University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and
Ecohydrology for Fish PassageInternational Conference on Engineering and
Ecohydrology for Fish Passage 2011

Jun 29th, 11:40 AM - 12:00 PM

Keith Nislow USDA Forest Service

Benjamin Letcher USGS CAFRC

Mark Hudy USDA Forest Service

Eric Smith Virginia Tech

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Nislow, Keith; Letcher, Benjamin; Hudy, Mark; and Smith, Eric, "Session A7- Research" (2011). International Conference on Engineering and Ecohydrology for Fish Passage. 14.

https://scholarworks.umass.edu/fishpassage_conference/2011/June29/14

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Barriers and the Abundance and Diversity of Resident Stream Fishes

Keith H. Nislow

USDA Forest Service Northern Research Station; Department of Ecological Conservation, University of Massachusetts – Amherst, MA Mark Hudy – USDA Forest Service, National Aquatic Ecology Unit, Harrisonburg, VA Ben Letcher – USGS CAFRC, Turners Falls, MA

Fragmentation and Population Dynamics

- Turning a large connected population into a set of <u>smaller</u>, <u>isolated</u> populations
- > What are the consequences?
- Demographic vulnerability

Spatial and temporal variation

- Populations fluctuate over time (demographic stochasticity)
- Populations cannot rebound from zero

Year

Spatial variation and metapopulation dynamics

- Immigration can 'rescue' subpopulations with λ <
 1
- Increases overall population stability

Basic Population Equation

 $N_{t} = N_{t-1} + B - D + I - E$

N = Population size
B = Births
D = Deaths
I = Immigrants
E = Emigrants

Population Growth Rate (λ) $\lambda < 1$ = declining population $\lambda > 1$ = increasing population

Basic Population Equation

$$|N_{t} = N_{t-1} + B - D + (I) - E$$

N = Population size
B = Births
D = Deaths
I = Immigrants
E = Emigrants

Population Growth Rate (λ) $\lambda < 1$ = declining population $\lambda > 1$ = increasing population

How important is immigration to population abundance?

- Stream-resident fishes move a lot more (and longer distances) than previously thought
- What happens when you reduce the Immigration term of the population equation?
- → All else being equal, reducing I will decrease N
- Increased number of N values = 0 = reduced species richness

Using abundance and richness as indicators

- Watershed scale (not individual crossings)
- Abundance and richness above and below predicted passable and predicted impassable road crossings

Abundance or richness below

Field Study

- Nislow et al. (2011) stream fishes above and below passable and impassable road crossings in a central Appalachian watershed
- Monongahela National Forest, West Virginia (MNF)
- → 2nd-3rd order streams
- Diverse fish assemblage

Outlet perch > 12 cm and/or < 2.54 cm water in the culvert = **<u>impassable</u>** Outlet at grade = **<u>passable</u>**

16 predicted passable sites15 predicted impassable sites

16 predicted passable sites15 predicted impassable sites

Single- pass electrofishing All sites sampled 2 years •20 species; ~10K individuals over the course of the study
•Best predictor of abundance and richness – interactive effects of type (passable/impassable) and location (above/below) and species

	AIC	ΔΑΙΟ
type * location * species	13914	0
$(type + location + species)^2$	14103	189
type * species	14360	446
location * species	15398	1484
type + location + species	15467	1553
type * location	21592	7678

Count Below Culvert

Richness

Summary – Abundance and Richness

- Predicted passable crossings Equivalent abundance and richness above and below
- Predicted impassable crossings < half the number of species < half the total abundance above crossings

Count above culvert

Summary – Species Differences

- Most of the frequently-encountered species showed the same pattern as observed for overall abundance
- Shook trout and mottled sculpin did not Why?

Summary – Species Differences (cont.)

- Brook trout passage criteria too stringent
- Many of the crossings unlikely to be complete barriers

Summary – Species Differences (cont.)

- Mottled sculpin passage criteria probably not too stringent
- Limited movement
- Strong local density-dependent effects on survival and reproduction
- Reduce the importance of the Immigration term in the basic population equation

Conclusions and Implications

 Use of abundance and richness for effectiveness monitoring at the watershed scale

Abundance or richness below

Conclusions and Implications

Jusing patterns abundance and richness to reveal how stream fish populations 'work'

Acknowledgements

- Monongahela National Forest
- → Virginia Tech
- James Madison University
- → USGS-CAFRC
- → USFS-NRS
- → K. Whalen, S. Coffman, M. Owen

