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ABSTRACT 
 

THE EVOLUTIONARY GENETICS OF SEED SHATTERING AND FLOWERING 
TIME, TWO WEED ADAPTIVE TRAITS IN US WEEDY RICE 

 
SEPTEMBER 2012 

 
CARRIE S. THURBER, B.S., FRAMINGHAM STATE UNIVERSTIY 

 
M.S., UNIVERSITY AT BUFFALO 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Ana L. Caicedo 

 
Weedy rice is a persistent weed of cultivated rice (Oryza sativa) fields worldwide, 

which competes with the crop and drastically reduces yields.  Within the US, two main 

populations of genetically differentiated weedy rice exist, the straw-hulled (SH) group 

and the black-hulled awned (BHA) group.  Current research suggests that both groups are 

derived from Asian cultivated rice.  However, the weeds differ from the cultivated groups 

in various morphological traits.  My research focus is on the genetic basis of two such 

traits: seed shattering ability and differences in flowering time.  The persistence of weedy 

rice has been partly attributed to its ability to shatter (disperse) seed prior to crop 

harvesting.  I have investigated the shattering phenotype in a collection of US weedy rice 

accessions and find that all US weedy rice groups shatter seeds easily.  Additionally, I 

characterized the morphology of the abscission layer at the site where seed release occurs 

and find that weeds begin to degrade their abscission layers at least five days prior to wild 

plants.  I also assessed allelic identity and diversity at the major shattering locus, sh4, in 

weedy rice and find that all cultivated and weedy rice share similar haplotypes at sh4.  

These haplotypes contain a single derived mutation associated with decreased seed 
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shattering during domestication.  The combination of a shared cultivar sh4 allele and a 

highly shattering phenotype suggests that US weedy rice have re-acquired the shattering 

trait after divergence from their crop progenitors through alternative genetic mechanisms.  

Additionally, my investigation into flowering time in weedy rice shows that weed 

populations differ in their flowering times.  I also assessed allelic identity and diversity at 

two genes involved in the transition to flowering, Hd1 and Hd3a, and again found 

haplotype sharing between weeds and cultivars with Hd1 only accounting for some of the 

flowering time differences between weeds.  In order to locate genomic regions containing 

additional candidate genes I conducted a QTL mapping study on two F2 populations 

derived from crosses of weedy rice with cultivated rice.  My results show sharing of QTL 

for flowering time between populations, yet lack of sharing of QTL for shattering.
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CHAPTER 1 
 

OVERVIEW OF DISSERTATION TOPIC 

1.1 Parallel Evolution 

The evolution of morphological similarities between different species can be 

homologous, arising from shared descent from a common ancestor, or homoplasious, 

independently derived from separate ancestors (Hodin, 2000).  Parallel evolution, also 

referred to as convergence, is a type of homoplasy, where two evolving populations have 

acquired the same trait independently (Hodin, 2000; Bollback & Huelsenbeck, 2009).  

For the purposes of this thesis, parallel evolution and convergence are used 

interchangeably to refer to independently evolved phenotypic similarities. 

Population genetic theory predicts that there will be a decrease in the probability 

of parallel evolution if there is an increase in the number of possible adaptive solutions 

(Bollback & Huelsenbeck, 2009).  If only one adaptive solution is viable, then there will 

be high levels of parallel evolution even among highly divergent species (Bollback & 

Huelsenbeck, 2009).  Similarly, Haldane (1931) posited that similar selective pressures 

lead to similar directions of heritable variation in closely related species.  Additionally, 

closely related species tend to vary in the same way phenotypically due to shared genetic 

biases, which may predispose these species to utilizing similar genes, and even similar 

mutations, to independently arrive at convergent phenotypes (Vavilov 1922; Schluter et 

al., 2004).  Whether or not these instances of parallel evolution actually are due to similar 

genetic changes is of major interest in evolutionary genetics (Nadeau & Jiggins, 2010).   

Parallel evolution occurs across many taxa ranging from insects to plants to 

higher eukaryotes and within traits ranging from disease resistance to flower color to 
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other adaptive traits.  It is unknown what the exact genetic mechanisms are that control 

many morphological traits as similarities can occur at different levels (i.e. the same 

nucleotide within the same gene, different nucleotides at the same gene, different genes 

within a similar pathway, or even different biochemical pathways).  Although there are 

many phenotypic examples in nature, only recently have scientists begun examining the 

genetic basis of some of these including the parallel evolution of adaptation to fresh water 

in two different populations of Pacific Ocean threespine stickleback (same gene, Schluter 

et al., 2004), parallel changes in pigmentation in fruit flies (multiple genes, Wittkopp et 

al., 2003), and parallel shifts in flower color and patterning across several angiosperm 

species (similar enzymes, similar gene families and similar cis-regulatory changes, 

Schwinn et al.,  2006; Des Marias & Rausher 2010; Streisfeld & Rausher 2009; Smith & 

Rausher 2011).   

Plants evolving in the agricultural environment, including domesticated crops and 

weeds, are ideal systems for the study of parallel evolution. The evolutionary process of 

domestication often involves selection for similar traits in different crops (i.e. artificially-

driven parallel evolution), which increase their usefulness to humans; likewise, plants 

invading crop fields experience selection for weedy traits that allow them to succeed in 

the agricultural environment. Many popular grass crops such as rice, corn, barley, and 

wheat have been selected for similar traits (e.g. increased selfing, uniform germination, 

and decreased seed shedding) despite having different centers of domestication 

worldwide (Purugganan & Fuller, 2009).  These adaptations may have allowed for 

increased germination in disturbed and deep soils as well as easier harvesting and higher 

yields.   
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Highly competitive invasive weeds, especially those that colonize agricultural 

fields, have also been selected for similar fitness related traits that help them out-compete 

neighboring domesticated plants for resources and produce more offspring (Basu et al., 

2004).   Traits such as rapid growth, high seed production, increased seed dispersal and 

deep roots have been characterized at the phenotypic level in several agricultural weeds 

including weedy rice, wild turnip, and Johnson grass, but the genetic mechanisms behind 

these traits is still not fully understood (Basu et al., 2004). Discovering the genes and 

alleles underlying weedy traits would allow us to determine, at the genetic level, what 

makes a plant weedy and to characterize the weedy niche (Basu et al., 2004).  By 

characterizing the genes underlying weedy traits, we can also determine to what extent 

common genetic mechanisms have evolved in the parallel evolution of weediness. 

 

1.2 Oryza as a Model System 

Cereal grasses are important both economically and scientifically, as the study of 

cereals has been a major driving force for research in genetics, development, and the 

evolution of plants (Paterson et al., 2005). Large databases and resources for different 

cereal species have been developed to answer questions in fields such as molecular 

evolution, diversity, and crop productivity (Paterson et al., 2005). Rice is a model system 

for the grasses due to its small genome size (389 Mbp), ability to be transformed, and the 

availability of two fully sequenced genomes of two subspecies of cultivated rice (O. 

sativa indica and O. sativa japonica; Goff et al., 2002; Yu et al., 2002).  Additionally, 

there are large amounts of germplasm and molecular resources available (Paterson et al., 

2005).  Benefits to having these data available include construction of detailed physical 
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maps, assistance in understanding the biological function of rice genes and improvement 

of current rice cultivars (Wing et al., 2005).  Research into rice has also benefited from 

the creation of large expressed sequence tags (EST) databases along with the 

development of copious amounts of marker data including sequence tagged sites (STS), 

simple sequence repeats (SSR), and single nucleotide polymorphisms (SNP). 

Within the genus Oryza there are twenty-two wild species that represent ten 

distinct genome types (Ammiraju et al., 2006). The two species of cultivated rice, O. 

sativa and O. glaberrima, are AA diploids, as are their wild ancestors O. rufipogon and 

O. barthii (Ammiraju et al., 2006).  Parallel evolution during rice domestication is 

possible, as rice domestication is thought to have occurred independently in at least three 

geographic locations, and cultivars share many domestication-related traits.  In the West 

African savanna, O. glaberrima was domesticated less than 3,000 years ago (Sweeny & 

McCouch, 2007).  In Asia, wild O. rufipogon gave rise to two separate domesticated 

divisions of O. sativa: indica/aus and japonica/aromatic (Figure 1.1; Caicedo et al., 

2007; Garris et al., 2005; Londo et al., 2006). Within these two domestication events 

there are multiple genetically differentiated varieties, each of which has been selected for 

different grain traits (shorter, fatter versus longer, slender), fragrance, and appearance, 

with the aus groups showing the most phenotypic variation (Oka, 1988; Bhattacharjee et 

al., 2002).  These genetic and phenotypic variations make rice a good system for 

answering evolutionary questions such as: What genes were under selection in the 

transition from wild to domesticated rice? What are the molecular mechanisms that 

control variety specific traits, such as flowering time variability? 
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1.3 Evolution of Weedy Rice 

In addition to cultivated rice, the Oryza genus also contains weedy forms of rice 

that have arisen in multiple regions of the world and as such are also suitable for parallel 

evolution studies. The American southern rice belt, which includes Mississippi, 

Arkansas, Louisiana, southern Missouri, and Texas, is the largest producer of rice in the 

United States, with smaller crops grown in California (FAOSTAT, 2008). All of these 

rice-growing areas, along with others worldwide, are infested with weedy rice, a weedy 

type of rice that invades cultivated rice monocultures.  Weedy rice is a major agricultural 

pest, as it is an aggressive competitor that spreads rapidly and reduces the quality of the 

rice harvest (Shivrain et al., 2010).  Weedy rice is highly adapted to the agroecosystem 

and is hard to fight with herbicides, as it is closely related to cultivated rice.  

Additionally, some weedy rice populations have evolved resistance to herbicides either 

de novo or from crossing with genetically modified rice crops (Shivrain et al., 2009).  

The emergence of weedy rice is often associated with direct seeding, rather than hand 

transplanting of seedlings, and intensive irrigation (Bres-Patry et al., 2001). 

Several hypotheses have been put forth to explain the evolutionary origin of US 

weedy rice.  These include contamination of cultivated fields with wild rice relatives, 

introgression of wild alleles into cultivated rice, or de-domestication of cultivated rice — 

the reversion of domesticated phenotypes into wild phenotypes — through feralization or 

accidental selection (Olsen et al., 2007).  The contamination of rice fields in the US with 

wild rice relatives is highly unlikely, as no wild Oryza are native to North America.  

Additionally, data has shown that US weedy rice as a whole shares most of its alleles 

with cultivated rice (Reagon et al., 2010). This implies that US weedy rice has arisen 
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through a process of de-domestication, and has reacquired many traits enhancing 

weediness after their loss during domestication. Interestingly, weedy rice collected in the 

US does not share a recent evolutionary origin with cultivars grown in the United States, 

although there is evidence of low-level hybridization with US cultivars in some minor 

weedy groups (Reagon et al., 2010).   

Within the US, there are at least two independent origins of weedy rice.  A study 

of 48 STS markers found that two subpopulations of weedy rice most likely originated 

from O. sativa indica and O. sativa aus cultivars (Figure 1.1; Reagon et al., 2010). The 

Straw Hulled (SH) group most closely resembles cultivated rice with a straw-colored hull 

with no awns and slightly larger grains, and likely originated from O. sativa indica.  The 

O. sativa aus descended Black Hulled & Awned (BHA) group often resembles O. 

rufipogon, with a black or brown colored hull, small grains, and long awns.  Often both 

types of weedy rice can be found in the same rice field (Shivrain et al., 2010).  The recent 

origin of weedy rice in the US (within the last 200 years) and the presence of population 

bottlenecks and multiple introductions makes US weedy rice a prime system for studying 

evolutionary processes.  Weedy rice is also ideal for investigating the genetic basis of 

parallel evolution as some traits have evolved to similar ends despite differences in 

population origin, and it is possible that the de-domestication of weedy rice involved 

alternative mutations in loci under selection during domestication. 

 

1.4 Definition of Weedy Traits 

There are several traits that could potentially enhance of the ability of weedy rice 

to invade and persist in rice fields.  These traits include increased seed shattering (seed 
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dispersal) compared to the crop as well as increased seed dormancy, differences in plant 

height, altered flowering times, hull coloration, and the presence of awns (Burgos et al. 

2006; Delouche et al., 2007; Shivrain et al., 2010).  Although no formal studies have 

shown that these traits increase weed fitness, instances can be imagined where these traits 

could be beneficial.   

Nearly all weedy rice shatters its seeds while cultivated rice does not, as they have 

been selected to retain their seeds during the domestication process to make them easier 

to harvest (Purugganan 2009).  At least two loci of large effect influencing degree of 

shattering have been cloned in cultivated rice (sh4 (Li et al., 2006) and qsh1 (Konishi et 

al., 2006), yet nothing is known about weedy rice alleles at these loci.  Additionally, if 

shattered seeds that enter the soil prior to crop harvest can remain dormant in the soil, 

they can increase the likelihood of perpetuating infestation of a field by persisting in the 

seed bank and contaminating fields as they are disturbed.  Studies have shown that 

although weedy rice can show a range in seed dormancy, most strains are moderately to 

highly dormant compared to most cultivars, where dormancy has been selected to be mild 

so as to prevent pre-harvest sprouting and encourage uniform germination (Gu et al., 

2003). Several QTL studies have attempted to map genes controlling dormancy in crosses 

between cultivated rice and Asian weedy rice (Gu et al., 2003; Gu et al., 2005a; Gu et al., 

2005b; Gu et al., 2005c). 

In terms of plant growth, a taller weedy plant can shade out cultivated 

competitors, yet a shorter weedy plant may avoid detection by weed scouts.  Thus, most 

weedy rice are either significantly taller or significantly shorter than domesticated rice 

(Shivrain et al., 2010).  Also, weeds with earlier flowering times can reproduce faster and 
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may be able to produce more seeds over its lifetime as well as disperse seeds prior to crop 

harvest (Sahli et al., 2008).  A recent study of several growth related traits in rice showed 

diversity in cultivated and weedy phenotypes.  Within cultivated rice, the flowering date 

and overall height of three major cultivar groups, aus, indica and japonica, were fairly 

similar (ranges of 75 to 80 cm and 100 to 113 days; Reagon et al., 2011).  Within weedy 

rice, SH weeds tended to be shorter and flower earlier than the BHA weeds and their 

progenitors indica.  Also, BHA weeds were a bit taller than their progenitors aus, and 

flowered significantly later.  At least one gene for plant height in rice is known (Sd1; 

Monna et al., 2002, Sasaki et al., 2002, Spielmeyer et al., 2002) while several genes for 

flowering time have been identified (Hd1 (Yano et al., 2000); Hd3a (Kojima et al., 

2002); Ehd1 (Doi et al., 2004)). Each of these genes is an excellent candidate for 

investigating weedy alleles contributing to growth habit differences. 

Lastly, there appears to be two different combinations of hull color and awning 

present in weedy rice.  As mentioned above, the SH population has a straw hull and no 

awn which allows it to blend in with the cultivated rice in a field and may aid in avoiding 

removal by farmers.  The BHA population has a dark pigmented hull and a long awn, 

which may aid in avoiding detection once on the soil but may be noticeable to farmers 

when still on the plant.  A study into barley awns has shown that photosynthesis is 

enriched in this organ, however, the exact function of the rice awn is unknown (Abebe et 

al., 2009).  It is possible that rice awns are involved in photosynthesis, seed dispersal, or 

even defense against herbivores, but genes for awn presence or length have yet to be 

cloned from QTL studies (Hu et al., 2011).  However, two loci for hull color changes, 

either black to straw (Bh4; Zhu et al., 2011) or gold furrowing on a straw hull 
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background (ibf; Cui et al., 2007), have been identified.  Nothing is known currently 

about weedy rice alleles at these loci. 

 

1.5 Questions of Interest 

Bollback & Huelsenbeck (2009) posed an important evolutionary question: “How 

often does parallel evolution occur when independently evolving lines are exposed to the 

same environmental challenge?” We can address this question using the weedy/cultivated 

rice system. The two main subpopulations of weedy rice (SH and BHA) both arose in 

agricultural fields in the US and were under similar selective pressures within the 

agroecosystem.  Additionally, both weedy rice subpopulations appear to have evolved 

from closely related varieties of cultivated rice (indica/aus). The research I conducted 

helps to answer questions regarding the incidence of parallelism as a contributing factor 

to the acquisition of weedy traits in the two main populations of US weedy rice.  I 

hypothesized that, due to the fact that both indica and aus rice subpopulations share 

recent common ancestors they should harbor similar genetic biases and, as a result, both 

weedy rice subpopulations should possess similar genetic mechanisms for acquiring 

weedy traits. 

The ultimate goals of my thesis were threefold:  1) to uncover the genetic 

mechanisms behind a convergent weedy trait (seed shattering); 2) to investigate the 

genetic mechanisms behind a divergent weedy trait (flowering time); and 3) to determine 

whether both weedy rice types possess novel alleles at genes known to have been selected 

upon during rice domestication.  My main focus has been on the seed shattering trait, as it 

is important for weed proliferation.  I first focused on exploring the genetic basis of these 
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traits through the study of candidate genes (qsh1/sh4) in chapter 2.  After finding 

convergence of the weed shattering phenotype with wild rice, O. rufipogon, but mediated 

through different genetic mechanisms, I explored the morphological basis of the 

shattering trait in chapter 3.  Concurrently, I also explored the genetic basis of flowering 

time in weedy rice by investigating candidate genes (Hd1 and Hd3a) in chapter 4 and 

found that the divergent weed phenotypes could not be completely explained by these 

two genes alone.  The lack of well characterized major effect genes contributing to the 

weed phenotypes prompted me to attempt to identify genomic regions underlying weedy 

trait evolution through QTL mapping in chapter 5, and assess the degree of parallel 

genetic evolution in weedy groups.  My dissertation research lays the basis for discovery 

of the genes underlying the evolution of weediness and the occurrence of parallel 

evolution in closely related agricultural weeds. 
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Figure 1.1 Relationships between wild, cultivated and weedy rice. 

During the domestication of wild Oryza rufipogon (pink), two major cultivated divisions 
of Oryza sativa (indica/japonica) arose and subsequently diversified into different 
varietal groups (blue).  Weedy rice (yellow) from the Southern US likely arose from 
cultivated ancestors indica/aus, while some weedy rice found outside the US is more 
closely related to cultivars of the japonica domestication lineage. 
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CHAPTER 2 
 

MOLECULAR EVOLUTION OF SHATTERING LOCI IN UNITED STATES 

WEEDY RICE 

2.1 Introduction 

Invasive weeds that colonize agricultural fields cost millions of dollars in crop 

losses and weed control measures every year. Many of these agricultural weeds share 

similar fitness-related traits that make them highly competitive with crop species. For 

example, rapid growth, deep roots, high seed production and increased seed dispersal 

allow weeds to acquire more resources, as well as to produce more offspring (Basu et al., 

2004). Efficient seed dispersal, in particular, may be a trait crucial to weed fitness. By 

increasing seed dispersal via ‘shattering’ or scattering their seeds, weeds can increase 

their presence in the seed bank and spread into new areas (Harlan & DeWet, 1965).  

Plants that shatter their seeds within agricultural fields can often avoid collection by 

farmers, and subsequent seed consumption/destruction, thus persisting within fields. 

Additionally, shattering at maturity is sometimes necessary to retain sufficient seed 

moisture for dormancy, a trait favored in agricultural weeds for winter survival and 

germination during the cropping season (Delouche et al., 2007; Gu et al., 2005b; Gu et 

al., 2005a). 

Most wild cereals, including wild relatives of rice, wheat and barley, have brittle, 

easily shed (shattering) seeds.  Cultivated cereals, however, have undergone selection for 

reduction of shattering during the domestication process, to increase the amount of seed 

harvested by humans (Harlan & DeWet, 1965). Reduced seed shattering is thought to be 

among the earliest and most important traits selected upon during grain domestication 
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(Fuller et al., 2009; Harlan, 1992). A reduction in seed shattering may have been favored 

over complete non-shattering to minimize labor during harvest (Li et al., 2006b; Sang & 

Ge, 2007a).  The shattering trait is thus under strong opposing selection in agricultural 

environments, with high levels of shattering favored in invasive weeds and reduced 

shattering in cultivated crops. 

Weedy or red rice is a weedy type of rice (Oryza sativa L.) that invades cultivated 

rice fields and costs United States farmers millions of dollars each year (Burgos et al., 

2008).  Weedy rice is an aggressive competitor, decreasing yields and contaminating rice 

harvests with off-color, brittle grains (Burgos et al., 2006; Cao et al., 2006). The 

appearance of weedy rice has been associated with a transition to direct seeding, and it is 

present worldwide, wherever rice is cultivated (Bres-Patry et al., 2001; Olsen et al., 

2007). Although morphologically diverse, a suite of possible weediness-enhancing traits 

tends to characterize weedy rice in the field; these include the presence of red pericarps 

(bran), high levels of dormancy, and high levels of seed shattering (Delouche et al., 2007; 

Vaughan et al., 2001; Gealy et al., 2003). Several of these traits are also found in the wild 

ancestor of cultivated rice, O. rufipogon, and other wild Oryza relatives, but weedy rice 

differs from truly wild species in its adaptation to the agroecosystem and presence of 

some traits characterizing cultivated rice (e.g. high selfing rate (Delouche et al., 2007)). 

There are multiple efforts underway to understand the worldwide origins of 

weedy rice groups. Hypotheses range from invasion of wild Oryza relatives, to 

hybridization among wild and cultivated groups, or de-domestication of cultivated rice 

varieties (Bres-Patry et al., 2001; Gealy, 2005).  In the United States, weedy rice is 

prevalent in the rice growing regions of the southern Mississippi basin (Gealy, 2005). No 
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Oryza species is native to the US, and the evolutionary origin of US weedy rice has been 

a source of debate since it was first documented in the 1840s (Delouche et al., 2007).  

Previous assessments of genetic diversity have determined that several populations of 

morphologically divergent weedy rice are present in the US (Gealy et al., 2002; Londo & 

Schaal, 2007; Reagon et al., 2010). The main populations of US weedy rice, designated 

after their most common grain morphology, include the straw-hulled (SH) group, 

characterized by straw-colored hulls, high yielding panicles and lack of awns, and the 

black-hulled awned (BHA) group, characterized by its greater height, black hulls and 

long awns (Gealy et al., 2002).  The BHA group is subdivided into two genetically 

distinct subpopulations, BHA1 and BHA2 (Reagon et al., 2010). A third group (BRH), 

characterized by brown hulls, is most likely a result of hybridization between the SH and 

BHA groups (Reagon et al., 2010). 

Studies have shown that US weedy rice shares most of its genome with Asian 

cultivated rice (Londo & Schaal, 2007; Reagon et al., 2010). Interestingly, US weedy rice 

does not share a recent evolutionary origin with cultivars grown in the US, which belong 

to the tropical japonica variety group, though there is evidence for limited hybridization 

(Reagon et al., 2010; Gealy et al., 2009). Instead, studies suggest that SH weeds are most 

closely related to indica, a cultivated rice variety typical of lowland tropical regions, 

while the BHA groups share a closer relationship with aus, a rapidly maturing, 

photoperiod insensitive rice variety from Bangladesh and Northeastern India. However, 

neither of these crop varieties has been cultivated in the southern US. Moreover, though 

patterns of genome-wide variation suggest that weedy rice is not directly descended from 
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wild rice (Reagon et al. 2010; Gealy et al., 2009), questions about possible contributions 

of wild rice to US weedy rice evolution remain.  

Recently, candidate genes underlying some domestication-related traits have 

begun to be identified in cultivated rice (e.g.: Fan et al., 2006; Gu et al., 2008; Xing et 

al., 2008).  Because these traits often differ between cultivated rice and wild/weedy 

relatives, candidate genes have opened up new sources of potential information about the 

evolution of weediness-enhancing traits. Combined with information about genome-wide 

patterns of polymorphism, candidate genes may help provide a complete picture of the 

evolutionary origin of weedy rice groups.  A recent investigation into a pericarp color 

candidate gene, Rc, revealed that US weedy rice groups carry alleles distinct from those 

in sampled cultivated or wild rice groups (Gross et al., 2010). Although genomic data 

suggests that US weedy rice originated from cultivated rice varieties, Rc data suggests 

that weeds are not direct descendants of cultivated rice (Gross et al., 2010; Reagon et al., 

2010).  However, because different key traits may have been selected at different stages 

of the domestication process (Purugganan & Fuller, 2009), weedy rice alleles at 

important domestication loci may tell complementary stories about the origins of weedy 

rice.  

As a trait crucial to modern cultivation and harvesting practices, there has been 

great interest in discerning the genetic basis of seed shattering in rice. To date, two 

quantitative trait loci (QTL) of large effect have been cloned, qsh1 and sh4/SHA1, each 

explaining over 70% of the variation in their respective crosses.  The qsh1 locus is a 

homeodomain gene, similar to Arabidopsis thaliana REPLUMLESS, which was isolated 

in a cross between two O. sativa varieties, aus and temperate japonica, that differ in their 
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shattering propensity (Konishi et al., 2006). A single nucleotide substitution in the 

regulatory region of the gene decreases the shattering ability in a subset of cultivated 

temperate japonica rice (Konishi et al., 2006; Zhang et al., 2009). 

The sh4 gene, encoding a nuclear transcription factor, was isolated from a cross 

between cultivated O. sativa indica and a wild species, O. nivara, and is involved in the 

degradation of the abscission layer between the grain and the pedicel (Li et al., 2006b; 

Lin et al., 2007). Highly shattering O. nivara possess very defined abscission layers, 

while non-shattering cultivated rice groups possess discontinuous abscission layers (Ji et 

al., 2006; Li et al., 2006b).  A single nonsynonymous substitution (G/T) in the second 

exon of sh4 has been shown to lead to diminished DNA binding with the SH4 protein and 

incomplete development of the abscission layer in non-shattering rice (Li et al., 2006b). 

Transgenic japonica plants expressing the wild O. nivara allele show a significantly 

increased ability to shatter (Li et al., 2006b).  Shattering QTL in the sh4 genomic region 

have been consistently identified in studies involving other crosses between cultivated 

varieties and wild rice (Cai & Morishima, 2000; Xiong et al., 1999). 

Sh4 is considered the most significant shattering gene to have been selected upon 

during domestication (Li et al., 2006b; Purugganan & Fuller, 2009).  Examination of sh4 

alleles has shown that all cultivated rice sampled to date shares the non-shattering T 

mutation, and most rice individuals share a common sh4 haplotype, despite the fact that 

at least two separate domestication events gave rise to cultivated Asian rice (Li et al., 

2006b; Zhang et al., 2009). The sharing of a common sh4 haplotype across divergent rice 

varieties has been attributed to a combination of introgression and strong positive 

selection (selective sweep) favoring a reduction in shattering in the crop during both 
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domestication processes (Sang & Ge, 2007a; Sang & Ge, 2007b; Zhang et al., 2009; Li et 

al., 2006).  

Here we assess patterns of polymorphism in weedy rice groups at the identified 

shattering genes and targeted flanking genomic regions, to determine the possible origin 

of the shattering phenotype in the US weed and contribute to understanding of US weedy 

rice evolution. The goals of the present study were to 1) assess levels of shattering in US 

weedy rice groups, 2) determine the origin of US weedy rice alleles at qsh1 and sh4, and 

3) determine the role each locus may play in the shattering phenotype of weedy rice. We 

find that the shattering associated single nucleotide polymorphism (SNP) at qsh1 has not 

played a role in the evolution of weedy rice, as all weeds, wild rice, and most cultivars 

share the ancestral allele at this locus. Moreover, although cultivated and weedy rice 

groups differ greatly in their shattering ability, all sampled weedy and domesticated 

accessions possess similar or identical alleles at the sh4 locus, suggesting that the 

domestication-associated T substitution at sh4 is not sufficient for loss of shattering. Our 

data supports a direct origin of US weedy rice groups from domesticated ancestors, and 

implies that genetic changes at other loci must be responsible for the re-acquisition of the 

shattering trait during the weed’s evolution. 

2.2 Methods 

2.2.1 Plant Material 

A phenotypically diverse sample of 58 weedy rice accessions, collected in the 

Southern US rice belt, was generously supplied by David Gealy (USDA) (Table 2.2).  An 

additional 87 samples of diverse Oryza species were included in the study as potential 
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sources of weedy rice alleles.  Cultivated rice accessions belong to five variety groups of 

Asian O. sativa: indica (9 samples), aus (7), tropical japonica (8), temperate japonica 

(4), and aromatic (3).  Thirteen additional accessions of tropical japonica cultivars grown 

in the U.S were included.  Other Oryza included geographically diverse samples of O. 

rufipogon (30), the wild ancestor of cultivated Asian rice, O. nivara (2), an annual plant 

that some consider an ecotype of O. rufipogon (Zhu & Ge, 2005), O. glumaepatula (2), a 

wild rice from South America, O. glaberrima (4), cultivated African rice, and O. barthii 

(2), the wild ancestor of domesticated African rice. O. meridionalis, a species native to 

Oceania, was included as an outgroup. All plants were grown for DNA extraction as 

described in Reagon et al. (2010).   

2.2.2 Measurement of the Shattering Phenotype  

A subset of 90 Oryza accessions, representing selfed progeny of plants grown for 

DNA extraction, was grown for phenotyping in a completely randomized block design in 

two Conviron PGW36 growth chambers at the University of Massachusetts Amherst 

(Table 2.2).  Two seeds per accession, one per chamber (block), were planted in 4-inch 

pots and randomly assigned locations within a chamber.  Watering and fertilizer 

schedules were the same in both chambers and plants were exposed to 12-hour light/ dark 

cycles. Upon heading, typically two to three months after germination, panicles were 

bagged to prevent pollen flow and loss of seeds.  At 30 days after heading, panicles were 

tested for shattering using a digital force gauge (Imada, Northbrook, IL). Shattering was 

measured as Breaking Tensile Strength (BTS) (Konishi et al., 2006; Li et al., 2006b), 

which is the amount of weight a seed can bear before releasing from the pedicel at the 

abscission layer. Briefly, panicles were suspended from a ring stand and an individual 
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seed clipped with a small (~1 g) binder clip.  Seeds that released at or prior to this point 

were recorded as zeros and considered highly shattering. For seeds remaining on the 

panicle, the force gauge was hooked onto the binder clip and the peak measurement upon 

grain removal was recorded. Preliminary trials revealed that considerable variation could 

occur within panicles of cultivated varieties; thus, 25 randomly chosen seeds per plant 

were measured across two panicles and averages were calculated for each individual. 

Chamber effects on shattering were non-significant (P > 0.15), as determined by a 

Kruskal-Wallis non-parametric rank test, and were not considered in subsequent analyses. 

2.2.3 DNA Extraction, Genotyping, and Sequencing 

DNA was extracted as described in Reagon et al (2010).  CAPs markers (Neff et 

al., 2002) were used to determine the qsh1 allele in all individuals (Table 2.3). Variation 

at sh4 was determined by DNA sequencing of the entire open reading frame, the 

promoter and a downstream region of the gene (Table 2.3). Additionally, six ~500 base 

pair (bp) regions of genes increasingly distant from the sh4 locus (several kilobase pairs 

(Kb) to several megabase pairs (Mb)) were sequenced spanning a region of 5.6 Mb 

(Table 2.3).  Primers were generated using Primer3 (Rozen & Skaletsky, 2000) based on 

the O. sativa japonica (var. Nipponbare) genome (TIGR v. 5 January, 2008).  Initial PCR 

amplification and DNA sequencing was performed by Cogenics (Houston, TX) as 

described previously (Caicedo et al., 2007; Olsen et al., 2006). Additional PCR 

amplification was performed on a 500 bp region surrounding the loss-of-shattering 

associated SNP using LA Taq and GC rich buffer (TaKara) with added glycerol and 

DMSO. Sequence alignment, including base pair calls, quality score assignment and 

construction of contigs, was performed as described previously (Caicedo et al., 2007) 
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using BioLign Version 2.09.1 (Tom Hall, NC State Univ.). DNA sequences obtained for 

this study have been deposited in GenBank under accession numbers GU220907-

GU221904. 

2.2.4 Data Analysis 

Summary statistics for the sh4 locus and flanking genes for each population of 

interest were calculated as described previously (Caicedo et al., 2007). Statistics include 

Watterson’s estimator nucleotide variation (θW), the average pairwise nucleotide diversity 

(θπ) (Nei & Li, 1979), and Tajima’s D (Tajima, 1989) for silent, synonymous, 

nonsynonymous, and total sites (Table 1).  Site type determination was based on 

annotations of the O. sativa genome (TIGR v. 5 January, 2008).  Significance of Tajima’s 

D values was tested using DNAsp (Rozas et al., 2003).  Genealogical relationships 

among sh4 alleles and flanking fragment alleles were determined with Maximum 

Parsimony (MP) and Neighbor Joining (NJ) analyses as implemented in MEGA 4 

(Tamura et al., 2007). Both analyses considered pairwise deletion of gaps/missing data. 

Distances were calculated using the Kimura 2-parameter model; branch bootstrap 

estimates were obtained from 1000 replicates. Heterozygotes were rare in our dataset, 

occurring occasionally only in O. rufipogon. When present, heterozygotes were phased 

using PHASE 2.1 prior to phylogenetic analyses (Stephens et al., 2001; Stephens & 

Scheet, 2005), and no ambiguity was observed.  For all loci, both NJ and MP trees 

produced similar results, so only the NJ trees are shown.  Extended Haplotype 

Homozygosity (EHH) across the sampled genomic region containing sh4 was calculated 

as described by (Sabeti et al., 2002), to test for extended linkage disequilibrium around 

the putatively selected mutation and assess the possibility of a selective sweep. 
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2.3 Results 

2.3.1 The Shattering Phenotype in Weedy, Wild and Cultivated Rice 

We recorded the degree of seed shattering for 90 accessions representing multiple 

groups of weedy, wild, and cultivated Oryza (Table 2.2; Figure 2.1). Degree of shattering 

is a quantitative and highly variable trait (Ji et al., 2006).  Our measurements revealed 

that some cultivated rice individuals show high variability in shattering within a single 

panicle (Table 2.2), with BTS for individual seeds occasionally varying by 10 to 200 

grams (g); however, extreme differences in BTS values, when present, occur for very few 

seeds within a panicle. In contrast, variation in shattering levels within panicles is much 

lower in weedy and wild rice accessions (Table 2.2). For all samples, mean and median 

shattering values are typically within 10 g. 

Mean shattering differences among all measured Oryza accessions ranged widely, 

with values close to 0 g corresponding to a highly shattering phenotype, and values close 

to 100 g corresponding to complete non-shattering (Figure 2.1; Figure 2.5). In practice, 

BTS values of 5 g or less are considered shattering, as these seeds can be easily brushed 

off during measuring device attachment. Broad differences were observed across Oryza 

groups, and a Kruskal-Wallis test confirmed that variety has a significant effect on 

shattering levels (P = 0.0013).  

Although lack of shattering is a hallmark of rice domestication, cultivated Asian 

rice varieties display a range of seed shattering phenotypes, with BTS values ranging 

from nearly zero to 140 g (Figure 2.1; Table 2.2). The aus group, in particular, shows a 

much narrower range of values (0-50 g), compared to indica (5-140 g) and tropical 
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japonica (10-120 g) (Figure 2.1). Additionally, one indica and one aus accession in our 

sample have average BTS values less than 5 g and may be considered shattering.  

In contrast to cultivated rice, almost all of the wild Asian rice, O. rufipogon and 

O. nivara (Figure 2.1), show BTS values of zero, indicating that the species are highly 

shattering. All weedy rice accessions, with the exception of a single individual (1B06, 

Table 2.2), show a propensity to shatter, registering BTS values very close to zero. Non-

shattering weedy accession 1B06 has been shown to possibly have mixed ancestry (MIX) 

(Reagon et al., 2010), and may have acquired additional non-shattering alleles through 

hybridization with cultivated rice. A single observed non-shattering O. rufipogon 

accession (2C04), on the other hand, does not resemble cultivated rice phenotypically or 

genetically (Reagon et al., 2010), suggesting that the non-shattering phenotype is not due 

to introgression from the crop. 

2.3.2 Diversity at the qsh1 Locus 

We genotyped Oryza accessions at the qsh1 locus, to determine whether the 

previously identified mutation (Konishi et al., 2006) might play a role in the shattering 

phenotype of weedy rice. All weeds and the majority of rice cultivars were found to have 

the ancestral SNP, which also characterizes O. rufipogon and wild rice species, and is 

associated with higher levels of shattering (Table 2.2).  Consistent with results from other 

research groups, we find that the non-shattering mutation is limited to two of our 

accessions belonging to the temperate japonica group (Table 2.2), and that the SNP is 

most likely not involved in variation in shattering levels outside of a small group within 

this cultivated variety (Konishi et al., 2006; Zhang et al., 2009).  
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2.3.3 The Genealogy of sh4 

 To determine if the shattering locus, sh4, may underlie variation in shattering 

levels among cultivated and weedy rice, we sequenced the gene in a panel of 144 samples 

from weedy, cultivated and wild rice groups.  The 3.9 kb of aligned sequence data 

includes the intron and both exons, plus 1040 bp of the promoter region upstream, and 

550 bp downstream of the sh4 gene. 

Relationships among haplotypes at the sh4 locus (Figure 2.2; Figure 2.5) reveal a 

highly supported clade defined by the derived T mutation. As observed in previous 

research (Li et al., 2006b; Zhang et al., 2009), all cultivated rice accessions sampled 

carry this mutation, which is associated with loss of shattering. Moreover, the majority of 

cultivated rice accessions share an identical haplotype across the 3.9 Kb sh4 region that 

we characterized. Three cultivars in our sample, one aromatic, one tropical japonica and 

one aus, differ from the common cultivated sh4 haplotype by two, one and one nucleotide 

substitutions, respectively (Figure 2.2; Figure 2.5). These four SNPs have not been 

reported in other studies of the sh4 locus to date, despite the detection of at least seven 

other low-frequency cultivated sh4 haplotypes not detected here (Zhang et al., 2009).  

The two aromatic SNPs were the only ones found to occur in coding regions; one 

substitution alters amino acid 104 from a polar Serine to non-polar Tryptophan, possibly 

resulting in the shattering phenotype in this individual (Figure 2.6).   

Eighteen sh4 haplotypes were observed within wild O. rufipogon accessions. 

While the majority of the detected haplotypes are divergent from cultivated sh4 alleles, 

six accessions carry an identical haplotype as the majority of cultivated rice, and two 

accessions carry haplotypes that differ by only one and three SNPs from this cultivated 
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haplotype (Figure 2.2; Figure 2.5).  Additionally, both O. nivara accessions sampled in 

this study have the same haplotype as the majority of cultivated rice (Figure 2.5). These 

wild accessions were all found to shatter their seeds (BTS ~0 g, Table 2.2).  The 

existence of shattering rice with the non-shattering T allele at sh4 has not been previously 

reported (Li et al., 2006b; Zhang et al., 2009), and indicates that the presence of this 

mutation alone is not sufficient to confer a reduction in shattering. Surprisingly, the 

single non-shattering O. rufipogon individual in our sample (2C04) does not carry the T 

mutation in sh4. 

Contrary to our expectations, given their high propensity to shatter, all weedy rice 

accessions sampled carry the non-shattering associated T nucleotide in sh4.  Moreover, 

the majority of weedy rice accessions, ~70%, have sh4 haplotypes identical to the most 

common haplotype in cultivated rice. Four additional novel sh4 haplotypes were detected 

in the 18 remaining accessions of weedy rice. Each of the four unique haplotypes differs 

from the main cultivated haplotype by a single SNP and is not shared with any cultivated 

or wild rice groups (Figure 2.5; Figure 2.6). Additionally, three of these SNPs are 

predicted to cause amino acid replacements and may have functional consequences. 

2.3.4 Genealogy of the sh4 Genomic Region  

To further elucidate the possible origin of sh4 alleles in weedy rice, we examined 

phylogenetic relationships at loci increasingly distant from sh4 in both the 5’ and 3’ 

directions in the genome. Six ~500 bp loci were chosen for analysis, spaced 7.9 kb, 600 

kb, and 1.2 Mb from sh4 on the 5’ side of the gene and 300 kb, 1.1 Mb and 2.4 Mb from 

sh4 on the 3’ side of the gene (Table 2.3).  Further exploration on the 5’ side of sh4 was 

not carried out, as the final fragment is within 50 kb of the telomere and only one other 
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gene exists within this region.  Two additional loci downstream of sh4, sts_040 and 

sts_021, examined in a previous study (Reagon et al., 2010), were also included in our 

analyses. The furthest locus, sts_021, is 7.9 Mb away from the centromere; thus, our 

sampling encompasses over two-thirds of the chromosome arm containing sh4 (~16 Mb). 

Phylogenies of the eight selected loci surrounding sh4 were produced to visualize 

changes in relationship of weedy, wild and cultivated alleles with distance from the sh4 

locus (Figure 2.2).  Because of their likely hybrid origin and rarity in US rice fields 

(Reagon et al., 2010), BRH and MX groups were excluded from these phylogenetic 

analyses.  

The resolution of relationships among Oryza groups varies greatly according to 

the diversity at each locus (Figure 2.2). Because multiple sources of evidence support a 

minimum of two separate rice domestication events (e.g. Sang & Ge, 2007a; Vaughan et 

al., 2008), we examined the sh4 genomic region to determine at what point cultivated 

groups began to separate into distinct clades.  Similar to sh4, most cultivated rice 

individuals share a single haplotype in the two closest flanking fragments sampled 

(sh4f_003 and sh4f_004; Figure 2.2). This is consistent with hitchhiking of linked regions 

during selection on sh4; however, these loci are also highly conserved within all Oryza 

(Table 2.3). In the region upstream of sh4, multiple clades of domesticated rice appear 

~600 kb (fragment sh4f_002), primarily due to diverse haplotypes in the aus and 

japonica groups.  This trend continues 1.1 Mb upstream (fragment sh4f_001), but a clear 

separation into the two domesticated clades (japonica vs. aus and indica) is not seen.  

Downstream of sh4, greater haplotype diversity among cultivars is evident in fragment 

sh4f_005, ~1.1 Mb away and the remaining fragments. However, unlike many STS 
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fragments previously examined (Caicedo et al. 2007), strong divergence of the two 

domesticated clades is not observed, with haplotype sharing evident among cultivated 

varieties in the sampled regions. This suggests that the effect of positive selection on sh4 

during rice domestication is evident throughout the genomic region sampled (see below).  

In most fragments flanking sh4, weedy rice groups share haplotypes with 

cultivated rice varieties (Figure 2.2).  As expected, weedy groups tend to share 

haplotypes with their putative ancestors; thus, the majority of SH weeds group with 

indica cultivars (e.g. fragment sh4f_001), and the majority of BHA1 and BHA2 weeds 

group with aus cultivars.  However, novel weed haplotypes were also observed in some 

fragments sampled; for example, some BHA1 and BHA2 weeds (11 accessions) share an 

identical haplotype in fragment sh4f_002 not seen in any other Oryza group.  Moreover, 

in nearly every clade containing both weeds and cultivars, some wild Oryza, principally 

O. rufipogon or O. nivara, is also present (Figure 2.2).  

Because a simple look at genealogical relationships within individual fragments in 

the sh4 genomic region does not immediately reveal the source of weedy sh4 alleles, we 

examined concatenated SNP haplotypes across the region (Figure 2.3). Within 6.2 Mb 

(up to sts_040) surrounding sh4, 13 SH weed accessions are identical to a single indica 

accession (2B02), and seven SH weeds and a single BHA1 weed are identical to three 

indica cultivars.  Additionally, two BHA1 and four BHA2 accessions are identical to a 

single aus accession (3A06).  When the region 14 Mb away from sh4 is included 

(sts_021) only the weeds identical to the aus accession remain grouped, indicating a 

breakdown of the other associations due to recombination. The lack of extended 
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haplotype sharing between weeds and tropical japonica, suggests that weeds cannot have 

acquired sh4 alleles through introgression with the local crop. 

We also examined concatenated SNP haplotypes for O. nivara or O. rufipogon 

accessions sharing the common domesticated sh4 haplotype. The seven SH and single 

BHA1 accessions that share extended haplotypes with the three indica cultivars, are 

identical to a single O. nivara (2F01) and a single O. rufipogon (2C09) across a 6.2 Mb 

region (Figure 2.3).  Once the region 14 Mb away is added, these two wild accessions no 

longer group with the weeds yet still group with two indicas. Of the remaining wild 

accessions, a single O. rufipogon (2D06) is identical to a single indica (3A11) accession, 

but none possess haplotypes identical to weeds or cultivars across the sh4 genomic 

region. The greater sharing of extended haplotypes between weeds and cultivars than 

between weeds and wild rice strongly suggest that weedy rice populations have inherited 

the derived sh4 T substitution from domesticated ancestors.  

2.3.5 The Impact of a Selective Sweep in the sh4 Genomic Region 

 The ubiquity of the derived sh4 T substitution among cultivated rice accessions, 

stemming from multiple domestication events, suggests that sh4 has been subjected to 

strong positive selection during the domestication process (Vaughan et al., 2008; Zhang 

et al., 2009). To determine how positive selection on sh4 in cultivated rice has affected 

sh4 diversity in weedy rice groups, we assessed levels of genetic diversity at the sampled 

regions. As expected, silent site nucleotide diversity at sh4 is very low in cultivated rice 

(Figure 2.7, Table 2.1).  Values for indica, aus and tropical japonica, the three rice 

varieties most likely to have contributed to weedy rice, are all over an order of magnitude 

smaller than genome-wide averages estimated from a set of 111 STS loci (1.9, 1.9, and 
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1.6 per kb, respectively) (Caicedo et al., 2007). A recent study reported higher levels of 

sh4 variation in cultivated groups, but still well below genome averages (Zhang et al., 

2009). Conversely, sh4 nucleotide diversity in O. rufipogon (Table 2.1) is close to the 

genomic average (~5.2 per kb) (Caicedo et al., 2007) and in line with the diversity seen 

in Zhang et al. (2009). 

The three main groups of US weedy rice also show a reduction in nucleotide 

diversity at sh4, but the level of reduction differs among groups.  Silent site nucleotide 

diversity values for SH, BHA1 and BHA2 range from 0 to 0.2 per kb (Table 2.1), while 

their genome wide averages based on 48 STS loci are 0.692, 0.829 and 0.657, 

respectively (Reagon et al., 2010).  In general, the reduction in diversity at sh4 compared 

to genomic values in weedy rice groups is less drastic than in cultivated rice, perhaps due 

to the genome-wide low levels of diversity associated with the bottlenecks giving rise to 

weedy groups (Reagon et al., 2010). Surprisingly, the BHA2 group showed only a mild 

decrease in diversity at sh4 and a positive Tajima’s D (Table 2.1), consistent with the 

presence of two moderate frequency haplotypes. 

 In cultivated and most weedy rice groups, there is also a decrease in diversity, to 

differing degrees, in genes flanking sh4 (Table 2.1). The majority of loci sampled show 

diversity below the genome average within all cultivars. The indica, aus and tropical 

japonica groups have negligible amounts of diversity in fragments sampled up to 1.2 Mb 

on 5’ side (sh4f_002) and 1.1 Mb on 3’ side (sh4f_005) (Table 2.1), consistent with a 

selective sweep in the region. However, these fragments also show low levels of diversity 

in O. rufipogon, in line with overall reduced diversity previously reported on this arm of 

chromosome 4 (Mather et al., 2007). Remarkably high levels of diversity are evident in 
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the furthest locus sampled from the sh4 gene, sts_021, which shows a particularly drastic 

increase in diversity in indica and tropical japonica varieties. 

Most loci sampled in the sh4 genomic region show no diversity in the three major 

weedy rice populations, consistent with the proposed bottlenecks at founding (Reagon et 

al., 2010). Remarkably, however, some fragments in the sh4 genomic region display 

higher levels of diversity in weedy groups than their putative progenitors (Table 2.1; 

Figure 2.7). In particular, the BHA2 group is highly diverse at sh4 and locus sh4f_002; 

because some BHA2 haplotypes at these loci are not found in other cultivated or wild 

Oryza groups sampled (Figure 2.2; Figure 2.5), high diversity levels may be due to 

inheritance from diverse unidentified ancestors, or new mutations since the origin of the 

weedy group. 

 To further assess the genomic impact of selection on the sh4 T substitution in 

cultivated rice, and subsequent inheritance in weedy rice, we determined the breakdown 

of linkage disequilibrium (LD) across the sh4 region using the Extended Haplotype 

Homozygosity (EHH) analysis (Sabeti et al., 2002).  As expected, homozygosity breaks 

down most quickly for the O. rufipogon group possessing the ancestral G substitution in 

sh4, within 100 bases of the SNP (Figure 2.4A). For O. rufipogon accessions containing 

the derived T substitution, breakdown occurs more slowly, consistent with its derived 

status. For both groups homozygosity is at or near zero within 1.1 Mb downstream of the 

mutation. 

In contrast to wild rice, and indicative of strong positive selection on sh4, 

cultivated rice groups all have more extensive haplotype homozygosity throughout the 

examined genomic region (Figure 2.4B). Particularly noteworthy is the fact that indica 
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shows no breakdown of homozygosity within sh4, although the aus and tropical japonica 

groups do.  No group reached an EHH value of zero upstream of sh4 within the region 

sampled; however, downstream of the gene, tropical japonica is the first group to reach a 

homozygosity value of zero. These patterns of LD suggest that sh4 originated in the 

ancestors of tropical japonica and subsequently introgressed into indica, where there may 

have been less time for recombination to lead to breakdown of LD. 

Homozygosity patterns for weed groups in the sh4 genomic region are similar to 

those of the cultivars above but show a much slower breakdown of LD overall (Figure 

2.4C).  Unlike cultivated rice, however, all weedy groups possess unique SNPs within 

sh4.  This accounts for the initial breakdown of homozygosity within the gene. The high 

levels of homozygosity observed for weedy groups are consistent with inheritance of sh4 

alleles from ancestors with low levels of diversity and high levels of LD within the sh4 

genomic region. 

2.4 Discussion 

The loss of shattering as a seed dispersal mechanism is a key domestication trait, 

distinguishing cultivated cereals from their wild relatives. Seed shattering is also a trait 

associated with weed fitness, with increased levels of seed dispersal likely favored in 

weeds infesting agricultural systems (Harlan & DeWet, 1965). Recent advances 

dissecting the genetic basis of seed shattering variation in cultivated and wild rice 

(Konishi et al., 2006; Li et al., 2006b; Lin et al., 2007) offer a unique opportunity to 

assess the evolution of this fitness-related trait in populations of weedy rice. 

Multiple populations of weedy rice with independent origins exist in the US 

(Londo & Schaal, 2007; Reagon et al., 2010; Gealy et al., 2009). Surveys of 
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polymorphism have shown that the main populations of US weedy rice share genetic 

backgrounds with, and are possibly descendants of, indica and aus cultivated rice 

varieties (Londo & Schaal, 2007; Reagon et al., 2010). We have confirmed that all US 

weedy rice populations are highly shattering (Figure 2.1). The near complete lack of 

variability in this trait across weedy rice groups contrasts with the variance in shattering 

levels in cultivated rice varieties. The fact that all weedy rice shatters, despite separate 

origins of major weedy rice groups, suggests that shattering is a trait strongly selected for 

during weedy rice evolution. Coupled with genomic data indicating weedy rice origins 

from non-shattering ancestors, this pattern gives rise to questions about how weeds have 

acquired the shattering trait. 

Environmental variation is known to affect the seed shattering trait in cultivated 

rice (Ji et al., 2006), and thus our shattering measurements could differ from those 

obtained under field conditions.  However, extensive qualitative assessments of US 

weedy rice in single and multiple US rice fields report the US weed as highly shattering 

(e.g. Gealy et al., 2003; Noldin et al., 1999; Delouche et al., 2007; Oard et al., 2000). 

Thus, our growth-chamber measurements of shattering levels in weedy rice seem 

consistent with observations in the weed’s native environment. Likewise, multiple studies 

report wild rice as highly shattering in field conditions examined outside of the US (e.g. 

Cai & Morishima, 2000; Xiao et al., 1998), consistent with our results. Lastly, our 

measurements of US cultivated tropical japonica varieties are consistent with low 

shattering levels of the crop in US rice fields (Table 2.2). Thus, our measurements of 

shattering under growth chamber conditions seem to accurately reflect known phenotypes 

of weedy and cultivated rice in US fields. 
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To date, two loci of large effect have been shown to underlie the seed shattering 

trait in cultivated rice: qsh1 and sh4 (Konishi et al., 2006; Li et al., 2006b; Lin et al., 

2007), As reported by others (Konishi et al., 2006; Zhang et al., 2009), we found that the 

qsh1 shattering associated SNP is only relevant to shattering variation within the 

cultivated temperate japonica group, where some individuals possess a derived mutation 

associated with extreme loss of shattering. All US weedy rice individuals possess the 

ancestral allele that is common in all non-temperate japonica cultivated and wild rice 

groups (Table 2.3).   

In contrast to qsh1, sh4 is considered to be a key gene under strong selection 

during rice domestication (Zhang et al., 2009).  We found that all cultivated rice 

individuals examined are fixed for a T substitution in exon 1 of sh4 (Figure 2.5), which is 

associated with loss of shattering (Li et al., 2006b). Moreover, consistent with prior 

observations (Li et al., 2006b; Lin et al., 2007; Zhang et al., 2009), the majority of rice 

cultivars share an identical haplotype at sh4, suggesting a single origin of the non-

shattering allele in domesticated rice.  Surprisingly, despite their ability to shatter, our 

survey revealed that all US weedy rice accessions carry the T substitution associated with 

non-shattering at sh4, and that most weeds share the common cultivated sh4 haplotype 

(Figure 2.2; Figure 2.5). This demonstrates that the T substitution characteristic of 

cultivated sh4 alleles is not sufficient for reduction of shattering in all genetic 

backgrounds.  

Unequivocal determination of the ancestry of weedy rice from sh4 sequence data 

is complicated by detection of the common cultivated sh4 haplotype at low frequencies in 

wild rice accessions (six out of 30 O. rufipogon). Three other surveys of sh4 diversity, 
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which have included O. rufipogon samples complementary to our own (> 50), have not 

detected the common cultivated sh4 haplotype in any O. rufipogon (Li et al., 2006; 

Zhang et al., 2009; Lin et al., 2007), which supports our conclusions regarding the rarity 

of this allele within wild rice. Interestingly, the wild rice accessions possessing the 

common cultivated sh4 haplotype share at least 50% genomic identity with cultivated rice 

(Reagon et al., 2010), suggesting they may have acquired these alleles through 

introgression; however, intermediate crop-wild morphologies have not been observed for 

these accessions (e.g. height, tillering, hull color, awns, etc.), and an ancestral existence 

of these alleles in wild rice cannot be completely ruled out. 

We consider weedy inheritance of sh4 alleles from wild ancestors unlikely for 

several reasons: 1) inheritance of the common cultivated sh4 haplotype in the 

independently evolved SH, BHA1, and BHA2 weedy rice groups is more likely to have 

occurred from a group where the haplotype is nearly fixed (cultivated rice), than from 

one where it is rare; 2) for loci sampled across a 15.2 Mb genomic region surrounding 

sh4, clades containing SH weeds tend to contain at least one indica cultivar and clades 

containing BHA weeds tend to contain at least one aus, as expected from their genomic-

inferred ancestry; 3) three distinct extended haplotypes across a 6.2 Mb genomic region 

containing sh4 are shared among cultivated and weedy rice accessions, whereas a single 

extended haplotype is shared with wild rice (Figure 2.2; Figure 2.3). 

Our identification of the main “cultivated” sh4 haplotype in all US weedy rice 

groups constitutes the strongest evidence to date of an origin of these weeds from 

domesticated ancestors. If weeds inherited their sh4 alleles from domesticated rice, two 

mechanisms could account for the novel SNPs carried by some weedy accessions at sh4 



 

34 

and other sampled loci. The SNPs could have accumulated through mutation since 

divergence from cultivated ancestors, possibly aided by release from selection for non-

shattering at sh4. Novel SNPs could also have been acquired through introgression with 

un-sampled wild and/ or cultivated individuals. 

The single origin of the sh4 allele in cultivated rice is striking because a 

preponderance of evidence supports a minimum of two rice domestication events in 

different areas of Asia, one giving rise to the indica and aus, and another to the japonicas 

and aromatic group (see Sweeney & McCouch, 2007). Several models have been 

proposed to account for this discrepancy (Lin et al., 2007; Sang & Ge, 2007a; Sang & 

Ge, 2007b). Recent evidence suggests that the sh4 T mutation was first fixed in one set of 

cultivars, and quickly spread to independently domesticated rice groups via gene flow 

and selection (Zhang, 2009). The cultivated rice group in which the T substitution was 

initially fixed has not been identified, though some studies have suggested an origin in 

rice outside of China (Zhang et al, 2009). Haplotypes favored by positive directional 

selection are expected to manifest an extended block of LD around the favored mutation, 

and our survey of polymorphism in the sh4 genomic region is consistent with strong 

selection on sh4 in all cultivated rice groups prior to the evolution of weedy rice. Patterns 

of extended homozygosity in the region are also consistent with an origin of the sh4 T 

mutation in ancestors of the tropical japonica group, with subsequent introgression into 

ancestors of indica (Figure 2.4). Finer scale characterization of the sh4 genomic region 

may be needed to rule out the effects of sampling stochasticity on the observed patterns. 

The presence of “non-shattering” sh4 alleles in US weedy rice despite their 

propensity to shatter (Figure 2.1; Figure 2.5), implies that weedy groups must have re-
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acquired the shattering trait through the involvement of other, unidentified loci. These 

could be major loci that have not yet been identified within Oryza, or numerous loci with 

small effect that are thus difficult to detect. The ability to shatter despite having the T 

substitution is also present in some O. rufipogon and one aus cultivar. Alleles at genes 

facilitating shattering may have been acquired by weedy groups through de novo 

mutation, introgression from wild rice, or perhaps inherited from the few domesticated 

backgrounds that are able to produce BTS values at the lower end of the scale (Figure 

2.1). Whether divergent weedy rice groups have acquired the shattering traits through 

similar genetic mechanisms remains an open question. Ongoing fine scale 

characterization of the shattering trait via microscopy and BTS time-course evaluations 

across Oryza groups may help determine the likelihood of a shared genetic basis for 

shattering between wild and weedy rice. Ultimate identification of loci contributing to 

shattering in weedy rice may be facilitated by numerous QTL studies of this trait (Gu, 

2005a; Onishi, 2007; Cai, 2000; Ji, 2006; Xiong, 1999; Thomson, 2003), including some 

involving crosses between Asian weeds and cultivated rice (Gu, 2005a; Bres-Patry, 

2001).  To shed further light on the genetic basis of shattering in US weeds, we are 

currently generating mapping populations from US weedy rice parents and their putative 

progenitors. 

Assessments of genomic patterns of polymorphism have supported origin of US 

weedy rice groups from two domesticated rice varieties, indica and aus (Londo & Schaal, 

2007; Reagon et al., 2010). In contrast, assessments of polymorphism at a candidate 

locus for pericarp color, Rc, have revealed that alleles in weedy groups, which are 

exclusively red-pigmented, are not derived from alleles carried by the more common 
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white pericarp cultivars (Gross et al., 2010). However, red pericarp cultivated rice 

varieties exist, implying that selection on Rc is likely to have been a feature during the 

development of modern cultivated varieties, rather than the early stages of rice 

domestication; thus, polymorphism at Rc suggests that US weedy rice groups arose prior 

to the emergence of white-pericarp cultivated rice, perhaps from primitive red-pericarp 

domesticates (Gross et al., 2010). The sh4 polymorphism data reported here further 

refines our understanding of the origin of US weedy rice. All weed groups must have 

originated after the fixation of the non-shattering sh4 allele in all cultivated rice groups. 

Thus, the progenitors of weedy rice must have been “domesticated enough” to have 

undergone selection for reduced shattering. Future investigation of additional candidate 

domestication and weedy loci are likely to further contribute to our understanding of the 

evolutionary origins of this noxious weed. 
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Table 2.1:  Silent site nucleotide diversity per kb.  Watterson’s estimator nucleotide 
variation (θW), the average pairwise nucleotide diversity (θπ) and Tajima’s D for wild O. 
rufipogon, cultivated O. sativa and weedy O. sativa.  

   Cultivated Oryza sativa US Weedy Rice 

  
Oryza 

rufipogon indica aus 
trp 
jap 

tmp 
jap arom SH 

BHA
1 

BHA
2 

sh4 
locus θπ 4 0 0.094 0.03 0 0.2 0 0.04 0.2 

 θW 5 0 0.12 0.92 0 0.2 0 0.99 0.1 

 
Tajima's 

D -0.85 N/A -1.01 -1.16 N/A 0 N/A -1.16 1.44 
Flanking 
Fragments    

  
    

sh4f_001 θπ 2.2 2.4 0.79 0.26 0 0 0 0 0 
 θW 2.4 2.1 1.1 0.77 0 0 0 0 0 

 
Tajima's 

D -0.19 0.41 1.18 -1.16 N/A N/A N/A N/A N/A 
sh4f_002 θπ 7.3 0 1.7 0 0 1.5 0 2.3 2.6 

 θW 1.2 0 1.8 0 0 1.5 0 1.4 1.7 

 
Tajima's 

D -1.26 N/A -1 N/A N/A 0 N/A 1.8 1.79 
sh4f_003 θπ 2.2 0 0 0 0 0 0 0 0 

 θW 4.4 0 0 0 0 0 0 0 0 

 
Tajima's 

D -1.2 N/A N/A N/A N/A N/A N/A N/A N/A 
sh4f_004 θπ 1.8 0 0 0 4.1 0 0 0 0 

 θW 3 0 0 0 3.3 0 0 0 0 

 
Tajima's 

D -0.89 N/A N/A N/A 1.46 N/A N/A N/A N/A 
sh4f_005 θπ 2.4 2.1 1.8 2 1.6 2.6 1.9 2 0 

 θW 2.5 1.5 1.6 1.1 1.9 2.6 1.1 1.2 0 

 
Tajima's 

D -0.13 1.17 0.56 1.57 -0.82 0 1.43 1.47 N/A 
sh4f_006 θπ 1.6 2 0 0.48 2.1 0 0 0 0 
 θW 3.5 3 0 0.73 2.6 0 0 0 0 

 
Tajima's 

D -1.34 -1.45 N/A -0.62 -0.97 N/A N/A N/A N/A 
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Table 2.2.  List of accessions used for this study.  Accessions are grouped by type (weed, wild or cultivar).  Identification numbers as 
well as genotypes at qsh1 and sh4 are listed along with phenotypic values for seed shattering. 

Group Study ID a 
USDA ID/ Common 

Name c IRGC/RA/GRIN d Origin b 

Mean 
BTS 

(grams) 
e 

Std 
Dev sh4 qsh1 

Weedy rice SH_1A04 1091-01 x AR 0.3 0.5 T G 
 SH_1A07 1098-01 x MO 0.2 0.4 T G 
 SH_1A08 1134-01 x AR 0 0 T G 
 SH_1A09 1135-01 x AR 0.3 0.5 T G 
 SH_1A10 1141-01 x AR 1.2 3.1 T G 
 SH_1A11 1160-01 x AR 0 0 T G 
 SH_1A12 1179-01 x LA 1.7 2.8 T G 
 SH_1B05 1995-15 x AR 0 0 T G 
 SH_1B03 16B x AR 0 0 T G 
 SH_1B07 1996-05 x MS 0.4 0.2 T G 
 SH_1C02 1001-01 x AR 1 2 T G 
 SH_1C03 1002-02 x AR 2.3 2.7 T G 
 SH_1C06 1047-01 x LA 0.1 0.4 T G 
 SH_1C07 1073-02 x MO 0.3 0.4 T G 
 SH_1C10 1190-01 x LA 0.6 0.9 T G 
 SH_1C11 1199-01 x MO 1 2.8 T G 
 SH_1D01 1344-02 x MO 0.7 1.6 T G 
 SH_1D06 1995-12 x LA 0 0 T G 
 SH_1D09 1996-08 x MS 1.5 2 T G 
 SH_1E03 1210-02 x MO 2.3 5 T G 
 SH_1E07 1333-02 x MO 0.2 0.4 T G 
 SH_1A01 1004-01 x MO 1.5 1.8 T G 
 SH_1E05 1163-01 x LA 0.1 0.4 T G 
 SH_1A06 1196-01 x AR 1.2 2.9 T G 
 MXSH_1B06 1996-01 x AR 35.6 17.9 T G 
 MXSH_1D10 2002-51 x AR 0 0 T G 
 MXBH_1E10 2002-2-p21 x AR 0 0 T G 
 MXBH_1D11 2004-1-A x AR 0 0 T G 
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Table 2.2, cont. 
 MX_1B10 MS4R788_93 x MS 0 0 T G 
 BRH_1C12 1300-02 x MO 0 0 T G 
 BRH_1D12 1183-01 x AR 0.6 2.6 T G 
 BRH_1C09 1111-01 x AR 0 0 T G 
 BRH_1C08 1092-02 x MS 0 0 T G 
 BRH_1E06 1120-02 x MO 0.1 0.7 T G 
 BHA2_1E04 1214-02 x LA 0 0 T G 
 BHA2_1B01 1188-01 x MS 0 0 T G 
 BHA2_1C01 TX4 x TX 0 0 T G 
 BHA2_1A02 1025-01 x AR 0 0 T G 
 BHA2_1A03 1081-01 x AR 0 0 T G 
 BHA2_1E02 1107-01 x AR 0 0 T G 
 BHA2_1C05 1042-01 x AR 0 0 T G 
 BHA2_1E08 1202-02 x AR 0 0 T G 
 BHA1_1B11 StgB x AR 0 0 T G 
 BHA1_1D07 1995-13 x LA 0 0 T G 
 BHA1_1B02 10A x AR 0 0 T G 
 BHA1_1B08 1996-09 x MS 7.2 21.6 T G 
 BHA1_1E09 2002-2-p1 x AR 0 0 T G 
 BHA1_1D08 1995-14 x LA 0 0 T G 
 BHA1_1B09 LA3 x LA 0 0 T G 
 BHA1_1B12 StgS x AR 4.6 5 T G 
 BHA1_1D05 PrCoTall_3 x AR 0 0 T G 
 BHA1_1E01 1166-02 x MS 0 0 T G 
 BHA1_1A05 1096-01 x AR 0 0 T G 
 BHA1_1B04 18A x AR 0 0 T G 
 BHA1_1C04 1005-02 x AR 0 0 T G 
 BHA1_1D02 PrCoSrt_1 x AR 0 0 T G 
 BHA1_1D03 PrCoTall_1 x AR 0 0 T G 
 BHA1_1D04 PrCoTall_2 x AR 0 0 T G 
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Table 2.2, cont. 
Cultivated rice        
aromatic 3A01 DOM-SOFID RA4929/12880/PI584607 Iran x x T G 
 3A02 ARC-13829 RA48947/42469 India (N. Kakhimpur) x x T G 
 2B01 DA 13 x Bangladesh 3 1 T G 
aus 2B03 Aus 196 29016 Bangladesh 12.3 9.8 T G 
 3A03 JHONA-349 RA4979/6307 India 43.1 25 T G 
 3A04 KASALATH RA5339 India 12.8 11.6 T G 
 3A05 DV85 RA5323/8839 Bangladesh 0.3 0.5 T G 
 3A06 BJ-1 RA5345/45195 India 18.3 3.1 T G 
 3A07 DHALA_SHAITTA RA5361/PI180060 Bangladesh x x T G 
indica 2B02 Bei Khe 22739 Cambodia 30.1 17.5 T G 
 3A08 RATHUWEE RA4911/8952/PI584605 Sri Lanka 72.3 47.8 T G 
 3A09 Khao Dawk Mali -105 RA4878/27748 Thailand 80.7 42.6 T G 
 3A10 LalAman RA4956/46202 India 110.6 16.5 T G 
 3A11 Dholi Boro RA4984/27513 Bangladesh 137.4 11.8 T G 
 3A12 Ai-chiao-hong RA4967/51250/PI584576 China 4 3.3 T G 
 3B01 CHAU RA4974/56036 Vietnam x x T G 
 3B02 CHHOTE_DHAN RA4978/58930 Nepal 17 14.4 T G 
 3C05 DEE_GEO_WOO_GEN RA5344/PI279131 Taiwan 60.9 25.3 T G 

 
3B03 

POPOT-165 RA4987/43545 
Indonesia (E. 
Kalimantan) 

7.5 4.5 T 
G 

temperate 
japonica 

3B04 Ta hung ku 
RA5029/1107 

China 
37 29.5 

T T 

 3B05 Kamenoo RA4990/PI403629 Japan x x T G 
 3B06 Nep-Hoa-Vang RA4945/40748 Vietnam x x T T 

 3B07 SHOEMED RA5123/PI392539 Philippines  x x T G 
tropical 
japonica 

3B08 Khao Hawm 
RA5030/24225 

Thailand 
46.8 8.5 

T 
G 

 3B09 Mirti RA4970/25901/PI584553 Bangladesh 12 22.9 T G 
 3B10 KU115 RA5294/PI597044 Thailand 8.7 8.2 T G 
 3B11 CICIH_BETON RA4955/43372 Indonesia (Bali) 85.4 5.37 T G 
 3B12 GOTAK_GATIK RA4959/43397/PI584572 Indonesia (C. Java) 104.5 67.7 T G 
 3C01 ASSE_Y_PUNG RA5333/CIor461 Philippines 115.9 41.3 T G 
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Table 2.2, cont. 
 3C02 Kotobuki Mochi RA4882/2545 Japan 35.7 22 T G 
 3C03 TREMBESE RA4988/43675 Indonesia (East Java) 59 53.5 T G 
US cultivars 3C04 LEMONT RA4998/66756 US 112 35.5 T G 
 2A01 BENGAL PI561735 US x x T G 
 2A02 BLUE_ROSE CIor1962 US 204 16.6 T G 
 2A03 CAROLINA_GOLD CIor1645 US 208 8.2 T G 
 2A04 CL121 n/a US x x T G 
 2A05 CL161 n/a US x x T G 
 2A06 CYPRESS PI561734 US x x T G 
 2A07 DELITUS CIor1206 US x x T G 
 2A08 DREW n/a US x x T G 
 2A09 EDITH CIor2127 US 207 14 T G 
 2A10 PALMYRA CIor9463 US x x T G 
 2A11 REXORO CIor1779 US x x T G 
 2A12 ZENITH CIor7787 US x x T G 
Wild Asian rice and outgroups       
O. rufipogon 3C06 x 106163 Laos x x T G 
 2C01 x 81990 Myanmar x x X G 
 2C02 x 100588 Taiwan 0 0 T G 
 2C03 x 100904 Thailand x x G G 
 2C04 x 100916 China 77.2 62 G G 
 2C05 x 104501 India x x G G 
 2C06 x 104599 Sri Lanka x x G/T G 
 2C07 x 104624 China 0 0 G G 
 2C08 x 104714 Thailand x x T G 
 2C09 x 104833 Thailand 0 0 T G 
 2C10 x 104871 Thailand 0 0 G G 
 2C11 x 105388 Thailand x x G G 
 2C12 x 105491 Malasia 0 0 X G 
 2D01 x 105568 Philippines 0 0 G G 
 2D02 x 105711 India 0 0 T G 
 2D03 x 105720 Cambodia x x G G 
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Table 2.2, cont. 
 2D04 x 105855 Thailand x x X G 
 2D05 x 105888 Bangladesh 0 0 G G 
 2D06 x 106086 India 0 0 T G 
 2D07 x 106103 India x x G G 
 2D08 x 106122 India x x G G 
 2D09 x 106134 India x x G G 
 2D10 x 106150 Laos x x G G 
 2D11 x 106168 Vietnam x x G G 
 2D12 x 106169 Vietnam x x T G 
 2E01 x 106321 Cambodia 0 0 T G 
 2E02 x 106346 Myanmar x x G G 
 2E03 x 106453 Indonesia x x G G 
 2E04 x 106518 Vietnam x x G G 
 2E05 x 106523 Papua New Guinea x x G G 
O. nivara 2F01 x 86662 Thailand 0 0 T G 
 2F02 x 103821 China 0 0 T G 
O .barthii 2F03 x 101226 Mali x x G G 
 2F04 x 104081 Nigeria x x X G 
O. glaberrima 2F05 x 86779 Liberia x x G G 
 2F06 x 100983 Nigeria x x X G 
 2F07 x 101855 Burkina Faso 26 11.9 G G 
 2F08 x 102410 Mali 50 29.3 G G 
O. glumaepatula 2F09 x 105561 Colombia 0 0 G G 
 2F10 x 105670 Brazil 0 0 G G 
O. meridionalis 2F11 x 93261 Indonesia 0 0 G G 
 3C07 x 101148 Australia 0 0 G G 
a  based on STRUCTURE and identity from Reagon et al 2010      
b  Origin for weeds is a US state abbreviation, Origins for cultivated and wild rice is country    
c accessions with RA numbers were acquired from Susan McCouch while all others were acquired from IRRI  
d Accessions in bold were selfed 4 generations at the USDA stock center      
e BTS stands for Breaking Tensile Strength and is the maximum weight a seed can hold before releasing  
x--  no data available        
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Table 2.3. List of primer sequences and their location.  Primers are grouped by gene (sh4 and qsh1) as well as genetic versus flanking 
region. Additionally, the enzyme used in the qsh1 CAPS study is identified and the cut site is listed 
Primer ID Forward Reverse Region  
sh4_001 AAGCTCCCAAGTGTCAAAGC TGTTACCCTATGCGTCTACTCC 5' UTR  
sh4_002 TGCATATATACATACTCCCTCTCG GCTGACTCTTGTTTGTTTCG 5' UTR  
sh4_003 AAAGCCTGTGATTAAGGTAAAGCAG TGATGAGGATGAGCGTCTCG 5'UTR/Exon 1  
sh4_004 ACGGGCACCTGACTGCTACG GAGGTGGGTGGTGGTGATGG Exon 1  
sh4_005 AGGTCTACGACGCGCTCTCC AAATATCCGGATTCGCATCACC Exon 1/Intron  
sh4_006 TTTACCTTTTTACCGTGGGGTTCG ACTCCGCCCCAAAACAATACAG Intron  
sh4_007 GTAGATATCCTTTGACCGTTCTATC GCCATTCCAAACAATAATCC Intron/Exon 2  
sh4_008 GCAATCATATGCAATGCAGCAAGG TCTGATCTGATTCGGCCAACACC 3' UTR  
sh4_009 CTCGTGCTGAGCTATACAAGC GTACAATGCACGTCAATTCC 3' UTR  
sh4_010 TATATAGGGACGGTTCCACCAAGC TCTTCTTCCCGGTCTTCTTTTCAG 5' UTR  
sh4_011 ACCCGAACAGAGTTTTGATGAGC ATTGGCGGTGATGAGGATGAG 5' UTR/Exon 1  
sh4_012 ATCGCTCCCCGAACACCAAAC GGGAGAGCACCTCGGAGAGC Exon 1  
sh4_013 AGGAGGAGCGCACCGAGGTC TCTGATCTGATTCGGCCAACACC 3' UTR  
sh4_014 ACTACCGCAAGGGGAACTGGAC TAGCTGTTACATCCCCTCCCCTC Exon 1  
sh4 Flanking Region Primers    

Primer ID Forward Reverse LOC ID (Gramene) 
Distance from sh4 

(Mb) 

sh43_001 CCATGGTCTGATGGTGAACG CAGGAAGTACCCACATGCTTTAGG Os04g57550 0.008 
sh43_004 GAGGAAGAATGCCGGTGTCC CCAGGCCATTTTCAGAGAAGC Os04g58580 0.6 
sh43_007 CCCTTGGAGTGCATCATCAGG AGGGCATATGCAACGGATGG Os04g59570 1.2 
sh45_002 GATGTGCAAGAAGGCCAAGG ACTTAGGCAAGAGCGGAAGAAGG Os04g53530 2.4 

sh45_008 GCAGCAGGAAATGCACATCAGG AAAGTAGTTCACGAAGAGCCGAGTCC Os04g55690 1.1 
sh45_012 CGTTTTCTTCAGGGTGTTCAGG AGCACATACAGGACCACCATACG Os04g56920 0.3 
sts_040 GCAGTGGATTTTCCAGCTCTCC CACGACTACATCAGGGTTGAATGG Os04g44560 5 
sts_021 GTAGCCAAGATTGGGCTGTGG GATACCAAAAGCGTCCACGTACC Os04g30040 14 
qsh1 CAPS 
Primers   Enzyme: BspH1 
qsh1 GGCTTTTTAGTTCGTGCATGTAGC GGTTACACAAGTTCCCCGCAC Cut Site: TCATGA 
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Figure 2.1. Seed shattering phenotype in weedy, wild and cultivated Oryza. 
Distributions are of average accession BTS values for each Oryza group. The black line 
represents the median of each distribution, and the grey dot the mean; white dots 
represent outliers.  Numbers in parenthesis correspond to sample sizes.  Weedy rice 
groups are as follows: SH (straw-hulled), BHA1 and BHA2 (black hulled and awned), 
BRH (brown hulled) and MIX (mixed origin).  Both O. rufipogon and O. nivara 
accessions have been grouped together under the heading O. rufipogon. 
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Figure 2.2. Phylogenies of flanking regions surrounding sh4. 
Neighbor Joining trees for each of eight ~500 bp regions at varying distances from the 
sh4 locus.  Diagram is to scale.  Only branches with bootstrap values over 50% are 
shown.  The star on the sh4 locus tree denotes the T substitution associated with loss of 
shattering.  For clarity, all tropical japonica, temperate japonica and aromatic rice have 
been grouped under the japonica heading and colored green.  Additionally, all weed 
groups have been colored red, but the main groups are distinguishable via icons placed to 
the right of each tree. 
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Figure 2.3.  Graphical view of concatenated sh4 haplotypes. 
Haplotypes across the genomic region surrounding sh4 are shown for the 90 individuals 
(wild, weedy, and cultivated) that share the common sh4 haplotype containing the T SNP.  
The numbers across the top represent flanking regions (1- 6 = sh4f_001- _006).  Yellow 
squares represent SNPs found in at least one haplotype.  A tally of individuals from each 
cultivated, weedy, or wild group is shown to the right. Colors of accession counts 
indicate haplotypes that are identical across a 6.2 Mb region (up to sts_040) containing 
sh4. 
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Figure 2.4.  Extended haplotype homozygosity surrounding sh4. 
EHH was performed on concatenated alignments containing the sh4 gene and all eight 
flanking regions in order as they appear on the chromosome.  Sts_040 and sts_021 were 
not included for O. rufipogon as haplotype homozygosity had already reached zero. The 
grey triangle atop each panel represents the location of the T mutation associated with 
loss of shattering in sh4.  Numbers under black bars represent flanking regions (1- 6 = 
sh4f_001- _006).  A. EHH for O. rufipogon groups possessing a T or a G at the SNP 
associated with shattering variation. B. EHH results for three cultivated rice groups. C. 
EHH results for the main US weedy rice groups. 
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Figure 2.5.  Neighbor joining tree of sh4 haplotypes. 
Numbers below branches represent bootstrap support in percentages; only clades with 
over 50% support are labeled.  The black star denotes the G to T substitution associated 
with loss of shattering in domesticated rice. Color key at left of the tree identifies Oryza 
groups represented by the observed haplotypes. The O. sativa group contains accessions 
of the five recognized domesticated rice populations: aus, indica, aromatic, tropical 
japonica and temperate japonica. Labels on the right side the tree identify the number of 
individuals sharing a haplotype.  A triangle is placed anywhere more than ten individuals 
share an identical haplotype.  Four haplotypes unique to weedy rice are numbered (I, II, 
III, and IV) while haplotypes unique to O. rufipogon are not labeled or numbered.  Three 
of the unique weedy rice haplotypes contain mutations that alter amino acids: Glutamic 
Acid to Lysine in exon 1 in haplotype II, Arginine to Leucine in exon 2 in haplotype III, 
and Arginine to Tryptophan in exon 2 in haplotype I. 
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Figure 2.6.  Graphical view of unique sh4 haplotypes. 
The top haplotype represents the common shared cultivated haplotype found in 90 
individuals from cultivated, weedy, and wild groups.   Of the three unique cultivar 
haplotypes, only the aromatic individual (2B01) contains a non-synonymous SNP.   Four 
unique weedy haplotypes (I - IV) are displayed where three of the four contain 
nonsynonymous SNPs. Haplotype numbers match those of Figure 2. Additionally, three 
wild individuals are shown.  2E01 and 2C03 contain the non-shattering T nucleotide plus 
additional coding and non-coding SNPs.  2C05 was chosen to represent one of the many 
wild haplotypes containing a shattering G nucleotide for comparison. 
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Figure 2.7.  Ratios of silent site nucleotide diversity at sh4 and surrounding loci. 
The ratio of the average pairwise nucleotide diversity (θπ) per kb is shown A) for three 
cultivated groups (indica, aus and tropical japonica) against wild O. rufipogon, and B) 
for the three major weed groups (SH, BHA1 and BHA2) against their putative 
progenitors (indica or aus).  Overall diversity is low across the entire region in cultivated 
and weedy rice groups. 
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CHAPTER 3 
 
TIMING IS EVERYTHING: EARLY DEGRADATION OF ABSCISSION LAYER 

IS ASSOCIATED WITH INCREASED SEED SHEDDING IN US WEEDY RICE 

3.1 Background 

Abscission is the process by which plants shed unwanted organs, such as those 

that have been damaged or diseased, or release ripe seeds and fruits (Patterson, 2001).  

Seed abscission is an important mechanism for seed dispersal in many wild cereals 

(Harlan & DeWet, 1965).  During domestication of grass species (e.g. wheat, rye, barley, 

and rice), a critical shift occurred towards reductions in seed-shedding ability, facilitating 

the harvesting of grains (Harlan & DeWet, 1965; Fuller et al., 2009; Sang, 2009; Zhang 

& Mergoum, 2007).  Seed shattering is costly to farmers, as crop yield is diminished, and 

lost seeds may lead to persistence of crop volunteers in cultivated fields (Zhang & 

Mergoum, 2007; Roberts et al., 2000). However, seeds that require intense labor to 

harvest are also undesirable, along with those that remain on the plant and germinate (i.e. 

preharvest sprouting). A balance between ease of shattering and difficult threshing is 

maintained in crop species, determined in part by specific demands of the harvesting 

system (e.g. hand vs. machine threshing) (Sang & Ge, 2007a; Li et al., 2006b). In 

contrast, in agricultural weeds — plants that invade cultivated fields — increased seed 

dispersal is believed to be favored, much as it is in wild species (Harlan & DeWet, 1965). 

Seed shattering is a commonly observed trait in agricultural weedy plants that are related 

to domesticated species (Harlan & DeWet, 1965). Seed shattering is thus under opposing 

selection in crops and weeds inhabiting agricultural complexes. 

Domesticated Asian rice (Oryza sativa L.) is one of the world’s most important 
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crop species, providing about 20% of the world’s caloric intake (FAOSTAT, 2008). 

Cultivated rice fields worldwide are invaded by a weedy relative of rice known as weedy 

or red rice (O. sativa) (Burgos et al., 2008). Weedy rice is costly to farmers in terms of 

yield losses and removal efforts, as it competes aggressively with cultivated rice and can 

contaminate harvests (Burgos et al., 2008; Cao et al., 2006).  The ability of weedy rice to 

survive and spread in cultivated rice fields has been attributed in part to its reported 

capacity to shatter seeds (e.g. Delouche et al., 2007; Gealy et al., 2003; Noldin et al., 

1999; Oard et al., 2000). High levels of seed shattering are also prevalent in the wild 

ancestor of cultivated rice, O. rufipogon, which is native to tropical wetlands of South 

Asia (Oka, 1998). Cultivated Asian rice, in contrast, shows a wide range of seed 

threshability levels, from nearly shattering to difficult to thresh, but is generally less 

shattering than wild and weedy species (Ji et al., 2006; Thurber et al., 2010). 

Organ abscission in plants depends on the formation of abscission zones, which 

are morphologically distinct structures generally consisting of one to multiple layers of 

cells dense with cytoplasm (Patterson, 2001; Roberts et al., 2000).  Swelling and 

dissolving of the middle lamella between adjacent cell walls in the abscission layer 

allows for organ release (Patterson, 2001; Ayeh et al., 2009). In many plants, the 

abscission layer is formed long before the activation of cell separation and breakage 

occur (Ayeh et al., 2009; Cho et al., 2008).  Seed shattering in Oryza is dependent on the 

proper formation and subsequent degradation of an abscission layer between the flower 

and the pedicel.  QTL (quantitative trait loci) associated with loss of shattering have been 

identified on nearly every rice chromosome, and three loci have been cloned to date: 

sh4/SHA1, qsh1 and OsCPL1 (Li et al., 2006b; Konishi et al., 2006; Ji et al., 2010).  Of 
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these loci, sh4, which encodes a nuclear transcription factor, is considered the most 

important contributor to reduced shattering during rice domestication (Purugganan & 

Fuller, 2009). A single nonsynonymous substitution (G to T) in the first exon of sh4 leads 

to reduced function of SH4 and incomplete development of the abscission layer in non-

shattering cultivated rice (Li et al., 2006b).  This non-shattering mutation is fixed in all 

cultivated rice varieties examined to date (Li et al., 2006b; Thurber et al., 2010; Zhang et 

al., 2009; Lin et al., 2007), spanning the highly differentiated japonica and indica 

cultivar groups.  There is still some controversy whether Asian rice was independently 

domesticated at least twice from O. rufipogon populations (Garris et al., 2005; Caicedo et 

al., 2007; Londo et al., 2006), or only once (Fuller et al., 2009; Fuller et al., 2010). 

Regardless of the domestication scenario, the ubiquity of the T substitution in cultivated 

rice suggests very strong selection for loss of shattering (perhaps in combination with 

introgression) during domestication (Li et al., 2006b; Zhang et al., 2009; Lin et al., 

2007). 

Recently, we examined the seed shattering phenotype and the sh4 shattering locus 

in populations of US weedy rice (Thurber et al., 2010). Several genetically differentiated 

populations of weedy rice occur in the US, and these can be distinguished by their 

predominant hull morphology (Reagon et al., 2010). Main populations include the straw-

hulled (SH) group, early flowering weeds characterized by straw-colored hulls and lack 

of awns, and the black-hulled awned (BHA) group, later flowering weeds with seeds that 

have predominantly black hulls and long awns (Reagon et al., 2010; Gealy et al., 2002; 

Londo et al., 2007). Genome-wide data indicate that SH and BHA weedy rice groups 

share genomic identity with Asian domesticated rice from the indica and aus variety 
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groups, respectively, suggesting weedy origins within these cultivated groups (Reagon et 

al., 2010; Gealy et al., 2002; Londo et al., 2007). Minor US weedy rice groups include 

the brown-hulled (BRH) group, which are putative hybrids between SH and BHA weeds, 

and the mixed groups (MX), containing individuals likely to be hybrids between weeds 

and local tropical japonica cultivars (Reagon et al., 2010). We have found that nearly all 

US weedy rice readily shatters its seeds to a similar degree as wild rice (Thurber et al., 

2010).  However, all populations of US weedy rice share the “non-shattering” sh4 

substitution common to cultivated rice, regardless of their propensity to shatter (Thurber 

et al., 2010). These results support the evolution of US weedy rice from cultivated 

ancestors and, since wild and major weedy groups have separate origins, the parallel 

evolution of the shattering trait among these Oryza groups. Our results further imply that 

weedy rice re-acquired the shattering trait through the involvement of unidentified loci 

other than sh4 (Thurber et al., 2010).  

In an effort to understand how weedy rice may have re-evolved the shattering trait 

after its loss in domesticated ancestors, we investigate here the morphological basis of 

shattering in US weedy rice groups. Given that wild and weedy rice do not share the 

ancestral sh4 shattering substitution characteristic of O. rufipogon, it is possible that wild 

and weedy groups do not share the same morphological shattering mechanism. Moreover, 

despite sharing the same “non-shattering” mutation at the sh4 locus (Thurber et al., 

2010), the two major US weedy rice populations — SH and BHA — have separate 

origins, and may have acquired the shattering phenotype in mechanistically different 

ways, representing a separate instance of parallel evolution.  To our knowledge, no study 

to date has investigated the morphological basis of the shattering trait in weedy rice.  We 
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examine the abscission layer at the flower-pedicel junction in weedy rice prior to, at and 

shortly after flowering to determine morphology and level of degradation of this layer in 

relation to seed shattering ability, and compare these results to those of wild and 

cultivated Oryza, to gain insight into how traits important to weed fitness can evolve. 

3.2 Results and Discussion 

3.2.1 Abscission Layer Formation Differs in Wild and Cultivated Oryza. 

We observed the abscission layer at the flower-pedicel junction at flowering in six 

wild Oryza (Table 3.1, denoted with asterisk): four O. rufipogon, the wild ancestor of 

cultivated Asian rice, and two O. nivara, an annual ecotype of O. rufipogon (Zheng et al., 

2010).  All six wild Oryza show clear abscission layers between the flower and the 

pedicel at flowering (Figure 3.1A-F, and data not shown).  The layer is slightly curved 

and occurs on both sides of the vascular bundle. Further magnification (60x) of the 

abscission layer shows very dark staining of cells at the center of the layer with some 

cells beginning to swell.  This dark staining is most likely due to high lignification of 

these cells’ walls, as abscission layer cells have been shown previously to be highly 

lignified (Tabuchi et al., 2001).  Cells surrounding the layer are highly organized into 

rows and perpendicular to the plane of abscission. (Figure 3.1B, D, F).  No degradation of 

the abscission layer is yet observed at this stage.  The occurrence of well-developed 

abscission layers upon flowering suggests that all six wild Oryza accessions will shatter 

their seeds readily, an observation that is consistent with our previous measurement of 

shattering levels of ripe seeds in these accessions (average Breaking Tensile Strength 

(BTS) = 0 g, Table 3.1; also see (Thurber et al., 2010)). 
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We also observed the flower-pedicel junction at flowering in four cultivated rice 

samples (Figure 3.1 G-L and data not shown) belonging to the aus and indica cultivar 

groups, the putative ancestors of US weedy rice.  None of the spikelets (i.e. rice flowers 

with attached glumes) sampled shows formation of a clear abscission layer upon 

flowering, although two indica accessions (3A09 and 3A11; Figure 3.1G, H, K, L) show 

weak staining in the region of the abscission layer.  In these accessions, further 

magnification shows diffuse staining of cells in the abscission zone, although cellular 

organization is not as defined as in the wild tissue samples at this stage (Figure 3.1H, J, 

L).  This further supports the absence of an abscission layer, and, in all cultivated 

samples, the pedicel blends in easily with the floral tissue at flowering.  The lack of an 

abscission layer at flowering in all three indica cultivated accessions is consistent with 

their lack of shattering (average BTS= 70 to 137 g, Table 3.1). The single aus sampled is 

considered a very easy seed releasing variety (average BTS= 18 g, Table 3.1), yet it also 

appears to not possess an abscission layer at flowering (Figure 3.1G, H), suggesting that 

formation of this layer may be delayed and incomplete. 

Our overall observations of clear abscission layers upon flowering in shattering 

wild Oryza individuals and lack of abscission layers at this stage in non-shattering 

cultivated rice are consistent with previous studies (see Li et al., 2006b; Ji et al., 2006; 

Konishi et al., 2006; Lin et al., 2007), and serve as a baseline for comparison to weedy 

rice. Because our observations do not differ from those published previously for other 

cultivated and wild rice samples, we concluded that abscission layer traits are robust 

under our growth conditions, and we did not sample additional time points of abscission 

layer development. Studies have documented that the abscission layer begins to form at 



 

57 

least one week prior to flowering in wild O. rufipogon (and some exceptionally easy 

threshing indica and aus cultivars), and by flowering is prominent and clearly visible 

with staining (Lin et al., 2007; Oba et al., 1995; Jin, 1986; Jin & Inouye, 1982; Jin & 

Inouye, 1985).  The abscission layer in O. rufipogon begins to degrade at or within a 

week of pollination, about two weeks after flowering, and continues degradation as the 

seed begins to form and mature, until the seed is released (Jin, 1986; Jin & Inouye, 1982; 

Jin & Inouye, 1985).  In contrast, in cultivated rice varieties, the abscission layer (if 

present) remains intact for at least 12 days after pollination (Lin et al., 2007).  Both 

previous studies and ours show that there are dramatic differences in abscission layer 

formation and degradation between wild and cultivated rice, likely due to selection 

against shattering during the domestication process. 

3.2.2 Degradation of the Abscission Layer is Accelerated in Weedy Rice. 

To determine the role of abscission layer formation and degradation in the 

shattering phenotype of weedy rice, we sampled six weedy rice accessions from three 

separate groups (SH (3), BHA (2), MX (1); Table 3.1, denoted with asterisk) at each of 

three time points: prior to, at and after flowering.  With the exception of the non-

shattering MX accession (MXSH_1B06, average BTS= 35 g, Table 3.1), all other weedy 

rice shatter easily, regardless of population identity (average BTS < 8g, Table 3.1).  We 

chose the single MX individual, as it was the only accession found in (Thurber et al., 

2010) that did not shatter extensively, and was one of the few accessions identified as a 

putative hybrid between SH weeds and US tropical japonica (Reagon et al., 2010). We 

hypothesized that abscission layer formation and degradation in shattering weedy 
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samples would resemble that observed for O. rufipogon and O. nivara, while the non-

shattering weed individual would resemble cultivated rice. 

One week prior to flowering, all five shattering weedy rice accessions, including 

the two shown in Figure 3.2 (SH_1A08 and BHA_1A05) possess well-defined abscission 

layers (Figure 3.2A, G). Inspection with a higher magnification 60x lens shows that the 

BHA and SH weedy rice abscission layers prior to flowering (Figure 3.2B, H) are similar 

in staining and organization to the wild rice at flowering stage (Figure 3.1B, D, F); the 

highly lignified cells are darkly stained and starting to swell slightly, while the cells 

around the region are parallel to the plane of abscission.  In contrast, the non-shattering 

MX weed shows only unbalanced, diffuse staining in the abscission zone with no clear 

organization of cells surrounding the zone (Figure 3.2M, N). 

At flowering, the abscission layers for all the BHA and SH shattering weeds 

already show mild to moderate degradation and swollen cells at the abscission zone 

(Figure 3.2C, I; Figure 3.4).  Further magnified images show very swollen cells at the 

abscission layer with the darkest staining seen on the edges that are now exposed due to 

breakage (Figure 3.2D, J). All five shattering weeds already show degradation that is not 

observed in their shattering wild relatives at the flowering stage, yet there is some 

variation in the degree of degradation between weed accessions (Figure 3.1; Figure 3.4). 

In contrast, the non shattering MX still shows only diffuse, weak staining, yet is 

beginning to form an abscission layer to one side of the vascular bundle (Figure 3.2O, P). 

Interestingly, when compared to wild and cultivated spikelets at this developmental stage, 

MX looks very similar to the non-shattering indica cultivars (Figure 3.1G, I, K). 
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A week after flowering has occurred, which is roughly one to two weeks prior to 

seed set in weedy rice, all SH and BHA shattering weeds sampled show moderate to near 

complete separation at the abscission layer and are only held together at the tips of the 

layer and the vascular bundle (Figure 3.2E, K, and data not shown).  Cells that are still 

attached at the layer are swollen and darkly stained along the plane of breakage.  Cells 

that have already been separated are losing their dark staining, possibly due to 

rearrangement of cell wall components (Figure 3.2F, L).  A week after flowering, the 

non-shattering MX individual has developed a complete abscission layer, yet the cells at 

this layer have not begun to swell or degrade (Figure 3.2Q).  When examined more 

closely, the cells of the non-shattering weed look very similar to wild abscission layer 

cells at flowering and to the shattering weeds prior to flowering: the cells are darkly 

stained and show a clear abscission layer with organized cells in the abscission zone 

(Figure 3.2R). 

Taken together, our microscopy results demonstrate that shattering weeds display 

abscission layer developmental differences compared to wild and cultivated rice. Both 

wild and weedy individuals develop similar looking abscission layers in the same 

location of the floral-pedicel junction; this similar cellular morphology is consistent with 

the shared shattering trait of wild and weedy individuals. Moreover, abscission layer 

formation in shattering weedy rice occurs at least one week prior to flowering, if not 

earlier, similar to what has been reported for shattering wild rice (Lin et al., 2007; Oba et 

al., 1995).  However, at flowering, the abscission layer in weedy rice has already begun 

to degrade, in some cases severely, which is not the case in shattering wild rice or easy 

threshing varieties of cultivated rice (Ji et al., 2006) (Figure 3.1; Figure 3.2; Figure 3.4). 
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This suggests that timing of abscission layer degradation, rather than morphological 

differences, distinguishes the shattering trait in weedy and wild rice groups. Surprisingly, 

despite their independent origins from separate cultivar groups (aus and indica, 

respectively), both BHA and SH weeds show similar abscission layer traits and timing. 

This suggests that both US weedy rice groups may have re-acquired the shattering trait in 

a similar mechanistic manner, opening the question of whether common genetic elements 

are involved. 

Further investigation of additional developmental stages and a finer scale of 

developmental series may help identify more precisely when the abscission layer forms in 

weedy rice and how rapidly after formation it degrades.  It is unclear from previous 

studies how the abscission layer degradation process is activated in rice, yet it is possible 

that the degradation repertoire is activated only after a certain stage of abscission layer 

development is complete.  While further research is needed, our results indicate that 

weedy rice may reach this formative stage earlier than wild shattering relatives, and as a 

result, show earlier degradation.  It is also possible that the formation of the abscission 

layer progresses at the same rate in both weedy and wild rice, with weedy rice abscission 

activating their degradation repertoire earlier in abscission layer formation than in wild 

rice. 

3.2.3 Seed Shattering Time Course Profiles are Altered in Weedy Rice Compared to 
the Wild Relatives. 

The early degradation of US weedy rice abscission layers may confer an earlier 

shattering phenotype than reported for wild rice.  Earlier degradation of the abscission 

layer suggests that as soon as the weedy seed is mature, or nearly so, it can more readily 



 

61 

fall to the ground.  The timing of seed release is considered important to weed fitness, as 

it may be beneficial to disperse seeds prior to harvest (Shivrain et al., 2010a); earlier 

shattering could thus be a response to rice cultivation practices.  Additionally, or 

alternatively, earlier release may prevent seeds from drying out and losing dormancy, 

another trait that enhances weediness (Gu et al., 2005); higher moisture content in seeds 

is known to confer a greater level of dormancy (Delouche et al., 2007), but desiccation of 

rice seeds occurs as they mature.  Easy shattering may not necessarily always be an 

advantage, however.  Seeds that shatter before they are mature enough to germinate will 

lower a plant’s fitness (Oba et al., 1995). 

Phenotypically, little is known about the shattering levels in weedy rice groups 

across floral/seed development.  Previous studies in cultivated and wild rice have shown 

that shattering level increases dramatically after 15 days post flowering in wild rice and 

in some cultivated rice samples grown in both field and greenhouse settings (Ji et al., 

2006; Oba et al., 1995).  In an effort to determine if shattering levels mirror the observed 

formation and degradation of the abscission layer in US weedy rice groups, we assessed 

levels of shattering as the amount of weight a grain can hold prior to release from the 

panicle (breaking tensile strength; BTS) in eight cultivated, five wild and seven weedy 

rice individuals, at various time points through seed development (Figure 3.3; Table 3.2). 

To date, we have examined eight cultivated rice varieties from the indica, aus and 

tropical japonica groups (Table 3.2).  Four of these samples are shown in Figure 3.3A 

(3A06, 3A11, 2B03 and 3A09).  All cultivated rice accessions show consistent high BTS 

values between 150 g to 250 g from before flowering through ten days after flowering.  

By 15 days after flowering, BTS values have dropped close to the level previously seen 
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in these cultivars at maturity (between 25 g and 125 g), and remain at these levels 

through 30 days after flowering, consistent with measurements reported in (Thurber et 

al., 2010).  The five wild rice individuals surveyed (2F02, 2C12, 2C04, 2C02 and 2C09) 

show a similar shattering pattern to cultivated rice up through ten days post flowering 

(Figure 3.3B; Table 3.2).  However, at 15 days post flowering, the BTS levels have 

dropped dramatically to near 0 g and stay at this level through 30 days post flowering 

(Figure 3.3B; Table 3.2). This is consistent with all reported observations of O. rufipogon 

and O. nivara shattering behavior across floral development (Ji et al., 2006; Oba et al., 

1995), and is consistent with the wild rice seed shattering trait at maturity (Table 3.1). 

All six shattering weeds examined (SH_1A08, SH_1A09, BHA1_1B08, 

BHA1_1A05, BHA1_1C04 and BHA1_1B02) registered BTS values above 150 g five 

days before through five days after flowering (Figure 3.3C; Table 3.2).  By ten days after 

flowering, BTS values for three weeds (SH_1A08, BHA1_1C04 and BHA1_1A05) have 

dropped to below 60 g, while all other weeds are still registering values around 150 g.  

By fifteen days after flowering, all shattering weeds shown have dropped their BTS 

values dramatically to nearly 0 g (Figure 3.3C; Table 3.2).  The BTS values thereafter 

stay at 0 g throughout the remainder of seed maturation for all shattering weeds shown.  

The single non-shattering weed (MXSH_1B06) shows a different time course as the 

shattering weeds.  The sharpest decreases in BTS values are only seen after 20 days after 

flowering and instead of dropping to 0 g the BTS values for this individual only go as 

low as 40 g (Figure 3.3C; Table 3.2). 

The variation in timing of the sharp reduction in BTS values across the weeds 

surveyed indicates that shattering ability is only partly correlated with abscission layer 
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degradation rates. Though all weedy rice accessions used in our microscopy study 

displayed earlier degradation of the abscission layer than what is seen in wild rice, a 

range of degradation severity seems to exist (Figure 3.2; Figure 3.4). Two weed samples 

that showed reduction in BTS values five days prior to other weeds tested appear to 

possess the highest degraded abscission layers at flowering (Figure 3.2). Weeds with 

drastically reduced BTS values at 15 days, a timing consistent with that of wild rice, 

seem to have somewhat less-degraded layers at flowering (Figure 3.4).  Overall the 

weedy rice individuals that showed the least degradation at flowering have similar 

shattering time courses to what has been shown previously for wild rice, while those with 

the most degradation show an earlier drop in BTS values. This indicates that the timing of 

when shattering is first noticeable in weedy rice is variable, despite the fact that all weeds 

degrade their abscission layer at an earlier time than wild rice.  

3.2.4 Novel Mutations Likely Underlie the Parallel Evolution of Shattering in Weedy 
and Wild Rice.  

Previous studies of the sh4 locus in wild and domesticated rice have implicated 

this gene in both the formation and degradation of the abscission layer at the flower-

pedicel junction (Li et al., 2006b; Lin et al., 2007). A mutation in the sh4 gene, strongly 

selected upon during rice domestication, is associated with reduction in shattering in 

cultivated rice varieties due to the formation of a discontinuous abscission layer (Li et al., 

2006b).  Transgenic experiments have further demonstrated that the ancestral sh4 allele 

(present in wild O. rufipogon) can restore shattering in non-shattering cultivated rice (Li 

et al., 2006b). Our previous work showed that US weedy rice groups carry the derived 

non-shattering mutation fixed in cultivated rice (Thurber et al., 2010), demonstrating that 
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the functional mutation identified in the sh4 locus does not result in non-shattering in the 

weed, and is thus not sufficient for loss of shattering.  This suggested that novel loci, 

perhaps distinct from those acting in wild rice species, are involved in the evolution of 

shattering in US weedy rice groups. 

The distinct developmental profile observed here for weedy rice abscission layers 

further supports that US weedy rice groups did not acquire the shattering trait through 

introgression with wild species. Thus, this and our previous work (Thurber et al., 2010) 

suggest that parallel evolution of shattering in weedy and wild rice has occurred through 

both different loci and different developmental mechanisms. Studies in several other 

systems have shown that parallel evolution between populations can arise from 

independent mutations in the same gene, as has been shown for body shape 

characteristics in two independent populations of freshwater stickleback and for two 

independently evolved populations of melanic Peromyscus rodents (Kingsley et al., 2009; 

Schluter et al., 2004).  Conversely, studies of independent melanic populations of rock 

pocket mice have also shown that convergent phenotypes can sometimes be achieved 

through mutations in different genes (Nachman et al., 2003; Hoekstra & Nachman, 

2003).  The acquisition of the shattering trait in wild and weedy rice groups further 

supports the possible role of independent loci in parallel evolution. 

Interestingly, the similarities in abscission layer traits (development and shattering 

time course) between two distinct weedy rice groups, SH and BHA, suggest that the 

gene(s) involved in reacquiring seed shattering may be the same in both populations. This 

is surprising, as these groups have been shown to have independent evolutionary origins 

(Reagon et al., 2010; Londo et al., 2007).  The convergence in the mechanistic basis of 
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seed shattering among these weedy rice groups may indicate certain genetic or 

morphological constraints inherent to re-evolving the shattering trait after its loss through 

domestication. Future studies into the genes involved in the progression of abscission 

layer formation and degradation in both weedy and wild rice will be integral to the study 

of weed evolution. 

3.3 Conclusions 

Our results show that the shattering trait in US weedy rice has a distinct 

mechanistic basis from that of the shattering wild ancestor of rice, consistent with the re-

evolution of this trait in weedy groups from domesticated ancestors. Surprisingly, 

independently evolved weedy groups have converged on this feature of abscission layer 

development. In some cases, the altered timing of abscission layer degradation appears to 

lead to earlier shattering in weedy rice compared to wild rice. 

3.4 Methods 

3.4.1 Plant Materials for Microscopy 

All accessions used in this study are a subset of those used in (Thurber et al., 2010) for 

which phenotypic and sequence data are available. Five weedy rice accessions, collected 

in the Southern US rice belt, were generously supplied by David Gealy (USDA) (Table 

3.1).  Accessions were chosen to represent the two major weedy rice groups (SH and 

BHA) based on population structure analysis (Reagon et al., 2010) and a group of 

putative weed-crop hybrids (MX) showing some resistance to seed shattering.  Additional 

samples of wild and cultivated Oryza were originally obtained from the International 

Rice Research Institute (IRRI) (O. rufipogon (4) and O. nivara, a close relative or annual 
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ecotype of O. rufipogon (2)) and Susan McCouch (O. sativa (4)). All plants were grown 

in a Conviron PGW36 growth chamber at the University of Massachusetts Amherst.  One 

seed per accession was planted in a 4 inch pot and grown as described in (Thurber et al., 

2010). Panicles from wild and cultivated individuals were collected at flowering, while 

panicles from weedy individuals were harvested at three time points: one week prior to 

flowering, at flowering and one week after flowering.  For observations prior to 

flowering, panicles were collected when the boot, or flag leaf sheath, was swollen yet 

before flowers had begun emerging.  At flowering, panicles were collected once 50% of 

the panicle had emerged from the boot. Panicles to be collected after flowering were 

bagged upon flowering to prevent pollen flow and loss of seeds.  At each collection, 

approximately eight flower-pedicel tissue samples were excised from the flowers at the 

topmost end of the panicle using a dissecting scope. 

3.4.2 Microscopy 

Tissue samples were fixed with glutaraldehyde (100 mM) in a solution containing 100 

mM PIPES pH 7.0, 100 mM Glutaraldehyde, 0.5 mM CaCl2, and 5.0 mM MgCl2 for 2 

hours.  Following fixation samples were dehydrated first in an ethanol series then further 

dehydrated in acetone.  Dehydrated samples were infiltrated and embedded in Epon 

Araldite resin (Mollenhauer, 1964).  Samples were sectioned longitudinally using a 

diamond knife on a rotary microtome (Porter-Blum JB4) to create 2 micrometer sections.  

Sections were dried onto rectangular microscope slides and subsequently stained for 3 

minutes with Toluidine Blue (0.5% solution in 0.1% sodium carbonate, pH 11.1), a 

metachromatic dye which stains regions with high lignin dark blue-green and regions of 

unlignified cell wall reddish purple (see O’Brien et al., 1964).   Bright field images were 
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taken at both 10x and 60x using a Nikon TE 300 Inverted Microscope with an attached 

CCD camera (Quantix CoolSnap HQ; Roper Scientific). 

3.4.3 Time Course Shattering Measurements 

Five weedy rice accessions, along with five wild rice accessions and eight 

cultivated O. sativa accessions (see above) were analyzed for shattering ability during 

floral and seed development (Table 3.1).  All plants were grown as described above for 

microscopy.  Panicles from each individual were collected ~ 5 days before flowering 

(swollen boot with top most flower of panicle approaching emergence), at flowering 

(50% of panicle emerged from boot), as well as 5, 10, 15, 20, 25, and 30 days after 

flowering.  Upon flowering, panicles to be collected were bagged to prevent pollen flow 

and loss of seeds.  The oldest (topmost) 10 flowers per panicle were analyzed for 

breaking tensile strength (BTS), or shattering level, using a digital force gauge as 

described in (Thurber et al., 2010).  BTS is a measure of the maximum amount of weight, 

in grams, a single flower or grain can hold before releasing; values at or near zero grams 

(g) are considered highly shattering while values over 100 g represent non-shattering or 

hard threshing (Li et al., 2006b; Thurber et al., 2010; Konishi et al., 2006). Average BTS 

values for the ten measurements are reported for each sample. 
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Table 3.1: List of accessions used for this study.  Accessions are identical to those used in 
a previous study (Thurber et al., 2010) and are grouped by type (weed, wild or cultivar).  
Identification numbers as well as phenotypic values for seed shattering are reported here 
as well as in (Thurber et al., 2010). 
 

Study 
ID a 

USDA ID/ 
Common Name c 

    

Group IRGC/RA/GRIN Origin b 
Mean BTS 

(gram) d 
Std. 
Dev 

Weedy rice 
SH_ 

1A08* 1134-01 x AR 0 0 

 
SH_ 

1A09* 1135-01 x AR 0.3 0.5 

 
SH_ 

1C02* 1001-01 x AR 1 2 

 
MXSH_
1B06* 1996-01 x AR 35.6 17.9 

 
BHA1_ 
1B08* 1996-09 x MS 7.2 21.6 

 
BHA1_ 
1A05* 1096-01 x AR 0 0 

 
BHA1_ 
1B02 10A x AR 0 0 

 
BHA1_ 
1C04 1005-02 x AR 0 0 

Cultivated 
rice       

aus 3A06* BJ-1 RA5345/45195 India 18.3 3.1 

 2B03 Aus 196 29016 Bangladesh 12.3 9.8 

indica 
3C05 Dee_Geo_Woo_ 

Gen RA5344/PI279131 
Taiwan 

60.9 25.3 

 3A11* Dholi Boro RA4984/27513 Bangladesh 137.4 11.8 

 3A08* Rathuwee RA4911/8952/PI584605 Sri Lanka 72.3 47.8 

 2B02 Bei Khe 22739 Cambodia 30.1 17.5 

 
3A09* Khao Dawk Mali -

105 RA4878/27748 
Thailand 

80.7 42.6 
tropical 
japonica 

3B09 Mirti 
RA4970/25901/PI584553 

Bangladesh 
12 22.9 

 3B12 Gotak_Gatik RA4959/43397/PI584572 Indonesia 104.5 67.7 
Wild Asian 
rice       
O. 
rufipogon 2C02*  N/A 

100588 
Taiwan 

0 0 

 2C09 N/A 104833 Thailand 0 0 

 2C04 N/A 100916 China 0 0 

 2C12 N/A 105491 Malaysia 0 0 

 2D06*  N/A 106086 India 0 0 

 2D12*  N/A 106169 Vietnam 0 0 

 2E01*  N/A 106321 Cambodia 0 0 

O. nivara 2F01*  N/A 86662 Thailand 0 0 

 2F02*  N/A 103821 China 0 0 

a  Based on STRUCTURE and identity from Reagon et al, 2010 

b  Origin for weeds is a US state abbreviation, origins for cultivated and wild rice is country 
c  Accessions with RA numbers were acquired from Susan McCouch while all others were acquired from IRRI 

d  BTS (Breaking Tensile Strength) corresponds to the maximum weight a seed can hold before releasing; from data 
reported in Thurber et al, 2010 

*-- Individuals used for Microscopy; all others used only for shattering time course 

x--  no data available 
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Table 3.2.: Average BTS values across floral and grain development.  Average BTS values for each individual at -5, 0, 5, 10, 15, 20, 
25, and 30 days after flowering, recorded in grams. 

      

  
Days After Flowering 

          
Group Study ID -5 0 5 10 15 20 25 30 

Weedy rice          
 SH_1A09 * 230.6 221 195.6 152.7 2.3 0 0 0 
 SH_1A08 * 204.4 187.5 173.4 35.2 5.8 0 0 0 
 BHA1_1B08 * 221.1 212.8 192.6 153.2 4.5 0 0 0 
 BHA1_1B02 182.5 167.9 135.4 103.3 0 0 0 0 
 BHA1_1A05 * 217.1 207.3 185.9 57.2 16.9 0 0 0 
 BHA1_1C04 190.7 178.1 135.8 6.7 0 0 0 0 
 MXSH_1B06 * 244.2 236.9 239.4 186.1 194.9 146.6 71.8 40.3 

Wild Asian 
rice          

 2F02 * 228 195.4 172 144.4 14.5 0 0 0 
 2C12 188.3 168.5 151.7 147.9 6.28 0 0 0 
 2C04 195.4 176.3 162.2 162.8 4.93 0 0 0 
 2C02 150.2 136.8 124.4 121 76.7 13.2 0 0 
 2C09 128.4 127.7 116.7 104.1 6.37 0 0 0 

Cultivated 
rice          

tropical 
japonica 3B09 195.2 187.6 175.5 185.3 22.3 19.1 18.1 18.9 

 3B12 198.2 179.6 147.5 166 112.9 66.1 83.8 68.4 
indica 3C05 234.3 230.7 203.3 223.8 75.8 50.4 58.6 44.8 

 3A09 * 201.2 184.3 148.9 172.8 53.6 63.5 44.6 56.3 
 3A11 * 224.3 225.4 212 184.5 136.5 136.7 119.3 123.2 
 2B02 215.8 197.2 181.2 161.3 155.1 61.7 34.7 30.2 

aus 2B03 231.1 213 207.4 134.3 35.6 24.9 13.3 14.6 
 3A06 * 226.7 220.8 197.6 123.6 14.6 14.2 12.2 14.6 

  
*-- Individuals used for Microscopy                 



 

70 

 
Figure 3.1. Comparison of wild and cultivated Oryza flower-pedicel junctions. 
Panels A-F are wild Oryza (A/B- 2F02 (O. nivara), C/D- 2F01 (O. nivara), E/F- 2C02 
(O. rufipogon)).  Panels G-L are cultivated O. sativa varieties (G/H- 3A11 (indica), I/J- 
3A06 (aus), K/L- 3A08 (indica)).  Arrows point to the region of the abscission zone, 
while white boxes show the region magnified further at right.  Abscission layers can be 
seen as darkly stained bands.  All samples shown here were taken at flowering for their 
respective accession and are all magnified at 10 x on the left and 60 x on the right.  Scale 
bars on bottom right represent 100 µm for 10x images and 50 µm for 60x images. 
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Figure 3.2. Comparison of abscission layers across weedy Oryza populations. 
Panels A-F are shattering BHA_1A05, Panels G-L are shattering SH_1A08, Panels M-R are non-shattering MXSH_1B06.  Each 
individual was collected 1 week prior to flowering (Prior), at flowering (Flowering) and 1 week after flowering (After).  Arrows point 
to the region of the abscission zone while white boxes outline the region magnified further.  Abscission layers can be seen as darkly 
stained bands.  Images at left were taken at 10 x magnification while those at right are 60 x magnification.  Scale bars on bottom right 
represent 100 µm for 10x images and 50 µm for 60x images. 
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Figure 3.3. Shattering across floral and grain development. 
Shattering levels for cultivated (4), wild (5) and weedy (5) individuals were recorded 
every five days from 5 days prior to flowering (-5) through 30 days after flowering (30).  
Panel A shows shattering levels for cultivated rice, Panel B shows shattering levels for 
wild rice, and Panel C shows shattering levels for weedy rice. 
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Figure 3.4. Additional weedy rice abscission layer images at flowering. 
Samples shown here were taken at flowering for their respective accession and are all 
magnified at 10 x with scale bars on bottom right representing 100 µm.  Arrows point to 
the breakdown of the abscission layer. 
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CHAPTER 4 
 

EVOLUTION OF FLOWERING TIME IN US WEEDY RICE 

4.1 Introduction 

Flowering time variation in plants is important for local adaptation.  Multiple 

environmental variables, such as temperature and latitude, with different day lengths 

depending on season, can act as cues for flowering time in different species (Weber & 

Schmid, 1998; Franks et al., 2007).   It has been observed that tropical plants often flower 

during cooler seasons, as day length decreases, to avoid extreme heat, while temperate 

plants flower during warmer seasons, as day length increases, to avoid freezing 

temperatures in winter (Greenup et al., 2009).  This is true for both wild and weedy 

plants as well as for domesticated crops.  As such, flowering time has been selected upon 

in multiple plant species and to different degrees and directions.   

In crops, humans have most commonly selected to reduce or eliminate 

photoperiod sensitivity so that crops, especially cereals, can be grown in locations outside 

of their native range (Sawers et al., 2005).  Flowering time is thought to play an 

important role in the ability of agricultural weeds to compete with crops in the field 

(Ellstrand et al., 2010). Some weeds may benefit from flowering simultaneously with 

their local crop, as this decreases conspicuousness and its seed may be collected and 

replanted.  Weeds can also benefit from earlier flowering and seed dispersal before crop 

harvest, thus escaping into the seed bank.  For conspecific weeds (weeds related to the 

crop they invade), many species show differences in flowering phenotype when 

compared to their cultivated relatives (Ellstrand et al., 2010). 
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As described in previous chapters, the weed my research focuses on is weedy rice 

found in the Southern US.  Genome-wide data suggest that in the United States weedy 

rice forms two major genetically differentiated groups; the SH group tends to have straw 

colored hulls with no awns and the BHA group tends to have black hulls with long black 

awns (Londo & Schaal, 2007; Reagon et al., 2010). Genome-wide data also suggest that 

each weed group independently arose from Asian cultivated rice ancestors, SH from 

indica and BHA from aus.  Both of these cultivated ancestors are varieties of rice that are 

thought to stem from a common domestication event from O. rufipogon, wild Asian rice 

(Sweeney & McCouch, 2007; Londo et al., 2006). 

Despite the likely descent of weedy rice from domesticated rice, weedy rice 

possesses many traits different from cultivated rice. As is shown in chapters 2 and 3, 

weedy rice shatters and disperses its seed, unlike the crop in which shattering has been 

selected against to facilitate harvest (Thurber et al., 2010; Thurber et al., 2011).  In 

Southern US rice fields, straw hulled weedy rice typically flowers earlier than weedy rice 

with black hulls and also shows some photoperiod sensitivity in relation to region of 

origin (Shivrain et al., 2010b; Shivrain et al,. 2009).  Flowering time in weedy rice may 

also overlap with flowering time in the US crops as there is a lot of variation in this trait 

within weed ecotypes (Shivrain et al., 2010b). 

In rice, flowering time, also referred to as heading date, is known to be affected 

by photoperiod (day length), but has also been suggested to be regulated by temperature, 

with photoperiod insensitive plants affected more than sensitive plants (Luan et al., 

2009).  Flowering time is highly variable within both cultivated and wild rice, although 

rice is commonly referred to as a short-day (SD) plant (Yano et al., 2000; Dung et al., 
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1998).  Under SD, less than 12 hours of daylight, flowering is promoted, while under 

long-day (LD) conditions, day lengths longer than 14 hours, flowering time is delayed 

(Yano et al., 2000).  The flowering time regulatory network has been well worked out in 

rice, and several genes are known.  For a complete review of flowering time regulation 

see Tsuji et al. (2010).  Briefly, under SD, OsGI, ortholog of Arabidopsis GIGANTEA, 

activates both Hd1, which encodes a B-box zinc finger protein and is the ortholog of 

Arabidopsis CONSTANS, and Ehd1, a B-type response regulator of which there is no 

Arabidopsis ortholog (Figure 4.1).  Both genes go on to activate Hd3a, which encodes a 

Phosphatidylethanolamine-binding protein and is the ortholog of Arabidopsis FT and the 

mobile florigen, whose protein originates in the leaves and moves to the shoot apical 

meristem, initiating the changeover from vegetative to reproductive growth (Tamaki et 

al., 2007; Yang et al., 2007). Under long days, several MADS-box transcription factors 

act on Ehd1 to promote flowering through activation of Hd3a and RFT1, a close paralog 

of Hd3a (Tsuji et al., 2010).  However, concurrent with this, Hd1 acts negatively on 

Hd3a to repress flowering (Figure 4.1).  Flowering under long day conditions is very 

complex and it is still unclear exactly what the cut off is between a long and short day.  

Importantly, a recent study (Takahashi et al., 2009) has shown that the three major 

determinants of flowering time diversity in cultivated rice are variation in Hd1 coding 

sequence affecting protein function, Ehd1 expression levels and Hd3a promoter 

sequence. 

 Since flowering time is an important agronomic trait and has been implicated as a 

major difference between weedy and cultivated rice we were interested in finding out 

how flowering time has evolved in US weedy rice. Our two main questions were: 1) How 
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does flowering time differ between weedy rice groups and between weedy rice and their 

cultivated progenitors? and 2) Do the genes that control flowering time variation in 

cultivated rice also play a role in flowering time evolution in US weedy rice? We found 

that weedy rice populations have diverged in their flowering phenotype and that these 

phenotypes are different from the weeds’ cultivated ancestors.  Additionally, two major 

determinants of flowering time in cultivated rice appear to be only partially responsible 

for these differences in flowering time in weedy rice. 

 

4.2 Methods 

4.2.1 Plant Materials 

All plant material for this study was previously described in (Thurber et al., 2010) and 

include 58 US weedy rice accessions and 87 samples of AA genome Oryza species 

including cultivated Asian O. sativa from the indica, aus, aromatic, tropical japonica and 

temperate japonica groups as well as wild O. rufipogon and O. nivara.  Additional 

outgroup species of non-Asian cultivars and wild relatives (O. glaberrima, O. barthii, O. 

glumaepatula and O. meridionalis) were also included. For further details of origin and 

collection see Table 4.1. 

 

4.2.2 DNA Extraction and Sequencing 

Plants used for DNA extraction were grown in Conviron PGW36 growth chambers at the 

University of Massachusetts Amherst and DNA was extracted and quantified as 

described in (Reagon et al., 2010).  Primers for the Hd1 gene open reading frame and 

Hd3a promoter were designed using Primer3 (Rozen & Skaletsky, 2000) based on the O. 
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sativa genome (TIGR v. 5 January, 2008).  Initial PCR amplification and sequencing was 

performed by Cogenics (Houston, TX), while DNA sequencing of in-house PCR 

products was performed by either Cogenics (Houston, TX) or Beckman Coulter 

Genomics (Danvers, MA) as described in (Caicedo et al., 2007; Olsen et al., 2006). 

Sequence aligning including base pair calls, quality score assignment and construction of 

contigs was done as in (Caicedo et al., 2007) using BioLign Version 2.09.1 (Tom Hall, 

NC State Univ.).  Approximately 1.25 kilobases (kb) of exonic sequence data was 

generated for each individual at the Hd1 gene.  An additional ~1 kb of data was generated 

for the Hd3a promoter region. Due to high conservation of the Ehd1 promoter and coding 

sequences in rice this gene was not investigated despite its expression level being highly 

correlated with flowering time (Takahashi et al. ,2009).  Primers used in this study can be 

found in Table 4.2.   

 

4.2.3 Data Analysis 

Maximum Parsimony and Neighbor Joining phylogenetic trees were made using Mega 4 

(Tamura et al., 2007) under default conditions. As both trees produced similar results, 

only the consensus Neighbor Joining trees resulting from 1000 bootstraps, with 

bootstraps reported at branches over the 50% cut off value are shown (Figures 4.3 and 

4.5).  

 

4.2.4 Measurement of Heading Date  

As described in (Thurber et al., 2010), a subset of 90 Oryza accessions was grown in 

growth chambers under day neutral conditions and phenotyped for heading date.  Rice’s 
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evolutionary origin is in tropical latitudes where day neutral conditions are most common 

(Khush, 1997).   The range of changing day lengths experienced in a typical southern US 

rice field can not be captured in a growth chamber, but flowering of both weedy and 

cultivated rice likely happens after the summer solstice but before the autumnal equinox 

(D. Gealy, personal communication).  This puts the day length experienced by these 

plants below 14 hours (LD) and closer to day neutral conditions. Additionally, we also 

believe that the SD path is the one active in the field and growth chamber, yet we can not 

be sure given that the boundary between what is considered a long and short day has not 

been well-explored (Figure 4.1).  For further descriptions of plant growth conditions 

please see Thurber et al. (2010).  Heading date was measured as the approximate 50% 

heading time, between when the first few florets began emerging from the boot until 

anthesis of those first florets, on the first emerging panicle for each plant (as described by 

(Counce et al., 2000)).  Dates were then transformed into number of days relative to the 

germination date, which was fairly uniform across all individuals.  Averages were 

calculated for each individual and for each major group using Excel (Table 4.1).  

Boxplots of the flowering date data were made using R (Figure 4.2). 

 

4.3 Results and Discussion 

4.3.1 Heading Date Phenotype 

In the field in the US, weedy rice has been documented as showing range in 

flowering dates in relation to the flowering date of the local US crop, typically tropical 

japonica (Shivrain et al., 2010b).  Our common garden experiment mirrors what has been 

observed in the field; SH weeds flower significantly earlier than tropical japonica, while 
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BHA weeds flower concurrently or after (Figure 4.2 Kruskal Wallis test; P <0.001, see 

also (Reagon et al., 2011)). However, flowering time in the weeds differs from that 

observed in their cultivated ancestors.  We found that SH weeds flower significantly 

earlier than their progenitor indica and most wild accessions (Figure 4.2; Mann-Whitney 

(P <0.05) (Reagon et al., 2011)). BHA weeds flower significantly later than their 

progenitor aus, but more in line with what we see in wild accessions (Figure 4.2; Mann-

Whitney (P <0.05) (Reagon et al., 2011)).  Among cultivars, the aus cultivars flowered 

slightly earlier than either indica or tropical japonica, however this difference is not 

statistically significant (Figure 4.2).  The O. rufipogon wild rice showed a wide range in 

heading dates, from early to late.  Additionally, out of a variety of traits related to how 

weeds grow (height, tiller number, flowering time, emergence growth rate and average 

growth rate), flowering time has been shown to be the most divergent trait among crops 

and weeds under our growth chamber environment, which suggests this trait has been 

under selection (Reagon et al., 2011).  Our phenotypic data suggests that there is no 

single optimal weed strategy to flowering, indicating that this trait has not evolved in 

parallel within the two weed groups. Additionally, flowering time differs markedly 

between weeds and their ancestors, suggesting this trait has evolved rapidly since the 

weeds arose. 

 

4.3.2 Relationship of Weedy, Cultivated and Wild Hd1 Alleles 

To try to understand the differences in flowering phenotype between the weed 

groups and their progenitors, we investigated sequence polymorphism at the major 

flowering time candidate gene Hd1. In particular, we wanted to know whether the US 
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weeds had functional or non-functional Hd1 alleles.  Hd1 has been implicated in many 

studies as being the most important and strongly selected locus for photoperiod 

sensitivity and flowering time variation in cultivated rice (Takahashi et al., 2009; Yano et 

al., 2000; Fujino et al., 2010).  Multiple alleles in cultivated rice harbor deletions or SNPs 

that render the resulting protein non-functional and cause later flowering under short 

days.  The most common of these alleles, present in ~43% of rice cultivars, is a 2 base 

pair (bp) deletion in the second of two exons that causes a premature stop codon and is 

shared between indica and japonica varieties (Takahashi et al., 2009).  

We sequenced both exons of the Hd1 gene (chromosome 6) in a panel of 144 

wild, weedy and cultivated rice accessions and visualized the relationship of Hd1 

haplotypes on a Neighbor Joining tree (Figure 4.3).  This is a highly diverse gene with 

over 50 haplotypes for the coding region alone.  A majority of the haplotypes are unique 

to wild rice, yet there are several haplotypes unique to cultivated rice and even a few 

unique to weeds (Figure 4.3).  The most common haplotypes (Haplotypes 2 and 3) are 

shared between weeds and cultivars. 

The haplotypes containing the well characterized 2 bp deletion, including 

Haplotype 3, are present in nearly all BHA weeds along with all US cultivars and a 

subset of wild and Asian domesticates including a majority of aus cultivars (84%), the 

progenitors of BHA weeds.  This is consistent with the later flowering observed in these 

groups and is also consistent with Takahashi’s (2009) finding that the deletion is common 

in cultivated rice from both indica (indica/aus) and japonica (tropical japonica/temperate 

japonica/aromatic) lineages. In contrast, the SH weeds form a separate clade of 

haplotypes that does not contain the deletion and includes a small subset of Asian 
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domesticated accessions, three of which are indica cultivars, the progenitors of SH 

weeds.  Haplotype 2 represents the majority of the SH weeds (91%) and cultivars, 

including 20% of indica sampled, that do not have the 2 bp deletion in their coding 

sequence, consistent with early flowering. The indica cultivar group we sampled is highly 

diverse in their Hd1 alleles, representing seven different haplotypes with no more than 

30% of indica cultivars containing a single shared haplotype.  The fact that there is no 

majority haplotype in indica and that SH weeds share a haplotype with a subset of these 

cultivars from China and Cambodia, may be useful for narrowing down the origin of this 

weed group. 

Additional non-functional alleles have been identified by Takahashi (2009), yet 

only one is present in our study panel.  This allele, Haplotype 4, is shared by a single 

indica cultivar and a single weed of mixed ancestry and contains a four base pair deletion 

shown to produce a non-functional Hd1 allele (Takahashi et al., 2009).  Other novel 

deletions, ranging in size from single bases to 43 bases, which may reduce or eliminate 

function of this gene, are present in several haplotypes (Haplotypes 1, 7, 27, 37, 40, and 

43).  Some of these haplotypes (1, 7 and 43) can be found in some cultivars or a few SH 

weeds, while others contain separate deletions unique to wild rice (27, 37 and 40). 

Additional SNPs that cause amino acid changes are present, yet the extent to which these 

mutations cause functional changes in the protein is not known. 

Since the functionality of the HD1 protein is integral to rice flowering and the 

common 2 bp deletion has been shown to increase flowering under SD, we wanted to 

know if there was a difference between individuals with or without functional alleles.  

Due to small samples sizes of the weeds and cultivars separately and the close relatedness 
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of these groups, we chose to pool these individuals.  However, this means that our 

analysis does not account for population structure.  When weeds and cultivars are pooled, 

there is a significant difference in days to flowering between individuals with functional 

Hd1 alleles and those with the 2 bp deletion (Figure 4.4).  Those with a loss of function 

allele flower significantly later than those with a functional allele (P = 5.62e-8). This 

suggests that flowering time behavior in weedy rice is partially determined by Hd1 

polymorphism and by alleles that have been inherited from ancestral groups. 

The differences between the weed groups (SH/BHA) can be explained by their 

divergent Hd1 haplotypes.  However, Hd1 haplotype alone cannot explain the differences 

in flowering time phenotype between weeds and their progenitors.  SH weeds share an 

allele with indica cultivars and BHA weeds share an allele with aus cultivars, yet SH 

weeds flower earlier than indica cultivars and BHA weeds flower later than aus cultivars.  

Interestingly, the aus cultivars show low levels of both phenotypic variation and numbers 

of Hd1 haplotypes while indica cultivars show nearly twice as much phenotypic variation 

and many more Hd1 haplotypes (Table 4.1; Figure 4.2). 

 

4.3.3 Identification of Weedy Rice Hd3a Promoter Haplotypes 

As described above, polymorphism at Hd1 seems to explain flowering time 

differences between US weedy rice groups but does not explain how weeds can share 

haplotypes with their ancestors and still show different flowering phenologies. Thus we 

decided to investigate another major flowering time determinant, Hd3a, the mobile 

florigen that sparks the transition to flowering.  This gene is located on chromosome 6 

and is about 6.4 Mb upstream of Hd1 (Kojima et al., 2002).  Research has shown that the 
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Hd3a promoter type is highly associated with flowering time in cultivated rice and that 

there are two main promoter types of Hd3a in cultivated rice (Takahashi et al., 2009).  

Type A promoters lead to lower expression of Hd3a and a later flowering phenotype, 

while Type B promoters have higher Hd3a expression and earlier flowering under SD.  

These promoter types differ by eleven SNPs and a twelve bp indel, any of which may be 

responsible for the differences in gene expression. However, none of these mutations 

alters known regulatory sequences.  Both types of promoter occur in indica and japonica 

varieties. 

We sequenced ~1kb of promoter region in 84 accessions of wild, weedy, and 

cultivated rice. In our data set, there is a moderate amount of diversity in Hd3a promoter 

haplotypes (Figure 4.5).  The type A promoters (Haplotypes 1, 4 and 5) are distinct from 

the Type B promoters (Haplotypes 2, 3, 6, 8, 10, 21 and 26).  The inclusion of weedy rice 

brings in new recombinant haplotypes, which cannot be classified as A or B types based 

on sequence polymorphism, and might even be intermediate in expression level.  About 

42% of BHA and 11% of SH weeds have these unique recombinant promoter types.  

However, the majority of SH weeds (75%) group with indica (50%), sharing B type 

promoters, consistent with early flowering seen in both the growth chamber and field.  

Interestingly, most BHA weeds (42%) group with aus (60%), also sharing a B type 

promoter, which is unexpected given their later flowering.  It is important to note that 

there is one Type A haplotype that is shared between a subset of both SH (11%) and 

BHA (17%) weeds and all of the local cultivars sampled, which is suggestive of 

hybridization between crops and weeds in the field. 
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 As with Hd1, we were interested in seeing if there was a difference in phenotype 

between individuals with Type A and Type B Hd3a promoter types.  Again, due to small 

samples sizes and the removal of intermediate promoter types, we pooled weeds and 

cultivars. When weeds and cultivars are pooled, there is no significant difference in days 

to flowering between individuals with Type A Hd3a promoter and those with Type B 

promoters (Figure 4.4; P = 0.05426).  However, the Type A do show a trend towards later 

flowering as has been shown in cultivated rice. Given that both weedy rice groups share 

Hd1 and Hd3a haplotypes with their progenitors, other genes must be involved in the 

drastic differences in phenotype between the weeds and their progenitors. 

 

4.4 Conclusions/Future Directions 

Our phenotypic data shows that flowering time differs greatly between weedy rice 

groups and between weedy rice and their cultivated progenitors (Figure 4.2). Flowering is 

highly variable in weedy rice and multiple flowering strategies might contribute to the 

success of weeds as a whole.  Flowering time also seems to have evolved rapidly since 

weedy rice’s divergence from cultivated ancestors.  In the case of SH weeds, little 

overlap of flowering with the crop may occur, thus reducing the chance for hybridization.  

BHA weeds, however, may overlap more with the flowering time of the local tropical 

japonica crop, permitting hybridization and the potential escape of transgenes if GM 

crops are grown (Shivrain et al., 2010a). 

Within weedy rice there is polymorphism in the genes known to affect flowering 

time diversity in cultivated rice.  SH weeds flower earlier and do not posses the 2 bp 

deletion in Hd1. BHA weeds flower later and do posses the 2 bp deletion in Hd1 (Figures 
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4.3 and 4.4).  There is diversity in Hd3a promoters in US weedy rice yet most SH and 

BHA weeds share haplotypes with progenitors that may be weakly associated with 

flowering time (Figures 4.4 and 4.5).  Since both weed groups share similar haplotypes at 

two major flowering time loci with progenitors yet flower at significantly different times, 

other genes must be involved in flowering time divergence.  One of the most promising 

candidates is Ehd1, a B-type response regulator, whose expression level has been found 

to be an important flowering time regulator in cultivated rice (Takahashi et al., 2009).   

Since the expression level of Ehd1, not sequence variation in either the promoter or the 

coding regions of this gene, correlates the best with flowering time differences we did not 

pursue this gene for this study.  Future work quantifying the expression levels of Ehd1 

and other flowering pathway genes in weedy rice under SD, LD and day neutral 

conditions might be useful for understanding how each of these genes works to regulate 

flowering in the weeds. Additionally, a QTL study conducted in our lab identified at least 

one region on chromosome 8 that is involved in flowering time differences between SH 

and BHA weeds and an indica cultivar (see Chapter 5).  Within this region is a very 

promising candidate gene (Ghd8/DTH8/qHY8), encoding for a putative histone-like 

CCAAT-box binding transcription factor (Wei et al., 2010; Yan et al., 2011; Cai et al., 

2011).  This gene may function as a regulator of Ehd1 and Hd3a downstream of Hd1, 

with nonfunctional alleles conferring weaker photoperiod sensitivity (Wei et al., 2010; 

Yan et al., 2011; Cai et al., 2011). 
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Table 4.1. List of Accessions used for this study.  Accessions are grouped by type (weed, wild or cultivar).  Identification numbers as 
well as genotypes at Hd1 and Hd3a are listed along with phenotypic values for heading date. 

Group Study ID a 
USDA ID/ 

Common Name 
b 

IRGC/RA/ 
GRIN c 

Origin d Hd1 
Haplotype 

Functionality e Hd3a 
Haplotype 

Type (A/B) 
f 

Heading 
date (days) g 

Weedy rice SH_1A04 1091-01 x AR 2 f 10 B 66.7 

 SH_1A07 1098-01 x MO 2 f 6 B 56.5 

 SH_1A08 1134-01 x AR 2 f x x 65 

 SH_1A09 1135-01 x AR 2 f x x 59.5 

 SH_1A10 1141-01 x AR 2 f 6 B 54.5 

 SH_1A11 1160-01 x AR 2 f 6 B 61 

 SH_1A12 1179-01 x LA 2 f 6 B 60 

 SH_1B05 1995-15 x AR 2 f 1 A x 

 SH_1B03 16B x AR 2 f x x 111 

 SH_1B07 1996-05 x MS 2 f x x 68 

 SH_1C02 1001-01 x AR 2 f 20 ? 66.5 

 SH_1C03 1002-02 x AR 5 f 6 B 63.5 

 SH_1C06 1047-01 x LA 2 f x x 65.5 

 SH_1C07 1073-02 x MO 2 f 6 B 57.5 

 SH_1C10 1190-01 x LA 7 nf 36bp 6 B 68 

 SH_1C11 1199-01 x MO 7 nf 36bp 6 B 73.5 

 SH_1D01 1344-02 x MO 2 f 6 B 67.5 

 SH_1D06 1995-12 x LA 2 f 6 B 67 

 SH_1D09 1996-08 x MS 2 f 6 B 68 

 SH_1E03 1210-02 x MO 2 f 6 B 78 

 SH_1E07 1333-02 x MO 2 f 6 B 66 

 SH_1A01 1004-01 x MO 2 f 19 ? 61 

 SH_1E05 1163-01 x LA 2 f 1 A 78.5 

 SH_1A06 1196-01 x AR 2 f 6 B 58 

 MXSH_1B06 1996-01 x AR 4 nf 4bp 14 ? 111 

 MXSH_1D10 2002-51 x AR x x 1 A x 

 MXBH_1E10 2002-2-p21 x AR 11 nf 2bp 1 A 85 

 MXBH1D11 2004-1-A x AR x x x x 110 

 MX_1B10 MS4R788_93 x MS 3 nf 2bp 2 B 123 
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Table 4.1 cont. BRH_1C12 1300-02 x MO 2 f 2 B 95 

 BRH_1D12 1183-01 x AR 2 f 6 B 56 

 BRH_1C09 1111-01 x AR 2 f 6 B 68 

 BRH_1C08 1092-02 x MS 2 f 2 B 95 

 BRH_1E06 1120-02 x MO 2 f 6 B 70.5 

 BHA2_1E04 1214-02 x LA 8 nf 2bp 2 B 89 

 BHA2_1B01 1188-01 x MS 3 nf 2bp 9 ? 129 

 BHA2_1C01 TX4 x TX 3 nf 2bp 11 ? 107 

 BHA2_1A02 1025-01 x AR 3 nf 2bp 1 A 105 

 BHA2_1A03 1081-01 x AR 3 nf 2bp x x 117 

 BHA2_1E02 1107-01 x AR x x x x 112.5 

 BHA2_1C05 1042-01 x AR x x 18 ? 117.5 

 BHA2_1E08 1202-02 x AR 2 f 1 A 58 

 BHA1_1B11 StgB x AR 3 nf 2bp x x 125 

 BHA1_1D07 1995-13 x LA 3 nf 2bp x x 125 

 BHA1_1B02 10A x AR x x x x 96.5 

 BHA1_1B08 1996-09 x MS 3 nf 2bp 17 ? 115.5 

 BHA1_1E09 2002-2-p1 x AR x x 1 A 113 

 BHA1_1D08 1995-14 x LA 3 nf 2bp 7 ? 124 

 BHA1_1B09 LA3 x LA 3 nf 2bp 9 ? 153 

 BHA1_1B12 StgS x AR 3 nf 2bp 13 ? 130.5 

 BHA1_1D05 PrCoTall_3 x AR 3 nf 2bp 2 B 159 

 BHA1_1E01 1166-02 x MS 3 nf 2bp 12 ? 113 

 BHA1_1A05 1096-01 x AR 3 nf 2bp x x 101.5 

 BHA1_1B04 18A x AR 3 nf 2bp x x 118 

 BHA1_1C04 1005-02 x AR 6 nf 2bp 2 B 104.5 

 BHA1_1D02 PrCoSrt_1 x AR 3 nf 2bp 2 B 118 

 BHA1_1D03 PrCoTall_1 x AR 3 nf 2bp x x x 

 BHA1_1D04 PrCoTall_2 x AR 3 nf 2bp 2 B 128 

Cultivated rice          

aromatic 
 
 

3A01 

 
 

DOM-SOFID 

RA4929/ 
12880/ 

PI584607 

 
 

Iran 
12 f x x x 
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Table 4.1 cont. 
 

3A02 
 

ARC-13829 
RA48947/ 

42469 
 

India 
12 f x x x 

 2B01 DA 13 x Bangladesh 12 f x x x 

aus 2B03 Aus 196 29016 Bangladesh 13 nf 2bp 2 B 81.5 

 3A03 JHONA-349 
RA4979/ 

6307 
India 3 nf 2bp 2 B 91 

 3A04 KASALATH RA5339 India 3 nf 2bp 11 ? 92.7 

 3A05 DV85 
RA5323/ 

8839 
Bangladesh 3 nf 2bp x x 89 

 3A06 BJ-1 
RA5345/ 

45195 
India 3 nf 2bp x x 104 

 3A07 
DHALA_ 
SHAITTA 

RA5361/ 
PI180060 

Bangladesh 3 nf 2bp 8 B x 

indica 2B02 Bei Khe 22739 Cambodia 2 f 3 B 81 

 3A08 RATHUWEE 
RA4911/8952/

PI584605 
Sri Lanka 3 nf 2bp 6 B 103 

 3A09 
Khao Dawk 
Mali -105 

RA4878/ 
27748 

Thailand 42 f x x 104.5 

 3A10 LalAman 
RA4956/ 

46202 
India 15 f x x 123.5 

 3A11 Dholi Boro 
RA4984/ 

27513 
Bangladesh 15 f x x 125 

 3A12 Ai-chiao-hong 
RA4967/ 
51250/ 

PI584576 
China 2 f 4 A 100 

 3B01 CHAU 
RA4974/ 

56036 
Vietnam 35 f x x x 

 3B02 
CHHOTE_ 

DHAN 
RA4978/ 

58930 
Nepal 15 f 10 B 87.5 

 3C05 
DEE_GEO_ 
WOO_GEN 

RA5344/ 
PI279131 

Taiwan 4 nf 4 bp x x 108.5 

 3B03 POPOT-165 
RA4987/ 

43545 
Indonesia 12 f x x 134 
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Table 4.1 cont.          

temperate 
japonica 

 
3B04 

 
Ta hung ku 

RA5029/1107 China x x 1 A x 

 
 

3B05 
 

Kamenoo 
RA4990/ 
PI403629 

Japan 43 nf 43bp 1 A x 

 
 

3B06 
 

Nep-Hoa-Vang 
RA4945/ 

40748 
Vietnam 12 f 4 A x 

 
 

3B07 
 

SHOEMED 
RA5123/ 
PI392539 

Philippines 1 nf 36bp x x x 

tropical 
japonica 

 
3B08 

 
Khao Hawm 

RA5030/ 
24225 

Thailand 3 nf 2bp 1 A 156.5 

 
 

3B09 
 

Mirti 

RA4970/ 
25901/ 

PI584553 
Bangladesh 44 nf 2bp x x 83 

 
 

3B10 
 

KU115 
RA5294/ 
PI597044 

Thailand 3 nf 2bp x x 101.5 

 
 

3B11 
 

CICIH_BETON 
RA4955/ 

43372 
Indonesia 

(Bali) 
45 f 4 A x 

 
 

3B12 

 
GOTAK_ 
GATIK 

RA4959/ 
43397/ 

PI584572 

Indonesia 
(C. Java) 

2 f 21 B 93 

 
 

3C01 
ASSE_Y_ 

PUNG 
RA5333/ 
CIor461 

Philippines 46 nf 2bp 1 A 127 

 3C02 Kotobuki Mochi RA4882/2545 Japan 3 nf 2bp 5 A 75 

 
 
 

3C03 
TREMBESE 

RA4988/ 
43675 

Indonesia 
(East Java) 

9 nf 2bp 1 A x 

US cultivars 3C04 LEMONT 
RA4998/ 

66756 
US 10 nf 2bp 1 A x 

 2A01 BENGAL PI561735 US 3 nf 2bp 4 A x 

 2A02 BLUE_ROSE CIor1962 US 3 nf 2bp x x 96.5 

 2A03 
CAROLINA_ 

GOLD 
CIor1645 US 3 nf 2bp x x x 

 2A04 CL121 n/a US 3 nf 2bp x x x 
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Table 4.1 cont. 2A05 CL161 n/a US 3 nf 2bp 4 A x 

 2A06 CYPRESS PI561734 US x x 4 A x 

 2A07 DELITUS CIor1206 US x x x x x 

 2A08 DREW n/a US 3 nf 2bp 1 A x 

 2A09 EDITH CIor2127 US 3 nf 2bp 4 A 100.5 

 2A10 PALMYRA CIor9463 US 3 nf 2bp 1 A x 

 2A11 REXORO CIor1779 US 3 nf 2bp 4 A x 

 2A12 ZENITH CIor7787 US 3 nf 2bp 1 A x 

Wild Asian rice and outgroups         

O. rufipogon 3C06 x 106163 Laos 47 f 23 ? x 

 2C01 x 81990 Myanmar 14 f x x x 

 2C02 x 100588 Taiwan 15 f x x x 

 2C03 x 100904 Thailand 16 f x x x 

 2C04 x 100916 China 17 nf 20bp x x 64.5 

 2C05 x 104501 India 19 f x x x 

 2C06 x 104599 Sri Lanka 20 f x x x 

 2C07 x 104624 China 21 f x x x 

 2C08 x 104714 Thailand 22 f 16 ? x 

 2C09 x 104833 Thailand 23 f x x 98 

 2C10 x 104871 Thailand 24 f x x 123.5 

 2C11 x 105388 Thailand 25 f x x x 

 2C12 x 105491 Malasia 3 nf 2bp x x 174 

 2D01 x 105568 Philippines 26 f x x 106.5 

 2D02 x 105711 India 27 nf 20bp x x 154 

 2D03 x 105720 Cambodia 28 f x x x 

 2D04 x 105855 Thailand 29 f x x x 

 2D05 x 105888 Bangladesh 30 f x x 141 

 2D06 x 106086 India 2 f x x x 

 2D07 x 106103 India 31 f x x x 

 2D08 x 106122 India 32 f 6 B x 

 2D09 x 106134 India 33 f x x x 

 2D10 x 106150 Laos x x x x x 
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Table 4.1 cont. 2D11 x 106168 Vietnam 18 nf 20bp x x x 

 2D12 x 106169 Vietnam 3 nf 2bp 6 B x 

 2E01 x 106321 Cambodia 34 f x x x 

 2E02 x 106346 Myanmar 35 f 24 ? x 

 2E03 x 106453 Indonesia 16 f 17 ? x 

 2E04 x 106518 Vietnam 16 f 22 ? x 

 2E05 x 106523 
Papua New 

Guinea 
36 f x x x 

O. nivara 2F01 x 86662 Thailand 37 nf 1bp x x x 

 2F02 x 103821 China 3 nf 2bp 25 ? x 

O. barthii 2F03 x 101226 Mali 38 f x x x 

 2F04 x 104081 Nigeria 39 f x x x 

O. glaberrima 2F05 x 86779 Liberia 39 f x x x 

 2F06 x 100983 Nigeria 39 f x x x 

 2F07 x 101855 
Burkina 

Faso 
39 f x x x 

 2F08 x 102410 Mali 39 f x x x 

O. 
glumaepatula 

2F09 x 105561 Colombia 40 nf 7bp x x x 

 2F10 x 105670 Brazil 41 f x x x 
O. 

meridionalis 
2F11 x 93261 Indonesia 48 f x x x 

 3C07 x 101148 Australia 49 f x x x 

a  based on STRUCTURE and identity from Reagon et al 2010       

b accessions with RA numbers were acquired from Susan McCouch while all others were acquired from IRRI    

c Accessions in bold were selfed 4 generations at the USDA stock center      

d  Origin for weeds is a US state abbreviation, Origins for cultivated and wild rice is country     

e  Functionality is based on previous characterization of Hd1 alleles by CITE.      

f  Type is based on previous characterization of hd3a promoters by CITE, ? represent haplotypes sharing characteristics of both A and B promoters. 

g  Heading date was measured in days from date of germination to 50% emergence of first panicle    

x--  no data available         
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Table 4.2.  List of Primer Sequences and their location.  Primers are grouped by gene (Hd1 and Hd3a) as well as genetic versus 
flanking region. 

Hd1 Gene Primers    
Primer ID Forward Reverse Region 
Hd1_003 CGCGATTGCTTTGGCTTAAAAGG CTCCTCCTTCGCCTCCAACTCC 5'UTR/Exon1 
Hd1_004 CTACTACCACAAGCAAGGCTACTTCG CCCGACAAGATCAAAGTACTCATCG Exon1 
Hd1_005 GGTGGACTCTTGGCTTCTCCTCTCC ATCAGCCTAAAGATCGCAGCTTGG Exon1/Intron 
Hd1_006 CTCCAAACAAAAGCTACTGTCTAAC GCATATCTATCACCGTGCTGTC Intron/Exon2 
Hd1_007 GGAGGCGGGTATAGTACCAGACAG CATTTCATCTCATCACTGCTCTTTGC Exon2/3'UTR 
Hd1_012 AGGGACAGTCCTAAGTTAAAATGG CACATGGACAAGTCTATCGATCC Exon1 
Hd1_013 AGGTGGACTCTTGGCTTCTCCTC TGGAGAATGTTTTTCCACTCAAAAG Exon1/Intron 
Hd1_014 CACAATTGATCTTTAGGCAGACCAG CTGTCCATGGAGCTGAAGTGAAG Intron/Exon2 

    

Hd3a Promoter Primers    
Primer ID Forward Reverse  
Hd3ap_001 TCATTAATTGCCTTACCTCAAC TTGTTGGTTTTTCCGCAACT  
Hd3ap_002 GCATCCACAAAATTTCTAGGC CGATCTTGCAAAAAACCCTG  
Hd3ap_003 CGCCGACATAGAAAGGAAAG GTTAGGGTCACTTGGGCTTG  
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Figure 4.1.  Brief overview of flowering time gene regulation in rice. 
This figure is adapted from Tsuji, Taoka and Shimamoto (2010).  Under short days OsGI, 
ortholog of Arabidopsis GIGANTEA, activates both Hd1, the ortholog of Arabidopsis 
CONSTANS, and Ehd1, for which there is no Arabidopsis ortholog.  Both genes go on to 
activate Hd3a, the ortholog of Arabidopsis FT, promoting flowering. Under long days, 
several MADS-box transcription factors act on Ehd1 to promote flowering through 
activation of Hd3a and RFT1, a close paralog of Hd3a.  However, concurrent with this 
OsGI activates Hd1 which then acts negatively on Hd3a to delay flowering. 
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Figure 4.2.  Flowering time phenotype in weedy, cultivated and wild Oryza.  
Flowering time, also referred to as “Days to Heading” or “Heading Date”, was averaged 
across two individuals per accession and a boxplot distribution of those averages is 
shown here. Black line is median, red dot is mean and white dots represent outliers.   
Numbers in parenthesis represent sample sizes.  Weedy rice groups are as follows: SH 
(straw-hulled), BHA1 (black hulled and awned). 
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Figure 4.3.  Neighbor joining tree for Hd1 coding region haplotypes. 
Numbers below branches correspond to bootstraps using 1000 replicates.  The clade 
marked with a star contains haplotypes that share a suite of ~14 SNPs and a causative two 
base pair deletion in exon two that truncates the HD1 protein at the C terminal end, 
leaving the protein non-functional.  Haplotypes are color coded by the key on the top left. 
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A 

 
B 

 

Figure 4.4.  Phenotypic differences between major haplotype classes. 
A) Differences in heading dates between functional and nonfunctional Hd1 haplotypes in 
cultivated and weedy rice.  Differences are statistically significant (P = 5.62 e -8).  B)  
Differences in heading dates between Type A and Type B Hd3a promoters in cultivated 
and weedy rice.  Differences are not statistically significant (P = 0.05426).  In both 
panels, numbers in parenthesis denote sample size of combined weedy and cultivated 
individuals. 
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Figure 4.5. Neighbor joining tree for Hd3a promoter haplotypes. 
We sequenced ~1kb of promoter region in 84 accessions of wild, weedy, and cultivated 
rice.  The Type A promoters (black star) are distinct from the Type B promoters (white 
stars) as classified by (Takahashi et al., 2009).  Type A promoters typically show lower 
expression of the Hd3a gene compared to Type B promoters.  The inclusion of weedy 
rice and additional wild samples brings in new recombinant haplotypes which have yet to 
be classified as A or B types and might even be intermediate in expression level. 
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CHAPTER 5 
 

SIMILAR TRAITS, DIFFERENT GENES/ DIFFERENT TRAITS, SIMILAR 

GENES: EXAMINING PARALLEL EVOLUTION IN RELATED WEEDY RICE 

POPULATIONS 

5.1 Introduction 

The repeatability of adaptive evolution is an outstanding question in biology.  The 

presence of similar traits in independently evolved lineages has often been documented 

(e.g. Schluter et al., 2004), and it has recently become possible to determine the extent to 

which this is a result of similar changes in shared genetic systems (Stinchcombe & 

Hoekstra, 2008).  Shared genetic biases among taxa that could result in disproportionate 

use of the same genes are often invoked to explain the occurrence of trait convergence 

(e.g. Hodin, 2000; Schluter et al., 2004). These biases have been traditionally believed to 

be more likely among closely related species, suggesting that convergent phenotypic 

evolution among relatives is more likely attributable to shared genetic mechanisms (e.g. 

Arendt & Reznick, 2007). To date, however, studies have revealed that the genetic bases 

of convergent phenotypes can range from similar to different genetic changes, both in 

closely and distantly related taxa (e.g. Kingsley et al., 2009; Rompler et al., 2006; Steiner 

et al., 2008; Yoon & Baum, 2004). Because patterns have been slow to emerge, the 

extent to and circumstances under which convergent phenotypic evolution is due to 

shared genetic mechanisms is currently an active area of inquiry. 

Plants evolving in the agricultural environment offer many examples of 

convergent phenotypic evolution. For example, although domesticated in different world 

regions, many cultivated grasses have experienced similar selective pressures by humans; 
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crop grasses have been selected for alterations in seed traits, annual life cycles, increased 

selfing and decreased seed shedding (Purugganan & Fuller, 2009). Similarly, trait 

convergence is often also evident in agricultural weeds - highly competitive plants that 

repeatedly invade the disturbed cropland soils (Basu et al., 2004) and belong to a wide 

variety of genera. Despite sometimes being unrelated, agricultural weeds often converge 

on similar adaptive traits such as rapid growth, high seed production, increased seed 

dispersal and deep roots (Ellstrand et al., 2010; Harlan & DeWet, 1965).  Little is 

currently known about the genetics underlying the evolution of these so-called ‘weedy’ 

traits, but the preponderance and diversity of agricultural weeds makes these ideal 

systems for studies of the genetic basis of convergent evolution.  

Rice fields worldwide are often invaded by a weedy type of rice known as weedy 

or red rice (Oryza sativa L) (Olsen et al., 2007).  Weedy rice is a major agricultural pest, 

as it is an aggressive competitor that spreads rapidly and drives down the quality of the 

rice harvest.  Moreover, because it is closely related to the crop it invades, weedy rice is 

difficult to detect in rice fields in its early growth stages and hard to control with 

herbicides (Vaughan et al., 2001). While limited, studies of weedy rice in various world 

regions have indicated that weedy rice populations often resemble the local predominant 

crop variety (see Olsen et al., 2007) suggesting repeated independent origins of weedy 

rice populations or contributions of local groups to the genetic make-up of weedy rice. 

The presence of multiple populations of weedy rice around the world and their 

convergence on some typical weed-adaptive traits offer a unique opportunity to the study 

of parallel evolution at various geographic scales.  
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In the United States, where over 30% rice fields are infested with weedy rice 

(Shivrain et al., 2009), our work and that of others has shown that two major 

independently derived and morphologically and genetically differentiated populations of 

weedy rice co-occur. The Straw Hulled (SH) group most closely resembles cultivated rice 

with straw-colored hulls and slightly larger grains; the Black Hulled & Awned (BHA) 

group often resembles the wild rice, with black or brown colored hulls, small grains and 

long awns (Londo & Schaal, 2007; Reagon et al., 2010; Vaughan et al., 2001). Genome-

wide assessments of polymorphism indicate that SH and BHA weedy populations are 

more closely related to indica and aus variety groups of domesticated Asian rice, 

respectively, than to other major cultivated or wild Oryzas (Londo & Schaal, 2007; 

Reagon et al., 2010) (Figure 5.1).  Although there is debate over exactly how many times 

Asian rice was domesticated, it is well accepted that cultivated rice was domesticated 

from Asian wild rice (Oryza rufipogon/Oryza nivara), with subsequent diversification of 

variety groups.  Cultivated rice varieties are thus genetically differentiated (Caicedo et 

al., 2007; Garris et al., 2005), and the aus and indica putative ancestors of US weedy rice 

groups are distinct from the japonica cultivars grown in the US (Figure 5.1). The origins 

of US weedy rice from crop ancestors suggests that the evolution of weedy traits in these 

groups could be a process of “de-domestication,” whereby selection favors reversions of 

domestication traits to forms characterizing wild species. This in turn suggests a different 

level at which parallel genetic evolution in weeds could be occurring: convergence of 

weedy and wild traits could be acquired through mutations in the same genes that were 

targeted during domestication. 
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 US weedy rice exhibits many traits that are associated with the persistence of 

weeds, such as increased seed dormancy and seed shattering, faster growth, taller plants, 

and modified flowering times (Delouche et al., 2007; Shivrain et al., 2010a).  We have 

previously characterized some of these traits in US weedy rice populations relative to 

their putative cultivated progenitors and have noted different degrees of phenotypic 

convergence. For example, weedy rice from both SH and BHA are highly prone to 

shattering both in the field and under controlled environmental conditions, a trait that is 

absent in the domesticated progenitors (Noldin et al., 1999; Thurber et al., 2010) (Table 

5.4). Likewise, higher growth rates have been observed for SH and subpopulation of 

BHA compared to their ancestors (Reagon et al., 2010). In contrast, flowering time (i.e. 

heading date) is strongly in differentiated in both weed groups compared to their 

cultivated progenitors, but the shifts are in opposite directions: under day neutral 

conditions, SH flowers significantly earlier than indica, whereas BHA groups flower 

significantly later than aus (Reagon et al., 2011) (Table 5.4). In field conditions, 

blackhull weeds also typically flower later than strawhull weeds (Shivrain et al., 2009).  

Thus, although the same trait has been affected in the course of weed evolution, there has 

not been convergence on a single phenotypic value.  A similar situation is seen for plant 

height. Weedy rice shows a range of plant heights, but under growth chamber conditions 

SH weeds are generally shorter than their indica progenitors, and BHA weeds are 

generally taller than the aus (Reagon et al., 2011) (Table 5.4). In the field, both weed 

groups tend to be taller than the local japonica crop (Shivrain et al., 2009), likely driven 

by the recent selection for semi-dwarf high yielding rice plants since the green revolution 

(see citations in Asano et al., 2007). Remarkably, these divergent weedy phenotypes have 
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evolved under near identical selective pressures, as weedy rice from both populations are 

often found in the same rice field during a single growing season (Shivrain et al., 2010a). 

Given the convergence of phenotypic values for some traits and divergent evolution for 

others, we are interested in determining to what extent common genes underlie weedy 

trait evolution in US weedy rice groups. We hypothesized that, given the weeds’ origins 

from cultivated ancestors sharing a domestication origin (Figure 5.1), US weedy rice 

groups are likely to have shared biases leading to mutations in the same genes underlying 

convergent weedy traits. We also hypothesized that shared ancestral pathways could lead 

to different mutations in the similar genes underlying divergent weedy traits. To test for 

parallel genetic evolution, we attempted crosses between US weeds and their putative 

progenitors to capture the genetic differences that have accumulated since each weed 

group diverged from a cultivated background (Figure 5.1).  Using F2 populations, we 

carried out QTL mapping of four quantitative traits that have either converged or 

diverged between weedy rice groups.  We also carried out mapping of two qualitative 

traits specific to the BHA weed group, to see if underlying genomic regions overlapped 

with loci involved in these phenotypes in wild rice. Our goal was not to identify causal 

genes, as this cannot be done with an F2 population, but to begin assessment of the degree 

to which shared genomic regions underlie weedy traits in both groups. We find that, in 

most cases, parallel genomic regions are not involved in traits characterizing weedy rice 

groups; the exception to this is flowering time, which, though divergent among groups, 

may involve modification of alternative alleles at a single locus involved in the Oryza 

flowering time pathway. 
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5.2 Methods 

5.2.1 Plant Materials 

We created two mapping populations (S and B) by crossing two weedy rice 

individuals from distinct populations (SH-RR09 and BHA-RR20) with a single indica 

cultivar Dee Geo Woo Gen (DGWG), which in both cases was the pollen donor.  The 

weedy rice parents are representatives of the SH and BHA populations of US weedy rice 

as determined by population structure assessments (Reagon et al., 2010).  The indica 

cultivar group was chosen as a parent because this group is putatively ancestral to the SH 

weed group and is closely related to the BHA ancestor, aus (Caicedo & Purugganan, 

2005; Garris et al., 2005; Reagon et al., 2010).  Multiple attempts to cross BHA weeds 

with aus cultivars failed, thus the closely related indica parent was selected.  Weed and 

crop parents were selected to maximize phenotypic differences in potential weed-

adaptive traits based on previous growth chamber data (Table 5.1).  The resulting F1 

plants largely showed phenotypes intermediate between the two parents; the single 

exception was for the B population F1, which produced seeds with black hulls and awns 

suggesting that these traits are controlled by few genes in which the BHA allele is 

dominant.  F1 plants were confirmed to be the result of crosses and were allowed to self 

fertilize to create the F2 seeds used for mapping. 

Approximately 250 F2 seeds per population, offspring from a single F1 for each 

cross, were sown in a greenhouse in Amherst, MA on April 1st 2010 in four-inch pots set 

in two-inch trays of ten pots each.  Approximately twenty-five trays per population were 

distributed randomly throughout the greenhouse.  Seeds were heat treated for twelve 

hours at 37o Celsius and the hulls were partially or totally removed prior to planting to 
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eliminate dormancy. Three replicate pots of each parental line were also sown in a single 

tray in the greenhouse to serve as phenotypic controls.  Water was maintained at a height 

of approximately one to two inches in trays to keep soil moist, and fertilizer was applied 

as described in (Reagon et al., 2010). The emergence date of F2 seedlings was not 

uniform within each population despite dormancy releasing treatment.  Due to inadequate 

F2 germination, two additional waves of planting were performed with ~100 seeds on 

April 22nd 2010 and May 13th 2010.  Since different planting dates likely put seedlings 

under different light and temperature environments and could affect trait values, we 

compared trait distributions and averages for heading date, plant height and seed 

shattering across planting waves. No differences were observed for any trait (data not 

shown).  Additionally, no differences were observed in the QTL detected using only the 

first wave individuals and the full dataset; thus we decided to use all three planting waves 

to increase our statistical power.  In the end, 184 S population and 159 B population 

individuals were usable for QTL mapping, having phenotypes for all traits evaluated and 

genotypes at all markers (see below). We considered these sizes sufficient, as a minimum 

of 150 individuals has been found a good baseline when not carrying out fine mapping 

(Bernardo, 2008), and QTL that explain as little as 5% of the variance can be detected 

with samples of a few hundred F2 (Flint & Mott, 2001). 

5.2.2 Trait Evaluation 

Four quantitative traits were evaluated in each F2 population.  These included 

Heading Date (HD), Plant Height (PH), Growth Rate (GR) and Seed Shattering (SS). 

Additionally, two qualitative traits, Hull Color (HC) and Awn Presence (AW), were 

evaluated in the B population, as these traits did not differ between S population parents.  
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HD was measured in days from the date of seedling emergence until the first panicle had 

emerged halfway from the boot.  Panicles were bagged at this stage to ensure selfing and 

prevent loss of seeds.  PH was measured in centimeters, at heading, from the base of the 

plant at the soil to the tip of the tallest panicle excluding any awn.  GR was calculated by 

dividing PH by HD to get an average rate in cm/day.  SS was measured in grams of force 

required to remove the seed from the panicle; measurements were taken from ten mature 

seeds collected thirty days after heading from a single panicle, where possible, and 

averaged per individual, as described in (Thurber et al., 2010). HC was scored as straw 

(0) and black (1) on seeds collected thirty days after heading.  A small number (<20) of 

individuals showed brown or gold hull colors and were not considered for analysis.  AW 

was recorded as presence (1) vs. absence (0) at the same time HC was scored. Phenotypic 

data for all individuals can be found in Tables 5.7 and 5.8. 

Broad-sense heritability (H2) for each trait in each population was calculated as in 

(Xu et al., 2009).  Briefly, the average of the parental variances grown in the greenhouse 

environment was used as the environmental variance (Ve).  Ve was subtracted from the 

total phenotypic variance of the F2 population (Vp) to obtain the genetic variance (Vg).  

H2 was then calculated as Vg / Vp for each trait and is reported in Table 5.5. 

5.2.3 Marker Analysis 

DNA was extracted from frozen tissue collected from greenhouse grown F2 plants 

using a CTAB method (Reagon et al., 2010).  Over 188 microsatellite (SSR) markers 

from previously published studies (e.g. Chen et al., 1997; McCouch et al., 2002) were 

genotyped in the three parental lines.  SSR markers are identified as numbers that 

correspond to the “RM” markers from previous studies.  Additionally, two and six 
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insertion-deletion (indel) markers were adapted from (Shen et al., 2004) for the S and B 

populations, respectively.  These were given names R#M#.  Lastly, due to inadequate 

coverage of chromosome 1 in the S population, an additional three indel markers were 

developed from whole genome sequence data (i4, i22, and i23) (Hyma & Caicedo, 

unpublished).   

Indel and SSR markers were PCR amplified similar to (Panaud et al., 1996) 

except that the reaction volume was reduced to 15 ul and PCR cycling conditions were as 

follows: 94°C for 5 min, followed by 35 cycles of 94°C for 30s, 55°C for 30s, and 68°C 

for 1 min; finished by 5 min at 72°C.  Indel marker genotypes were directly scored from 

2% agarose gels. Amplified SSR products were run on an ABI 3130XL genetic analyzer 

at the Genomics Resource Laboratory at the University of Massachusetts Amherst.  FSA 

files were analyzed using the PeakScanner software to determine the sizes of bands.  All 

marker genotypes were scored as 0, 1, or 2 depending on whether the individual was 

homozygous for the cultivated allele (0), heterozygous (1), or homozygous for the weedy 

parent allele (2). Marker segregation analysis was carried out using chi-square tests to 

detect significant distortion from Mendelian inheritance. Linkage maps were created 

using the Kosambi map function under default conditions in R/qtl, resulting in maps of 

~1587 centimorgans (cM) for both populations.  The average interval size is ~31.9 cM 

with a minimum of 2.9 cM and a maximum of 143.6 cM.  Marker positions were found to 

be in similar locations as previously published maps for cultivated rice (e.g. Lee et al., 

2005; Thomson et al., 2003).  Marker genotypes for all individuals can be found in 

Supplementary File 1. 
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5.2.4 QTL Mapping 

The normality of phenotypic data was checked using Normal Quantile Plots (Tan 

et al., 2004).  If the plot showed the data to be non-normal it was log transformed.  If 

transformation was unsuccessful, non-parametric analysis was performed for that trait 

(Tilquin et al., 2001).  For normalized traits, QTLs were identified using Single Marker 

Analysis (SMA) and Composite Interval Mapping (CIM) in WinQTL Cartographer 

(Wang 2011).  SMA was run under default conditions while CIM was run using forward-

backward regression and a walk speed of 5 cM due to low marker density.  Non-

parametric analysis was performed on SS using a Kruskal-Wallis rank sum test (K-W 

test) in R/qtl.  This method ranks the individuals by phenotypic value and then sorts them 

by genotypic value, one locus at a time.  For both mapping methods, LOD scores over 2 

were considered significant due to the low marker density (see Results)(Van Ooijen, 

1999). The locations of the QTL identified in this study were compared to QTL 

previously published using the “QTL” search feature on Gramene 

(http://www.gramene.org/). 

5.3 Results 

5.3.1 Phenotypes 

We compared phenotypes of the parents grown under greenhouse conditions with 

phenotypes previously obtained under growth chamber conditions (Table 5.1).  The 

greenhouse environment differed from the growth chamber in having more variable 

temperatures and seasonally variable day-length. Phenotypic differences among 

environments were seen for some traits and some parental lines.  Most strikingly, the SH-



 

109 

RR09 weed parent had an increase of over 47 days in HD under the greenhouse 

environment.  This is consistent with a photoperiod sensitive response, given the 

differences in day-length between the growth chamber (12 hours) and greenhouse 

(seasonally variable, but day-length consistently exceed 12 hours), and with the short day 

flowering behavior of many rice varieties (Yano et al., 2000). In contrast, the heading 

date of the BHA-RR20 weed and the crop parent were consistent across environments, 

suggesting limited photoperiod sensitivity.  For SS, the cultivated parent showed nearly 

half as much shattering resistance in the greenhouse compared to the growth chamber, 

while there was no sizable change in the weeds’ shattering abilities.  PH changed 

dramatically for the BHA-RR20 parent, which nearly doubled in plant height in the 

greenhouse, while the other two parents remained close to growth chamber values.  On 

average, the SH-RR09 weed parent grew nearly twice as fast in the greenhouse than in 

the growth chamber while the BHA-RR20 parent grew nearly half as fast under 

greenhouse conditions, but both consistently exceeded the crop parent. Despite 

environmental influence, phenotypic differences between weed and crop parents were 

still evident for most traits under greenhouse conditions. The SH-RR09 weed and DGWG 

crop parent differed appreciably in PH, GR and SS. The BHA-RR20 weed and DGWG 

crop parent differed substantially in PH, HD, GR, SS, HC and AW. 

We examined the phenotypic distributions of all traits in the F2 populations 

(Figure 5.2). For the qualitative traits, segregation of HC fits the 3:1 ratio expected for a 

trait controlled by a single gene, while for AW there is an excess of weedy parent 

phenotypes suggesting the involvement of more than one locus (χ
2 = 9.358, P <0.01) 

(Table 5.2; Figure 5.2B).  For quantitative traits, continuous, nearly normal distributions 
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were observed for HD, PH, and GR.  The results of Normal Quantile Plots (NQP) could 

not reject that the log10 values for HD, PH, and GR from either population came from a 

normal distribution (α = 0.01).  In contrast, normality was rejected for SS in both 

populations and attempts to normalize this trait failed.  Transgressive segregation was 

seen in all traits in both populations yet it was most noticeable for HD (Figure 5.2A).  

Trait means were fairly similar between the two populations for all four quantitative 

traits.  The distributions of two traits (PH and GR) were nearly identical between 

populations suggesting similar genetic architectures.  For both HD and SS in the S 

population, multiple peaks were observed suggesting a role for few major effect genes 

(Figure 5.2A).  Interestingly, the B population distributions for HD and SS were more 

normal, suggesting multiple weaker effect loci and a different genetic architecture from 

the S population. 

Correlations between traits were tested using Pearson’s correlations.  A weak but 

significant positive correlation was found between HD and PH in both populations (Table 

5.6). Stronger positive correlations between plant height and heading date (r = 0.467 to r 

= 0.76) have been seen in other studies of both greenhouse and field grown cultivated rice 

plants (see Bres-Patry et al., 2001; Lee et al., 2005).  

Broad sense heritability was calculated for all quantitative traits in each 

population separately (Table 5.5).  Despite the evidence for environmental effects on 

some of these traits, heritabilities in our greenhouse environment were fairly high, 

ranging from ~67% for SS to nearly 100% for HD. Heritabilities were also remarkably 

similar across mapping populations. 
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5.3.2 Marker Linkage Maps 

Of the 188 SSR tested in the polymorphism screen, about 31% were polymorphic 

between DGWG/SH-RR09 and about 45% were polymorphic between DGWG/BHA-

RR20.  These low levels of polymorphism are not unusual, as US weedy rice is likely 

descendant from cultivated rice from the indica/aus groups (Reagon et al., 2010) (Figure 

5.1). We expected to find less polymorphism between the SH weed and indica parent 

than the BHA weed and the same parent, as indica is putatively ancestral to SH weeds 

(Reagon et al., 2010).  Due to PCR failures, the total SSR markers used were 52 and 59 

for the S and B populations respectively.  With the addition of polymorphic indels, we 

mapped using 59 markers for the S population and 65 markers for the B population.  

Segregation distortion at the P <0.01 level was seen in twelve and ten markers in 

the S and B populations, respectively.  The distorted markers consisted of ~15 to 20% of 

the total markers per population and about half of the markers had excess weedy alleles 

while the rest had excess cultivated alleles. Only two markers were distorted in both 

populations.  Despite the low levels of distorted markers, we compared mapping both 

with and without these. The presence of QTL linked to distorted markers can affect their 

ability to be detected; yet distorted markers do not cause false positive associations and 

are not a problem if randomly distributed across a genetic map (Zhang et al., 2010).  No 

differences in the number or locations of significant QTL were found for any trait when 

segregation distorted markers were excluded. 
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 5.3.3 Mapping Quantitative Traits 

Seed Shattering (SS) 

 Two shattering QTL were identified in the S population using Kruskal-Wallis test 

(Figure 5.3; Table 5.3).  One is located on chromosome 2 near position 20.3 cM (qSS2s) 

while the other is located on chromosome 11 near position 0.2 cM (qSS11s).  Weedy 

alleles at both QTL increase seed shattering ability as expected, given the weedy parent’s 

propensity for shattering.  Currently, Gramene reports no shattering QTL on chromosome 

2.  However, our QTL on chromosome 11 may be close or overlapping with one found in 

a cross between wild O. rufipogon and an indica cultivar, where the wild allele increased 

seed shattering (Cai & Morishima, 2000).  In the B population, one QTL was identified 

on chromosome 1 near position 189 cM (qSS1b) (Figure 5.4; Table 5.3). Weedy alleles at 

this QTL also work to increase seed shattering. This QTL is linked to a shared marker 

with a shattering QTL from a cross between O. rufipogon and a tropical japonica 

cultivar, where the wild allele increased seed shattering (Thomson et al., 2003). 

Heading Date (HD) 

 For the S population, a single QTL on chromosome 8 was identified by both SMA 

and CIM (qHD8s) (Figure 5.3).  Weedy alleles at this QTL work to increase the days to 

heading, consistent with the later flowering seen in the weedy parent in the greenhouse 

(Table 5.3).  In the B population, CIM identified two QTL also on chromosome 8 

(qHD8.1b and qHD8.2b), while SMA only identified a single QTL (qHD8.1b) (Figure 

5.4). Weedy alleles at these QTL work to increase the heading date, again consistent with 

the weedy parent’s phenotype.  It is possible that qHD8s and qHD8.1b share similar or 

linked causal genes as their 1.5 LOD intervals overlap and include marker 310. 
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Additionally, these QTL may be in a similar location as QTL identified by (Yano et al. 

1997) and (Xiao et al., 1998), in mapping populations involving japonica by indica 

crosses (with the japonica allele reducing flowering time), and O. rufipogon by cultivated 

crosses (with wild alleles increasing flowering time), respectively.  Recently, potential 

candidate genes in this region have been cloned (Cai et al., 2011; Wei et al., 2010; Yan et 

al., 2011). 

Plant Height (PH) 

 Three QTL were detected for PH in the S population using CIM (qPH4s, qPH8s, 

qPH10s), while only one (qPH10s) was detected using SMA (Figure 5.3; Table 5.3). Of 

the three QTL, qPH10s (chromosome 10, 0.1 cM) explains most of the variation followed 

by qPH8s (chromosome 8, 127 cM) and qPH4s (chromosome 4, 40.9 cM).  For qPH4s 

and qPH8s, the weedy allele increases plant height, as expected, while for qPH10s the 

cultivated allele increases plant height. Although we do not share any neighboring or 

linked markers with (Li et al., 2006a), who mapped using F2 from an indica crossed to a 

wild O. nivara, the markers associated with our chromosome 4 QTL are in similar 

physical locations.  We do share a neighboring marker (284) with a QTL on chromosome 

8 from (Thomson et al., 2003) and a neighboring marker (239) with a QTL on 

chromosome 10 with (Septiningsih et al., 2003), from mapping populations involving 

crosses between japonica or indica cultivars with a wild O. rufipogon; in all three studies, 

the wild allele increases plant height. 

A single QTL was identified using both SMA and CIM in the B population 

located near position 147.4 cM on chromosome 1 (qPH1b) (Figure 5.4; Table 5.3).  The 

weedy allele at this QTL increases plant height, as expected.  Interestingly, the peak 
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marker for this QTL (5407) is physically located at ~39.5 megabase pairs (mbp), which is 

very close to SD1, a cloned gene of major effect (38.7 mbp).  A large deletion in this 

gene, which encodes a critical enzyme involved in the final steps of gibberellin (GA) 

biosynthesis, has been shown to cause a semi-dwarf phenotype in cultivated rice, and our 

cultivated parent is known to have this deletion (Monna et al., 2002; Reagon et al., 2011). 

Growth Rate (GR) 

Unfortunately, no significant QTL were detected with both SMA and CIM in 

either population. GR is a complex trait likely involving many genes and epistatic 

interactions, so it is not surprising that we were unable to detect significant QTL.  

Interestingly, despite clear importance of this trait for plant fitness and competitiveness, 

we have found only one study mapping growth rate in Oryza (Li  et al., 2006c), which 

may be indicative of its complex genetic basis.  Although Li et al. found several QTL 

underlying growth rate, their measurements were based on dry weight accumulated over 

time and are likely not comparable to ours. 

5.3.4 Mapping Qualitative Traits 

 The results of the K-W test in R/qtl showed two significant loci for HC, one on 

chromosome 1 near position 75.2 cM and another on chromosome 4 near position 127.2 

cM (Table 5.2).  The locus on chromosome 1 may be novel. A locus on chromosome 4 

controlling black to straw hull color change, identified in a cross between an indica 

cultivar and O. rufipogon was cloned recently (Os04g0460000; ~22.78mbp). Known as 

Bh4, this locus is physically close to our significant marker on chromosome 4 (~ 

29.7mbp) (Zhu et al., 2011), and may harbor mutations underlying our QTL.  
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The results of the K-W test in R/qtl showed a significant locus on chromosome 11 

near position 37.8 cM for AW (Table 5.2).  A QTL for awn length identified in a cross 

between an indica cultivar and wild O. rufipogon by (Cai & Morishima, 2002) on 

chromosome 11 is close to our locus, yet we do not share any co-localized markers. 

5.4 Discussion 

The repeatability of evolution can be seen as parallel changes at the phenotypic 

and/or genetic level between organisms evolving under similar environmental conditions.  

Questions remain about the extent to which shared genes are likely to underlie trait 

convergence among distant and closely related organisms (Arendt & Reznick, 2007; 

Hodin, 2000; Schluter et al., 2004).  Note that, following Arendt and Reznick (2007), we 

do not distinguish between the terms ‘parallel” and ‘convergent’. Various species of 

weedy plants repeatedly invade agricultural fields and are often subjected to similar 

selective pressures such as soil disruption, hand- and machine-weeding, herbicide 

treatment and competition with crop plants.  These pressures are believed to lead to 

convergent phenotypic evolution of traits such as rapid growth, high seed production, 

increased seed dispersal and deep roots in weeds (Ellstrand et al., 2010; Harlan & 

DeWet, 1965), which may be caused by genetic changes in similar genes or genetic 

pathways. Because weedy red rice in the US consists of two independently evolved 

groups, descendant from closely related cultivated ancestors (Reagon et al., 2010), we 

sought to determine if parallel genetic changes were involved in the evolution of 

weediness in these groups, and if weedy traits could be attributed to variation present in 

wild and/or cultivated rice.  
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5.4.1 Lack of Parallel Genetic Evolution for Convergent Seed Shattering in US 
Weedy Rice 

Of all the traits that differentiate weedy rice from its cultivated progenitors, seed 

shattering is likely the one that most characterizes the weedy phenotype.  Selection 

against shattering to facilitate harvesting is a hallmark of cereal domestication 

(Purugganan & Fuller, 2009). In contrast, efficient seed dispersal is likely crucial to weed 

fitness, as it allows weeds to increase their presence in the seed bank and spread to new 

areas (Harlan & DeWet, 1965). We have previously shown that, despite separate origins, 

both US weedy rice populations are highly shattering compared to their putative 

cultivated progenitors (Thurber et al., 2010). Thus, seed shattering is a trait for which true 

phenotypic convergence has occurred.   

The genetic basis of loss of shattering in cultivated rice has been much explored, 

and sh4, a gene coding for a transcription factor involved in the formation and 

degradation of the abscission layer, has been identified as the most significant shattering 

gene to have been selected on during domestication (Li et al., 2006b; Lin et al., 2007; 

Zhang et al., 2009). Studies have shown that all cultivated rice sampled to date share a 

single nucleotide substitution in sh4, which leads to loss of shattering (Thurber et al., 

2010; Zhang et al., 2009). Recently, we found that both US weedy rice groups possess 

the same “non-shattering” substitution as cultivated rice, with weeds and cultivars 

carrying similar or identical sh4 alleles (Thurber et al., 2010). This implies that weedy 

groups must have re-acquired the shattering trait through involvement of other loci, rather 

than acquisition of ancestral or novel sh4 alleles. We have additionally shown that both 

weed groups have convergence of the shattering trait at the morphological level − 

formation and degradation of the abscission layer is similar among weedy rice groups, 
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but distinct from shattering wild rice (Thurber et al., 2011).  This phenotypic evidence 

would suggest that parallel genetic changes underlie convergence of shattering in weedy 

rice groups. 

Surprisingly, both the observed phenotypic distributions in our mapping 

populations and identified QTL do not support parallel genetic changes in seed shattering 

between weedy groups.  In the S population a highly non-normal distribution with 

multiple peaks suggests that a few major effect genes contribute to this trait.  In contrast, 

the more normal shattering distribution in the B population suggests involvement of 

multiple weaker effect loci.  Differing genetic architecture for seed shattering does not 

necessarily exclude the possibility of shared loci.  We identified two QTL for seed 

shattering in the S population and one in the B population; however, these are located on 

three different chromosomes (1, 2 and 11) and are not shared.  Only one of the three 

shattering QTL we mapped (qSS1b) is located on the same chromosome as a previously 

cloned shattering gene (qsh1), yet we do not share neighboring markers and previous 

work has suggested that this gene does not play a role in US weedy rice seed shattering 

(Thurber et al., 2010).  Thus, despite the potential of shared genetic biases due to shared 

ancestry of the weed progenitor groups, and despite convergence of the trait at various 

phenotypic levels, shattering in US weedy rice does not seem to be due to parallel genetic 

changes. 

5.4.2 The Potential for Parallel Genetic Evolution in Divergent Weedy Traits 

Despite predictions that convergence of weed-adaptive traits should occur among 

weeds evolving in agricultural settings, we have found divergence for several traits 

among our closely related weedy rice groups (Reagon et al., 2011). In particular, SH 
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weeds flower significantly earlier and BHA weeds significantly later than their cultivated 

progenitors in growth chamber conditions, and SH weeds tend to be shorter and BHA 

weeds taller than their ancestors (Reagon et al., 2011) (Table 5.4). These differences 

translate into divergence among weed groups that have also been reported in the field 

(Shivrain et al., 2010a). These phenotypic patterns suggest that both flowering time and 

height have been under selection during weed evolution, but that, despite identical 

environmental conditions, multiple “adaptive solutions” exist for weedy phenotypes. 

Mutations in shared genes could still underlie divergent traits if shared signaling 

and/or metabolic pathways shape multiple alternative trait features (Hodin, 2000). Under 

this scenario, mutations would not be shared among divergent groups, but alternate 

mutations of the same gene could underlie the divergent phenotypes. We thus looked for 

any evidence of shared QTL between the S and B populations for plant height and 

heading date. Because our indica parent was a semi-dwarf, we were limited to exploring 

QTL that increase plant height relative to semi-dwarfness. 

The similar distribution patterns in PH between populations suggested similar 

genetic architectures for this trait.  However, QTL locations were not shared between the 

S and B populations, and effect directions were not always predictable from parental 

phenotypes.  We identified a single QTL in the B population (chromosome 1) where the 

weedy allele increases height, yet we identified three QTL (chromosomes 4, 8, and 10) in 

the S population, with the weedy allele increasing height at only two loci. A major locus 

controlling plant height in cultivated rice has been identified as SD1, within which a large 

deletion has been shown to cause a semi-dwarf phenotype that was employed in breeding 

during the green revolution (Monna et al., 2002).  We expected to detect this QTL in both 
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populations, as our mapping parents differ in SD1 alleles, and our cultivated parent 

contains this deletion (Reagon et al., 2011).  The single QTL identified in the B 

population is physically close to SD1, indicating that we did not detect QTL specific to 

evolution of plant height in the BHA lineage. In contrast, the three QTL in the S 

population may have contributed to evolution of plant height in the SH lineage.  These 

QTL may come from standing variation in the crop or wild rice, as previously reported 

height QTL appear to be near these.  This implies there may be parallel evolution 

between some cultivars and weeds.   

Among growth related traits, phenotypic divergence between weedy groups and 

between weeds and their cultivated ancestors is most apparent for flowering time 

(Reagon et al., 2010). Our two mapping populations do not share similar phenotypic 

distributions for this trait, with the involvement of a few major effect loci suggested for 

the S population, and multiple weaker effect loci suggested for the B population. 

Surprisingly, our results indicate that heading date is the trait with the most potential for 

similar genes underlying evolutionary changes in both weed groups.  All three QTL 

identified, one in the S population and two in the B population, are located on 

chromosome 8, and the QTL in the S population shares a neighboring marker with one 

found in the B population. Consistent with the switch to later flowering exhibited by the 

SH parent in the greenhouse, in all three cases the weedy allele increases days to heading. 

Flowering in rice is known to be controlled by several genes that interact to create 

a wide range in heading dates across different environments (Takahashi et al., 2009).  In 

particular, variations in Hd1, which encodes a zinc finger domain protein responsible for 

the transition from vegetative to reproductive phase (Yano et al., 2000), have been 
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implicated as major regulators of flowering time (Takahashi et al., 2009). A cursory look 

at Hd1 coding region alleles in weedy rice suggests the involvement of Hd1 in weed 

flowering. Our BHA parent has a haplotype containing a two bp deletion that is known to 

result in photoperiod insensitivity (Takahashi et al., 2009; Thurber & Caicedo, 

unpublished data); likewise our indica parent contains a four bp deletion that creates a 

frame shift, leading to a nonfunctional haplotype and photoperiod insensitivity 

(Takahashi et al., 2009; Thurber & Caicedo, unpublished data). In contrast, our SH parent 

shares an intact haplotype common in cultivated rice (Thurber & Caicedo, unpublished 

data), which is known to cause photoperiod sensitivity and short day flowering behavior 

in cultivated rice (Takahashi et al., 2009; Yano et al., 2000).  Our mapping results 

suggest that Hd1 does not mediate differences in flowering time between weed groups 

and between weeds and indica cultivars under the variable, primarily long day conditions 

in our greenhouse. Given that our planting time reflects the timing of planting in the 

Southern US rice fields, our results also suggest that a novel locus or set of loci on 

chromosome 8 underlie the flowering time differences between weed groups in the field 

and are likely responsible for the divergence of both weed groups from their cultivated 

ancestors. The HD QTL we discovered here may also be contributing to variation in 

flowering time in cultivated and wild rice, as some candidate genes have been recently 

identified on chromosome 8 (Cai et al., 2011; Wei et al., 2010; Yan et al., 2011). 

5.4.3 The Potential for Shared Genes Involved in Reversals to Wild Phenotypes 

Three of our traits (SS, HC and AW) show a clear reversal of a cultivated 

phenotype (non-shattering, straw colored hulls and no awns) to a wild phenotype 

(shattering, black hulls and long awns).  Due to the diversity of the cultivated ancestral 
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gene pool, as seen by the wide range of hull and awn morphologies in our collection of 

aus and indica cultivars, it is possible that genes involved in some weedy traits could 

have arisen from standing ancestral variation. Alternatively, although lack of a role for 

wild rice sh4 alleles in the shattering phenotype of weedy rice has been demonstrated, 

genes underlying hull color and awn presence in the wild ancestor of rice could be 

involved in weedy phenotypes either through introgression or compensatory mutations 

that reverse the phenotype in the weeds. Thus parallel genetic evolution can be 

envisioned at another level for weedy rice: weeds may also share genes underlying weedy 

traits with wild or cultivated rice.  

We checked for evidence of shared genetic changes by examining published QTL 

from studies involving crosses of wild and cultivated Oryza groups. Seed shattering QTL 

have been mapped to nearly every rice chromosome, yet our QTL potentially overlap 

with only two previously published QTL, both identified in wild by cultivated rice 

crosses. Interestingly, the QTL we report on chromosome 2 in the S population is the first 

shattering QTL to be identified on that chromosome. The sharing of some QTL with wild 

rice suggests that the transition from non-shattering to shattering during weed de-

domestication may involve some similar genes as the transition from shattering to non-

shattering during domestication.  

Although our QTL for awns did not overlap with any other published QTL, our 

hull color QTL on chromosome 4 is likely to be the recently cloned Bh4 locus (Zhu et al., 

2011).  Hull color in Oryza can vary from light (nearly white and straw) to medium (gold 

furrowed or brown) to dark (black); this trait is slightly ambiguous in its function, yet 

may be important for seed dormancy, camouflage (both on the plant and on the ground) 
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and seed dispersal (Zhu et al., 2011).  Bh4 is a gene encoding for an amino acid 

transporter, and multiple deletions and SNPs that cause frame shifts and premature stop 

codons seem to be involved in the transition from black hulls in wild rice to straw hulls in 

cultivated rice (Zhu et al., 2011).  Our results suggest that for some weedy traits, causal 

alleles may be shared with wild rice. 

5.4.4 Parallel Evolution Among Global Populations of Weedy Rice 

A few other studies have involved mapping weed adaptive traits in crosses 

between non-US weedy rice and cultivated rice, though with no knowledge of the 

relationship between the two parents or the evolutionary origin of the weed.  One such 

study mapped several traits (e.g. seed shattering, heading date, plant height, and yield 

components) in a weedy rice from France crossed to a japonica cultivar (Bres-Patry et 

al., 2001), while another set of studies examined seed dormancy, shattering, awns and 

hull color in a weedy rice from Thailand crossed to an indica (Gu et al., 2005a). We do 

not share any QTL for overlapping traits with either study, suggesting that parallel 

genetic evolution may not be the norm among worldwide weedy rice populations. 

5.4.5 Conclusions and Future Directions 

The QTL we detected gives us a starting point for identifying genes involved in 

weed adaptive traits. In coming years, with new resources, we plan to narrow down the 

genomic regions underlying evolution of US weeds. In particular, our study was 

hampered by the close relationship between our cross parents. Population structure 

analyses based on multiple loci cannot differentiate SH weeds from indica cultivars, and 

BHA weeds share alleles with both aus and indica (Reagon et al., 2010), making finding 
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segregating markers among the parents difficult. Currently, the genomes of the three 

parents are being sequenced (Hyma & Caicedo, unpublished), which will improve marker 

density. Additionally, we are generating RIL populations derived from these crosses (Jia, 

Caicedo & Olsen, unpublished), which will be useful for narrowing down QTL regions 

and testing for QTL in multiple environments.  

One caveat of our study is the lack of a cross between a BHA weed and its 

putative aus progenitor.  Several attempts were made to create this cross in our lab, yet 

none were successful.  Due to the relationship among the cultivated and weed groups, the 

QTL detected from the BHA-indica cross could include genomic regions that differ 

between BHA and aus as well as those that differ between indica and aus (Figure 5.1). 

Fortunately, this does not hurt our ability to detect QTL relevant to weed evolution. We 

are continuing attempts to create a BHA-aus cross to determine which QTL are specific 

to BHA weeds. 

This study represents a first step towards dissecting the extent of parallel 

evolution in weed adaptive traits of a potent agricultural weed.  Our finding of lack of 

parallel evolution at the genetic level for shattering, one of the most characteristic traits 

of weedy rice, joins others in showing that close evolutionary relationships do not imply 

use of the same genes in adaptation (Arendt & Reznick 2007). Conversely, shared genetic 

pathways can be implicated in the evolution of divergent phenotypes, as is likely for 

flowering time in weeds. Further fine-mapping of genes underlying adaptive traits in 

weedy rice groups, and search for weed alleles in wild and cultivated ancestors, will 

contribute to our eventual understanding of the circumstances under which convergent 

genetic evolution occurs. 
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Table 5.1.  Phenotypes of the parental lines crossed to create F2 mapping populations.  
Plants were initially chosen for their different phenotypes in the growth chamber.  
Greenhouse measurements are averages of three plants.  Growth chamber measurements 
are averages of two plants. 
 

Greenhouse           

Plant ID 
Plant Height 

(cm) 
Heading 

Date (days) 
Growth Rate 

(cm/day) 

Seed 
Shatteringa 

(grams) 
Hull 
Color Awn 

SH-RR09 76.8 107.3 0.716 0 0 0 
DGWG 42.7 101 0.423 28.4 0 0 

BHA-RR20 104.7 116 0.903 5.5 1 1 
       

Growth Chamber           

Plant ID 
Plant Height 

(cm) 
Heading 

Date (days) 
Growth Rate 

(cm/day) 

Seed 
Shatteringa 

(grams) 
Hull 
Color Awn 

SH-RR09 83 60 1.383 0.3 0 0 
DGWG 59 109 0.541 60.9 0 0 

BHA-RR20 67 116 0.578 7.2 1 1 
a Seed Shattering was measured as described in Thurber et al., 2010 using the Breaking Tensile 
Strength method. 
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Table 5.2.  Segregation and mapping of qualitative trait loci.  In both cases the weedy 
phenotype is dominant. 
 

Trait 

  
Phenotypic Ratio  

Chr. 
Linked 
Markers 

Distance 
(cM) LOD D R χ

2 
AW 136 23 9.36 11 202 37.8 2.37 
HC 94 40 0.236 1 9 75.2 2.56 

        4 6748 127.2 2.87 
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Table 5.3.  QTLs for quantitative traits detected in the F2 populations. 
 

QTL Chr. 
Position 

(cM) 
Nearest 
Marker 

  LOD   

R2a 

Phenotypic Meansb Increased 
Effectc 

Allele 
Effectd CIM SMA NP 0 1 2 

SS             

qSS1b 1 189 104 N/A N/A 2.23 N/A 19.55 14.21 13.02 DGWG -5.34 

qSS2s 2 15.2 236 N/A N/A 6.85 N/A 13.14 8.12 4.44 DGWG  -5.02 

qSS11s 11 0.2 332 N/A N/A 2.71 N/A 9.16 10.21 3.84 DGWG  1.05 

             

HD             

qHD8s 8 0.5 310 15.1 48.11 N/A 28.98 96.55 125.94 139.93 SH-RR09 29.39 

qHD8.1b 8 19.7 25 2.8 8.89 N/A 11.68 112.05 114.83 123.4 
BHA-
RR20 2.78 

qHD8.2b 8 76 44 2.7 N.S N/A 6.63 119.2 111.96 120.94 
BHA-
RR20 -7.24 

             

PH             

qPH1b 1 147.4 5407 4.6 17.32 N/A 14.38 56.72 66.8 68.95 SH-RR20 10.08 

qPH4s 4 40.9 417 2.3 N.S. N/A 5.2 66.5 63.14 78.79 SH-RR09 -3.36 

qPH8s 8 127 477 3.16 N.S. N/A 9.5 68.55 61.37 75.05 SH-RR09 -7.18 

qPH10s 10 0.1 239 2.36 5.51 N/A 18.5 71.74 65.83 63.47 DGWG  -5.91 
a R2 indicates the percentage of phenotypic variation explained by the putative QTL; only determined when CIM was significant. 
b Phenotypic means calculated for the DGWG homozygote (0), heterozygote (1) and weedy homozygote (2). 
c Increased effect is the source of the allele causing an increase in the phenotypic value 
d The allele effect is the effect associated with substituting a DGWG allele with a weedy allele 
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Table 5.4.  Means and standard deviations of phenotypes measured in cultivated and 
weedy populations.  Standard deviations are in parenthesis. 
 

 

Plant 
Heightb 

(cm) 

Heading 
Dateb 
(days) 

Seed Shatteringa 
(grams) 

Hull 
Color Awn 

Average 
Growth 
Rateb 

(cm/day) 

Cultivated rice       
indica 75(23) 120(20) 57.83(47.07) straw no 0.63(0.17) 

aus 80(13) 107(9) 17.36(15.82) straw no 0.75(0.18) 
japonica 76(15) 116(30) 99.92(72.41) straw no 0.66(0.26) 

Weedy rice       
SH 69(14) 80(11) 0.7(0.73) straw no 0.86(0.25) 

BHA 85(25) 133(16) 0.74(2.07) black yes 0.64(0.22) 
a Seed Shattering data were reported in Thurber et al., 2010.    
b Plant Height, Average Growth Rate and Heading Date were reported in Reagon et al., 2011,  
with the exception that Heading Date and Average Growth Rate measurements reported here are from 
date emerged rather than date sown. 
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Table 5.5.  Broad-sense heritability values for the quantitative traits studied. 
 

S Population Vp Vcult Vweed Ve Vg H2 
SS 93.91 63.94 0 31.97 61.94 0.659568 
HD 1192.21 12 0.92 6.46 1185.75 0.994581 
PH 307.12 49.33 26.26 37.795 269.325 0.876937 
GR 0.042 0.0032 0.002 0.0026 0.0394 0.938095 

       

B Population Vp Vcult Vweed Ve Vg H2 
SS 103.91 63.94 3.38 33.66 70.25 0.676066 
HD 325.3 12 3 7.5 317.8 0.976944 
PH 207.03 49.33 14.33 31.83 175.2 0.846254 
GR 0.025 0.0032 0.0016 0.0024 0.0226 0.904 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

129 

Table 5.6.  Pearson’s correlations between traits in the F2 populations.  Only significant 
correlations are shown (P < 0.01). 
 

S population HD SS PH   
HD         
SS        
PH 0.204      

GR         
      

B population HD SS PH GR HC 

HD           
SS        
PH 0.189      
GR        
HC        

AW           
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Table 5.7.  Phenotype values for the S population individuals. 
 
Individual HD SS PH GR log10HD log10PH log10GR 

S001 147 0 60 0.669643 2.167317 1.778151 -0.17416 
S002 67 0 76 1.2 1.826075 1.880814 0.079181 
S003 112 0 51 0.472727 2.049218 1.70757 -0.32539 
S004 152 17.8 73 0.331776 2.181844 1.863323 -0.47916 
S005 108 0 59 0.261364 2.033424 1.770852 -0.58275 
S006 153 4 60 0.813187 2.184691 1.778151 -0.08981 
S007 112 18.5 64 0.610169 2.049218 1.80618 -0.21455 
S008 77 2.1 50 0.413793 1.886491 1.69897 -0.38322 
S009 107 5.95 67 0.576577 2.029384 1.826075 -0.23914 
S010 146 0 77 0.563107 2.164353 1.886491 -0.24941 
S011 92 0 56 0.408284 1.963788 1.748188 -0.38904 
S012 99 16.8 50 0.880342 1.995635 1.69897 -0.05535 
S013 82 0 53 0.519608 1.913814 1.724276 -0.28432 
S014 189 0 90 0.961538 2.276462 1.954243 -0.01703 
S015 91 0 80 0.924528 1.959041 1.90309 -0.03408 
S018 78 17 53 0.346535 1.892095 1.724276 -0.46025 
S019 165 2.82 60 0.4375 2.217484 1.778151 -0.35902 
S020 91 9.2 59 0.675325 1.959041 1.770852 -0.17049 
S021 95 21.8 76 0.461538 1.977724 1.880814 -0.33579 
S022 111 3.62 64 0.424779 2.045323 1.80618 -0.37184 
S023 145 7.2 60 0.447368 2.161368 1.778151 -0.34933 
S024 101 0 65 0.387879 2.004321 1.812913 -0.4113 
S025 106 5.84 70 0.782609 2.025306 1.845098 -0.10646 
S027 82 0 63 0.672515 1.913814 1.799341 -0.1723 
S028 171 10.8 115 0.394737 2.232996 2.060698 -0.40369 
S031 154 6.3 85 0.613445 2.187521 1.929419 -0.21222 
S032 113 17.3 96 0.348101 2.053078 1.982271 -0.45829 
S033 115 5.7 58 0.40884 2.060698 1.763428 -0.38845 
S034 105 0 40 0.264151 2.021189 1.60206 -0.57815 
S035 91 6.74 42 0.757282 1.959041 1.623249 -0.12074 
S037 112 0 42 0.892473 2.049218 1.623249 -0.0494 
S038 109 19.1 63 0.703704 2.037426 1.799341 -0.15261 
S039 88 15.3 35 0.689189 1.944483 1.544068 -0.16166 
S040 91 2.2 95 0.303318 1.959041 1.977724 -0.5181 
S041 158 0 55 0.627907 2.198657 1.740363 -0.2021 
S043 91 14.6 58 0.539823 1.959041 1.763428 -0.26775 
S044 99 3.4 60 0.339535 1.995635 1.778151 -0.46912 
S045 105 0 44 0.714286 2.021189 1.643453 -0.14613 
S046 110 20.1 56 0.460784 2.041393 1.748188 -0.3365 
S047 109 17.6 59 1.105263 2.037426 1.770852 0.043466 
S049 80 19.7 50 0.300493 1.90309 1.69897 -0.52217 
S050 83 28.7 45 0.363636 1.919078 1.653213 -0.43933 
S051 121 0 71 0.567308 2.082785 1.851258 -0.24618 
S053 88 1.26 101 0.657754 1.944483 2.004321 -0.18194 
S054 142 15 48 0.52 2.152288 1.681241 -0.284 
S055 85 0.42 102 0.723404 1.929419 2.0086 -0.14062 
S057 187 0 123 0.29878 2.271842 2.089905 -0.52465 
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S058 94 0 68 0.642202 1.973128 1.832509 -0.19233 
S059 102 10.8 67 0.833333 2.0086 1.826075 -0.07918 
S060 160 0 47 0.26178 2.20412 1.672098 -0.58206 
S061 159 0 85 0.425532 2.201397 1.929419 -0.37107 
S062 212 8.35 75 0.97619 2.326336 1.875061 -0.01047 
S064 97 0 92 0.509091 1.986772 1.963788 -0.2932 
S066 114 8.04 64 0.324324 2.056905 1.80618 -0.48902 
S067 145 0 86 0.510204 2.161368 1.934498 -0.29226 
S070 71 28.3 55 0.551948 1.851258 1.740363 -0.2581 
S071 108 3.44 64 0.8 2.033424 1.80618 -0.09691 
S072 104 0 63 0.346535 2.017033 1.799341 -0.46025 
S073 170 0 53 0.239521 2.230449 1.724276 -0.62066 
S074 119 15.7 74 0.431373 2.075547 1.869232 -0.36515 
S075 87 20.6 37 0.729167 1.939519 1.568202 -0.13717 
S076 142 0 54 0.551471 2.152288 1.732394 -0.25848 
S077 107 7.3 90 0.480263 2.029384 1.954243 -0.31852 
S078 98 0 61 0.406593 1.991226 1.78533 -0.39084 
S079 110 4.1 86 0.504348 2.041393 1.934498 -0.29727 
S080 143 20.4 59 0.769231 2.155336 1.770852 -0.11394 
S082 104 0 80 0.455357 2.017033 1.90309 -0.34165 
S083 111 8.67 65 0.555556 2.045323 1.812913 -0.25527 
S084 96 27.1 44 0.745455 1.982271 1.643453 -0.12758 
S085 98 30.2 62 0.496552 1.991226 1.792392 -0.30404 
S087 102 1.85 65 0.361446 2.0086 1.812913 -0.44196 
S088 168 27.7 51 0.584746 2.225309 1.70757 -0.23303 
S089 158 0 80 0.574074 2.198657 1.90309 -0.24103 
S090 186 15.9 104 0.509317 2.269513 2.017033 -0.29301 
S091 119 0 116 0.542169 2.075547 2.064458 -0.26587 
S093 140 19.9 48 0.545918 2.146128 1.681241 -0.26287 
S094 89 1.9 49 0.695238 1.94939 1.690196 -0.15787 
S096 176 17.7 66 0.569767 2.245513 1.819544 -0.2443 
S097 103 4.8 85 0.375 2.012837 1.929419 -0.42597 
S098 84 8.63 57 0.643564 1.924279 1.755875 -0.19141 
S099 164 0 74 0.911765 2.214844 1.869232 -0.04012 
S100 176 4.4 90 0.679487 2.245513 1.954243 -0.16782 
S102 102 2.7 53 0.522124 2.0086 1.724276 -0.28223 
S105 103 0 65 0.777778 2.012837 1.812913 -0.10914 
S106 101 0 56 0.428571 2.004321 1.748188 -0.36798 
S107 118 0 69 0.381356 2.071882 1.838849 -0.41867 
S108 147 0 65 0.552 2.167317 1.812913 -0.25806 
S109 167 6.17 40 0.408163 2.222716 1.60206 -0.38917 
S110 114 4.93 46 1.294872 2.056905 1.662758 0.112227 
S112 196 21.2 107 0.363636 2.292256 2.029384 -0.43933 
S113 179 9.98 86 0.573034 2.252853 1.934498 -0.24182 
S116 86 8.2 54 0.918367 1.934498 1.732394 -0.03698 
S117 109 2.93 73 0.666667 2.037426 1.863323 -0.17609 
S118 84 11.03 82 0.586777 1.924279 1.913814 -0.23153 
S119 132 0 66 0.771186 2.120574 1.819544 -0.11284 
S120 144 6.67 63 0.82716 2.158362 1.799341 -0.08241 
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S121 93 19.9 83 0.637363 1.968483 1.919078 -0.19561 
S122 86 0 49 0.648352 1.934498 1.690196 -0.18819 
S124 159 3.32 42 0.445783 2.201397 1.623249 -0.35088 
S125 75 37.4 72 0.541284 1.875061 1.857332 -0.26657 
S126 126 0 82 0.449275 2.100371 1.913814 -0.34749 
S128 91 4.7 74 0.33 1.959041 1.869232 -0.48149 
S129 74 9.94 51 0.544872 1.869232 1.70757 -0.26371 
S130 128 1.6 45 0.669725 2.10721 1.653213 -0.1741 
S132 78 0 101 0.656863 1.892095 2.004321 -0.18253 
S133 108 8.64 53 0.849057 2.033424 1.724276 -0.07106 
S134 112 0 75 0.263158 2.049218 1.875061 -0.57978 
S135 196 0 101 0.525 2.292256 2.004321 -0.27984 
S136 91 0 70 0.420513 1.959041 1.845098 -0.37622 
S138 112 0 80 0.387755 2.049218 1.90309 -0.41144 
S140 96 5.85 70 0.574074 1.982271 1.845098 -0.24103 
S141 85 2.1 64 0.660377 1.929419 1.80618 -0.18021 
S143 127 7 39 0.442177 2.103804 1.591065 -0.3544 
S145 77 9.84 85 1.147727 1.886491 1.929419 0.059839 
S146 118 8.6 75 0.280899 2.071882 1.875061 -0.55145 
S147 81 25.44 67 0.577982 1.908485 1.826075 -0.23809 
S149 125 0 69 0.352041 2.09691 1.838849 -0.45341 
S151 102 9.2 93 0.606061 2.0086 1.968483 -0.21748 
S152 165 24.3 78 0.288043 2.217484 1.892095 -0.54054 
S153 110 3.3 82 0.431579 2.041393 1.913814 -0.36494 
S154 103 20.8 78 0.768293 2.012837 1.892095 -0.11447 
S158 184 0 53 0.376812 2.264818 1.724276 -0.42388 
S162 104 3.4 100 0.625 2.017033 2 -0.20412 
S164 214 23.2 71 0.403509 2.330414 1.851258 -0.39415 
S166 192 14.7 77 0.351562 2.283301 1.886491 -0.454 
S168 106 12.3 90 1.043956 2.025306 1.954243 0.018682 
S170 159 17.6 100 0.355705 2.201397 2 -0.44891 
S171 118 56.4 91 0.413613 2.071882 1.959041 -0.38341 
S178 86 4.4 65 0.475728 1.934498 1.812913 -0.32264 
S179 87 1.83 84 0.546296 1.939519 1.924279 -0.26257 
S180 160 6.13 84 0.487013 2.20412 1.924279 -0.31246 
S181 113 0 59 0.68 2.053078 1.770852 -0.16749 
S182 131 0 72 0.582609 2.117271 1.857332 -0.23462 
S183 75 27.62 51 0.386364 1.875061 1.70757 -0.413 
S184 154 30.8 75 0.401042 2.187521 1.875061 -0.39681 
S185 103 1.19 58 0.385321 2.012837 1.763428 -0.41418 
S186 141 20.8 60 0.752941 2.149219 1.778151 -0.12324 
S187 193 15.1 90 0.516484 2.285557 1.954243 -0.28694 
S188 76 17.9 84 0.338028 1.880814 1.924279 -0.47105 
S190 176 0 46 0.527397 2.245513 1.662758 -0.27786 
S191 115 1.44 67 0.490741 2.060698 1.826075 -0.30915 
S192 105 11.1 73 0.401274 2.021189 1.863323 -0.39656 
S193 119 4.55 73 0.380952 2.075547 1.863323 -0.41913 
S195 112 14.21 48 0.307087 2.049218 1.681241 -0.51274 
S196 140 12.3 42 0.554455 2.146128 1.623249 -0.25613 
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S197 161 15.7 82 0.755814 2.206826 1.913814 -0.12159 
S198 185 0 60 0.608696 2.267172 1.778151 -0.2156 
S200 118 15.7 72 0.605769 2.071882 1.857332 -0.21769 
S202 110 26.8 44 0.646341 2.041393 1.643453 -0.18954 
S204 113 0 48 0.47619 2.053078 1.681241 -0.32222 
S206 108 0 53 0.433498 2.033424 1.724276 -0.36301 
S207 118 0 45 0.96 2.071882 1.653213 -0.01773 
S208 162 13.7 90 0.3 2.209515 1.954243 -0.52288 
S209 104 7.7 59 1.134328 2.017033 1.770852 0.054739 
S210 98 0 50 0.965517 1.991226 1.69897 -0.01524 
S211 82 17.3 47 0.522523 1.913814 1.672098 -0.28189 
S212 202 13.32 70 0.480447 2.305351 1.845098 -0.31835 
S214 169 1.65 69 0.515306 2.227887 1.838849 -0.28793 
S215 104 18.3 63 0.573171 2.017033 1.799341 -0.24172 
S217 153 8.9 66 1.103896 2.184691 1.819544 0.042928 
S218 91 3.7 37 0.490741 1.959041 1.568202 -0.30915 
S220 98 4.8 90 0.419048 1.991226 1.954243 -0.37774 
S221 149 10.77 53 0.5 2.173186 1.724276 -0.30103 
S222 117 1.29 91 0.849558 2.068186 1.959041 -0.07081 
S223 145 0 72 0.628931 2.161368 1.857332 -0.2014 
S224 178 0 50 0.519608 2.25042 1.69897 -0.28432 
S225 166 13.8 60 0.505051 2.220108 1.778151 -0.29667 
S226 113 4.2 61 0.466321 2.053078 1.78533 -0.33131 
S228 102 14.3 53 0.549618 2.0086 1.724276 -0.25994 
S229 77 16.7 52 0.358108 1.886491 1.716003 -0.44599 
S230 138 0 62 0.879121 2.139879 1.792392 -0.05595 
S231 102 23.4 85 0.397727 2.0086 1.929419 -0.40041 
S232 164 4.3 49 0.631068 2.214844 1.690196 -0.19992 
S233 69 7.5 54 0.380952 1.838849 1.732394 -0.41913 
S234 87 0 59 0.386076 1.939519 1.770852 -0.41333 
S235 133 0 35 0.511364 2.123852 1.544068 -0.29127 
S236 90 5.3 60 0.678161 1.954243 1.778151 -0.16867 
S239 158 8.72 61 0.650794 2.198657 1.78533 -0.18656 
S240 202 1.77 70 0.356021 2.305351 1.845098 -0.44852 
S243 157 10.6 63 0.723577 2.1959 1.799341 -0.14052 
S245 147 0 57 0.386364 2.167317 1.755875 -0.413 
S248 108 19 62 0.4 2.033424 1.792392 -0.39794 
S249 95 13.6 41 0.635593 1.977724 1.612784 -0.19682 
S250 103 43.2 49 0.314465 2.012837 1.690196 -0.50243 
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Table 5.8.  Phenotype values for the B population individuals. 
 
Individual HD SS PH GR HC AW log10HD log10PH log10GR 

B001 120 7.1 64 0.454545 1 1 2.079181 1.80618 -0.34242 
B003 83 19.9 57 0.59542 1 1 1.919078 1.755875 -0.22518 
B004 137 8.96 53 0.386861 1 1 2.136721 1.724276 -0.41244 
B005 145 11.5 88 0.583333 0 1 2.161368 1.944483 -0.23408 
B007 127 23.1 53 0.512605 x 1 2.103804 1.724276 -0.29022 
B008 135 21.3 78 0.650943 1 1 2.130334 1.892095 -0.18646 
B009 112 11 72 0.463918 1 1 2.049218 1.857332 -0.33356 
B010 104 0 57 0.505618 1 0 2.017033 1.755875 -0.29618 
B011 131 21.9 78 0.562044 x 1 2.117271 1.892095 -0.25023 
B012 125 11.5 66 0.510345 0 1 2.09691 1.819544 -0.29214 
B013 104 0 44 0.427536 0 0 2.017033 1.643453 -0.36903 
B014 96 0 60 0.428571 1 1 1.982271 1.778151 -0.36798 
B015 131 1.24 96 0.491667 1 1 2.117271 1.982271 -0.30833 
B018 102 2 52 0.602837 1 1 2.0086 1.716003 -0.2198 
B019 106 36.2 57 0.475806 0 0 2.025306 1.755875 -0.32257 
B020 134 17.5 63 0.451977 1 1 2.127105 1.799341 -0.34488 
B023 116 0 57 0.347107 1 0 2.064458 1.755875 -0.45954 
B025 99 3.45 56 0.512397 x 1 1.995635 1.748188 -0.29039 
B026 117 17.7 62 0.622222 0 1 2.068186 1.792392 -0.20605 
B027 97 13.5 45 0.470149 1 1 1.986772 1.653213 -0.32776 
B028 113 0 63 0.368056 x 1 2.053078 1.799341 -0.43409 
B029 105 17 64 0.645669 1 1 2.021189 1.80618 -0.18999 
B030 98 21.4 54 0.406504 1 1 1.991226 1.732394 -0.39094 
B032 93 9.8 50 0.5 1 1 1.968483 1.69897 -0.30103 
B034 93 14.9 74 0.597938 1 1 1.968483 1.869232 -0.22334 
B035 106 21.5 69 0.458647 1 1 2.025306 1.838849 -0.33852 
B037 92 14.2 47 1.152941 0 1 1.963788 1.672098 0.061807 
B038 112 16 53 0.261146 1 1 2.049218 1.724276 -0.58312 
B039 112 28.3 37 0.5 1 0 2.049218 1.568202 -0.30103 
B040 110 16 84 0.763636 0 1 2.041393 1.924279 -0.11711 
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B041 111 15.4 78 0.625 0 1 2.045323 1.892095 -0.20412 
B042 131 14.7 83 0.6875 1 1 2.117271 1.919078 -0.16273 
B043 102 11.5 45 0.294118 1 1 2.0086 1.653213 -0.53148 
B046 127 12 82 0.650485 1 1 2.103804 1.913814 -0.18676 
B047 110 10.8 68 0.566265 0 1 2.041393 1.832509 -0.24698 
B049 105 2.1 73 0.435897 1 1 2.021189 1.863323 -0.36062 
B051 102 12.8 99 0.531532 1 1 2.0086 1.995635 -0.27447 
B052 119 2.21 87 0.597938 0 1 2.075547 1.939519 -0.22334 
B053 126 18 81 0.261146 1 1 2.100371 1.908485 -0.58312 
B057 110 4.4 63 0.695238 0 0 2.041393 1.799341 -0.15787 
B060 136 26.4 73 0.483333 1 1 2.133539 1.863323 -0.31575 
B061 104 22.1 86 0.697917 1 1 2.017033 1.934498 -0.1562 
B062 128 22.6 108 0.568421 x 1 2.10721 2.033424 -0.24533 
B064 103 9.04 58 0.328467 1 0 2.012837 1.763428 -0.48351 
B065 113 5.68 76 0.647619 1 1 2.053078 1.880814 -0.18868 
B066 129 15.8 53 0.815534 1 1 2.11059 1.724276 -0.08856 
B067 113 14.8 72 0.335938 1 0 2.053078 1.857332 -0.47374 
B068 93 3.5 69 0.583333 1 1 1.968483 1.838849 -0.23408 
B069 95 23.5 74 0.836735 0 1 1.977724 1.869232 -0.07741 
B071 127 16.1 66 0.386861 0 1 2.103804 1.819544 -0.41244 
B072 132 29.5 52 0.333333 0 1 2.120574 1.716003 -0.47712 
B075 109 15.2 59 0.527778 0 1 2.037426 1.770852 -0.27755 
B076 130 2.91 50 0.477941 0 1 2.113943 1.69897 -0.32063 
B078 126 9.94 81 0.444444 1 1 2.100371 1.908485 -0.35218 
B079 112 18.3 81 0.540541 1 1 2.049218 1.908485 -0.26717 
B081 107 26.9 81 0.686747 1 1 2.029384 1.908485 -0.1632 
B082 85 1.12 49 0.478992 x 1 1.929419 1.690196 -0.31967 
B083 123 4.55 75 0.4 1 1 2.089905 1.875061 -0.39794 
B085 94 2.67 52 0.970588 1 1 1.973128 1.716003 -0.01296 
B086 120 23.8 66 0.578947 0 0 2.079181 1.819544 -0.23736 
B087 121 9.24 74 0.573034 x 1 2.082785 1.869232 -0.24182 
B091 112 15.9 56 0.320611 1 1 2.049218 1.748188 -0.49402 
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B094 105 30.4 81 0.330357 0 0 2.021189 1.908485 -0.48102 
B097 79 16.1 63 0.606897 0 1 1.897627 1.799341 -0.21689 
B098 112 37.3 49 0.55102 1 1 2.049218 1.690196 -0.25883 
B099 114 15.1 68 0.398496 x 1 2.056905 1.832509 -0.39958 
B100 123 12.9 50 0.5 1 1 2.089905 1.69897 -0.30103 
B101 120 0 60 0.45045 0 0 2.079181 1.778151 -0.34635 
B103 106 20.3 71 0.537634 1 1 2.025306 1.851258 -0.26951 
B105 81 23.4 44 0.959596 1 1 1.908485 1.643453 -0.01791 
B106 99 22.2 61 0.4 1 1 1.995635 1.78533 -0.39794 
B107 125 11.8 71 0.507692 0 1 2.09691 1.851258 -0.2944 
B108 97 25.1 58 0.335938 x 1 1.986772 1.763428 -0.47374 
B109 138 17.5 59 0.537313 1 1 2.139879 1.770852 -0.26977 
B112 93 16.64 62 0.561905 1 0 1.968483 1.792392 -0.25034 
B113 129 20.3 72 0.55 1 0 2.11059 1.857332 -0.25964 
B114 121 12.5 45 0.571429 1 0 2.082785 1.653213 -0.24304 
B116 124 15.7 63 0.815534 1 1 2.093422 1.799341 -0.08856 
B117 111 5.22 60 0.371901 0 1 2.045323 1.778151 -0.42957 
B118 83 2.64 47 0.333333 0 1 1.919078 1.672098 -0.47712 
B119 117 19 51 0.771429 1 1 2.068186 1.70757 -0.1127 
B120 110 13.6 55 0.697917 x 1 2.041393 1.740363 -0.1562 
B121 110 17.8 98 0.616667 1 0 2.041393 1.991226 -0.20995 
B122 121 9.1 42 0.509804 1 1 2.082785 1.623249 -0.2926 
B127 91 16.6 62 0.623853 1 0 1.959041 1.792392 -0.20492 
B129 105 27.2 59 1 1 1 2.021189 1.770852 0 
B130 144 7 84 0.366412 1 1 2.158362 1.924279 -0.43603 
B132 120 7.96 74 0.568421 1 1 2.079181 1.869232 -0.24533 
B133 133 7.8 57 0.552381 1 1 2.123852 1.755875 -0.25776 
B134 93 20.3 41 0.40708 1 1 1.968483 1.612784 -0.39032 
B135 125 24.5 50 0.681319 1 1 2.09691 1.69897 -0.16665 
B136 120 18 77 0.431818 1 1 2.079181 1.886491 -0.3647 
B137 145 19.4 48 0.381679 1 1 2.161368 1.681241 -0.4183 
B138 123 14.9 77 0.423077 x 1 2.089905 1.886491 -0.37358 
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B140 153 19.2 51 0.528 x 0 2.184691 1.70757 -0.27737 
B144 105 16.3 68 0.478992 1 1 2.021189 1.832509 -0.31967 
B147 126 16.3 65 0.444444 1 1 2.100371 1.812913 -0.35218 
B151 109 37.7 56 0.456 0 0 2.037426 1.748188 -0.34104 
B154 103 10.5 67 0.54321 x 0 2.012837 1.826075 -0.26503 
B155 85 1.55 98 0.764228 1 1 1.929419 1.991226 -0.11678 
B156 120 11.3 72 0.578947 0 1 2.079181 1.857332 -0.23736 
B157 134 8.9 89 0.486957 0 1 2.127105 1.94939 -0.31251 
B158 108 12.3 59 0.55102 x 1 2.033424 1.770852 -0.25883 
B159 96 12.1 66 0.513761 1 1 1.982271 1.819544 -0.28924 
B160 131 12.7 81 0.544643 x 1 2.117271 1.908485 -0.26389 
B161 121 1.8 62 0.486486 0 1 2.082785 1.792392 -0.31293 
B162 111 18.3 50 0.731092 1 1 2.045323 1.69897 -0.13603 
B163 109 11.6 68 0.955056 0 1 2.037426 1.832509 -0.01997 
B164 177 0 80 0.333333 0 1 2.247973 1.90309 -0.47712 
B165 150 7.45 59 0.493827 x 1 2.176091 1.770852 -0.30643 
B166 168 12 90 0.583333 0 1 2.225309 1.954243 -0.23408 
B167 161 22.1 66 0.573034 1 1 2.206826 1.819544 -0.24182 
B168 105 10.7 81 0.527778 1 1 2.021189 1.908485 -0.27755 
B169 126 8 88 0.331034 1 1 2.100371 1.944483 -0.48013 
B173 108 17.4 57 0.809524 1 1 2.033424 1.755875 -0.09177 
B175 77 15.5 39 0.626016 1 1 1.886491 1.591065 -0.20341 
B176 112 14.2 61 0.540541 1 1 2.049218 1.78533 -0.26717 
B178 123 24.4 94 0.989474 1 1 2.089905 1.973128 -0.0046 
B180 104 17.7 52 0.51087 0 1 2.017033 1.716003 -0.29169 
B181 126 16.3 42 0.557522 x 1 2.100371 1.623249 -0.25374 
B183 117 19.2 62 0.441176 1 1 2.068186 1.792392 -0.35539 
B184 137 42.8 45 0.890909 0 1 2.136721 1.653213 -0.05017 
B186 121 20.1 55 0.366667 0 1 2.082785 1.740363 -0.43573 
B187 119 14.9 74 0.535714 0 1 2.075547 1.869232 -0.27107 
B191 119 10 61 0.664179 1 1 2.075547 1.78533 -0.17771 
B196 130 14.2 66 0.650943 1 1 2.113943 1.819544 -0.18646 
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B198 124 13.5 59 0.666667 1 1 2.093422 1.770852 -0.17609 
B199 162 4.56 80 0.698413 1 1 2.209515 1.90309 -0.15589 
B200 147 0 62 0.616162 0 1 2.167317 1.792392 -0.21031 
B204 120 3.42 58 0.333333 x 1 2.079181 1.763428 -0.47712 
B205 103 20.1 84 0.76087 1 0 2.012837 1.924279 -0.11869 
B207 144 23.9 53 0.548077 1 1 2.158362 1.724276 -0.26116 
B208 137 37.2 67 0.446281 1 1 2.136721 1.826075 -0.35039 
B209 111 7.35 59 0.528 1 1 2.045323 1.770852 -0.27737 
B210 134 4.01 72 0.606897 x 1 2.127105 1.857332 -0.21689 
B211 135 76 84 0.512605 x 1 2.130334 1.924279 -0.29022 
B212 103 11.2 55 0.970588 x 1 2.012837 1.740363 -0.01296 
B213 157 16.45 41 0.506494 0 1 2.1959 1.612784 -0.29543 
B214 132 4.7 77 0.864078 1 0 2.120574 1.886491 -0.06345 
B215 132 3.57 57 0.409938 1 1 2.120574 1.755875 -0.38728 
B216 123 12.2 58 0.477941 1 1 2.089905 1.763428 -0.32063 
B217 131 29.4 65 0.618321 0 1 2.117271 1.812913 -0.20879 
B218 95 14.1 54 0.393333 x 1 1.977724 1.732394 -0.40524 
B219 100 12.8 55 0.647619 1 1 2 1.740363 -0.18868 
B221 131 17.7 48 0.588652 0 0 2.117271 1.681241 -0.23014 
B224 131 10.9 42 0.633588 x 1 2.117271 1.623249 -0.19819 
B227 128 19.4 43 0.6 x 1 2.10721 1.633468 -0.22185 
B228 131 1.33 50 0.702703 x 1 2.117271 1.69897 -0.15323 
B230 89 3.57 51 0.55814 1 1 1.94939 1.70757 -0.25326 
B232 97 22.44 78 0.546296 1 1 1.986772 1.892095 -0.26257 
B234 125 33 57 0.328467 1 1 2.09691 1.755875 -0.48351 
B237 120 13.6 59 0.463918 1 1 2.079181 1.770852 -0.33356 
B238 109 24.2 58 0.537736 1 1 2.037426 1.763428 -0.26943 
B243 152 37.5 88 0.804124 1 1 2.181844 1.944483 -0.09468 
B244 111 20.6 54 0.621849 1 0 2.045323 1.732394 -0.20632 
B245 101 24.3 57 0.533333 0 1 2.004321 1.755875 -0.273 
B247 112 0 64 0.471545 0 1 2.049218 1.80618 -0.32648 
B248 99 11.1 95 0.583333 1 1 1.995635 1.977724 -0.23408 



 

139 

Table 5.8 Cont.         
B249 105 20 58 0.515873 1 1 2.021189 1.763428 -0.28746 
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Figure 5.1.  Relationships between cultivated and weedy rice groups. 
In the US, SH weeds are more closely related to indica cultivars while BHA weeds are 
more closely related to aus cultivars.  These weed groups are more distantly related to 
japonica cultivars, which are typically grown in the US fields.  Aus and indica groups are 
believed to share a domestication origin, regardless of the number of domestications for 
Asian rice as a whole (Caicedo et al. 2007; Garris et al. 2005). 
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Figure 5.2.  Frequency distributions of traits in the F2 populations.  
Grey bars represent traits measured in the S population, while black bars represent traits 
measured in the B population.  The white stars correspond to trait values for the 
cultivated parent and the filled stars to the respective weed parent (SH_RR09 or 
BHA_RR20).  The vertical axis of each figure represents the number of individuals. 
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Figure 5.3.  Molecular linkage map with positions of QTL for three traits in the S 
population. 
Markers with segregation distortion are denoted with asterisks (* P<0.01, ** P<0.001).  
The length of the vertical line represents the 1.5 LOD confidence interval around the 
QTL peak.  Only chromosomes with significant QTL are shown.  Marker names are on 
the right side while marker positions drawn to scale are on the left. 
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Figure 5.4. Molecular linkage map with positions of QTL for three traits in the B 
population. 
Markers with segregation distortion are denoted with asterisks (* P<0.01, ** P<0.001).  
The length of the vertical line represents the 1.5 LOD confidence interval around the 
QTL peak.  Only chromosomes with significant QTL are shown.  Marker names are on 
the right while marker positions to scale are on the left. 
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CHAPTER 6 

 
OVERALL CONCLUSIONS 

6.1 Dissertation Conclusions 

Weeds that colonize agricultural fields are of great interest from both a practical 

standpoint, as their presence often affects crop yields, and from an evolutionary 

standpoint, as little is known about how weeds evolve and adapt to a variety of 

environments.  My research has increased our understanding of how weedy traits evolve 

and the genetic basis of convergence in weed-adaptive traits. Weedy rice is a major 

agronomic pest of cultivated rice and, as such, is in need of intense study.  The two 

subpopulations of weedy rice studied here, SH and BHA, are likely de-domesticates of 

different varieties of cultivated rice (Reagon et al., 2010).  It is possible that parallel 

evolution of weedy traits has occurred between these weedy rice subpopulations, due to 

their separate origins within cultivated rice followed by evolution under similar selective 

pressures in the US agroecosystem.  My research furthers the understanding of the 

evolution of weedy rice by studying the relationship of different weedy rice populations 

to each other and investigating the genetic mechanisms by which weedy rice has acquired 

traits that have allowed it to spread and proliferate. 

Seed shattering, or the easy release of seeds upon ripening, was a particularly 

interesting weedy trait.  Nearly all weedy rice worldwide shatters its seeds while 

cultivated rice has been selected to retain its seeds through moderate levels of shatter 

resistance (Purugganan & Fuller, 2009).  Of the many weed adaptive traits that 

differentiate weedy rice from its cultivated progenitors, seed shattering is one of the most 

important for characterizing the weedy phenotype.  Efficient seed dispersal is likely 
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crucial to weed fitness, as it allows weeds to increase their presence in the seed bank and 

spread to new areas (Harlan & DeWet, 1965). My main research goals were to investigate 

the incidence of parallelism of seed shattering in US weedy rice while also investigating 

domestication-related candidate genes in order to assess where weedy alleles come from 

and determine if novel alleles exist in weedy rice.  The seed shattering phenotype was 

investigated in both chapters 2 (extent of shattering ability) and 3 (shattering morphology 

and timing) of this thesis.  With the exception of weedy rice with mixed ancestry (e.g. 

BRH/MX weeds; Reagon et al., 2010), my results from chapter 2 show that all US weedy 

rice populations are highly shattering despite the range of shattering degree in the 

cultivated progenitors of US weeds. Additionally, all weedy rice shatters to a similar 

degree as wild rice, despite separate origins of major weedy rice groups, suggesting that 

this trait was strongly selected for during weedy rice evolution. 

The flower-pedicel junction (where the base of the flower attaches to the panicle) 

is the site where seed release occurs after degradation of an abscission layer (Lin et al., 

2007; Oba et al., 1995; Jin & Inouye, 1982; Jin & Inouye, 1985; Jin, 1986).  In chapter 3 

of this dissertation, I investigated the morphology of the abscission layer in weedy, 

cultivated, and wild rice and how this may affect the timing of seed shedding.  Weedy 

rice develop abscission layers in the same location as wild rice, consistent with their 

shared shattering phenotype, yet the degradation of this layer is accelerated in weedy rice 

from both SH and BHA groups compared to wild rice.  This accelerated degradation may 

also increase the weeds’ shedding ability.  Further investigation confirmed that some 

weedy rice individuals show an increase in seed shedding ability five days earlier than is 

typical in wild rice; however, some weedy rice individuals parallel the shattering ability 



 

146 

of wild rice, suggesting that shattering ability is not completely correlated with the rate at 

which the abscission layer degrades.  The developmental differences between weedy and 

wild rice abscission layer traits further suggests that shattering in weedy rice was likely 

not acquired through introgression with wild rice. 

In addition to phenotypic characterization, in chapter 2 of this dissertation I also 

investigated two major shattering loci in rice: qsh1 and sh4 (Konishi et al., 2006; Li et 

al., 2006b; Lin et al., 2007). I found that all US weedy rice in my panel possess an 

ancestral qsh1 allele that is common in all non-temperate japonica cultivated and wild 

rice groups, and is not correlated with loss of shattering outside of the temperate japonica 

clade. However, all US weedy rice accessions carry a single nucleotide substitution 

associated with non-shattering at sh4, and most weeds share an sh4 haplotype with 

cultivated rice that appears to have been under strong selection, represented by high LD 

in genomic haplotypes surrounding this locus.  Sh4 has been identified as the most 

significant shattering gene to be selected on during domestication (Li et al. 2006b; Lin et 

al. 2007; Zhang et al. 2009). My identification of strongly selected upon alleles shared 

between weeds and cultivars supports the origin of US weeds from domesticated 

ancestors and suggests that this substitution, characteristic of cultivated sh4 alleles, is not 

sufficient for reduction of shattering in all genetic backgrounds.  Additionally, these data 

suggest that novel loci, potentially containing weed-specific mutations, are involved in 

the parallel evolution of shattering in both the SH and BHA weed groups as these weeds 

have evolved from closely related ancestors. 

In addition to studying seed shattering, I also investigated the genetic mechanisms 

behind altered flowering times (“heading date”) in weedy rice.  The regulation of 
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flowering time in weeds is very important for increased competitive ability and local 

adaptation to various day length and temperature regimes (Greenup et al., 2009, Sawers 

et al., 2005).  In our US weedy rice samples flowering time variation is the most defining 

growth related trait between weed groups and their cultivated ancestors (Reagon et al., 

2011).  In chapter 4 of this dissertation, I quantified the heading date phenotype in weedy 

rice and found that the trait is not convergent between weedy rice groups but rather has 

diverged; SH weeds flower earlier and BHA weeds flower later than both local and Asian 

cultivated rice.  That these two weed groups have evolved separate flowering phenotypes 

suggested to me that different mutations in major flowering time genes or potentially 

different genes might be playing a role in this divergence.  Thus in chapter 4, I also 

investigated two important components of the flowering time gene network, Hd1 and 

Hd3a.  I found that at both loci weeds share haplotypes with their cultivated progenitors 

despite significantly different flowering times.  However, only at the Hd1 locus does 

haplotype significantly correlate with flowering time phenotype; at this locus BHA weeds 

share a common deletion resulting in photoperiod insensitivity and later flowering.  As 

these genes only explain part of the flowering phenotype of the weeds, other genes must 

be involved that cause the difference in phenotype seen between weeds and progenitors.  

This was the motivating factor in including heading date in the QTL study done in 

chapter 5.   

In order to further understand the incidence of parallel genetic evolution of seed 

shattering and flowering time in weedy rice and identify genomic regions that may 

contain novel candidate genes, I designed a QTL mapping study reported in chapter 5.  

For this study, two separate F2 mapping populations were generated by crossing an indica 
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cultivar to a single accession from each weed population, SH and BHA.  Neither the 

phenotypic distributions for shattering (normal in one mapping population and highly 

non-normal in the other) nor the locations of shattering QTL (chromosome 1 in one 

mapping population versus chromosomes 2 and 11 in the other) supported the hypothesis 

that these two weed parents share similar genetic mechanisms for the convergent 

shattering phenotype.  More interestingly, the shattering locus on chromosome 2 does not 

appear to have been previously identified by any other QTL study involving crosses 

between cultivar types or between cultivars and wild Oryza.  Additionally, QTL for seed 

shattering have also been identified in crosses between non-US weedy rice individuals 

and cultivated rice, yet my QTL do not overlap with either study, suggesting that parallel 

genetic evolution may not be the case across other weedy rice populations. 

For flowering time, the phenotypic distributions were again different: normal in 

one mapping population and nearly bi-modal in the other.  Since these weeds arose from 

different, but related, cultivar groups and posses different phenotypes I expected the 

genes involved in this trait to be different between the two groups.  However, this seems 

a bit less likely given that QTL identified for flowering time in both populations are 

located in the same region of chromosome 8, coincident with a recently identified 

candidate gene, Ghd8. 

My research altogether has shown that the genetics behind convergent and 

divergent weed traits does not always occur as predicted when weed populations are 

closely related.  In the case of seed shattering, a trait that has evolved in parallel between 

the populations, different genes appear to be at work in the weed groups that also differ 

from the genes used during rice domestication.  For flowering time, a trait that has 
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diverged between the groups, it is possible that the gene responsible for both phenotypes 

(early vs. late flowering) is the same but that the mutations within this gene, or the genes 

it interacts with, may be working towards opposite ends. 

 

6.2 Future Work 

In light of the results of my research, the evolution and origin of weedy traits in 

weedy rice is a complex matter that requires more research.  In terms of seed shattering, 

further investigation at both the phenotypic and genetic levels is needed to fully 

understand this fascinating trait.  At the phenotypic level, two avenues should be pursued: 

increased sampling of cultivated rice and finer scale developmental characterization. 

Although we tried to collect the broadest samples of cultivated rice possible, there is still 

the potential for missed phenotypic variation.  Additional samples of landrace and older 

cultivars from indica and aus groups would greatly add to the understanding of the extent 

of the variation of this phenotype in the progenitors of weedy rice.  These samples could 

then also be useful in identifying genes and alleles present in the standing variation of the 

weedy rice progenitor gene pool that may have led to shattering in weedy rice.  

Additionally, further investigation into the abscission layer formation and degradation at 

more floral and seed developmental stages may help identify more precisely when the 

abscission layer forms in weedy rice and how rapidly after formation it degrades.  This 

rapid degradation of the abscission layer, potentially leading to earlier shattering, could 

be useful as a trait for future mapping and may more precisely locate the genes specific to 

the weedy rice shattering phenotype. 
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In order to learn more about parallel genetic evolution of shattering in Oryza, 

future work should also investigate other weedy rice populations worldwide.  It is 

possible that these other weedy populations have evolved from separate cultivated rice 

groups (i.e. tropical or temperate japonica) or potentially through admixture of cultivars 

with wild rice in Asia.  Some interesting questions that could be posed include: Do all 

weedy rice worldwide shatter to the same degree?  Do they all posses the same 

morphological mechanisms for shattering? Are the same genes or even alleles/mutations 

involved in seed shattering despite the potential for a lack of shared ancestry with US 

weeds?  Some research has already begun on these questions as several groups are 

working on weedy rice from different areas of the world.  Two groups in particular have 

been mapping weed adaptive traits, including seed shattering, in non-US weeds (Bres-

Patry et al., 2001; Gu et al., 2005a; Gu et al., 2005b; Gu et al., 2005c). Interestingly, my 

QTL for seed shattering do not overlap with any QTL from either study, suggesting that 

parallel genetic evolution may not be contributing to convergent phenotypes occurring 

worldwide. 

Most recently, a group of Japanese researchers published a study using methods 

similar to those in chapter 3 of this thesis with weedy and cultivated rice samples found 

in Japan.  Their shattering time course data shows an increase in shedding ability in their 

cultivars around 24 days after heading (DAH) while the weeds show their largest increase 

closer to 21 DAH (Akasaka et al., 2011).  Although their weeds also show an earlier 

increase in shedding ability compared to the cultivars they sampled, our cultivars and 

weeds showed a much earlier increase in shedding ability, by between 7 and 14 days, 

which suggests that, even within weedy and cultivated rice, variation is present.  
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Although they did not compare the weedy rice abscission layers to those of wild rice, 

these layers had formed and even started to become disorganized in preparation for 

separation as early as 3 DAH (Akasaka et al., 2011).  Further investigation into the 

abscission layers of individuals from other populations of weedy rice from Asia would 

help to figure out if parallel evolution is occurring among more distantly related weed 

groups. 

The most important next step is to fine map both the shattering and heading date 

QTL reported here.  Two of the most cutting edge tools and materials available to us at 

present are 1) a set of RILs derived from a subset of my F2 populations and 2) whole 

genome sequence data for the three parents used to create my mapping populations (Jia, 

Caicedo & Olsen, unpublished; Hyma & Caicedo, unpublished).  These genomes will 

generate many more markers that can be tested on the RILs in multiple environments and 

will not only give us a chance to identify more loci, possibly of weaker effect, but also to 

narrow down the regions of the genome containing genes of interest to a hopefully 

manageable number.  It is even possible that some of the smaller effect shattering QTL 

could overlap between populations. 

Lastly, to further understand the divergence of heading date phenotypes at the 

molecular level it would be prudent to investigate weedy rice alleles at the candidate gene 

Ghd8, the potential underlying cause of my heading date QTL.  It is possible that this 

gene harbors alleles specific to each weed population and may show evidence of 

selection in weedy rice. 
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6.3 Broader Impacts 

My results greatly add to the understanding of weedy rice as a dynamic and 

diverse set of populations.  Some of these populations may well possess traits that can be 

beneficial to cultivated rice.  Genes involved in heading date differences in weedy rice 

may be beneficial to further adapting cultivated rice to growing in the Southern US.  

More specifically, SH alleles conferring earlier flowering may be beneficial for 

shortening the growing season of rice in the US; this could allow for multiple rounds of 

planting in a single season, thus increasing the yield of a single field, or expanding the 

rice growing regions in the US by allowing rice to be planted in more northern latitudes 

with shorter summer seasons. 

Although high shattering is not desired in the crop, each of the genes controlling 

shattering, even those found in weedy rice, could be used to further adjust the low level 

of shattering to suit human needs for threshing.  It has been suggested that a switch from 

hand threshing, where seeds were expected to be pulled off easily, to machine threshing, 

using combines and other equipment, perpetuated a further shift to more severe non-

shattering in modern cultivars of rice.  As machine threshing may not be possible in some 

areas of the world, farmers may still need access to high yielding and disease resistant 

varieties being developed in non-shattering rice but with an increase in the ease of seed 

removal.  Utilization of weedy alleles for both heading date and shattering could be 

accomplished by breeding or genetic engineering of elite lines with alleles from weedy 

rice.  Weedy and cultivated rice crosses are certainly possible; I produced some crosses 

for this thesis, and there are repeated reports of hybridization occurring in rice fields.  By 
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using marker-assisted selection, linkage drag of undesirable weedy traits can be 

mitigated. 

Additionally, my research adds to our knowledge of weed evolution and the 

incidences of parallel evolution in closely related lineages.  It is probable that weeds 

overall do not always use the same genes to evolve weedy traits; yet it is possible that 

weed species, no matter how divergent, may still use similar genes, types of genes, or 

pathways to arrive at the same adaptive phenotype.  In the case of seed shattering and 

increased seed dispersal, much is known about the ecology of weed seed dispersal but 

little is known about the genetics behind it.  Several weeds of cultivated plants display 

increased seed shattering (see examples in Ellstrand et al., 2010).  In particular, a weedy 

form of cereal rye (Secale cereale L.) is the result of de-domestication of volunteer rye 

and possess a seed shattering phenotype similar to that of the wild rye species (Burger et 

al., 2007).  It would be interesting to see if the genes involved in weedy rye shattering are 

similar to those involved in shattering of weedy rice. 

Parallel evolution utilizing similar genes and mutations across plant lineages has 

been demonstrated in some cases (e.g. flower color in independently evolving Ipomoea 

lineages; Streisfield & Rausher, 2009; Des Marais & Rausher, 2010; Smith & Rausher, 

2011), yet it does not appear to be universal that a shared trait will have the same genetic 

basis.  My work shows that, for the case of seed shattering in weedy rice from the US, the 

same genes are likely not contributing to the parallel evolution of this trait.  Given that 

both weedy rice populations likely originated from two closely related but highly diverse 

subpopulations of cultivated rice and share a near identical shattering phenotype, it was 

expected that similar genes would play a major role in seed shattering.  However, my 
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QTL study results do not support this idea, suggesting that multiple mutations in different 

genes can lead to similar levels of seed shattering.  Only once the shattering loci have 

been identified and investigated in a survey of weedy, wild, and cultivated rice will we 

know the true extent of parallel genetic evolution in this system. 
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