
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

5-2013

A Non-Asymptotic Approach to the Analysis of
Communication Networks: From Error Correcting
Codes to Network Properties
Ali Eslami
University of Massachusetts Amherst, eslami.ali@gmail.com

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Eslami, Ali, "A Non-Asymptotic Approach to the Analysis of Communication Networks: From Error Correcting Codes to Network
Properties" (2013). Open Access Dissertations. 739.
https://doi.org/10.7275/zxmq-6226 https://scholarworks.umass.edu/open_access_dissertations/739

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/zxmq-6226
https://scholarworks.umass.edu/open_access_dissertations/739?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

A NON-ASYMPTOTIC APPROACH TO THE ANALYSIS

OF COMMUNICATION NETWORKS:

FROM ERROR CORRECTING CODES TO NETWORK

PROPERTIES

A Dissertation Presented

by

ALI ESLAMI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2013

Electrical and Computer Engineering

c© Copyright by Ali Eslami 2013

All Rights Reserved

A NON-ASYMPTOTIC APPROACH TO THE ANALYSIS

OF COMMUNICATION NETWORKS:

FROM ERROR CORRECTING CODES TO NETWORK

PROPERTIES

A Dissertation Presented

by

ALI ESLAMI

Approved as to style and content by:

Hossein Pishro-Nik, Chair

Erik Learned-Miller, Member

Dennis Goeckel, Member

Patrick Kelly, Member

Robert W. Jackson, Department Chair
Electrical and Computer Engineering

To my dear parents.

ACKNOWLEDGMENTS

Before anything, I would like to express my sincere gratitude to my parents who

have always been a source of love and inspiration throughout my life. Without their

support and guidance I would have never been at the point where I stand now.

I would also like to thank my advisor Professor Pishro-Nik for his support during

my studies. I am also grateful to Professor Goeckel, both a great teacher and re-

searcher, for his valuable comments on this dissertation. Additionally, I would like to

thank the other members of my dissertation committee, Professor Kelly and Professor

Learned-Miller, for their valuable insights.

This work was supported by the National Science Foundation under grants CCF-

0728970, CCF-0830614, and ECCS-0636569.

v

ABSTRACT

A NON-ASYMPTOTIC APPROACH TO THE ANALYSIS

OF COMMUNICATION NETWORKS:

FROM ERROR CORRECTING CODES TO NETWORK

PROPERTIES

MAY 2013

ALI ESLAMI

B.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

M.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hossein Pishro-Nik

This dissertation has its focus on two different topics: 1. non-asymptotic analysis

of polar codes as a new paradigm in error correcting codes with very promising fea-

tures, and 2. network properties for wireless networks of practical size. In its first part,

we investigate properties of polar codes that can be potentially useful in real-world

applications. We start with analyzing the performance of finite-length polar codes

over the binary erasure channel (BEC), while assuming belief propagation (BP) as

the decoding method. We provide a stopping set analysis for the factor graph of polar

codes, where we find the size of the minimum stopping set. Our analysis along with

bit error rate (BER) simulations demonstrates that finite-length polar codes show

superior error floor performance compared to the conventional capacity-approaching

coding techniques. Motivated by good error floor performance, we introduce a mod-

vi

ified version of BP decoding while employing a guessing algorithm to improve the

BER performance.

Each application may impose its own requirements on the code design. To be able

to take full advantage of polar codes in practice, a fundamental question is which

practical requirements are best served by polar codes. For example, we will see that

polar codes are inherently well-suited for rate-compatible applications and they can

provably achieve the capacity of time-varying channels with a simple rate-compatible

design. This is in contrast to LDPC codes for which no provably universally capacity-

achieving design is known except for the case of the erasure channel. This dissertation

investigates different approaches to applications such as UEP, rate-compatible coding,

and code design over parallel sub-channels (non-uniform error correction). Further-

more, we consider the idea of combining polar codes with other coding schemes, in

order to take advantage of polar codes’ best properties while avoiding their shortcom-

ings. Particularly, we propose, and then analyze, a polar code-based concatenated

scheme to be used in Optical Transport Networks (OTNs) as a potential real-world

application.

The second part of the dissertation is devoted to the analysis of finite wireless

networks as a fundamental problem in the area of wireless networking. We refer to

networks as being finite when the number of nodes is less than a few hundred. Today,

due to the vast amount of literature on large-scale wireless networks, we have a fair

understanding of the asymptotic behavior of such networks. However, in real world

we have to face finite networks for which the asymptotic results cease to be valid. Here

we study a model of wireless networks, represented by random geometric graphs. In

order to address a wide class of the network’s properties, we study the threshold phe-

nomena. Being extensively studied in the asymptotic case, the threshold phenomena

occurs when a graph theoretic property (such as connectivity) of the network expe-

riences rapid changes over a specific interval of the underlying parameter. Here, we

vii

find an upper bound for the threshold width of finite line networks represented by

random geometric graphs. These bounds hold for all monotone properties of such

networks. We then turn our attention to an important non-monotone characteristic

of line networks which is the Medium Access (MAC) layer capacity, defined as the

maximum number of possible concurrent transmissions. Towards this goal, we pro-

vide a linear time algorithm which finds a maximal set of concurrent non-interfering

transmissions and further derive lower and upper bounds for the cardinality of the

set. Using simulations, we show that these bounds serve as reasonable estimates for

the actual value of the MAC-layer capacity.

Keywords: Polar Codes, Channel Capacity, Rate-Compatible Codes, Non-Uniform

Coding, Unequal Error Protection, Concatenated Codes, Belief Propagation, Random

Geometric Graphs, Monotone Properties, Threshold Phenomena, Percolation Theory,

Finite Wireless Networks, Connectivity, Coverage, MAC-Layer Capacity.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Results on Polar Codes . 2

1.1.1 Finite-Length Analysis of Polar Codes . 4
1.1.2 Improved Decoding for Polar Codes . 4
1.1.3 Rate-Compatible Polar Codes . 4
1.1.4 Non-Uniform Polar Codes and Unequal Error Protection 5
1.1.5 Concatenated Polar Codes . 5

1.2 Results on Wireless Networks . 6

1.2.1 Threshold Intervals Approach . 8
1.2.2 MAC-Layer Capacity . 8

1.3 Publications . 9

2. CHANNEL CODING: A REVIEW . 11

2.1 Introduction . 11
2.2 Channel Model . 11
2.3 Existing Low-Complexity Schemes . 12

2.3.1 Channel Coding . 13
2.3.2 Linear Block Codes . 17

2.3.2.1 Full-Matrix Representation . 18

ix

2.4 Polar Codes . 19

2.4.1 Channel Polarization . 19
2.4.2 Construction of Polar Codes . 24
2.4.3 Decoding Schemes for Polar Codes . 26

3. FINITE-LENGTH ANALYSIS OF POLAR CODES 28

3.1 Introduction . 28
3.2 Preliminaries . 31

3.2.1 Stopping Trees . 32
3.2.2 Graph Stopping Sets vs. Variable-Node Stopping Sets 34

3.3 Stopping Set Analysis of Polar Codes . 35

3.3.1 Minimum VSS in The Graph . 35
3.3.2 Size Distribution of Stopping Trees and Their Leaf Sets 37
3.3.3 Stopping Distance for Polar Codes . 38

3.3.3.1 Asymptotic Case . 40
3.3.3.2 Minimum Distance vs. Stopping Distance 40

3.4 Error Floor Performance of Polar Codes . 41

3.4.1 Girth of Polar Codes . 41
3.4.2 Simulation Results for Error Floor . 42

3.5 Improved Decoding Using Guessing Algorithm . 42

3.5.1 Simulation Results . 47

3.6 Chapter Summary . 47
3.7 Proofs . 49

4. APPLICATION-SPECIFIC DESIGNS FOR POLAR CODES 56

4.1 Introduction . 56
4.2 Concatenated Polar Coding . 58

4.2.1 Encoder . 60
4.2.2 Decoder . 62
4.2.3 Simulation Results . 63

4.3 Rate-Compatible Polar Codes . 65

x

4.3.1 Universally Capacity Achieving Rate-Compatible Polar
Codes . 66

4.3.2 Puncturing for Rate-Compatible Polar Codes 67

4.3.2.1 Random Puncturing . 68
4.3.2.2 Stopping-Tree Puncturing for Polar Codes 70

4.4 Polar Codes for Non-Uniform Channels . 71
4.5 Unequal Error Protection Using Polar Codes . 73
4.6 Chapter Summary . 75

5. FINITE WIRELESS NETWORKS . 76

5.1 Introduction . 76
5.2 Threshold Phenomena in Finite Line Networks . 79

5.2.1 A Note on the Asymptotic Case . 89

5.3 MAC-Layer Capacity . 91

5.3.1 Lower Bound on the MAC-Layer Capacity . 92
5.3.2 Upper Bound on the MAC-Layer Capacity . 96
5.3.3 Algorithm for the Exact Value of the MAC-Layer Capacity 97
5.3.4 Directed Model for MAC-Layer . 99

5.4 Chapter Summary . 101

6. SUMMARY AND CONCLUSIONS . 103

BIBLIOGRAPHY . 105

xi

LIST OF FIGURES

Figure Page

1.1 BER performance of polar codes under Belief Propagation (BP)
decoding over the binary Gaussian channel, compared to the
Shannon limit for error correcting codes. The code-length and
code-rate are 213 and 1/2, respectively. As you can see, polar
codes stay far from the capacity when used in finite block
lengths. 3

2.1 The basic communication scenario with information source and sink,
and a communication channel. 12

2.2 Block codes for noisy channels. k information bits will be mapped to
a block of N code-bits by the encoder. 17

2.3 A linear block code of length N over a B-DMC. The figure depicts
the full-matrix representation with information and fixed (frozen)
bits. 18

2.4 Figure on the left shows a rate 1 polar code of length 2. Using a SC
decoder, the equivalent channels seen by input bits can be
obtained as depicted on the right. 20

2.5 Relation between the capacities of W−, W+, and W . C(W−) and
C(W+) diverge from C(W) although the summation of the two
will still be 2C(W). 22

2.6 Rate 1 polar code of length 4 can be simply synthesized by
connecting two length-2 polar codes. This holds because of the
recursive nature of the generator matrix. 23

2.7 Relation between the capacities of channels seen by the input bits in
a polar code of length 4. Capacities of the channels seen by the
input bits form around C(W) while the sum of these capacities
adds up to 4C(W). 24

xii

2.8 The capacities of channels seen by the input bits polarizing around
C(W) as the code-length grows large. Arıkan [1] proved that a
ratio of C(W) of all the channels will become noiseless while the
rest will turn to pure noise channels. To achieve the capacity, we
only need to carry information over the noiseless channels. 25

2.9 Factor graph representation of a polar code of length 8 used in SC
and BP decoding. The graph is derived from the generator
matrix. Input bits are on the left side and code-bits are placed on
the right. 26

3.1 A binary erasure channel (BEC) with parameter (erasure probability)
ε. 29

3.2 Normal realization of the encoding graph for N = 8. An example of a
GSS is shown with black variable and check nodes. Notice the
columns of variable and check nodes. The figure also depicts the
two induced tanner graphs Tn in upper and lower halves. 32

3.3 The stopping tree for v(6, 1) is shown with black variable and check
nodes. The tree is rooted at v(6, 1) and has leaves at code-bits
x1, x2, x5, x6. 33

3.4 BER comparison for different methods of choosing information bits
under BP and SC decoding. Code-rate and code-length are 1/2
and 213, respectively. The new rule improves the finite-length
performance for BP while degrading it for SC decoding. 39

3.5 Different types of cycles in the factor graph of polar codes for N = 8.
Thick solid lines show the first and second types of cycles,
respectively. Figure shows a girth of 12 for polar codes. 43

3.6 BER performance for BP and SC decoding over BEC. The
code-length and code-rate are 215 and 1/2, respectively. The 99%
confidence interval is shown for the two lowest BER’s. No sign of
error floor can be seen down to a BER of 10−10. 44

3.7 BER performance for BP and SC decoding over the Gaussian channel.
The code-length and code-rate are 213 and 1/2, respectively. The
99% confidence interval is shown for the two lowest BER’s. No
sign of error floor can be seen down to a BER of 10−9. 45

xiii

3.8 BER comparison of BP and MAP for a polar code of length 210 and
rate 1/2 over the binary erasure channel. BP stands far from the
MAP which has the best finite-length performance. We propose a
guessing algorithm to close this gap. 46

3.9 BER performance of BP with guessing algorithm over the binary
erasure and gaussian channels. gmax is set to 6, meaning that we
guess 6 bits at most. 48

3.10 Figure is used to visualize different cases considered in the proof of
Theorem 1. 53

4.1 The structure of an Optical Transport Network (OTN) connecting
network components using fibre optic cable. Channel coding for
OTNs is standardized under OTU4 by ITU-T . 59

4.2 Block diagram of the proposed concatenated system of polar and
LDPC codes for OTNs. We choose the LDPC code to be a
capacity-approaching code. 60

4.3 BER performance comparison for different rate combinations in a
polar-LDPC concatenated scheme. We chose the rate pair of
(Rp, Rl) = (0.979, 0.95) for our concatenated scheme. The overall
code-rate will be 0.93. 62

4.4 BER performance for different concatenated schemes. All the
schemes have a code-length about 215 and a code-rate of 0.93, as
indicated by the standard. The polar-LDPC code has an edge
over other schemes while showing no sign of error floor. 64

4.5 Different realizations for rate-compatible polar codes. (a)In a
UCARC polar code, we can simply switch the input bits from
information to frozen in order to change the code rate. (b) In
punctured rate-compatible polar codes, we puncture the code-bits
by not sending them over the channel, and hence changing the
code rate. 68

4.6 Performance of different schemes when used over the BEC and the
gaussian channel. Parent-code rate for punctured codes is 1/2,
parent code-length is 213, and BER is fixed to 10−4. 69

4.7 Factor graph representation of a polar code of length 8. x8 is the only
bit that is present in only one stopping tree. Among the code-bits
which are present in two stopping trees we can choose x7. 71

xiv

4.8 Non-uniform coding scheme for parallel sub-channels. The goal is to
use only one pair of encoder-decoder for the system. 72

4.9 BER performance for non-uniform polar codes over two parallel
channels. Non-uniform polar code performs better than the
system with two separate encoder-decoders by an order of
magnitude. The reason is mainly the extra information in the
code design as well as the larger code-length in the non-uniform
scheme. 73

4.10 Distribution of bit error probability for the set of information bits.
There is a difference of more than two orders of magnitude in the
error rate for different information bits that can be used for UEP
designs. 74

5.1 Connectivity is a monotone property. H is a connected graph because
there is a path between any two nodes on the graph. As you can
see, a graph obtained by adding edges to H will be connected as
well. 77

5.2 A random geometric graph G(n = 200, r = 0.125) with 200 nodes
distributed randomly on the 2-dimensional unit square. The
nodes are colored based on their path length from the node near
center. 80

5.3 A weighted bipartite graph and realizations of (a) Perfect Matching,
and (b) Bottleneck Matching. The matchings are shown by thick
edges. The corresponding matching weights are also shown.
Bottleneck matching is a perfect matching with the minimum
weight. 83

5.4 Different configurations of the two sets of random points considered
to prove Lemma 7. Using dashed lines (i.e. mapping X1 to Y1)
instead of solid lines can only lead to a perfect matching with
lower weight. Hence, by mapping Xi to Yi we will obtain the
bottleneck matching. 84

5.5 Upper bound of Theorem 7 on the threshold width of the monotone
properties for G(50, r) where 50 nodes are distributed uniformly
at random on the unit line. 86

5.6 Comparing the upper bound on the threshold width implied by the
asymptotic result of [2] against the upper bound obtained in this
section for G(50, r). 88

xv

5.7 Upper bound on the threshold width of the monotone properties for a
one-dimensional unreliable sensor grid with parameters n = 100,
m = 35. A random subset of 35 nodes out of 100 equidistant
sensor nodes are active. 90

5.8 Intervals corresponding to the constructive lower bound on
MAC-layer capacity. Note that in the figure above we have
X1 = 1, X2 = 0, X3 = 1, X4 = 0, and Xm(l)+1 = 1. Since the
intervals are a distance r apart, the average number of the
concurrent transmissions obtained in this setting is equal to the
average number of the intervals containing at least one edge. 96

5.9 Algorithm to find the exact value of the MAC-layer capacity by
finding the maximum number of concurrent transmissions in a
connected component. Dashed lines are the edges chosen by the
algorithm as members of the D2EMIS. We choose the first edge of
the component to participate in D2EMIS. After that, other
participating edges are chosen in a greedy approach. 99

5.10 Actual value of MAC(50, r) along with the lower and upper bounds
of Theorems 8, 9 and 10. The exact MAC-layer capacity for the
directed model has been also shown. Using the two bounds, one
can predict, with a good precision, the radius at which the
capacity is maximum. 100

xvi

CHAPTER 1

INTRODUCTION

Our goal here is to take a step towards analyzing practical models of communica-

tion systems and wireless networks. One of the most important features of real-life

communication systems is that they all function in the finite regime, meaning that

everything is finite in such systems. For instance, transmission power, bandwidth,

packet length, code-length, and number of nodes in the network are all finite. There

currently exist a vast amount of literature on the asymptotic analysis of various

aspects of communication systems. Asymptotic results are very important for two

reasons. First, they give us good estimates for large-scale systems. Second, they show

some fundamental trade-offs in the underlying communication system. However, as

we will see later in this dissertation, the asymptotic results cease to be valid for prac-

tical systems in the finite regime. Thus, it is very crucial from the practical point of

view to perform a non-asymptotic analysis of such systems. These analytic results

will essentially help us to understand, design, and analyze real-life communication

systems, and also to design more suitable communication protocols.

The question that arises here is, can we do small-scale analysis? We recognize some

obstacles as follows. First, in large-scale analysis we can use asymptotic estimates

that make the analysis much simpler. These estimates are not available in small-scale

analysis. Among these estimations is ignoring the constant factors in the analysis.

This is possible in large-scale analysis since we only care about the parts of the

formula that grow with size of the network. Hence, the constant factors are often

ignored. However, these constant factors could become significant when dealing with

1

networks of moderate sizes with a few hundred nodes. Thus, small-scale analysis

is usually more difficult. Second, even if we can perform the small-scale analysis,

we usually obtain very complicated formulas that are not very useful practically. In

this dissertation, we want to circumvent these problems and provide guidelines for

small scale-analysis. We assume the reader is familiar with large-scale (asymptotic)

analyses to some extent.

Here, we deal with small scale-analysis for two important topics in communica-

tions: first, error correcting codes as an essential building block of any communication

systems, and second, network properties for wireless networks. Among all error cor-

recting coding schemes, we investigate finite-length performance of polar codes as the

first class of provably capacity achieving codes for symmetric binary-input discrete

memoryless channels (B-DMCs) with low encoding and decoding complexity. We

will then focus on analyzing small and moderate-size wireless networks as we face in

real-world applications. Below, we provide a short background on these topics and

list our contributions to each.

1.1 Results on Polar Codes

As a new paradigm, polar codes proved to be very powerful in theory. Since their

introduction, polar codes proved their capability to solve some problems (sometimes

open problems) that could not be handled using other coding schemes. For example,

as we see in this dissertation, polar codes can solve the problem of designing uni-

versally capacity-achieving rate-compatible codes. These facts suggest that coding

schemes based on polarization techniques can have great potentials to be used in

practice. However, in most cases, polar codes cannot still compete with the existing

more mature coding schemes from a practical point of view. An important example

is the finite-length error correction performance where polar codes show significant

disadvantages compared to conventional schemes such as turbo codes and LDPC

2

� � � � � � � � � � � � �� � � �� � � �� � � 	� � �
� � � �� � � �

 � � � � � � � �

� � � � � � � � � � � � ! � " � � # $ %& ' � $ $ � $ (#) # *

Figure 1.1. BER performance of polar codes under Belief Propagation (BP) de-
coding over the binary Gaussian channel, compared to the Shannon limit for error
correcting codes. The code-length and code-rate are 213 and 1/2, respectively. As
you can see, polar codes stay far from the capacity when used in finite block lengths.

codes. In fact, the research in this area has often been theoretical in the sense that

asymptotic characteristics of these codes have been investigated. Here, we are mainly

concerned with closing the gap between the powerful theoretical advantages of polar

codes and their performance in real-world applications.

Polar codes and the core concept of channel polarization in fact open new hori-

zons in coding theory. However, there still exist some drawbacks when it comes to

practicality. Probably, the most important issue is their performance in finite regime.

While polar codes are asymptotically capacity achieving, their Bit Error Rate (BER)

performance in the finite-length stays far from the capacity. Fig. 1.1 shows the BER

performance of a polar code of length 213 and rate 0.5. As it can be seen, the perfor-

mance is far from the capacity. For polar codes to be used in practical scenarios, this

distance needs to be reduced.

3

1.1.1 Finite-Length Analysis of Polar Codes

To improve finite-length performance, it is first critical to obtain a comprehensive

understanding of the finite-length behavior of polar codes. In this dissertation, we

have studied the performance of polar codes over the binary erasure channel by con-

sidering stopping sets in the factor graph of polar codes. We prove several theorems

regarding the structure and size of the stopping sets in polar codes’ graph. Particu-

larly, the size of the minimum stopping set (stopping distance) is obtained for polar

codes.

1.1.2 Improved Decoding for Polar Codes

In order to address the currently poor error rate performance of polar codes, we

propose improved decoding schemes based on the finite analysis. One example of such

schemes uses the simple idea of guessing the value of some of the undecoded bits. This

scheme continues the decoding process until it faces a contradiction. Then it flips the

value of the guessed bits. If there is no other contradiction, then the guessed values

are correct. As it will be shown, this scheme can result in a significant improvement

in BER while keeping the decoding complexity almost the same.

1.1.3 Rate-Compatible Polar Codes

Another important question is to identify practical scenarios for which polar codes

can provide significant advantages over other coding schemes. In this dissertation,

we discuss that polar codes can be designed as universally capacity-achieving rate-

compatible codes for symmetric B-DMCs. As we will see, this design employs a

rate-compatible encoder with minimal complexity and is based on the inherent char-

acteristics of polar codes. This is very interesting because even Raptor codes and

punctured LDPC codes are only proved to be universally capacity-achieving over

the erasure channel. As another approach to rate-compatible codes, we study dif-

ferent puncturing schemes for polar codes while we compare the performance-versus-

4

complexity trade-off for these schemes to our aforementioned universally capacity-

achieving scheme.

1.1.4 Non-Uniform Polar Codes and Unequal Error Protection

Another important application which is closely related to the rate-compatible

schemes is coding for “non-uniform channels”. Non-uniform coding schemes use one

encoder-decoder pair to transmit data over a set of parallel channels. Indeed, some

applications, such as volume holographic memory (VHM) systems, can be modeled

using a set of parallel channels with different channel parameters [3,4]. Here, we inves-

tigate the potentials that may be found in polar codes for this application. Benefiting

from the results of finite analysis of polar codes, one can design codes specialized

for non-uniform channels. Our finite analysis reveals that different code-bits undergo

different degree of protection dictated by the code’s factor graph. As we will see, this

fact can be used to design “non-uniform polar codes”. We will present the results for

a simple design of polar codes based on this idea, showing the improvement achieved

over the case of using separate codes for different sub-channels. Another related prob-

lem is unequal error protection, where the code is designed such that a specific subset

of the information bits (usually a small fraction) is better protected (have less BER).

In finite-length polar codes, different information bits face different channels by the

design. As opposed to the asymptotic case, these channels maintain a wide range of

error rates, from close to zero to close to one. This brings up an interesting question:

is it possible to benefit from this property to design unequal error protection codes

based on polar codes.

1.1.5 Concatenated Polar Codes

Polar codes show many advantages over the conventional coding techniques, while

they suffer from some disadvantages. For instance, as we will see, polar codes main-

tain poor finite-length error correction performance while showing impressive error

5

floor performance. A promising approach to exploit these advantages while compen-

sating for the shortcomings of polar codes, is to use them in a hybrid fashion, i.e. in

combination with other coding schemes. By carefully designing such a combination,

the two codes act as complements leading to a significant improvement over the case

of using each code stand alone. Therefore, a critical step in improving the practical

aspects of polar codes is a detailed study of their performance in combination with

other known coding schemes. In this research, we consider different combinations of

this type while we analyze the effectiveness of each of them and the role that each

coding scheme plays in such a combination.

An example of a hybrid scheme is concatenation. In fact, in many real-world

applications, a “concatenation” of two or more coding schemes is used [5]. As a first

step in this research direction we propose a polar-LDPC concatenated scheme. While

finite-length LDPC codes are very successful in achieving low BERs, they usually

suffer from the error floor problem. On the other hand, as it is shown by our results

in finite analysis, polar codes show a good error floor performance. Hence, we propose

a concatenated polar-LDPC scheme. We observe that this scheme shows a significant

improvement over the original polar coding scheme, without showing any sign of error

floor, as opposed to the capacity approaching LDPC codes. The proposed scheme

also maintains the same decoding complexity as of polar codes. This hybrid scheme

is in fact designed for “Optical Transport Networks” as a real-world application, and

beats the BER performance of the ITU standard for these networks, called OTU-4,

by a large distance. This itself means that great potential can be expected from polar

codes in this area.

1.2 Results on Wireless Networks

In the past, many analytic results on the connectivity, coverage, and capacity of

wireless ad-hoc and sensor networks have been obtained. In almost all of the results,

6

it is assumed that the number of nodes n in the network tends to infinity (large-

scale networks). In other words, these results are asymptotic. Asymptotic results

are very important as discussed earlier; however, in many practical wireless networks

the number of nodes may be limited to a few hundred (small-scale/finite networks).

Thus, analyzing finite networks is extremely important from a practical point of view.

To clarify, let us consider, for example, capacity analysis of wireless networks which

has been studied extensively (e.g., in [6–12]). Today we have good understanding of

scaling laws in capacity of wireless networks. However, suppose we need to design

a wireless sensor network consisting of a hundred sensor nodes. Some fundamental

questions are as follows. What is the transport capacity? What is the informa-

tion theoretic capacity? What is the maximum number of concurrent transmissions

(also called “MAC-Layer Capacity”) possible? How do network parameters such as

communication radius of nodes, number of nodes, and so on, affect these capacities?

Unfortunately, the available asymptotic results fail to give answers to these questions.

Similar questions are remained unanswered for other properties of the network such

as connectivity, coverage, etc.

The main goal of our effort is to initiate the small-scale analysis of wireless sensor

and ad hoc networks. Such analyses can be very useful in analyzing and evaluating

communication and security protocols for practical sensor and ad hoc networks and

is completely overlooked in the literature. There is an important need to develop

mathematically rigorous results to guarantee the performance measures and also to

understand the properties of finite networks. To achieve this goal we will try several

approaches. A combination of these approaches will help in providing guidelines for

rigorous analysis of finite networks. Here, we study two possible approaches.

7

1.2.1 Threshold Intervals Approach

Threshold phenomenon is the most important concept in asymptotic analysis of

random graphs. It basically refers to situations in which the probability for an event

to occur changes rapidly as some underlying parameter varies. The threshold phe-

nomenon has been studied extensively in different areas such as probability, statistics,

percolation theory and statistical physics.

A general framework is provided in the literature by studying pivotality and in-

fluence of variables for Boolean functions (see for example [13–22]). In this general

framework, the transition from zero to one of the probability of certain events as a

function of an underlying parameter ρ is studied. An important measure called the

threshold interval is usually studied. This is the interval [ρ1, ρ2] in which the proba-

bility of an event A changes from ε to 1−ε. The length of threshold interval, shown as

τ(A, ε), indicates the sharpness of the threshold. The value τ(A, ε) has been studied

asymptotically so far. That is, it is usually shown that we have a sharp threshold

and thus τ(A, ε) is small. Our goal is to study τ(A, ε) for finite Boolean functions

and extend the current available literature for probabilities regarding finite networks.

This will immediately give us rigorous regions for the probabilities we are studying

in finite networks. This approach also helps us to understand the transition from

finite domain to the asymptotic domain. In other words, we can see how exactly the

threshold interval shrinks as the number of nodes increases. Moreover, for a given

network property, we will be able to determine how large the network should be so

that the asymptotic formulas provide acceptable estimations.

1.2.2 MAC-Layer Capacity

Asymptotic MAC-layer capacity of ad hoc wireless networks has been studied in

[6]. The MAC-layer capacity is defined as the maximum possible number of concurrent

transmissions at the media access layer. In [6], it is shown that for a wide class of

8

MAC protocols including IEEE 802.11, the MAC-layer capacity can be modeled as a

maximum D2-matching (D2EMIS) problem in the underlying wireless network. The

main result of [6] is that for a network with n nodes and communication radius r,

the MAC-layer capacity is optimized at r = Θ(1√
n
) and is given by Θ(n). Although

this is an important and valuable result, it is not as precise when we consider finite

networks. For example, suppose we have a network consisting of 100 sensors and

we want to choose the communication radius such that the MAC-layer capacity is

optimized. The asymptotic result does not tell us what the optimum MAC-layer

capacity and its corresponding communication radius are. In this dissertation, we

analyze the average MAC-layer capacity for finite line networks modeled by random

geometric graphs. Simple closed-form expressions will be provided for the lower and

upper bounds on the capacity. While giving a good estimate of the exact value,

such expressions can be easily used in finding the optimum communication radius in

practical network models.

1.3 Publications

Below is a selected list of our publications based on this dissertation.

Journal Papers:

1. A. Eslami and H. Pishro-Nik, “On Finite-Length Performance of Polar Codes:

Stopping Sets, Error Floor, and Concatenated Design,” IEEE Transactions on

Communications, Available on ieeexplore.com, Aug. 2012.

2. A. Eslami, M. Nekoui, H. Pishro-Nik, and F. Fekri, “Results on Finite Wireless

Sensor Networks: Connectivity and Coverage” ACM Transactions on Sensor

Networks, Vol. 10, No. 1, Feb. 2014 (to appear).

3. A. Eslami, M. Nekoui, and H. Pishro-Nik, “Results on Finite Wireless Networks

on A Line,” IEEE Transactions on Communications, Vol. 58, No. 8, Aug. 2010.

9

Conference Papers:

1. A. Eslami and H. Pishri-Nik, “A Practical Approach to Polar Codes,” in Proc.

IEEE International Symposium on Information Theory (ISIT), Aug 2011.

2. A. Eslami and H. Pishro-Nik, “On Bit Error Rate Performance of Polar Codes in

Finite Regime,” in proc. 48th Annual Allerton Conference on Communication,

Control, and Computing, Sept. 2010.

3. A. Eslami, M. Nekoui, and H. Pishro-Nik, “Results on Finite Wireless Networks

on A Line,” in Proc. IEEE Information Theory Workshop (ITW), Jan. 2010.

10

CHAPTER 2

CHANNEL CODING: A REVIEW

2.1 Introduction

Reliable data transmission is a central topic of information theory with applica-

tions everywhere; consider mobile communication, MP3 players, the Internet, CDs,

or any other modern day digital technology. To make communication reliable in the

presence of noise, the common procedure is to add redundancy to the data before

transmission. The intended receiver only has access to a noisy version of the data.

However, if the redundancy is added in a clever way, then it is possible to recon-

struct the original data at the receiver. Adding redundancy is called coding. Coding

is a central part of any communication system; e.g., consider wired phones, mobile

phones, or the Internet. Coding is also used for storage on CDs and DVDs to prevent

data loss due to scratches or errors during the reading process.

2.2 Channel Model

Shannon, in his seminal work [23], formalized the above problem of communication

and determined its fundamental limits. He provided a mathematical framework to

study the problems systematically which led to the advances in the past 50 years. The

generality of his approach allows us to study even modern day scenarios, like mobile

communication or ad hoc networks. The basic model addressed by Shannon consists

of a source, which generates the information, a sink which receives the information,

and a channel, which models the physical transfer of information.

11

Source Sink
Channel

)|(xyW

Figure 2.1. The basic communication scenario with information source and sink,
and a communication channel.

The channel is modeled by a conditional probability distribution (see Fig. 2.1).

Let X and Y denote the input and output alphabet of the channel. The channel

W : X → Y is a conditional probability distribution W (y|x). When x is transmitted

through the channel, the output at the receiver is the realization of a random variable

Y ∈ Y distributed as W (y|x). Shannon showed that in spite of this randomness, by

intelligently adding redundancy, the data can be reproduced exactly at the receiver

with high probability. He computed the capacity of a channel, C(W), which quan-

tifies the maximum rate at which reliable transmission of information is possible. In

other words, for any R < C(W), there exists a scheme which transmits R bits per

channel use with vanishing error probability in the block length. For channel coding

to approach its fundamental limits, the blocklength has to be large. This in turn has

implications on the complexity as a large block length often means more processing

power upon decoding, as well as more memory space to store the code blocks and

any required look-up tables. Therefore, for practical applications, we require schemes

that operate with low space and computational complexity.

2.3 Existing Low-Complexity Schemes

Since Shannon’s seminal work [23] the main goal has been to construct low-

complexity coding schemes that achieve the fundamental limits. The complexity

issues arise in two different contexts.

The first issue is the amount of memory required to store the code. This refers

to the memory required for storing the mapping from the input of the encoder to its

12

output. A code of rate R and blocklength N consists of 2NR codewords of length N .

A naive representation of such a code requires O(N2NR) bits of memory, which is not

practical. A significant progress in this respect was the result of Elias [24] and [25]

(Section 6.2) which shows that linear codes are sufficient to achieve the capacity

of an important class of channels, known as symmetric channels. Linear codes are

subspaces of vector spaces. Hence, a linear code can be specified in terms of a basis

of this subspace. This in turn can be done by describing RN vectors of length N .

Therefore, the resulting memory requirement is O(N2) bits. This is an exponential

improvement over the general case.

The second issue is the computational complexity of the encoding and decoding

operations. In the following we give a brief history of some of the important develop-

ments. For a detailed history of channel coding we refer the interested reader to the

excellent article by Costello and Forney [26].

2.3.1 Channel Coding

The initial research in coding was based on an algebraic approach. More precisely,

the focus was on developing linear binary codes with large minimum distance (the

smallest distance between any two distinct codewords) and good algebraic properties.

The first algebraic codes were developed by Hamming and are named after him. Ham-

ming codes are single error correcting codes and they are optimal in the sense of sphere

packings. Other important algebraic codes are Golay codes, BCH codes, Reed-Muller

codes, and Reed-Solomon codes [5]. For all these codes efficient algebraic decoding

algorithms are known. The complexity for these algorithms normally ranges between

O(Nlog2N) to O(N2). These codes are prominently used today in CDs, DVDs and

modems. BCH and Reed-Solomon codes are instances of Cyclic Codes that are widely

used in communication systems for error correction. Cyclic codes are very attractive

13

mainly because their encoding, syndrome computation, and decoding algorithms can

be implemented easily by employing shift registers with feedback connections.

As mentioned in the previous section, to achieve optimal performance one has to

consider large blocklengths. The improvement in computational resources made it

feasible to consider larger and larger codes in practice. But the previously discussed

algebraic codes either have vanishing rate or vanishing relative distance (ratio of

minimum distance and blocklength) for increasing blocklengths.

Product codes, introduced by Elias [27], were the first constructions which asymp-

totically (in the blocklength) achieved both non-vanishing relative distance and rate.

The idea is to construct large codes by combining two or more codes of smaller length.

Consider two codes C1 and C2 of length N1 and N2. Each codeword of the product

code can be viewed as an N1 ×N2 matrix such that each column is a codeword of C1

and each row is a codeword of C2. Code concatenation, introduced by Forney [28],

is another construction based on combining codes. The idea is to first encode the

data using C1 and then encode the resulting output with C2. Forney showed that for

any rate below the capacity, by an appropriate choice of the two component codes,

the error probability can be made to decay almost exponentially with a decoding

algorithm that has polynomial complexity.

The next big step in improving the decoding performance came from considering

probabilistic decoding. In typical scenarios the capacity is significantly reduced by

making hard-decisions at the decoder. E.g., for Gaussian channels, close to half the

power is lost due to this first step. The idea of probabilistic decoding is to make use

of the channel outputs directly in the decoding algorithm and to avoid this loss.

The first class of codes well suited for probabilistic decoding were convolutional

codes, introduced by Elias in [24]. The code structure enabled the development of

efficient decoding algorithms. In particular the Viterbi algorithm [29], which mini-

mizes the block error probability, and the BCJR algorithm [30], which minimizes the

14

bit error probability, both operate with complexity which is linear in the blocklength.

For any rate strictly less than the capacity of the channel one can show that there

exist convolutional codes whose probability of error vanishes exponentially in the

“constraint length”. However, the complexity of the decoding algorithm also scales

exponentially with the constraint length. Therefore, for practical purposes Fanos

sequential decoding algorithm [31] was considered. For rates less than the “computa-

tional cutoff rate”, the complexity of this algorithm is linear in the blocklength and

independent of the constraint length. The cutoff rate is a rate that can be computed

easily and that is strictly smaller than the capacity. For rates above the cutoff rate,

the decoding complexity is unbounded. This led to the belief that, using practical

algorithms, rates above the cutoff rate could not be achieved.

Another class of codes which were introduced during the 60s were low-density

parity-check (LDPC) codes [32]. As the name suggests, the parity-check matrices of

these codes have very few non-zero entries. In fact, these matrices have a constant

number of non-zero entries per row and column. Gallager showed that these codes

have a non-zero relative distance. He also proposed a low-complexity iterative de-

coding algorithm. Unfortunately, due to the lack of computational resources at that

time, the power of these codes and the decoding algorithms was not realized.

The invention of turbo codes by Berrou, Glavieux and Thitimajshima [33] was

a breakthrough in the practice of coding. Turbo codes achieved rates close to the

capacity, and far above the cutoff rate, using a linear complexity decoding algorithm.

The code is constructed by concatenating two convolutional codes but with a random

bit interleaver in between. The decoding algorithm operates in iterations. In each

iteration the BCJR algorithm is performed on each of the component codes and the

reliabilities are exchanged. Since the complexity of the BCJR algorithm is linear in

the blocklength, the resulting decoding algorithm is also of linear complexity. The

original turbo code of [33] matched the error probability of the best existing schemes

15

which were operating with twice the power. The interleaver and the iterative property

of the decoding algorithm are the two crucial components which are recurrent in the

capacity achieving schemes constructed later.

Wiberg, Loeliger and Kotter [34] unified turbo codes and LDPC codes under

the framework of codes on graphs. The success of turbo codes and the subsequent

rediscovery of LDPC codes revived the interest in LDPC codes and message passing

algorithms. Some of the first and important contributions to the analysis of message-

passing algorithms was done in a series of papers by Luby, Mitzenmacher, Shokrollahi,

and Spielman [35]. In [35], the authors analyzed a suboptimal decoder known as

peeling decoder for the binary erasure channel (BEC). They constructed codes for

the BEC which achieve capacity using the peeling decoder.

In [36], Richardson and Urbanke developed density evolution which generalizes

the analysis of the BEC to any symmetric channel and a class of algorithms known

as message-passing algorithms. This class includes the important belief propagation

algorithm. Combining density evolution for belief propagation with optimization

techniques, codes that approach capacity of Gaussian channel to within 0.0045dB [37]

were constructed. However, unlike the BEC, no capacity achieving codes are known

for general channels.

Until now, many turbo and LDPC codes have been proposed which empirically

achieve rates close to capacity for various channels. However, none of these codes

are proven to achieve capacity for channels other than the BEC. In this thesis, we

discuss polar codes. Polar codes, recently introduced by Arıkan [1], are a family of

codes that provably achieve the capacity of symmetric channels with “low encoding

and decoding complexity”. This settles the long standing open problem of achieving

capacity with low complexity.

16

Encoder

Decoder

Channel

)...,,,(
21 k

uuu)...,,,(
21 N

xxx

)...,,,(
21 N

yyy

)�...,,�,�(
21 k

uuu

Figure 2.2. Block codes for noisy channels. k information bits will be mapped to a
block of N code-bits by the encoder.

2.3.2 Linear Block Codes

Block codes are one of the most important classes of error-correcting codes. In

block coding, before the transmission, information bits are divided to several blocks.

Each block has the same length k. For example in Fig. 2.2, the block is the vec-

tor (u1, u2, ..., uk) where uis are the information bits. Then the information block

is mapped to a longer block (x1, x2, ..., xN), which is called the codeword. In the

following, let ȳ = (y1, ..., yN) denote the channel output bits. We use upper case

letters U,X, Y to denote random variables and lower case letters u, x, y to denote

their realizations. We also use uj
i to denote (ui, ..., uj). The length of the codeword,

N , is called the code-length (or blocklength). Note that N > k, thus there is some

redundancy in the codeword. In fact, this redundancy is used in the decoding process

to detect and correct errors.

Most practical block codes are linear, that is the mapping from the information

block to the codeword is a linear mapping. This means that there exists a binary

matrix G, the generator matrix, that defines the encoding process. Specifically if ū =

(u1, u2, ..., uk) and x̄ = (x1, x2, ..., xN) are the information block and the codeword,

respectively, then x̄ = ūG.

17

Channel

Inputs

Channel

Outputs
Input

Bits

Estimated

Info Bits

Fi
xe

d

B
it

s

In
fo

rm
a

ti
o

n

B
it

s

Fixe
d

 B
its

Figure 2.3. A linear block code of length N over a B-DMC. The figure depicts the
full-matrix representation with information and fixed (frozen) bits.

Equivalently, a linear block code can be defined by a parity-check matrix, H. The

parity-check matrix H is a (N − k)×N matrix satisfying GHT = 0. A binary vector

x̄ = (x1, x2, ..., xN) is a valid codeword if and only if x̄HT = 0.

2.3.2.1 Full-Matrix Representation

Fig. 2.3 shows an alternative yet simple way of representing a linear block code

which proves helpful in understanding polar codes. Here, we have a block of length

N of input bits from which k bits form our set of information bits, and the rest of

N − k bits are fixed to some known values. Note that the values of the fixed bits

are also known to the decoder, so they can be chosen arbitrarily. Now, these N

input bits are multiplied by a N × N generator matrix GN×N . Note that to make

this representation equivalent to the scheme above, the GN×N is in fact obtained by

adding N − k rows to the Gk×N above. These extra N − k bits correspond to the

N −k fixed bits, and hence, can be chosen arbitrarily. Therefore, at the encoder side,

the two representation are equivalent. At the receiver side, decoder sets all the fixed

bits to their values before it starts decoding a block. As a result, there remain the

same k bits as before to be estimated by the decoder.

18

2.4 Polar Codes

In this section we discuss the construction of polar codes for channel coding. It

is based entirely on the work of Arıkan [1]. This section lays the foundation and sets

the notation for the rest of our analysis of polar codes. For the sake of brevity we

skip all the proofs.

2.4.1 Channel Polarization

The construction of polar codes is based on the following observation: Let

F =

1 0

1 1

be the kernel used for construction of polar codes. First, apply the transform F⊗n

(where ⊗n denotes the nth Kronecker power) to a block of N = 2n bits UN
1 . For

instance, for N = 4 and N = 8 we will have

F⊗2 =

F 0

F F

=

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

and

F⊗3 =

F 0 0 0

F F 0 0

F 0 F 0

F F F F

=

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

.

19

@
2

, y

11
�,, uy

(a) (b)

Figure 2.4. Figure on the left shows a rate 1 polar code of length 2. Using a SC
decoder, the equivalent channels seen by input bits can be obtained as depicted on
the right.

Then, transmit the output XN
1 = UN

1 F⊗n through independent copies of a symmetric

binary discrete memoryless channel (B-DMC) W . Note that we are using the full-

matrix representation of block codes here. Now, apply the chain rule to the mutual

information between the input UN
1 and the output Y N

1 . This gives

I(UN
1 ;Y N

1) =
N
∑

i=1

I(Ui;Y
N
1 |U i−1

1) =
N
∑

i=1

I(Ui;Y
N
1 , U i−1

1), (2.1)

where the last equality follows from the fact that Uis are independent. The central

observation of polar codes is that as n grows large, except for a negligible fraction, the

terms in the summation either approach 0 (bad) or 1 (good). Moreover, the fraction

of those terms tending to 1 approaches the symmetric channel capacity C(W). This

phenomenon is referred to as channel polarization.

Since the idea of channel polarization is the core concept as well as the beauty of

polar codes, let us elaborate on this idea a little more. In its simplest case, consider a

rate one block code of length 2 with F =

1 0

1 1

as its generator matrix. Fig. 2.4(a)

shows such a setting. We have

20

x1 = u1 + u2,

x2 = u2.

x1 and x2 will be sent over the channel W and we will receive y1 and y2 at the receiver.

Decoder needs to estimate u1 and u2 based on y1 and y2. Now let us assume a simple

successive cancellation (SC) decoder as follows:

û1 =

0 if Pr(u1=0|ȳ)
Pr(u1=1|ȳ) > 1;

1 otherwise.

û2 =

0 if Pr(u2=0|ȳ,û1)
Pr(u2=1|ȳ,û1)

> 1;

1 otherwise.

Note that based on this decoder, we can realize the channels W− and W+, “seen” by

u1 and u2, respectively (See Fig. 2.4(b)). To be precise, given W (y|x), we can find

W−(y1y2|u1) and W+(y1y2u1|u2) as follows:

W−(y1y2|u1) =
∑

u2

1

2
W (y1|u1 + u2)W (y2|u2),

W+(y1y2u1|u2) =
1

2
W (y1|u1 + u2)W (y2|u2).

Assuming independent, uniform U1 and U2,W
− andW+ have the following symmetric

capacities [1]:

C(W−) = I(U1;Y1, Y2),

C(W+) = I(U2;U1, Y1, Y2).

21

)(WC)(+
WC)(-

WC z

NUYUIi
i

ni
/|});(:{| 1

1 z£-

Figure 2.5. Relation between the capacities of W−, W+, and W . C(W−) and
C(W+) diverge from C(W) although the summation of the two will still be 2C(W).

Now the interesting point here is the following:

C(W−) + C(W+) = I(U1U2;Y1Y2) = 2C(W),

C(W−) ≤ C(W) ≤ C(W+).

Fig. 2.5 shows the distribution of capacities for W− and W+. To be precise, for any

ζ ∈ R, 0 ≤ ζ ≤ 1, it shows the fraction of the terms in eq. (2.1) that are less than ζ.

You can see how C(W−) and C(W+) compare to C(W).

Now consider a block code of rate 1 and length 4 with F⊗2 as its generator matrix.

Fig. 2.6 shows how such a code can be constructed by connecting two code of length

2. This is because of the recursive structure of polar codes’ generator matrix obtained

by the Kronecker power of F . By applying the same setting as above, i.e. using a SC

decoder similar to the one above, we can realize the four channels seen by u1, u2, u3,

22

Figure 2.6. Rate 1 polar code of length 4 can be simply synthesized by connecting
two length-2 polar codes. This holds because of the recursive nature of the generator
matrix.

and u4. If we find the capacities of these four channels, their distribution will be as

is shown in Fig. 2.7.

The same procedure can be applied for the codes of length 24, 28, 220 and longer.

Fig. 2.8 depicts how the capacities of the channels seen by the input bits ui form

around the capacity of the underlying B-DMC, W . As it is clear from the figure,

the channels seen by input bits start diverging from the original B-DMC, W , as

we increase the code-length. The main result of [1] by Arikan is that, as n grows

large, these channels start polarizing to either a noiseless channel or a pure-noise

channel, where the fraction of channels becoming noiseless is close to the symmetric

capacity C(W). Below, we explain how polar codes use this fact to achieve the

channel capacity.

23

N=4

)(WC z

NUYUIi
i

ni
/|});(:{| 1

1 z£-

Figure 2.7. Relation between the capacities of channels seen by the input bits in a
polar code of length 4. Capacities of the channels seen by the input bits form around
C(W) while the sum of these capacities adds up to 4C(W).

2.4.2 Construction of Polar Codes

As it was explained above, we can associate the i-th row of F⊗n with I(Ui;Y
N
1 , U i−1

1).

More precisely, this term can be interpreted as the channel “seen” by the bit Ui assum-

ing that we have already decoded all the previous bits. With this interpretation we

choose the generator matrix of the polar code of rate R in the following way; choose

those NR rows of F⊗n with the largest I(Ui;Y
N
1 , U i−1

1). Arıkan [1] proved that such

codes achieve rates close to C(W), with vanishing block error probability, using a

low-complexity Successive Cancellation decoder (explained below). Polar codes use

the noiseless channels for transmitting information while fixing the symbols trans-

mitted through the noisy ones to a value known both to the sender and the receiver.

Accordingly, part of the block that carries information includes “information bits”

while the rest of the block includes “frozen bits”. Since we only deal with symmetric

channels here, we assume without loss of generality that the fixed positions are set

24

�Bad Bits�

�Good Bits�

42=N(a) 82=N(b)

¥®N(c)

NUYUIi
i

i
/|});(:{| 1

1 z£-
NUYUIi

i

i
/|});(:{| 1

1 z£-

NUYUIi
i

i
/|});(:{| 1

1 z£-

Figure 2.8. The capacities of channels seen by the input bits polarizing around
C(W) as the code-length grows large. Arıkan [1] proved that a ratio of C(W) of all
the channels will become noiseless while the rest will turn to pure noise channels. To
achieve the capacity, we only need to carry information over the noiseless channels.

25

1
u

5
u

3
u

7
u

2
u

6
u

4
u

8
u

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

Figure 2.9. Factor graph representation of a polar code of length 8 used in SC and
BP decoding. The graph is derived from the generator matrix. Input bits are on the
left side and code-bits are placed on the right.

to 0. Since the fraction of channels becoming noiseless tends to C(W), this scheme

achieves the capacity of the channel.

2.4.3 Decoding Schemes for Polar Codes

A Successive Cancellation (SC) decoder is employed in [1] to prove the capacity-

achieving property of polar codes. In such a decoder, the bits are decoded as follows.

Let the estimates of the bits be denoted by û1, ..., ûN . If a bit ui is frozen then ûi = 0.

Otherwise the decoding rule is the following:

ûi =

0 if
Pr(ȳ|ûi−1

1
,Ui=0)

Pr(ȳ|ûi−1

1
,Ui=1)

> 1;

1 otherwise.

Using the factor graph representation between ū and x̄ shown in Fig. 2.9, Arıkan

showed that this decoder can be implemented with O(N logN) complexity.

26

However, [38] and [39] later proposed using belief propagation decoding to obtain

better BER performance while keeping the decoding complexity at O(N logN). Belief

propagation can be run on the factor graph representation of the code [38]. Such a

representation is easily obtained by adding check nodes to the encoding graph of polar

codes, as it is shown in Fig. 2.9 for a code of length 8. In the figure, variable nodes

and check nodes are represented by small circles and squares, respectively. We refer

to this graph as the code’s factor graph. The most important variable nodes are the

channel outputs and the information bits.The goal of BP is to recover information

bits given the channel outputs and froze bits.

BP runs on the factor graph in a column-by-column fashion. That is, BP runs

on each column of the adjacent variable and check nodes. The parameters are then

passed to the next column. Each column, as it can be seen in Fig. 2.9, is formed

of some Z-shaped subgraphs. In our proofs, we sometimes simply call a Z-shaped

part a “Z”. The schedule with which BP runs is very important for channels other

than BEC. Here, we use the same scheduling used in [39], i.e. we update the log-

likelihood ratios (LLRs) for Z parts from bottom to top for each column, starting

from the rightmost one. After arriving at the leftmost column, we reverse the course

and update the Zs from top to bottom for each column, moving toward the rightmost

one. This makes one round of iteration, and will repeat at each round. While we

tried other schedules as well, this one led to a better overall performance.

27

CHAPTER 3

FINITE-LENGTH ANALYSIS OF POLAR CODES

3.1 Introduction

Since their introduction, polar codes have attracted a lot of attention among

researchers due to their capability to solve many problems (sometimes open problems)

that could not be handled using other schemes. However, theoretical approaches have

been mostly taken toward polar codes in the literature. Our goal is to study polar

codes from a practical point of view to find out about properties that can be useful

in real-world applications. Hence, we are mainly concerned with the performance of

polar codes in the finite regime (i.e. with finite lengths) as opposed to the asymptotic

case. Some of the previous work related to finite-length polar codes include [40–48].

Particularly, [41] proposes a successive cancellation list decoder that bridges the gap

between successive cancellation and maximum-likelihood decoding of polar codes.

Inspired by [41], [49–51] propose using CRC along with list decoding to improve

the performance of polar codes. [42] presents a method to improve the finite-length

performance of successive cancellation decoding by means of simple and short inner

block codes. A linear program (LP) decoding for polar codes is considered in [44].

In [46], a method for efficient construction of polar codes is presented and analyzed.

In addition, scaling laws are provided in [52–56] for the behavior of polar codes that,

in some cases, have finite-length implications.

Since an analysis in the finite regime can be very difficult in general, we start

with studying the performance of polar codes over the binary erasure channel (BEC).

A binary erasure channel (shown in Fig. 3.1) is a common communications channel

28

0

11

0

e

e

e-1

e-1

?

Figure 3.1. A binary erasure channel (BEC) with parameter (erasure probability)
ε.

model in which a transmitter sends a bit (a zero or a one), and the receiver either

receives the bit or it receives a message that the bit was not received (“erased”). The

probability of erasure is ε. We might denote this channel by BEC(ε). While being

fairly manageable, an analysis over the BEC leads to a better understanding of the

behavior of polar codes. We provide an analysis of the stopping sets in the factor

graph realization of polar codes. Factor graph of polar codes, as it is explained in next

section, is a bipartite graph formed by variable and check nodes connected together

through the edges. Such a realization for polar codes was first employed by [38]

and [39] to run Belief Propagation (BP) as the decoding algorithm. Stopping sets

are important as they contribute to the decoding failure and error floor, when BP is

used for decoding [57]. A stopping set is a non-empty set of variable nodes such that

every neighboring check node of the set is connected to at least two variable nodes

in the set. For the BEC, it is proved [57] that the set of erasures which remain when

the decoder stops is equal to the unique maximal stopping set within the erased bits.

Therefore, in the case of BEC, stopping sets are the sole reason of decoding failure.

A stopping set with minimum number of variable nodes is called a minimum stopping

set. Minimum stopping sets play an important role in the decoding failure.

29

In addition to the above, since BP is rather well-studied in the context of LDPC

codes, there are many approaches to modify BP in order to obtain better BER per-

formance; examining such schemes in the context of polar codes is another interesting

issue. Therefore, we consider a modified version of BP while employing a guessing al-

gorithm. The algorithm was studied in [58] and [59] and was shown to be considerably

helpful in the case of LDPC codes with good error floor performance.

Our main contributions in this chapter are as follows:

• We find the structure of the minimum stopping set and its size, called stopping

distance.

• We will show that the stopping distance grows polynomially for polar codes.

This is a clear advantage over capacity-approaching LDPC codes.

• We find the girth of the factor graph of polar codes, showing that polar codes

hold a relatively large girth.

• Simulation results will be provided to investigate the effect of such a large girth

and stopping distance on the error floor behavior of polar codes over the binary

erasure and AWGN (Additive White Gaussian Noise) channels.

• We show that applying the aforementioned guessing algorithm to polar codes

leads to significant improvements in the BER performance.

The rest of the chapter is organized as follows. We first explain the notations and

provide a short background on belief propagation. Section 3.3 gives an analysis on

the minimum stopping set of polar codes. We provide a girth analysis of polar codes

in Section 3.4 where we also present simulation results for error floor performance.

We will then study the improvement made in BER by employing a modified version

of BP using guessing techniques. All proofs for the facts, lemmas, and theorems have

30

been moved to the Section 3.7 at the end of the chapter. The results of this chapter

have been published in [47] and [60].

3.2 Preliminaries

In this section, we explain the notations and some preliminary concepts we will

use in our analysis. As it is shown in Fig. 3.2, the factor graph is formed of columns

of variable nodes and check nodes. There are, respectively, n + 1 and n columns of

variable and check nodes in the graph. We denote the variable nodes in jth column by

v(1, j), v(2, j), ..., v(N, j) for j = 1, ..., n+1. This is also shown in Fig. 3.2. Similarly,

check nodes are labeled as c(1, j), c(2, j), ..., c(N, j) for j = 1, ..., n. The rightmost

column in the graph includes code-bits, while the leftmost column includes frozen and

information bits. As it will become clear, our analysis does not depend on any specific

choice of the frozen and information bits. Therefore, we treat all the nodes in the

left-most column as variable nodes. Among v(i, 1), i = 1, ..., N , some are associated

to the information bits. We denote the index set of information bits by A where

A ⊆ {1, 2, ..., N}. Also, the row in F⊗n associated with an information bit i ∈ A will

be denoted by ri = [ri,1 ri,2 ... ri,N]. Note that this is the ith row of F⊗n. We denote

by wt(ri) the Hamming weight of ri.

We denote the factor graph of a code of length N = 2n by Tn. A key observation is

the symmetric structure of this graph due to the recursive way of finding the generator

matrix: Tn+1 includes two factor graphs Tn as its upper and lower halves, connected

together via v(1, 1), v(2, 1), ..., v(N, 1) and c(1, 1), c(2, 1), ..., c(N, 1). We denote these

two subgraphs by TU
n+1 and TL

n+1, as it is shown in Fig. 3.2. This observation will be

later used in our analysis.

In this chapter, we are particularly interested in the analysis of stopping sets in

the factor graph of polar codes. A stopping set is a non-empty set of variable nodes

such that every neighboring check node of the set is connected to at least two variable

31

)1,1(v 1x

2x

3x

4x

5x

6x

7x

8x

)1,2(v

)1,3(v

)1,4(v

)1,5(v

)1,6(v

)1,7(v

)1,8(v

)2,1(v

)2,2(v

)2,3(v

)2,4(v

)2,5(v

)2,6(v

)2,7(v

)2,8(v

)1,1(c

)1,2(c

)1,3(c

)1,4(c

)1,5(c

)1,6(c

)1,7(c

)1,8(c

U

n
T 1

L

n
T 1

Figure 3.2. Normal realization of the encoding graph for N = 8. An example of a
GSS is shown with black variable and check nodes. Notice the columns of variable
and check nodes. The figure also depicts the two induced tanner graphs Tn in upper
and lower halves.

nodes in the set. Fig. 3.2 shows an example of the stopping set in the polar codes’

graph, where we have also included the corresponding set of check nodes. A stopping

set with minimum number of variable nodes is called a minimum stopping set.

3.2.1 Stopping Trees

An important category of stopping sets in the factor graph of polar codes are

stopping trees. A stopping tree is a stopping set that contains one and only one

information bit. It can be easily seen that this sub-graph is indeed a tree, therefore

justifying its name. We say that the stopping tree is rooted at its (single) information

bit (on the left side of the graph), with leaves at code-bits (on the right side of the

graph). An example of such a stopping set is shown in Fig. 3.3 with black variable

32

)1,1(v 1x

2x

3x

4x

5x

6x

7x

8x

)1,2(v

)1,3(v

)1,4(v

)1,5(v

)1,6(v

)1,7(v

)1,8(v

Figure 3.3. The stopping tree for v(6, 1) is shown with black variable and check
nodes. The tree is rooted at v(6, 1) and has leaves at code-bits x1, x2, x5, x6.

nodes. We also included the corresponding set of check nodes in order to visualize

the structure of the tree. A stopping tree like the one shown in Fig. 3.3 can be

immediately realized for any information bit. As we will later see (in Lemma 2

below), this would in fact be the unique stopping tree for each information bit. We

denote the stopping tree rooted at v(i, 1) by ST (i). Among all the stopping trees, the

one with minimum number of variable nodes is called a minimum stopping tree. We

refer to the set of leaf nodes of a stopping tree as the leaf set of the tree. The size of

the leaf set for ST (i) is denoted by f(i). We refer to a stopping tree with minimum

leaf set as a Minimum-Leaf Stopping Tree (MLST). Note that a minimum stopping

tree does not necessarily have the minimum f(i) among all the stopping trees.

33

3.2.2 Graph Stopping Sets vs. Variable-Node Stopping Sets

By looking at the factor graph of polar codes, one can observe that the middle

variable nodes, i.e. v(i, j) for j = 2, ..., n and i = 1, ..., N , are always treated as

erasures by the BP decoder. This is also true about information bits. Frozen bits,

on the other hand, are known to the decoder. As a result, the only real “variable”

nodes are the code-bits, i.e. v(1, n+1), ..., v(N, n+1). These are in effect the variable

nodes that if erased may cause a decoding failure. Here, we refer to a stopping set

on the graph as a Graph Stopping Set (GSS), while we refer to the set of code-

bits on such a GSS as a Variable-Node Stopping Set (VSS). In Fig. 3.2, the set

{x3, x4, x5, x6} is the VSS for the depicted GSS. As we will see later, every GSS

must include some information bits and some code-bits. Thus, VSS is nonempty for

each GSS. Accordingly, we define a minimum VSS (MVSS) as a VSS with minimum

number of code-bits among all the VSSs. That is, a minimum VSS is the set of

code-bits on a GSS with minimum number of code-bits among all GSSs. Note that

a minimum VSS is not necessarily on a minimum GSS. We refer to the size of a

minimum VSS as stopping distance of the code.

Now, for any given index set J ⊆ A, there always exists an information bit j ∈ J

whose corresponding stopping tree has the smallest leaf set among all the elements

in J . We call such an information bit a minimum information bit for J , denoted by

MIB(J). Note that there may exist more than one MIB in J . In general, any given

index set J ⊆ A can be associated to several GSSs in the factor graph. We denote by

GSS(J) the set of all the GSSs that include J and only J as information bits. Each

member of GSS(J) includes a set of code-bits. The set of code-bits in each of these

GSSs is a VSS for J . We refer to the set of these VSSs as variable-node stopping sets

(VSSs) of J , denoted by V SS(J). Among the sets in V SS(J), we refer to the one

with minimum cardinality as a minimum VSS for J , denoted by MV SS(J).

34

3.3 Stopping Set Analysis of Polar Codes

In this section, we provide a stopping set analysis for polar codes. For the BEC,

it is proved [57] that the set of erasures which remain when the decoder stops is equal

to the unique maximal stopping set within the erased bits. In general, an analysis of

the structure and size of the stopping sets can reveal important information about

the error correction capability of the code. A minimum stopping set is more likely to

be erased than larger stopping sets. Thus, minimum stopping sets play an important

role in the decoding failure. In code design, codes with large minimum stopping sets

are generally desired. We consider the problem of finding the minimum stopping set

for a given polar code of length N . The results of this analysis may also help finding

the optimal rule of choosing information bits to achieve the best error correction

performance under belief propagation decoding.

3.3.1 Minimum VSS in The Graph

It is important to realize that what prevents the BP decoder from recovering

a subset J of information bits is the erasure of the code-bits in one of the sets in

V SS(J). Therefore, what will eventually show up in any error probability analysis

is the set of VSSs and their size. Particularly, MV SS(J) represents the smallest set

of code-bits whose erasure causes a decoding failure of J . We will find the size of

MV SS(J) for any given J . Furthermore, we will find the size of minimum VSS for a

given polar code.

We start our analysis by stating some of the facts about the structure of stopping

sets in the factor graph of polar codes. The factor graph of polar codes has a simple

recursive structure which points to some useful observations. Here we mention some

of these observations.

35

Lemma 1. Any GSS in the factor graph of a polar code includes variable nodes from

all columns of the graph. In particular, any GSS includes at least one information bit

and one code-bit.

This implies that any given GSS includes a nonempty VSS.

Lemma 2. Each information bit has a unique stopping tree.

Lemma 3. Any GSS in Tn+1 is formed of a GSS in TU
n+1 and/or a GSS in TL

n+1, and

a number of variable nodes v(i, 1), i = 1, ..., N .

This implies that any GSS in Tn+1 induces a GSS in TU
n+1 and/or TL

n+1. This can

be also seen in Fig. 3.2. The stopping set shown in the figure induces a stopping

set in each of TU
n+1 and TL

n+1. Now, consider size of the leaf set for different stopping

trees. Note that we have f(1) = 1, f(2) = 2, f(3) = 2, f(4) = 4, so on. In general,

we can state the following facts about f(·).

Lemma 4. For a polar code of length N = 2n, the function f(·) can be obtained as

follows:

f(2l) = 2l for l = 0, 1, ..., n,

f(2l +m) = 2f(m) for 1 ≤ m ≤ 2l − 1, 1 ≤ l ≤ n− 1. (3.1)

Thus f(·) is not necessarily an increasing function.

Lemma 5. For a given polar code of length N formed by the kernel F , and for any

i ∈ A, we have f(i) = wt(ri). In other word, the size of the leaf set for any stopping

tree is in fact equal to the weight of the corresponding row in the generator matrix.

Particularly, the leaf set of the stopping tree for any input bit represents the locations

of 1’s in the corresponding row of the matrix F⊗n.

Now, let us consider variable-node stopping sets for J ⊆ A. The following theorem

is proved for MV SS(J) in the Appendix. The proof uses facts 1, 3, and 4.

36

Theorem 1. Given any set J ⊆ A of information bits in a polar code of length

N = 2n, we have |MV SS(J)| ≥ minj∈J f(j).

Theorem 1 sets a lower bound on the size of the MV SS for a subset J of informa-

tion bits. It also implies that the size of the minimum VSS for a polar code is at least

equal to mini∈A f(i). However, we already know that the leaf set of the stopping tree

for any node i ∈ A is a VSS of size f(i). This leads us to the following corollary.

Corollary 1. For a polar code with information bit index A, the size of a minimum

variable-node stopping set is equal to mini∈A f(i), i.e. the size of the leaf set for the

minimum-leaf stopping tree.

Corollary 1 implies that in order to find the size of the minimum VSS, we need to

find the information bit with minimum leaf stopping tree among all the information

bits.

3.3.2 Size Distribution of Stopping Trees and Their Leaf Sets

We provide a method for finding the size distribution of stopping trees and their

leaf sets. First, note that the recursive construction of the factor graph dictates a

relationship between the size of stopping trees in Tn+1 and Tn.

Theorem 2. Let An and Bn be two vectors of length 2n showing, respectively, the

size of stopping trees and their leaf sets for all input bits in Tn. That is, An =

[|ST (1)| |ST (2)|

... |ST (2n)|] and Bn = [f(1) f(2) ... f(2n)]. We then have

An+1 = [An 2An] + 1n+1

Bn+1 = [Bn 2Bn], (3.2)

where 1n+1 is the all-ones vector of length 2n+1.

37

These two recursive equations can be solved with complexity O(N) to find the

desired size distributions for a code of length N . Note that Lemma 4 can also be

concluded from Theorem 2. Furthermore, Lemma 5 can be used to find the size of

leaf set for a specific stopping tree within time O(N).

3.3.3 Stopping Distance for Polar Codes

Theorem 2 gives the stopping distance for a finite-length polar code, when the

set of information bits is known. However, it is not always easy to choose the opti-

mal information set, particularly with large code-lengths. In order to approach this

problem, we first show that a slight modification in the set of information bits may

actually result in a larger stopping distance without a significant impact on the BER

performance.

Theorem 3. In the factor graph of a polar code of length N , the number of input

bits v(i, 1) for which f(i) < N ε, 0 < ε < 1
2
is less than NH(ε).

The above theorem implies that, for any 0 < ε < 1/2, we can always replace NH(ε)

information bits by some frozen bits for which the stopping tree has a leaf set larger

than N ε. It is easy to show that such a replacement does not effectively change the

overall BER under BP, asymptotically. When N → ∞ and ε < 1/2 , NH(ε) will be

vanishing with N . In a sparse factor graph, such as the one in polar codes, erroneous

decoding of a small set of information bits affects only a few number (vanishing withN

as N → ∞) of other information bits. Therefore, given a finite number of iterations,

BER will not change asymptotically. Accordingly, we can expect such a modification

to have little impact on the BER performance in the finite regime, while resulting in

a better error floor performance. Fig. 3.4 is used to demonstrate this case. The BER

is depicted for Arıkan’s rule and its modified version introduced above (we call it new

rule) applied to a code of length 213 and rate 1/2. We replaced information bits with

leaf sets smaller than 28, by frozen bits with minimum Bhattacharyya parameter who

38

0.29 0.3 0.31 0.32 0.33 0.34 0.35
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

B
E

R

BP Arikan

SC Arikan

SC New Rule

BP New Rule

Figure 3.4. BER comparison for different methods of choosing information bits
under BP and SC decoding. Code-rate and code-length are 1/2 and 213, respectively.
The new rule improves the finite-length performance for BP while degrading it for
SC decoding.

also had a leaf set larger than 28. As it can be seen, when SC decoding is used, the

new rule performs slightly worse than Arıkan’s rule. However, under BP decoding,

it does slightly better than Arıkan’s rule. While the figure only shows the BER

performance in the waterfall region, We conjecture that this rule results in a superior

error floor performance of the new rule due to its larger stopping distance. It is also

noteworthy that if we use the new rule to pick all the information bits, i.e. if we

only pick input bits with largest leaf sets as information bits, then the resulting code

will be a Reed-Muller code for which BP performance is worse than polar codes [38].

Therefore, we only considered a limited use of the new rule. This apparently helps to

preserve some of the good characteristics of polar codes while increasing the stopping

distance. We also like to mention two points regarding the stopping distance.

39

3.3.3.1 Asymptotic Case

Theorem 3 asserts that given any capacity-achieving polar code and any σ > 0,

we can always construct another capacity-achieving code with a stopping distance

N1/2−σ, by replacing some information bits by some frozen bits with larger f(.). The

following theorem gives the stopping distance for polar codes in the asymptotic case.

Note that this only holds asymptotically and the analysis is different for finite-length

codes, as we explained above.

Theorem 4. The stopping distance for a polar code of length N grows as Ω(N1/2).

3.3.3.2 Minimum Distance vs. Stopping Distance

The following theorem states the relation between the stopping distance and min-

imum distance of polar codes.

Theorem 5. The stopping distance of a polar code defined on a normal realization

graph such as the one in Fig. 3.2, is equal to the minimum distance of the code,

dmin.

According to Theorem 5, the number of code-bits in the minimum VSS grows

as fast as the minimum distance. It is noteworthy that for linear block codes, dmin

(i.e. the minimum Hamming weight among all codewords) puts an upper bound on

the stopping distance [61–63]. This is because if all the ones in the received vector

are erased, then it is impossible for the decoder to find out if an all-zero codeword

has been sent or another codeword. For a code, it is a desirable property to have

a stopping distance equal to its minimum distance. Therefore, Theorem 5 can be

interpreted as a positive result, particularly compared to the capacity-approaching

LDPC codes for which both the stopping and minimum distances are fairly small in

comparison to the blocklength [61–63].

40

3.4 Error Floor Performance of Polar Codes

A large stopping distance is desirable in order to improve the error floor perfor-

mance of a code over the BEC. After exploring the stopping sets of polar codes in

the pervious section, here we focus on “girth” of polar codes as another important

factor in error floor performance. Afterward, we examine the error floor performance

of polar codes over the BEC and binary Gaussian channel via simulations.

3.4.1 Girth of Polar Codes

The girth of a graph is the length of shortest cycle contained in the graph. Cycles

in the Tanner graph prevent the sum-product (BP) algorithm from converging [64].

Furthermore, cycles, especially short ones, degrade the performance of the decoder,

because they affect the independence of the extrinsic information exchanged in the

iterative decoding. When decoded by belief propagation, the external information

at every variable node remains uncorrelated until the iteration number reaches half

the girth. Hence, we are often interested in constructing large girth codes that can

achieve high performance under BP decoding [65–67]. As it can be seen in the factor

graph shown in Fig. 3.5, there exist two types of cycles: first, the cycles including

nodes only from one of the top or bottom parts of the graph (shown by thick solid

lines), and second, the cycles including nodes from both top and bottom parts of our

symmetric graph (shown by thick dashed lines). The first type of cycles have the

same shape in both upper and lower halves of the graph. The interesting fact about

the cycles is that because the graph for a code of length 2m is contained in the graph

of a code of length 2m+1, all the cycles of the shorter code are also present in the

graph of the longer code. The shortest cycle appears in the graph of a length-4 polar

code, as it is shown in Fig 3.5. It is a cycle of size 12, including 6 variable nodes and

6 check nodes. The shortest cycle of the second type appears first in the graph of a

41

length-8 polar code, and have a size of 12 (dotted lines in Fig. 3.5). Thus, based on

the above, the girth of a polar code is 12.

3.4.2 Simulation Results for Error Floor

We performed simulations to examine the effect of the relatively large stopping

distance and girth of the polar codes’ factor graph on the error correction performance

of these codes. Fig. 3.6 shows the simulation results for a code of length 215 and

rate 1/2 over the BEC. As can be seen, no sign of error floor is apparent. This is

consistent with the relatively large stopping distance of polar codes. We indicated

the 99% confidence interval for low BERs on the curve to show the precision of the

simulation. Fig. 3.7 also shows the simulation results for a rate 1
2
polar code of length

213 over a binary-input Gaussian channel subjected to additive white Gaussian noise

with zero mean and variance σ2. The figure shows no sign of error floor down to the

BERs of 10−9.

3.5 Improved Decoding Using Guessing Algorithm

Fig. 3.8 provides a comparison between the bit error rate performance of BP

and maximum likelihood (ML) decoding for polar codes over a BEC. As can be

seen, ML decoding leads to error rates as large as four orders of magnitude lower

than BP. This, along with relatively poor error rate performance of finite-length

polar codes compared to LDPC codes, motivates us to find modifications to BP in

order to improve its performance. Since LDPC uses belief propagation decoding,

there have been various methods proposed to improve the BER performance of belief

propagation in LDPC codes. Many of those ideas can be used for polar codes with a

slight modification. However, as we have seen in the previous section, polar codes do

not show error floor, benefiting from a large stopping distance and a relatively large

girth. One of the schemes proved to be helpful for codes with such characteristics is to

42

u1

u7

u3

u5

u2

u8

u4

u6

x1

x4

x3

x2

x5

x8

x7

x6

(a) Shortest cycles in upper and lower halves.

u1

u7

u3

u5

u2

u8

u4

u6

x1

x4

x3

x2

x5

x8

x7

x6

(b) Shortest cycle spanning both upper and lower halves.

Figure 3.5. Different types of cycles in the factor graph of polar codes for N = 8.
Thick solid lines show the first and second types of cycles, respectively. Figure shows
a girth of 12 for polar codes.

43

+ , - - + , - . + , - / + , - 0 + , - 1 + , - 2 + , - 3 + , . + , . 4 + , . 54 + 6 7 84 + 6 7 94 + 6 :4 + 6 ;4 + 6 <4 + 6 84 + 9

ε

= > ? @ A B C D E F
G H ? @ A B C D E F

Figure 3.6. BER performance for BP and SC decoding over BEC. The code-length
and code-rate are 215 and 1/2, respectively. The 99% confidence interval is shown for
the two lowest BER’s. No sign of error floor can be seen down to a BER of 10−10.

use guessing algorithms alongside BP [58]. The key idea is the following observation.

Consider a BEC with an erasure probability ε and a polar code of finite length N

that has a small enough error probability. If the message-passing decoder fails to

decode a received word completely, then there exist a few (usually less than or equal

to 3 bits) undecoded bits such that if their values are exposed to the decoder, then

the decoder can finish the decoding successfully. Note that this is true only when

the BER is small enough (for example, less than 10−2). Simulations and intuitive

arguments strongly confirm the above statement.

In message passing algorithm basically, if the values of all but one of the variable

nodes connected to a check node are known, then the missing variable bit is set to the

XOR of the other variable nodes, and the check node is labeled “finished”. Message

passing continues this procedure until all check nodes are labeled as finished or the

decoding cannot continue further. Let us call this “algorithm A”. We now explain

44

I J I I J K I J L I J M N N J I N J KO P Q RO P Q SO P Q TO P Q UO P Q VO P Q WO P Q XO P Q Y

Z [\] ^ _ ` a b

c d e f g h i j k l
m n e f g h i j k l

Figure 3.7. BER performance for BP and SC decoding over the Gaussian channel.
The code-length and code-rate are 213 and 1/2, respectively. The 99% confidence
interval is shown for the two lowest BER’s. No sign of error floor can be seen down
to a BER of 10−9.

a modified message passing algorithm which we call “algorithm B”. This algorithm

continues the decoding when algorithm A fails to decode the received codeword. It

chooses one of the unknown variable nodes, say w1, and guesses its value (for example,

by setting its value to zero). Intuitively, an appropriate scheme is to choose wj that

guessing its value frees as many as unknown variable nodes. In polar codes, since all

variable nodes are degree 2 or 3, we choose variable nodes of degree 3 to guess their

values. Then the algorithm continues to label the check nodes as in algorithm A with

one more option. If all the variable nodes connected to the check node are known,

then if the check node is satisfied it labels that check node “finished,” otherwise the

check node is labeled “contradicted.” The procedure is done sequentially and the

algorithm continues to run until either all check nodes are labeled or the decoding

cannot continue further.

45

0.3 0.31 0.32 0.33 0.34 0.35
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

P
B

BP

MAP

Figure 3.8. BER comparison of BP and MAP for a polar code of length 210 and
rate 1/2 over the binary erasure channel. BP stands far from the MAP which has the
best finite-length performance. We propose a guessing algorithm to close this gap.

Once the procedure above is finished, if all of the check nodes are labeled and

none of them is labeled “contradicted,” the decoder outputs the resulting word as

the decoded word. If all of the check nodes are labeled but some of them are labeled

“contradicted,” then it changes the value of w1, the guessed variable node, and repeats

the decoding from there. This time the decoding finishes successfully because we have

found the actual value of w1. But if the decoding stops again (i.e. some of the check

nodes are not labeled) we have to choose another unknown variable node w2 and

guess its value to continue the decoding. Again, if some check nodes are labeled as

“contradicted,” we have to go back and try other values for w1 and w2. Obviously,

Algorithm B is efficient only if the number of guesses is very small.

Algorithm B has a complexity that grows exponentially with the number of

guesses. An improved algorithm called algorithm C was proposed in [58] to address

this problem. Here we explain the basic idea of this algorithm. Let w1, w2, ..., wg

46

be the variable nodes that we guess and x1, x2, ..., xg be their values. In general,

any variable node that is determined after the first guess can be represented as

a0 ⊕ a1x1 ⊕ a2x2 ⊕ ... ⊕ agxg, where aj ∈ {0,+1}. Algorithm C uses this para-

metric representation of the variable nodes to solve the set of equations obtained at

the satisfied check nodes. This way, it finds the values of x1, x2, ..., xg and hence,

the unknown variable nodes. It can be shown that this algorithm has complexity

O(g2maxN) where gmax is the maximum number of guesses [58]. We refer the reader

to [58] for more details on this algorithm. Algorithm B can also be modified slightly

to be used for the gaussian channel [59]. Since the basic idea is the same as the

erasure channel, we omit the detailed discussion of this case here. We will show the

simulation results for both cases in the next section.

3.5.1 Simulation Results

Fig. 3.9(a) shows the simulation results for BER over the BEC, where Algorithm

C is compared to algorithm A. Note that Algorithms B and C show almost the same

BERs. We have run our simulations for a rate 1/2 polar code of length 213 while we set

gmax to 6. As it can be seen in the figure, Algorithm C shows two orders of magnitude

improvement in BER over Algorithm A. We also observed that the average running

time of Algorithm C was about 1.04 times of Algorithm A. The average number of

guesses is 3.07 when ε = 0.32. Fig. 3.9(b) shows the simulation results for employing

the guessing algorithm in the gaussian channel. The code we are using is of length

213 and has a rate of 1
2
. The maximum number of guesses gmax is set to 6. As it can

be seen, there is about 0.3 dB improvement in the BER of 2× 10−6.

3.6 Chapter Summary

As a first step in a practical approach to polar codes, we studied the BER perfor-

mance of finite-length polar codes under belief propagation decoding. We analyzed

47

0.29 0.3 0.31 0.32 0.33 0.34 0.35
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

B
E

R

Algorithm A

Algorithm C

(a) BER performance of BP with guessing algorithm for decoding over BEC.
Code-length is 213 and code rate is 1/2. Guessing leads to more than an order of
magnitude of improvement in BER performance.

1.6 1.8 2 2.2 2.4 2.6
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

SNR (dB)

B
E

R

BER without guessing

BER with guessing

(b) BER performance of BP with guessing algorithm for decoding over the gaus-
sian channel. Code-length is 213 and code rate is 1/2. Guessing leads to more
than 0.3 dB improvement in BER performance at 10−6.

Figure 3.9. BER performance of BP with guessing algorithm over the binary erasure
and gaussian channels. gmax is set to 6, meaning that we guess 6 bits at most.

48

the structure of stopping sets in the factor graph of polar codes as one of the main

contributors to the decoding failure and error floor over the BEC. The size of the

minimum stopping set and the girth of the factor graph have been found for polar

codes. We then investigated the error floor performance of polar codes through sim-

ulations where no sign of error floor was observed down to BERs of 10−10. Motivated

by the good error floor performance, we applied a guessing algorithm to improve the

performance of BP decoding. Our simulations showed that using such a modified

version of BP decoding can result in up to 2 orders of magnitude improvement in

BER.

3.7 Proofs

Proof of Lemma 1: First, note that we only have degree 2 and 3 check nodes

in the graph. In every Z-shaped part there are two check nodes, one at the top and

one at the bottom. The top check node is always of degree 3 and the bottom one

is always of degree 2. When a check node is a neighbor of a variable node or a set

of variable nodes, we say that the check (variable) node is adjacent to that variable

(check) node or the set of variable (check) nodes. We show that if a GSS is adjacent

to either one of these check nodes in the ith column, then it must involve check nodes

and variable nodes from both (i − 1)th and (i + 1)th columns. Therefore, any GSS

includes variable nodes from all columns of the graph, including information bits and

code-bits.

We consider two cases. Since each neighboring check node of a GSS needs to

be connected to at least two variable nodes in the set, if the bottom check node is

adjacent to the GSS, then both of its neighboring variable nodes must be in the set.

Since all the check nodes connected to a variable node in the GSS are also adjacent

to the set, this means that some of the check nodes in the (i − 1)th and (i + 1)th

columns are also adjacent to the set. In the second case, if the upper check node (of

49

degree 3) is adjacent the GSS, then its neighbors in the GSS are either a variable

node at its right and one at its left, or two variable nodes at its left, one at the top

and one at the bottom of the Z. In the former case, the GSS clearly includes nodes

from the (i−1)th and (i+1)th columns. In the latter case, the bottom variable node

has the bottom check node as its neighbor in the GSS, leading to the same situation

we discussed above.

Proof of Lemma 2: Suppose an information bit i has two non-overlapping

stopping trees, ST and ST ′. Also, suppose ST has a form like the stopping tree

shown in Fig. 3.3. That is only one variable node from each Z can participate in ST .

Also, Note that a check (variable) node in the graph is adjacent to only one variable

(check) node on the right (left). Thus, if a check node is adjacent to ST , it is adjacent

to exactly one variable node on the left and one on the right.

Now assume that the difference between ST and ST ′ starts at the jth column.

j 6= 1 Since, by definition, a stopping tree can include only one information bit; hence,

v(i, 1) is the only variable node of column 1 participating in ST and ST ′. Suppose

there exists a variable node v(k′, j) ∈ ST ′, j 6= 1, which is not part of ST . v(k′, j) is

adjacent to c(k′, j − 1) from left. However, c(k′, j − 1) can not be adjacent to ST ,

otherwise we would have v(k′, j) ∈ ST because of what we mentioned above. But

c(k′, j − 1) must be adjacent to at least one variable node in ST ′ form the left since

it needs to be adjacent to at least two variable nodes in ST ′ (definition of a stopping

set). Therefore, c(k′, j − 1) is adjacent to at least one variable node in ST ′ in the

(j − 1)th column, which is not part of ST . This is contradiction since we assumed

ST and ST ′ start to differ at the jth column.

Proof of Lemma 3: Fact 1 implies that any GSS in Tn+1 includes at least one

information bit. Consider such a GSS. According to Lemma 1, this GSS includes a set

of variable nodes in TU
n+1 and/or T

L
n+1. Let us denote these sets by SU and SL, respec-

50

tively. Now, it is easy to see that the variable and check nodes in SU and SL, if non-

empty, still satisfy the conditions of a GSS. This is because v(1, 1), v(2, 1), ..., v(N, 1)

are connected to the rest of the graph only through c(1, 1), c(2, 1), ..., c(N, 1). There-

fore, for any GSS in Tn+1, the induced non-empty subsets in TU
n+1 and TL

n+1 also form

a GSS for these subgraphs.

Proof of Lemma 4: This lemma can be concluded directly by looking at the

recursive structure of the factor graph.

Proof of Lemma 5: This is true because based on the Arıkan’s paper, the

encoding graph of polar codes is obtained from the matrix F⊗n. In fact, this graph is

a representation of the recursive algebraic operations in this Kronecker product.

Proof of Theorem 1: We prove the theorem by induction on n where N = 2n is

the code-length. For n = 1 (N = 2), there are only two information bits, v(1, 1) and

v(2, 1). It is trivial to check the correctness of the theorem in this case. Now suppose

the hypothesis holds for a polar code of length 2k. We prove that it also holds for a

code of length 2k+1. Consider a set J and let MIB(J) = i. In the case that there

exist more than one MIB in J , without loss of generality, we pick the one with the

largest index as the MIB(J). That is, we pick the one which occupies the lowest

place in the graph among the MIBs of J . Let V SS∗ be a minimum VSS for J , and

let GSS∗ be the corresponding GSS for V SS∗. We also denote the upper and lower

halves of the factor graph by GU and GL, as it is shown in Fig. 3.10(a). Note that

GU and GL are identical in shape, and each of them includes half of the variable and

check nodes in the factor graph. Without loss of generality, we assume that V SS∗

includes variable nodes (code-bits in this case) from both GU and GL. We denote

these two subsets of V SS∗ by V SS∗
U and V SS∗

L, respectively. Also, GSS∗ includes

some variable nodes from the second column, i.e. from v(1, 2), ..., v(N, 2). Let us

denote the index set of these nodes by J ′. For example, for the GSS shown in Fig.

51

3.2, J ′ is {2, 4, 6}. We also denote the subsets of J ′ in the upper and lower halves

of the graph by J ′
U and J ′

L, respectively. Furthermore, We simply use TU and TL

instead of TU
k+1 and TL

k+1, since it is clear that we are dealing with the case n = k+1.

Accordingly, we use fU(j
′) (fL(j

′)) to show the size of the leaf set for the stopping

tree of j′ ∈ J ′
U (j′ ∈ J ′

L) in TU (TL).

For this setting, we need to show that for bit i to be erased, at least f(i) code-bits

must be erased, or equivalently, |V SS∗| ≥ f(i). We consider two cases: 1. i ∈ GL,

and 2. i ∈ GU .

1. i ∈ GL: This case is depicted in Fig 3.10(a). First, note that i − 2k can not

be in the V SS∗, because f(i − 2k) = 1/2f(i) and then i would not be a MIB.

Now, for i to be erased, i′ and l′ = i′− 2k must be erased. Fact 3 asserts that J

induces two stopping sets in TU and TL for J ′
U and J ′

L, respectively. We claim

that i′ and l′ are MIB for J ′
L and J ′

U , respectively. If i
′ 6= MIB(J ′

L), then there

exists a node j′ such that fL(j
′) < fL(i

′). Then, there exists j ∈ A such that

f(j) < f(i) which is in contradiction with the fact that i is a MIB.

If l′ 6= MIB(J ′
U), then there exists t′ such that fU(t

′) < fU(l
′). This means

that we have t ∈ J and/or t + 2k ∈ J . However, we then have f(t) < f(i) and

f(t+2k) < f(i), which is again a contradiction with i being a MIB. Now, since

i′ = MIB(J ′
L) and l′ = MIB(J ′

U), then the induction hypothesis implies that

|V SS∗
L| ≥ fL(i

′) and |V SS∗
U | ≥ fU(l

′). Therefore,

|V SS∗| = |V SS∗
L|+ |V SS∗

U | ≥ fL(i
′) + fU(l

′) = f(i).

2. i ∈ GU : This case is depicted in Fig. 3.10(b). If J ∩GL = φ, then we can prove

that i′ = MIB(J ′
U) along the same lines as the proof of case 1 above. Then the

induction hypothesis implies that V SS∗ ≥ fU(i
′) = f(i), and the proof would

be complete for this case.

52

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

l

j

i

kil 2-=¢

j¢

i¢

UT

LT

uG

lG

t¢
t

(a) Case 1 in Theorem 1.

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

kit 2+=

j

i

t ¢

j¢

i¢

UT

LT

uG

lG

(b) Case 2 in Theorem 1.

Figure 3.10. Figure is used to visualize different cases considered in the proof of
Theorem 1.

53

Now suppose that J ∩ GL 6= φ. Consider any j ∈ J ∩ GL. We show that

f(j) > f(i + 2k). Let us denote i + 2k by t. First note that f(j) > f(i);

otherwise if f(j) = f(i), then according to our definition of MIB, we would pick

j as the MIB since j ∈ GL and i ∈ GU . Also note that f(.) only takes value as

powers of 2. Hence, we have f(j) ≥ 2f(i). Therefore,

fL(j
′) = 1/2f(j) ≥ f(i) = fL(t

′). (3.3)

As a result, |V SS∗| ≥ |V SS∗
L| ≥ fL(t

′) = f(i).

Proof of Theorem 2: The theorem becomes clear by looking at the recursive

structure of the graph: Tn+1 is formed of two copies of Tn, one at the top and one at

the bottom, that are connected together.

Proof of Theorem 3: In the matrix F⊗n, there are
(

n
i

)

rows with weight 2i [39].

This means that in the factor graph of a polar code, there are
(

n
i

)

stopping trees with

a leaf set of size 2i. Thus the corresponding tree of these input bits is at least of size

2i. As a result, the number of input bits with less than 2εn = N ε variable nodes in

their tree is less than
∑εn

i=0

(

n
i

)

, which is itself upper-bounded by 2H(ε)n = NH(ε) for

0 < ε < 1
2
.

Proof of Theorem 4: The block error probability for SC decoding over every

B-DMC is proved to be O(2−
√
N) [68]. Noting that the error correction performance

of BP is at least as good as SC over the BEC [39], we conclude that block error

probability for BP over the BEC decays as O(2−
√
N) as well. Let us denote by PB(E)

and Pr{EMV SS}, the block erasure probability and the probability of MVSS being

erased. We then have

54

Pr{EMV SS} =ε|MV SS| = (1/ε)−|MV SS| ≤ PB(E)

= O(2−
√
N) ⇒ |MV SS| = Ω(

√
N), (3.4)

where ε is the channel erasure probability.

Proof of Theorem 5: First note that according to Lemma 5, f(i) = wt(ri) for

any i ∈ I. On the other hand, according to [39,56], dmin = mini∈A wt(ri) for a polar

code. Now using Corollary 1, dmin = mini∈A wt(ri) = mini∈A f(i) = |MV SS|.

55

CHAPTER 4

APPLICATION-SPECIFIC DESIGNS FOR POLAR

CODES

4.1 Introduction

There are usually limitations that are imposed by the specific applications, e.g.,

we might want to have rate-adaptive codes to cope with a time-varying channel.

In this part of the dissertation, we aim at identifying applications that are best

addressed by polar codes. It is well-known that finite-length polar codes show poor

error probability performance when compared to some of the existing coding schemes

such as LDPC and Turbo codes. Nevertheless, showing a set of good characteristics

such as being capacity-achieving, low encoding and decoding complexity, and good

error floor performance suggests that a combination of polar coding with another

coding scheme could eliminate shortcomings of both, hence providing a powerful

coding paradigm.

In this chapter, we consider the design of polar code-based concatenated coding

schemes that can contribute to closing the gap to the capacity. Concatenated cod-

ing has been studied extensively for different combinations of coding schemes. Fur-

thermore, there have been many applications, such as deep space communications,

magnetic recording channels, and optical transport systems that use a concatenated

coding scheme [69–72]. A coding scheme employed in these applications needs to

show strong error correction capability. Here, we investigate the potentials of using

polar codes in a concatenated scheme to achieve very low error rates while avoiding

error floor. While the idea of concatenated polar codes was first introduced in [73],

56

the problem of designing practical concatenated schemes using polar codes is yet to

be studied. In [73], the authors study the classical idea of code concatenation using

short polar codes as inner codes and a high-rate Reed-Solomon (RS) code as the

outer code. It is shown that such a concatenation scheme with a careful choice of

parameters boosts the rate of decay of error probability to almost exponential in the

blocklength with essentially no loss in computational complexity. While [73] mainly

considers the asymptotic case, we are interested in improving the performance in

practical finite lengths.

In addition to the above, we introduce a universally capacity achieving rate-

compatible design for polar codes. As it will be shown, polar codes are inherently

well-suited for rate-compatible applications. Different approaches to rate-compatible

polar coding will be studied. As a relevant yet very important topic, we will introduce

the design of non-uniform polar codes over a set of parallel channels. We particularly

provide a simple design of such codes with a rather impressive performance. At the

end, we further argue that because of their inherent polarization, polar codes have

great potential for unequal error protection.

Our main contributions in this chapter are as follows:

• We study the combination of polar codes and LDPC codes, suggesting a polar

code as the outer code and a LDPC code as the inner code.

• We investigate the performance of polar-LDPC scheme in a real-world applica-

tion, by comparing it against some of the conventional schemes used in Optical

Transport Networks. Our results suggest that polar codes have a great potential

to be used in combination with other codes.

• We present a simple rate-compatible scheme that can universally achieve the

channel capacity for a set of channels, using the same encoder and decoder.

• We will study puncturing to design rate-compatible polar codes.

57

• We will present the results for a simple design of polar codes over the parallel

sub-channels (“non-uniform polar codes”), showing the improvement achieved

over the case of using separate codes for different sub-channels.

• We will investigate the application of polar codes in unequal error protection

by observing the fact that in finite-length polar codes, different information bits

face different channels by the design.

The rest of the chapter is organized as follows. We propose concatenated polar

codes to be used in a real-world application in Section 4.2. Section 4.3 investigates

different approaches towards rate-compatible polar codes. Section 4.4 studies non-

uniform polar codes and proposes a simple design for them. Finally, Section 4.5

introduces the unequal error protection using polar codes. The results of this chapter

have been published in [48] and [60].

4.2 Concatenated Polar Coding

Polar codes show a set of good characteristics that are needed in many real-world

communication systems. Among these properties are good error floor performance,

being capacity-achieving, and a low encoding and decoding complexity. In this sec-

tion, we take advantage of these properties to design a polar code-based scheme as a

solution to a practical problem. An Optical Transport Network (OTN), as it is shown

in Fig. 4.1, is a set of optical network elements connected by optical fiber links, able

to transport client signals at data rates as high as 100 Gbit/s and beyond. These

networks are standardized under ITU-T Recommendation G.709, and stand for an

important part of the high data-rate transmission systems such as Gigabit Ethernet

and the intercontinental communication network. A minimum BER of at least 10−13

is generally required in such systems [71,72]. Because of very high-rate data transmis-

sion, OTNs need to employ a low complexity coding scheme to keep the delay in a low

58

Figure 4.1. The structure of an Optical Transport Network (OTN) connecting
network components using fibre optic cable. Channel coding for OTNs is standardized
under OTU4 by ITU-T

level. Furthermore, these systems generally use a long frame for data transmission,

which allows using large code-lengths.

We propose concatenated polar-LDPC codes to be used in OTNs. Our proposed

scheme is formed of a Polar code as the outer code, and a LDPC code as the inner

code. Fig. 4.2 shows the block diagram of this scheme. We consider long powerful

LDPC codes as the inner code with rates close to the channel capacity. LDPC codes

with good waterfall characteristics are known to mostly suffer from the error floor

problem. However, the polar code plays a dominant role in the error floor region of

the LDPC code. Based on the analysis provided in previous sections, the combination

of polar and LDPC codes is expected to form a powerful concatenated scheme with a

BER performance close to the capacity for a broad range of the channel parameter.

We consider a binary polar code concatenated with a binary LDPC code. This is

59

Information bits

u1,...,uk

û1,...,ûk

Channel
Polar

Encoder

LDPC

Decoder

LDPC

Encoder

Polar

Decoder

Figure 4.2. Block diagram of the proposed concatenated system of polar and LDPC
codes for OTNs. We choose the LDPC code to be a capacity-approaching code.

different from the traditional concatenated schemes [5] in which a non-binary code is

usually used as the outer code.

OTU4 is the standard designed to transport a 100 Gigabit Ethernet signal. The

FEC (Forward Error Correction) in the standard OTU4 employs a block interleaving

of 16 words of the (255, 239, 17) Reed-Solomon codes, resulting in an overall overhead

of 7%. This scheme guarantees an error floor-free performance using a bounded

distance decoder, and provides a coding gain of 5.8 dB at a BER of 10−13. Since

the approval of this standard (February 2001), several concatenated coding schemes

have been proposed in the literature and some as patents, targeting to improve the

performance of this standard. In most cases, these schemes propose a concatenation

of two of Reed-Solomon, LDPC, and BCH codes [70–72,74]. Here, for the first time,

we consider polar-LDPC concatenation for the OTU4 setting.

4.2.1 Encoder

In order to satisfy the overhead of 7%, we adopt an effective code rate of 0.93. That

is, if we denote the code-rates for the polar and LDPC codes by Rp and Rl respectively,

then Reff = Rp ×Rl needs to be 0.93. The first problem is to find the optimal code-

60

rate combination for the two codes to achieve the best BER performance. While

this is an interesting analytical problem, it might be a difficult problem to solve.

Therefore, we find the best rate combination for our application empirically. First,

note that both Rp and Rl are greater than 0.93. We are also aware of the relatively

poor error rate performance of finite-length polar codes compared to LDPC codes.

Therefore, in order to minimize the rate loss, we choose Rl close to the Reff . As a

result, Rp would be close to 1. The values of Rl and Rp can be found empirically.

Fig. 4.3 shows the BER performance of three different rate couples, as a sample of all

the rate couples we simulated. Code-length for the polar code is fixed to 215 = 32768

for all the rate couples. Showing a rate couple by (Rp, Rl), these three rate couples

are (0.989, 0.94), (0.979, 0.95), (0.969, 0.96). We picked (0.979, 0.95) for the rest of

our simulations in this section as it shows a better performance in the low-error-rate

region. Fixing the code-length 215 = 32768 for the polar code and fixing the rates to

(0.979, 0.95), the LDPC code-length would be 34493. We used the following optimal

degree distribution pair which has a threshold value of 0.47 for the binary AWGN

channel under BP [75]:

λ(x) =0.156935 x+ 0.138295 x2 + 0.325131 x3

+ 0.168818 x11 + 0.210821 x12, (4.1)

ρ(x) =0.039239 x34 + 0.144375 x35 + 0.302308 x70

+ 0.514078 x71. (4.2)

An interesting question here is how to design the polar code in this concatenated

scheme, while the channel seen by the polar code is not an AWGN channel anymore.

It is well known, that when the iterative BP decoder fails, the residual erroneous

bits after decoding are organized in graphical structures (e.g. stopping sets on BEC

or trapping sets for other types of channels). In order to find the distribution of

61

o o p q o p r o p s o p t o p uq v w x yq v w zq v w {q v w |q v w }q v y

~ � � � � � � � �
���

� � � � � � � � � v p � � � � v p � u �� � � � � � � � � v p � � � � v p � t �� � � � � � � � � v p � o � � v p � o �

Figure 4.3. BER performance comparison for different rate combinations in a polar-
LDPC concatenated scheme. We chose the rate pair of (Rp, Rl) = (0.979, 0.95) for
our concatenated scheme. The overall code-rate will be 0.93.

such patterns, one method is to prepare a histogram of these (post-decoding) error

patterns. However, here we simply assume that the error patterns are distributed

randomly (equally likely) at the output of the LDPC decoder, hence assuming the

channel seen by the polar code as an AWGN channel with capacity 0.979. We then

designed our polar code for this channel. The problem of designing optimal polar

codes for this concatenated scheme remains as an interesting problem for further

research.

4.2.2 Decoder

At the decoder side, we perform belief propagation decoding with soft-decision for

both the polar and LDPC codes. Upon finishing its decoding, the LDPC decoder will

pass its output vector of LLRs to the polar decoder. Polar decoder then treats this

vector as the input for its belief propagation process.

62

4.2.3 Simulation Results

Fig. 4.4 depicts the BER performance for the concatenated scheme explained

above, when using the LDPC code above. For the channel, we assumed a binary

symmetric Gaussian channel as it is used by [70–72,74]. Along with the concatenated

scheme, we have shown the performance of the LDPC code when used alone with an

effective rate of 0.93, which is equal to the effective rate of the concatenated scheme.

As it can be seen, the concatenated scheme follows the performance of LDPC code

in the waterfall region closely. Since both polar and LDPC codes here are capacity-

approaching (capacity-achieving in case of polar codes), this technique does not suffer

from rate-loss theoretically. Therefore, by increasing the code-length we expect the

curve for polar-LDPC scheme to close the gap to capacity. The curve also shows

no sign of error floor down to BERs of 10−10, as opposed to the curve for LDPC

code which shows error floor at around 10−8. What actually happens in a polar-

LDPC concatenation is that the two codes are orchestrated to cover for each other’s

shortcomings: LDPC plays the dominant role in its waterfall region, while polar code

is dominant in the error floor region of the LDPC code.

We should also mention that a soft BP decoder is used with a 9 bit quantization

(512 values) of the LLRs. We are also limiting the LLR values to the range of (-

20, 20). The maximum number of iterations used in our simulations is 60; however,

we counted the average number of iterations (let us call it the ANI) for LDPC and

polar-LDPC schemes in order to get some ideas about their decoding latency. At a

BER of 10−6, the ANI for the capacity-approaching LDPC code when used alone was

11.3. On the other hand, the ANI for the LDPC and polar codes used in the polar-

LDPC scheme was 13.1 and 16.7, respectively. It should be noted that the BP-Polar

iterations are heavier than the iterations for LDPC due to the N logN time of each

iteration in BP-Polar in comparison to the linear time of each iteration in BP-LDPC.

In our simulations for the lower points in the curves, we kept sending blocks until we

63

� � � � � � � � � � � � �� � � �� � �� � �� � �� � �� � �� � � � ¡� � ¢

£ ¤ ¥ ¦ § ¨ © ª «

¬ ® ¯ ° ® ® ± ² ³ ¬³ ´ µ ¶ ¯ ± ² ³ ¬· ¸ ¹ º » ¼ ¨ ½ � � ¾ ½ ¿ À «» ¼ ¨ ½ � ½ � ¾ ½ � � � «Á � À � � � Â ± ² ³ ¬Ã ¶ © ¬ ® Ä Å Æ Ç ª ´ È É ©

Figure 4.4. BER performance for different concatenated schemes. All the schemes
have a code-length about 215 and a code-rate of 0.93, as indicated by the standard.
The polar-LDPC code has an edge over other schemes while showing no sign of error
floor.

encounter 100 erroneous blocks. For example, for polar-LDPC curve at 6.4 dB (the

lowest BER), we ended up simulating over 300 million blocks. This particular point

took us the longest amongst all the simulated points. The lowest point in the cap-app

LDPC curve was obtained by simulating about 30 million blocks.

In order to see the significant potential of polar codes for concatenated schemes, we

compared the BER performance of the polar-LDPC approach against some of the ex-

isting coding techniques for OTNs, including the G.709 standard explained earlier in

the section. We also included two “super FECs” proposed in ITU-T standard G.975.1

for high bit-rate DWDM (Dense Wavelength Division Multiplexing) submarine sys-

tems [76]. These schemes share some features, specifically the rate, blocklength, and

64

low decoding latency, with G.709, while achieving a much better performance. All

the schemes use a code rate of 0.93. Furthermore, all of them are using codes of

length around 215. We borrowed the BER curves of these schemes from [76].

As it is shown, an improvement of 1.3 dB at BER of 10−8 is achieved by polar-

LDPC over the RS(255,239) of G.709 standard. Another scheme is an RS(2720,2550)

with 12-bit symbols that has a blocklength of 32640 bits. It has been shown to achieve

a significant coding gain and to have superior burst correction capabilities [76]. As

it is shown, polar-LDPC concatenation achieves an improvement of 0.25 dB over this

scheme. Presented in the figure is also the performance of a systematic binary LDPC

code of length 32640, with 30592 information-carrying bits [76]. This LDPC code

is suitable for implementation in current chip technologies for 10G and 40G optical

systems offering low latency and feasibility of low power consumption in case of 40G

implementation showing a significantly higher coding gain than the standardized RS

code in G.709. As it can be seen, polar-LDPC shows an edge of 0.15 dB over this

LDPC scheme. The decoding complexity for LDPC and RS codes is O(N) and O(N2),

respectively, while the polar-LDPC scheme has a complexity of O(N logN) which is

closer to the LDPC code.

4.3 Rate-Compatible Polar Codes

An important practical issue is rate-compatibility over time-varying channels where

error-correction codes are required to be flexible with respect to their code rates de-

pending on the current channel state. In this section, we study polar codes for rate-

compatible applications. We will show that polar codes are inherently well-suited

for rate-compatible applications. We present a simple rate-compatible scheme that

can universally achieve the channel capacity for a set of channels, using the same

encoder and decoder. We will then study puncturing to design rate-compatible po-

lar codes. Puncturing is widely used in the literature to generate rate-compatible

65

codes [59, 77, 78]. We will investigate the performance of random puncturing and

stopping-tree puncturing (explained later) as used for polar codes and compare them

to the universally capacity-achieving scheme. As it will be seen, the universally ca-

pacity achieving approach results in significantly better performance while having the

same complexity as of puncturing.

Our goal is to provide reliable transmission over a set of channels with parameters

θj, j = 1, ..., J , using the same encoder and decoder in a rate-compatible fashion.

Let Wj and C(θj) denote a channel with parameter θj and its capacity, respectively.

Assume that θi < θj and C(θi) > C(θj) for i > j. We call a rate-compatible scheme

universally capacity achieving (UCA), if the sequences of codes generated according

to that scheme achieve the channel capacity C(θj) for j = 1, .., J . Assume that if

θi < θj then Wj is a degraded version of Wi, which we denote by Wj � Wi. We

may assume that the channel state information is available at both the transmitter

and receiver. That is the transmitter at each time is aware of the exact value of

the channel parameter and hence the channel capacity. Therefore, it can choose

the appropriate code rate for communication. On the other hand, by knowing the

channel capacity, receiver finds the set of frozen bits. Also, for a polar code of length

N used over a B-DMC, W , we denote the N polarized channels by W (i), i = 1, ..., N .

Recall from Chapter 3 that the index set of information bits is denoted by A where

A ⊆ {1, 2, ..., N}.

4.3.1 Universally Capacity Achieving Rate-Compatible Polar Codes

In this section, we present universally capacity achieving rate-compatible (UCARC)

polar codes that can achieve the channel capacity for a set of channels, using a low

complexity encoder. We first repeat Lemma 4.7 from [79].

Lemma 6. Let W and W̃ be two symmetric BDMCs such that W̃ is a degraded

version of W . Then, W̃ (i) is degraded with respect to W (i) for i = 1, ..., N .

66

This lemma implies that in a physically degraded setting, an order of polarization

is maintained in the sense that “good” bits for the degraded channel, must also

be “good” for the better channel. As a result, the set of information bits for the

degraded channel is a subset of the set of information bits for the better channel, i.e.

AN(W̃) ⊆ AN(W).

Corollary 2. Let Wj, j = 1, ..., J be a set of symmetric BDMC channels such that

W1 � W2 � ... � WJ . Suppose that A(Wj) is known for j = 1, ..., J . Then, for any

i and j such that Wj � Wi, the capacity achieving polar code for Wj can be obtained

from the polar code designed for Wi, by setting the input bits in AN(Wi) \AN(Wj) to

zero in the encoder.

This means that to implement different rates, the encoder only needs to shorten

its set of information bits by switching a few of them to zero. This leads to a simple

and practical structure for the UCARC polar codes. This can be considered as an

important advantage of polar codes over other coding schemes such as LDPC and

turbo codes for which finding a UCARC scheme can be very complicated if even

possible. Fig. 4.5(a) shows the structure of encoder for a UCARC polar code of

length N=8. As it is shown, the input bits can be switched by the encoder to operate

either as an information bit or a frozen bit.

4.3.2 Puncturing for Rate-Compatible Polar Codes

In this section, we consider puncturing for rate-compatible polar codes. Figure

4.5(b) shows the encoder structure for the punctured rate-compatible polar codes. In

this scheme, a parent code is designed for the worst channel (with largest channel

parameter). In order to generate codes with higher rates for better channels, the en-

coder punctures some of the output bits. For every channel parameter θj, j = 1, ..., J ,

a puncturing pattern is determined off-line and loaded into the encoder. The punc-

tured bits will not be sent over the channel. In the decoder side, the log-likelihood

67

0

0

0

0

Info

Info

Info

Info

0

0

0

0

Info

Info

Info

Info

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

1
u

4
u

3
u

2
u

P

P

4
x

6
x

1
x

2
x

Puncturing Pattern

5
x

3
x

(a) (b)

N
G N

G

Figure 4.5. Different realizations for rate-compatible polar codes. (a)In a UCARC
polar code, we can simply switch the input bits from information to frozen in order to
change the code rate. (b) In punctured rate-compatible polar codes, we puncture the
code-bits by not sending them over the channel, and hence changing the code rate.

ratios for these bits will be set to zero before running belief propagation. The optimal

puncturing pattern for each rate and a specific tanner graph can be found using opti-

mization techniques [77,78]; however, it turns out it is difficult to use such techniques

for polar codes.

4.3.2.1 Random Puncturing

A simple way of puncturing, which is studied in many papers, is to have the

encoder choose the punctured bits for each rate randomly. Random puncturing is

actually proved to be a UCARC scheme for LDPC codes over the BEC [59]. Fig. 4.6

shows the rate-to-capacity ratio (for the binary erasure channel) and gap-to-capacity

(for the gaussian channel) for randomly punctured polar codes compared against the

UCARC polar codes described in section 4.3.1. The rate-to-capacity ratio is constant

for random puncturing over the BEC as it is expected based on the results in [59]. It

is also interesting that the ratio for polar codes increases when the rate grows. As it

can be seen in the figure, there is a substantial distance between the two curves.

68

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.7

0.75

0.8

0.85

0.9

0.95

1

R

R
/C

Random Puncturing

UCARC Polar Codes

Stopping-Tree Puncturing

(a) Rate-to-capacity ratio for different rate-compatible schemes over the BEC as rate
increases. The UCARC scheme has the best performance.

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.5

1

1.5

2

2.5

3

R

G
a

p
 t
o

 C
a

p
a

c
it
y

UCARC Polar Codes

Random Puncturing

Stopping -Tree Puncturing

(b) Gap-to-capacity for different rate-compatible schemes over the Gaussian channel.
The UCARC scheme has the smallest gap-to-cap ratio as it follows the capacity.

Figure 4.6. Performance of different schemes when used over the BEC and the
gaussian channel. Parent-code rate for punctured codes is 1/2, parent code-length is
213, and BER is fixed to 10−4.

69

4.3.2.2 Stopping-Tree Puncturing for Polar Codes

Here, we propose an algorithm involving the stopping sets in the tanner graph

to improve the performance of puncturing. Recall that a stopping set in the tanner

graph was defined as a set of variable nodes such that every neighboring check node

of the set is connected to at least two variable nodes in the set. Fig. 3.2 shows an

example of the stopping set in the polar codes’ graph. Also recall that a stopping

tree in the polar codes’ tanner graph is a stopping set shaped as a tree rooted at an

information bit (on the left side of graph) and with leaves at the code-bits (on the

right side of graph), such as the one shown in Fig. 3.2 with black variable and check

nodes. We refer to such a tree as the stopping tree of an information bit.

For any code-bit in the tanner graph, we can find the number of stopping trees

having that specific code-bit as a leaf node. Then, we pick the punctured code-

bits from the ones which are present in the fewest number of stopping trees. This

algorithm is based on the empirical results which show that the chance of recovery for

these code-bits is higher than others in case that they are erased. In other words, these

code-bits are better protected than others in the tanner graph. Since the information

bits are known and the graph has a simple structure, we can easily find these bits.

We call this algorithm Stopping-Tree Puncturing. As an example of this algorithm,

suppose that we want to puncture the parent code of rate 1/2 in Fig. 4.5(b) to a code

of rate 3/4. Then we need to pick 2 code-bits to puncture. Fig. 4.7 shows the factor

graph representation of a polar code of length 8. It is easy to see that x8 is the only

bit that is present in only one stopping tree. Among the code-bits which are present

in two stopping trees we can choose x7.

Fig. 4.6 shows the simulation results for stopping-tree puncturing compared to

other techniques. As it can be seen, the rate-to-capacity ratio has improved over the

random puncturing though the distance to the UCARC scheme is still noticeable.

70

1
u

5
u

3
u

7
u

2
u

6
u

4
u

8
u

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

Figure 4.7. Factor graph representation of a polar code of length 8. x8 is the only
bit that is present in only one stopping tree. Among the code-bits which are present
in two stopping trees we can choose x7.

4.4 Polar Codes for Non-Uniform Channels

The puncturing problem can be thought of as coding over a set of parallel sub-

channels. In puncturing, some of the code-bits are not sent over the channel. This can

be modeled by two sub-channels, one is the same as the original channel and the other

is a channel with capacity zero. Then, punctured bits will be assumed to be sent over

the zero-capacity channel while other cod-bits are sent over the original channel. As

discussed previously, coding over parallel channels (here referred to as non-uniform

error correction) as well as the closely related problem of coding for unequal error

protection are of practical importance.

One trivial approach to the problem of non-uniform error correction is to design a

separate code for each of the channels. However, we are interested in designing only

one polar code similar to the one presented in Fig. 4.8. As it is discussed in [80], this

setting has several advantages over the trivial approach. It is important to note that

71

Encoder Decoder

C1

C2

Cn

Figure 4.8. Non-uniform coding scheme for parallel sub-channels. The goal is to
use only one pair of encoder-decoder for the system.

in this setting, the encoder knows that what set of code-bits are being sent over each

sub-channel. This extra information in fact can be exploited to design practical polar

codes for such non-uniform channels with an improved performance. Note that polar

coding for permuted parallel channels is considered in [81] where different codewords

are being sent over different channels. However, this is completely different from the

problem of coding for non-uniform channels that we study here.

Here, we consider an approach based on the same idea used in Section 4.3.2 for

stopping-tree puncturing. In other words, assuming only two sub-channels, we send

more protected code-bits (code-bits that are present in more stopping trees) over the

better sub-channel, while less protected bits will be sent over the worse channel. Fig.

4.9 compares the performance of this approach against using two separate decoders

for the two channels. As it can be seen, despite its simplicity, this scheme achieves

more than one order of magnitude improvement in BER. This idea can be considerably

improved if we obtain better knowledge of how (to what degree) different code-bits are

protected. Such an understanding can be achieved by analyzing the factor graph of

the code. Therefore, an interesting future work is to use the results of finite analysis,

discussed in Chapter 3, in finding better non-uniform schemes based on polar codes.

72

0.32 0.34 0.36 0.38 0.4 0.42
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ave

B
E

R

Code-Length=2
13

, R=0.5

Polar Code

Non-Uniform Polar Code

Figure 4.9. BER performance for non-uniform polar codes over two parallel chan-
nels. Non-uniform polar code performs better than the system with two separate
encoder-decoders by an order of magnitude. The reason is mainly the extra informa-
tion in the code design as well as the larger code-length in the non-uniform scheme.

Furthermore, because of the close connections to the puncturing problem, any scheme

that can improve the performance of puncturing is expected to be used to design a

non-uniform scheme. However, the proposed puncturing schemes need to be modified

here since the setting is slightly different.

4.5 Unequal Error Protection Using Polar Codes

Along the same line lays the application of polar codes for unequal error protection.

This problem is interesting because of the inherent characteristics of polar codes.

Assume we design a polar code of length N and rate R for a given channel with

capacity C > R. Also assume a SC decoder. In the process of design, we use

bit-channels with smaller Bhattachrya parameters to send information [1]. While

73

[10^-8 10^-7] [10^-7 10^-6] [10^-6 10^-5]
0

10

20

30

40

50

60

70

80

Bit Error Probability

P
e

rc
e

n
ta

g
e

 o
f

B
it
s

Figure 4.10. Distribution of bit error probability for the set of information bits.
There is a difference of more than two orders of magnitude in the error rate for
different information bits that can be used for UEP designs.

the value of Bhattachrya parameter becomes polarized when N → ∞, the fact is

that for finite lengths we will have a range of values spread all over the interval

[0, 1]. Therefore, even after picking the good channels as information bits, there may

still exist a considerable difference between these “good” channels. This means that

some of the information bits will have lower error probability than others. In other

words, polar codes inherently provide unequal protection to some degree. Fig. 4.10

shows the bit error probability distribution for the set of information bits in a polar

code of length N = 215 and rate 1/2, when used over a BEC. The figure shows the

percentage of information bits that have a specific error probability. As it can be

seen, there is a difference of more than two orders of magnitude in the error rate for

different information bits. This property can be easily employed to design unequal

error protection codes based on polar codes.

74

4.6 Chapter Summary

Motivated by good error floor performance, we proposed using polar codes in

combination with other coding schemes. We particularly studied the polar-LDPC

concatenation to be used in OTNs as a potential real-world application. Comparing

the performance for our proposed scheme to some of the existing coding schemes for

OTNs, we showed that polar-LDPC concatenation can achieve a significantly better

performance.

We studied different approaches to rate-compatible polar codes. We showed that

UCARC polar codes can be designed with low complexity using the inherent char-

acteristics of polar codes. We also studied the use of puncturing to generate rate-

compatible polar codes. We compared the performance of UCARC scheme against

random and stopping-tree puncturing schemes through simulations. We observed

that the UCARC scheme outperforms the puncturing-based methods while having a

comparable complexity. The problem of non-uniform polar coding was studied in this

dissertation for the first time, where we proposed a simple approach demonstrating

the potentials in poalr codes for this specific application.

75

CHAPTER 5

FINITE WIRELESS NETWORKS

5.1 Introduction

There currently exists a vast amount of literature on the asymptotic analysis of

different properties for large-scale random networks [2, 8, 9, 82–92]. However, in real

world we have to face small or moderate-size networks which consist of a limited

number of nodes. As it has been shown in [93, 94], asymptotic results often cease

to be valid for such networks. In fact, asymptotic analyses make use of methods

and approximations that can considerably simplify the analysis and results in simple

and closed-form formulas for network properties. However, many of these techniques

cannot generally be applied to the small-scale networks. Here, we study a model

which is extensively used in analyzing the random networks: the random geometric

graph. In a random geometric graph, vertices are distributed randomly according to

a specific probability distribution and there exists an edge between any two vertices

not more than a specific distance apart.

We first study the threshold phenomena for monotone properties in finite wireless

networks modeled by random geometric graphs. A monotone graph property is a

graph property such that if a graph H satisfies it, every graph G on the same vertex

set obtained by adding edges to H also satisfies the property. In other words, a graph

property is monotone if it is kept under the addition of edges. Note that many of the

graph properties such as connectivity, bearing a complete subgraph of a specific size,

or having a specific minimum degree are monotone properties. Fig. 5.1 shows how

connectivity is a monotone property as it is preserved under the addition of edges.

76

H G

Figure 5.1. Connectivity is a monotone property. H is a connected graph because
there is a path between any two nodes on the graph. As you can see, a graph obtained
by adding edges to H will be connected as well.

What makes the monotone properties so interesting is that the probability of

having a monotone property in a large random graph jumps from a value near 0 to

a value close to 1 in a relatively short interval of the communication radius. The

length of this interval- known as the threshold width- has been under close scrutiny

in percolation theory, statistical physics, cluster analysis and some related issues in

computer science, economics and political sciences. The asymptotic behavior of the

threshold phenomena for random geometric graphs is well-studied in [2, 82, 85–87]

where some upper bounds have been derived for the threshold width of the monotone

properties. Here, we aim to analyze the threshold phenomena when the graph consists

of a finite number of nodes. In this regard,

• we will find an upper bound for the threshold width of the monotone properties

in finite one-dimensional random geometric graphs. Other models of random

networks such as networks with random Poisson node deployment and unreli-

able sensor grids will also be considered as special cases. While previous studies

on finite networks are limited to specific properties such as coverage and con-

nectivity (see for example [93–98]), our method is a comprehensive one which

leads to a bound, true for all monotone properties.

77

We then move on to study a non-monotone characteristic of finite wireless net-

works which is the MAC-layer capacity. The MAC-layer capacity is defined in [6]

as the maximum possible number of concurrent transmissions at the medium access

layer. Given a graph G(V,E), the goal is to choose a subset of the edges on which

transmissions can occur without conflicting with one another. As a MAC proto-

col, we adopt the simple model stated in [6] which also accounts for virtual carrier

sensing (RTS/CTS signalling) used to resolve channel contention. In this model, if

transmissions along (s, t) and (s′, t′) are occurring simultaneously, then none of the

edges (s, s′), (s, t′), (s′, t), (t, t′) should be present in the graph. The set of edges that

can be so chosen is called a D2-Matching (Distance-2 Matching). Here, we consider

the problem of finding a D2-matching of maximum cardinality called D2EMIS [6].

MAC-layer capacity is zero when the communication radius, r, is zero and increases

with r to some point after which increasing the radius leads to more interference and

hence, a decline in the capacity. Therefore, MAC-layer capacity cannot be a mono-

tone property. The problem of capacity has been investigated extensively for different

models of wireless networks (see for example [8,9]). However, almost all previous an-

alytic results are asymptotic since they consider large-scale networks. In the second

part of this chapter, we study the MAC-layer capacity in random line networks. The

asymptotic MAC-layer capacity of ad hoc wireless networks is studied in [6]. How-

ever, the asymptotic result obtained there is not as precise when we consider finite

networks [93]. In this chapter, we analyze the average MAC-layer capacity for finite

line networks. Here,

• We obtain closed form expressions as lower and upper bounds for the MAC-layer

capacity.

• We also provide an algorithm which finds the exact value for the MAC-layer

capacity along with a set of active links which achieves it. This algorithm

runs in linear time whereas the problem of finding the MAC-layer capacity for

78

the general two-dimensional case is proved to be NP-complete for the model

considered in this chapter [99].

• We provide simulations showing that our bounds are good estimates for the

exact values.

The rest of this chapter is organized as follows. In section 5.2, we derive upper

bounds for the threshold width of one-dimensional finite networks. We follow on by

analyzing the MAC-layer capacity of random line networks in section 5.3. The results

of this chapter have been published in [100] and [101].

5.2 Threshold Phenomena in Finite Line Networks

In this section we provide an upper bound on the threshold width of finite wireless

networks on a line. Consider n points distributed uniformly and independently in the

d-dimensional unit cube [0, 1]d. Given a fixed distance r > 0, connect two points

if their Euclidean distance is at most r. Such graphs are called random geometric

graphs, and are denoted by G(n, r), as in [102]. Fig. 5.2 shows a random geometric

graph G(n = 200, r = 0.125) on [0, 1]2.

In this section, we adopt a more general definition of random geometric graphs

which allows for an arbitrary distribution of nodes. These graphs are denoted by

G(n, r, f(u)) where f(u) is the corresponding probability distribution function (PDF)

of nodes’ placement. Random geometric graphs are better suited than more combi-

natorial classes (such as Bernoulli random graphs) to model problems where the

existence of an edge between two different nodes depends on their spatial distance.

As a result, random geometric graphs have received increased attention in recent

years in the context of distributed wireless networks such as sensor networks (see for

example, [8, 82, 88, 103]). In these graphs, the probability of a monotone property is

an increasing function of r. This is because by increasing r, new edges will be formed

79

Figure 5.2. A random geometric graph G(n = 200, r = 0.125) with 200 nodes
distributed randomly on the 2-dimensional unit square. The nodes are colored based
on their path length from the node near center.

in the graph, and this only increases the chance of having a monotone property. Fur-

ther, when r =
√
d, the graph is a complete graph which satisfies every monotone

property. A complete graph is a graph in which there is an edge between every pair

of vertices. If A is a monotone property, then for 0 < ε < 1, let

r(n, ε) = inf{r > 0 : Pr{G(n, r, f(u)) has property A} ≥ ε}. (5.1)

We define the threshold width of A as

80

τ(A, ε) = r(n, 1− ε)− r(n, ε), (5.2)

when 0 < ε < 1/2. In [2], the authors show that all monotone graph properties have

a sharp threshold for large random geometric graphs. In fact, the threshold width for

random geometric graphs is much sharper than the one for Bernoulli random graphs.

The threshold of property A is considered sharp if for every ε > 0, we have

τ(A, ε) = o(min{rc, 1− rc}), (5.3)

where rc is the value of r such that

Pr{G(n, rc, f(u)) has property A} = 1/2. (5.4)

However, the goal of most of the previous studies is to address the asymptotic

behavior of the threshold phenomena. In this section, we only consider finite (one-

dimensional) random geometric graphs. In fact, random geometric graphs of higher

dimensions are usually much more difficult to analyze. We believe that studying the

threshold phenomena for finite one-dimensional networks could serve as a possible

means of analyzing higher dimensions. While deriving similar results in a higher

dimensional set-up might be difficult, the techniques used here may prove helpful in

extending our results to higher dimensions.

In this section, we first state our result for the general case of G(n, r, f(u)) on

a line. We will then conclude the special cases of random graphs with uniform and

Poisson node distributions as well as the case of unreliable sensor grids. We now

explain some notations and some definitions we need to state our results. The key

idea in our analysis is to relate the behavior of monotone properties to the weight of

the ”bottleneck” matching (to be defined later) of the bipartite graph whose vertex

sets are obtained by distributing n points independently on the line and according

81

to a distribution f(u). Such a relation has been exploited in [2] to find an upper

bound on the threshold width for random geometric graphs in the asymptotic case.

Here, we describe the concept of bottleneck matching and its relation with monotone

properties.

Recall that a bipartite graph is a graph whose vertices can be divided into two

disjoint sets V1 and V2 such that every edge connects a vertex in V1 to a vertex in

V2. In a bipartite graph with vertex sets V1 and V2, a perfect matching is a bijection

(a one-to-one and onto mapping) φ : V1 → V2, such that each v ∈ V1 is adjacent

to φ(v) ∈ V2. Thus, a perfect matching is a disjoint collection of edges that covers

every vertex. If the graph is weighted, then we define the weight of the matching

as the maximum weight of any edge in the matching. Fig. 5.3(a) shows a possible

realization of perfect matching and its corresponding weight in a bipartite graph. A

bottleneck matching is a perfect matching with the minimum weight. Fig. 5.3(b)

shows the bottleneck matching and its corresponding weight.

Let S1 and S2 denote two sets of n points each, where the points are i.i.d., chosen at

random on the line according to f(u). Form the complete bipartite graph on (S1, S2)

and let the weight of an edge be the Euclidean distance between its endpoints. Let

Mn denote the bottleneck matching weight of this graph. In [2], the authors linked

the weight of the bottleneck matching with the threshold width of the monotone

properties in a theorem which we repeat here.

Theorem 6. If Pr{Mn > γ(n)} ≤ p for some function γ(n) and some constant p,

then τ(A,
√
p) of any monotone property A is at most 2γ(n).

According to this theorem, if we can find an upper bound on the probability

Pr{Mn > γ(n)}, then we can use it to find an upper bound on the threshold width.

We first find the weight of the bottleneck matching for two sets of points on a line.

Lemma 7. Let S1 and S2 be two sets of points each, where the points are cho-

sen randomly and independently according to some arbitrary distribution. Let Ŝ1 =

82

1

2

2 4

2

2

2

3

2

(a) Matching Weight =4

1

2

2 4

2

2

2

3

2

(b) Matching Weight =2

Figure 5.3. A weighted bipartite graph and realizations of (a) Perfect Matching, and
(b) Bottleneck Matching. The matchings are shown by thick edges. The correspond-
ing matching weights are also shown. Bottleneck matching is a perfect matching with
the minimum weight.

X1, X2, ..., Xn and Ŝ2 = Y1, Y2, ..., Yn be the points ordered according to their positions

on the line, i.e. X1 < X2 < ... < Xn and Y1 < Y2 < ... < Yn. Then the bottleneck

matching is the perfect matching φ : S1 → S2 such that φ(Xi) = Yi for i = 1, 2, ..., n.

Accordingly, the weight of the bottleneck matching is

Mn = max
i=1,...,n

|Yi −Xi|. (5.5)

Proof. We first show that in bottleneck matching X1 is mapped to Y1. So for now,

assume that this is not the case and that X1 and Y1 have been mapped to Yi and

Xj, respectively, where i, j 6= 1. Without loss of generality, we assume that X1 < Y1.

Then we will have 3 cases: 1. X1 < Xj < Y1, 2. Y1 < Xj < Yi, and 3. Yi < Xj.

83

�
�

�
�

�
�

�
�

���

�
�

�
�

�
�

�
�

���

�
�

�
�

�
�

�
�

���

Figure 5.4. Different configurations of the two sets of random points considered to
prove Lemma 7. Using dashed lines (i.e. mapping X1 to Y1) instead of solid lines can
only lead to a perfect matching with lower weight. Hence, by mapping Xi to Yi we
will obtain the bottleneck matching.

These 3 cases are shown in Figure 5.4 where mappings between two points are shown

by solid or dashed lines. It is easy to see in the figure that, in all the cases, if we map

X1 to Y1 and Xj to Yi (using dashed lines instead of solid lines) while not changing

other mappings, we can only decrease the weight of matching. On the other hand,

Yi and Xj could be any two nodes in the graph. Therefore, by mapping X1 to Y1 we

can get the bottleneck matching. Now, if we remove X1 and Y1 from our graph, we

can use the same argument as above to prove that in the bottleneck matching, X2 is

mapped to Y2, X3 is mapped to Y3 and so on.

Now we need to find an upper bound for Pr{maxi=1,...n |Yi −Xi| > γ} for every γ.

Theorem 7. For the two sets of random points defined in Lemma 7 and for every

γ > 0, we have

84

Pr{Mn > γ} ≤
n

∑

i=1

2

∫ ∞

0

fi(u+ γ)Fi(u)du, (5.6)

where fi(u) and Fi(u) are, respectively, the PDF and CDF of the ith order statistics

of the underlying distribution f(u).

Proof. Using Union bound, we have

Pr{Mn > γ} = Pr{ max
i=1,...,n

|Yi −Xi| > γ}

≤
n

∑

i=1

Pr{|Yi −Xi| > γ}. (5.7)

Note that Xi and Yi are the ith order statistics of the underlying distribution. On

the other hand, since Xi and Yi are independent random variables, we know that

Pr{|Yi −Xi| > γ} = 2

∫ ∞

0

fi(u+ γ)Fi(u)du,

which along with (5.7) gives (5.6).

Note that Theorem 7 provides an upper bound for every monotone graph property

and it is not limited to a specific property. An interesting point about the upper

bound of Theorem 7 is that it holds for any two independent sets of random points

that have the same size and the same distribution. Therefore, given the PDF and

CDF of the order statistics of an arbitrary random variable, we can evaluate (5.6) for

different values of γ and n, and hence, find the upper bound on the threshold width.

In the case of G(n, r) on the interval [0, 1], the ith order statistics of the uniform

distribution has a beta distribution with parameters i and n− i+1 (see [104] chapter

7). Therefore, we have

fi(u) = i

(

n

i

)

ui−1(1− u)n−i,

Fi(u) = Iu(i, n+ 1− i) =
n

∑

j=i

(

n

j

)

uj(1− u)n−j, (5.8)

85

� ��� ��� ��� ��� ��� ���
����

���

����

���

����

���

����

���

����

��	

�

�
�
�
�
�
��
��
��
��

Figure 5.5. Upper bound of Theorem 7 on the threshold width of the monotone
properties for G(50, r) where 50 nodes are distributed uniformly at random on the
unit line.

where Iu(i, n + 1 − i) is the regularized incomplete beta function with parameters

i and n + 1 − i. Substituting (5.8) in (5.6), we evaluated (5.6) to find the upper

bound shown in Figure 5.5 for G(50, r). Our bound is the first directly applicable

to finite networks. However, comparing this bound against the actual value of the

threshold width for some famous graph properties, we observed that the bound does

not provide a tight approximation for them. In fact, it remains as an open problem

to see whether there is any monotone property for which our bound is tight.

In [2], the authors show that for random geometric graphs with a uniform distri-

bution of nodes we have

τ(A, ε) = Θ

(

√

log ε−1

n

)

, (5.9)

86

which is asymptotically tight. However, this is an asymptotic result and without con-

stant factors cannot be evaluated for specific values of n. In order to compare asymp-

totic results against the results from small-scale analysis, one needs to go through the

underlying asymptotic analysis and extract the missing constant factors. However,

due to the methods used in the asymptotic analysis, this is often hard if not impos-

sible. We tried to minimize the upper bound obtained in [2], Lemma 5.1. While it

seems impossible to find the exact value of the best constants, we derived them with

a slight approximation. The bound obtained using these values is sketched in Figure

5.6 for a network with 50 nodes, along with the bound suggested by Theorem 7. As

it can be seen, the asymptotic bound of [2] shows a poor performance in this case.

This is mainly due to the algorithm whereby the bound is derived. We also observed

that our bound outperforms the asymptotic bound even for large number of nodes

such as n = 2000.

An asymptotic analysis of our bound is provided in Section 5.2.1, where it is shown

that the bound can at least achieve

τ(A, ε) = O

(

√

lnn+ ln ε−1

n

)

. (5.10)

This is asymptotically close to the result of [2] saying that

τ(A, ε) = O

(

√

log ε−1

n

)

. (5.11)

In fact, when ε = O(1
nk) for any positive k, the two bounds will asymptotically be the

same. For other values of ε, our bound is slightly worse due to the term lnn in the

numerator. It seems that, the fact that our bound is slightly worse in the asymptotic

regime is the price we pay to get a much better performance in the finite case.

87

Ê Ê Ë Ê Ì Ê Ë Í Ê Ë Í Ì Ê Ë Î Ê Ë Î Ì Ê Ë Ï Ê Ë Ï Ì Ê Ë Ð Ê Ë Ð Ì Ê Ë ÌÊÊ Ë Ì ÍÍ Ë ÌÎ
Î Ë ÌÏ
Ï Ë Ì

ε

ÑÒ ÓÔÕÒ Ö×Ø ÙÚØÛÒ
Ü Ý Ý Þ ß à á â ã ä à å æ ç Þ á ß Þ è éÜ Ý Ý Þ ß à á â ã ä à å ê ë å è Ý ì á ì í î ß Þ ë â ï ì ð Î ñ

Figure 5.6. Comparing the upper bound on the threshold width implied by the
asymptotic result of [2] against the upper bound obtained in this section for G(50, r).

Now, suppose that the nodes in our line network are placed according to a Poisson

point process with parameter λ. Then, for i = 1, ..., n we can derive (see [104] chapter

7)

fi(u) =
λiui−1e−λu

(i− 1)!
,

and

Fi(u) = 1−
i−1
∑

m=0

(λu)me−λu

(m− 1)!
.

Using fi(u) and Fi(u) as above, we can find the upper bound of the threshold width

for the random geometric graphs generated by a Poisson point process.

88

Now, we consider an unreliable sensor grid on the unit interval which consists of

n equidistant sensor nodes such that m of them are active. Note that all subsets

of size m of the n nodes are equally probable to be active. For a given r, if the

distance between two active nodes is less than r, there is a link between them. We

can study the threshold phenomena for this unreliable grid when r ranges between

0 and 1. Note that as in [94], the probability curve would be piecewise constant

for every graph property. Assuming that the grid nodes are located at the points

k
n
, k = 1, ..., n, fi(u) can be derived as

fi(u) =

n−(m−i)
∑

k=i

(

k−1
i−1

)(

n−k
m−i

)

(

n
m

) δ(u− k

n
). (5.12)

Substituting (5.12) in (5.6), we have found the upper bound shown in Figure 5.7 on

τ(A, ε) for n = 100 and m = 35.

5.2.1 A Note on the Asymptotic Case

Here, we perform an approximate asymptotic analysis of the bound in (5.6) when

the nodes are uniformly distributed. We first find an upper bound for each term

of the summation in (5.6). To find the integrals in each term, note that the beta

distribution is known to be approximated by the normal distribution [105]. In fact,

a beta distribution with parameters α1 and α2, B(α1,α2), when α1 and α2 are both

large enough (e.g. larger than 20), can be well approximated by

N (µ =
α1

α1 + α2

, σ =

√

α1α2

(α1 + α2)2(α1 + α2 + 1)
),

where µ and σ are the mean and the standard deviation of normal distribution,

respectively. Thus, we consider two cases: first when either i or n−i is small compared

to n, e.g. less than 20, and second, when they both are large enough. In the first

89

� ���� ��� ���� ��� ����
�

���

���

���

���

���

���

��	

�

�
�
�
�
�
��
��
��
��

Figure 5.7. Upper bound on the threshold width of the monotone properties for a
one-dimensional unreliable sensor grid with parameters n = 100, m = 35. A random
subset of 35 nodes out of 100 equidistant sensor nodes are active.

case, note that in (5.8) we have fi(u) ≤ c1n(1 − u)n−1 for some constant c1 and

Fi(u) ≤ 1− (1− u)n ≤ 1. Hence,

fi(u+ γ)Fi(u) < c2 n(1− u− γ)n−1

for some constant c2 > 0. As a result, we have

∫ 1−γ

0

fi(u+ γ)Fi(u)du <

∫ 1−γ

0

c2n(1− u− γ)n−1 = c2(1− γ)n < c2 e−γn.

In the second case, using the approximation mentioned above, we will have

fi(u) ≈ N (µi =
i

n
, σi =

√

i(n− i)

n3
).

90

Note that σi varies between 1
n
for small i’s, and 1

2
√
n
when i = n

2
. Therefore fi(u)

is a narrow normal distribution whose standard deviation is much smaller than the

mean. Now assume that γ > 1√
n
. Then we have γ > 2σ for all i’s. Since the normal

distribution takes on 95% of its probability within two standard deviations from the

mean, we have

∫ 1−γ

0

fi(u+ γ)Fi(u)du < c3 Fi(µi − γ)

for some constant c3. Using bounds on the normal CDF as in [104], we get

Fi(µi − γ) <
σi

γ

1√
2π

e
− γ2

2σ2

i .

However, we have σ2
i ≤ 1

4n
which leads to

Fi(µi − γ) < c4 e−2γ2n

when c4 is some positive constant. Finally we will have

Pr{Mn > γ} ≤ c n e−2γ2n

for some constant c. This results in a bound on the threshold width as

τ(A, ε) = O(

√

lnn+ ln ε−1

n
).

5.3 MAC-Layer Capacity

In this section we study the MAC-layer capacity of finite networks in line deploy-

ments. As a model of the network, we consider the case of G(n, r) on the interval

[0, 1], often called a random interval graph [102]. In our model of the MAC layer, if

91

transmissions along (s, t) and (s′, t′) are occurring simultaneously, then none of the

edges (s, s′), (s, t′), (s′, t), (t, t′) should be present in the graph. The set of edges

that can be so chosen is called a D2-Matching (Distance-2 Matching). The problem

of finding a D2-matching of maximum cardinality is called D2EMIS [6]. In [6], it is

shown that for a wide class of MAC protocols including IEEE 802.11, the MAC-layer

capacity can be modeled as a maximum D2-matching (D2EMIS) problem in the un-

derlying wireless network. The main result of [6] is that for a network with n nodes

and communication radius r, the MAC-layer capacity is optimized at r = Θ(1√
n
) and

is given by Θ(n). Although this is an important and valuable result, it is not as

precise when we consider finite networks. For example, suppose we have a network

consisting of 100 sensors and we want to choose the communication radius such that

the MAC-layer capacity is optimized. The asymptotic result does not tell us what

the optimum MAC-layer capacity and its corresponding communication radius are.

In this section, we analyze the average MAC-layer capacity for finite line networks.

Here, we define MAC(n, r) as the average, over all configurations of nodes, of the

cardinality of the D2EMIS for a random interval graph G(n, r). Note that MAC(n, r)

is the average value of the maximum size of the D2-matching on G(n, r). We first

provide analytical lower and upper bounds on MAC(n, r). Then, we propose an

algorithm to find the exact value of the size of the D2EMIS for any arbitrary node

configuration. Using this algorithm, we compare our bounds to the actual value of

the capacity. At the end, we will consider a slightly different model of the MAC,

called the ”Directed Model”, and extend our results to this model.

5.3.1 Lower Bound on the MAC-Layer Capacity

In this section we introduce a lower bound on the MAC-layer capacity which is a

combination of two different bounds. First, recall that a connected component of size

k of a graph G is a maximal connected subgraph of G with k vertices. For a random

92

interval graph G(n, r), let us denote the number of connected components of size k

by Ck
n and the total number of the connected components by Cn.

Theorem 8. For a line network modeled by a random interval graph G(n, r) we have

MAC(n, r) ≥ 1 + (n− 3)(1− r)n − (n− 2)(1− 2r)n. (5.13)

Proof. The proof is based on the number of connected components in the network’s

graph. Since transmissions in different components do not conflict, every connected

component of size greater than one can contribute at least one transmission to

MAC(n, r). Therefore, the average number of the concurrent transmissions is al-

ways larger than the average number of the connected components of size greater

than one. The average number of the total connected components and the average

number of the isolated vertices (connected components of size one) for a random

interval graph are calculated in [106], Theorems 1 and 4. Using this, we have

MAC(n, r) ≥ E[Cn]− E[C1
n] = 1 + (n− 1)(1− r)n

− (n− 2)(1− 2r)n − 2(1− r)n

= 1 + (n− 3)(1− r)n − (n− 2)(1− 2r)n.

Note that it is easy to check that the bound in (5.13) is asymptotically maximized

at r = Θ(1
n
) resulting in a maximum value of Θ(n) for the lower bound on the MAC-

layer capacity. Regarding [6], this asserts that our bound is asymptotically tight. It

is important to note that r = Θ(1√
n
) in [6] is replaced by r = Θ(1

n
) here due to the

one-dimensional nature of our problem. Now, we prove the following lemma which

leads us to a different lower bound on MAC(n, r).

93

Lemma 8. Given a line network modeled by G(n, r) and an interval I of length l on

the line, let P (l) be the probability of having at least one link in I. Then

P (l)=

1− (1− l)n − nl(1− l)n−1 if l ≤ r,

1−∑min(d l
r
e,n)

k=0

(

n
k

)

[l − (k − 1)r]k(1− l)n−k if l > r.

(5.14)

Proof. If l ≤ r then P (l) is equal to the probability of having at least 2 nodes in I,

which is 1−(1−l)n−nl(1−l)n−1 for n nodes distributed uniformly and independently

on [0, 1]. In the case of l > r, we find the probability of having no link in an interval

of length l which we denote by Pnl(l). Then we will have P (l) = 1−Pnl(l). For Pnl(l),

we have

Pnl(l) =

min(d l
r
e,n)

∑

k=0

Pr{no link in I| k nodes in I} × Pr{k nodes in I}

=

min(d l
r
e,n)

∑

k=0

Pr{no link in I| k nodes in I} ×
(

n

k

)

lk (1− l)n−k. (5.15)

Therefore, it suffices to find the probability of having no link in I given that there

are k nodes in it. For k = 0 and 1, this probability is trivially 1. It is easy to verify

that given that k ≥ 2 nodes are in the arbitrary interval I = [xi, xi + l], they are

distributed independently and uniformly on I. We need to find the probability of

the event that these k nodes have spacings larger than r. To achieve this, we define

two sets whose ratio of their volumes is the sought probability. The first set is the

set of all configurations of k points in I whose volume is lk. The other one is the set

of all configurations of the k points in I, k ≤ d l
r
e, for which the spacings between

the points are all larger than r. This is, in fact, equivalent to the set of k points

94

drawn uniformly and independently from a subinterval of length l − (k − 1)r of I.

The volume of this set is (l − (k − 1)r)k. Hence, substituting

(l − (k − 1)r)k

lk

as

Pr{no link in I | k nodes in I}

in (5.15), we will find Pnl(l) which leads us to P (l) in (5.14).

Theorem 9. For a line network modeled by G(n, r), define P (l) as above and m(l) =

b 1
l+r

c for 0 < l < 1. Then

MAC(n, r) ≥ max
l∈[0,1]

{m(l)P (l) + P (1−m(l)(l + r))}. (5.16)

Proof. The proof is based on a constructive algorithm which finds a number of possible

concurrent transmissions on the unit-length line. Consider the intervals of length l in

Figure 5.8 which are a distance r apart. We havem(l) = b 1
l+r

c of these intervals which

are denoted by I1, I2, ..., Im(l). Also, there may be an interval of length 1−m(l)(l+ r)

at the end of the line which we denote by Im(l)+1. Note that all these intervals do

not necessarily contain an edge. However, the edges contained in I1, I2, ..., Im(l)+1 are

at least a distance r apart and can be in the D2-matching. Therefore, the average

number of the concurrent transmissions obtained in this way is equal to the average

number of the intervals containing at least one edge. Let X be the number of such

intervals. To find E[X], we assign an indicator random variable Xi to each interval

95

� �

�����
� � � �� �� � � �� �

� � ��� �� ���� � � �� �
�

�

� � �

Figure 5.8. Intervals corresponding to the constructive lower bound on MAC-layer
capacity. Note that in the figure above we have X1 = 1, X2 = 0, X3 = 1, X4 = 0,
and Xm(l)+1 = 1. Since the intervals are a distance r apart, the average number of
the concurrent transmissions obtained in this setting is equal to the average number
of the intervals containing at least one edge.

Ii which is one if there exists at least one edge in that interval and is zero otherwise.

Then, we have

X =

m(l)+1
∑

i=1

Xi and E[X] =

m(l)+1
∑

i=1

E[Xi].

But according to Lemma 8,

E[Xi] = Pr{Xi = 1} = P (l) for i = 1, 2, ...,m(l),

and

E[Xm+1] = Pr{Xm+1 = 1} = P (1−m(l)(l + r)).

We can maximize E[X] over l which gives us (5.16).

A lower bound on MAC(n, r) can be obtained from maximum of the lower bounds

given by Theorems 8 and 9.

5.3.2 Upper Bound on the MAC-Layer Capacity

In this section the upper bound on the MAC-layer capacity is addressed via a

theorem which results from a combination of two bounds.

96

Theorem 10. For a line network modeled by G(n, r) we have

MAC(n, r) ≤ min(
n

∑

k=1

E[Ck
n]× dk − 1

3
e, d1

r
e),

where

E[Ck
n] =

1
∑

j=0

(

n− k − 1

1− j

)(

2

j

) k−1
∑

i=0

(

k − 1

i

)

(−1)i ×
(

1− (2− j + i)r

)n

+

(5.17)

with a+ = a for positive a and a+ = 0 otherwise.

Proof. Consider a connected component of size 2. This component contributes one

transmission to MAC(n, r). Now consider components of size 3 and 4. According to

the definition of the set of edges in a D2-matching, these components also contribute

at most 1 edge to the D2EMIS. In fact, any edge chosen for D2-matching precludes at

least two other edges from participating in the matching. Therefore, a component of

size k can support at most dk−1
3
e concurrent transmissions. Thus, the average number

of the concurrent transmissions is smaller than the sum of the average number of the

connected components of size k times dk−1
3
e. The average number of the connected

components of size k in a random interval graph is given in [106] as (5.17).

On the other hand, every transmission covers at least an interval r of the line.

That is, if we pick an edge as a member of the D2EMIS, we can not pick any other

edge for D2EMIS in a distance less than r from the first one. Therefore, there can

not be more than d1
r
e concurrent transmissions. This completes the proof.

Again, it can be seen that when r = Θ(1
n
), E[C2

n] and d1
r
e are both Θ(n) asserting

the asymptotic tightness of the bound.

5.3.3 Algorithm for the Exact Value of the MAC-Layer Capacity

As we mentioned earlier, transmissions in different connected components do not

conflict. Therefore, to find the D2EMIS, it suffices to give an algorithm for finding

97

the maximum possible number of concurrent transmissions in every component of

size greater than one. We now propose an algorithm to find the maximum number of

concurrent transmissions in a connected component. Assume that the first vertex of

the component, vi, is at location xi and the second vertex, vi+1, is located at xi+1, as

it is shown in Figure 5.9. We choose the first edge of the component, connecting vi to

vi+1, to participate in D2EMIS. Thus, none of the vertices in the interval (xi+1, xi+1+r]

can participate in the D2EMIS. We call the interval [xi, xi+1 + r] an interference

interval. Then, we consider the first vertex located after xi+1 + r which is vl, and

choose the edge (vl, vl+1) as another member of the D2EMIS. Again, none of the

vertices within range r of vl+1 can participate in D2EMIS. We repeat this until we

reach the end of the component. It is easy to see that this greedy choice is optimal.

Consider an optimal algorithm which does not choose the first edge of the component,

hence leads to an edge in D2EMIS in an interference interval larger than [xi, xi+1+r].

Assume that the last vertex of the component is vp and is located at xp. So, this

algorithm has to choose the second edge of the D2EMIS from an interval shorter

than (xi+1 + r, xp]. Note that our algorithm chooses the first edge in (xi+1 + r, xp] as

the second edge of the D2EMIS. In fact, moving toward the end of the component,

our algorithm always selects its next edge for the D2EMIS from an interval at least as

large as the one for the optimal algorithm. Therefore, the optimal algorithm cannot

find a larger D2-matching than our algorithm.

It can be seen that it takes a linear time, with respect to the number of nodes, to

find the connected components on a line and then the algorithm above takes a linear

time to find the D2EMIS. This result can be interesting since the problem of finding

D2EMIS is NP-complete in the two-dimensional case [99]. Also, note that to find

MAC(n, r), we need to find the average size of the D2-matching obtained by the above

algorithm. However, analyzing this algorithm to find the exact value of MAC(n, r)

might be difficult. Figure 5.10 shows the exact value of MAC(50, r) resulted by

98

�
�

�
� ��� �

�
� ��� �

����� �
�

��
�

������ �����

� �
��� � ��� �

�
� ��� � ��� �

�
�

Figure 5.9. Algorithm to find the exact value of the MAC-layer capacity by finding
the maximum number of concurrent transmissions in a connected component. Dashed
lines are the edges chosen by the algorithm as members of the D2EMIS. We choose the
first edge of the component to participate in D2EMIS. After that, other participating
edges are chosen in a greedy approach.

exhaustive simulations and using the proposed algorithm, compared against the lower

and upper bounds given by Theorems 8, 9 and 10. The ”Directed Model”, sketched

by a dotted line in the figure, will be explained in the next section. Note that as

r increases to 1, the capacity goes to one since the graph will become a complete

graph which can support only one transmission. On the other hand, there will not

be any edges in the graph when r = 0, hence, the capacity will be zero. As you can

see in Figure 5.10, our bounds are able to predict the radius at which the capacity

is maximum with a good precision. Note that this maximum occurs in a range of

communication radii within which the graph is mostly formed by size-2 and size-3

connected components. This is also predicted by Theorems 8, 9 and 10. One can

appropriately use this information to choose an efficient communication radius for

different realizations of line networks.

5.3.4 Directed Model for MAC-Layer

In the previous sections, we studied a model of MAC-layer that can handle the

undirected links in wireless networks. However, one may model the network with a

directed graph in order to consider a specific network property or application. As a

result, if transmissions along (s, t) and (s′, t′) are occurring simultaneously, then either

(s, s′) or (t, t′) can be present in the graph. In fact, the transmitter nodes (or receiver

nodes) can reside in each other’s interference range but not cause destructive conflict

99

� ��� ��� ��� ��� ��� ��� ��	 ��

�

�

�

�

��

��

��

��

�

���������

�
�
�
��
�
��
�

�

�

����������

� �������

!"�#$�%�&����'������� �#�$(

!"�#$������� �#�$(�'���)���#$�����&

Figure 5.10. Actual value of MAC(50, r) along with the lower and upper bounds
of Theorems 8, 9 and 10. The exact MAC-layer capacity for the directed model has
been also shown. Using the two bounds, one can predict, with a good precision, the
radius at which the capacity is maximum.

in each other’s data transmission sessions. We refer to this model as the ”directed

model” as opposed to the model studied earlier in this section which we refer to as the

”undirected model”. In this model, edges (x1, y1) and (x2, y2) can be in the D2EIMS

if x1 and x2, and also y1 and y2 are more than a distance r apart. First, note that

clearly the lower bound derived in Section 5.3.1 holds for this model as well, as the

previous (undirected) model holds more restrictive constraints. Moreover, a similar

upper bound as in Section 5.3.2 can be easily obtained for this model. However, we

observed that this does not yield a really tight bound for the directed case. Similar to

the undirected case, we can derive an algorithm to find the exact MAC-layer capacity

for this relaxed model. Here is the algorithm running over a connected component

(we denote a node and its coordinate by the same symbol):

100

1. Find the first and second nodes (from the left) of a connected component which

are less than r apart, and call them x1 and y1, respectively. Let the edge (x1, y1)

be in the D2EMIS.

2. Take the first node after y1 + r, say y2, and consider the interval I1 = [x1 +

r, y1 + r]:

• If there exists a node in I1 closer than r to y2, choose the first such node

in I1, say x2, and let the edge (x2, y2) be in the D2EMIS. Go to step 2

assuming that x1, y1 are replaced by x2, y2.

• If there does not exist any node in I1 closer than r to y2, go to step 1

assuming that y2 is the first node of the component.

The optimality of this algorithm can be proved along the same lines of the proof

provided for the undirected model in Section 5.3.3. This algorithm finds the D2EMIS

for a specific value of r and a specific node placement. To find the average MAC-layer

capacity for each value of r, one needs to perform exhaustive simulations to account

for different node placements according to the uniform distribution. Using the above

algorithm, we sketched the exact value of the capacity achieved for this relaxed model

in Figure 5.10, comparing it against the capacity obtained for the undirected model.

As can be seen in the figure, these two are relatively close together such that the upper

bound for the undirected model can also be used for the new model as an estimate.

This suggests that the two models show a close behavior such that the bounds for

the undirected model could serve as estimates for the directed case as well.

5.4 Chapter Summary

In this chapter, we studied the threshold phenomena and MAC-layer capacity in

finite wireless networks on a line. We considered random geometric graphs as a model

for wireless networks which is used extensively in the literature. We derived an upper

101

bound for the threshold width of such finite networks which holds for every monotonic

graph property. We also studied the problem of MAC-layer capacity for finite line

networks. MAC-layer capacity is an example of non-monotonic characteristics of

networks. We provided an algorithm for finding its exact value and also derived lower

and upper bounds. Through simulations, we verified that our bounds can give quite

a good estimate of the actual value of the MAC-layer capacity.

102

CHAPTER 6

SUMMARY AND CONCLUSIONS

The driving force behind this dissertation was the importance of studying practical

communication networks with real-world restrictions. As two fundamental issues we

took on finite-length block codes and finite wireless networks. Our analysis opens up

many theoretical and practical research possibilities that offer potential for further

research. The results from our analysis of polar codes can be employed to improve the

finite-length performance by making better choices for information bits. Our stopping

set analysis can be extended to find the distribution of stopping sets and their size.

The results can then be used to bound the bit or block erasure probability, or to find

the exact values if possible.

A natural extension would be to conduct a similar analysis for the case of the

Gaussian channel. In this case, the stopping set analysis needs to be expanded to

“trapping set analysis”. Trapping sets are the main cause of the decoding failure

over the Gaussian channel. Trapping sets maintain a more general definition than

stopping sets, and are formed in a variety of shapes. This makes it much harder to

tackle the finite-length analysis for the Gaussian channel.

In this dissertation, we tackled the problem of rate-compatible polar codes, and

briefly touched the non-uniform and UEP polar codes. The truth however is that

polar coding over parallel channels is a very important open problem. The closeness

of the setting for parallel channels to the one in rate-compatible polar codes makes it

possible to apply different rate-compatible techniques to derive non-uniform coding

schemes. While we only went over stopping-tree puncturing, the results from the

103

finite analysis can be employed to derive more complicated schemes for this purpose.

We also pointed out the potential unequal-error-protection capabilities of polar codes.

However, designing UEP codes based on polar codes which yield more than two orders

of magnitude in error rate spread is an interesting practical problem.

On the finite wireless network, there is no need to justify the importance of pursu-

ing the paths taken in this dissertation. The threshold phenomena provides us with

a unified framework to approach the analysis of network properties. Such an anal-

ysis would also be mathematically wonderful and theoretically rich. An immediate

research direction is to extend the results to two or higher dimensional networks. We

can expect to face challenging problems in this case. On the other hand, studying

each of the network properties- such as connectivity, coverage, capacity, etc- is still

an open problem for many practical models of wireless networks.

104

BIBLIOGRAPHY

[1] E. Arikan. Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. The-
ory, 55(7):3051–3073, July 2009.

[2] Ashish Goel, Sanatan Rai, and Bhaskar Krishnamachari. Monotone properties
of random geometric graphs have sharp thresholds. Annals of Applied Proba-
bility, 15:2535–2552, 2005.

[3] H. Pishro-Nik, N. Rahnavard, and F. Fekri. Nonuniform error correction using
low-density parity check codes. in Proc. of Fortieth Annual Allerton Conference,
Urbana-Champaign, IL, Oct. 2002.

[4] H. Pishro-Nik, N. Rahnavard, J. Ha, F. Fekri, and A. Adibi. Low-density parity-
check codes for volume holographic memory systems. Appl. Opt., 42:861–870,
2003.

[5] Shu Lin and Daniel J. Costello. Error Control Coding: Fundamentals and
Applications. Prentice-Hall, 1983.

[6] H. Balakrishan, C. L. Barrett, V. S. Anil Kumar, M. V. Marathe, and S. Thite.
The distance-2 matching problem and its relationship to MAC-layer capacity
of ad hoc wireless networks. IEEE J. Select. Areas Commun., 22:1069 –1079,
2004.

[7] M. Grossglauser and D. Tse. Mobility increases the capacity of ad-hoc wireless
networks. IEEE Infocom, Anchorage, Alaska, USA, April 2001.

[8] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans.
Inform. Theory, 46(2):388–404, 2000.

[9] P. Gupta and P. R. Kumar. Towards an information theory of large networks:
an achievable rate region. IEEE Trans. Inform. Theory, 49:1877–1894, 2003.

[10] Jinyang Li, Charles Blake, Douglas S. J. De Couto, Hu Imm Lee, and Robert
Morris. Capacity of ad hoc wireless networks. In Proceedings of the 7th ACM
International Conference on Mobile Computing and Networking, pages 61–69,
Rome, Italy, July 2001.

[11] B. Liu, Z. Liu, and D. Towsley. On the capacity of hybrid wireless networks.
IEEE Infocom, San Francisco, CA, USA, 2003.

105

[12] E. Perevalov and R. Blum. Delay limited capacity of ad hoc networks: Asymp-
totically optimal transmission and relaying strategy. IEEE Infocom, San Fran-
cisco, CA, USA, 2003.

[13] M. Ben-Or and N. Linial. Collective coin flipping, robust voting games, and
minima of banzhaf value. In IEEE Symposium on Foundation of Computer
Science, pages 408–416, march 1985.

[14] M. Ben-Or and N. Linial. Randomness and Computation. New York, NY:
Academic Press, 1990.

[15] B. Bollobas and A.Thomason. Threshold functions. Combinatorica 7, pages
35–38, 1987.

[16] J. Bourgain and G. Kalai. Influences of variables and threshold intervals under
group symmetries. Geom. Funct. Anal., pages 438–461, 1997.

[17] E. Friedgut. Sharp thresholds of graphs properties, and the k-sat problem.
Journal of American Mathematical Society 12, pages 1017–1054, 1999.

[18] J. Bourgain. Appendix on sharp thresholds of monotone properties. Journal of
American Mathematical Society 12, pages 438–461, 1999.

[19] J.T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer. Finite-size scaling and
correlation length for disordered systems. Physical Letters Review 57, pages
2999–3002, 1986.

[20] E. Friedgut and G.Kalai. Every monotone graph property has a sharp thresh-
old. In Proceedings of American Mathematical Society, pages 2993–3002, march
1996.

[21] G. Grimmett. Percolation. Berlin, Springer-Verlag, 1989.

[22] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean func-
tions. In Proceedings of 29-th Annual Symposium on Foundations of Computer
Science, pages 68–80, march 1988.

[23] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob.
Comput. Commun. Rev., 5(1):3–55, January 2001.

[24] P. Elias. Coding for noisy channels. IRE International Convention Record.

[25] R. G. Gallager. Information Theory and Reliable Communication. Wiley, New
York, 1968.

[26] D. J. Costello Jr. and G. D. Forney Jr. Channel coding: The road to channel
capacity. Proceedings of the IEEE, 95(6), June 2007.

[27] P. Elias. Error-free coding. IEEE Trans. Inform. Theory, 4.

106

[28] Jr. G. D. Forney. Concatenated Codes. MIT Press, 1966.

[29] A. J. Viterbi. Error bounds of convolutional codes and an asymptotically op-
timum decoding algorithm. IEEE Trans. Inform. Theory, 13(2):260–269, Apr.
1967.

[30] F. Jelinek J. Raviv L. Bahl, J. Cocke. Optimal decoding of linear codes for
minimizing symbol error rate. IEEE Trans. Inform. Theory, 20(2):284–287,
Mar. 1974.

[31] R. M. Fano. A heuristic discussion of probabilistic decoding. IEEE Trans.
Inform. Theory, 9(2):64–74, Apr. 1963.

[32] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge,
MA,USA, 1963.

[33] P. Thitimajshima C. Berrou, A. Glavieux. Near shannon limit error-correcting
coding and decoding. In IEEE ICC, pages 1064–1070, Geneve, Switzerland,
May 1993.

[34] R. Kotter N. Wiberg, H.-A. Loeliger. Codes and iterative decoding on general
graphs. European Transactions on Telecommuncations, 6.

[35] M.G. Luby, M. Mitzenmacher, M.A Shokrollahi, and D.A. Spielman. Efficient
erasure correcting codes. IEEE Trans. Inf. Theory, 47:569–584, 2001.

[36] T. J. Richardson and R. L. Urbanke. The capacity of low-density parity-check
codes under message-passing decoding. IEEE Trans. Inf. Theory, 47:599–618,
2001.

[37] Jr. T. Richardson R. Urbanke S.-Y. Chung, G. D. Forney. On the design of
low-density parity-check codes within 0.0045 db of the shannon limit. IEEE
Communications Letters, 5(2):58–60, Feb. 2001.

[38] E. Arikan. A performance comparison of polar codes and reed-muller codes.
IEEE Commun. Lett., 12(6):447 – 449, 2008.

[39] N. Hussami, S. Korada, and R. Urbanke. Performance of polar codes for channel
and source coding. In IEEE International Sympousiom on Information Theory
(ISIT), 2009.

[40] Ryuhei Mori and Toshiyuki Tanaka. Non-binary polar codes using reed-solomon
codes and algebraic geometry codes. In IEEE Information Theory Workshop
(ITW), August 2010.

[41] I. Tal and A. Vardy. List decoding of polar codes. In IEEE International
Symposium on Information Theory (ISIT), 2011.

107

[42] Mathis Seidl and Johannes B. Huber. Improving successive cancellation decod-
ing of polar codes by usage of inner block codes. In 6th IEEE International
Symposium on Turbo Codes and Iterative Information Processing, 2010.

[43] Amin Alamdar-Yazdi and Frank R. Kschischang. A simplified successive-
cancellation decoder for polar codes. IEEE Communications Letters,
15(12):1378 – 1380, Dec 2011.

[44] N. Goela, S.B. Korada, and M. Gastpar. On LP decoding of polar codes. In
IEEE Information Theory Workshop (ITW), August 2010.

[45] R. Pedarsani, H. Hassani, I. Tal, and E. Telatar. On the construction of polar
codes. In IEEE International Symposium on Information Theory (ISIT), 2011.

[46] I. Tal and A. Vardy. How to construct polar codes. arXiv:1105.6164v1 [cs.IT],
May 2011.

[47] A. Eslami and H. Pishro-Nik. On bit error rate performance of polar codes in
finite regime. In 48th Annual Allerton Conference on Communication, Control,
and Computing, August 2010.

[48] A. Eslami and H. Pishro-Nik. A practical approach to polar codes. In IEEE
International Symposium on Information Theory (ISIT), August 2011.

[49] Gregory Bonik, Sergei Goreinov, and Nickolai Zamarashkin. A variant of list
plus crc concatenated polar code. arXiv:1207.4661v1 [cs.IT], Jul 2012.

[50] Bin Li, Hui Shen, and David Tse. An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check. arXiv:1208.3091 [cs.IT],
Aug 2012.

[51] Kai Niu and Kai Chen. Crc-aided decoding of polar codes. IEEE Communica-
tions Letters, pp(99).

[52] S.H. Hassani and R. Urbanke. On the scaling of polar codes: I.the behavior of
polarized channels. In IEEE International Symposium on Information Theory
(ISIT), June 2010.

[53] S.H. Hassani, K. Alishahi, and R. Urbanke. On the scaling of polar codes:
Ii.the behavior of un-polarized channels. In IEEE International Symposium on
Information Theory (ISIT), June 2010.

[54] S.B. Korada, A. Montanari, E. Telatar, and R. Urbanke. An emprical scaling
law for polar codes. In IEEE International Symposium on Information Theory
(ISIT), June 2010.

[55] Ali Goli, S. Hamed Hassani, and R. Urbanke. Universal bounds on the scaling
behavior of polar codes. In IEEE International Symposium on Information
Theory (ISIT), July 2012.

108

[56] S. H. Hassani, Ryuhei Mori, Toshiyuki Tanaka, , and R. Urbanke. Rate-
dependent analysis of the asymptotic behavior of channel polarization.
http://arxiv.org/abs/1110.0194v2, Oct 2011.

[57] C. Di, D. Proietti, I. E. Telatar, T.J. Richardson, and R.L. Urbanke. Finite-
length analysis of low-density parity-check codes on the binary erasure channel.
IEEE Trans. Inf. Theory, 48:1570 –1579, 2002.

[58] H. Pishro-Nik and F. Fekri. On decoding of low-density parity-check codes on
the binary erasure channel. IEEE Trans. Inf. Theory, 50:439–454, 2004.

[59] H. Pishro-Nik and F. Fekri. Results on punctured low-density parity-check
codes and improved iterative decoding techniques. IEEE Trans. Inf. Theory,
53(2):599–614, February 2007.

[60] A. Eslami and H. Pishro-Nik. On finite-length performance of polar codes:
Stopping sets, error floor, and concatenated design. IEEE Transactions on
Communications, Accepted, August 2012.

[61] C. Di, T. J. Richardson, and R. L. Urbanke. Weight distribution of low-density
parity-check codes. IEEE Trans. Inf. Theory, 52(11):4839 – 4855, 2006.

[62] A. Orlitsky, K. Viswanathan, and J. Zhang. Stopping set distribution of ldpc
code ensembles. IEEE Trans. Inf. Theory, 51(3):929 – 953, 2005.

[63] A. Orlitsky, R. Urbanke, K.Viswanathan, and J. Zhang. Stopping sets and
the girth of tanner graphs. In IEEE International Symposium on Information
Theory (ISIT), June 2002.

[64] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498 – 519,
Feb. 2001.

[65] M. Gholami and M. Esmaeili. Maximum-girth cylinder-type block-circulant
ldpc codes. IEEE Transactions on Communications, 60(4):952 – 962, April
2012.

[66] Irina E. Bocharova, Florian Hug, Rolf Johannesson, Boris D. Kudryashov, and
Roman V. Satyukov. Searching for voltage graph-based ldpc tailbiting codes
with large girth. IEEE Transactions on Information Theory, 58(4):2265 – 2279,
April 2012.

[67] Jie Huang, Lei Liu, Wuyang Zhou, and Shengli Zhou. Large-girth nonbi-
nary qc-ldpc codes of various lengths. IEEE Transactions on Communications,
58(12):3436 – 3447, Dec. 2010.

[68] E. Arikan and E. Telatar. On the rate of channel polarization. In IEEE Inter-
national Symposium on Information Theory (ISIT), 2009.

109

[69] E. M. Kurtas, A.V. Kuznetsov, and I. Djurdjevic. System perspectives for the
application of structured LDPC codes to data storage devices. IEEE Transac-
tions on Magnetics, 42(2):200 – 207, 2006.

[70] Chang Wu and J.R. Cruz. RS plus LDPC codes for perpendicular magnetic
recording. IEEE Transactions on Magnetics, 46(16):1416 – 1419, 2010.

[71] Xie Ningde, Xu Wei, Zhang Tong, E. F. Haratsch, and Moon Jaekyun. Con-
catenated low-density parity-check and BCH coding system for magnetic record-
ing read channel with 4 kb sector format. IEEE Transactions on Magnetics,
44(12):4784 – 4789, 2008.

[72] T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani,
T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa. Experimen-
tal demonstration of concatenated LDPC and RS codes by FPGAs emulation.
IEEE Photonics Technology Letters, 21(18):1302 – 1304, 2009.

[73] M. Bakshi, S. Jaggi, and M. Effros. Concatenated polar codes. In IEEE Inter-
national Symposium on Information Theory (ISIT), June 2010.

[74] H. Griesser and J. P. Elbers. Forward error correction coding. U.S. Patent, Jan
2009. US 7,484,165 B2.

[75] http://sigpromu.org/ldpc/.

[76] ITU-T. Forward error correction for high bit-rate dwdm submarine systems. IN-
TERNATIONAL TELECOMMUNICATION UNION, Feb 2004. Series G.975.

[77] J. Ha, J. Kim, and S. McLaughlin. Rate-compatible puncturing of low-density
parity-check codes. IEEE Transactions on Information Theory, 50(11):2824–
2836, 2004.

[78] J. Ha, J. Kim, and S. McLaughlin. Rate-compatible punctured low-density
parity-check codes with short block lengths. IEEE Transactions on Information
Theory, 52(2):729–738, 2006.

[79] S. B. Korada. Polar codes for channel and source coding. PhD thesis, EPFL,
2009.

[80] H. Pishro-Nik, N. Rahnavard, and F. Fekri. Non-uniform error correction using
low-density parity-check codes. submitted to IEEE Trans. Inf. Theory, May
2003.

[81] Eran Hof, Igal Sason, and Shlomo Shamai. Polar coding for reliable communi-
cations over parallel channels. In IEEE Information Theory Workshop, August
2010.

[82] Massimo Franceschetti and Ronald Meester. Random Networks for Communi-
cation: From Statistical Physics to Information Systems. Cambridge University
Press, 2008.

110

[83] Ehud Friedgut. Sharp thresholds of graph properties, and the k-sat problem.
J. Amer. Math. Soc, 12:1017–1054, 1999.

[84] Raphal Rossignol. Threshold for monotone symmetric properties through a
logarithmic sobolev inequality. Annals of Probability, 34:1707–1725, 2005.

[85] Bhaskar Krishnamachari, Stephen B. Wicker, Rmon Bjar, and Marc Pearlman.
Critical density thresholds in distributed wireless networks. In Communications,
Information and Network Security. Kluwer Publishers, 2002.

[86] Gregory L. Mccolm. Threshold functions for random graphs on a line segment.
Combinatorics, Probability and Computing, 13:373–387, 2004.

[87] S. Muthukrishnan and Gopal Pandurangan. The bin-covering technique for
thresholding random geometric graph properties. In Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 989–998, 2005.

[88] Piyush Gupta and P. Kumar. Critical power for asymptotic connectivity in
wireless networks. Stochastic Analysis, Control, Optimization and Applications:
A Volume in Honor of W.H. Fleming, W.M. McEneaney, G. Yin and Q. Zhang
(Eds.), 1998.

[89] F. Xue and P. R. Kumar. The number of neighbors needed for connectivity of
wireless networks. Wireless Networks, 10(2):169–181, 2004.

[90] L. Booth, J. Bruck, M. Franceschetti, and R. Meester. Covering algorithms,
continuum percolation and the geometry of wireless networks. Annals of Applied
Probability, 13(2), May 2003.

[91] S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: Coverage,
connectivity and diameter. In the proceedings of IEEE INFOCOM’03, San
Francisco, CA, April 2003.

[92] S. Kumar, T. H. Lai, and J. Balogh. On k-coverage in mostly sleeping sensor
network. In MobiCom, September 2004.

[93] H. Pishro-Nik and F. Fekri. Analysis of wireless ad-hoc and sensor networks
in finite regime. In 5th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pages 73–
81, 2008.

[94] H. Pishro-Nik. Analysis of finite unreliable sensor grids. In WiOpt’06, pages
243–254, April 2006.

[95] Paul Balister, Béla Bollobas, Amites Sarkar, and Santosh Kumar. Reliable
density estimates for coverage and connectivity in thin strips of finite length.
In MobiCom ’07: Proceedings of the 13th annual ACM international conference
on Mobile computing and networking, pages 75–86, 2007.

111

[96] M. Desai and D. Manjunath. On the connectivity in finite ad hoc networks.
Communications Letters, IEEE, 6(10):437–439, October 2002.

[97] Nikhil Karmachandani, D. Manjunath, D. Yogeshwaran, and Srikanth K. Iyer.
Evolving random geometric graph models for mobile wireless networks. In Pro-
ceedings of the Fourth International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks, (WIOPT 2006), 2006.

[98] A. Ghasemi and S. Nader-Esfahani. Exact probability of connectivity in one-
dimensional ad hoc wireless networks. IEEE Communications Letters, 10:251–
253, 2006.

[99] L. Stockmeyer and V. Vazirani. Np-completeness of some generalizatiuons of
the maximum matching problem. Inform. Process. Lett., 15(1):14–19, 1982.

[100] A. Eslami, M. Nekoui, and H. Pishro-Nik. Results on finite wireless networks
on a line. In IEEE Information Theory Workshop (ITW), January 2010.

[101] A. Eslami, M. Nekoui, and H. Pishro-Nik. Results on finite wireless networks
on a line. IEEE Transactions on Communications, 58(8):2204–2211, 2010.

[102] M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.

[103] Piyush Gupta and P. R. Kumar. Internets in the sky: the capacity of three
dimensional wireless networks. Communications in Information and Systems,
1:33–50, 2001.

[104] A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochastic
Processes. McGraw-Hill, 4th edition, 2001.

[105] A. K. Gupta and S. Nadarajah. Handbook of Beta Distribution and Its Appli-
cations. CRC, first edition, 2004.

[106] Erhard Godehardt and Jerzy Jaworski. On the connectivity of a random interval
graph. Random Struct. Algorithms, 9(1-2):137–161, 1996.

112

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	5-2013

	A Non-Asymptotic Approach to the Analysis of Communication Networks: From Error Correcting Codes to Network Properties
	Ali Eslami
	Recommended Citation

	Eslami_umass_0118D_11344.pdf

