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ABSTRACT 

MINIATURIZATION OF MICROSTRIP PATCH ANTENNAS FOR GP S 
APPLICATIONS 

 
MAY 2008 

 
STEVEN S. HOLLAND, B.S.E.E., MILWAUKEE SCHOOL OF ENGINEERING 

 
 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 
 
 

Directed by: Professor Daniel H. Schaubert 
 
 

The desire to incorporate multiple frequency bands of operation into personal 

communication devices has led to much research on reducing the size of antennas while 

maintaining adequate performance.  GPS is one such application, where dual frequency 

operation, bandwidth and circular polarization pose major challenges when using 

traditional miniaturization techniques.  Various loading methods have been studied to 

reduce the resonant frequency of the antenna – high permittivity dielectric loading, slot 

loading and cavity loading – while examining their effects on bandwidth and gain.  The 

objective of this thesis is to provide guidelines on what is achievable using these 

miniaturization methods and insight into how to implement them effectively. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Background of Microstrip Antennas 

 The microstrip patch antenna first took form in the early 1970’s [1], and interest 

was renewed in the first microstrip antenna proposed by Deschamps in 1953 [2].  Some 

of the benefits of microstrip patch antennas include [4] small profile, low weight and 

inexpensive fabrication. Additionally, by changing the shape of the structure, versatility 

in resonant frequency, polarization, pattern, and impedance can be achieved.  Many 

feeding mechanisms are possible for feeding the microstrip patch structure, such as probe 

feeds, aperture feeds, microstrip line feeds and proximity feeds, where each method has 

advantages depending on the application.  Despite these advantages, microstrip antennas 

present major challenges to the designer due to an inherently narrow bandwidth, poor 

polarization purity and tolerance problems [3].  Much research has been done to 

overcome these limitations, notably in increasing the bandwidth.   

 The compact size of the microstrip patch antenna is advantageous for the 

reception of GPS (Global Positioning System) signals by personal communication 

devices since it is planar, and does not extend vertically from its mounting surface.  The 

radiation pattern of the microstrip antenna has broad coverage in the E-plane with a 

maximum at broadside [4], which allows good coverage of signals from broadside down 

to near the horizon.  When two orthogonal modes are excited on the antenna to produce 

circular polarization (required for GPS), the broad E-plane patterns are also orthogonally 

orientated in space, providing broad coverage in both major planes.  This creates an 
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approximately hemispherical pattern, which is ideal for use in GPS, where multiple 

satellites are required to accurately determine location [5].     

1.2  Motivation for this Study 

 The motivation for this study evolved from the desire to design a GPS antenna 

with VSWR 2:1 bandwidth greater than 5MHz at L1 (1.575GHz) and L2 (1.227GHz) 

when matched to a source impedance Zo of 50Ω.  The gain bandwidth is defined with 

respect to gain flatness, here required as having a maximum ripple of ±1dB across a 

bandwidth of at least 20MHz for both L1 and L2, with a goal of 30MHz.  Since GPS 

systems use circular polarization to maximize the received signal, reception of circular 

polarization is desired with an axial ratio of less than 3dB over the specified gain 

bandwidth at each band.   The size was to be made as small as possible with a goal of 

31.8×31.8×5mm (1.25×1.25×0.2”) as a total volume.  Some recent work has been done 

investigating miniaturized microstrip GPS antennas, such as Zhou et al [6] with a 

31mm×31mm×12.8mm stacked patch design, Zhou et al [7] with a 38mm×38mm×20mm 

design, and Guo [8] with a 36×80×6mm antenna.  None of these designs met all of the 

desired specifications.     

1.3  GPS Antenna Challenges 

 While miniaturization of microstrip antennas, in general, is a process of critically 

choosing performance trade-offs, GPS presents some specific challenges.  One challenge 

is the production of circular polarization with low axial ratio, which limits potential 

design choices, since many miniaturization methods only support a single linear 
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polarization.  A single probe feeding arrangement on a diagonal axis to generate 

orthogonal modes is not suitable, due to its inherently low axial ratio bandwidth – which 

becomes even narrower as the bandwidth of each mode is decreased through 

miniaturization.  The polarization specification, therefore, probably requires a two-axis 

symmetric geometry, with two feeds orientated orthogonally in space and fed in 

quadrature in order to generate clean circular polarization over a wide bandwidth. 

Another family of techniques that do not satisfy the polarization requirements are 

modified patch shapes that excite multiple modes.  The higher order modes these patch 

shapes excite can have drastically varying gain patterns, which in general are different 

than that of the fundamental mode of the patch. The two orthogonal probes may also lose 

isolation when higher order modes are excited.  When multiple resonances are formed 

through different path lengths, such as U shaped slots, or E-shaped patches, the patterns 

of these resonances are often out of alignment, and the radiation pattern tends to rotate 

and shift with changing frequency, limiting them to applications that only require a linear 

polarization. 

 Another limitation posed by GPS antennas is the bandwidth required.  While the 

actual GPS data occupies a very narrow bandwidth, the signal is encoded using spread 

spectrum, resulting in a transmit signal with a bandwidth of approximately 20MHz.  At 

L1 and L2, this bandwidth translates to (assuming 2:1 VSWR) a fractional bandwidth of   

1.26% and 1.63%, respectively.  This is obtainable by a standard patch, but such 

bandwidths become extremely difficult to obtain when the antenna size is limited.  As 

discussed in Chapter 2, there is a direct relationship between the bandwidth and the 

volume occupied by an antenna.  Consequently, many of the methods used to increase the 
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bandwidth of a patch antenna rely on more efficient use of the antenna volume, or an 

increase in this volume through stacked patches, coplanar parasitic resonator patches and 

thick substrates. 

 Finally, for a GPS system it is desired to have gain of at least isotropic (0dB). 

GPS relies on spread spectrum, and in addition to the wide bandwidth needed, the signal 

is at a low power level of -130dBm [9], which is below the noise power of most systems.  

As a result, loading the antenna with lossy materials, either as dielectric materials with 

high loss tangents (tanδ) or lumped resistors, are not viable bandwidth enhancement 

methods for this application. 

1.4 Overview of Thesis 

 In this thesis, studies were conducted to examine three miniaturization methods 

that have been used to generate potential design solutions for an L1, L2 band GPS 

system.  The loading methods explored are high permittivity dielectric materials, slots in 

the patch layer, and metallic backing cavities.   

 Chapter 2 provides a theoretical overview of the derived limits on the Q factor of 

antennas, starting with the Chu analysis and comparing his solution to exact solutions 

carried out by Collin and McLean.  Some of the gain implications for small antennas are 

discussed, and finally a comparison is presented between the theoretical limits and the 

bandwidths achieved with the successful designs from this study.   

 Chapter 3 presents studies undertaken to characterize some of the effects of the 

three loading methods, and provides optimized designs using each loading method to 

show what is achievable by using one or more of these loading methods to miniaturize the 
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patch antenna.  Included are both simulation results and measured results from prototypes 

that were built and tested over the course of this study 
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CHAPTER 2 
 

SMALL ANTENNA CONSIDERATIONS 

 
It is well known that the size of the antenna will impact its performance, 

specifically in terms of bandwidth and gain.  In general, antennas can be split into two 

main types  – resonant structures (e.g. microstrip patch antennas, dipoles, loops) and 

travelling wave structures (e.g. horns, helixes, spirals).  Travelling wave antennas range 

in size from a wavelength up to many 10’s of wavelengths in size, and in general have 

wider bandwidths.  This increased bandwidth results from the antennas creating a smooth 

transition to couple energy from a guided wave to free space radiation as it propagates 

through the structure.  Their larger size also allows for more directive antennas.  

Conversely, resonant antennas couple energy to free space via a structure proportionate to 

the operating wavelength, and only efficiently over limited frequency ranges.   These 

antennas typically have dimensions on the order of λ/2 and multiples thereof.  Since their 

size is less than λ, they also tend to have lower directivity, due to the smaller aperture 

size.  At very small sizes, a class of antennas are known as “electrically small”, 

commonly defined as one that occupies a volume of less than a “radian sphere” (a sphere 

of radius a = λo/2π) [4], equivalent to the definition that ka < 1, where stored energy 

dominates.  Since this study involved antennas operating at a minimum of 1.227GHz, a 

radian sphere has radius equal to r = λo/2π = 3.9cm – much larger than any of the 

antennas considered in this study.  A discussion of some pertinent performance 

considerations provides useful benchmarks on what is fundamentally possible for the 

designer.     
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2.1 Quality Factor Considerations 

Bandwidth is often one of the most important design specifications to consider 

when an antenna has a size restriction.  A helpful figure of merit is the concept of the 

“quality factor”, also referred to as simply “Q”, of a circuit – in this case an antenna. 

Fundamentally, in antenna design Q is defined as the ratio of the total time averaged 

energy stored in a given volume to the power radiated (i.e. power “loss”) [11], and is 

defined as 

 

2
         

2
        

e
e m

f

m
m e

f

W
W W

P
Q

W
W W

P

ω

ω


>

= 
 >

 (2.1) 

where eW  and mW are the time averaged stored electric and magnetic energies, 

respectively, and fP is the power dissipated in radiation.  For an antenna, Q is important 

because it helps define inherent limits on the physical size of the antenna with respect to 

antenna bandwidth and gain.  A High Q implies that there is a large amount of energy 

stored in the reactive near field [12], which induces large currents on the antenna 

structure – leading to high ohmic losses and narrow bandwidth.   

The limits of small antenna performance were first analyzed by Wheeler in 1947 

using lumped inductor and capacitor modeling [13].  Then, in 1948, Chu [14] developed a 

ladder network model relating the Q of an antenna to its physical size, which has been 

widely cited as the theoretical limitation to the bandwidth obtainable by antennas of a 

given size.    The model enclosed an imaginary sphere of radius “a” around the entire 
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antenna structure, shown in Figure 1, and expanded the fields generated outside of this 

sphere in spherical harmonics, essentially the modes of free space. 

 

Figure 1 - Sphere enclosing an antenna structure. 
 

A linear antenna with an omnidirectional pattern was assumed inside the sphere, 

therefore requiring only the set of TMn0 modes.  Further, the infinite set of discrete 

spherical TM modes were modeled as a ladder network of L and C components 

terminated in a resistor R (representing power flow in radiation), shown in Figure 2.  This 

model was extracted from the continued fraction generated by the Legendre polynomials 

used to expand the fields.  This separation into lumped components is possible since the 

modes outside the sphere are orthogonal, and there is no power coupling between modes 

– each mode can be considered individually and its contribution superimposed with the 

other modes.   
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(a)  

 
 (b) 
 

Figure 2 - Circuit Schematic representation of the spherical TM modes, with (a) the 
TM01 mode, and (b) the set of TMn0 modes. 

 
These circuits show the TM modes to be high-pass in nature, and, since each L and C are 

proportional to 
a

c
 (c = speed of light), increasing the size of the enclosing sphere is 

analogous to raising the frequency, resulting in more average power coupled to free 

space.  Since, as Chu states, Q is extremely tedious to calculate for the higher order 

modes, he instead used a simple second order RLC circuit to model all of the TMn0 

antenna modes around a small frequency range.  It was shown in [14] that as ka decreases 
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below a mode number index, the Q becomes extremely large.  This led to the realization 

that the lowest order modes, TE10 and TM10 have the lowest possible Q, since any of the 

higher order modes increase the stored energy substantially when ka < 1.   The results of 

his analysis show that the minimum Q can be approximated as shown in equation 2.2 

[15].   
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This shows that the Q factor of the antenna is approximately proportional to the inverse 

of the volume it occupies.  This Q is also only accurate when a single resonance is 

considered.  However, derivations have been performed using more direct methods of 

calculating the Q of an antenna, instead of using the circuit approximation employed by 

Chu.  In 1964, Collin [12] calculated the exact Q of the first three TM modes by 

subtracting the energy associated with the power flow (radiated power) from the total 

energy, thereby finding the electric and magnetic stored energies.  More recently, in 1996, 

McLean [15] found the exact Q of the TM10 using a similar subtraction of the propagating 

energy from the total energy, except he based his Q calculation solely on the stored 

electric energy found.  Their calculations arrived at an equivalent expression for the Q of 

the TM10 mode, equation 3 (see Appendix A for derivation). 

 
3 3

1 1
Q

k a ka
= +  (2.3) 

Interestingly, this same expression can be obtained by using the circuit approximation for 

the TM10 shown in Figure 2a, from Chu.  This analysis assumes a lossless, ideal antenna, 
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but can be modified to reflect the reduction in Q from losses by multiplying the Q by the 

antenna efficiency [16] 

 
3 3

1 1
rQ

k a ka
η  = + 
 

 (2.4) 

where ηr is the antenna radiation efficiency.  It is important to account for the loss, as an 

antenna can readily be loaded via lumped resistors or lossy materials to achieve 

bandwidths that exceed the limits given for a lossless antenna, and may otherwise 

mistakenly appear to invalidate the calculated Q limits. Figure 3 shows the effect of 

efficiency on the Q limits. 
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Figure 3 – The minimum Q for various levels of efficiency. 
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Up to this point, it has been assumed that a linear antenna occupied the volume 

enclosed by the sphere, but as noted by Chu [14], Wheeler [13], Collin [12] and McLean 

[15], the antenna Q for dual polarizations exciting TE and TM modes is approximately 

half that of a single polarization (at very small ka <<1, QTE+TM ≈1/2(ka)3).  McLean [15] 

has an especially lucid treatment of this phenomenon, showing that the contribution to 

stored electric energy increases a slight amount when both the TE10 and TM10 modes are 

excited, whereas the radiated power doubles.  This derivation (see Appendix A) results in 

equation 2.5. 

 
3 3
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 (2.5) 

This applies more appropriately for antennas with a single feed, and antennas with high 

cross-pol, as an equation in [17] provides the more general Q relationship as  

 3 3

1 1 2

1rQ
k a ka

η
γ

  = +  +   
 (2.6) 

where γ is the ratio of power in the two polarizations.  For this study, where circular 

polarization is achieved using two orthogonal feeds with quadrature phasing, the Q of 

each port is only affected by a single linear polarization, thus power is radiated in only 

one polarization and stored in only one polarization per port, and the VSWR bandwidth 

seen at the input of each port does not increase.  A comparison of the approximate Chu 

solution and the exact solutions are shown in Figure 4. 
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Figure 4 - Comparison of the approximate (Chu) and exact (McLean, Collin) Q limits. 

 
 
The approximate Chu limit and the exact solution given by McLean and Collin have very 

good agreement when ka << 1, but begin to diverge as ka nears 1.  Interestingly, the TM01 

mode should have the lowest Q out of all of the modes, as Chu found, but the 

approximation that takes into account higher order modes gives a lower Q than the exact 

– stressing the limitations of the approximation used by Chu in his derivation.   

 One method of estimating an antenna’s quality factor is to use the input 

impedance at the terminals of a tuned antenna as it varies with frequency.  In [18], 

Yaghjian and Best developed an approximate relationship between the impedance 

( ) ( ) ( )Z R jXω ω ω= +  of an antenna and the Q of an antenna defined as 
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where '( )oR ω  and '( )oX ω are the frequency derivatives of the resistive and reactive 

components.  For single band antennas (and for Q >> 1), the Q is often used to 

approximate the fractional 3dB bandwidth [4] as shown in equation 2.8. 
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The 3dB bandwidth is equivalent to a VSWR bandwidth of 5.828:1, but for evaluating 

the Q with bandwidths defined by different VSWR levels, equation 2.9 can be used [16] 
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where FBWV is the desired bandwidth at s:1 VSWR. 

The bandwidth of the antenna is therefore fundamentally bound by theoretically derived 

limits, with the linear polarization cases shown in Figure 5. 
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Figure 5 – The theoretical limits on the 3dB and 2:1 VSWR fractional bandwidths versus 

ka. 
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2.2 Gain Considerations 

Fundamental to antenna theory is the relationship between the radiating aperture 

size and gain – specifically, that a large aperture will generate higher directivity (and 

therefore, assuming equal loss, higher gain) than a smaller aperture.  The effective 

aperture of an antenna relates how large of an area over which an antenna efficiently 

accepts an incoming signal, and is related to the size of an antenna.   It is related to 

directivity (and therefore gain), and is defined as [10]  

 
2

4
effD A

π
λ

=  (2.10) 

While for small antennas the effective aperture size is, in general, larger than the physical 

aperture size, as operating frequency decreases for a fixed antenna size, the effective 

aperture size will also decrease.  For miniaturized antennas, the directivity will be lower 

than that of a regular antenna, and will have a directivity pattern that broadens, and looks 

more like an omnidirectional antenna as size is further reduced.  However, this is not the 

only factor working against the gain of small antennas.   The currents of the antenna are 

confined to a smaller area on the antenna surface, contributing to conductive losses, and 

stronger fields near the antenna contribute to the stored energy.  This increases the Q of 

the antenna [19], reducing the bandwidth.    

An additional reduction in gain is caused by the decreasing radiation resistance as 

the size of the antenna is reduced, making ohmic losses even more important as they 

become a sizable fraction of the overall input resistance of an antenna.  The radiation 

efficiency can be expressed as [10] 

 r
r

r L

R

R R
η =

+
 (2.11) 
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where Rr represents the radiation resistance and RL represents the losses in the antenna.  

The losses are typically a result of the conductors and dielectric materials, which are 

minimized using dielectric materials with as low loss as possible and high-quality 

conductors.  An example of a small antenna with low radiation efficiency is that of an 

infinitesimal dipole, which has a radiation resistance given by [4] 

 
2

280r

l
R π

λ
 =  
 

 (2.12) 

Thus, for a range of dipole lengths between λ/1000 and λ/20 (0.001 < l/λ < 0.05), the 

radiation resistance is a maximum of 2Ω, and a minimum of 0.0008Ω, shown in Figure 6.  

This small radiation resistance is also important when the loss of the antenna structure is 

taken into account.   Staying with the example of an infinitesimal dipole, the same 

antenna length variation is considered, but the efficiency is calculated using four different 

equivalent loss impedances in the antenna model, as shown in Figure 7. 
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Figure 6 - Radiation Resistance for infinitesimal dipole versus length. 
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Figure 7 – The effect on of loss resistance RL on radiation efficiency versus the length of 

an infinitesimal dipole relative to operating wavelength. 
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This efficiency problem will impact the gain, and it will also contribute to the 

noise temperature of the antenna.  The gain will already be limited by the size of the 

antenna and the reduced radiation resistance, so for successful miniaturization of an 

antenna, losses in the antenna should be minimized.  Gain can be traded for bandwidth 

fairly easily by loading an antenna with lossy material, or a lumped resistor, which lowers 

the Q and increases the bandwidth, but reduces the gain.  As a result, methods of 

miniaturization often seek solutions that optimize bandwidth by making the most efficient 

use of the volume enclosed by the antenna, ideally maximizing both gain and bandwidth. 

 

2.3 Recent Research on Electrically Small Antennas 

There has been much interest in reducing the size of antennas.  Hum et al [20] 

studied the effects of resistively loading a microstrip patch antenna, with the objective to 

find loading locations that provided the best tradeoff between reduction in gain and 

increase in bandwidth.  Karmaker [21] developed a design for a cavity backed circular 

microstrip patch antenna that incorporated an air gap between the substrate and ground 

plane, an LC matching network, a loading capacitor and a ferrite loading bead to reduce 

the size of the antenna and retain fairly good bandwidth performance.   Wang and Tsai 

[22] investigated the use of meander-line loading of the patch antenna which effectively 

increases the length of the current paths, but does so over a small area.  The use of 

meander lines parallels the phenomenon behind slot loading, which is discussed in 

section 3.2.   Zhou et al has produced a number of small GPS antenna designs, with a 

33mm×14mm (diameter × height) circular stacked patch configuration in [23], and a 



 

19 
 

31×31×12.4 stacked patch design [6], both of which cover L1, L2 and L5 by reducing 

constraints on the VSWR bandwidth.  It is noted that while much of the research 

presented in this section has led to successful designs, none accomplished a match of 2:1 

over the bands of interest, which was one of the design motivations for this study.   

  As a comparison, some of the more successful design approaches in this study are 

plotted, showing their proximity to the bandwidth limits in Figure 8 and Figure 9.  

Included are two antennas of Zhou, shown for comparison.  None of the designs approach 

the line, but this is mainly due to the patch geometry only filling a fraction of the sphere 

enclosing the antenna- all of these antennas are planar.  

Figure 8 shows that Zhou’s antenna, [23], has the largest 3dB bandwidth of all of 

the antennas considered, 95MHz.  Figure 9 shows that for the same antenna, neither band 

has a 2:1 VSWR match, and emphasizes the difference between the antennas presented in 

this thesis and those in the literature.  There are many designs in the literature that achieve 

the wide gain bandwidths required for GPS, notably the two designs of Zhou, et al, shown 

for comparison, but they achieve their large bandwidths via a poor match at the bands of 

interest.  The Bode-Fano criteria indicates that the 3dB bandwidth can be broadened at 

the expense of a good impedance match.  In antenna design it is normally desired to have 

a match of at least 2:1 VSWR, especially in a GPS system where noise considerations 

require a proper match.  All of the optimized designs presented in this thesis obtain 2:1 

VSWR matches at both L1 and L2 bands.   
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Figure 8 – Comparison of designs developed throughout this study and the theoretical 
3dB bandwidth limits.  The antennas are denoted by the symbols in the legend. 
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Figure 9 - Comparison of designs developed throughout this study and the theoretical 2:1 
VSWR bandwidth limits.  The antennas are denoted by the symbols in the legend. 
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CHAPTER 3 

LOADING METHODS 

3.1  High Permittivity Dielectric Loading 

 One of the most direct means of reducing the size of a microstrip antenna is to 

increase the relative permittivity (εr) of the dielectric used for the substrate material.  The 

lowering of resonant frequency results from the relationship between the speed of light 

and the dielectric permittivity, shown in equation 3.1.   

 
1 o

r r

c
c

εµ ε µ
= =  (3.1) 

Thus, as the relative permittivity is increased, the speed of light decreases.  For a resonant 

structure, this slower speed means an object loaded with dielectric materials of εr > 1 will 

have a lower resonant frequency than an unloaded identical size structure.  Therefore, 

these loaded structures are said to be “electrically larger” than their unloaded counterparts 

of the same physical size.   

 The performance of a microstrip patch antenna can be approximated using a 

transmission line model, where the patch radiator length is modeled as a length L of 

transmission line, and the radiating edges are modeled as slots with an admittance Y = Gr 

+ jB, Figure 10 [24].  The conductance, Gr , accounts for the radiation from the slot, 

whereas the susceptance, jB, accounts for the capacitance formed between the edge of the 

patch and the ground plane.   
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Figure 10- Transmission line model of microstrip patch antenna, showing the equivalent 
representation of the slot susceptance as an extension to the length of the transmission 

line. 
 
The resonant frequency of the antenna can be calculated from this model using equations 

3.2-3.5 [4], [25].  Equation 3.2 represents an effective relative permittivity єreff, which is a 
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modified relative permittivity value that accounts for the fields fringing in the air above 

the substrate material. 

 1 1 1

2 2
1 12

r r
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h

W

ε εε + −= +
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 (3.2) 

This modified relative permittivity value is then used to find the length extension ∆L that 

accounts for the fringing fields at the each of the radiating edges. 
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The effective length Leff can be calculated using the results of equation 3.3. 

 2effL L L= + ∆  (3.4) 

 This allows the resonant frequency to be calculated using the new effective length, as 

shown in equation 3.5. 
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Equation 3.5 denotes the resonant frequency of the dominant TM001, typically the excited 

mode for patch antennas.  The resonant frequency and the permittivity are inversely 

related, such that increasing the permittivity decreases the resonant frequency of the patch 

antenna.  This allows an antenna to be miniaturized significantly, without adding 

complexity to the metal patch, since a simple rectangular patch can be etched onto high 

permittivity substrate to realize a smaller size for a given operating frequency, requiring 

no modification to its shape.  This can be beneficial for manufacturing and for mechanical 

robustness.   
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 As the size of the antenna decreases, by increasing substrate permittivity or by the 

other loading methods discussed below, bandwidth and gain will be adversely affected.  

Chapter 2 provided a theoretical basis for this intrinsic relationship and this chapter 

contains examples of loading methods that show the balance between size and 

performance.   As the size of the antenna decreases, the effective aperture size is reduced, 

lowering directivity.  There have been some efforts to use high permittivity superstrate 

loading (in the range of εr = 80) of microstrip antennas to recover some of the gain lost by 

the reduction in size [26].  While the results presented do in fact show an increase in gain, 

they involve miniaturizing the patch radiator itself but not the actual substrate around the 

patch.  The result is that the higher permittivity superstrate increases the aperture size by 

utilizing the large substrate around the patch antenna.  For true miniaturization, the 

substrate size must also be reduced.   

 Another set of drawbacks for high permittivity materials involve their mechanical 

properties and material tolerances.  Often high permittivity dielectric materials are 

ceramic, which are brittle, fragile materials.  This weakens the robustness of the antenna, 

which traditionally is one of the advantages in using a microstrip antenna.  The ceramic 

materials can be difficult to work with compared to more common substrate materials 

such as Duroid, or FR4, adding complexity to the manufacturing process.  Also, loss in 

the dielectric material tends to be higher for the ceramic dielectrics.  For example, Rogers 

TMM10 (εr = 9.2) has a loss tangent tanδ=0.0022 (at 10GHz), whereas Rogers 5880 

(PTFE) has a loss tangent of tanδ=0.0009 (at 10GHz).  The tolerances on the relative 

permittivity become more significant as the permittivity is increased.    For Rogers 5880, 

the relative permittivity is specified as εr = 2.2 +/- 0.02, which is a tolerance of 0.9%.  
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Conversely, TMM10 has a relative permittivity specified as εr = 9.2 +/- 0.230, which is a 

tolerance of 2.5%.  This is a large variation, and can generate significant differences 

between predicted and measured performance.  TMM10 is only a modest increase in 

permittivity, whereas dielectric materials of εr = 30, 40, 50, and higher will have larger 

tolerances of the actual permittivity.   

3.1.1   High Permittivity Performance Trends 

To show the relationships between permittivity, bandwidth, and resonant 

frequency, a study considered relative permittivity between εr = 1 and εr = 25.  The 

antennas are identical in size, with a 100×100×3mm substrate and a 27×27mm square 

patch, with and without a 100×100×3mm superstrate as indicated, Figure 11.  The results 

were generated through HFSS simulations, in Figure 12 and Figure 13. 

 
Figure 11 - Geometry of the 27×27mm square patch antenna model used for the 

permittivity variation, (a) without a superstrate, and (b) with a superstrate.  Substrate and 
superstrate are 100×100×3mm. 
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Figure 12 - Change in resonant frequency with relative permittivity.  Antennas are 

27×27mm on 31×31×3mm substrates and, as indicated, have 31×31×3mm superstrates.  
Predicted Frequency from equation 3.5 is shown for comparison. 
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Figure 13 - Change in 2:1 VSWR bandwidth with relative permittivity. Antennas are 

27×27mm on 31×31×3mm substrates and, as indicated, have 31×31×3mm superstrates. 
 
 
As the permittivity is increased in Figure 12, the resonant frequency decreases at a rate 

proportional to1/ rε .  The resonant frequency was calculated using equation 3.5 and is 

plotted for comparison, showing good agreement with the simulations.  The frequencies 

calculated with equation 3.5 are consistently lower than those of the HFFS simulations, 
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since an infinite extent substrate is assumed in the equation. Truncated substrates are used 

in the HFSS simulations, which results in a lower effective єr.  Further, the simulations 

performed with superstrates show less reduction in effective єr compared to the 

simulations without superstrates, since the patch element has the same permittivity 

dielectric both above and below.  Figure 13 shows that the bandwidth decreases at a rate 

proportional to єr
-3/2, which can be explained by equation 2.2, which states that the Q (and 

therefore bandwidth) is proportional to the inverse of the volume of the antenna, or B~ 

(ka)3.  With increasing permittivity for an antenna of fixed size, the bandwidth decreases 

at a faster rate than the resonant frequency. 

High εr materials have been used as a substrate and a superstrate to take advantage 

of this miniaturization, where both configurations make the patch electrically smaller.  A 

few designs successfully employed this method, one of which is shown in Figure 14. 

 

Figure 14 -Stacked patch design using dielectrics with εr = 50.  Dimensions: top patch = 
11.5×11.5mm, bottom patch = 15×15mm, dielectrics =19×19mm with 5mm total 

thickness of all three layers. 
 
 
The antenna was miniaturized to a very small size (19×19×5mm total volume) with the 

use of such a high relative dielectric constant, but exhibited extremely narrow bandwidth, 

as seen in Figure 15.   
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Figure 15 - Return loss for antenna on εr = 50. Dimensions: top patch = 11.5×11.5mm, 
bottom patch = 15×15mm, dielectrics =19×19mm with 5mm total thickness of all three 

layers. 
 
Many designs were attempted using very high permittivity dielectrics (єr =50 in this 

example) and were found to be too narrowband for this application.  However, many 

examples using lower relative permittivities of εr = 9.2-30 have shown some promise, and 

have been explored for use in two prototypes. 

3.1.2 Optimized Linearly Polarized Prototype Design 

Initially, high permittivity dielectric materials with εr = 40-50 were investigated as 

potential means of miniaturization.  After many design attempts realized 2-3MHz 2:1 

VSWR bandwidths in the best cases, more modest relative permittivities were considered.  

From this study a linearly polarized prototype was designed and built, where resonances 

at the L1 and L2 bands were obtained by tuning one of the bands on each of the 

orthogonal TM010 and TM100 modes of a rectangular patch, shown in Figure 16.  
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Figure 16 - Linearly polarized GPS antenna on high permittivity materials of εr = 25 and 
εr = 38. 

 
 

The substrate is εr = 25 dielectric, and the superstrate is εr = 38 dielectric.  The 

substrate dielectric was chosen to provide miniaturization while not decreasing the 

bandwidth as severely as the higher permittivity materials.  The εr =38 dielectric layer 

was then added as a loading superstrate to further decrease the resonant frequency, and 

also to provide a better match between the patch and the free space impedance.  The 

substrate was truncated to be the same width and length as the patch itself in order to 

minimize the potential for surface wave excitation due to the high permittivity dielectric 

and thick substrate.  With the patch tuned in this configuration, the substrate thickness 

was then increased incrementally to 8mm until a bandwidth of at least 5MHz 2:1 VSWR 

was obtained at both the L1 and L2 bands.  Finally, a capacitive feed element, a disc 

coplanar with the patch, was added to tune out the inductance caused by the long feed 

probe in the thick substrate, and was optimized in size to provide a good impedance 

match to 50Ω over the widest bandwidth. The dimensioned antenna is shown in Figure 

17. 
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Figure 17 - Design layout of the high permittivity, linearly polarized GPS antenna 

prototype.  All dimensions are in millimeters. 
 
 
The antenna was simulated using Ansoft HFSS using PEC metallic surfaces (see 

Appendix C), and on an infinite ground plane.   The antenna is shown to have a 2:1 

VSWR bandwidth of 8MHz at L2, and 15MHz at L1.  One advantage of a single feed 

design is the freedom of tuning without the potential for coupling to another feed port, 

especially when using capacitive discs, where close proximity of the clearance holes can 

lead to coupling between adjacent probes. 
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Figure 18 - Return loss performance of the linearly polarized 29×21×12mm GPS antenna 

on high permittivity dielectric materials. 
 
 
The broadside realized gain is shown in Figure 19 for both the x-polarization and y-

polarization (see Figure 16 for coordinate axis orientation), which takes into account 

mismatch losses.  Figure 19 shows that at L2 the gain flatness bandwidth of +/-1dB is 

19MHz, and at L1 the gain flatness bandwidth is 33MHz, both above 3.2dB over each 

band.  The maximum gain is 5dB at each band, and the cross-pol is shown to be below     

-16dB over both bands.  Since each band utilizes a different orthogonal mode on the 

patch, the polarizations of the gain are also on two orthogonal axes. An additional GPS 

link budget consideration for this antenna is the 3dB reduction in signal when the linearly 

polarized antenna is used to receive a CP signal, which is not taken into account on this 

gain calculation.   
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Figure 19 - Simulation results for the broadside gain across both L2 and L1 bands. 

 
 
In addition to the simulations used in designing the structure, prototype antennas were 

fabricated and tested at Tyco Electronic Systems Division.  Multiple prototypes were 

fabricated, some using the AF-126 bonding epoxy (єr = 4.5) to adhere the dielectric layers 

together, and some without the bonding epoxy layers, held together instead with tape.    

Figure 20 shows the location of the bonding layers in the prototype antennas. 
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Figure 20 - Diagram of the location and thickness of the AF-126 bonding epoxy layers 
used in fabrication of the linear prototype antenna. 

 

A comparison between the measured and simulated VSWR for the prototype with epoxy 

bonding layers and without the epoxy layers is presented in Figure 21.   
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Figure 21 - Comparison between the measured and simulated VSWR for the linear 
prototype antenna on high permittivity dielectric. 

 
 
The resonant frequencies for the prototype built without the epoxy layer match up closely 

with the HFSS simulation, but the impedance matching of the prototype antenna differs 

drastically from the simulation.  At L2 the measured result shows the VSWR dips just 

below 2:1, but is not nearly the same bandwidth as the simulation predicted.  At L1 the 
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match is very poor, with the measured VSWR result only reaching 3:1 over a small 

bandwidth, clearly not covering the same bandwidth as the simulation.  For the prototype 

with the bonding layers, the resonant frequency is tuned slightly higher than that of the 

simulation at both L1 and L2 bands, and the match is also much different than that of the 

simulations.  These prototypes showed that the bonding layers shift the resonant 

frequency upward, and the simulation does not fully account for their effects.  The 

impedance match of both prototypes is not what the simulations predicted, and this may 

be a result of two factors: the dielectric materials were only modeled with the relative 

permittivity value (as was done with the epoxy), ignoring the dielectric losses, and there 

may be further uncertainty in the actual relative permittivity of the material used; and the 

prototypes may have some mechanical tolerances associated with them, such as uneven 

bonding of the dielectric layers, or air pockets in the epoxy layers that are not accounted 

for in the simulation.  All of these are unknowns that would require further adjustment in 

subsequent prototype versions when working with this high permittivity material, such as 

tuning the resonant frequency of the simulated antennas to be slightly lower than desired, 

to compensate for the increase in frequency from the epoxy layers. 

 The gain patterns were measured, and are plotted at the resonant frequencies 

indicated in Figure 21, and compared to the HFSS simulated patterns, the results of which 

are shown in Figure 22 and Figure 23.  Note that the HFSS simulations were performed 

on an infinite ground plane, so there is no comparison for the back-lobe radiation.  The 

prototypes without epoxy bonding layers were also only measured over  

-90° < θ < 90°. 
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Figure 22 - Measured and simulated gain patterns at L2 band for linear prototype 
antenna. 
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Figure 23 - Measured and simulated gain patterns at L1 band for linear prototype 
antenna. 

 
The patterns shown are typical of the E-plane pattern of microstrip antennas, with a broad 

beamwidth and a hemispherical pattern.   At L2 there is approximately 3dB maximum 



 

37 
 

gain at broadside, and at L1 approximately 5dB maximum gain at broadsize, with 

significant back-lobe radiation for the measured results.  The measured and simulated 

gains have good agreement at broadside.  Even though the match is not the same over 

each band for measured and simulated results, a 3:1 VSWR match is an insertion loss of 

only 1.3dB, which explains why the maximum gain is still fairly close to the simulation at 

both L1 and L2 bands.  Normally, circular polarization is desired for a GPS antenna, but 

on some portable handsets, such as cell phones or tablet PCs, linear polarization can be 

tolerated when propagation effects such as multipath are the dominant form of signal 

reception due to a lack of line-of-sight, such as in a city with large buildings on all sides.   

 

3.1.3  Optimized L-probe, CP Stacked Patch Prototype 

The next design took advantage of the more stable properties of the Rogers 

TMM10 material, which was also used for many of the other antennas in this study.  This 

design began in a form similar to that of the linear prototype, where a second patch was 

added to the linear prototype of section 3.1.2 to tune the L1 frequency and L2 frequency, 

as shown in Figure 24.  The stacked patch antenna structure was made into a square such 

that a probe along each of the principle axis could be used to tune both L1 and L2 on each 

probe, providing the opportunity for CP operation when the proper phasing is applied to 

the feeds.  Then the substrate thickness was reduced to 6.5mm to approach the 5mm 

thickness goal, and the length and width of the antenna was increased to tune L1 and L2, 

since a lower permittivity material is used for the substrate. 
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Figure 24 - A step in the transformation from the linear antenna prototype to the CP 
version, showing the addition of an orthogonal feed and thinner, but longer substrates. 

 

The set of size iterations further optimized the tuning and resonant frequencies, and 

resulted in an antenna occupying a volume of 41.5×41.5×6.50mm, and is shown in Figure 

25. 

 

Figure 25 - Circularly polarized GPS prototype antenna on TMM10 dielectric material.  
The top patch is 29.6mm×29.6mm in size, and the lower patch is 40×40mm. 

 

The antenna uses an “L” shaped feeding probe, fed through a hole in the lower patch, 

with the horizontal section situated between the two patches.  This configuration allows 

for an extra degree of freedom in the tuning of the antenna, providing the opportunity to 

match both bands over a large of bandwidth. Figure 26 shows a detailed dimensioned 

drawing of the stacked patch antenna.   
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Figure 26 - Drawing of the circularly polarized, stacked patch prototype GPS antenna.  

Horizontal “L” probes are 1mm×5.5mm. All dimensions are in millimeters. 
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Ansoft HFSS was used to analyze the performance of the antenna, with PEC metallic 

surfaces.  A 2:1 VSWR bandwidth of 8MHz was achieved at L2, and a bandwidth of 

16MHz was achieved at L1, as shown in Figure 27.  
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Figure 27 - Simulated return loss for the 41.5×41.5×6.5mm circularly polarized Antenna. 
 
 
In addition to adequate bandwidth over both bands, the isolation between the probes is 

better than 18dB over both bands.  This indicates low power loss through coupling 

between the orthogonal feeds, and this also correlates to good cross-pol performance, as 

the two modes are well isolated and orthogonal.  For orthogonal feed structures, coupling 

of fields between the probes can indicate high cross-pol, since, in order to couple between 

the probes, currents (and fields) must have components in both principle axis directions 

on the patch.  The gain is shown in Figure 28 over each band, where two probes were fed 

in quadrature, resulting in right hand circular polarization (RHCP).   
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Figure 28 - Simulated broadside gain performance for the 41.5×41.5×6.5mm circularly 
polarized, stacked patch antenna. 

 
 
The results indicate a gain flatness bandwidth of +/- 1dB of 19MHz over L2, and 33MHz 

over L1.  These gain bandwidths are large enough to satisfy the requirements of the GPS 

system.  Also, over each gain bandwidth the LHCP gain component is below  

-20dB, which indicates very low cross polarization and, therefore, very low axial ratio.  

The axial ratio is shown in Figure 29. 
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Figure 29 - Axial ratio for the circularly polarized, stacked patch prototype antenna for 
both L2 and L1 bands. 

 
 
Over both bands, the antenna has better than 3dB axial ratio, which is desirable 

polarization purity for GPS operation.  This antenna meets all of the electrical 

specifications of the design criteria that were the basis for this investigation, but is larger 

than the desired size of 31×31×5mm.  Given the performance of 3dB of gain over the 

gain flatness bandwidth, a 2:1 VSWR of better than 8MHz over each band and axial ratio 

below 3dB, literature searches at this time have failed to find an antenna of comparable 

size that exceeds this performance.   

 In addition to the simulations performed in the design of this antenna, a prototype 

was built and tested by Tyco Electronic Systems Division, and the results are shown 

compared to the HFSS simulations.  The antenna return loss measurements in Figure 30 

show the resonant frequency at the L1 band to be shifted approximately 100MHz above 

the design frequency range of 1.575GHz, while the resonant frequency at the L2 band was 

close to the simulated design data and is properly centered around 1.227GHz.  The 



 

43 
 

addition of epoxy layers does not impact the tuning of the L2 band, namely because the 

dielectric substrate beneath the L2 patch is homogeneous, and there is only an epoxy layer 

on top of the patch.  L1 was strongly affected, since it has two epoxy layers holding 

together the substrate below it creating an inhomogeneous substrate.  The large shift in 

resonant frequency for the simulated and measured prototypes with and without epoxy 

layers are compared in Figure 30.  A 2:1 VSWR bandwidth of 18MHz was measured at 

L2, and 64MHz bandwidth at L1, exceeding the impedance bandwidth requirement of 

5MHz at each band.   
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Figure 30 - Comparison of the measured and simulated return loss performance of the 

circularly-polarized, stacked patch prototype antenna.  The antennas shown are the 
measured prototype, the HFSS design simulations, and an HFSS simulated antenna 
modeling the epoxy boding layers, and an HFSS simulation modeling the whole top 

epoxy layer as an air layer. 
 
 
In order to account for the shift in frequency, the two AF-126 (εr = 4.5) epoxy layers that 

were used to fabricate the antenna were modeled in HFSS, shown in Figure 31, and the 

results are shown in Figure 30 along with the measured data.    
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Figure 31 - HFSS model of the circularly polarized, stacked patch prototype antenna 

including the two 2mil thick AF-126 epoxy layers used to fabricate the antenna, one at the 
lower patch and one at the layer with the horizontal section of the L probes. 

 
 

Even with the epoxy layers in the model, the antenna simulations did not tune to 

as high a resonant frequency as the measurements.  The next step was to run simulations 

assuming an air bubble was present at the top patch epoxy layer, shown in Figure 30, 

where the top epoxy layer was assumed to be an air volume (εr = 1).  This approaches the 

resonant frequency measured, and it is likely there is an air bubble in this epoxy layer, or 

perhaps a larger thickness epoxy layer than the 2mil estimated, that is tuning the 

frequency of the L1 band up by 100MHz.   

 The gain response was measured with the antennas mounted on a 4ft ground 

plane.  Spin-linear pattern plots were taken in order to measure the axial ratio of the 

circular polarization over all elevation angles along with the gain.  Figure 32 shows that 

the axial ratio measured is on the order of 6dB at broadside, increasing to approximately 

10dB at θ=60°, and 20dB at the horizon.  This is much higher than the simulated axial 

ratio, and it was noted by Tyco Electronic Systems Division that the measurements taken 

had a poorly tuned 90° hybrid that may explain the poor axial ratio.  Further 

measurements were not available to confirm the source of the poor axial ratio 

performance.  The antenna is shown to have a broad pattern, typical of a patch antenna, 

and the ripples on the pattern are a result of the finite sized ground plane used to measure 
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the gain.  The back lobe radiation is low, below -10dB, and multiple lobes are present for 

theta angles greater than 90° due to scattering off the edges of the ground plane.  

Otherwise, the measured gain envelope is fairly close to the simulated gain pattern, 

showing good agreement. 
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Figure 32 - Spin-linear E-plane gain patterns for the L-probe fed, stacked patch GPS 
prototype at both L1 and L2 bands, for both measured and simulated antennas.  The 

patterns were taken at the center frequency of each gain bandwidth. 
 
These patterns show that with the axial ratio improved, the antenna would have a wide 

field of view, since it has such a broad beamwidth.  The maximum gain was measured at 

broadside for the L1 and L2 bands to show the gain roll-off with frequency. Figure 33 

shows that the L2 band gain peaked at 5dBi, and the gain at L1 peaked at 3.5dBi.     
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Figure 33 - Broadside RHCP gain vs. Frequency over both the L1 and L2 bands for the 
L-feed, stacked patch GPS antenna prototype. 

 
 
At L2 the +/-1dB gain flatness bandwidth is 22MHz, and at L2 the gain flatness 

bandwidth is 47MHz, once again exceeding the minimum 20MHz gain flatness 

bandwidth.  Both the VSWR and gain bandwidths were measured to be larger than the 

simulations predicted, and the axial ratio and L1 resonant frequency were also different 

than the simulations.  This indicates that developing designs on TMM10 with the epoxy 

layers may require the simulation model to incorporate better models of the epoxy layers 

in the design stage to account for their effect as the design progresses.   

 Overall this antenna was one of the best candidates designed throughout this 

study, surpassing the electrical specifications set forth that motivated this study, while 

approaching the physical size specifications.  Also, literature searches have failed to find 

similar sized antennas meeting the same VSWR, gain flatness, axial ratio and dual band 

operation in an antenna of this size, and variations on this design appear in section 3.2.2, 
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as well as section 2.4, where the area occupied by the antenna was reduced to produce 

even smaller versions of this design at somewhat decreased performance. 

3.2 Slot Loading  

The TM100 mode that develops on the patch has a resonant frequency dependant 

on the length of the patch.  While a high permittivity substrate will make the metal patch 

look electrically larger by changing the wave propagation speed, another method used in 

tuning a microstrip antenna is loading the patch with slots.   

There are two helpful models that can be used to explain change in resonant 

frequency.  For a visual, intuitive explanation, the slots can be viewed as obstructions to 

the path of the current, forcing a longer physical distance for the current to travel.   Figure 

34a shows the current distribution on a patch surface with no slots, exciting the TM100 

mode where the antenna is operating at a frequency of 1.730GHz. 

 
 
Figure 34 - Current distributions on the patch layer when the TM100 mode is excited (a) 

without slots and (b) with slots. 
 
 



 

48 
 

The patch without slots allows a straight path across the patch, whereas the slots force 

currents to take a longer path, as in Figure 34b.  This longer path corresponds to a longer 

resonant length, thereby tuning the patch to 1.464GHz, a reduction in the resonant 

frequency of 280MHz.  Here the slots are placed at the midpoint of the patch, but they 

can be located anywhere along the patch if they change the current paths.  One important 

consideration in placement of the slots is the polarization desired, as asymmetric slot 

placement can potentially cause cross-polarization levels to rise.  For asymmetric slots, 

resonant current paths can develop off the main axes of the patch, such as along a 

diagonal axis, producing radiation components along both of the main axes instead of 

only one axis.  Increased cross-polarization will result in poor axial ratio for circular 

polarization, and coupling between the two orthogonal feeds will increase.   

 Another representation of the slots is that of a lumped circuit inductor, placed in 

series with the transmission line model for the patch antenna, as done in [27]-[29], shown 

in Figure 35.     
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Figure 35 - Transmission line model of the slots, where the series inductance 

approximates the slot field behavior. 
 
The reasoning behind the inductive model is that the slots cause a concentration of the 

magnetic field interior to the slots, due to the currents forced to flow along the edge of 

each slot (see Appendix D).  From this lumped model, an inductor stores magnetic energy 

and resists phase changes in the current flow, introducing a phase delay between the 

voltage and current, similar to the physical model where the currents are delayed by 

taking a longer path around the slot.  Unfortunately, as [28] shows, a single lumped 

inductor is only a very coarse approximation, since the inductance changes over the 

length of the slot.  To make this approximation better, many inductances have to be 

placed in the circuit, and solved using a multiport network model as done in [29] and 
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shown in Figure 36.  This yielded good agreement between experiment and simulation in 

[29], but does not simplify to an analytic solution, and must be solved numerically.  

Despite the shortcomings of the lumped inductance model shown in Figure 35, it does 

provide insight into the tuning achieved with the slots from a circuit perspective.   Both of 

these lumped inductance models assume a very thin slot, and do not account for the 

capacitance from the displacement current in the slot.   

 
Figure 36 - N-port lumped inductor approximation for the slotted patch. 
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3.2.1 Slot Loading Performance Trends 

A study was undertaken to observe the effects on bandwidth, resonant frequency 

and gain of a patch antenna when loaded with slots.  A 27×27mm patch with a 

31×31×3.175mm TMM10 (εr = 9.2) substrate, Figure 37, was simulated in HFSS with 

four slots of varying length τ and a fixed width ζ = 1mm.  Prototype antennas were also 

fabricated (Appendix E) to validate the simulation data.  The results are shown in Figure 

38. 

 

Figure 37 - 27×27mm patch antenna on a 31×31×3.175mm TMM10  substrate, with four 
slots cut into the patch surface, with length τ and width ζ = 1mm. 
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Figure 38 – Change in (a.) the resonant frequency, (b.) bandwidth, and (c.) gain with 

variation of slot length τ. Patch is 27×27mm square with a 31×31×3.175 mm substrate of 
TMM10 (εr = 9.2).  The slot widths are all ζ = 1mm. 
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For slot lengths greater than 4.5mm the resonant frequency drops off  

approximately linearly, Figure 38a, with the longest slot length of τ = 11mm decreasing 

the resonant frequency by 500MHz compared to the patch without a slot. The reduction in 

resonant frequency with increasing slot length agrees with both the lumped inductor 

model and the resonant path length model.  The approximate bandwidth also drops off 

linearly, Figure 38b, (the stair-stepping is a result of using whole number MHz 

frequencies for the bandwidth).  The bandwidth decreases similar to the resonant 

frequency because the antenna volume is fixed, and the antenna looks electrically smaller 

as the resonant frequency decreases, increasing the Q.  The measured data show good 

agreement with the simulation results.  Broadside gain performance, Figure 38c, behaves 

very similar to the resonant frequency as the slot length is increased. The aperture is fixed 

in size, so as resonant frequency decreases, the aperture looks electrically smaller.  

Next, for the antenna in Figure 37, the slot widths ζ are varied, with a fixed slot 

length of τ = 9mm.  The resonant frequency decreases with increasing slot width ζ, shown 

in Figure 39a, with the maximum slot width of ζ = 6mm decreasing the resonant 

frequency by 200MHz compared to the ζ = 1mm antenna.  As in the slot length study, the 

bandwidth, Figure 39b, and broadside gain, Figure 39c, decrease similar to the resonant 

frequency for increasing slot widths ζ.  The measured data also shows good agreement.  

While the reduction in frequency with increasing slot width agrees with the model 

that the slots force the resonant path of the current to lengthen, it is unclear from the 

lumped inductor model what impact of slot width will have, since the model assumes 

very narrow slots.  In [27], a rule of thumb is provided such that the impedance of the 

series gap capacitance is negligible, in comparison, with the impedance of the slot 
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inductance when the width of the slot is less than the substrate thickness, which was true 

in the study on slot lengths (1mm wide slot vs. 3mm thick substrate). 
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Figure 39 – Change in (a) the resonant frequency, (b) bandwidth, and (c) gain with 
variation of slot width ζ. Patch is 27×27mm square with a 31×31×3.175 mm substrate of 

TMM10 (εr = 9.2).  The slot lengths are all τ = 9mm. 
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   Appendix F shows a modified transmission line circuit for the slot loaded patch 

when the slot is wide compared to the substrate thickness, using approximations given in 

[30].  As the slot width is increased, shunt capacitance on either side of the slot increases 

between the patch and ground, and a series capacitance connecting the two sides of the 

slot decreases.  The ratio between the slot width and the substrate thickness determines 

when these capacitances are significant, namely when the slot width is on the order of the 

substrate thickness or larger.  

While a previous study varied the width of the slot on a fixed thickness substrate, 

varying the substrate thickness with a fixed width slot is also of interest, since it also 

affects the capacitances.  A 27×27mm patch with and without four 9mm long, 1mm wide 

slots was analyzed on a 100×100mm square TMM10 (εr =9.2) substrate, ranging in 

thickness from t = 0.5-5mm, with a 100×100×3mm TMM10 (εr =9.2) superstrate.  The 

large substrate size was chosen to approximate an infinite substrate, to avoid the effects 

of substrate truncation. 
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Figure 40 - Change in resonant frequency for a 27×27mm patch vs. substrate (εr =9.2) 

thickness t, (a.) with slots, and (b.) without slots in the patch surface. 
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For the thinnest substrate in Figure 40a, the shunt capacitance is relatively large since the 

separation between the ground and patch is small.  This leads to a low resonant 

frequency.  As the substrate thickness increases, the shunt capacitance decreases and the 

resonant frequency increases until 2
t

w
≈ .  After this point the slot is narrow with respect 

to the substrate thickness, and the shunt and series capacitances no longer dominant.  The 

frequency then decreases with increasing substrate thickness, as in the traditional 

microstrip antenna, Figure 40b.   

Another study involves moving the slots along the length of the patch to observe 

the effect of slot placement. The antenna consists of a 27mm square patch, on a 

31×31×3mm square substrate of TMM10 (εr = 9.2), with no superstrate.  Two slots, 

arranged symmetrically on the patch, are moved from -13mm to +13mm along the 

resonant length of the patch. 

  

Figure 41 - Diagram of patch surface with slot positions varied along the resonant length 
of the antenna. 
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Figure 42 – Resonant frequency vs. slot position showing the change in resonant 
frequency for three different slot lengths of 3mm, 6mm, and 9mm. The patch is 

27×27mm on a 31×31×3mm substrate (εr = 9.2). 
 
 

This study confirms that placing the slot at the center of the patch, where the 

largest currents are, has the most impact on performance.  From a circuit theory 

perspective, the inductance will have the most affect when there is high current involved.  

As the slots are moved away from the center of the patch, in either direction, the resonant 

frequency rises symmetrically (independent of which direction the slots are moved).  In 

fact, the resonant frequency tuning curve maps out the cosine current distribution that 

develops on the patch with respect to length, except as an inverted cosine, since the 

lowest frequency tuning is at the current maximum, and the highest frequency tunings are 

where the lowest levels of current are.  There may be situations where placing the slots 

off of the midpoint of the patch has an advantage, such as less conflict between placement 

of the feeding probe and the slot.  Additionally, multiple slots can be utilized, although 
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with the knowledge that the slots will have less effect as they move away from the central 

axis.     

Slot shapes are another aspect of slot loading that was studied.  Previous studies 

all involved a rectangular slot shape, but there is a wide range of conceivable shapes for 

use in the same manner.  Slots were modified to have round, smooth terminations, 

triangular slots, circular slots, slots with cavities at the end, and multiple slots in the patch 

surface as shown in Figure 43.   

 

Figure 43 - Various slot shapes studied to determine the performance compared to a 
rectangular slot. 

 
 
Three cases are compared – circular slots, as shown in the bottom left of Figure 43; slot 

with circular cavities, shown in top left of Figure 43; and triangular slots, shown in the 

top right of Figure 43.  The dimensioned antennas are shown in Figure 44. 
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Figure 44 - Dimensioned drawings of the three slot shapes compared to observe effect of 
slot shape on bandwidth. 

 

Slot Shape fo [GHz] 
2:1 VSWR 
B [MHz] 

Circular Slots 1.601 8 

Slots with Circle Termination 1.598 8 

Triangular Slots 1.606 8 
Table 1- Comparison of the 2:1 VSWR bandwidth for three different slot shapes. 
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Figure 45 - Return loss of the simulated antennas with different slot shapes for 
comparison of bandwidth performance. 

 
All three of the antennas were tuned to approximately 1.6GHz, and Table 1 shows 

that the 2:1 VSWR bandwidth is the same for each antenna.  No shape was found to 

provide an improved impedance bandwidth compared to simple rectangular slots.  
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However, some slot shapes provide advantages in frequency tuning.  For example, 

multiple slots can be cut into a patch surface, such as in Figure 43, which allows the patch 

antenna to be tuned to a lower resonant frequency than what is possible with a single slot.  

Also, Figure 44 shows that for the same resonant frequency, the edge of the triangular slot 

is closer to the center than the edge of the slot terminated in the circular cavity.  

Therefore, the slot with the circular cavity termination is less likely to interfere with the 

feed probe placement than the triangle-shaped slot.  Some shapes may allow easier 

placement of the feed probe than others.  Also, another use of multiple slots is to place 

two slots off-center from the central axis, shown in Figure 46, which allows the centerline 

to be completely unobstructed for maximum flexibility in feed probe placement, 

removing an impedance tuning obstacle while retaining the frequency tuning 

performance.   

 

Figure 46 - Patch antenna using two slots to achieve the desired resonant frequency, 
while leaving the centerline of the patch free for the feed probe. 

 
 

 



 

61 
 

The slot study results can be summarized as follows: 

• The slots decrease the resonant frequency of the patch antenna by diverting the 

current to a longer path, resulting in an effect analogous to that of an inductor 

placed in series between two halves of the patch. 

• The slots have the most impact on performance when placed in areas of high 

current on the patch surface, which for the dominant TM100 mode is along the 

center of the patch length. 

• For narrow rectangular slots, the resonant frequency decreases approximately 

linearly in direct relation to the length of the slot. 

• Increasing the width of the rectangular slots further decreases resonant frequency, 

although in a nonlinear manner.   

• For substrate thicknesses less than the slot width, the frequency is decreased 

further by capacitance developed between the ground and the patch. 

• The shapes of the slots cut into the patch layer do not have any bandwidth 

performance benefits with respect to one another.  Some shapes might allow for 

easier feed probe placement. 

• Multiple slots can be cut into a patch to obtain further frequency reduction, 

although at no benefit in bandwidth or gain.  Multiple slots can also be used to 

free the patch area along the center axis, allowing more convenient feed probe 

placement. 

• Slot loading can be used to allow the use of low permittivity substrates while 

obtaining the same frequency tuning of much higher permittivity materials.  This 

allows the high loss and high permittivity tolerances to be avoided.   
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3.2.2  Optimized Slotted, Stacked Patch Design  

The slot study data provides insight and trends on how the various slot parameters 

affect the antenna performance.  To illustrate the use of slot loading in reducing the size 

of an antenna, a design that uses slots is presented that was optimized according to the 

design specifications that motivated this study.  This design consists of two stacked 

patches, the top patch is 30×30mm square with four 12mm long slots 1mm wide along 

each of the main axes of the patch, and the bottom patch is 27.5×27.5mm square, Figure 

47 and Figure 48.  The bottom patch is placed on a 36×36×3.5mm TMM10 substrate, and 

between the bottom and top patch is a 36×36×3mm TMM10 substrate.   The structure is 

fed via an L-shaped probe placed through a clearance hole in the bottom patch with the 

4mm long horizontal section placed between the two patches with 0.75mm separation 

between the top patch and the probe.     

 

Figure 47 - Isometric view of the optimized slotted, stacked patch antenna. 
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Figure 48 – Dimensioned drawing for the optimized slotted, stacked patch antenna.  All 
dimensions are in millimeters. 

 

The structure was simulated in Ansoft HFSS using PEC patch material and TMM10 

dielectric material.  The antenna is impedance matched at each band, with a 2:1 VSWR 

bandwidth of 6MHz at the L2 band, and 10MHz at the L1 band, Figure 49, satisfying the 

matching requirements of the design that motivated this study.  The isolation is better 

than 20dB across both bands, indicating good cross-pol and low loss due to coupling.  

Figure 50 shows the impedance loci and the impedance match obtained on the Smith 

chart. 
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Figure 49 – Simulated return loss for the optimized slotted stacked patch design on 

TMM10 substrate material. 
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Figure 50 - Smith chart for the slotted stacked patch design, showing the matching of the 

impedance loci. 
 
 
The gain performance was analyzed with the antenna placed on an infinite ground plane.  

The simulation results are expressed in “realized gain”, which is the HFSS gain parameter 

that takes into account the impedance mismatch, which differs from the traditional IEEE 

definition of antenna gain.  The excitations at each port were in quadrature phasing, 
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allowing circular polarization to be generated.  The antenna was found to have a +/-1dB 

gain flatness bandwidth of 28MHz at L1 and 15MHz at L2, with a gain above 3dB over 

each band, although both bands have usable gain outside of this bandwidth if gain 

flatness is not a priority, Figure 51.    
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Figure 51 – Simulated maximum gain at broadside versus frequency at L1 and L2 for the 
slotted, stacked patch antenna. 

 
 
The low LHCP levels indicate good cross-pol over each band, and the axial ratio was 

calculated at broadside over the bands where gain flatness was obtained, Figure 52.  At 

L1, the axial ratio was below 0.4dB throughout the band, which is well below the typical 

3dB axial ratio specification.  For L2, the axial ratio was between 1 and 2dB except 

towards the very lower end of the band, out of the gain flatness bandwidth, where the 

axial ratio increases above the 3dB level.  The performance met the desired 3dB axial 

ratio specification over both bands L1 and L2. 
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Figure 52 – Simulated Axial Ratio at L2 and L1 for the Slotted Stacked Patch Antenna. 
 
 

This antenna performs satisfactorily, meeting the VSWR bandwidth requirements 

and approaches the gain bandwidth requirements, while occupying a small volume of 

36×36×6.5mm (1.42×1.42×0.26”).  The length of this antenna is on the order of λ/6.7, 

and has a thickness of only λ/37.  The miniaturization achieved was due to the use of 

moderately high permittivity substrate (TMM10, εr = 9.20) and the slots that were used to 

reduce the size of the L2 patch without having to resort to either a larger size antenna or a 

higher permittivity substrate.  Further, this design was the thinnest antenna designed 

during this study that met the impedance bandwidth specifications, resulting in a design 

that is closest to meeting the electrical specifications and the ultimate goal of 

31×31×5mm total volume for the antenna. 

 

3.3 Cavity Loading 

Cavity loading offers some distinct advantages when designing a microstrip 

antenna.  A cavity backing provides a metallic boundary around the antenna that can be 
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used to isolate the antenna from its surroundings.  This allows close integration of an 

antenna onto circuit boards, or surfaces where the antenna must be placed near surfaces 

that might absorb or scatter energy.  Also, a microstrip antenna is planar and can conform 

to the surface it is mounted on, providing compact and unobtrusive antenna placement on 

the exterior of automobiles, airplanes and other surfaces.  When a cavity is placed around 

a microstrip antenna, this allows the antenna to be recessed into the mounting surface (the 

ground plane), flush with the surface.   

The cavity also provides some electrical benefits.  The walls of the cavity, if close 

to the patch antenna, load the edges of the patch similar to that of a lumped parallel plate 

capacitor, which lowers the overall resonant frequency of the patch.  Often miniaturized 

patch antenna designs use thick, high permittivity substrates to reduce the resonant 

frequency while maximizing bandwidth for a given area.  The side-effect of this method 

is the excitation of surface waves, which results in a loss of power out along the grounded 

substrate – lowering the efficiency of the antenna and/or distorting the radiation pattern.  

By placing a cavity behind the patch, surface waves are suppressed by the metallic walls, 

which essentially “short out” the TE/TM surface wave modes [31].    

The cavity backing can also provide extra feeding options compared to a regular 

microstrip antenna.  Since the cavity is essentially the ground plane for the antenna folded 

to form a cavity, a feed probe can be placed in a side wall to feed the antenna just as 

easily as on the bottom plane of the cavity.  This can allow shorter paths to the antenna 

than from the bottom of the cavity, reducing the inductance introduced by feed probes in 

thick substrates. 
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 One way of assessing the loading of the cavity is to look at the transmission line 

model for a microstrip patch antenna, shown in Section 3.1.1 The cavity walls are part of 

the ground system of the antenna, so the metallic walls load the antenna similar to a 

capacitor in shunt from the edge of the patch to the ground, in parallel with the slot 

admittance, shown in Figure 53.   

 
Figure 53 - Modified transmission line model for the microstrip patch antenna when a 
cavity is placed behind it.  CC represents the effective capacitance of the cavity backing. 

 

The capacitance in parallel with the slot admittance lowers the resonant frequency of the 

patch antenna, similar to the lumped capacitor loading shown in Appendix G.  
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 3.3.1 Cavity Loading Performance Trends 

 For a miniaturized patch antenna, increasing the substrate thickness will increase 

the bandwidth, helping to compensate for the narrow bandwidths of the small antenna.  

On substrates that extend well beyond the edges of the patch element, increasing the 

thickness t of the substrate linearly decreases the resonant frequency, as predicted by 

equations 3.2-3.5 (and shown in Appendix H).   However, small patch antennas often 

have substrates not much larger than the patch itself, so an additional side effect of the 

increased substrate thickness is an increase in resonant frequency with increasing 

substrate thickness due to the fringing fields extending out the sides of the substrate.  

With the fringe fields extending into air both above the substrate and on the sides of the 

truncated substrate, the effective permittivity of the substrate dielectric decreases, which 

equation 3.5 shows results in an increase in resonant frequency.  

 A 31.5×31.5mm square patch on a TMM10 (εr = 9.2) substrate of thickness t and 

of width and length α, Figure 54, is used to illustrate this effect.  The substrate size α is 

varied between 31.5mm, where the substrate is truncated to the same size as the patch, 

and 100mm, which is large enough to approach the performance of the antenna on an 

infinite substrate for various thicknesses t.  The simulated results are shown in Figure 55.   
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Figure 54 - 31.5×31.5mm square patch antenna on a TMM10 substrate of thickness t and 
length and width α.  Antenna is mounted on an infinite ground plane. 
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Figure 55 - Change in resonant frequency for 31.5×31.5mm patch on substrates of 

thickness t and length α, width α. 
 



 

71 
 

For α = 31.5, the antennas with thick substrates tune to a resonant higher frequency than 

the thin substrates, since all of the fringing fields extend outside of the substrate into the 

air, which lowers the effective permittivity of the substrate.  This effect is more 

pronounced for thick substrates since more fields extend laterally from the thick 

substrates than for the thin substrates.  For antennas with α = 100m, the substrate is large 

compared to the 31.5mm patch, and the antennas with thick substrates tune to a lower 

resonant frequency than the thin substrates, as theory predicts.   

 Figure 55 also shows that the resonant frequency decreases with increasing 

substrate size α until the substrate is large enough to contain the fringe fields for a 

particular thickness, after which the resonant frequency becomes approximately invariant 

with substrate size and the tuning curve approaches a horizontal line.   The substrate size 

α = αo at which this occurs varies depending on substrate thickness, where the thinnest 

substrate has the smallest αo, and the thickest substrate has the largest αo.  This causes the 

tuning curves to crossover in the range of 34mm<α< 38mm, Figure 56. 
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Figure 56 - Change in resonant frequency for 31.5×31.5mm patch on substrates of 

thickness t and length and width 31.5mm < α < 40mm. 
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For a particular resonant frequency, increasing the substrate thickness for a patch antenna 

with a small substrate size α will require increasing the area occupied by the antenna, 

which is counter-productive to the miniaturization effort.   

Conversely, loading the patch with a backing cavity can alleviate this increase in 

resonant frequency.  The antenna shown in Figure 54 was modified by cladding the 

substrate in metal on the vertical sides of the dielectric, as shown in Figure 57. 

 

 
Figure 57 - Cavity backed 31.5×31.5mm square patch antenna on a TMM10 substrate of 
thickness t and length and width α.  The gray represents the metallization on all four of 

the vertical walls of the substrate to form the cavity.  The cavity is recessed in an infinite 
ground plane. 

 
 
The thickness for the cavity backed antenna is chosen as t = 7mm, and the resonant 

frequency of the antenna is shown simulated for substrate sizes α over the range 32mm < 

α < 100mm, and is compared to the performance of the same size antenna of Figure 54, 

which does not have a cavity. 
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Figure 58 - Change in resonant frequency for 31.5×31.5mm patch antennas with carrying 
substrate size α.  Antennas have TMM10 substrates of thickness t = 7mm, and the results 

are shown for antennas with and without a cavity backing. 
 

For the substrate size α = 32mm, the cavity loading reduces the resonant 

frequency by 500MHz from 1.7GHz to 1.2GHz, which is also 200MHz below the 

resonant frequency of the same antenna on an approximately infinite substrate.  As the 

size α increases, the cavity walls move further away from the patch and the capacitive 

loading is decreased, causing the resonant frequency to increase.  This change in 

capacitance is analogous to a parallel plate capacitor, where increasing the separation 

between the plates decreases the capacitance.  The resonant frequency of the cavity 

backed antenna continues to change with increasing α until the walls of the cavity are far 

enough away from the edges of the patch that they no longer have a loading effect.  For 

the cavity backed antenna with substrate thickness t = 7mm, this occurs at approximately 

α = 55mm, beyond which the cavity backed antenna tunes to the same resonant frequency 

as the antenna without a cavity backing.    Therefore, the cavity backing can be used to 
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lower the resonant frequency of the antenna when the cavity is close in size to the patch, 

even when the thickness of the substrate is increased. 

 
 The second study involves observing the effect on resonant frequency, gain, and 

bandwidth for a reduced size, cavity-backed patch antenna.  Modifying the antenna in 

Figure 57, the patch size is reduced to 27×27mm, and the frequency reduction is 

accomplished by placing four 7mm long, 1mm wide slots in the patch surface.   The new 

antenna is shown in Figure 59.  The cavity is formed by placing a metallic wall on each of 

the vertical walls of the TMM10 (εr = 9.2) substrate, of length and width α, and thickness 

t.  Since this study deals only with a cavity backed antenna, the substrate thickness t will 

be referred to as cavity depth t.  Four values of α were chosen - two values that place the 

cavity walls close to the patch (α = 27.5mm, 28.5mm) and two values that place the 

cavity walls a few millimeters beyond the patch edges (α = 30mm, 31mm).   

 
Figure 59 - 27×27mm patch antenna with four 7mm long, 1mm wide slots.  The TMM10 
(εr = 9.2) substrate has a thickness t and length α and width α, and is clad with metal on 
all four of the vertical walls of the substrate to form the cavity, represented in gray. The 

cavity is recessed in an infinite ground plane.  All dimensions are in millimeters. 
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 The resonant frequency is affected by changes in cavity depth t, as well as cavity 

size, α.  With increasing cavity depth, the resonant frequency is decreased, Figure 60, as 

the taller cavity walls introduce a larger capacitance to the patch edges.  This further 

validates the parallel plate analogy, since increasing the area of a parallel plate capacitor 

increase the capacitance, similar to increasing the area of the cavity walls increases the 

capacitance.  Increasing the cavity size α results in an increase in resonant frequency, 

since the walls are moving further away from the patch edges, and the capacitance they 

introduce decreases.  These two trends provide intuitive guidelines on how the cavity can 

be used to tune the resonant frequency of a patch antenna for a particular depth t or size α. 
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Figure 60 – Change in resonant frequency with variation in cavity depth t of a cavity 

backed, slotted microstrip patch antenna.  Cavity sizes α are shown in the legend. 
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 The cavity dimensions also affect the bandwidth of the patch antenna.   Figure 61 

shows that increasing the cavity depth t leads to a larger fractional bandwidth, since the 

volume of the antenna is increasing, which is directly related to the Q of the antenna.  As 

the cavity size α is increased, the fractional bandwidth also increases due to an increase in 

antenna volume.  Therefore, antenna bandwidth can be increased by increasing either 

depth t or size α, but increasing α raises the resonant frequency, whereas increasing t 

decreases the resonant frequency. 
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Figure 61 – Change in fractional 2:1 VSWR bandwidth with variation in cavity depth t of 
a cavity backed, slotted microstrip patch antenna.  Cavity sizes α are shown in the legend.  

The stair step nature is due to bandwidth values in increments of 1MHz. 
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Figure 62 – Change in broadside gain with variation in cavity depth t of a cavity backed, 

slotted microstrip patch antenna.  Cavity sizes α are shown in the legend. 
 

Finally, the gain is shown to also vary with the size of the cavity.  For small α, the 

gain is reduced due to the small aperture size of the antenna, and as α (and aperture size) 

is increased, the gain also increases, Figure 62. For small cavity depth t, the volume of the 

antenna is small, leading to low gain, and increasing the cavity depth t increases the 

volume of the antenna, resulting in increased gain.  Figure 62 does not account for the 

change in resonant frequency which is different for a particular cavity depth t and size α.  

Since the resonant frequency is also changing with cavity depth t and cavity size α, the 

gain was normalized to the operating frequency to show more clearly the effects of 

aperture size and volume on gain, in Figure 63. 
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Figure 63 - Change in broadside gain normalized to resonant frequency with variation in 
cavity depth t of a cavity backed, slotted microstrip patch antenna.  Cavity sizes α are 

shown in the legend. 
 

For a particular resonant frequency, increasing the cavity depth t will result in higher gain.  

Increasing the cavity size α will result in higher gain, but note that the difference in gain 

between α=27.5mm and α = 28.5mm is much greater than the difference in gain between 

α=30mm and α = 31mm, which indicates that cavity size α will impact the gain more 

significantly when the cavity is close to the patch antenna.   

 

Some design guidelines for the cavity backed antenna can be summarized as: 

• Cavity backing allows thick substrates to be utilized without the loss in efficiency 

due to surface wave excitation, and without the increase in frequency resulting 

from a truncated substrate. 
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• The cavity backing allows the antenna to be isolated electrically from its 

surroundings, making it possible to mount the antenna in closer proximity to other 

components or surfaces. 

• The cavity allows the antenna to be recess mounted, flush with a surface.  This 

provides a low profile, unobtrusive microstrip patch antenna design.   

• The cavity walls act like parallel plate capacitors connected in shunt with the 

radiating edges of the patch – increasing the depth of the cavity increases the 

effective capacitive loading (by increasing area of the walls), and increasing the 

separation between the patch edges and the cavity walls decreases the capacitive 

loading. 

• Probe feeding can be accomplished via a side wall, instead of the bottom of the 

cavity, potentially reducing the inductance incurred by the use of a long feed 

probe by shortening the distance the probe travels to reach the antenna.   

• The size of the cavity α and the depth of the cavity t can be used to tune the 

resonant frequency of the antenna, and can be optimized to provide the best 

compromise between bandwidth and gain. 

 

This section has explored the effect of loading a patch antenna with a cavity to 

create the capacitive loading of the patch antenna.  Another form of capacitive loading is 

illustrated by the stacked patch antenna shown in Appendix I.  Vertical walls extend from 

the edges of the patch toward the ground plane, creating a capacitor loading very similar 

to the cavity.   The resonant frequencies of this antenna are adjusted with the height of the 

walls on the edge of the patch, and the separation between the patch and the ground 
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plane.  Additional tuning options are available by changing the width of the wall, or 

changing the shapes of the walls.  

 

3.3.2 Optimized Cavity Backed, Stacked Patch Design 

A stacked patch design is presented that operates with dual polarization (CP 

capability) and dual frequency performance to cover both L1 and L2 bands, and utilizes 

L-shaped probes to proximity couple to the antenna.  The antenna was designed with a 

depth of 7mm (close to original design goals of 0.2” thickness), and the cavity length was 

chosen to be 34mm to achieve the desired bandwidth of 5MHz at 2:1 VSWR at the L2 

band.   The cavity length was initially chosen as 31mm (due to original design specs of 

1.25” length) but was increased in length until the desired minimum bandwidth of 5MHz 

at 2:1 VSWR was achieved at L2.  The design is a variation on the stacked patch design 

with the feed extending through a circular opening in the lower patch, and the horizontal 

section of the L probe situated between the patches.   

 
Figure 64 - Optimized design of the cavity backed stacked patch GPS antenna on 

TMM10 (εr = 9.2) dielectric substrate. 
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Figure 65 - Dimensioned drawing for the optimized cavity backed dual band, CP, 

stacked-patch GPS antenna.  Horizontal “L” probes are 2.93×1mm.  All dimensions are in 
millimeters. 

 
 

The top patch is 28.5×28.5mm with four 11mm long, 1mm wide slots to provide 

additional loading to tune it down to the L2 band.  Once again, placing the L2 band patch 

on top increased the bandwidth at L2 by increasing the size of the substrate below the 

patch.  The bottom patch is 25mm×25mm with two 5mm diameter holes to allow the 

vertical sections of the L probes to pass through.  The total antenna volume is 

34×34×7mm, contained fully inside the metallic cavity.  The antenna was modeled using 

PEC surfaces, and the antenna was modeled with the infinite ground plane flush with the 

top of the cavity, giving this antenna a recessed mounting platform.  

The results of the simulations, Figure 66, show that the antenna exhibits a 5MHz 

2:1 VSWR bandwidth at L2, and an 8MHz 2:1 VSWR bandwidth at L1.  This is adequate 

bandwidth to meet the performance specifications of dual band GPS systems on both L1 

and L2, and was obtained by use of the L-shaped feed probe, which allowed both bands to 

be matched through the extra degrees of freedom the L probe permits.  The isolation 
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between the probes is also better than 20dB at both bands of interest, indicating good 

cross-pol and very low power lost through coupling between the ports.  The simulated 

gain at L2 and L1 is shown in Figure 67. 
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Figure 66 - Return Loss for the optimized cavity backed CP, dual frequency antenna. 
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Figure 67 – Simulated realized gain at L1 and L2 for optimized cavity backed CP, dual 

frequency antenna. 
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The gain at L2 has a +/-1dB gain flatness bandwidth of 11MHz, which is 

approximately half of the desired bandwidth.  This gain flatness bandwidth could be 

increased with a larger cavity size (depth or length), or can be used when gain flatness is 

not critical.  At L1, however, the +/-1dB gain flatness bandwidth is 23MHz, and for gain 

above isotropic the gain bandwidth is 34MHz – both of which are wide enough for proper 

GPS signal reception.  Figure 67 shows that over the L2 band the LHCP component of 

radiation below -15dB, indicating good cross-pol, and at L1 shows the LHCP component 

also below -15dB.  The axial ratio is shown over both bands in Figure 68. 
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Figure 68 - Axial ratio over the L1 and L2 band for the optimized cavity backed antenna. 
 

Both L1 and L2 have better than 3dB axial ratio over their operating bands, which 

is a desirable limit for maximum signal reception and rejection of reflections of LHCP 

signals.  These low axial ratios are the result of the low cross-pol shown in the gain 

patterns.   

This optimized antenna meets the VSWR and gain bandwidth goals at the L1 

band, and meets the VSWR bandwidth at L2, but only approaches the gain bandwidth 
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goal at the L2 band.  For most GPS applications, reception of the L1 band information is 

of primary importance, whereas the L2 band is secondary.  As indicated, the gain 

bandwidths have been defined by a +/- 1dB flatness specification, but each band has 

wider, usable gain bandwidths above isotropic if the variation in amplitude with 

frequency can be tolerated.  This makes this antenna viable for applications where low 

profile is the priority specification, and the sacrifice in gain performance is acceptable.  

This optimized antenna utilizes a cavity backing, which reduces the operating frequency 

of the antenna while making it very low profile, allowing it to be mounted flush in a 

metal surface, in a recess, making this a candidate for applications where it is desired to 

have the antenna built into a structure.      
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CHAPTER 4 

CONCLUSION 

This thesis set out to explore appropriate miniaturization methods for reducing the 

size of antennas for GPS systems.  The motivation for this study stems from the desire to 

develop a miniature GPS microstrip patch antenna that would provide 20MHz bandwidth 

at both L1 (1.575GHz) and L2 (1.227GHz) bands, while occupying a volume of 

1.25×1.25×0.2” (31.8×31.8×5mm).  Circular polarization was desired with an axial ratio 

of less than 3dB over each band, with a minimum gain of 0dBi.  Due to the requirements 

of bandwidth, circular polarization with low axial ratio, and gain, many miniaturization 

methods fail to meet the required performance.  Three main methods were found to be 

viable solutions: the use of high permittivity dielectric materials, inductive loading of the 

patch element via slots cut into the surface, and capacitive loading via a cavity backing.  

Each method allows for two-axis rotational symmetry, required to produce circular 

polarization with good axial ratio, and provides reduction in size. 

 Some of the trade-offs involved when using each of the loading methods were 

explored, providing guidelines on how these loading methods can be used in patch 

antenna designs.  Each loading method was then applied in an optimized design that 

approaches the desired specifications.  Two of the optimized designs were built and 

tested:  a linear antenna covering both bands and occupying a volume of 29×20.9×12mm 

(1.14×0.82×0.47”), and a CP stacked patch design that met all electrical specifications 

and occupied a volume of 41.5×41.5×6.5mm (1.63×1.63×0.26”).  Additionally, other 

designs were presented that achieved similar performance.  A slotted, stacked patch was 

designed to meet the VSWR specifications, and approached the gain flatness 
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specifications in a volume of 36×36×6.5mm (1.42×1.42×0.26”). This was the smallest 

antenna found in this study that approached the electrical specifications.  Finally, a cavity 

backed stacked-patch configuration was used to design an antenna that once again met the 

VSWR specifications but fell short of the gain flatness bandwidth goals.  This antenna 

was 34×34×7mm (1.33×1.33×0.28”) in size, and allowed for recessed mounting if 

desired.   

Literature searches failed to find antennas that were as compact in size while 

achieving the 2:1 VSWR bandwidths of these antenna designs.  Many designs found in 

the literature sacrificed the impedance match to achieve their operating bandwidth.  

Additionally, the use of the “L” probe feed structure, which was used in most of the 

designs presented, provided the ability to tune to both L1 and L2 in the stacked patch 

configurations.  The extra degrees of freedom, such as probe width, length, and proximity 

to each patch allowed for a good impedance match of 2:1 to be achieved on both patches 

at once.  Additional size reduction was accomplished for each antenna by feeding the L 

probes through clearance holes in the lower patch for the stacked patch configuration, 

instead of proximity feeding the patches from the side, as in traditional proximity 

coupling. 
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APPENDIX A 
 

DERIVATION OF MINIMUM Q LIMITS 

Based on [15] 

Single Polarized, Omnidirectional Antenna – TM10 mode only 

First, to compute the fields of the TM01 spherical mode, an r-directed magnetic 

vector potential is given as a linear electric current element 
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From the field components, the total stored electric energy density can be computed as 
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As the limit r → ∞  is taken, the Er term goes to zero, and the radiated fields become 

 

sin

sin

jkr
rad

jkr
rad

e
H

r

e
E

r

φ

θ

θ

η θ

−

−

= −

= −

 

 
 
 



 

88 
 

The radiated electric energy density can be computed as 
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McLean then used the difference between the total electric energy density and the radiated 

electric energy density to find the non-propagating electric energy density as 
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Then, to find the total non-propagating energy, the energy density is integrated over a 

volume between a sphere of radius a and an infinitely large sphere to get 
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Next, the total radiated power can be found by integrating the real part of the Poynting 

vector over a spherical surface of an arbitrary radius 
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The Quality factor can then be calculated as 
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Circularly Polarized Omnidirectional Antenna – TE01 and TM01 modes excited 

Much of the derivation is the same, so details are omitted for operations that are 

the same.  For the TE case, an electric vector potential and its fields are given as the dual 

of the TM case as: 
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In order to get CP, an amplitude adjustment of jη is applied to Fr, and the TE fields and 

TM fields are combined.  The field components then become, where ,k
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The total electric energy density of this field distribution can be found as 
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The same method is applied as in the linear polarization case, and it is found that  
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It is found that the radiating power is twice that of the linear case, since here power is 

exciting both modes equally, and is then 
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The Q is approximately half that of the linear case.   
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APPENDIX B 
 

ADDITIONAL ANTENNA DESIGNS 

Antenna B1: Modified from the antenna found in 3.1.3, the stacked patch L-probe GPS 

antenna, this design was reduced in size to 36×36×10mm, and achieved similar 

bandwidths of 8MHz at L2 and 16MHz at L1 with a smaller area, but a larger thickness. 
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Figure 69 – Dimensioned drawing and return loss for the 36×36×10mm antenna.  All 

dimensions are in millimeters. 
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Antenna B2: Modified from the antenna found in 3.1.3, the stacked patch L-probe GPS 

antenna, this design was reduced in size to 31×31×10mm, with slots in both the top and 

the bottom patches.   The antenna achieves smaller bandwidths of 7MHz at L2 and at L1 

a match that gives approximately 50MHz 3dB bandwidth, with no match at 2:1 VSWR, 

and a larger thickness.  This antenna would require further tuning to get L2 tuned down to 

the proper range, and L1 needs better impedance matching. 

 

 
Figure 70 - Wireframe drawing of the 31×31×10mm stacked patch antenna, showing the 

location of slots in both the top and bottom patch layers. 
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Figure 71 – Dimensioned drawing and return loss for antenna comparison with the 

theoretical Q limits.  All dimensions are in millimeters. 
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APPENDIX C 
 

HFSS CONDUCTIVITY CONSIDERATIONS 

Finite Conductivity Study 

Over the course of this research project, attempts were made to take advantage of the 

finite conductivity simulation options in Ansoft HFSS (High Frequency Structure 

Simulator) to better estimate performance of realistic antennas.  The HFSS software 

offers multiple options to handle the surface boundary conditions for a conductive patch: 

• Finite Conductivity Impedance -  models the surface as an impedance boundary 

condition where the tangential E field is related by  
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A patch simulation, using this method, is defined as an infinitely thin sheet with 

this boundary condition assigned.  Also allows an equivalent thickness to be 

assigned to the surface that attempts to model the effects of a finite thickness 

conductor.   

• PEC Boundary Condition – models surface as having zero loss, and no 

tangential electric field.  Patch antennas are usually modeled with a sheet layer 

assigned with a Perfect Electric Conductor boundary condition. 
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• Copper Volume – defines a copper volume as copper material with conductivity 

of σ = 5.8×107S/m.  Provides the option to solve on the surface only or to include 

the interior of the volume in the solution. 

In addition, there are meshing options: 

• Max Element Size – restricts the element size on a given surface to a maximum 

size, allowing the meshing to be set as desired. 

• Skin Depth Mesh – Allows a mesh to be developed to one skin depth thickness, 

while choosing the number of meshing layers used to mesh the skin depth. 

To compare these different options, two of the prototype antennas were simulated using 

various settings for conductivity in HFSS.  These results are compared to simulations 

using CST, and measured results. 

 The first comparison involves the antenna built on Rogers 5880 (εr = 2.2) for use 

as the transmit antenna in Appendix E, shown in Figure 89. 

 
Figure 72 - Patch antenna built for use as transmit antenna in far-field range.  Patch is 

66×85mm on a 120×120×3.175mm Rogers 5880 substrate. 
   

The simulations were carried out using: 

1. a copper volume 

2. a copper volume with a 1mm maximum element size 
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3. a copper volume with a skin depth mesh using 3 layers of mesh 

4. a finite conductivity surface of copper with zero equivalent thickness 

5.  a finite conductivity surface of copper with 1mil equivalent thickness 

6. a PEC sheet  

7. CST copper surface 

Figure 73 shows the return loss results for all seven methods, including the measured 

results.  For an antenna of this size, all of the HFSS simulations matched up well, with 

very little variation among them, despite the different methods employed.  The CST 

simulation also showed good agreement, with a slightly lower resonant frequency and 

approximately the same bandwidth.  The measured results show a resonant frequency 

very close to the simulation, although at a reduced bandwidth.  It is possible that the 

impedance match is affected by the 12×12” ground plane this antenna is mounted on, 

compared to the infinite ground plane used in the simulations. 
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Figure 73 – Comparison of the return loss results for all 8 methods. 
 
The results of the simulations and measurements are summarized in Table 2.   The HFSS 

simulations have little variation in bandwidth and resonant frequency, but vary 

considerably both in memory usage and simulation time.   

Solution Method B [MHz] fo [GHz] Memory # Tetrahedra 
Solution Time 

hr:min:sec 

  Measured 25 1.464 n/a     

H
F

S
S

 

Copper 36 1.453 712MB 21,826 0:13:26 

Copper 1mm 

mesh 35 1.454 2.14GB 115,076 1:26:21 

Copper Skin Depth 35 1.454 1.52GB 43375 0:37:10 

FC infinite thin 38 1.452 315MB 17,631 0:08:51 

FC 1mil thickness 38 1.452 314MB 17,631 0:09:36 

PEC 36 1.454 365MB 22,321 0:09:08 

  CST 40 1.448       

 
Table 2 – Summarized results of the measured and simulated data.  All simulations run 

on 64 bit WinXP, 2.4GHz Intel Core 2 Duo system (two active cores) with 4GB of RAM. 
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It is seen that there is little benefit gained by using the finite conductivity surfaces, 

compared to the PEC modeling, since the computational cost rose considerably while 

generating almost identical results.   

 Another example is the simulation of the patch antenna with four 9mm long, 1mm 

wide slots, on TMM10 dielectric material, Figure 74. 

 

Figure 74 – 27×27mm patch on 31×31×3.175mm TMM10 substrate, with four 9mm 
long, 1mm wide slots. 

 
The simulations were carried out using: 

1. a copper volume  

2. a copper volume with a 2mm maximum element size 

3. a copper volume with a 0.5mm maximum element size 

4. a copper volume with a skin depth mesh using 5 layers of mesh 

5. a finite conductivity surface of copper with zero equivalent thickness 
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6.  a finite conductivity surface of copper with 1mil equivalent thickness 

7. a PEC sheet  

8. CST copper surface 

The various conductivity methods are compared to CST and measured data, in Figure 75, 

and summarized in Table 3.  The gain of the antennas simulated using HFSS are shown in 

Figure 76 and summarized in Table 3. 
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Figure 75 – Comparison of simulation and measured data for the antenna with 9mm 

long, 1mm wide slots in the patch surface. 
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Figure 76 - Comparison of HFSS simulation gains for the antenna with 9mm long, 1mm 

wide slots in the patch surface. 
 

Solution Method 
B 

[MHz] 
fo [GHz] 

Max Gain 

[dB] 
Memory # Tetrahedra 

Solution 

Time 

hr:min:sec 

  Measured 7 1.454   n/a     

H
F

S
S

 

Copper* 7 1.494 4.1 1.98GB 31,940 0:47:08 

Copper** 7 1.494 4.1 3.58GB 40,852 1:52:36 

Copper  - 5 layer 

skin depth* 
7 1.495 4.1 3.15GB 34,736 1:45:23 

FC infinite thin* 9 1.487 3 2.5GB 36,031 1:02:19 

FC 1mil 

thickness* 
9 1.488 3 3.55GB 54,704 2:55:01 

PEC 6 1.488 4.2 1.52GB 23,210 0:26:52 

  CST 11 1.494         

 
Table 3 – Summary of comparison between simulated and measured data using different 
HFSS conductivity settings.  * indicates 2mm maximum element size, **indicates 0.5mm 
maximum element size.  All simulations run on 64 bit WinXP, 2.4GHz Intel Core 2 Duo 

system (two active cores) with 4GB of RAM. 
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All of the simulated resonant frequencies are within 8MHz, which is good agreement 

amongst the different methods.  All of the simulation methods show a resonant frequency 

on the order of 40MHz higher than that measured, which is within 3%.  This offset in 

resonant frequency is also shown for many slot lengths, in section 3.2.1.  One explanation 

might be tolerances in the milling process that was used to fabricate the antennas.  

 The simulated bandwidths are all within a few MHz of the measured antenna.  

The CST bandwidth is greater than the HFSS simulations, mainly due to the time domain 

solver used and the difficulties that arise when simulating high Q resonant structures.  

The infinitely thin finite conductivity layer showed the highest bandwidth out of the 

HFSS simulations, while the PEC simulation had the lowest.  Regardless, these 

bandwidth values are all very close, and once again the computational costs for the 

various conductivity methods do not produce a benefit for these antenna structures.   

 The maximum gain values vary between 4dBi for the PEC and copper cases and 

3dBi for the finite conductivity cases, shown in Figure 76.  The difference in efficiency is 

also reflected in the bandwidths, where the finite conductivity cases show an increased 

bandwidth compared to the PEC and copper cases.  The finite conductivity boundary 

condition results in too much loss on the patch, more than what is expected with a copper 

surface.   

 Considering the results of the large microstrip patch antenna on low permittivity 

material, and the small slotted patch antenna on TMM10, for this study it was determined 

that modeling using PEC surfaces suffices in predicting the performance of the antennas 
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while using less computer resources.  Throughout this thesis, all simulation results use 

PEC patch surfaces.   

 

Size of Radiating Air Volume 

 Finally, concern was raised over size of the radiation air box volume used in the 

HFSS simulations and the impact on antenna performance.   The antenna in Figure 74 

was simulated for an air box of volume 2a×2a×a, as shown in Figure 77.  Ansoft HFSS 

recommends a radiating box that extends at least / 4oλ  from the structure when using the 

radiation boundary condition.   

 

Figure 77 – 27×27mm patch antenna with four 9mm long, 1mm wide slots on TMM10 
substrate of size 31×31×3.175mm, with an air box of size 2a×2a×a. 

 
The results of the simulations are shown in Figure 78.  For a small air box where a = 

30mm, which places the radiating boundary at approximately / 8oλ  from the antenna 

structure, the impedance match of the antenna is shown to suffer, although the -10dB 
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bandwidth is nearly the same as the other cases.  As the air box size a is increased, the 

impedance match is approximately the same for each simulation.   
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Figure 78 – Simulated return loss for air box volumes of size a=30mm to a=140mm. 
 

For all simulations in this study, an air box of at least 160×160×80mm was used to ensure 

a large enough distance between the antenna and the radiation boundary.   
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APPENDIX D 
 

SLOT MAGNETIC FIELD VECTOR PLOTS 

The Ansoft HFSS simulations allow for visualization of the fields on the antenna, which 

were used to observe the effect of the slots on the fields.  Specifically, the magnetic field 

(H) was of interest in the slot, as well as the currents on the patch surface supporting this 

magnetic field.  These fields are shown in Figure 79, Figure 80 and Figure 81. 

 

Figure 79 - Plot of the magnitude of the H field at x=0 plane of the patch in Figure 34b, 
showing the concentration of field in the slots. 
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Figure 80 - Vector field plot of the magnetic field in the x=0 plane of the patch in Figure 

34b, showing the field penetrating the patch through the slot. 

 

Figure 81 - Vector plot showing the currents (YELLOW) on the patch surface around the 
slots, and the magnetic field (RED) inside the slot.  This shows the concentration of 

currents at the end of the slot producing the strongest magnetic field. 



 

106 
 

APPENDIX E 
 

MEASURED SLOTTED PROTOTYPE ANTENNAS 

Six antennas were fabricated at UMASS Amherst in order to validate the studies 

performed on the slot loading of the patch antennas.  The antennas were milled on 

31×31×3.175mm TMM10 substrates, with 2oz copper plating on both sides of the 

substrate material.  The antennas were probe feed using SMA connectors, and all of the 

antennas were mounted on 12×12” metallic ground planes for impedance measurements, 

and a pattern measurement was taken for the patch antenna with 9mm long, 1 mm wide 

slots. 
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Figure 82 - Measured return loss for the 6 prototype slotted antennas.  The dimension on 

the first line of each label denotes the slot length, and the second line denotes the slot 
width.  All antennas were mounted on a 12×12" ground plane. 



 

107 
 

 

 
Figure 83 - Built 27×27mm Patch Antenna on 31×31×3.175mm TMM10 substrate, with 

no slots. 
 
 
 

 
Figure 84 - Built 27×27mm Patch Antenna on 31×31×3.175mm TMM10 substrate, with 

3mm long, 1mm wide slots. 
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Figure 85 - Built 27×27mm Patch Antenna on 31×31×3.175mm TMM10 substrate, with 

6mm long, 1mm wide slots. 
 

 
Figure 86 - Built 27×27mm Patch Antenna on 31×31×3.175mm TMM10 substrate, with 

9mm long, 1mm wide slots. 
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Figure 87 - Built 27×27mm Patch Antenna on 31×31×3.175mm TMM10 substrate, with 

9mm long, 1.5mm wide slots. 
 
 

 
Figure 88 - Built 27×27mm Patch Antenna on 31×31×3.175mm TMM10 substrate, with 

9mm long, 3mm wide slots. 
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Also, radiation patterns were measured for the antenna shown in Figure 86.  The 

far-field range at UMASS Amherst is not equipped with standard gain horns at 1.5GHz, 

so a 66×85mm (L×W) patch was fabricated on 125mil thick Rogers 5880 substrate 

material to be used as the transmit antenna, and is shown in Figure 89 and Figure 90. 

 

 
Figure 89 - Patch antenna built for use as transmit antenna in far-field range.  Patch is 

66×85mm on a 120×120×3.175mm Rogers 5880 substrate. 
 

 
Figure 90 - Built transmit antenna for use in the far-field range. 

 
The antenna used for transmit was designed to have the same resonant frequency 

as the slotted patch with four 9mm long, 1mm wide slots, and was mounted on a 12×12” 

ground plane.  The patterns for the antenna for the antenna with 9mm, 1mm wide slots 

are shown in Figure 91 and Figure 92, the principle plane pattern cuts. 
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Figure 91 - E-plane pattern for the slotted patch antenna with four 9mm long, 1mm wide 

slots. 
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Figure 92 - H-plane pattern for the slotted patch antenna with four 9mm long, 1mm wide 

slots. 
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Figure 93 – Patch with four 9mm long, 1mm wide slots mounted on AUT positioner in 

the far field range.  The ground plane is 12×12”. 
 

 
Figure 94 - Transmit antenna mounted on tapered end of the far field range. 
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APPENDIX F 
 

EQUIVALENT CIRCUIT FOR WIDE SLOTS 

As the slot width increases, the circuit model is changed to take into account the 

capacitance loading both between the patch and the ground and across the slot itself, 

Figure 95. 

 

Figure 95 - Transmission line model for slot cut in a patch surface when the width of the 
slot is much greater than the substrate thickness.  The patch shown is on a 3mm thick 

substrate with 5mm wide slots. 
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APPENDIX G 
 

CAPACITOR LOADED PATCH ANTENNA 

The transmission line model is useful for predicting the resonant frequency 

performance of a microstrip antenna, and a modified form from section 3.1 is presented.    

 

Figure 96  - Transmission line model modified with the addition of a 2 lumped capacitors 
on the radiating slots of the microstrip patch antenna. 
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The modified model in Figure 96 allows for calculation of the resonant frequency of the 

antenna when the radiating edges are loaded with lumped capacitors, connected between 

the patch and ground.  The analysis makes use of equations 3.2 and 3.3, as well as the 

equations included specifically for capacitive loading on the radiating edges of the patch 

[2]. 

The equivalent length added by the shunt capacitance can be found using equation G.1 

[32]. 

 ( )1tan ,           1
l

l o
C l o l o

e e

cC Zc
L C Z C Zω ω

ω ε ε
−∆ = ≈ ≪  (G.1) 

Where Zo is defined as [9] 

 
377

1.393 0.667 ln 1.444
o

reff

Z
W W

t t
ε

=
  + + +  

  

 (G.2) 

and the new effective length is found using equation G.3. 

 2 2
leff jB CL L L L= + ∆ + ∆  (G.3) 

Note that ∆LjB is the same ∆L calculated in equation 3.4.  Finally, the resonant frequency 

is found using equation 3.5, included again as G.4. 

 ( )2
o

r

eff reff

c
f

L ε
=  (G.4) 

For a square patch with L=W=27mm on an infinite substrate of TMM10 (єr = 9.2) of 

thickness t = 3mm, the resonant frequency can be approximated using the analytic 

equations, with shunt capacitances ranging from 0-10pF. 
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Figure 97 – Resonant frequency behavior for varying the value of the lumped loading 
capacitor, calculated using the modified transmission line model shown in Figure 96. 
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APPENDIX H 
 

EFFECT OF SUBSTRATE THICKNESS ON RESONANT FREQUENCY 

Using equations 3.2-3.5, the resonant frequency of a 27×27mm square patch 

(Figure 98) on an infinite substrate of TMM10 (єr = 9.2) is calculated for various 

thicknesses t, shown in Figure 99. 

 
Figure 98 - Square 27×27mm patch antenna on an infinite substrate, thickness t, of 

TMM10 dielectric material. 
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Figure 99 - Change in resonant frequency with substrate thickness for 27×27mm patch 

on an infinite substrate of TMM10 dielectric material. 
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APPENDIX I 
 

VERTICAL WALL LOADED ANTENNA 

An additional example of capacitive loading is a patch antenna loaded with bent 

sections in the patch surface.  This antenna was explored and shows another application 

of the capacitive loading without using lumped element capacitors.  The antenna is 

formed by bending down the edges of a patch to lower the resonant frequency for one of 

the fundamental (TM010, TM100), modes on each of the patches.   

 

Figure 100 - Capacitively loaded antenna utilizing bent capacitive sections of the patch to 
generate a lower resonant frequency. 

 

L1 and L2 were then split between the two stacked patches, as shown in Figure 101.  The 

combination of resonant mode directions allowed for circular polarization to be obtained 

when the ports were fed in quadrature.   
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Figure 101 - Diagram of the tuning of both bands in both orthogonal directions when 
both patches were excited.  Shown are the field components at L1, L2 bands in the x, y 
directions and how when fed with 90° phase difference (j) generate proper CP at both 

bands. 
 

Ultimately, many tuning difficulties arose due to the asymmetries in the structure, 

which was very sensitive to changes in any of the feed positions or dimensions.  The best 

case return loss tuned for the antenna at L2 is shown in Figure 102.  This was obtained 

only after finely tuning the probe dimensions and placement, which showed large changes 

in tuning with very small changes in the physical parameters.  The main difficulty was 

tuning each polarization of each band to have the same RL response (to have equal 

amplitude), where the coupling mechanism is drastically different between the two 

modes.  A proper match in return loss for port 1 and port 2 was not obtained for both L1 

and L2 at the same time. 
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Figure 102 - Return loss of the side wall loaded stacked patch antenna with L-probe 
feeds. 
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