xi+1−xi
(yi+1 − yi) if xi ≤ x < xi+1

1 if x ≥ xk

Objectives. Using these approximate representations, we devise algorithms that

construct approximate distributions of aggregates over uncertain data. If FA
t is the

cumulative distribution of aggregate At = A(Y1, . . . , Yt), where Yi’s are independent,

we seek an algorithm that maintains an approximation F̃A
t incrementally as data

arrives while satisfying a given error bound.

For all standard aggregates, the existence probability of the aggregate result, p,

can be computed exactly. Specifically, for count, p = 1; for sum, avg, max and min, an

89

aggregate exists if one of the input tuples exists; hence, p = 1−∏i(1−pi). Therefore,

below we focus on algorithms that compute (ε, δ) approximate distributions given that

the aggregates exist.

5.5.2 Bounded-Error Monte-Carlo Simulation

We first present a randomized algorithm based on Monte-Carlo simulation. In

contrast to prior work, we establish accuracy guarantees in our evaluation framework.

We consider any aggregate A for which there exists an efficient stream algorithm Φ for

computing A(y1, . . . , yt) given the deterministic stream 〈y1, . . . , yt〉. The algorithm to

compute an (ε, δ) approximate distribution, Φ∗, proceeds as follows:

• On seeing the t-th tuple, generate m ≥ ln(2δ−1)/(2ε2) values y1
t , . . . , y

m
t inde-

pendently from the distribution of Yt.

• Run m copies of Φ: run the i-th copy on the stream 〈yi
1, . . . , y

i
t〉 and compute

ai = A(yi
1, . . . , y

i
t), 1 ≤ i ≤ m.

• Return F̃A
t (x) = 1

m

∑

i∈[m] 1[ai,∞)(x).

Theorem 5.5.1. For any aggregate A for which there exists an exact algorithm Φ for

computing aggregate A on a non-probabilistic stream, the proposed randomized algo-

rithm Φ∗ computes an (ε, δ) approximation of the distribution of A on a probabilistic

stream. The space and update time used by Φ∗ is only a factor O(ε−2 log δ−1) greater

than the space and update time required by Φ.

This proof of the theorem follows directly from the Dvoretsky-Kiefer-Wolfowitz

theorem from statistics. We see that this theorem applies to aggregates such as sum,

count, avg, min, and max. This theorem subsumes existing work based on Monte

Carlo sampling [38, 46, 88] since it can determine the number of samples sufficient

for meeting an accuracy requirement, in contrast to taking the number of samples as

an input parameter to the algorithm.

90

5.5.3 Distributions of MAX and MIN

In this section, we present a deterministic algorithm to compute approximate

distributions of max and min. Since the algorithm is similar for both aggregates, our

discussion below focuses on max.

We define the random variable Mt = max(Y1, . . . , Yt) where Yt is the random

variable corresponding to the t-th tuple, and let FM
t be the corresponding CDF. To

provide a uniform solution for both discrete and continuous random variables, we first

consider inputs modeled by discrete distributions and later extend to the continuous

case. We assume that each Yt takes λ values from a finite universe of size U, without

loss of generality, [1, n], or shortly [n].

A useful property of max is that FM
t (x) can be easily computed for any specific

value of x, if x is known ahead of time, because FM
t (x) =

∏

i∈[t] P [Yi ≤ x]. Conse-

quently, it suffices for the algorithm to maintain a value cx, initially 1, for each x in

the universe, and on processing the t-th tuple we update cx with cx · P [Yt ≤ x]. This

computes the exact distribution of max with the update cost per tuple O(U), which

is inefficient for stream processing. Probabilistic databases compute the distribution

of max based on the extensional semantics [23], with the total cost of O(tU) for a

relation of t tuples; further, this is not an incremental algorithm.

A natural attempt to turn the above observation into an algorithm that returns

a good approximation F̃M
t for FM

t would be to evaluate FM
t (x) for a fixed set of

values of x0, x1, . . . , xk and then define F̃M
t to be the k piecewise linear function

that interpolates between these values. Unfortunately, this approach does not work

because it is impossible to choose appropriate values of x0, x1, . . . , xk without first

processing the stream. For example, if we space the values evenly, i.e., xi = i · n/k,

and observe that every Yj takes values in the range [2, n/k], then our algorithm

determines that FM
t (x0) = 0 and FM

t (x1) = . . . = FM
t (xk) = 1. Consequently, the

interpolation F̃M
t does not satisfy the necessary approximation guarantees.

91

a1 b1a2
b2a3 b3

(a) StepCDF defined on 3 intervals

I1
I2 I3

a b

ca

cb

a b

c'a

c'b

v1 v2
a b

c'a

c'b

v1 v2 a b

c'a

c'b

v1 v2

I I
I1 I2 I1 I21

I22

(b)Interval I
before updating

(c) Updating I using
values v1, v2

(d) Subpartitioning I at v1
in this example

(e) Splitting I2 into I21 and I22,
and shifting I21

Figure 5.4. StepCDF and illustration of the basic steps of the MAX algorithm

The main idea of our algorithm is to dynamically partition the universe into

consecutive intervals. For each interval, we maintain the estimates of the cumulative

probabilities of its two ends. Because the CDF is non-decreasing, if the cumulative

probability estimates of the two ends are sufficiently close, either of these estimates

is a good estimate for all the intermediate points.

Approximate Representation with Invariants. We employ an approximate

representation based on StepCDF for F̃M
t . The universe is partitioned into consec-

utive intervals: [1, n] = ∪i[ai, bi], where ai+1 = bi + 1. For each interval [a, b], we

maintain ca and cb to be the estimates of cumulative probabilities at a and b. Each

interval [a, b] is then viewed as a broad step, which contains a straight line from a to

b− 1 and possibly a jump at b if cb 6= ca, as illustrated in intervals I1 and I3 in Figure

5.4(a). This yields a StepCDF defined over the point set {a1, b1, a2, b2, . . .}.

The algorithm has the following invariants. At any point, given any interval [ai, bi]

and a constant parameter ε′ (see Theorem 5.5.2 on how to set ε′ as a function of the

accuracy requirement ε) , we have:

(1) cbi
≤ cai

(1 + ε′), (2) cai+1
≥ cai

√
1 + ε′

Invariant (1) guarantees that the estimates of the two ends of an interval are close, so

the estimate errors for the points in between can be bounded. Invariant (2) ensures

that the estimates of any two adjacent intervals are separated by at least a certain

92

factor. Given the range [0, 1] of CDF’s, the number of intervals to be maintained is

hence bounded, which in turn gives an upper bound on the time and space required

for the algorithm.

MAX Algorithm. This algorithm computes the approximate distribution of

max incrementally. The algorithm first initializes F̃M
t (x) with one interval, I =

{[1..n]}, c1 = cn = 1. When a new tuple arrives, the algorithm proceeds by updat-

ing the intervals in I, subpartitioning and adjusting some intervals when necessary.

When an approximation is required, a StepCDF based on the intervals and estimates

is returned. Below are the main steps performed per-tuple.

0. Preprocessing: Construct a CDF from λ values of the tuple Yt.

1. Updating and Pruning: For each interval I = [a, b] in the current max distribu-

tion, update its estimates with the new tuple: c′a = ca ·P [Yt ≤ a] and c′b = cb ·P [Yt ≤ b]

(see Figures 5.4(b) & (c)). If after updating, c′b < ε, discard the interval. Note that

after updating, the ratio between the estimates of the two ends can only increase.

2. Subpartitioning: This step is performed to ensure that Invariant 1 is satisfied.

If updating with the new tuple results in c′b > c′a(1 + ε′) for some interval I =

[a, b], we subpartition that interval into subintervals I1 = [a1, b1], . . . , Ik = [ak, bk]

with a1 = a, ai+1 = bi + 1, so that Invariant 1 holds (see Figure 5.4(d)). The

implementation ensures that the interval is not partitioned excessively. Then, for

each x ∈ {a1, b1, a2, b2, . . . , bk}, we update cx as cxP [Yt ≤ x].

3. Adjusting: This step deals with a subtle issue regarding the efficiency of the

algorithm. If, among the intervals after subpartitioning, there exists an interval Ii,

whose width is greater than half of the width of the original interval I, we split it

into two intervals Ii1, Ii2 with equal width. This step ensures that each new interval

is at most half the width of I. However, this results in Ii1 and Ii2 having the same

estimates; to ensure Invariant 2, one of the interval is shifted by a factor
√

1 + ε′.

Figure 5.4(e) illustrates this step.

93

Analysis. We define two properties for any interval: The generation g of an

interval is the number of splits made to generate that interval. Note that the algorithm

starts with one interval having g = 0. The net shifting effect s of an interval is the

net number of times the interval has been shifted. s is incremented by 1 when the

interval is shifted up, and decremented by 1 when shifted down. The proofs of the

following lemmas and theorem are deferred to the appendix.

Lemma 5.5.1. For any interval I = [a, b] of generation g and net shifting effect s,

after t tuples have been processed, for v ∈ {a, b},

FM
t (v) ∈ [cv/(

√
1 + ε′)s, cv/(

√
1 + ε′)s · (1 + ε′)g] .

Furthermore, for any x ∈ [a, b],

FM
t (x) ∈ [ca/(

√
1 + ε′)s, cb/(

√
1 + ε′)s · (1 + ε′)g] .

Lemma 5.5.2. At any step in the algorithm, the number of intervals is bounded as

follows: |I| ≤ 2 log(ε−1)/ log(1 + ε′).

Lemma 5.5.3. The maximum generation of an interval is log U.

Theorem 5.5.2. The algorithm for max maintains an (ε, 0) approximation for FM
t

where ε′ = ε(1 + 0.5εeε)−1(log U + 1)−1. The space use is O(ε−1 log U ln ε−1) and the

update time per-tuple is O(min(λt, ε−1 log U ln ε−1) + λ).

Supporting Continuous Distributions. When input tuples are modeled by

continuous random variables, e.g., Gaussian distributions for object locations, a gen-

eral approach is to consider a real universe of size 264. The complexity is then propor-

tional to log U = 64. In most applications, the universe size depends on the range and

precision of measurements, often with smaller values of U and the number of values

per tuple λ further less than U. This combined effect can yield a fast algorithm (as

shown in Section 5.6.2).

94

5.5.4 Distributions of SUM and COUNT

In this section, we consider the aggregates sum and count. Since count is a

special case of sum, we focus on sum in the discussion below. We define the random

variable St =
∑

i∈[t] Yi and let F S
t be the corresponding CDF, where Yi is the random

variable corresponding to the i-th tuple. If the mean and variance of each Yi are

bounded, then the Central Limit Theorem (CLT) states that the distribution of St

tends towards a Gaussian distribution as t goes to infinity. Later, we quantify the

rate at which the distribution converges and use this to achieve an algorithmic result

when there are a sufficiently large number of tuples. But for many applications, this

asymptotic result cannot be applied. In the probabilistic databases where input tuples

are modeled by discrete distributions, the exact distribution of sum can be computed

using possible worlds semantics, which has an exponential complexity in the number

of tuples [23]. We instead present a deterministic algorithm that efficiently computes

the approximate distribution of sum.

Approximate Representation using Quantiles. We use StepCDF and

LinCDF with the set of points based on the quantiles of a distribution. For some

0 < ε < 1, a particularly useful set of k = d1/εe points are those corresponding to

uniform quantiles, or shortly quantiles, of the distribution, denoted by Q(ε), such

that:

PQ(ε)(F) = {(x1, ε), (x2, 2ε), . . . (xk, 1)} .

where each xi = F−1(iε). It is easy to show that

KS(F, LinCDFPQ(ε)(F)) ≤ ε , KS(F, StepCDFPQ(ε)(F)) ≤ ε .

SUM Algorithm. We now present a deterministic algorithm for maintaining a

good approximation of F S
t . We assume that each Yt takes values from a finite set Vt

of size at most λ, where the universe size is still U. We treat the non-existence value

95

⊥ as if 0 since this does not affect the value of sum. In this case, it is easy to see that

F S
t satisfies F S

t (x) =
∑

v∈Vt
F S

t−1(x − v)P [Yt = v]. Unfortunately even when λ = 2,

the complexity of exactly representing F S
t is exponential in t. Hence, to achieve space

and time efficiency, we use approximate representations using quantiles as introduced

above. The challenge is to quickly update the point set when each tuple arrives.

We focus on the LinCDF representation with quantiles but the following algorithm

also applies to StepCDF. (We observed empirically that LinCDF typically performed

better.)

Our algorithm processes each new tuple in two conceptual steps Update and Sim-

plify. In Update, we combine our approximation for F S
t−1 with Yt to produce an

intermediate approximation F for F S
t :

F (x) =
∑

v∈Vt

LinCDFPt−1(x − v)P [Yt = v] (5.5)

In this step, for each v ∈ Vt, we shift the point set Pt−1 for the previous sum

distribution by v and scale it by P [Yt = v]. We then compose these new point sets into

λk points, in particular, using linear interpolation for the LinCDF representation. See

Figure 5.5 for an illustration of this step. Now F contains a set of λk points, which

we call P̄t. Next, simplify F to ensure efficiency in later processing while meeting

the error bound ε′ provisioned for this tuple (Theorem 5.5.3 shows how to set ε′ by

default, which is further optimized in our implementation.) To do this, we compute

the k quantiles of F and return LinCDFPt
where Pt = {(F−1(iε′), iε′) : 1 ≤ i ≤ k}.

However, it is inefficient to perform these steps sequentially: why compute the

set of λk points for F when ultimately we are only concerned with k points? To

avoid this we compute F−1(iε′) for each i by doing a binary search for the closest pair

xa, xb ∈ P̄t such that F (xa) ≤ iε′ ≤ F (xb). This results in the following theorem. Its

proof is shown in the appendix.

96

1

a

p1

a+v1

p2

a+v2

a+v2a+v1

1

(a) LinCDF
before updating

(b) Shifting and scaling
LinCDF with two values

(c) Composing with
linear interpolation

Figure 5.5. Updating step of the SUM algorithm

Theorem 5.5.3. We can maintain an (ε, 0) approximation for F S
t using O(1

ε′
) space

and O(λ
ε′

log(λ
ε′
)) time per tuple, where ε′ = ε/t.

Optimizations. We further develop three optimizations of the basic algorithm: 1)

Adaptive number of quantiles. We observe empirically that the number of quantiles,

k, needed at each step to satisfy the error bound, ε′, is smaller than the proven bound,

1/ε′. Hence, we consider a variant of the algorithm that computes the updated set of

λk points, then computes the k quantiles, and then reduces the number of quantiles,

e.g., by half, if the error bound ε′ is still met. 2) Biased quantiles. For distributions

that are close to Gaussian, we observe that using a set of biased quantiles gives

a better approximation. However, to meet a KS requirement, we theoretically need

more biased quantiles than uniform quantiles. We propose to use both sets of quantiles

in the algorithm. (3) Central Limit Theorem. For sufficiently large t, the distribution

of F S
t can be approximated by a Gaussian distribution. To exploit this, we just need

to compute a few moments of each input distribution and check if the asymptotic

result holds according to the Berry-Esseen theorem [25].

Supporting Continuous Distributions. When the input distributions are con-

tinuous, we propose to discretize and represent these distributions by StepCDF or

LinCDF. When discretized with λ quantiles, the KS error is (at most) ε1 = 1/λ. We

can show that if the KS error incurred when adding this tuple to sum is ε2, the total

97

error from this tuple is bounded by ε1 + ε2 (which is due to the triangle property of

the distance metric). We next discuss on how to set ε1 and ε2. Recall that the SUM

algorithm with optimizations computes λk points and then adaptively chooses a sub-

set of size k′ that satisfies the KS error of ε2, where k′ ≤ 1/ε2. Hence the cost is also

proportional to O(λk′) = O(1/ε1 · 1/ε2). In practice, due to the use of mixed quan-

tiles, k′ is often smaller than 1/ε2, especially when the distribution becomes smooth,

which gives an incentive to set ε1 > ε2 as we observe empirically.

5.6 Experimental Results for Aggregation

In the following set of experiments, we evaluate our algorithms for aggregation

described in Sections 5.4 and 5.5, and compare them to a histogram-based sampling

technique [38].

5.6.1 Aggregation under Gaussian Mixture Models

Input data. We generate a synthetic tuple stream with one continuous uncertain

attribute. Each tuple is modeled by a mixture of two Gaussian components. The

means of the two components are uniformly sampled from [0, 5] and [5, 50] respectively

to model complex real-world distributions from asymmetric to bimodal. The standard

deviations are in [0.5, 1] and the coefficients are uniform from [0, 1]. We evaluate avg

over this stream by using tumbling windows of N tuples. The default KS requirement

is KS ≤ 0.05.

Expt 1: Compare our algorithms. We first compare two algorithms, exact

derivation and approximation using CF fitting, which constitute our hybrid solution.

We vary the window size, or the number of tuples under aggregation, N , since it

directly affects the result distribution and the computation needed. We run the

algorithms to get 100 measurements for each setting and take the average.

98

0 10 1 10 1 1 10 1 1 1 10 1 1 1 1 1
0 1 0 1 123 45673 869

: ; < = > ? @ ; A BC D D E F G H I J K L M N O O N P QR G S T O U V E N W S O N F P
(a) Throughput of approx. and exact
algorithms

X Y Z Y [YY Z Y [Y Z Y \Y Z Y]Y Z Y ^Y Z Y _Y Z Y `Y Z Y a
[Y [Y Ybcde fg hijk

l m n o p q r m s t
u v v w x y z { | } ~ � � � � � �� y � � � � � w � � � � � x �

(b) Accuracy of approx. and exact al-
gorithms

(c) A fitted distribution for 5 tuples

0 1 10 1 1 10 1 1 1 10 1 1 1 1 1
0 1 0 1 123 45673 869

: ; < = > ? @ ; A BK � C � � C Q Q E H� � � 1 �� � � 1 �� � � 1 �U N � T E V O N � S O N F P
(d) claro vs Sampling and Discretiza-
tion (Throughput)

11 H 1 01 H 1 �1 H 1 �1 H 1 �1 H 1 �1 H 1 �1 H 1 �1 H 1 �1 H 1 �
0 1 0 1 1���� �9 �� ¡ : ; < = > ? @ ; A B

� � � 1 �� � � 1 �� � � 1 �U N � T E V O N � S O N F PK � C � � C Q Q E H
(e) claro vs Sampling and Discretiza-
tion (Accuracy)

1� 1 1 10 1 1 1 10 � 1 1 1� 1 1 1 1� � 1 1 1� 1 1 1 1
1 H 1 0 1 H 1 � 1 H 1 � 1 H 1 � 1 H 023 45673 869

¢ £ ¤ ; ¥ ¦ ¥ § @ £ ¨ ¨ > ? B =
K � C � � C Q Q E H� � 0 1 �� � � 1 �� � 0 1 1 �� � 0 � 1 �

(f) Throughput of varying KS

Figure 5.6. Experimental results for aggregation under GMMs, and histogram-based
sampling H(k) (with µ=50) and discretization.

Figure 5.6(a) shows the throughput results in the number of tuples processed per

second. As expected, the throughput of exact derivation is high when N is small,

e.g., up to 10, but deteriorates quickly afterwards because the exact result formulas

generated grow exponentially in N . In contrast, CF fitting works well for large

numbers of N , e.g., after 10. This is due to the smoother result distributions in this

99

range, hence easier to fit, and the one-time fitting cost being amortized over more

tuples. We observe that both algorithms satisfy the requirement of KS ≤ 0.05 except

for CF fitting in the hardest range. The hardest range is 5 to 10 tuples, where the

result distributions are complex and require a mixture of many components to fit,

hence low throughput. For performance purposes, we restrict the maximum number

of components for each fitted distribution to be 10 (hence, the accuracy requirement

may be violated in this range). An example of the true and fitted distributions for

5 tuples is shown in Figure 5.6(c). From 15 tuples onwards, the result distributions

become smoother with fewer peaks.

We also run experiments using the VD metric and other workloads, and observe

the same trends in accuracy, throughput, and similar crossing points between the two

algorithms. (More details are shown in [96].)

The above results suggest the configuration for the hybrid solution. When the

number of tuples N is 10 or below, we use exact derivation. After that, we switch to

CF fitting. In addition, when N is large enough (e.g. > 30), the result distributions

are mostly a smooth Gaussian and can be computed directly using the Central Limit

Theorem (CLT). In Expt 3 below, we will use this as an optimization when N ≥ 30.

Expt 2: Compare to histogram-based sampling and discretization. We

now compare our hybrid solution with the histogram-based sampling algorithm [38]

and the discretization approach. Similarly to the algorithm for joins, the sampling

algorithm (1) generates k·µ samples for each tuple, (2) performs aggregation over them

to get k · µ result samples, and (3) sorts the result samples and builds a histogram

with k buckets and µ samples for each bucket. Since we find the accuracy of this

algorithm to be more sensitive to k, we vary k among 20, 30, and 50 while fixing µ to

50. For discretization, we approximate continuous distributions using discrete points

as in joins, and then use the algorithm in [53] to compute the distribution of avg.

100

Figures 5.6(d) and 5.6(e) show the results of the three algorithms. Our hybrid

algorithm outperforms all settings of histograms in both throughput and accuracy.

For accuracy, only histograms with k ≥ 30 ensures KS ≤ 0.05; k = 20 violates

this in the “hard” range of 5 to 15 tuples (hence their throughput is omitted). The

discretization approach offers no accuracy guarantee like the histogram method. So we

manually varied the number of points and chose the best setting that met our accuracy

requirement. The throughput of this approach is shown to be even lower than that of

histograms, especially when N is large. These results confirm the advantages of our

algorithm over sampling and discretization since we can adapt to a given accuracy

requirement while optimizing for throughput.

Expt 3: Vary the KS requirement. To further study our adaptivity to ac-

curacy requirements, we vary KS from 0.01 to 0.1. The window size N is chosen

randomly from the range [2, 50], so that we can examine different ranges of the hy-

brid solution. Figure 5.6(f) shows the throughput (where the KS requirement is

met). Our algorithm outperforms the histogram algorithm for all values of the KS

requirement by at least three times. Moreover, we can adapt to given accuracy re-

quirements while it is unknown if a setting of the histogram algorithm can satisfy

these requirements in advance.

5.6.2 Aggregation under Mixed-type Model

We now evaluate the techniques proposed for the claro system when the tuple

existence is uncertain. We use simulated uncertain data streams, whose parameters

used in this study are: the accuracy requirement (ε, δ), the (tumbling) window size

W , the number of values per tuple λ including the non-existence case (by default

λ = 3), and the universe size U (by default, U=106).

Evaluation of MAX. We evaluate the performance of both the deterministic

algorithm for max, Dmax, where δ=0, and the generic randomized algorithm, Rand,

101

[Y Y[Y Y Y[Y Y Y Y[Y Y Y Y Y[� © Y `[� © Y a
Y Z Y [Y Z Y \ Y Z Y] Y Z Y ^ Y Z Y _ Y Z [ª« ¬®̄« °®g

± r ² t ³ ´ m µ t ¶ t n · ¸ t ¹ º m » p n ¼� � �½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â
(a) MAX: Varying ε (Throughput)

YY Z Y [Y Z Y \Y Z Y]Y Z Y ^Y Z Y _Y Z Y `Y Z Y aY Z Y Ã
Y Z Y [Y Z Y] Y Z Y _ Y Z [bcÄ ¬¬¬ ± r ² t ³ ´ m µ t ¶ t n · ¸ t ¹ º m » p n ¼

� � �½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â
(b) MAX: Varying ε (Accuracy)

[Y Y[Y Y Y[Y Y Y Y[Y Y Y Y Y[� © Y `[� © Y a
\ \ Y _ Y [Y Y [_ Y \ Y Yª« ¬®̄« °®g

Å ´ ¶ Æ Ç » ´ t º È t µ É ´ ¹ » t
� � �½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â

(c) MAX: Varying num. of values per
tuple

Y_ Y Y[Y Y Y[_ Y Y\ Y Y Y\ _ Y Y] Y Y Y
Y \ Y Y ^ Y Y ` Y Y Ã Y Y [Y Y Yª« ¬®̄« °®g

l m n o p q r m s t
� � �½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â

(d) SUM: Varying W (ε = 0.01)

[Y Y[Y Y Y[Y Y Y Y[Y Y Y Y Y[� © Y `[� © Y a[� © Y Ã
Y \ Y Y ^ Y Y ` Y Y Ã Y Y [Y Y Yª« ¬®̄« °®g

l m n o p q r m s t
� � �½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â

(e) SUM: Varying W (ε = 0.05)

[Y Y[Y Y Y[Y Y Y Y[Y Y Y Y Y
Y Z Y [Y Z Y \ Y Z Y] Y Z Y ^ Y Z Y _ Y Z [ª« ¬®̄« °®g

± r ² t ³ ´ m µ t ¶ t n · ¸ t ¹ º m » p n ¼� � �½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â
(f) SUM: Varying ε (Throughput)

Figure 5.7. Experimental results for MAX, SUM under mixed-type models.

where 1-δ=0.9, 0.95, or 0.99. The reported results are averaged from a large number

of measurements, i.e., 500, after the warmup phase.

We first vary the error bound ε in a common range [0.01, 0.1]. W is uniformly

sampled from [10, 1000]. Figure 5.7(a) shows the throughput of the algorithms.

The deterministic algorithm, Dmax, is 10 to 1000 times faster than the randomized

algorithm, Rand, for all ε values tested. This is because Dmax can use a small number

of intervals to approximate the distribution (e.g., 20-50), whereas Rand uses hundreds

102

to tens of thousands samples, hence worse performance. We also observe that Dmax

is more accurate than Rand.

We next study the effect of the number of values per tuple, λ. We vary λ from 2

to 200, and set W = 100 and ε = 0.01. Figure 5.7(c) shows the throughput results.

As expected, the cost of Dmax increases with λ due to the costs of the first two

steps of Dmax depending on λ. However, the number of intervals in the approximate

max distribution does not increase linearly in λ—it is bounded according to Theorem

5.5.2. Overall, the throughput of Dmax is better than that of Rand by at least one

order of magnitude.

Evaluation of SUM. We evaluate the performance of the deterministic al-

gorithm for sum, Dsum, using the optimizations shown in Section 5.5.4, and the

randomized algorithm, Rand.

We vary W from 10 to 1000 for two values of ε, 0.01 and 0.05. Figures 5.7(d) and

5.7(e) show the throughput of both algorithms. For ε = 0.01, Dsum is faster than

Rand in all settings because Rand uses a number of samples increasing quadratically

in 1/ε, but Dsum uses much less. The throughput of Dsum decreases with W because

the additive error bound of Dsum requires provisioning error bounds to W tuples. For

ε = 0.05, Dsum is slightly slower than Rand for W ≤ 600 due to the reduced benefit

from ε. However, for larger values of W , CLT applies, yielding a high throughput of

millions of tuples per second. If we keep increasing ε, CLT starts to apply earlier,

e.g., when W = 150 for ε = 0.1.

We then vary ε from 0.01 to 0.1. W is uniformly taken from [1, 100], so that CLT

cannot be applied. Figure 5.7(f) shows the throughput.

Dsum is faster than Rand for the high-precision range [0.01, 0.02]. This confirms

that to gain high accuracy, Rand needs a very large number of samples and hence

degrades the performance quickly. When we do not require high accuracy, Rand can

be used for good throughput.

103

Summary: The above experiments, which can be considered as a micro-

benchmark, offer insights into the processing techniques for aggregation in claro

and their performance compared to sampling techniques. We observed that the pro-

posed algorithms for joins and aggregations under GMMs consistently outperform an

existing histogram-based technique. Under more complex mixed-type models, our

deterministic algorithm for max is constantly faster than our randomized algorithm

using Monte Carlo simulation by orders of magnitude. For sum, there is a tradeoff

between the two algorithms—the deterministic algorithm is more efficient for sum of

tuples with a small number of possible values (e.g., Bernoulli variables) under high

accuracy requirements, while the randomized algorithm is preferable for other cases.

5.6.3 Case Study: Tornado Detection

We now demonstrate the effectiveness of capturing uncertainty using distributions

in a real-world tornado detection system [58] 4. We first modified the velocity analysis

module in Figure 4.1 to generate velocity distributions in GMMs. In the FFT module,

the current system takes a weighted average from the discrete FFT distribution fF .

Instead, we apply a model-based analysis: Step 1 Strength Filter. If the radar

signal strength is below a threshold, we output zero and skip Step 2. Step 2 GMM

Fitting. Create a Gaussian distribution from the mean and variance of fF . Return

the distribution for output if it passes the goodness test against fF , for both the

Gaussian shape and high concentration around the mean. If the goodness test fails,

fit a mixture of two Gaussians from fF and remove any component with a large

variance as noise. Step 3 Smoothing. We average the distributions of high and low

frequency stream segments and across neighboring regions. For avg over GMMs, we

apply the techniques in Section 5.4.2 to compute the result distribution. Since the

4We acknowledge that this experiment was done by Boduo Li, whom we worked with in this case
study.

104

(a) Current CASA system (m/s). (b) claro with distribution-based analysis
(m/s).

Figure 5.8. Radial velocity maps of a true tornadic region from CASA and claro.

Table 5.1. Result of a real tonadic dataset of 947s from 84 scans.

Analysis Time Detection Time False Positives

CASA 182.1 s 4486 s 2137
Step1 180.06 s 640 s 1125
Step3 170.78 s 956 s 1650
Step1+3 176.01 s 441 s 313
Step1+2+3 (claro) 581.9 s 392 s 9

current tornado detection algorithm does not take distributions as input, we feed the

mean of each result distribution to the detection algorithm.

This case study used a real tornadic dataset collected in Oklahoma on May 8,

2007, containing raw data of 84 radar scans in 947 seconds. As true velocity changes

gradually in space and the tornado detection algorithm expects smooth input, we

first examine the spatial smoothness of velocity. The comparison between Figures

5.8(a) and 5.8(b) shows that our techniques yield much smoother velocity maps.

Specifically, the Strength Filter removes most colorful dots (i.e., noise) produced from

the regions with weak signals (indicating the lack of interesting weather events); the

GMM Fitting smoothes data by removing noise in the regions with strong signals; the

Smoothing step finally smoothes data across regions, which is especially important

for the boundaries between weak-signal regions and strong-signal regions.

105

We measure the analysis speed, detection speed, and detection result quality. To

explore the effect of each step, we show the breakdown of these measurements in

Table 5.1. As shown in rows 1-3, both Step 1 and Step 3 can significantly reduce

the detection time because data is smoother, but have only a limited effect on false

positives. We further combine Steps 1 and 3 as shown in row 4, resulting in further

reduction of detection time and false positives. While tornado detection can now be

performed at stream speed, the remaining 313 false positives still result in a poor

quality of detection results. When we turn on Step 2 for model fitting and model-

based analysis, the number of false positives drops to 9 across all 84 scans as shown

in row 5. The reason for this remarkable effect is that Step 2 removes noise in the

regions with strong radar signals on which the detection algorithm focuses. Although

the analysis time increases due to model fitting, given pipeline parallelism, the overall

system can still run at stream speed since each of the analysis phase and the detection

phase is faster than the radar sensing speed. As such, our model fitting and model

analysis approach is shown to provide high-quality detection results while enabling

stream-speed data analysis and tornado detection.

5.7 Query Planning under Mixed-type Models

In this section, we examine query planning for complete queries, which involves

the arrangement of different operators in a query and considers how to handle errors

due to the mix of different operators.

5.7.1 Arranging Operators in a Query Plan

We first discuss the arrangement of relational operators in a query plan using the

mixed-type data model. For queries that involve only joins, projections, and aggre-

gates, we have shown that for continuous uncertain attributes modeled by Gaussian

mixture models (GMMs), there are exact, closed-form solutions for the result distri-

106

Exact

Distributions

(Error ε = 0)

Approximate

Distributions

(Error ε > 0)

π, ×, Aggr

σ, γ

σ, π

Aggr

 (TEP p = 1)

(TEP p ≤ 1)

Aggr

Figure 5.9. Query plan arrangement in the mixed type model.

butions in Sections 5.2 and 5.4. When the above queries are extended with selections,

placing selections before joins, projections, and aggregates in a query plan can result

in conditioned (or precisely, mixed-type) distributions, hence not in GMMs any more.

The implications of this on other relational operations depend on commutativity. As

in traditional databases, projections and joins commute with selections [73]. There-

fore, the GMM-based solutions can still be applied if we postpone selections after

the joins and projections in a query plan. However, aggregates do not commute with

selections, hence these solutions cannot be applied to aggregates after selections. Sim-

ilarly, group-bys condition distributions when evaluating the groups, thus precluding

GMM-based solutions for subsequent aggregates. Then, we can resort to the approx-

imations proposed in Section 5.5 to compute the distributions of aggregates.

The above discussion suggests the arrangement of relational operators in a query

plan, as depicted in Figure 5.9, where the operators contained in the same box can

be arranged in any order. In particular, the bottom part of the query plan computes

exact distributions, using the exact algorithms and the definition of conditioning

operations, i.e., selections, group-bys (denoted as γ). Errors start to occur at the

aggregation operator where an approximation algorithm is used, (see Sections 5.4

and 5.5), and will propagate to the subsequent operators.

107

5.7.2 Query Planning

We now consider query planning that computes approximate answers with bounded

errors for complex queries. The claro system supports a Select-From-Where-Group

by-Having block. We can compute multiple aggregates that are independent by in-

voking the approximation algorithms separately. (Computing correlated aggregates

is a harder problem and we discuss some directions for it in the future work section.)

More specifically, the cases that we support include: (1) apply selection or group-by on

some uncertain attributes and then compute a single aggregate, (2) compute multiple

aggregates on independent attributes when tuple existence is certain. In both cases,

the aggregates computed can be used in Having or returned in Select. The exam-

ples of the first case are queries Q1 and Q2 (as shown in Section 1.1, where group-bys

introduce tuple existence probabilities (TEPs) and the uncertain attributes become

correlated through these TEPs. Then, we can compute the marginal distribution for

a single aggregate. The second case includes not having Group by or having Group

by on deterministic attributes (e.g., query Q3 below) since this still retains TEPs

equal to 1. In this case, the aggregates of the independent attributes are independent

and can be computed using our algorithms.

As mentioned above, errors start to occur in the first aggregate computed us-

ing an approximation algorithm. These errors can then propagate to the subsequent

operations performed on the derived aggregate attributes. To quantify errors of inter-

mediate and final query results, we extend our approximation framework to account

for errors associated with both the attribute distributions and the tuple existence

probability.

Extended Approximation Metric. We first extend the KS metric to a general

case when both the TEP and uncertain attributes in a mixed-type tuple are approx-

imate. The extension, adopted from the KS definition for multi-dimensional CDF’s

[63], considers all complementary distribution functions. We denote an ordering of

108

random variables, X = (X1, X2, ..., Xn), to be a vector o = (o1, o2, ..., on), where oi =

{≤,≥}. Given a constant vector, x = (x1, x2, ..., xn), PX [〈o,x〉] = P [
∧

i(Xi oi xi)].

PX [〈o,x〉] can be computed via integration of the joint density function (pdf) of X.

Definition 5.7.1. Let G=(p, f) and G̃=(p̃, f̃) be two mixed-type distributions of X

and X̃, where each contains n attributes, respectively. The mixed-type KS, termed

KSM, between G and G̃ is defined as:

KSM(G, G̃) = max(|p − p̃|, max
o

(sup
x

|p · PX [〈o,x〉] − p̃ · PX̃ [〈o,x〉] |)).

This definition considers all of the 2n orderings o of n variables. Since KSM

computes the maximum of the differences between the probabilities that the variables

are in any given range, it ensures symmetric results for range predicates (e.g., for ≤,

≥). For the two classes of queries discussed above, this general definition can be

reduced to:

Remark 5.7.1. Let G=(p, F) and G̃=(p̃, F̃) be two mixed-type distributions where

F and F̃ are the cumulative distributions of a single attribute. The KSM between G

and G̃ becomes:

KSM(G, G̃) = max(|p − p̃|, sup
x

|p · F (x) − p̃ · F̃ (x)|,

sup
x

|p · (1 − F (x)) − p̃ · (1 − F̃ (x))|).

For example, if G and G̃ are the true and approximate distributions of an attribute

X, KSM(G, G̃) = ε means that all quantities such as P [x 6= ⊥], P [x 6= ⊥ ∧ x ≤ 5],

and P [x 6= ⊥ ∧ x ≥ 5], when computed using G or G̃, will not differ by more than ε.

In the second case, where the TEP is exact and equal to 1, and the attributes Xi

are independent, the KSM can be rewritten as follows.

109

Remark 5.7.2. Let G and G̃ be the multivariate distributions of X and X̃, where

each contains n independent attributes. The KSM between G and G̃ is:

KSM(G, G̃) = max
o

(sup
x

|PX [〈o,x〉] − PX̃ [〈o,x〉] |)

= max
o

sup
x

|
∏

i

P [Xi oi xi] −
∏

i

P

[

X̃i oi xi

]

|

The following proposition characterizes the KSM of the joint distribution in terms

of individual KS’s. Its proof is shown in the appendix.

Proposition 5.7.1. Let G=(p, f) and G̃=(p̃, f̃) be two mixed-type distributions of

attributes X = (X1, X2, ..., Xn). If p = p̃ = 1, Xi’s are independent of each other,

and each Xi is bounded with a KS error εi, KSM(G, G̃) ≤∑i εi.

Query Approximation Objective. We next introduce our notion of approx-

imate answers of a query. As is known, the evaluation of a relational query results

in an answer set; when given infinite resources or time, we could compute the exact

answer set. We then define an approximate answer set against such an exact answer

set as follows.

Definition 5.7.2. An approximate query answer set, S̃, is called (ε, δ)-approximation

of the exact query answer set, S, if S̃ and S contain the same set of tuples and the

KSM between any tuple in S̃ and its corresponding tuple in S is at most ε with

probability 1 − δ.

Our discussion below focuses on (ε, δ)-approximation of query answers. A variant,

(ε, δ, α)-approximation, further quantifies the approximation when a query gives a

threshold, α, for filtering answers with low existence probabilities.

Query Planning: Error Propagation. The goal of query planning is to find

a query plan that meets the (ε, δ) approximation objective for a given query. To

the best of our knowledge, our work is the first to quantify errors for the complex

110

queries as described before. We first perform a bottom-up analysis of a query plan,

focusing on how errors arise and propagate through operators. In our query plans,

errors begin at the first aggregation that applies (ε, δ)-approximation as proposed

in Section 5.5. For post-aggregate operations, the earlier approximation errors now

affect the estimates of both the tuple existence probability and distributions of derived

aggregate attributes. Below, we focus on selection and projection as post-aggregation

operators.

Selection. We quantify the approximation errors propagated through selections,

e.g., in the Having clause in the next proposition.

Proposition 5.7.2. Selection on an attribute with (ε, δ)- approximation using a range

condition (x ≤ u, x ≥ l, or l ≤ x ≤ u) is (2ε, δ)-approximation. If the selection uses

a union of ranges, the approximation error is the sum of error, 2εi, incurred for each

range i.

The proof of this proposition is presented in the appendix.

When selections are applied for multiple independent aggregates, the above propo-

sition applies for each selection independently. Note that in this case, the TEP would

be factorized into these attributes, and its KSM error is bounded by the sum of KSM

error of the independent attributes (this is a simple generalization of Proposition 5.7.1

that uses KSM instead of KS).

Projection. Projection does not change the tuple existence probability. That is,

if a derived attribute whose existence probability is approximate is projected out, its

error is transferred to the existence probability of the result tuple; hence, the KSM

of the tuple does not change. This also holds for the case where multiple derived

attributes are projected out, since one attribute can be projected out at a time. A

special, but trivial, case is when an approximate derived attribute having an exact

existence probability is projected out, the KSM error of the result tuple is reduced

by the KSM error of that attribute, as indicated by Proposition 5.7.1.

111

Window

ObsStream: {time, id, xp, luminosityp}

{segNo, max_luminosityp}

σMAX(luminosity)>20

GROUPBY floor(x/L) AS segNo

AGGR MAX(luminosity)

Window

LocStream: {time, tag_id, xp, weight}

{areaNo, total_weightp}

σSUM(weight)>200

GROUPBY floor(x/L) AS areaNo

AGGR SUM(weight)

(a) Query plan for Q1 (b) Query plan for Q2

Window

ObsStream: {time, id, HTM_ID, rowcp, colcp }

{groupNo, avg_rowcp, avg_colcp}

GROUPBY HTM_ID/pow(2,24)

AGGR AVG(rowc), AVG(colc)

(c) Query plan for Q3

Window

ObsStream: {time, id, xp, luminosityp}

{segNo, sum_luminosityp}

σSUM(luminosity)>100

GROUPBY floor(x/L) AS segNo

AGGR SUM(luminosity)

(d) Query plan for Q4

ε

ε/2

ε

ε/2
 ε/2

ε/4→AVG(rowc) ε/4→AVG(colc)

ε

 ε/2 = ε1 + ε2

ε1→discretization ε2→SUM(luminosity)

σAVG(rowc)<500, AVG(colc)<500

ε

Figure 5.10. Query planning for queries Q1-Q4

Query Planning: A Top-down Approach. In query planning, we start from

base tuples, assign a variable indicating the error incurred by each operation, and

combine these variables into a formula using the results from the above bottom-up

analysis. Then given a target error bound ε for the entire query (and error formula),

we traverse the query plan top-down, assign an error bound to each variable to satisfy

the target error bound. We next consider query planning for a set of queries that

covers all cases that claro supports.

Computing a single aggregate. Revisit query Q1, from Section 1.1, whose

query plan is illustrated in Figure 5.10(a). The query plan first performs the group-

by operation, which computes the tuple existence probability of an object in each

group, and then computes sum of weight for each group using the SUM approximation

algorithm, with error ε1. After that, the selection, sum(weight) > 200, is applied to

each group. Proposition 5.7.2 bounds the error of the selection by 2ε1. Therefore,

given the target error bound, ε, the approximate sum should have an error bound

ε1 = ε/2.

Query planning for Q2 that computes the maximum luminosity per area, except

for computing max, is similar to that of Q1, as shown in Figure 5.10(b). These two

queries are examples of case (1) we support.

112

Computing multiple independent aggregates. Query Q3 below is a modified

query taken from the Sloan digital sky survey (SDSS) example queries. Q3 groups

object into HTM buckets, a deterministic attribute, and computes two independent

averages of rowc and colc and returns the groups when these averages are in a certain

range. This corresponds to case (2) above.

Q3: Select HTM ID/power(2,24), AVG(rowc), AVG(colc)

From Galaxy

Group by HTM ID/power(2,24)

Having AVG(rowc) ≤ 500 and AVG(colc) ≤ 500

If the target accuracy requirements is ε, we can assign an error bound of ε/2 to

each average according to Proposition 5.7.1. Then due to the effect of selection, the

error bound assigned to each average before selection is set to ε/4. Note that error

provisioning remains the same if we use other aggregates than avg.

Discretization of continuous distributions. Recall that Q2 computes max

of luminosity, a continuous attribute. Due to the partitioning scheme of the MAX

algorithm, we do not need to discretize the distribution of the input tuples in advance.

Now consider Q4, a slightly different version of Q2, that computes sum(luminosity).

This query is to detect regions with high cumulative luminosity. Due to the effect of

selection after sum, given a target error bound ε, the approximation of sum can have

an error bound ε0 = ε/2. Since sum is computed for continuous random variables, we

need to use discretization as discussed in Section 5.5.4.

The error for sum is the sum of the discretization error and the error given to the

SUM algorithm; therefore, we can assign error bounds ε1 and ε2 for them respectively,

where ε′ = ε1 + ε2. Next we need to allocate the error bound ε1 to individual tuples,

given the fact that the error accumulates across tuples. If n is the number of tuples in

a given group, then each tuple can be uniformly assigned an error bound of ε1/n. The

allocation of ε2 to each tuple is performed in the SUM algorithm. (See Section 5.5.4

for the discussion on how to choose the error bounds ε1 and ε2.) We have discussed

113

discretization to compute one aggregate, i.e., case (1). The discretization for case (2),

when multiple aggregates are computed, is similar, hence omitted.

5.8 Experimental Results for Query Planning

We now evaluate the performance of four queries, Q1 to Q4, whose query plans

are shown above.

Expt 1: Q1. To run this query, we first obtain a stream of inferred object locations,

each of which is modeled by a Gaussian distribution, by running inference [94] over a

raw RFID reading stream. This query computes the sum of object weights per group

and checks if it exceeds 200. Although the weight of an object is deterministic, each

object belongs to a group with a probability, resulting in the sum of Bernoulli variables,

or λ = 2. This is a common case for aggregation on a deterministic attribute under

tuple uncertainty. Given a query accuracy requirement ε, the predicate “sum > 200”

requires assigning an error bound ε/2 to the SUM algorithm. The measurements

are averaged over 500 time windows, where a time window can contain new location

tuples and trigger the computation of group-by aggregation.

We first compare our deterministic algorithm (with ε = 0.05) with an alternative

method that uses only the moments of the sum distribution to estimate the TEP

when evaluating the having predicate “sum > v”. This method cannot return the

distribution of sum in the query result, so we restrict the comparison to computing

TEP only. Since the mean and variance of sum can be computed from the input tuples

using the linearity property, we use the Chebyshev’s inequality to derive an upper

bound of the TEP. Figure 5.11(a) shows the estimates of the TEP as we vary the

threshold v in the predicate. As can be seen, using the Chebyshev’s inequality can

be very inaccurate, thus confirming the need to use the sum distribution to compute

the TEP.

114

YY Z \Y Z ^Y Z `Y Z Ã[
Y [\] ^ _ªÄÊ Ë ¸ Ì Ç Í m n Î ¹ µ t o m Ï Ç · t Ð r Ñ Ò Ó Ë Ô r · o o t Í ¼

| Õ � Ö × Ø Õ � � Ù x Ú � ¾� � � u v v w x y� y � � �
(a) Query 1 - Estimating TEP

Y[Y Y Y\ Y Y Y] Y Y Y^ Y Y Y_ Y Y Y` Y Y Ya Y Y Y
Y Z Y [Y Z Y] Y Z Y _ Y Z [ª« ¬®̄« °®g

± r ² t ³ ´ m µ t ¶ t n · ¸ t ¹ º m » p n ¼
� � �½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â

(b) Query 1 - Throughput

YY Z \Y Z ^Y Z `Y Z Ã[
^ Y ^ _ _ Y _ _ ` Y ` _ a Y a _ Ã YªÄÊ É Û µ t º Û p » o Í ¸ Ì Ç Í m n Î ¹ µ t o m Ï Ç · t Ð Ò Ü Ý Ó Í ¼Þ � w ß x � Ù x Ú � ¾� � � u v v w x y� y � � �

(c) Query 2 - Estimating TEP

1� 1 1 1� 1 1 1� 1 1 1� 1 1 10 1 1 1 1
1 H 1 0 1 H 1 � 1 H 1 � 1 H 023 45673 869

§ @ à B á ¦ ; â B ¥ B < ã ä B å æ ; ¨ > < ç
U V O� S P è � � 1 é �� S P è � � � é �� S P è � � � é �

(d) Query 2 - Throughput

Y[Y Y Y\ Y Y Y] Y Y Y^ Y Y Y_ Y Y Y
Y Z Y [Y Z Y] Y Z Y _ Y Z [ª« ¬®̄« °®g

± r ² t ³ ´ m µ t ¶ t n · ¸ t ¹ º m » p n ¼
� � � ¿ \ Y Y Y Y Â� � � ¿ ^ Y Y Y Y Â½ � � ¾ ¿ À Y Á Â½ � � ¾ ¿ À _ Á Â½ � � ¾ ¿ À À Á Â

(e) Query 3 - Throughput

1� 1 1 10 1 1 1 10 � 1 1 1� 1 1 1 1� � 1 1 1� 1 1 1 1� � 1 1 1� 1 1 1 1
1 H 1 � 1 H 1 � 1 H 0 1 H �23 45673 869

§ @ à B á ¦ ; â B ¥ B < ã ä B å æ ; ¨ > < ç
U V O� S P è � � 1 é �� S P è � � � é �� S P è � � � é �

(f) Query 4 - Throughput

Figure 5.11. Experimental results for query planning.

We next compare the performance of the deterministic algorithm, Dsum, and the

randomized algorithm, Rand, to compute query result distributions. (For this query

and the below queries, we verify that the measured accuracy always satisfies the

accuracy requirement, i.e., ≤ ε, and omit the accuracy plots here.) Figure 5.11(b)

shows that Dsum is faster than Rand. (For clarity, we omit the error bars, or standard

deviations, in the plot, but they are less than 18% of the reported means.) This is

because smaller error bounds are provisioned to the aggregates to account for the

115

having predicate, which causes Rand to use more samples. Also, since λ is 2 in this

query, the cost of Dsum is smaller compared to Figure 5.7(f).

Expt 2: Q2. For the next three queries, we use a dataset from the Sloan digital sky

survey (SDSS) project [92], where the uncertain attributes are modeled by Gaussian

distributions. Q2 computes the maximum of luminosity per group and selects groups

where max(luminosity) > 20. The main difference from Q1 is that the aggregate

attribute is continuous. Hence, we set the universe size U = 40000, assuming a high

measurement precision of three decimal places. The reported measurements are taken

from 100 batches after the warmup phase. (We note that the running time across

batches varies little, i.e., the standard deviation is always less than 10% of the mean

of the running time.)

We again consider an alternative method that estimates the TEP of result tuples

using only the moments of the max distribution and summarize the result here. Since

the state-of-the-art technique [47] can only compute the mean of max, we use the

Markov’s inequality to derive an upper bound for the TEP. We observe that using

this technique can give inaccurate estimates, e.g., the error of the TEP can be as high

as 0.6, as shown in Figure 5.11(c).

We now compare our deterministic and randomized algorithms, Dmax and Rand.

Dmax outperforms Rand under all chosen accuracy requirements ε, as shown in Figure

5.11(d), especially for high ε. This confirms that Dmax still performs well for large

numbers of values per tuple λ by bounding the number of intervals in the distribution

of max. Compared to Figure 5.7(a), the throughput decreases for small ε, because this

is the case when the update time is roughly proportional to 1/ε (since λ is large), as

shown in Theorem 5.5.2.

Expt 3: Q3. This query computes avg(rowc) and avg(colc) for objects grouped

according to the deterministic attribute HTM ID. The result TEP of an object in

a group after group-by is deterministic (either 0 or 1). Since rowc and colc follow

116

Gaussian distributions in the dataset, their avg are also Gaussian and can be com-

puted exactly with high throughput of millions tuples per second. As a variant, we

compute max instead and observe that using Dmax is 2 to 10 times faster than using

Rand for this query (it is similar to Figure 5.11(e), except for provisioning smaller

error bounds).

Expt 4: Q4. This query is similar to Q2, but computes sum(luminosity). Figure

5.11(f) shows the throughput of two algorithms, Dsum and Rand. Since luminosity

is continuous-valued, we use discretization before computing sum. Therefore, Dsum

has two types of errors: errors from estimation of the input tuple, or discretization

errors, and errors from approximating sum. Both errors accumulate with the number

of tuples, having Dsum provision a small error bound per tuple. We observe that

Dsum has a poorer performance than Rand, which indicates that Rand is useful for

computing the sum of continuous distributions or distributions with a large number

of possible values.

Summary: We have applied our techniques for query planning to handle er-

ror occurrence and propagation in conditioning and aggregation queries on the real

datasets. We observed that for max, our deterministic algorithm, even with contin-

uous input, hence a large number of values per tuple, outperforms the randomized

counterpart, whereas for sum, our deterministic algorithm works well for Bernoulli

variables or tuples with a few values, but further discretization of continuous dis-

tributions makes it less desirable than our randomized algorithm. Overall, we can

process thousands of tuples per second for most queries tested.

5.9 An Experiment Validating the Two-layer Approach

In the previous sections, we have evaluated the proposed techniques for each layer

of processing in our system separately. In this section, we perform an experiment to

validate the complete system. That is, we consider the end-to-end solution from raw

117

êê ë ê ìê ë ê íê ë ê îê ë ê ïê ë ð
ì ê ñ ê í ê ò ê î êó ôõ ö÷ø ùôôúúûú

ü ý þ ÿ � � � � � � � � � � � � þ � 	 � �

 � � � � � � � � � � �� � � � � � � � � � �

Figure 5.12. Experiment on validating the two-layer architecture

data to final query results, to evaluate the accuracy of our techniques. This is hence

considered as a validation of our two-layer approach.

In this experiment, we use a synthetic RFID dataset so that the ground truth of

the object locations is known. We use our simulator described in Section 3.3.4 to

generate a trace with a fairly large number of objects, i.e., 1000 objects. We first

run our techniques in Section 3 to infer the object locations, which are captured with

Gaussian distributions (we consider only y locations and do not use moving objects

in this experiment).

We then run two group-by aggregation queries for relational processing on the

inferred object locations. The first one is to count the number of objects per group.

This is a simple query that involves computing the tuple existence probability of

each (location) tuple in each group. Since the TEP is a Bernoulli random variable,

the count for each group is a distribution. For the purpose of this experiment, we

return the mean of this distribution as the estimate count. We measure the relative

error, which is defined to be |est count−true count|/true count, and report the error

averaged over all groups. We vary the group size, which in turn affects the number

of tuples per group. Figure 5.12 shows the accuracy result, the error bars, or the

standard deviations, of each reported quantity are measured to be 40%-60% of the

118

mean values. We observe that the relative errors are generally small, i.e., less than or

equal to 8% for most of group sizes. The only case that the error is higher, e.g., 17%,

is when the groups are very small, containing just a few tuples. Note that when the

groups are large, the support of a location distribution is likely to be contained in a

group, hence making estimate counts equal to the true ones. When the groups are

smaller, each location tuple is estimated to belong to more groups , which reduces

the accuracy of our estimated count for each group. Overall, we observe that the

accuracy of this query is high, which indicates that the distributions of the inferred

locations have means close to the true locations, and have small uncertainty, i.e, small

variances.

In the second query, we compute the sum of weights for each group, which involves

the approximation algorithm for sum, as shown in Section 5.5.4. We set the accuracy

requirement for sum, ε = 0.1. This query is more complex than the above since there

are two sources of error involved here: the RFID inference error and the approximation

error from computing sum. Again, we use the mean of the distribution of sum as the

estimated sum. Figure 5.12 also shows the relative errors of the estimated sum of

weight for different group sizes. We observe that the errors are still low even when this

involves two error sources. This example hence validates that our two-layer approach

can yield good accuracy for query processing.

119

CHAPTER 6

SUPPORTING USER-DEFINED FUNCTIONS ON
UNCERTAIN DATA

Chapter 5 has addressed relational processing on uncertain data. This chapter is

motivated by the observation that real-world applications, such as scientific comput-

ing and financial analysis, make intensive use of user-defined functions (UDFs), not

expressible in terms of relational operations. Unfortunately, the support for UDFs

on uncertain data is largely lacking in the literature. In the following, the problem

of computing UDFs on uncertain data is considered in more detail. Then a learning-

based approach using Gaussian processes is proposed to address this problem. After

that, this chapter includes a performance evaluation of the proposed techniques and

a comparison to the standard Monte Carlo sampling approach.

6.1 Overview

In many scientific applications, user-defined functions (UDFs) are used to process

and analyze data via complex, domain-specific algorithms, which are not easy to ex-

press in relational operations. These functions can vary in complexity from simple

to very complicated [18, 45]. In practice, UDFs can be provided in any form of ex-

ternal code, e.g., C programs, and hence treated mainly as black boxes in traditional

databases. These UDFs are often expensive to compute due to the complexity of

processing. Unfortunately, the support for UDFs on uncertain data is largely lacking

in today’s data management systems. Consequently, in the tornado detection ap-

plication [58], detection errors cannot be distinguished from true events due to lack

120

of associated confidence scores. In other applications such as computational astro-

physics [89], the burden of characterizing UDF result uncertainty is imposed on the

programmers: we observed that the programmers of the Sloan digital sky surveys

manually code algorithms to keep track of uncertainty in a number of UDFs. These

observations have motivated us to provide system support to automatically capture

result uncertainty of UDFs, hence freeing users from the burden of doing so and

returning valuable information for interpreting query results appropriately.

To better explain our work, let us consider two concrete examples of UDFs from

Sloan digital sky surveys (SDSS) [89]. As discussed in Chapter 1, nightly observa-

tions of stars and galaxies in SDSS are inherently noisy as the objects can be too dim

to be recognized in a single image. However, repeated observations allow the scien-

tists to model the position, brightness, and color using continuous distributions, e.g.,

mainly Gaussian distributions. For example, the processed data can be in the form

of (objID, posp, redshiftp, ...) where pos and redshift are two uncertain attributes.

Then, queries can be issued to detect dynamic features or properties of the stars and

galaxies. We consider some example UDFs taken from an astrophysics package [6].

Query Q1 below computes the age of each galaxy given its redshift using the UDF

GalAge. Since redshift is uncertain, the output GalAge(redshift) is also uncertain.

Q1: Select G.objD, GalAge(G.redshift)

From Galaxy G

A more complex example of using UDFs is shown in query Q2, which computes the

comoving volume of two galaxies whose distance is in some specific range. This query

invokes two UDFs ComovingV ol and Distance on uncertain attributes redshift

and pos respectively, together with a selection predicate on the output of the UDF

Distance.

Q2: Select G1.objID, G2.objID, Distance(G1.pos, G2.pos)

ComovingVol(G1.redshift, G2.redshift, area)

121

From Galaxy AS G1, Galaxy AS G2

Where Distance(G1.pos, G2.pos) ∈ [l, u]

Problem Statement. We aim to provide a general framework to support UDFs

on uncertain data, where the functions are given as black boxes. Specifically, given

an input tuple modeled by a vector of random variables, X, that is characterized

by a joint distribution (either continuous or discrete), and a univariate, black-box

UDF f , our objective is to characterize the distribution of Y = f(X). In the ex-

ample of Q2, after the join between G1 and G2, each tuple carries a random vector,

X = {G1.pos, G1.redshift, G2.pos, G2.redshift, . . .}, and two UDFs produce Y1 =

Distance(G1.pos, G2.pos) and Y2 = ComovingV ol(G1.redshift, G2.redshift,area).

Given the nature of the UDFs, exact derivation of result distributions may not be

feasible and hence approximation techniques will be explored. A related requirement

is that the proposed solution must be able to meet user-specified accuracy require-

ments. In addition, the proposed solution must be able to perform efficiently in an

online fashion, for example, to support online interactive analysis over a large data

set or data processing on real-time streams (e.g., to detect tornados or anomalies in

sky surveys).

Challenges. Supporting UDFs as stated above poses a number of challenges:

(1) UDFs are often computationally expensive. For such UDFs, any processing that

incurs repeated function evaluation to compute the output will take a long time

to complete. (2) When an input tuple has uncertain values, computing a UDF on

them will produce a result with uncertainty, which needs to be characterized by a

distribution. Computing the result distribution, even when the function is known,

is a non-trivial problem. Existing work in statistical machine learning (surveyed in

[10]) uses regression to estimate a function, but mostly focuses on deterministic input.

For uncertain input, existing work [41] computes only the mean and variance of the

result, instead of characterizing the full distribution, and hence is of limited use if

122

the output distribution is not Gaussian (which is often the case). Other work [70]

computes approximate result distributions without bounding approximation errors,

and hence cannot address user accuracy requirements. (3) Further, most of our target

applications require using an online algorithm for characterizing result uncertainty of

a UDF, where “online” means that the algorithm does not need an offline training

phase before processing data. Relevant machine learning techniques such as [41, 70]

belong to offline algorithms. In addition, a desirable online algorithm should operate

with high performance in order to support online interactive analysis or data stream

processing.

Contributions. We present a complete framework for handling user-defined

functions on uncertain data. Specifically, the main contributions include:

1. An approximate evaluation framework and baseline approach (in Sections 6.2

and 6.3): We propose a general approximation framework for computing UDFs on

uncertain data, including several accuracy metrics and approximation objectives that

can be easily used to answer common user questions, i.e., range queries, over the

UDF output. We present a baseline approach based on Monte Carlo sampling to

compute output distributions of a UDF. We also discuss optimizations for improved

performance when the UDF output is filtered with selection predicates.

2. A learning approach using Gaussian processes (in Sections 6.4 and 6.5): We

explore a learning-based approach by modeling UDFs using a machine learning tech-

nique called Gaussian processes (GPs). The key idea is that over time, we can use

past function evaluations to build an approximate model of the black-box function,

and use the model to avoid most expensive function evaluations in the future. We

choose the GP technique due to its abilities to model functions and quantify the

approximation in such function modeling.

Given the GP model of a UDF and uncertain input, our contribution lies in com-

puting output distributions with error bounds. In particular, we provide an algorithm

123

that combines the GP model of a UDF and Monte Carlo (MC) sampling to compute

output distributions. We perform an in-depth analysis of the algorithm and derive

new theoretical results for quantifying the approximation of the output, including

bounding the errors of both approximation of the UDF and sampling from input

distributions. These error bounds can be used to tune our model to meet accuracy

requirements. To the best of our knowledge, our work is the first to quantify output

distributions of Gaussian processes.

3. An optimized online algorithm (in Section 6.6): We further propose an online

algorithm to compute approximate output distributions that satisfy user accuracy

requirements. Our algorithm employs a suite of optimizations of the GP learning and

inference modules to improve performance and accuracy. Specifically, we propose local

inference to increase inference speed while maintaining high accuracy, online tuning

to refine function modeling and adapt to input data, and an online retraining strategy

to minimize the training overhead. Existing work in machine learning [41, 69, 70, 74]

does not provide a sufficient solution to such high-performance online training and

inference while meeting user-specified accuracy requirements.

4. Performance evaluation (in Section 6.7): We conduct a thorough evaluation

of the proposed techniques using both synthetic functions with controlled properties

and real functions and data from the astrophysics application. The results show that

our GP techniques can adapt to various function complexities, data characteristics

and user accuracy requirements. Compared with Monte Carlo (MC) sampling, the

GP approach starts to outperform when function evaluation takes longer than 1ms

for functions of low dimensionality, such as up to 2, or when function evaluation takes

longer than 100ms for high-dimensional functions such as 10 dimensions. This result

applies to real-world expensive functions as we illustrate with the real functions from

the astrophysics domain. For the functions we tested, the GP approach can offer up

to two orders of magnitude speedup when compared to MC sampling.

124

6.2 An Evaluation Framework

Since the UDFs are given as black boxes and have no explicit formula, computing

the output of the UDFs can be done only through function evaluation. Therefore,

computing the exact distribution requires function evaluation at all possible values of

the input, which is impossible when the input is continuous. Instead, we seek approx-

imation algorithms to compute the output distribution when the input is uncertain.

In this section, we present our approximation framework including accuracy metrics

and objectives.

We adopt two distance metrics between random variables from the statistics lit-

erature [40]: the discrepancy and Kolmogorov–Smirnov (KS) measures. We choose

these metrics because they are a natural fit of range queries, hence allowing easy

interpretation of the output.

Definition 6.2.1. Discrepancy measure. The discrepancy measure, D, between

two random variables Y and Y ′ is defined as:

D(Y, Y ′) = supa,b:a≤b |Pr[Y ∈ [a, b]] − Pr[Y ′ ∈ [a, b]]|.

Definition 6.2.2. KS measure. The KS measure (or distance) between two random

variables Y and Y ′ is defined as:

KS(Y, Y ′) = supy |Pr[Y ≤ y] − Pr[Y ′ ≤ y]|.

The values of these measures are in [0, 1]. It is straightforward to show that KS(Y, Y ′) ≤

D(Y, Y ′) ≤ 2KS(Y, Y ′). Both measures can be computed directly from the cumula-

tive distribution function (CDF) of random variables. While the KS distance captures

the maximum probability difference for any one-sided interval, in the form of [−∞, c]

or [c,∞], the discrepancy measure captures the maximum probability difference for

any two-sided interval [a, b].

In practice, users may be interested only in intervals whose length is larger than a

minimum length λ, an application-specific error level that is tolerable for the quantity

under computation. This suggests a relaxed variant of the discrepancy measure:

125

Definition 6.2.3. λ-discrepancy. Given the minimum interval length λ, the dis-

crepancy measure Dλ between two random variables Y and Y ′ is:

Dλ(Y, Y ′) = supa,b:b−a≥λ |Pr[Y ∈ [a, b]] − Pr[Y ′ ∈ [a, b]]|.

This measure can be interpreted as: for all intervals of length at least λ, the

probability of an interval under Y ′ does not differ from that under Y by more than

Dλ. These distance metrics can be used to indicate how well one random variable

Y ′ approximates another random variable Y . We next state the our approximation

objective, (ε, δ)-approximation, using the discrepancy metric; similar definitions hold

for the λ-discrepancy and the KS metric.

Definition 6.2.4. (ε, δ)-approximation. Let Y and Y ′ be two random variables.

Then Y ′ is an (ε, δ)-approximation of Y iff with probability (1 − δ), D(Y, Y ′) ≤ ε.

For query Q1, (ε, δ)-approximation requires that with probability (1− δ), the ap-

proximate distribution of GalAge(G.redshift) does not differ from the true one more

than ε in discrepancy. For Q2, there is a selection predicate in the WHERE clause,

which truncates the distribution of Distance(G1.pos, G2.pos) to the region [l, u],

and hence yields a tuple existence probability (TEP). Then, (ε, δ)-approximation re-

quires that with probability (1−δ), (i) the approximate distribution of Distance(G1.pos,

G2.pos) differs from the true distribution at most ε in discrepancy measure, and (ii)

the result TEP differs from the true TEP by at most ε.

6.3 Monte Carlo Approach

In this section, we present a simple, standard technique to compute the query

results based on Monte Carlo simulation (which is also introduced in Section 5.5.2).

However, as we will see, the Monte Carlo approach can require evaluating the UDF

many times, which is inefficient for slow UDFs. This inefficiency is the motivation for

our new approach in Sections 6.4–6.6.

126

6.3.1 Computing the Output Distribution

In Section 5.5.2, we use Monte Carlo (MC) simulation to compute the output

distribution of aggregates on uncertain input. This idea can be directly used to

compute Y = f(X). The idea is simple: draw the samples from the input distribution,

do function evaluation to get the output samples. The algorithm is:

Algorithm 2 Monte Carlo simulation

1: Draw m samples x1 . . .xm ∼ p(x).
2: Compute the output samples, y1 = f(x1), ..., ym = f(xm).
3: Return the empirical CDF of the output samples, namely Y ′, Pr(Y ′ ≤ y) =

1
m

∑

i∈[m] [yi,∞)(y), where (·) is the indicator function.

We have shown that if m = ln(2δ−1)/(2ε2), then the output Y ′ is an (ε, δ)-approximation

of Y in terms of KS measure, and (2ε, δ)-approximate in terms of discrepancy mea-

sure. Thus the number of samples required to reach the accuracy requirement ε is

proportional to 1/ε2, which is large for small ε. For example, if we use the discrepancy

measure and set ε = 0.02, δ = 0.05, then m required is more than 18000.

6.3.2 Filtering with Selection Predicates

In many applications, users are interested in the event that the output is in certain

intervals. This can be expressed with a selection predicate, e.g., f(X) ∈ [a, b], in the

SQL query as shown in query Q2 above. If the probability ρ = Pr[f(X) ∈ [a, b]] is

smaller than a threshold θ specified by the users, it corresponds to an event that the

users are not interested in and can be discarded. For high performance, we would

like to quickly check whether ρ is small enough to be filtered. If so, we can save the

cost from computing the full resulting distribution f(X).

While drawing the samples as in Algorithm 2, we derive a confidence interval for ρ

to decide whether to filter. By definition we have ρ =
∫

 (a ≤ f(x) ≤ b)p(x)dx. Let

h(x) = (a ≤ f(x) ≤ b) and m̃ be the number of samples drawn so far (m̃ ≤ m). And

let {hi, i = 1 . . . m̃}, be the samples evaluated on h(x). Then, hi are iid, Bernoulli

127

samples, and ρ can be estimated by ρ̃, computed from the samples, ρ̃ =
Pm̃

i=1 hi

m̃
. The

following result, which is a direct application of Hoeffding’s inequality in statistics,

gives a confidence interval for ρ.

Remark 6.3.1. ρ ∈ [ρ̃ − ε̃, ρ̃ + ε̃], where ε̃ =
√

1
2m̃

ln 2
1−δ

, with probability (1 − δ).

If the user specifies a threshold θ to filter low-probability events, and ρ̃ + ε̃ ≤ θ,

then we can filter this output tuple. A modification to handle filtering low-probability

events is to use the one-sided version of the Hoeffding’s inequality, which states that

Pr(ρ − ρ̃ > ε) ≤ e−2mε2 , to get a tighter upper bound for ρ. This approach is

appealingly simple, but as before requires O(1/ε2) calls to the UDF in the worst case,

which is inefficient for slow UDFs.

6.4 Emulating UDFs with Gaussian Processes

In the next three sections, we present an approach that aims to be more efficient

than MC sampling by requiring many fewer calls to the UDF. The main idea is that

every time we call the UDF, we gain information about the function. Once we have

called the UDF enough times, we ought to be able to approximate it by interpolating

between the known values to predict the UDF at unknown values. We call this

predictor an emulator f̂ , which can be used in place of the original UDF f , and is

much less expensive for many UDFs.

We briefly mention how to build the emulator using a statistical learning approach.

The idea is that, if we have a set of function input-output pairs, we can use it as

training data to estimate f . In principle, we could build the emulator using any

regression procedure from statistics or machine learning, but picking a simple method

like linear regression would work poorly on a UDF that did not meet the strong

assumptions of that method. Instead, we build the emulator using a learning approach

called Gaussian processes (GPs). GPs have two key advantages. First, GPs are

128

flexible methods that can represent a wide range of functions and do not make strong

assumptions about the form of f . Second, GPs produce not only a prediction f̂(x)

for any point x but also a probabilistic confidence that provides “error bars” on the

prediction. This is vital because we can use this to adapt the training data to meet

the user-specified error tolerance. Building an emulator using a GP is a standard

technique in the statistics literature (see [70] for an overview).

In this section, we provide background on the basic approach to building emula-

tors. In Section 6.5, we present new results to quantify the uncertainty of outputs

of UDFs. After that, we propose an online algorithm to compute UDFs with a suite

of optimizations to address accuracy and performance requirements in our setting in

Section 6.6.

6.4.1 Intuition for GPs

We give a quick introduction to the use of GPs as emulators, closely following

the textbook [76]. A GP is a distribution over functions; whenever we sample from

a GP, we get an entire function for f whose output is the real line. Figure 6.1(a)

illustrates this in one dimension. It shows three samples from a GP, where each

is a function R → R. Specifically, if we pick any input x, then f(x) is a scalar

random variable. This lets us get confidence estimates, because once we have a

scalar random variable, we can get a confidence interval in the standard way, e.g.,

mean± 2 ∗ standard deviation. To use this idea for regression, notice that since f is

random, we can also define conditional distributions over f , in particular, conditional

distribution of f given a set of training points. This new distribution over functions

is called the posterior distribution, and it is this distribution that lets us predict the

function values at new inputs.

129

input, x

o
u

tp
u

t,
 f

(x
)

-2

-1

0

1

2

-4 -2 0 2 4

(a) Prior

input, x

o
u

tp
u

t,
 f

(x
)

-3

-2

-1

0

1

2

3

-4 -2 0 2 4

(b) Posterior

Figure 6.1. Example of GP regression. (a) prior functions, (b) posterior functions
conditioning on training data

6.4.2 Definition of GPs

Just as the multivariate Gaussian is an analytically tractable distribution over

vectors, the Gaussian process is an analytically tractable distribution over functions.

Just as a multivariate Gaussian is defined by a mean and covariance matrix, a GP

is defined by a mean function and a covariance function. The mean function m(x)

gives the average value E[f(x)] for all inputs x, where the expectation is taken over the

random function f . The covariance function k(x,x′) returns the covariance between

the function values at two input points, i.e., k(x,x′) = Cov(f(x), f(x′)).

A GP is a distribution over functions with a special property: if we fix any

vector of inputs (x1, . . . ,xn), the output vector f = (f(x1), f(x2), . . . , f(xn)) has

a multivariate Gaussian distribution. Specifically, f ∼ N (m, K), where the vector

m = (m(x1) . . . m(xn)) contains the mean function evaluated at all the inputs and K

is a matrix of covariances Kij = k(xi,xj) between all the input pairs.

The covariance function has a vital role. Recall that the idea was to approximate

f by interpolating between its values at nearby points. To do this we need a way

to determine which points are “nearby”. This is the role of the covariance function.

If two points are far away, then their function values should be only weakly related,

i.e., their covariance should be near 0. On the other hand, if two points are nearby,

130

then their covariance should be large in magnitude. We accomplish this by using a

covariance function that depends on the distance between the input points.

In this work, we use standard choices for the mean and covariance functions. We

choose the mean function m(x) = 0, which is a standard choice when we have no

prior information about the UDF. For the covariance, we use the squared exponential

function, which in its simplest form is k(x,x′) = σ2
fe

− 1
2l2

‖x−x′‖2

, where ‖·‖ is Euclidean

distance, and σ2
f and l are parameters of the covariance function. The signal variance

σ2
f primarily determines the variance of the function value at individual points, i.e.,

if x = x′. More important is the lengthscale l, which determines how rapidly the

covariance decays as x and x′ move farther apart. One way to interpret the lengthscale

is to imagine “typical” random functions sampled from the GP. If l is small, the

covariance decays rapidly, so samples from the result GP will have many small bumps;

if l is large, then these samples will tend to be smoother.

The key assumption made by GP modeling is that at any point x, the function

value f(x) can be accurately predicted using the function values at nearby points. GPs

are flexible to model different types of functions by using an appropriate covariance

function [76]. For instance, for smooth functions, squared-exponential covariance

functions work well; for less smooth functions, Matern covariance functions work well

(where smoothness is defined by “mean-squared differentiability”); further, neural

network covariance functions are known to work for step functions. The hard cases

that make the key assumption likely to be violated are functions that are extremely

“spiky” and have many peaks. For example, in an extreme case, the function outputs

are boolean or integral-valued, such as the parity function; then the GP approach

may need many more training points to capture the change in the function value at

the peaks, and the inference can be less accurate.

In this following, we focus on the common squared-exponential functions, which

are shown experimentally to work well for the UDFs in our applications (see Section

131

6.7.4). In general, the user can choose a suitable covariance function based on the

well-defined properties of UDFs, and plug it into our framework.

6.4.3 Inference for New Input Points

Now we describe how to use a GP to predict the function outputs at new inputs.

Denote the training data by X∗ = {x∗
i |i = 1, . . . , n} for the inputs and f∗ = {f ∗

i |i =

1, . . . , n} for the function values. In this section, we assume that we are told a fixed

set of m test inputs X = (x1,x2, ...,xm) at which we wish to predict the function

values. Denote the unknown function values at the test points by f = (f1, f2, ..., fm).

The vector (f∗, f) is a random vector because each fi:i=1...m is random, and by the

definition of a GP, this vector simply has a multivariate Gaussian distribution. This

distribution is:

f∗

f

∼ N

(

0,

K(X∗, X∗) K(X∗, X)

K(X, X∗) K(X, X)

)

, (6.1)

where we have written the covariance as matrix with four blocks. The block K(X∗, X)

is an n × m matrix of the covariances between all training and test points, i.e.,

K(X∗, X)ij = k(x∗
i ,xj). Similar notions are for K(X∗, X∗), K(X, X), and K(X, X∗).

Now that we have a joint distribution, we can predict the unknown test outputs f

by computing the conditional distribution of f given the training data and test inputs.

Applying the standard formula for the conditional of a multivariate Gaussian yields

f |X, X∗, f∗ ∼ N (m, Σ), where (6.2)

m = K(X, X∗)K(X∗, X∗)−1f∗

Σ = K(X, X) − K(X, X∗)K(X∗, X∗)−1K(X∗, X)

To interpret m intuitively, imagine that m = 1, i.e., we wish to predict only one

output. Then K(X, X∗)K(X∗, X∗)−1 is an n-dimensional vector, and the mean m(x)

is the dot product of this vector with the training values f∗. So m(x) is simply a

132

weighted average of the function values at the training points. A similar intuition

holds when there is more than one test point, m > 1.

Figure 6.1(b) illustrates the resulting GP after conditioning on training data. As

observed, the posterior functions pass through these training data points marked by

the black dots. From the sampled functions, we can see that the further a point is

from the training points, the larger the variance is.

We now consider the complexity of this inference step. Note that once the training

data is collected, the inverse covariance matrix K(X∗, X∗)−1 can be computed once,

with a cost of O(n3). Then given a test point x (or X has size 1), inference involves

computing K(X, X∗) and multiplying matrices, which has a cost of O(n2). The space

complexity is also O(n2), for storing these matrices.

6.4.4 Learning the Hyperparameters

Typically, the covariance functions have some free parameters, which are called

hyperparameters, such as the lengthscale l of the squared-exponential covariance func-

tion. The hyperparameters determine how quickly the confidence estimates expand

as we consider test points that are farther from the training data. For example,

in Figure 6.1(b), as we decrease the lengthscale, we will increase the spread of the

function, meaning that we have less confidence in our predictions.

We can learn the hyperparameters using the training data (see Chapter 5, [76]).

We adopt maximum likelihood estimation, which is a standard technique for this

problem. Let θ be the vector of hyperparameters. The log likelihood function is

L(θ) := log p(f∗|X∗, θ) = N (X∗;m, Σ), where here we use N to refer to the density

of the Gaussian distribution, and m and Σ are defined in Eq. (6.2). Maximum

likelihood estimation solves for the value of θ that maximizes L(θ). We perform the

maximization using the standard method of gradient descent. The complexity of this

is O(n3), where n is the number of training points, due to the cost of inverting the

133

f , f̂ , f̃ true function, mean function of the GP, and a sample function
of the GP, respectively.

fL, fS upper and lower envelope functions of f̃ (with high probability)

Y , Ŷ , Ỹ output corresponding to f , f̂ , f̃ , respectively.
YL, YS output corresponding to fL, fS, respectively.

Ŷ ′ estimate of Ŷ using MC sampling. (Similarly for Y ′
L and Y ′

S)

ρ̃, ρ̂ probability of Ỹ and Ŷ , in a given interval [a, b].
ρU , ρL upper and lower bounds of ρ (with high probability).
ρ̃′, ρ̂′, ρ′

U , ρ′
L MC estimates of ρ̃, ρ̂, ρU and ρL respectively.

n number of training points.
m number of MC samples.

Table 6.1. Main notation used in GP techniques.

matrix K(X∗, X∗)−1. Gradient descent requires many steps to compute the optimal

θ; thus, retraining often has a high cost for a large number of training points. Note

that when the training data X∗ changes, θ that maximizes the log likelihood may

also change. Therefore, one would need to maximize the log likelihood function to

update the hyperparameters. In Section 6.6.3, we will discuss retraining strategies

that aim to reduce this computation cost.

6.5 Uncertainty in Query Results

So far in our discussions of GPs, we have assumed that all the input values are

known in advance. However, our work aims to compute UDFs on uncertain input. In

this section, we describe how to compute an output distribution using a GP emulator

when the input is uncertain. We then derive theoretical results to bound the errors

of the output using our accuracy metrics.

6.5.1 Computing the Output Distribution

In this section we describe how to approximate the UDF output Y = f(X) given

uncertain input X. When we approximate f by the GP emulator f̂ , we have a new

approximate output Ŷ = f̂(X), having CDF, Pr[Ŷ ≤ y] =
∫

 [f̂(x) ≤ y]p(x)dx. This

134

^

GP
(distributions
of functions)

sample
function

f(x)

mean
function ^

f(x)

f(x)-zασ(x)
^

f(x)+zασ(x)
^

upper

lower

Y
^

YGP

YS

YL

Uncertain X

Y'L

Y'S

Y'

MC
Sampling

f(x) (Y)

f(x)+zασ(x) (YL)

f(x)-zασ(x)

(YS)

YL

y

X y

Pr

(Y≤y)

Y

(c)

YS

a bx
(b)

^

^ ^

^

^

(a)

~
Y'GP

Figure 6.2. GP inference for uncertain input. (a) Computation steps (b) Approx-
imate function with bounding envelope (c) Computing probability for interval [a, b]
from CDFs

integral cannot be computed analytically. Instead, a simple, offline algorithm is to

use Monte Carlo integration by repeatedly sampling input values from p(x). This is

shown in Algorithm 3. This algorithm is very similar to Algorithm 2, except that we

call the emulator f̂ rather than the UDF f . For computationally expensive UDFs,

this is a cheaper operation.

Algorithm 3 Offline algorithm using Gaussian processes

1: Collect n training data points, {(x∗
i , y

∗
i), i = 1..n} by evaluating y∗

i = f(x∗)
2: Learning a GP via training using the n training data points, to get GP ∼

(f̂(·), k(·, ·)).
3: For an input distribution, X ∼ p(x):
4: Draw m samples, x1, ...,xm from the distribution p(x).
5: Predict function values at the samples via GP inference to get {f̂(xi), σ

2(xi), i =
1..m}

6: Construct the empirical CDF of Ŷ from the samples, namely Ŷ ′, Pr(Ŷ ′ ≤ y) =
1
m

∑

i∈[m] [f̂i,∞)(y), and return it.

135

In addition to returning the CDF of Ŷ ′, we also need to return an confidence of

how close Ŷ ′ is to the true answer Y . Ideally we would do this by returning the

discrepancy metric, D(Ŷ ′, Y). But it is difficult to evaluate D(Ŷ ′, Y) without many

calls to the UDF f , which would defeat the purpose of using emulators. So instead

we ask a different question, which is easier to analyze. The GP defines a posterior

distribution over functions, and we are using the posterior mean as the best emulator.

The question we ask is how different would the query output be if we emulated the

UDF using a random function from the GP, rather than the posterior mean? If this

difference is small, this means the GP’s posterior distribution over functions is very

concentrated. In other words, the uncertainty in the GP modeling is small, and we

do not need more training data.

To make this precise, let f̃ be a sample from the GP posterior distribution over

functions, and define Ỹ = f̃(X). That is, Ỹ represents the query ouput if we select

the emulator randomly from the GP posterior distribution. The confidence estimate

that we will return will be an upper bound on D(Ŷ ′, Ỹ).

An important point to note is that there are two sources of errors here. The first

is the error due to Monte Carlo sampling of the input and the second is the error due

to the GP modeling. In the analysis that follows, we bound each of two sources of

error individually and then combine them to get a single error bound.

6.5.2 Error Bounds Using Discrepancy Measure

Now we derive a bound on the discrepancy D(Ŷ ′, Ỹ). The main idea is that we

will compute a high probability envelope over the GP prediction. That is, for any

probability α, we can find two functions fL and fS such that fS ≤ f̃ ≤ fL with

probability at least 1 − α. Once we have a high probability envelope on f̃ , then

we also have a high probability envelope of Ỹ , and we can use this to bound the

discrepancy. See Figure 6.2 for an illustration of this intuition.

136

Bounding error for one interval. To start, assume that we have already computed

a high probability envelope. Since the discrepancy involves a supremum over intervals,

we start by presenting upper and lower bounds on ρ̃ := Pr[Ỹ ∈ [a, b] | f̃] for a single

fixed interval [a, b]. Now, ρ̃ is random because f̃ is; for every different function f̃ we

get from the GP posterior, we get a different ρ̃.

For any envelope (fS, fL), e.g., having the form f̂(x) ± zσ(x) as shown in Figure

6.2, define YS = fS(X) and YL = fL(X). We bound ρ̃ (with high probability) using

YS and YL. For any two functions g and h, and any random vector X, it is always

true that g ≤ h implies that Pr[g(X) ≤ a] ≥ Pr[h(X) ≤ a] for all a. Putting this

together with fS ≤ f̃ ≤ fL, we have that :

ρ̃ = Pr[f̃(X) ≤ b] − Pr[f̃(X) ≤ a] ≤ Pr[fS(X) ≤ b] − Pr[fL(X) ≤ a]

In other words, this gives the upper bound:

ρ̃ ≤ ρU := Pr[YS ≤ b] − Pr[YL ≤ a] (6.3)

Similarly, we can derive the lower bound:

ρ̃ ≥ ρL := max(0, Pr[YL ≤ b] − Pr[YS ≤ a]) (6.4)

This is summarized in the following result.

Proposition 6.5.1. Suppose that fS and fL are two functions such that fS ≤ f̃ ≤ fL

with probability (1 − α). Then ρL ≤ ρ̃ ≤ ρU , with probability (1 − α), where ρU and

ρL are as in Equations 6.3 and 6.4.

Bounding λ-discrepancy. Now that we have an the error bound for one individual

intervals, we can use this to bound the λ-discrepancy Dλ(Ỹ , Ŷ). Using the bounds of

ρ̃, we can write this discrepancy as

Dλ(Ỹ , Ŷ) = sup
[a,b]

|ρ̃ − ρ̂| ≤ sup
[a,b]

max{|ρL − ρ̂|, |ρU − ρ̂|},

137

Algorithm 4 Compute λ-discrepancy error bound from the output samples

1: Construct the empirical CDFs of the variables Ŷ ′, Y ′
S and Y ′

L from the output
samples.

2: Precompute maxb≥b0(Pr[Ŷ ′ ≤ b]−Pr[Y ′
L ≤ b]) and maxb≥b0(Pr[Y ′

S ≤ b]−Pr[Ŷ ′ ≤
b]) ∀b0, by enumerating the values of Ŷ ′ from the largest to the smallest.

3: Consider values for a, s.t. [a, a + λ] lies in the support of Ŷ ′. a is enumerated
from small to large using the CDF of Ŷ ′.

4: For a given a:
(a) Get Pr[Ŷ ′ ≤ a], Pr[Y ′

S ≤ a], and Pr[Y ′
L ≤ a].

(b) Get maxb≥a+λ(Pr[Y ′
S ≤ b] − Pr[Ŷ ′ ≤ b]).

Find smallest b1 s.t. Pr[Y ′
L ≤ b1] ≤ Pr[Y ′

S ≤ a], and then get maxb≥b1(Pr[Ŷ ′ ≤
b] − Pr[Y ′

L ≤ b]). This is done by using the precomputed values in Step 2.
(c) Compute max(ρ′

U − ρ̂′, ρ̂′ − ρ′
L). This is the error bound for intervals starting

with this a.
5: Increase a, repeat step 4, and store the maximum error.
6: Return the maximum error for all a, which is εGP .

where in the inequality we apply the result from Proposition 6.5.1. This is progress,

but we cannot compute ρL, ρU , or ρ̂ exactly because they require integrating over

the input X. So we will use Monte Carlo integration once again. We compute Y ′
L

and Y ′
S, as MC estimates of YL and YS respectively, from the samples in Algorithm

3. We also define (but do not compute) Ỹ ′, the random variable resulting from

MC approximation of Ỹ with the same samples. An identical argument to that of

Proposition 6.5.1 shows that

Dλ(Ỹ
′, Ŷ ′) = sup

[a,b]

|ρ̃′ − ρ̂′| ≤ sup
[a,b]

max{|ρ′
L − ρ̂′|, |ρ′

U − ρ̂′|} := εGP ,

where adding a prime means to use Monte Carlo approximation, e.g., ρ̂′ = Pr[Ŷ ′ ∈

[a, b]], and so on.

Now we give an algorithm to compute εGP . The easiest idea would be to simply

enumerate all possible intervals. Because Ŷ ′ and Ỹ ′ are empirical cdfs over m samples,

there are only O(m2) possible values for ρ′
U , ρ′

L, and ρ̂′. But this is still inefficient for

large numbers of samples m, as we observed empirically, and the point of a Monte

Carlo simulation is to make m big.

138

Instead, we present a more efficient algorithm to compute this error bound, show

in Algorithm 4. The high-level idea is to (i) pre-compute the maximum differences be-

tween the mean function and each envelope function considering decreasing values of

b (Step 2), then (ii) enumerate the values of a increasingly and use the pre-computed

values to bound ρ̃′ for intervals starting with a (Steps 3-5). Specifically, pre-computing

maxb≥b0(Pr[Y ′
S ≤ b]−Pr[Ŷ ′ ≤ b]) and maxb≥b0(Pr[Ŷ ′ ≤ b]−Pr[Y ′

L ≤ b]) involves mak-

ing a backward pass through the values of the empirical CDFs from the largest to the

smallest. Then we make a forward pass from the smallest value to the largest when

considering the value of a, the start of an interval. Given a value of a, we can use the

precomputed values for all intervals ending at b, where b − a ≥ λ.

Constructing the CDFs involves sorting the output samples, hence costs O(m log m).

The main task of the above algorithm is to take a pass through the m points in the

empirical CDF of Ŷ ′. For a given value of a, finding the smallest interval end b1 s.t.

Pr[Y ′
L ≤ b] ≤ Pr[Y ′

S ≤ a] can be done by a binary search, taking O(log m) time. Thus,

the total cost is O(m log m).

Combining effects of different sources of errors. What we return to the users is

the distribution of Ŷ ′, from which ρ̂′ can be computed for any interval. As discussed,

there are two sources of errors in ρ̂′: the GP prediction error and the error from

Monte Carlo sampling. The sampling error arises from having Ŷ ′, Y ′
L, and Y ′

S to

approximate Ŷ , YL, and YS, respectively. The GP error is from using the mean

function in estimating ρ. We can combine these into a single error bound on the

discrepancy

Dλ(Ŷ
′, YGP) ≤ Dλ(Ŷ

′, Y ′
GP) + Dλ(Ŷ

′
GP , YGP).

This follows from the triangle inequality that Dλ satisfies because it is a metric. Now,

in the last section we showed that Dλ(Ŷ
′, Y ′

GP) ≤ εGP . Furthermore, Dλ(Ŷ
′
GP , YGP)

is just the error due to a standard Monte Carlo approximation, which as discussed in

139

Section 6.3.1 can be bounded with high probability by a number we call εMC . Also

the two sources of error are independent. This yields the main error bound of this

work on UDF, which we state as follows.

Theorem 6.5.1. If MC sampling is (εMC , δMC)-approximate and GP prediction is

(εGP , δGP)-approximate, then the output has an error bound of (εMC +εGP) with prob-

ability (1 − δMC)(1 − δGP).

Computing simultaneous confidence bands. Now we describe how to choose a

high probability envelope, i.e., a pair (fS, fL) that contains f̃ with probability 1− α.

We will use a band of the form fS(x) = f̂(x) − zασ(x) and fL(x) = f̂(x) + zασ(x).

The problem is to choose zα. An intuitive choice would be to choose zα based on the

quantiles of the univariate Gaussian, e.g., choose zα = 2 for a 95% confidence band.

This would give us a point-wise confidence band, i.e., at any point x, we would have

fS(x) ≤ f̃(x) ≤ fL(x). But we need something stronger. Rather, we want (fS, fL)

such that the probability that fS(x) ≤ f̃ ≤ fL(x) at all inputs x simultaneously is at

least 1− α. An envelope with this property is called a simultaneous confidence band.

We will still use a band of the form (f̃(x) ∈ [f̂(x) − zασ(x), f̂(x) + zασ(x)]) but

we will need to choose a zα large enough to get an simultaneous confidence band. Say

we set zα to some value z. The confidence band is satisfied if Z(x) := | f̃(x)−f̂(x)
σ(x)

| ≤ z

for any x. Therefore, if the probability sup
x∈X

Z(x) ≥ z is small, the confidence band

is unlikely to be violated. We adopt an approximation of this probability due to [1],

as follows:

Pr[sup
x∈X

Z(x) ≥ z] ≈ E[ϕ(Az(X)], (6.5)

where the set Az(X) := {x ∈ X : Z(x) ≥ z} is the set of all inputs where the

confidence band is violated, and ϕ(A) is the Euler characteristic of the set A. Also,

[1] provides a numerical method to approximate Eq. (6.5) that works well for small

α, i.e., when we require a high probability that the confidence band is correct, which

140

is precisely the case of interest. The main computation is to evaluate the following

quantity, called the Lipschitz-Killing curvature:

L(X) =

∫

X

[det(Λ(x))]1/2dx, (6.6)

where Λ(x) is a matrix whose elements are

λij(x) = E

{

∂Z(x)

∂xi

∂Z(x)

∂xj

}

=
∂2k(x′,x′′)

∂x′
i∂x′′

j

|x′=x′′=x,

and i and j index particular dimensions of the input tuples. We compute the integral

in Eq. (6.6) using Monte Carlo integration, The main computational expense is that

the approximation requires computing second derivatives of the covariance function,

but we have still found it to be feasible in practice. Once we computed the approxi-

mation to Eq. (6.5), we compute the confidence band by setting zα to be the solution

of the equation Pr[sup
x∈X

Z(x) ≥ zα] ≈ E[ϕ(Az(X)] = α.

6.5.3 Error Bounds for KS Measure

The above analysis can be applied if the KS distance is used as the accuracy metric

in a similar way. The main result is as follows.

Proposition 6.5.2. Consider the mean function f̂(x) and the envelope f̂(x)±zσ(x).

Let f̃(x) be a function in the envelope. Given uncertain input X, let Ŷ = f̂(X) and

Ỹ = f̃(X). Then KS(Ỹ , Ŷ) is largest when f̃(x) is at either the boundary of the

envelope.

Proof. Recall that KS(Ỹ , Ŷ) = supy |Pr[Ỹ ≤ y] − Pr[Ŷ ≤ y]. Let ym correspond to

the supremum in the formula of KS. Wlog, let KS =
∫

([f̂(x) ≤ ym] − [f̃(x) ≤

ym])p(x)dx > 0. That is, for some x, f̂(x) ≤ ym < f̃(x). Now suppose there exists

some x′ s.t. f̃(x′) < f̂(x′), the KS distance would increase if f̂(x′) ≤ f̃(x′). This

141

means, KS becomes larger when f̃(x) ≥ f̂(x) for all x; or, f̃(x) lies above f̂(x) for

all x. Also, it is intuitive to see that among the functions that lie above f̂(x), f̂(x) +

zσ(x) yields the largest KS error, since it maximizes [f̂(x) ≤ y] − [f̃(x) ≤ y],∀y.

(Similarly, we can show that if KS =
∫

([f̃(x) ≤ ym] − [f̂(x) ≤ ym])p(x)dx > 0,

KS is maximized if f̃(x) lies below f̂(x) for all x.)

As a result, let YS and YL be the output computed using the upper and lower

boundaries f̂(x)±zσ(x) respectively. Then, the KS error bound is max(KS(Ŷ , YS), KS(Ŷ , YL))

If we use Monte Carlo sampling, we can obtain the empirical variables Ŷ ′, Y ′
S, and

Y ′
L as before. We then can compute max(KS(Ŷ ′, Y ′

S), KS(Ŷ ′, Y ′
L)), denoted εGP .

We also analyze the combining effects of the two sources of errors, MC sampling

and GP modeling, as for the discrepancy measure. We obtain a similar result: the

total error bound is the sum of the two error bounds, εMC and εGP . The proof of this

result is outlined as follows.

KS(Ŷ ′, Y) = sup
y

|Pr[Ŷ ′ ≤ y] − Pr[Y ≤ y]|

≤ sup
y

(max(|Pr[Ŷ ′ ≤ y] − Pr[YL ≤ y]|, |Pr[Ŷ ′ ≤ y] − Pr[YS ≤ y]|))

≤ sup
y

(max(|Pr[Ŷ ′ ≤ y] − Pr[Y ′
L ≤ y]| + εKS , |Pr[Ŷ ′ ≤ y] − Pr[Y ′

S ≤ y]| + εKS)

= εKS + sup
y

(max(|Pr[Ŷ ′ ≤ y] − Pr[Y ′
L ≤ y]|, |Pr[Ŷ ′ ≤ y] − Pr[Y ′

S ≤ y]|))

= εKS + εGP

6.6 An Optimized Online Algorithm

In Section 6.5.1, we present a basic algorithm to compute output distributions

using Gaussian processes to model our UDFs (see Algorithm 3). However, this algo-

rithm does not satisfy our design constraints as follows. This is an offline algorithm

since the training data is fixed and learning is performed once, before inference. Given

a user-specified accuracy requirement, it is hard to know how many training points

are needed beforehand. If we use a large number of training points, the accuracy is

142

higher, but the performance suffers. Besides, using standard inference has an infer-

ence cost of O(n2) per sample point, which is high for large numbers of training points

n. In this section, we aim to provide an online algorithm that is robust to UDFs and

input distributions in terms of meeting accuracy requirements. We further optimize

it for high performance.

6.6.1 Local Inference

We first propose a technique to reduce the cost of inference while maintaining

good accuracy. The key observation is that the covariance between two points xi

and xj is small when the distance between them is large. For example, for the

squared exponential covariance function, the covariance decreases exponentially in

the squared distance, k(xi,xj) = σ2
f exp{− ||xi−xj ||

2

l2
}. In other words, the far training

points have only small weights in the weighted average, hence can be omitted. This

observation suggests a technique which we call local inference. (We refer to the

standard inference technique described before as global inference.) The steps of local

inference are described as follows.

Algorithm 5 Local inference

Input: Input distribution p(x). Training data: {(x∗
i , y

∗
i), i = 1 . . . n}, stored in an

R-tree.

1: Draw m samples from the input distribution p(x) and construct a bounding box
for the samples.

2: Retrieve a set of training points, called X∗
L, from the R-tree that have distance to

this bounding box less than some maximum distance. (This controls by the local
inference threshold Γ discussed below.)

3: Run inference using X∗
L to get the function values at the samples. Return the

CDF constructed from the inferred values.

Figure 6.3 illustrates the execution of local inference, where a subset of relevant

training points is chosen for inference based on the input distribution. The darker

rectangle is the bounding box of the input samples, and the lighter rectangle is the

bounding box of the training points selected for local inference.

143

o

o

o

o

o
o

o

o

oo

o
o

* * *

*

*
*

*

*

*
*

* *
*

*
*

*
*

* *

*

*

*
*

*

*
*

*
*

*

*

: training point*

: input sampleo

local training point
bounding box

input sample
bounding box

*

*
o

o

o

o xnear

xfar

o
training point

Figure 6.3. Choosing a subset of training points for local inference

Choosing the training points for local inference given a threshold. The

threshold Γ is chosen so that the approximation error in f̂(xj), for all samples xj, is

small. That is, f̂(xj) when computed using either global inference or local inference

does not differ much. We can update the vector K(X∗, X∗)−1y∗, called α, once

the training data changes, and store it for later inference. Then, computing f̂(xj) =

K(xj, X
∗)K(X∗, X∗)−1y∗ = K(xj, X

∗)α involves a vector dot product. Note that the

cost of computing the mean is O(n); the high cost of inference comes from computing

the variance σ2(xj), which is O(n2) (see Section 6.4.3 for more details).

If we use a subset of training points, we approximate f̂(xj) with f̂L(xj) = K(xj, X
∗
L)αL.

(αL is the same as α except that the entries in α that do not correspond to a selected

training point are set to 0). Then the approximate error γj is equal to:

γj ≈ K(xj, X
∗)α − K(xj, X

∗
L)αL

= K(xj, X
∗
L̄)αL̄ =

∑

l∈L̄

k(xj,x
∗
l)αl,

where X∗
L̄

is the set of training points excluded from local inference. Ultimately, we

want to compute γ = maxj |γj|, which is the maximum error over all the samples.

The cost of computing γ by considering every j is O(mn), as j = 1...m, which is high

for large m.

144

We next present a more efficient way to compute an upper bound for γ. We use

a bounding box for all the samples xj as constructed during local inference. For any

training point with index l, let xnear be the closest point from the bounding box to

x∗
l and xfar be the furthest point from the bounding box to x∗

l (see Figure 6.3 for an

example of these points). Then for any sample j we have:

k(xfar,x
∗
l) ≤ k(xj,x

∗
l) ≤ k(xnear,x

∗
l)

Therefore, if αl ≥ 0,

k(xfar,x
∗
l)αl ≤ k(xj,x

∗
l)αl ≤ k(xnear,x

∗
l)αl

If αl < 0, we have a similar inequality with opposite signs.

Using these inequalities, we can obtain an upper bound γupper and lower bound

γlower for γj,∀j. Then,

γ = max
j

|γj| ≤ max(|γupper|, |γlower|)

Computing this takes time proportional to the number of excluded training points,

which is O(n). For each of these points, we need to consider the sample bounding

box, which incurs a constant cost when the dimension of the function is fixed. After

computing γ, we compare it with the threshold Γ. If γ > Γ, we expand the bounding

box for selected training points and recompute γ until we have γ ≤ Γ. Note that

Γ should be set to be small compared with the domain of Y , i.e., the error incurred

for every test point is small. In Section 6.7, we show how to set Γ to obtain good

performance.

Complexity for local inference. If l is the number of selected training points,

the cost of inference is O(l3 + ml2 + n). O(l3) is to compute the inverse matrix

K(X∗
L, X∗

L)−1 used in computing the predicted variance; O(ml2) is to compute the

output variance; and O(n) is to compute γ when deciding the set of local training

points. Among the components, O(ml2) is usually the dominant cost (especially

145

when the accuracy requirement is high). This is an improvement compared to global

inference, which has a cost of O(mn2), because usually l is smaller than n.

Optimizations. We discuss some insights that help improve performance of local

inference. To make the bound γ tighter, we can divide the sample bounding box into

smaller non-overlapping boxes as shown in Figure 6.3. Then for each box, we compute

the corresponding γ. The cost to compute γ is higher by a constant factor, but the

bounds are tighter since xnear and xfar are closer to any x∗
j , so overall fewer training

points may be needed to satisfy the threshold Γ.

Comparing to existing work. We discuss two lines of existing work related

to our idea of GP local inference. [69] suggests predividing the function domain into

fixed local regions corresponding to local models. It then runs inference using the

local models and combines the results by weighting them. This is different from our

technique since all training points are used, hence can be inefficient for large training

datasets. Besides, this work does not include an error bound analysis. The work [74]

has a similar idea to ours by using sparse covariance matrices, which zeroes out low

covariances. However, it does not address approximation errors either.

6.6.2 Online Tuning

In our work, we seek an online algorithm for GPs: we start with no training points

and collects them over time so that the function model gets more accurate. We can

examine each input distribution on-the-fly to see whether more training points are

needed given the accuracy requirement. This contrasts with the offline approach

where the training data must be obtained before inference.

To develop an online algorithm, we need to make two decisions. The first decision

is how many training points to add. This is the job of the error bounds from Section

6.5, that is, we add training points until the upper bound on the error is less than

the user’s tolerance. The second decision is where the training points should be,

146

specifically, what input location xn+1 to use for the next training point. A standard

idea is to add new training points where the function evaluation is highly uncertain,

i.e., σ(x) is large. We adopt a simple heuristic for this. Recall that we use a number of

Monte Carlo samples xj to evaluate the error bounds. We simply cache these samples

throughout the algorithm, and when we need more training points, we choose the

sample xj that has the largest prediction variance σ2(xj), compute its true function

value f(xj), and add it to the training data set. After that, we run inference, compute

the error bound again, and repeat until the error bound is small enough. We have

experimentally found that this simple heuristic works well.

A complication is that when we add a new training point, the inverse covariance

matrix gets bigger K(X∗, X∗)−1, so it needs to be recomputed. Recomputing it from

scratch would be expensive, i.e., O(n3). Fortunately, we can update it incrementally

using the standard formula for inverting a block matrix as follows.

Kn+1 =

Kn m

mT k(x′,x′)

, K−1

n+1 =

K−1
n + 1

µ
ggT g

gT µ

,

where m = [k(x1,x
′)...k(xn,x

′)], g = −µK−1
n m, and µ = (k(x′,x′) − mT K−1

n m)−1

6.6.3 Online Retraining

In our work, the training data is obtained on the fly. Since different inputs corre-

spond to different regions of the function, we may need to tune the GP model to best

fit the up-to-date training data, i.e., to retrain. A key question is when we should

perform retraining (the technique is mentioned in Section 6.4.4). It is preferable that

retraining is done infrequently due to its high cost of O(n3) in the number of training

points n and multiple iterations required. The problem of retraining is less commonly

addressed in existing work for GPs (whereas it is better addressed for other models

in machine learning).

147

Since retraining involves maximizing the likelihood function L(θ), we will make

this decision by examining the likelihood function. Recall also that the numerical

optimizer, e.g., gradient descent, requires multiple iterations to find the optimum.

The heuristic is: Run training only if the optimizer is able to make a big step during

its very first iteration. Given the current hyperparameters θ, we run the optimizer

for one step to get a new setting θ′, and continue with training only if ||θ′ − θ|| is

larger than a pre-set threshold ∆θ.

In practice, we have found that gradient descent does not work well with this

heuristic, because it does not move far enough during each iteration. Instead, we

use a more sophisticated heuristic based on a numerical optimizer, called Newton’s

method, which uses both the first and the second derivatives of L(θ). Some algebra

shows that second derivatives of L(θ) are

L′′(θj) =
1

2
tr[(

∂K−1

∂θj
y∗y∗T K−1 + K−1y∗y∗T ∂K−1

∂θj
− ∂K−1

∂θj
)
∂K

∂θj

+ (K−1y∗y∗T K−1 − K−1)
∂2K

∂θ2
j

]

where tr[·] denotes the trace of a matrix. Using Newton’s method, we have θ′j − θj ≈

− L′(θj)

L′′(θj)
. Then we can compute ∆θ = ||θ′ −θ||. If ∆θ is smaller than some threshold,

then retraining is not triggered. Otherwise, we will perform retraining. As we add

more training points, we can update ∂K/∂θj and ∂2K/∂θ2
j incrementally, similarly

to K−1 in Section 6.6.2.

6.6.4 A Complete Online Algorithm

We now put together the techniques discussed above to form a complete algorithm

to compute UDFs on uncertain data using Gaussian processes. The main idea is,

starting with no training data, given an input distribution, we use online tuning in

Section 6.6.2 to obtain more training data, and run inference to compute the output

distribution. Local inference in Section 6.6.1 is used for improved performance. When

148

Algorithm 6 olgapro: Compute output distribution using Gaussian process with
optimizations

Input: Input tuple X ∼ p(x). Training data: T = {(x∗
i , y

∗
i), i = 1..n}; hy-

perparameters of the GP: θ. Accuracy requirement for the discrepancy measure:
(ε, δ).

1: Draw m samples for X, {xj, j = 1..m}, where m depends on the sampling error
bound εMC < ε.

2: Compute the bounding box for these samples. Retrieve a subset of training points
for local inference given the threshold Γ (see Section 6.6.1). Denote this set of
training point TΓ.

3: repeat
4: Run local inference using TΓ to get the output samples {(f̂(xj), σ

2(xj)), j =
1..m}.

5: Compute the discrepancy error bound Dupper using these samples (see Section
6.5.2).

6: If Dupper > εGP , add a new training point at the sample with largest vari-
ance, i.e., (x∗

n+1, f(x∗
n+1)) (see Section 6.6.2), and insert (x∗

n+1, f(x∗
n+1)) into

the training data index. Set n = n + 1.
7: until Dupper < εGP

8: if one or more training points are added then
9: Compute the log likelihood L(θ) = log p(y∗|X∗, θ) and its first and second

derivatives, and estimate δθ (see Section 6.6.3).
10: if δθ ≤ ∆θ then
11: Retrain to get the new hyperparameters θ′. Set θ = θ′.
12: Rerun inference.
13: end if
14: end if
15: Return the distribution of Y , computed from samples {f̂(xj)}.

some training points are added, we use our retraining strategy to decide whether to

relearn the GP model by updating its hyperparameters.

Our algorithm, which we name olgapro, standing for ONline GAussian PRO-

cess, is shown as Algorithm 6. The objective is to compute the output distribution

that meets the user-specified accuracy requirement under the assumption of GP mod-

eling. Basically, the main steps of the algorithm involves: (a) Compute the output

distribution by sampling the input and inferring with the Gaussian process (Steps

1-4). (b) Compute the error bound (Steps 5-7). If the error bound is larger than

the specified accuracy requirement, use online tuning to add a new training point.

149

Repeat this until the error bound is acceptable. (c) If one or more training points

have been added, use the retraining strategy to decide whether retraining is needed

and perform it if so (Steps 8-12).

Parameter setting. We further consider the parameters used in the algorithm. The

choice of Γ for local inference in step 2 is discussed in Section 6.6.1. The allocation

of two sources of error, εMC and εGP , is according to Theorem 6.5.1, ε = εMC + εGP .

Then our algorithm automatically chooses the number of samples m to meet the

accuracy requirement εMC (see Section 6.3 for the formula). For retraining, setting the

threshold ∆θ, mentioned in Section 6.6.3, smaller triggers retraining more often but

potentially makes the model more accurate, while setting it high can give inaccurate

results. In Section 6.7, we experimentally show how to set these parameters efficiently.

Complexity. The complexity of local inference is O(l3+ml2+n) as shown in Section

6.6.1. Computing the error bound takes O(m log m) (see Section 6.5.2). And retrain-

ing takes O(n3). The number of samples m is O(1/ε2
MC) and the number of training

points n depends on εGP and the UDF itself. The unit cost is basic math operations,

in contrast to complex function evaluations as in Monte Carlo simulation. This is

because when the system converges, i.e., having enough training points, we seldomly

need to add more training points, so the cost of function evaluation can be avoided.

Also, at convergence, since few training points are added, we can avoid the high cost

of retraining, i.e., the required computation involves inference and computing error

bounds.

6.6.5 Hybrid Solution

We next discuss a hybrid solution that combines our two approaches: direct MC

sampling, and GP modeling and inference. The need for a hybrid solution rises since

functions can vary on their complexity and evaluation time. Therefore, when given a

black-box function, we explore these properties and choose the better solution.

150

We now outline the steps of our hybrid solution. (1) When given a black box UDF,

we draw some samples in the input domain, evaluate their function values and measure

the time taken for function evaluation. (2) We use the samples above as training

points and learn a GP to model the function. (3) Run the olgapro algorithm to

compute the output distribution and measure the running time. (4) Repeat the above

steps for later inputs. This step helps determine when the GP converges (i.e., how

many training points are required) and the time taken to run the GP. (5) We then

compare the running time of the two approaches, choose the more efficient one, and

use it for future inputs. In Section 6.7, we conduct experiments to find out when each

approach can be applied for different UDFs.

6.6.6 Online Filtering

Similarly to filtering using Monte Carlo simulation in the presence of a selection

predicate (as discussed in Section 6.3.2), we now consider how to do online filter-

ing when sampling with a Gaussian process. Again, we consider selection with the

predicate a ≤ f̃(x) ≤ b. Let (f̂(x), σ2(x)) be the estimation at any input point x.

With the GP approximation, the tuple existence probability ρ̃ is approximated with

ρ̂ = Pr[f̂(x) ∈ [a, b]]. This is exactly the quantity that we bounded in Section 6.5.2,

where we showed that ρ̃ ≤ ρU . So in this case, we filter tuples whose estimate of ρU is

less than our threshold. Again, since ρU is computed from the samples, we can check

this online for filtering decision as in Section 6.3.2.

6.7 Performance Evaluation

In this section, we evaluate the performance of our proposed techniques using both

synthetic functions and data with controlled properties, and real workloads from the

astrophysics domain.

151

(a) Funct1 (b) Funct2 (c) Funct3 (d) Funct4

Figure 6.4. A family of functions of different smoothness and shape used in evalu-
ation.

6.7.1 Experimental Setup

We first use synthetic functions so that we can vary different parameters to test

the performance and sensitivity of our algorithms. We now describe the settings of

these functions, workload data and parameters considered.

A. Functions.We generate functions (UDFs) of different shapes in terms of

bumpiness and spikiness. A simple method is to use Gaussian mixtures [39] to simu-

late various function shapes (which should not be confused with the input and output

distributions of the UDF and by no means favors our GP approach). We vary the num-

ber of Gaussian components, which dictates the number of peaks of a function. The

means of the components determine the domain of the function, and their covariance

matrix determines the stretch and bumpiness of the function. We denote the dimen-

sionality of the functions d, which is the number of input variables of the function.

We observe that in real applications, many functions have low dimensionality—the

ones we found in astrophysics have d = 1 or d = 2. For evaluation purposes, we

vary d in a wide range of [1,10]. Besides the shape, a function is characterized by the

evaluation time, denoted as T and varied in the range 1µs to 1s.

B. Input Data. By default, we consider uncertain data following Gaussian

distributions, i.e., the input vector has distribution characterized by N (µI , ΣI). µI

is drawn from the given support of the function [L, U]. ΣI determines the spread of

the input distributions. For simplicity, we assume the input variables of a function

152

are independent, but supporting correlated inputs is not harder—we just need to

sample from the joint distributions. We also consider other distributions including

exponential and Gamma. We note that handling other types of distributions is similar

due to the same reason (the difference is the cost of sampling).

C. Accuracy Requirement. We use the discrepancy measure as the accuracy

metric in our experiments. The user specifies the accuracy requirement (ε, δ) and the

minimum interval length λ. λ is set to be a small percentage (e.g., 1%) of the range

of the function. This requirement means that with probability (1−δ), for all intervals

of length at least λ, the probability of an interval computed from the approximate

output distribution does not differ from that computed from the true distribution by

more than ε. For the GP approach, the error bound ε is allocated to two sources of

errors, GP error bound εGP and sampling error bound εMC , where ε = εGP + εMC .

We also distribute δ so that 1 − δ = (1 − δGP)(1 − δMC).

Our default setting is as follows. The domain of function [L, U] = [0, 10], input

standard deviation σI = 0.5, function evaluation time T = 1ms, accuracy requirement

(ε = 0.1, δ = 0.05), and minimum interval length λ = 1%xfunct range. The reported

results are averaged from 500 output distributions or when the algorithm converges,

whichever larger. The convergence is achieved when the running time stabilizes, i.e.,

the algorithm is less likely to add more training points or call retraining.

6.7.2 Evaluating GP Techniques

We first evaluate the individual techniques employed in our Gaussian process

algorithm, olgapro. This is aimed to understand and set various internal parameters

of our algorithm.

Profile 1: Accuracy of function fitting. We first choose four representative

two-dimensional functions of different shape and bumpiness (see Figure 6.4). These

functions are the four combinations between (i) one or five components, (ii) large or

153

� � � �� � � �� � � �� � � � � � !� � � "�� �
$ % $ $ % # $ & $ $ & # $ ' $ $ ' # $ ($ $) *+ ,-. /**0010 2 3 4 5 6 7 8 9 : ; : ; < = 5 : ; 7 > ? ; @

A B C D E %A B C D E &A B C D E 'A B C D E (
(a) Profile1: Function fitting

$$ F $ &$ F $ ($ F $ G$ F $ H$ F %$ F % &$ F % ($ F % G$ F % H
$ $ F $ & $ F $ ($ F $ G $ F $ H $ F %I JJK0,JLMN. OJ0*P,QJLR

? 9 > = S 8 T S ; 7 9 < S 5 6 6 3 ; T 7 : 5 ; 8 9 ; < S @
U V V W VU V V W V X W B C Y

(b) Profile2: Error bound

Figure 6.5. Experimental results for profiling of the GP approach

small variance of Gaussian components. We will refer to these functions as F1, F2, F3,

and F4. First, we check the use of GPs to model these functions. We vary the number

of training points n and use basic global inference to infer the function values at test

points. Figure 6.5(a) shows the relative errors for GP inference, i.e., | f̂(x)−f(x)
f(x)

|, when

evaluating at a large number of test points. We observe that the simplest function F1

with one peak and being flat needs a small number of training points, e.g., 30, to give

a good approximation. On the other hand, the most bumpy and spiky function F4

with five peaks requires the largest number of training points, n > 300, to start giving

good approximations. The other two functions are in between. This confirms that

the GP approach can model functions of different shape well, however the number

of training points needed varies with the functions. In the later experiments, we will

show that our algorithm olgapro can robustly determine the number of training

points needed online.

Profile 2: Behavior of error bound. We next test the behavior of our discrep-

ancy error bound, which is described in Section 6.5.2 and shown how to compute in

Algorithm 4. We compute the error bounds and measure the actual errors. Figure

6.5(b) shows the result for the function F4. As observed, it confirms that the error

bounds are actual upper bounds, which indicates the validity of GP modeling. More

interestingly, it shows how tight the bounds are (about 2 to 4 times larger than the

154

actual errors). As λ gets smaller, more intervals are considered when computing the

discrepancy measure. As a result, the errors and error bounds, which are the suprema

computed from a larger set of intervals, get larger. We run tests with other functions

and observe the same trends.

In the following experiments, we use a stringent requirement by setting λ to be

1% of the function range.

Profile 3: Allocation of two sources of error. Our GP approach has two sources

of errors, GP modeling and Monte Carlo sampling as stated in Theorem 6.5.1. Given

the user-specified error bound ε, we want to allocate ε = εGP +εMC . We vary the ratio

of two error bounds to find a setting that optimizes performance. Overall, we observe

setting εMC to be 60% to 80% of ε gives best performance. The bias towards a higher

percentage of εMC can be explained as, the number of samples m is proportional to

1/ε2
MC , whereas the number of training points n needed is less sensitive to εGP . For

default we will use r = 0.7 in our experiments.

In the next three experiments, we evaluate the three key techniques employed in

our GP algorithm. The default function is F4.

Expt 1: Local inference. We first consider our local inference technique as shown

in Section 6.6.1. We compare the accuracy and running time of local inference with

those of global inference. For now, we fix the number of training points to compare

the performance of the two inference techniques. We vary the threshold Γ of local

inference from 0.1% to 20% of the function range. Recall that setting Γ small cor-

responds to using more training points and hence similar to global inference. Our

goal is to choose a setting of Γ so that local inference has similar accuracy as global

inference while being faster. Figures 6.6(a) and 6.6(b) show the accuracy and running

time of local inference and global inference for F4. We see that for most of values Γ

tested, local inference is as accurate while offering a speedup from 2 to 4 times. We

repeat this experiment for other functions and observe that for less bumpy functions,

155

$ F $ #$ F %$ F % #$ F &$ F & #
$ F $ $ % $ F $ % $ F %I JJK0,JLMN. OJ0*P,QJLR

Z [8 S > [5 \] ? 9 > = S 8 T S ; 7 9 < S 5 6 6 3 ; T 7 : 5 ; 8 9 ; < S @
^ W D _ ` a C b c V U V V W V X W B C Yd ` W e _ ` a C b c V U V V W V X W B C Y^ W D _ ` a C b c V U V V W Vd ` W e _ ` a C b c V U V V W V

(a) Expt1: Local inference–Accuracy

$% $ $& $ $' $ $($ $# $ $G $ $f $ $
$ F $ $ % $ F $ % $ F %g. h*M hOR

Z [8 S > [5 \] ? 9 > = S 8 T S ; 7 9 < S 5 6 6 3 ; T 7 : 5 ; 8 9 ; < S @d ` W e _ ` a C b c V F^ W D _ ` a C b c V F
(b) Expt1: Local inference–Time

$% $ $& $ $' $ $($ $# $ $G $ $f $ $
$ # $ % $ $ % # $ & $ $ & # $ ' $ $ ' # $ ($ $I JJKhK+ ,- *i QKhP1. Q- O,ii *i

2 3 4 j S 8 5 6 T 9 \ \ > k _ C Y W l^ _ V m c n E o _ V p _ C D cq r E p l _ ` d V c c Y s
(c) Expt2: Online tuning

$$ F $ #$ F %$ F % #$ F &$ F & #$ F '$ F ' #$ F ($ F (#
$ F $ $ % $ F $ % $ F % %I JJK0,JLMN. OJ0*P,QJLR

Z [8 S > [5 \]
t W k c E V _ p C p C mu v V c n v W ` Y p C m FU _ m c V k c E V _ p C p C m

(d) Expt3: Retraining–Accuracy

$# $ $% $ $ $% # $ $& $ $ $& # $ $' $ $ $' # $ $($ $ $
$ F $ $ % $ F $ % $ F % %g. h*M hOR

Z [8 S > [5 \]
U _ m c V k c E V _ p C p C mu v V c n v W ` Y p C m Ft W k c E V _ p C p C m

(e) Expt3: Retraining–Time

�� �� � !� � � � �� � �
$ F $ & $ F $ ($ F $ G $ F $ H $ F % $ F % & $ F % ($ F % G $ F % H $ F &g. h*M hOR

w T T 3 8 9 T x 8 S y 3 : 8 S 4 S ; 7
A B C D E %A B C D E &A B C D E 'A B C D E (

(f) Expt4: Vary accuracy requirement

Figure 6.6. Experimental results for evaluating the GP approach using synthetic
data and functions

the speedup for local inference is less pronounced, but the accuracy is always com-

parable. This is because for smooth functions, far training points still have a high

weight in inference. In general, we set Γ about (0.05x function range), which results

in good accuracy and improved running time.

Expt 2: Online tuning. In Section 6.6.2, we proposed to add training points on-

the-fly to meet the accuracy requirement. We now evaluate our heuristics for adding

new training points by choosing samples with the largest variance. We compare it

156

with two following heuristics: Given an input distribution, a simple one is to choose a

sample of the input at random. Another heuristics is what we call “optimal greedy”.

It considers all samples, and for each one, simulates adding it to compute the new

error bound, and then picks the sample that has the most error bound reduction.

This is only hypothetical since it is prohibitively expensive to simulate adding every

sample. For the purpose of this experiment, we assume that there are 400 samples for

the input, so that we can use “optimal greedy”. We start with just 25 training points

and add more over time as necessary. Figure 6.6(c) shows the accumulated number

of training points added over time (for performance, we restrict that for every input,

we do not add more than 10 training points). As can be seen, our technique using

the largest variance requires fewer training points, hence runs faster, than randomly

adding points. Also, it is close to our optimal greedy standard while being much

faster to be run online.

Expt 3: Retraining strategy. We now examine the performance of our retraining

strategy (see Section 6.6.3). We vary our threshold ∆ for retraining and compare this

strategy with two other strategies: eager training every time one or more training

points are added, and no training. Again, we start with a small number of train-

ing points and add more according to online tuning. Figures 6.6(d) and 6.6(e) show

the accuracy and running time respectively. As expected, setting ∆ smaller means

retraining more often and is similar to eager retraining, while larger ∆ means less

retraining. We see that setting ∆ less than 0.5 gives best performance, as fewer re-

training calls are needed while the hyperparameters are still good estimates, hence

high accuracy. We repeat this experiment with other functions and see that conser-

vatively setting ∆ = 0.05 gives good performance in general. This is because, this

constant ∆ is small compared to the GP hyperparameters for this set of functions.

In practice, ∆ can be chosen in reference with the hyperparameter values.

157

6.7.3 GP versus Monte Carlo Approach

We next examine the performance of our complete online algorithm, olgapro,

as described in Algorithm 6. The internal parameters are set as mentioned above.

We also compare this algorithm with the Monte Carlo approach in Section 6.3.1.

Expt 4: Varying user-specified ε. We run the GP algorithm for all four functions

F1 to F4. We vary ε in the range of [0.02, 0.2]. Figure 6.6(f) shows the running time

for the four functions. (We verify that the accuracy requirement ε is always satisfied,

and omit the plot here due to space constraints.) As ε gets smaller, the running

time increases. This is due to the fact that the number of samples is proportional

to 1/ε2
MC . Besides, small εGP requires more training points, hence higher cost for

inference. This experiment also verifies the effect of the function complexity on the

performance. A flat function like F1 needs much fewer training points than a bumpy,

spiky function like F4, thus running time is about two orders of magnitude different.

We also repeat this experiment for other input distributions including Gamma and

exponential distributions, and observe very similar results. Overall, our algorithm

can robustly adapt to the function complexity and the accuracy requirement.

Expt 5: Varying the evaluation time T . We now compare our GP algorithm

with the Monte Carlo approach. We fix ε = 0.1 and vary the function evaluation

time T from 1µs to 1s. Figure 6.7(a) shows the running time of the two approaches

for all four functions. Note that the running time for MC sampling is similar for

all functions, hence we just show one line. As can be observed, the GP approach

starts to outperform the sampling approach when function evaluation takes longer

than 0.1ms for simple functions like F1, and up to 10ms for complex functions like

F4. Also we note that our GP approach is almost insensitive to function evaluation

time. This is because we only need to acquire more training points, hence involving

function evaluation, during the early phase before the system converges. After that,

158

�� �� � !� � � � �� � �� � �
$ F $ $ % $ F $ % $ F % % % $ % $ $ % $ $ $g. h*M hOR

z 3 ; T 7 : 5 ; S { 9 \ 7 : 4 S ? 4 > @
d | } A B C D E %d | } A B C D E &d | } A B C D E 'd | } A B C D E (~ � � _ l r ` p C m

(a) Expt5: Vary evaluation time

� �� � !� � � � �� � �
$ F % � $ F f & $ F H & $ F � fg. h*M hOR

z : \ 7 S 8 : ; < = S 8 T S ; 7 9 < S
~ �~ � � q Ad |d | � q A

(b) Expt6: Online filtering–Time

$$ F $ &$ F $ ($ F $ G$ F $ H$ F %$ F % &
$ F % � $ F f & $ F H & $ F � f� ,+ O*P1O. -. /*0,- *

z : \ 7 S 8 : ; < = S 8 T S ; 7 9 < S
~ � � q Ad | � q A

(c) Expt6: Online filtering–Accuracy

�� �� � !� � � � �� � �� � �� � �
% & ' (# G f H � % $g. h*M hOR

z 3 ; T 7 : 5 ; � : 4 S ; > : 5 ; 9 \ : 7 xd | � c � _ ` u p l c � % n �~ � � c � _ ` u p l c � % l n �~ � � c � _ ` u p l c � % $ l n �~ � � c � _ ` u p l c � % $ $ l n �~ � � c � _ ` u p l c � % n �
(d) Expt7: Vary function dimensional-
ity

Figure 6.7. Experimental results for comparing the GP and MC approaches using
synthetic data and functions

function evaluation is only infrequent. This demonstrates the applicability of the GP

approach for long running functions.

This result also shows the need for the hybrid solution. Since the function com-

plexity is not known beforehand, it is hard to know how many training points are

enough. Therefore, the hybrid solution can be performed to find out which approach

is preferred. For example, for simple functions we can adopt the GP approach even

when evaluation time is about 0.1ms, but for complex functions, we start to apply

it when function evaluation is longer. The hybrid solution computes the function

evaluation time and evaluates its complexity to automatically make this decision.

Expt 6: Optimization for selection predicates. We next examine the per-

formance of using online filtering when there is a selection predicate. As shown in

Sections 6.3.2 and 6.6.6, this can be applied for both direct MC sampling or sampling

159

with a GP. We vary the selection predicate, which in turn affects the rate that the

output is filtered. We decide to filter an output whose tuple existence probability

is less than 0.1. Figure 6.7(b) shows the running time. As seen, when the filtering

rate is high, online filtering helps reduce the running time for both approaches: the

running time reduces by a factor of 5 and 30 times for MC and GP respectively. We

observe that the GP approach has a higher speedup because besides processing fewer

samples, it results in a GP model with fewer training points, hence smaller inference

cost. Figure 6.7(c) shows the false positive rates, i.e., output tuples should be filtered

but are not during the sampling process. We observe that this rate is low, always less

than 10%. The false negative rates are zero or negligible (less than 0.5%).

Expt 7: Varying function dimensionality d. We conduct one experiment on

varying the dimension of the function d from 1 to 10. Figure 6.7(d) shows the running

time of these functions for both GP and MC approaches. Since the running time using

GP is insensitive to function evaluation time, we show only one line for T = 1s for

clarity. We observe that with GPs, high-dimensional functions incur high cost, which

is due to the fact that more training points are needed to capture a larger region. This

is also known as the “curse of dimensionality”. We observe that even with a high

dimension of 10, the GP approach still outperforms MC when function evaluation

time reaches 0.1s.

The results indicate that the hybrid approach is feasible by encoding general

rules based on the known dimensionality and observed evaluation time. When the

function is really fast, i.e., T ≤ 0.01ms, MC sampling is a preferred solution. For

most functions we see in our applications, which have low dimensionality, we use

GP approach for better performance if functions have T ≥ 1ms. For very high-

dimensional functions, we use MC approach. (We consider exploring improvements

for GPs for this case in future work.)

160

� ����� � � � � � � � � � � � � � � � ����� ��
�

(a) Example output of AngDist

�� �� � �� � �
� � � � � � � � � � � � � �� ¡¢£ ¡¤¥

¦ § § ¨ © ª § « © ¬ ¨ ® © ¬ ¯ ¬ ° ±
² ³ ´ ¦ ° µ ¶ ® · ±¸ ¹ ´ ¦ ° µ ¶ ® · ±

(b) AngDist

�� �� � �� � �� � º
� � � � � � � � � � � � � �¦ § § ¨ © ª § « © ¬ ¨ ® © ¬ ¯ ¬ ° ±

² ³ ´ ² ª » ¦ µ ¬¸ ¹ ´ ² ª » ¦ µ ¬
(c) GalAge

�� �� � �� � �� � º� � ¼
� � � � � � � � � � � � � �¦ § § ¨ © ª § « © ¬ ¨ ® © ¬ ¯ ¬ ° ±

² ³ ´ ¹ ½ ¯ ¾ ½ »¸ ¹ ´ ¹ ½ ¯ ¾ ½ »
(d) ComVol

Figure 6.8. Results for real astrophysics functions and SDSS data

6.7.4 Case Study: UDFs in Astrophysics

In this experiment, we consider the application of our techniques in the astro-

physics domain using real functions and data. We examined functions to compute

various astrophysical quantities, available in a library package at [6] and found eight

functions computing a scalar value, which can all be incorporated into our frame-

work; our algorithms treat them as black-box UDFs. Most of these functions are

one and two-dimensional, usually have simple shapes but can be slow-running due to

complex numerical computation. We chose three representative functions, as shown

below, that vary in evaluation time across a range (while the others have similar fast

evaluation times). (See Section 6.1 for the queries using these functions.)

161

functName dim evalTime (ms)

AngDist 2 0.00298

GalAge 1 0.29072

ComoveVol 2 1.82085

We use a real dataset from the Sloan digital sky survey (SDSS) project [92] and

extract the necessary attributes for these functions, which are uncertain and charac-

terized by Gaussian distributions.

We vary the accuracy requirement ε from 0.02 to 0.2. We verify that output

distributions are non-Gaussian; an example output distribution of AngDist is shown

in Figure 6.8(a). We compare the performance of Monte Carlo simulation with our

algorithm olgapro. The results are shown in Figure 6.8. (We omit the accuracy

plot due to space constraints, but verify that the average errors are less than 0.5ε.)

Overall, we observe that these functions are generally smooth and non-spiky, hence

do not need many training points to model. The 1D function GalAge only requires

around 10 training points, while the two 2D functions, AngDist and ComoveV ol,

require less than 40 points. olgapro adds most of these training points for the first

few input tuples; after that, the running time becomes stable. AngDist is a quite

fast function and olgapro is somewhat slower than MC sampling. For the other

two functions, GalAge and ComoveV ol, whose evaluation time is about 0.3 and 2 ms

respectively, our olgapro is faster than the MC sampling by one to two orders of

magnitude. These results are consistent with those using synthetic functions shown

above and demonstrate the applicability of our techniques for the real workloads.

6.8 Related Work

We discuss several broad areas of research related to our work on UDFs.

Work on UDFs with deterministic input. Existing work, e.g.,[18], considers

queries invoking UDFs that are expensive to execute and proposes reordering the exe-

162

cution of the predicates. Another work [26] considers functions that are iterative and

computed by numerical methods, and whose accuracy varies with computation cost.

It proposes to adaptively execute these functions depending on given queries. How-

ever, this line of work considers only deterministic input, hence inherently different

from this thesis work.

Gaussian process regression with uncertain input. Regression using

GPs has been well studied in the machine learning literature (see [76] for a survey

of existing work). However, most of the work considers deterministic input and

presents offline solutions, while we consider uncertain input in an online setting.

One line of work from the statistics literature most related to claro is [70], which

uses GPs as emulators to computer code that is slow to run. It briefly mentions

using sampling to handle uncertain input, but does not quantify the approximation,

which we tackle in this work by deriving error bounds. Further, we present an online

algorithm with different optimizations, which has not been done before. The prior

work [41] computes only the mean and variance of the output. Since the UDF output

in most cases is not Gaussian, this approach does not fully characterize the output

distribution. In addition, the work [41] mainly considers input data that follows

Gaussian distributions, while our work can support input data of any distributions.

Optimizations of Gaussian processes. Existing lines of work [69, 74] propose

optimizations for inference with GPs; however, they work in an offline manner and

are not suitable for our online settings due to the lack of online tuning to obtain

training data on the fly and retraining strategies to reduce the training overhead.

Regarding inference only, the paper [69] suggests pre-dividing the function domain

into fixed local regions corresponding to local models, then runs inference using the

local models and combines the results by weighting them. This is different from

our local inference technique since all training points are used, and hence can be

inefficient for large training datasets. The work [74] has a more similar idea to our

163

local inference by using sparse covariance matrices, which zeroes out low covariances,

to reduce the number of training points under inference. However, it does not quantify

the approximation errors, while we can control these errors using the threshold Γ as

discussed in Section 6.6.1.

164

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter summarizes the contributions made in this thesis work and states

some research directions for future work.

7.1 Thesis Summary

We have presented claro, a complete system for uncertain data processing.

claro focuses on supporting continuous-valued uncertain data, which is prevalent in

scientific and sensing applications, but has been under-addressed in the existing work.

It provides an end-to-end-solution to capture data uncertainty from raw data collec-

tion to query processing to final result generation. More specifically, claro offers

two key functionalities, (i) raw data capture and transformation and (ii) probabilistic

query processing. The proposed techniques aim for both accuracy and efficiency to

support high data volume and online processing, which we have validated using both

synthetic and real-world data and workloads. Our main contributions are summarized

as follows.

• Capture and transformation of raw data. We proposed a probabilistic approach

based on graphical modeling and inference algorithm to transform raw data into

queriable tuples with quantified uncertainty. Specifically, we demonstrated this

approach for the RFID data to translate noisy, raw data streams from mobile RFID

readers into clean, rich event streams with location information. The experimental

results show that our approach offers 49% error reduction over a state-of-the-art

RFID cleaning approach [50] while scaling to read rates of over 1500 readings/sec.

165

Compared to the standard inference technique, our solution offers up to 7 orders-

of-magnitude improvement in scalability.

• Data models and formal semantics. Given that uncertain data in our applications

is continuous-valued, we proposed a flexible data model based on Gaussian mix-

ture distributions to capture those continuous attributes. Furthermore, observing

that processing can yield discrete distributions, we extended our data model to the

mixed-type data model to capture tuple existence uncertainty that arises from con-

ditioning operations. We employed measure theory to define the formal semantics,

which lays the foundation for relational processing under this data model.

• Relational processing under the mixed-type data model. We examined relational

processing under the mixed-type data model, with the focus on aggregation op-

erations. We devised efficient solutions to compute the distributions of different

aggregates, which are either exact or approximate with bounded errors. We then

presented a technique for query planning for complex queries that meets query

accuracy requirements. The experimental results show that when the existence of

tuples is certain, the proposed techniques for aggregation outperform the state-

of-the-art sampling approach [38] in both accuracy and throughput. When the

existence of tuples is uncertain, our deterministic algorithm for max/min is faster

than our proposed randomized algorithm by orders of magnitude; for sum/count,

our deterministic algorithm works better given high accuracy requirements. We

also evaluated query planning for complex queries using real data and workloads

from the applications of object tracking and computational astrophysics. The re-

sults showed that claro can meet given accuracy requirements while achieving

throughput of thousands of tuples per second or higher for most workloads tested.

Also, when applied to the CASA tornado detection case study, the proposed tech-

niques of claro are shown to produce detection results at stream speed with much

improved quality.

166

• Supporting user-defined functions on uncertain data. We presented a complete

solution to computing the outputs of user-defined functions (UDFs) using both

Monte Carlo sampling and a learning approach based on Gaussian processes (GPs).

For the GP approach, we presented new results to compute the output distribution

and quantify their error bounds. We then proposed an online algorithm that can

adapt to user accuracy requirements, together with a suite of novel optimizations

for improved accuracy and performance. Our evaluation using both real-world

and synthetic functions shows that the proposed GP approach can outperform the

Monte Carlo approach with up to two orders of magnitude improvement for many

UDFs of low dimensions and relatively high evaluation time, e.g., 1ms and above.

7.2 Future Work

We have considered the design and development of a system for uncertain data

processing. We now discuss some directions for future work based on this thesis work.

Handling correlation. In this work, we consider independent input tuples and

the operations that produce independent output tuples. Handling correlation is an

important, yet difficult, unsolved problems. We now consider the different sources of

correlation and possible solutions to capture it. Correlation can arise in two ways:

(i) input tuples are correlated, and (ii) even when the input tuples are independent,

correlation can emerge in the immediate outputs computed from some same tuples.

For the first case, given a sequence of N random variables, model testing and

identification tools [13] can be used to test the randomness and determine the order

of correlation if it does exist. If the input tuples are correlated, e.g., forming a time

series, exact derivation of the result distribution of sum can be difficult, because it

requires the use of multivariate integration. Numerical methods such as adaptive

quadrature or Monte Carlo integration can be used [61]. However, these approaches

are often inefficient, and hence require optimizations or new algorithms for improved

167

performance. Approximation techniques may depend on specific correlation struc-

tures. One technique that pertains to our weather monitoring domain is the Central

Limit Theorem for time series [14]. As stated in Section 3.4, given the observed

velocity series, we can use the autocorrelation function to identify sub-series length

to aggregate upon so that the sub-series can be modeled as an MA model. For a

series that is from an MA model, the Central Limit Theorem states that the average

velocity has an asymptotic normal distribution and can be easily computed. We plan

to study other correlation structures.

For the second case, if a query involves multiple operators, the intermediate results

can be correlated even if the input tuples to the first operator(s) are independent.

For example, if a join is followed by an aggregation, the join may produce correlated

results by matching a tuple from one input with multiple tuples from the other. Then

characterizing result distributions of aggregation with correlated inputs requires the

full joint distribution of input tuples and is hard to compute. A general solution to

computing result distributions from correlated intermediate tuples is to use sampling

and density estimation to obtain the result distribution. However, this can be slow for

high-volume streams. Given our focus on selection, join, and aggregation and their

uses in real-world applications, we aim to identify common patterns of correlation and

explore different optimizations and approximations to obtain the result distributions.

A useful related technique is to exploit lineage [9, 101] about how correlated tuples

are produced. Such lineage helps determine the correlation structure among tuples

and eliminates the need of computing full joint distributions for intermediate tuples.

Given the correlation structure, the last query operator has the flexibility to optimize

its computation. We will aim to study the use of lineage to capture correlation and

efficient techniques to evaluate them.

Extension for complex user-defined functions. In Chapter 6, we have presented

a general framework to support user-defined functions (UDFs). We now discuss some

168

directions to support various types of UDFs including multivariate output and high-

dimensional input. For functions of multivariate output, some directions such as

modeling the correlation among the outputs are briefly mentioned in [76]. For high-

dimensional functions, it may be the case that the output is less sensitive to some

or many input dimensions. We plan to explore existing techniques from the machine

learning literature such as automatic relevance determination (ARD) to find out which

dimensions are relevant to the output. Another important case we have observed in

the weather monitoring case is that, the output may be classified to different events,

only some of which are events of interest, e.g., there is a storm or tornado. The user

would want to quickly identify if there is such an event of interest, and if so, which

input corresponds to it. This way, the high dimensional input can be reduced to a

subset that matters most to the application, hence saving computation cost. We aim

to study techniques from the machine learning literature such as active learning to

address this problem.

Parallel processing for big data. We have studied several optimizations for the

proposed techniques to meet performance requirements such as stream speed pro-

cessing and scalability to a large number of objects. However, as the volume of

available data becomes higher and higher in many applications, further optimiza-

tions or different techniques may be required. Given that the recent popularity of

the MapReduce framework has facilitated the implementation of parallel processing,

we aim to support parallel processing for high performance scalable uncertain data

management. This would involve revising the existing techniques or designing new

ones to be amenable to parallel processing. For example, if a query plan has opera-

tors independent of each other, they can be executed in parallel. We now consider

a more complex example from the claro system, inference with Gaussian processes

used as emulators for UDFs. The GP model contains the hyperparameters, which

specify the mean function and the covariance function, and the training dataset. The

169

domain of the input can be divided into different regions, each corresponding to a

sub-model. This fits well with our local inference approach. An input distribution

may correspond to more than one local model. Therefore, we can draw the samples

from the input distribution, group the samples according to the regions of the local

models, and call inference in the appropriate models. This can also address the prob-

lem of functions with high dimensionality since the training dataset, possibly large

for high dimensions, is divided into subsets in local models. Besides, this can support

input data of high volume, because different input tuples may correspond to different

local models, and hence can be processed concurrently. Replicating local models can

further help with high data volume. These ideas can be examined and evaluated in

future work.

Supporting a complete hybrid system. In this thesis, we focus on sensing and

scientific data that is naturally modeled by continuous random variables. Some pro-

cessing operations such as selection, group-by, and subsequently, sum of Bernoulli

variables, may generate discrete distributions as seen in Chapter 5. Many of our

proposed processing algorithms such as the approximation algorithm for sum and

count and the online algorithm to computing UDFs using a GP model already work

for discrete random variables. A direction of future work is aimed to examine ex-

isting techniques or devise new ones to form a suite of processing techniques that

together support both discrete and continuous uncertainty. A follow-up study can be

to compare the performance of the available techniques for different input represen-

tations, either discrete or continuous, which may offer insights into the cases where

each technique can be applied.

Another direction that can be considered for the complete system is to allow for

tradeoffs between accuracy and performance. For instance, instead of computing full

result distributions, we can aim to compute statistics of the output if the cost of the

former is too high. Once we understand the relative performance between computing

170

the full distribution and the different statistics, we can incorporate this knowledge

into designing the processing algorithms. One use of this idea is that the user can

specify some computation budget and accuracy requirements, and then the system

would find a solution that best addresses these two requirements.

171

APPENDIX

MATHEMATICAL PROOFS

This appendix includes the proofs of the propositions and theorems presented in

Chapter 5.

Proof of Proposition 5.3.1. We first show that KS(F, G) ≤ VD(f, g), where the

pdf’s f and g have the corresponding CDF’s F and G.

2(KS(F, G) − VD(f, g)) =2|F (x) − G(x)| −
∫ ∞

−∞

|f(x) − g(x)|dx

=|F (x) − G(x)| + |(1 − F (x)) − (1 − G(x))|

−
∫ x

−∞

|f(x) − g(x)|dx −
∫ ∞

x

|f(x) − g(x)|dx

|F (x) − G(x)| = |
∫ x

−∞

f(x)dx −
∫ x

−∞

g(x)dx| ≤
∫ x

−∞

|f(x) − g(x)|dx.

Similarly:

|(1 − F (x)) − (1 − G(x))| ≤
∫ ∞

x

|f(x) − g(x)|dx

Since the above inequalities hold for any x, we have KS(F, G) ≤ VD(f, g). Addi-

tionally, KS(F, G) can be arbitrarily smaller than VD(f, g). For instance, if f is the

uniform distribution of the set of intervals

[0, 1] ∪ [2, 3] ∪ . . . ∪ [2k − 2, 2k − 1]

and g is the uniform distribution on

[1, 2] ∪ [3, 4] ∪ . . . ∪ [2k − 1, 2k]

172

then KS(F, G) = 1/k whereas VD(f, g) = 1.

Proof of Theorem 5.4.1. We first consider the sum of two random variables,

S = X1 + X2, X1 and X2 be Gaussian mixtures of m1 and m2 components. That is:

f1(x) = p11N(µ11, σ11) + ... + p1m1N(µ1m1 , σ1m1)

f2(x) = p21N(µ21, σ21) + ... + p2m2N(µ2m2 , σ2m2)

The pdf of the sum S can be written as:

fS(s) =

∫

x1

∫

x2:(x1+x2=s)

f1(x1)f2(x2)dx2dx1

=

∫ +∞

−∞

f1(x)f2(s − x)dx

f1(x)f2(s − x) = [p11N(µ11, σ11) + ... + p1m1N(µ1m1 , σ1m1)]

[p21N(µ21, σ21) + ... + p2m2N(µ2m2 , σ2m2)]

=

m1,m2
∑

i=1,j=1

p1ip2j
1

2πσ1iσ2j

e
− 1

2
(
(x−µ1i)

2

σ2
11

+
(x−µ2j)2

σ2
2j

)

Now consider the integral of one term of the sum:

A =

∫ +∞

−∞

p1ip2j
1

2πσ1iσ2j

e
− 1

2
(
(x−µ1i)

2

σ2
1i

+
(x−µ2j)2

σ2
2j

)

Let B be the term in the exponent, except for the constant:

B =
(x − µ1i)

2

σ2
1i

+
(x − µ2j)

2

σ2
2j

=
1

σ2
11σ

2
21

[

(σ2
1i + σ2

2j)x
2 − 2σ2

2jxµ1i + 2σ2
1ix(µ2j − s) + σ2

2jµ
2
1i + σ2

1i(µ2j − s)2
]

=
σ2

1i + σ2
2j

σ2
11σ

2
21

(

x −
σ2

2jµ1i + σ2
1i(s − µ2j)

σ2
1i + σ2

2j

)2

−
(

σ2
2jµ1i + σ2

1i(s − µ2j)

σ2
1i + σ2

2j

)2

+
σ2

2jµ
2
1i + σ2

1i(s − µ2j)
2

σ2
1i + σ2

2j

=
σ2

1i + σ2
2j

σ2
1iσ

2
2j

(

x −
σ2

2jµ1i + σ2
1i(s − µ2j)

σ2
1i + σ2

2j

)2

+
σ2

1i + σ2
2j(s − µ1i − µ2j)

2

(σ2
1iσ

2
2j)

2

173

Substitute into A, we have:

A =

∫ +∞

−∞

p1ip2j
1

2πσ1iσ2j

e
1
2

σ2
1i+σ2

2j

σ2
1i

σ2
2j

x−
σ2
2jµ1i+σ2

1i(s−µ2j)

σ2
1i

+σ2
2j

!2

e

(s−µ1i−µ2j)2

σ2
1i

+σ2
2j dx

=
p1ip2j√

2π
√

σ2
1i + σ2

2j

e

(s−µ1i−µ2j)2

σ2
1i

+σ2
2j

∫ +∞

−∞

1√
2π

σ1iσ2j√
σ2
1i+σ2

2j

e
1
2

σ2
1i+σ2

2j

σ2
1i

σ2
2j

x−
σ2
2jµ1i+σ2

1i(s−µ2j)

σ2
1i

+σ2
2j

!2

dx

The integral is equal to 1 since it is the integral of the pdf of a Gaussian distribution.

Hence:

A =
p1ip2j√

2π
√

σ2
1i + σ2

2j

e

(s−µ1i−µ2j)2

σ2
1i

+σ2
2j

This is one component of a Gaussian mixture with mean (µ1i+µ2j), variance (σ2
1i+σ2

2j)

and coefficient p1ip2j. Therefore, the theorem is proved for the case of N = 2.

The generalization to an arbitrary N is straightforward since we can do the sum

for two distributions at a time by computing the partial sum and then summing it

with the next distribution.

Proof of Lemma 5.5.1 Because a cumulative distribution is non-decreasing, for

any x < y < z, FM
t (x) ≤ FM

t (y) ≤ FM
t (z). Consequently if for some α, β, γ, cx/α

and cz/α are under-estimates for FM
t (x) and FM

t (z) such that

FM
t (x) ≥ cx/α ≥ FM

t (x)/β and FM
t (z) ≥ cz/α ≥ FM

t (z)/β

and cx ≤ cz ≤ γcx, then cy = cx satisfies

FM
t (y)

βγ
≤ FM

t (z)

βγ
≤ cz

γα
≤ cy

α
≤ FM

t (x) ≤ FM
t (y)

i.e., we implicitly have an under-estimate for FM
t (y), i.e., cx/α, whose multiplicative

error is at most βγ.

174

We proceed by induction on the generation. Clearly for g = 0, the result is

true because c1 and cn are computed exactly. Consider an interval [a, b] at step t,

characterized by generation g and net shifting effect s, and assume that the following

inequality holds for v in {a, b} before updating with tuple t.

FM
t (v) ≥ cv/(

√
1 + ε′)s ≥ FM

t (v)/(1 + ε′)g

If updating with tuple t does not trigger subpartitioning, this condition still holds

since both ca and FM
t (a) are multiplied by the same factor P [Yt ≤ a]. (Similarly for

cb and P [Yt ≤ b]).

If updating requires subpartitioning, then g′ = g+1. Assuming that no adjustment

is needed, after updating ca ≥ cb/(1 + ε′); hence, γ = 1 + ε′. Since β = (1 + ε′)g,

according to our analysis, the multiplicative error for the estimates of the ends of a

new interval is βγ = (1+ε′)g+1 = (1+ε′)g′ . If an adjustment is made, s is incremented

or decremented so that cx/(
√

1 + ε′)s remains the same estimate for FM
t (x) as before

adjustment; therefore the given inequality holds for new g and s. By induction, it

holds for any generation. This second part of the lemma follows immediately.

Proof of Lemma 5.5.2 Suppose I = {I1, I2, . . . , Im} where Ii = [ai, bi]. The

lemma follows because ε ≤ cb1 ≤ ca1(1 + ε′), cam
≤ cbm

≤ 1 and for all i ∈ [m − 1],

cai+1
≥ cai

√
1 + ε′ .

Proof of Lemma 5.5.3 We define the width of an interval I = [a, b] to be b−a+1.

Note that the generation 0 interval has width n and that every interval has width

at least 1. The lemma follows from the fact that if a generation g interval I is

subpartitioned into generation g + 1 intervals I1, I2, . . . Ik then each Ii, i ∈ [k], has a

width of at most half of the width of I.

175

Proof of Theorem 5.5.2 From Lemma 5.5.3, for any interval [a, b], if we have

compensated for the net shifting effect by c̄a = ca/(
√

1 + ε′)s and c̄b = cb/(
√

1 + ε′)s,

then we have:

FM
t (a) ≥ c̄a ≥ FM

t (a)

(1 + ε′)g
and FM

t (b) ≥ c̄b ≥
FM

t (b)

(1 + ε′)g

Also, from the algorithm, we have: c̄a ≤ c̄b ≤ (1 + ε′)c̄a. Therefore, as shown in our

analysis in the proof of Lemma 5.5.1, the multiplicative error is (1 + ε′)g+1 ≤ (1 +

ε′)log U+1. It can be shown using Taylor’s theorem that ε′ ≤ ε/((1 + 0.5εeε)(log U + 1))

suffices to ensure that the multiplicative error (and therefore the additive error since

all quantities are less than 1) is less than ε.

The running time of the algorithm follows because there are O(min(λt, ε−1 log U ln ε−1)

intervals and the estimate for each endpoint is updated when a tuple arrives. In addi-

tion, running the subpartitioning procedure on an interval I takes time proportional

to the number of values taken by Yt that fall in the interval. Hence, the total time

over all intervals is O(λ).

Proof of Theorem 5.5.3 We first consider the error accumulated by repeat-

edly “rounding” F (x), as defined in Equation 5.5 in Section 5.5.4, to construct

LinCDFPt
(x). We first note that for any x,

|F S
t (x) − F (x)|

=
∑

v∈Vt

|F S
t−1(x − v) − LinCDFPt−1(x − v)|P [Yt = v]

≤
∑

v∈Vt

KS(LinCDFPt−1 , F
S
t−1)P [Yt = v] = KS(LinCDFPt−1 , F

S
t−1)

and hence KS(F S
t , F) ≤ KS(LinCDFPt−1 , F

S
t−1). Therefore,

176

KS(LinCDFPt
, F S

t) ≤ KS(LinCDFPt−1 , F
S
t−1) + KS(F, LinCDFPt

)

≤ KS(LinCDFPt−1 , F
S
t−1) + ε

and by induction on t, KS(LinCDFPt
, F S

t) ≤ tε.

We next consider the running time of the algorithm. Since evaluating F (x) for a

given x takes O(λ) time, performing a binary search for a quantile value over the set

P̄t, where |P̄t| ≤ λk, takes O(λ log λk) time. The total time is O(λk log λk) since we

need to find xi for all 1 ≤ i ≤ 1/ε.

Proof of Proposition 5.7.1. Let G=(p, f) and G̃=(p̃, f̃) be two mixed-type dis-

tributions of attributes X = (X1, X2, ..., Xn). If p = p̃ = 1, and Xi’s are independent

of each other and each Xi is bounded with a KSerror εi, then KSM(G, G̃) can be

written as:

KSM(G, G̃) = max
o

sup
x

|P
X̃

[〈o,x〉] − PX [〈o,x〉] |

Consider a vector x and an ordering o:

A = |P
X̃

[〈o,x〉] − PX [〈o,x〉] |

= |
∏

i

P

[

X̃i oi xi

]

−
∏

i

P [Xi oi xi] |

≤ |
∏

i

(P [Xi oi xi] + εi) −
∏

i

P [Xi oi xi] |

= |ε1

∏

i6=1

(P [Xi oi xi] + εi)

+ P [X1 o1 x1] (
∑

i6=1

εi

∏

j

(P [Xj oj xj] + εj))|

≤
∑

i

εi

177

The third line above assumes P

[

X̃i oi xi

]

≥ P [Xi oi xi] w.l.o.g. The last line holds

because (P [Xi oi xi]+εi), being an upper bound for P

[

X̃i oi xi

]

, and can be replaced

by 1 if it is greater than 1.

Proof of Theorem 5.7.2. We consider a tuple t having a mixed type distribution

(p̃t, F̃t), which is an (ε, 0) approximation of the exact distribution (pt, Ft). Let t̄ denote

the output tuple after applying a selection on t using a range condition. Again, the

approximate distribution of t̄ is denoted by (p̃t̄, F̃t̄), while the corresponding exact

distribution is (pt̄, Ft̄) .

First, consider the selection condition, x ≤ u. The KSM of the result distribution

may come from the error of the new tuple existence probability (TEP) or the approx-

imation of the CDF of the tuple attribute. The approximate TEP after selection is

p̃t̄ = p̃tF̃t(u) while the exact TEP after selection is pt̄ = ptFt(u). The error in TEP

incurred is |p̃t̄ − pt̄| = |p̃tF̃t(u) − ptFt(u)| ≤ ε. (This inequality follows directly from

the definition of KSM).

After selection,

F̃t̄(x) =
F̃t(x)

F̃t(u)
and Ft̄(x) =

Ft(x)

Ft(u)
, x ≤ u

The first error component from the approximate CDF is:

|p̃t̄F̃t̄(x) − pt̄Ft̄(x)| = |p̃tF̃t(x) − ptFt(x)| ≤ ε

The second error component from the approximate CDF is:

|p̃t̄(1 − F̃t̄(x)) − pt̄(1 − Ft̄(x))|

= |p̃t(F̃t(u) − F̃t(x)) − pt(Ft(u) − Ft(x))| ≤ 2ε

178

Combining all error components gives (2ε, 0)-approximation for selection with condi-

tion, x ≤ u. The proof for the range x ≥ l or l ≤ x ≤ u can be shown similarly.

For (ε, δ) approximation where δ > 0, we can ensure that selection gives an ap-

proximation of (2ε, δ) since when an instance satisfies the ε requirement, its selection

result is bounded by 2ε.

Finally, the result for the union of ranges is straightforward because selection can

be evaluated for one range at a time.

179

BIBLIOGRAPHY

[1] R. J. Adler. Some new random field tools for spatial analysis. In Stochastic

enviromental research and risk assessment, 2008.

[2] P. Agrawal and J. Widom. Continuous uncertainty in trio. In Proceedings of the

3rd International Workshop on Management of Uncertain Data (MUD), 2009.

[3] T. Ando. Bayesian Model Selection and Statistical Modeling. Chapman and

Hall/CRC, 2012.

[4] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational

processing of uncertain data. In ICDE, pages 983–992, 2008.

[5] L. Antova, C. Koch, and D. Olteanu. From complete to incomplete information

and back. In SIGMOD, pages 713–724, New York, NY, USA, 2007. ACM.

[6] http://idlastro.gsfc.nasa.gov. IDL Astronomy Library.

[7] D. Barbará, H. Garcia-Molina, and D. Porter. The management of probabilistic

data. IEEE Trans. Knowl. Data Eng., 4(5):487–502, 1992.

[8] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an

efficient and robust access method for points and rectangles. In SIGMOD,

pages 322–331, New York, NY, USA, 1990. ACM.

[9] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs: Databases

with uncertainty and lineage. In VLDB, pages 953–964, 2006.

180

[10] C. M. Bishop. Pattern recognition and machine learning. Springer-Verlag New

York, Inc., 2009.

[11] X. Boyen and D. Koller. Tractable inference for complex stochastic processes.

In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence—

UAI 1998, pages 33–42. San Francisco: Morgan Kaufmann, 1998.

[12] H. C. Bravo and R. Ramakrishnan. Optimizing mpf queries: decision support

and probabilistic inference. In SIGMOD, pages 701–712, New York, NY, USA,

2007. ACM.

[13] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer

Series in Statistics, 1998.

[14] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,

M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams: a new class of

data management applications. In VLDB, pages 215–226. VLDB Endowment,

2002.

[15] http://www.casa.umass.edu/. Engineering Research Center for Collaborative

Adaptive Sensing of the Atmosphere (CASA).

[16] G. Casella and R. Berger. Statistical inference (Second ed.). Duxbury Press,

Belmont, CA, 2001.

[17] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In P. M.

Stocker, W. Kent, and P. Hammersley, editors, VLDB, pages 71–81. Morgan

Kaufmann, 1987.

[18] S. Chaudhuri and K. Shim. Optimization of queries with user-defined predi-

cates. In ACM Transactions on Database Systems, pages 87–98, 1996.

181

[19] S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. E. Sarma. Man-

aging RFID data. In VLDB, pages 1189–1195, 2004.

[20] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic

queries over imprecise data. In SIGMOD, pages 551–562, 2003.

[21] R. Cocci, T. Tran, Y. Diao, and P. Shenoy. Efficient data interpretation and

compression over rfid streams. In ICDE, 2008. Poster.

[22] G. Cormode and M. Garofalakis. Sketching probabilistic data streams. In

SIGMOD, pages 281–292, New York, NY, USA, 2007. ACM.

[23] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.

VLDB J., 16(4):523–544, 2007.

[24] N. N. Dalvi and D. Suciu. Management of probabilistic data: foundations and

challenges. In PODS, pages 1–12, 2007.

[25] A. DasGupta. Asymptotic theory of statistics and probability. Springer Verlag,

2008.

[26] M. Denny and M. J. Franklin. Adaptive execution of variable-accuracy func-

tions. In Proceedings of the 32nd international conference on Very large data

bases, VLDB ’06, pages 547–558, 2006.

[27] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models for data

management in acquisitional environments. In CIDR, pages 317–328, 2005.

[28] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-

driven data acquisition in sensor networks. In VLDB, pages 588–599, 2004.

[29] A. Deshpande and S. Madden. MauveDB: supporting model-based user views

in database systems. In SIGMOD, pages 73–84, 2006.

182

[30] Y. Diao, B. Li, A. Liu, L. Peng, C. Sutton, T. Tran, and M. Zink. Capturing

data uncertainty in high-volume stream processing. In CIDR, 2009.

[31] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo in

Practice. Springer-Verlag, 2001.

[32] I. Ehrenberg, C. Floerkemeier, and S. Sarma. Inventory management with an

RFID-equipped mobile robot. In IEEE Conference on Automation Science and

Engineering (CASE), pages 1020–1026, 2007.

[33] C. Floerkemeier and M. Lampe. Issues with RFID usage in ubiquitous comput-

ing applications. In Pervasive, pages 188–193, 2004.

[34] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. W. 0002,

O. Cooper, A. Edakkunni, and W. Hong. Design considerations for high fan-in

systems: The HiFi approach. In CIDR, pages 290–304, 2005.

[35] S. Fruhwirth-Schnatter. Finite Mixture and Markov Switching Models. Springer,

2006.

[36] S. Garfinkel and B. Rosenberg, editors. RFID: Applications, Security, and

Privacy. Addison-Wesley, 2005.

[37] M. N. Garofalakis, K. P. Brown, M. J. Franklin, J. M. Hellerstein, D. Z. Wang,

E. Michelakis, L. Tancau, E. Wu, S. R. Jeffery, and R. Aipperspach. Proba-

bilistic data management for pervasive computing: The data furnace project.

IEEE Data Eng. Bull., 29(1):57–63, 2006.

[38] T. Ge and S. B. Zdonik. Handling uncertain data in array database systems.

In ICDE, pages 1140–1149, 2008.

[39] M. Geoffrey and P. David. Finite Mixture Models. Wiley-Interscience, 2000.

183

[40] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics.

International Statistical Review, 70:419–435, 2002.

[41] A. Girard, J. Q. Candela, R. Murray-Smith, and C. E. Rasmussen. Gaussian

process priors with uncertain inputs - application to multiple-step ahead time

series forecasting. In NIPS, 2003.

[42] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and analyzing massive

RFID data sets. In ICDE, page 83, 2006.

[43] C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madden. Distributed regres-

sion: an efficient framework for modeling sensor network data. In Proceedings of

the third international symposium on Information processing in sensor networks

(IPSN), pages 1–10, 2004.

[44] D. Hähnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and lo-

calization with RFID technology. In Proc. of the IEEE International Conference

on Robotics and Automation (ICRA), 2004.

[45] J. M. Hellerstein and J. F. Naughton. Query execution techniques for caching

expensive methods. In SIGMOD, pages 423–434, New York, NY, USA, 1996.

[46] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. Mcdb:

a monte carlo approach to managing uncertain data. In SIGMOD, pages 687–

700, 2008.

[47] T. S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for proba-

bilistic data. In SODA, pages 346–355, Philadelphia, PA, USA, 2007. Society

for Industrial and Applied Mathematics.

184

[48] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating statis-

tical aggregates on probabilistic data streams. In PODS, pages 243–252, New

York, NY, USA, 2007. ACM.

[49] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating sta-

tistical aggregates on probabilistic data streams. ACM Trans. Database Syst.,

33(4), 2008.

[50] S. R. Jeffery, M. J. Franklin, and M. N. Garofalakis. An adaptive RFID mid-

dleware for supporting metaphysical data independence. VLDB Journal, 2007.

[51] M. I. Jordan, editor. Learning in graphical models. MIT Press, Cambridge,

MA, USA, 1999.

[52] B. Kanagal and A. Deshpande. Online filtering, smoothing and probabilistic

modeling of streaming data. In ICDE, pages 1160–1169, 2008.

[53] B. Kanagal and A. Deshpande. Efficient query evaluation over temporally cor-

related probabilistic streams. In ICDE, 2009.

[54] G. A. Kantor and S. Singh. Preliminary results in range-only localization and

mapping. In Proceedings of the IEEE Conference on Robotics and Automation

(ICRA ’02), volume 2, pages 1818 – 1823, May 2002.

[55] Kiva. http://www.kiva.edu/.

[56] C. Koch and D. Olteanu. Conditioning probabilistic databases. In VLDB, 2008.

[57] P. Kulkarni, P. J. Shenoy, and D. Ganesan. Approximate initialization of camera

sensor networks. In EWSN, pages 67–82, 2007.

[58] J. F. Kurose, E. Lyons, D. McLaughlin, D. Pepyne, B. Philips, D. Westbrook,

and M. Zink. An end-user-responsive sensor network architecture for hazardous

weather detection, prediction and response. In AINTEC, pages 1–15, 2006.

185

[59] L. V. S. Lakshmanan, N. Leone, R. B. Ross, and V. S. Subrahmanian. Prob-

view: A flexible probabilistic database system. ACM Trans. Database Syst.,

22(3):419–469, 1997.

[60] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and inferring trans-

portation routines. Artificial Intelligence, 171(5-6):311–331, 2007.

[61] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, October

2002.

[62] X. Liu, M. D. Corner, and P. Shenoy. Ferret: Rfid localization for pervasive

multimedia. In Proceedings of the 8th International Conference on Ubiquitous

Computing, 2006.

[63] R. H. Lopes, I. Reid, and P. R. Hobson. The two-dimensional kolmogorov-

smirnov test. In Proceedings of the XI International Workshop on Advanced

Computing and Analysis Techniques in Physics Research, 2007.

[64] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an

acquisitional query processor for sensor networks. In SIGMOD, pages 491–502,

2003.

[65] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored

solution to the simultaneous localization and mapping problem. In Proceedings

of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada,

2002. AAAI.

[66] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learn-

ing. Ph.d. thesis, University of California, Berkeley, July 2002.

186

[67] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom, P. Agrawal, O. Benjel-

loun, A. D. Sarma, R. Murthy, and T. Sugihara. Trio-One: Layering uncertainty

and lineage on a conventional dbms (demo). In CIDR, pages 269–274, 2007.

[68] B. Ng, L. Peshkin, and A. Pfeffer. Factored particles for scalable monitoring.

In Conference on Uncertainty in Artificial Intelligence (UAI), 2002.

[69] D. T. Nguyen and J. Peters. Local gaussian process regression for real-time

model-based robot control. In International Conference on Intelligent Robots

and Systems (IROS), 2008.

[70] A. O’Hagan. Bayesian analysis of computer code outputs: A tutorial. In Reli-

ability Engineering and System Safety, 2006.

[71] D. J. Patterson, L. Liao, D. Fox, and H. A. Kautz. Inferring high-level behavior

from low-level sensors. In Ubicomp, pages 73–89, 2003.

[72] L. Peng, Y. Diao, and A. Liu. Optimizing probabilistic query processing on

continuous uncertain data. PVLDB, 4(11):1169–1180, 2011.

[73] Y. Qi, R. Jain, S. Singh, and S. Prabhakar. Threshold query optimization for

uncertain data. In SIGMOD, pages 315–326, New York, NY, USA, 2010.

[74] A. Ranganathan and M. H. Yang. Online sparse matrix gaussian process re-

gression and vision applications. In ECCV, 2008.

[75] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A deferred cleansing

method for RFID data analytics. In VLDB, pages 175–186, 2006.

[76] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learn-

ing. MIT Press, 2009.

[77] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on proba-

bilistic data. In ICDE, pages 886–895, 2007.

187

[78] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries on correlated

probabilistic streams. In SIGMOD, pages 715–728, 2008.

[79] C. Ré and D. Suciu. Approximate lineage for probabilistic databases. In VLDB,

2008.

[80] S. Rizvi, S. R. Jeffery, S. Krishnamurthy, M. J. Franklin, N. Burkhart,

A. Edakkunni, and L. Liang. Events on the edge. In SIGMOD, pages 885–

887, 2005.

[81] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom. Working models for

uncertain data. In ICDE, page 7, 2006.

[82] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage for confidence

computation in uncertain and probabilistic databases. In ICDE, pages 1023–

1032, 2008.

[83] T. Sauer. Numerical Analysis. Addison Wesley, 2005.

[84] D. Schulz, W. Burgard, D. Fox, and A. Cremens. People tracking with mobile

robots using sample-based joint probabilistic data association filters. Interna-

tional Journal of Robotics Research (IJRR), 22(2):99–116, 2003.

[85] http://www.scidb.org. SciDB Project.

[86] P. Sen, A. Deshpande, and L. Getoor. Exploiting shared correlations in proba-

bilistic databases. In VLDB, 2008.

[87] A. Silberstein, R. Braynard, and J. Yang. Constraint chaining: on energy-

efficient continuous monitoring in sensor networks. In SIGMOD, pages 157–168,

2006.

188

[88] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. E. Hambrusch, J. Neville, and

R. Cheng. Database support for probabilistic attributes and tuples. In ICDE,

pages 1053–1061, 2008.

[89] http://www.sdss.org. Sloan Digital Sky Survey.

[90] A. Smith, H. Balakrishnan, M. Goraczko, and N. B. Priyantha. Tracking Moving

Devices with the Cricket Location System. In International Conference on

Mobile Systems, Applications and Services (Mobisys 2004), Boston, MA, June

2004.

[91] D. Suciu, A. Connolly, and B. Howe. Embracing uncertainty in large-scale

computational astrophysics. In Proceedings of the 3rd International Workshop

on Management of Uncertain Data (MUD), 2009.

[92] A. S. Szalay, P. Kunszt, A. Thakar, J. Gray, D. Slutz, and R. J. Brunner.

Designing and mining multi-terabyte astronomy archives: The sloan digital sky

survey. In SIGMOD, pages 451–462, 2000.

[93] A. Thiagarajan and S. Madden. Querying continuous functions in a database

system. In SIGMOD, pages 791–804, 2008.

[94] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic

inference over rfid streams in mobile environments. In ICDE, 2009.

[95] T. T. L. Tran, A. McGregor, Y. Diao, L. Peng, and A. Liu. Conditioning and

aggregating uncertain data streams: Going beyond expectations. In Proceedings

of VLDB, 2010.

[96] T. T. L. Tran, L. Peng, Y. Diao, A. McGregor, and A. Liu. Claro: Modeling

and processing uncertain data streams. VLDB Journal, 2011.

189

[97] T. T. L. Tran, L. Peng, B. Li, Y. Diao, and A. Liu. Pods: A new model and

processing algorithms for uncertain data streams. In SIGMOD, 2010.

[98] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein. Bayesstore:

Managing large, uncertain data repositories with probabilistic graphical models.

In VLDB, 2008.

[99] F. Wang and P. Liu. Temporal management of RFID data. In VLDB, pages

1128–1139, 2005.

[100] E. Welbourne, N. Khoussainova, J. Letchner, Y. Li, M. Balazinska, G. Borriello,

and D. Suciu. Cascadia: a system for specifying, detecting, and managing rfid

events. In MobiSys, pages 281–294, 2008.

[101] J. Widom. Trio: A system for integrated management of data, accuracy, and

lineage. In CIDR, pages 262–276, 2005.

[102] J. Xie, J. Yang, Y. Chen, H. Wang, and P. S. Yu. A sampling-based approach

to information recovery. In ICDE, pages 476–485, 2008.

190

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	5-2013

	High-Performance Processing of Continuous Uncertain Data
	Thanh Thi Lac Tran
	Recommended Citation

	Tran_umass_0118D_11305.pdf

