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ABSTRACT 

A NONLINEAR MODEL FOR WIND-INDUCED OSCILLATIONS OF TREES 

09-01-2012 

LAKSHMI NARAYANAN, B.TECH., SASTRA UNIVERSITY, INDIA 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Yahya Modarres-Sadeghi 

 

Ambient wind causes trees to oscillate. Wind-induced oscillations of trees 

constitute a fluid-structure interaction problem, which has been studied by many 

researchers from various points of view. However, there is yet a lot to be done. From an 

engineering point of view, the complex structure of trees, which are very different from 

man-made structures, as well as the highly nonlinear interaction between wind and tree, 

makes  it  a  challenging task  to predict the  amplitude  and  frequency of  the  

resulting  oscillations. From a biological point of view, the influence of wind on 

photosynthesis as well as the growth and death of plants is crucial. A nonlinear model is 

derived for wind-induced oscillations of trees to investigate the effect of structural 

nonlinearities. It is shown that the structural nonlinearities in the system can result in a 

hardening behavior of the tree, indicating the importance of taking such nonlinearities 

into account. The influence of various system parameters such as tree’s age, taper and 

slenderness ratio on the tree oscillations is studied using this nonlinear model.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Introduction 

Wind-induced oscillations of trees have been studied for some time. Wind tends 

to influence the tree in several ways, from its growth to photosynthesis. Also, the 

potential risk of a tree subject to windthrow or a similar hazard presents a threat on 

various scales.  

Trees evolve according to the wind loads that they experience and have a range of 

mechanisms to reduce the drag they experience in the wind. A combination of high wind 

loads and dead loads on the tree can ultimately cause the tree to fail. Tree failure, 

especially in urban areas can induce severe damage and even result in litigation 

(Mortimer and Kane, 2004). Understanding wind-induced oscillations can help in tree 

maintenance procedures to reduce the risk of such a failure. Procedures such as pruning 

can reduce the wind loading on a tree and thus reduce its susceptibility to failure (Smiley 

and Kane, 2006). In this thesis, the effect of the wind forces on the trees and the 

corresponding tree response will be studied.  

1.2 Wind and tree 

In general, wind has several direct or indirect effects on trees. Oscillations of trees 

and their effect on turbulence within the canopies of the structure are the direct results of 

wind blowing on trees. Windthrow is a direct result of gusts (Gardiner and Quine, 2000). 

Wind also affects photosynthetic processes of the leaves and the temperature of the 

leaves (Stokes et al., 2006). Through flutter of the outer leaves, wind also changes the 
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light entering the crown of the tree and thus influences photosynthesis again (Roden, 

2003). The strains induced by wind can change the growth mechanism of the trees and 

their subsequent adaption to bear the self-weight of their trunks (Moulia et al., 2006). 

These biological influences have made it important to understand the effects of wind on 

trees. 

Basically, trees are upright, flexible structures that have the ability to bend over in 

wind. For large trees especially, the diameter of the tree scales to its length by the power 

1.5 (McMahon, 1973), which means that taller trees will have trunks with larger 

diameter. Younger trees will have more “flexibility” to bend over in wind and thus 

reduce the drag acting on them, while older trees will be less able to do so, and will be at 

a higher risk of windthrow and uprooting (Ennos, 1999). Hence, reconfiguration of trees 

to wind is quite an elegant way of solving the problem of reducing the drag on 

themselves and be less susceptible to wind forces that can damage them. They evolve and 

adapt to the environment in which the wind forces act on them in various ways, which 

include the “tapering of trunks and branches, streamlining their crown in high winds, 

thickening the sections under high stress to develop more strength, shedding leaves to 

reduce wind exposure and energy dissipation through high material damping and 

aerodynamic damping” (Haritos and James, 2009).  

1.3 Tree structures and their response to wind 

For a complete analysis of a tree structure, it is necessary to understand the dynamic 

loads acting on the tree, the magnitude of such forces and their frequency. A tree, typical 

of any species, consists of a trunk, branches, smaller branches and leaves or needles, 

which depend on the species of the tree. The strength i.e. Young’s modulus, of such a 



3 

 

structure is complex and it can be understood by evaluating the size and the strength of 

each structural part in the tree. The trunk is normally the strongest of the lot, though its 

strength varies across its length due to its taper. The strength of the material in the tree 

also varies in different parts of the tree depending on the size and shape of the member. 

The strength of a younger tree is generally lower than that of an older one indicating the 

greater flexibility of the younger tree with respect to the older tree (James, 2003).  

 There are generally two types of loading on a tree: the static and the dynamic 

loads. The static loads consist of the weight of the branches and foliage besides the self-

weight of the trunk, while the dynamic loads are due to the wind forces acting on the tree. 

The larger of the two forces are the dynamic forces on the tree. Owing to the fact that 

wind forces are neither constant nor periodic, it can produce a complex motion of the tree 

and its branches. Wind forces can cause an overturning moment on the base of the tree 

and if the stress induced by the force is greater than the bending stress of the trunk, it can 

result in a windsnap or a windthrow. Figure 1 illustrates the different types of failure of 

trees due to wind. 
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Figure 1: Different types of wind-damage and related ground features: (a) Windprune,  (b, c) 

Windsnap, (d,e) Windtilt, (f,g) Windthrow  (Allen, 1992). 

1.4 Models for dynamic analysis of trees 

A tree can be assumed as a cantilevered tapered beam with an end mass to represent the 

crown of the tree. The simplest model can assume a linear Euler-Bernoulli beam 

equation, with an external force due to wind:  

2 22
( ) ( )

2 2 2

y y
EI A A fc c

x x t
ρ ρ

∂ ∂∂
+ + =

∂ ∂ ∂
                                                                           (1) 

where E is the Young’s modulus of the spruce tree, I is the second moment of area of the 

cross-section of the trunk, A is the frontal area exposed to wind, ρ is the density of the 

, 
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tree, ρc is the density of crown, Ac is the area of the crown and f is the force due to wind 

on the beam per unit length. 

Wood, as a biological material has “anisotropic properties, is a composite material 

and is heterogeneous” (Spatz, 2000). Sections of a tree under stress stiffen over a long 

period of time while the tree itself is flexible to reduce the load. Therefore, it is “not 

always justified to use the simplifications of small deflections and linear responses” 

(Spatz, 2000).  

In what follows, a summary of the major models used to predict wind-induced 

oscillations of trees is given. 

1.5.1 Papesch model 

Papesch (1974) developed a windthrow model to predict the oscillatory motion of 

individual plants. He assumed that the tree was a cantilevered beam acted upon by a 

component of turbulence from the wind with the same frequency as the natural frequency 

of the tree:  

cosv A tωω ω=                                                                                                          (2) 

where v is the velocity of the wind, ω is the frequency of the wind, Aω is the amplitude of 

the wind gusts. 

The drag on the tree is assumed to be proportional to velocity, v
2
 and the damping 

ratio is a value that combined the aerodynamic damping, the damping from the branches 

and the damping from the root and soil – obviously a simplifying assumption. The stem is 

assumed to have a weight distribution identical to a conical tapered structure with 

uniform density.  

, 
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The amplitude of tree vibration is calculated based on the assumption that the 

energy input from the wind was equal to the energy dissipated in the tree. The static 

deflection is calculated using the mean wind speed acting on the tree. The total amplitude 

of the tree oscillation at the top is found to be 

0
2

1.891120
0.625

w

T p d

d

A
A c c v AH

WR

c vAg

π θ
ρ

ξω
ρ

= +
+

                                                              (3) 

where Cp is the center of pressure of the tree, Cd is the drag coefficient, ρ is the density of 

air, v is the mean velocity, A is the area of the crown, H is the height of the tree, R is the 

load acting on the tree, 0θ is the angular deflection for a given load, R, Aω is the amplitude 

of the wind component, ξ is the damping ratio of the tree and W is the weight of the stem 

and branches.  

Using this model, Papesch predicts the velocity at which windthrow would occur. 

However, the model is basic in nature with rough estimation of tree parameters and does 

not take the crown into account as a separate mass. Moreover, the drag coefficient is 

assumed to be a constant (0.3) for various trees. 

1.5.2 Gardiner model 

A mathematical model was developed by Gardiner (1992) to predict the static and the 

dynamic responses of a tree in wind. Experiments were also performed to look at the 

mechanical behavior of the trees. In this model, the tree is assumed to be a damped 

harmonic oscillator. This is done by assuming the tree to be a beam with an end mass for 

the crown while neglecting the mass of the stem. The equation of motion for this tree is 

given by 

, 
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2

2

i t

e o

y y
m c ky F e

tt

ω∂ ∂
+ + =

∂∂
                                                                                         (4) 

where me is the equivalent mass of the tree, c is the damping coefficient, k is the spring 

constant and Fo is the amplitude of the wind force. 

The physical characteristics of 10 Sitka spruce trees were estimated the resonant 

frequency of a ‘standard’ tree was estimated using all these values. This resonant 

frequency is given by 

2 1 / 23 8 5
( 0 .0 0 2 3 )

8 3
ω ω= − .                                                                                                  

(5) 

Using this relation, the resonant frequency is calculated and is found to be close to the 

natural frequency determined by pulling tests.  

In this model, the drag force acting on the tree is assumed to have a mean and a 

fluctuating component. A power spectrum of the wind load is given by 

2 2 2 2 2( ) ( )( ( ))F L D u aP C A u P Hω ρ ω ω=                                                                    (6) 

where is the air density,  is the drag coefficient , A is the projection area of the tree,             

 is the mean wind speed,  is the power spectrum of the horizontal wind speed and           

 is the aerodynamic transfer function. A power spectrum of the tree displacement 

is found by 

2 2 2 2

2 4 2 2 2

( )
( )

((1 ( ) ) (2 ) )

L D u

d

h h h

C A u P
P

m

ρ ω
ω

ω ω ω τω ω
=

− +
                                                                   (7) 

where is the frequency of undamped oscillations and  is the damping ratio. 

Then the tree response is modeled and compared with measured values in the 

field. The comparison between the theoretical and measured displacements for one Sitka 

spruce tree for which the physical characteristics were estimated is shown in Figure 4. 

, 

, 

, 
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The normalized power spectrum, fSdd/  is shown in Figure 4 against the forcing 

frequency. 

 

Figure 2: Actual and calculated normalized power spectra of tree displacement (Gardiner, 1992).  

Even though this model predicts displacements close to the measured values for 

frequencies below the natural frequency of the tree, it does not predict accurate responses 

for frequencies higher than the resonant frequency. A damping ratio of 0.216 is used, 

increased by Gardiner from the original value of 0.054, to arrive at a good prediction of 

the displacement at frequencies close to natural frequency of the tree.  

1.5.3 Kerzenmacher and Gardiner model 

Kerzenmacher and Gardiner (1998) proposed a mathematical model to predict the 

response of a spruce tree in wind. Instead of considering the tree as a damped harmonic 

oscillator like Gardiner had done previously, the model tree was split into smaller 

segments, each with a mass, stiffness and damping parameter. These segments were 

joined together to set up the whole system that resulted in a set of coupled differential 
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equations. The tree for this model was split into 13 smaller segments. The set of 

equations could be written as 

0m y c y k y+ + =&& &                                                                                                              (8) 

where m, c and k are 13  13 matrices and  is the vector of displacement. 

A transfer function was developed for the tree by solving the equations, which 

was further used to calculate the tree’s response when subjected to wind forces. The 

calculated movements were then compared to the measured movements in the field. 

Figures 3 (a) and (b) illustrate the comparison between the calculated and the measured 

displacements at two different heights of the tree: at 8 m and 2 m, respectively.  

 

Figure 3: Modelled and measured displacements of the spruce tree at (a) 8 m,  (b) 2 m 

(Kerzenmacher and Gardiner, 1998).  

As seen in the two figures, this model predicts the deflections well at the top of 

the tree but fails to do so at lower heights of the tree at frequencies above the resonant 

frequency of the tree. This might have been due to lumping of the branches with the stem 

rather than treating them as individual cantilevers attached to the main cantilever 

representing the stem.  

  

, 
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1.5.4 Peltola model 

Peltola et al. (1999) developed a model to assess the risk of wind and snow to single trees 

and stands. The model, called HWIND, predicts the critical turning moment and the 

failure wind speed at which the trees will be uprooted or break. This was calculated for 

trees at forest margins. The turning moment on the tree is calculated by estimating the 

force on the stem and the crown. The force on the tree is assumed to be a combination of 

the wind force and the force due to gravity. The total mean wind-induced force on the 

tree is calculated by summing up the forces acting at each point along the stem and the 

crown: 

2 2

1

( ) ( )
( )

2

D
C u z A z

F z
ρ× × ×

=                                                                                          (9) 

where CD is the drag coefficient,  is the density of air,  is the mean wind speed and 

  is the projected area of the tree against the wind at height z.  The wind profile is 

assumed to be logarithmic near the edge of the forest. 

The force from the bending of the tree due to gravity is obtained by summing up 

the forces on 1-m segments of the tree along the whole length. This force is 

2 ( ) ( )F z M z g= ×                                                                                                             (10) 

where M(z) is the mass of the stem and the crown, g is the acceleration due to gravity.             

 The model is fed inputs on diameter, height, modulus of elasticity, stem density, 

crown width, crown height, drag coefficient, etc. If the total turning moment of the tree 

exceeds the support provided by root-soil plate, the tree is assumed to break. The tree is 

assumed to be uprooted if the bending moment is greater than the moment that could be 

withstood by the tree. Though the predicted values are in good agreement with tree-

pulling experiments performed on Scots pine, Norway spruce and birch, the model was 

, 

, 
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found to be quite sensitive to the input parameters. Figure 7 shows the comparison 

between the predicted critical turning moment by HWIND and the experimental values 

performed on Scots pine shown by DBASE.  

 

Figure 4: Prediction of HWIND model as compared to experimental values (Peltola et al., 1999).  

1.5.5 Saunderson model 

To predict the dynamic response of the Sitka spruce tree in high winds, a model was 

developed by Saunderson et al. (1999). The model assumes that the trunk of the tree can 

be represented by a vertical tapered cantilever and the crown by a cylindrical body at the 

top of this trunk. This model is used with favorable results for the spruce tree in 

predicting its failure wind speeds. The beam equation is 

2 2 2

2 2 2
( )

y y
EI A f

x x t
ρ

∂ ∂ ∂
+ =

∂ ∂ ∂
                                                                                            (11)                                                     

where y is the inline deflection of the tree, EI is the flexural rigidity of the tree, ρ is the 

density of the tree, A is the frontal area exposed to the wind and f is the drag force on the 

tree. The drag force on the tree is   

, 
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21

2
a E D rf A C uρ=                                                                                                              (12) 

where ρa is the density of air, AE the frontal area, CD the drag coefficient and ur  the 

relative velocity of the tree which in turn is given by (u- ). The model assumes that the 

wind acts at the top of the crown, rather than along the length of the tree. The drag force 

is assumed to act on the crown only.  The velocity of the wind can be assumed to have a 

mean and a fluctuating component where u=um + uf, where um is the mean velocity and uf 

is the fluctuating velocity.  Consequently, equation 11 gives rise to two equations, one for 

the mean displacement and one for the fluctuating displacement. The equation for the 

mean displacement equation is 

' ' ' ' 21

2
m a E D mE I y A C uρ= ,                                                                                  (13) 

and the equation for the fluctuating displacement equation is  

''''

f f a E D m f a E D m f
E Iy m y A C u y A C u uρ ρ+ + =&& &                                                 (14) 

In these equations, the taper of the trunk is taken into account as is the crown 

density of the tree. Transfer functions are used for comparing the tree displacement 

spectra from the model to those derived from the experimental data. Figure 8 shows the 

spectra for both theoretical and experimental deflections for two Sitka spruce trees, where 

H(n) is a dimensionless transfer function indicating the displacement of the tree. The 

model gives a good prediction of the natural frequency and matches the experimental 

data upto 0.7 Hz, but not for higher frequencies. 

 

, 

, 
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Figure 5: Calculated and observed displacement spectra for Sitka spruce (Saunderson et al.,  1999). 

 All the models discussed above assume the structure to be linear. Also, the drag 

coefficient is assumed to be constant and does not change with tree’s oscillations, which 

is not necessarily the case. Drag coefficient varies with the magnitude of tree’s 

oscillations and also with the wind speed (Mayhead, 1973; Kane et al, 2008; Smiley and 

Kane, 2006). In this project, the structure will  be modeled as a nonlinear Euler-Bernoulli 

beam equation and under the influence of the drag force. 

 

 

 

 

 

 

   



14 

 

CHAPTER 2 

 

A NONLINEAR MODEL TO PREDICT THE OSCILLATION OF TREES IN 

WIND 

 

A nonlinear model is developed to predict the oscillation of trees in wind. The tree is 

modeled as a nonlinear cantilevered Euler-Bernoulli beam subjected to fluctuating drag 

force. This model is used to investigate the importance of a nonlinear model for the 

structure in the resulting tree response.  

2.1 The nonlinear model 

The nonlinear model is obtained by assuming the structure to be a nonlinear Euler-

Bernoulli beam, subjected to a fluctuating drag force:  

2 3

2 3 2

2 2

0 0

( ) '''' ( ( )) ( ) ( ) ' '''' 4 ' '' ''' ''

'( )[2 ''' ' '''' 4 ' '' ''' '' ] ''( ) '' '

' ( ( )) ( )( ' ' ') '' ( ( )) ( )( ' ' ')

c

L l s

c c

s

EI x y x A x y EI x y y y y y y

EI x y y y y y y y EI x y y

y x A x y y y ds y x A x y y y dsds F

ρ ρ

ρ ρ ρ ρ

 + + + + + + 

+ + + + +

+ + − + + =∫ ∫ ∫

&&

& && & &&

          (15) 

where y is the inline deflection of the tree, ()’ is the derivative with respect to x, (˙) is the 

derivative with respect to time, EI(x) is the flexural rigidity of the tree, ρ is the density of 

the wood, ρc(x) is the density of the crown, A(x) is the cross-sectional area and F is the 

drag force on the tree which can be written as  

21
( )

2
a E DF A C U yρ= − & ,                                                                                                  (16) 

where ρa is the density of air, AE(x) the frontal area, CD the drag coefficient, U(x) the wind 

speed and is the velocity of the tree. 

In this model, the tree’s cross-sectional area A(x), its flexural rigidity EI(x) and flow 

profile can vary along the length of the tree. In dimensionless form, this equation reads as 

, 
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2 3

2 3 2

1 1

2 2 2

0 0

'''' ' '''' 4 ' '' ''' ''

ˆ ˆ'( )[2 ''' ' '''' 4 ' '' ''' '' ] ''( ) '' '

' ( ' ' ') '' ( ' ' ') ( ) ( ) ( )

I I

ds d d

ξ

ξ

η η η η η η η η

ξ η η η η η η η ξ η η

η η η η η η η η ξ ξ α ξ β ξ η γ ξ η

 + + + + + 

+ + + + +

+ − + = + −∫ ∫ ∫

&&

& && & && & &                 

(17) 

where the dimensionless parameters used are 

/y lη =                                                                                                                        (18) 

   /x lξ =                                                                                                                        (19) 
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2.2 Method of solution 

The equation of motion is a nonlinear partial differential equation, which is discretized by 

Galerkin’s method using the eigenmodes of a cantilevered beam as the base functions:  

1

( , ) ( ) ( )
N

n n

n

qη ξ τ ϕ ξ τ
=

= ∑ ,                                                                                        (24) 

where φn are the eigenfunctions of a cantilevered beam and qn(t) are the generalized 

coordinates of the discretized system. Six modes are used in discretization.  
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The ordinary differential equations obtained after discretization are then solved 

using Houbolt’s method, in which the first and second order derivatives of the 

generalized coordinates are approximated by  

, 1 , , 1 , 2

, 1 2

2 5 4

( )

j n j n j n j n

j n

x x x x
x

t

+ − −

+

 − + − =
∆

&&                                                                         (25) 

and 

, 1 , , 1 , 2

, 1 2

11 18 9 2

(6 )

j n j n j n j n

j n

x x x x
x

t

+ − −

+

 − + − =
∆

& ,                                                                   (26) 

where xj,n = xj(n ) and  is the time step.  

The Newton-Raphson method is used to find the solution of the resulting 

nonlinear matrix equation in each step (Semler et al., 1996). In what follows, this model 

is used to study the influence of structural nonlinearity on wind-induced oscillations of 

trees. 
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CHAPTER 3 

 

 RESULTS – TREE RESPONSE 

3.1 Response of a tree with constant diameter 

As a first step, a tree with a constant diameter is considered. A model with a linear 

structure and a nonlinear structure are considered. The parameters are given in Table 3.  

Table 1: Parameter specifications from the experiment used for the model. 

Parameters Values 

Length (m) 16.5 

Density of wood (kg/m
3
) 428.63 

Modulus of elasticity (N/m
2
) 1.2 × 10

9
 

Average diameter (m) 0.244 

Base diameter (m) 0.533 

Drag coefficient, CD 0.4 

Density of air (kg/m
3
) 1 

U (m/s) 5 

 

Figure 6 shows the dimensionless amplitude of the tree's tip oscillations versus the 

dimensionless wind frequency. The circles correspond to the results with the linear 

structure (found by solving equation (15) and keeping only the first two terms in the left 

hand side and neglecting all other terms). These results are obtained by solving the 

nonlinear equation where the nonlinearities come from the flow force only and they show 

that, as expected, the tree has the largest response, when the frequency of the fluctuating 

drag force is equal to the natural frequency of the structure (a dimensionless frequency of 

1). At other frequencies, the response has smaller amplitudes and for external frequencies 

far enough from the natural frequency, the response is very small. When the structural 

nonlinearities are considered (i.e., when all the terms on the left hand side of equation 
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(15) are kept in the solution) the response (pluses) bends to the right. These results show 

that the nonlinear effect (hardening) is due to the structural nonlinearities, as the effect 

disappears when the structural nonlinearity is removed from the model. The hardening 

effect suggests that for any frequency in the range of dimensionless frequencies between 

1.14 and 1.2 for this set of parameters, the tree can have two stable solutions. This 

implies that in this range of frequencies, the tree can oscillate with either a low amplitude 

of around 0.05 times its length (the lower branch in the plot) or a large amplitude of 

around 0.15 of its length (the upper branch in the plot), depending on the initial 

conditions(the initial disturbance which triggers the oscillations). As an example, if the 

wind speed has a frequency of 1.2 Hz, then the tree's maximum amplitude of oscillation 

could be either (0.04)(16.5) = 0.66 m or (0.15)(16.5) = 2.475 m. The model with the 

linear structure does not predict the large amplitude oscillations in the high-frequency 

region. The amplitude of oscillation predicted by this model at f/fn = 1 reduces by 

approximately 75 percent when structural nonlinearities are considered. This means that 

due to the structural nonlinearities, the maximum amplitude shifts from f/fn =1 to a larger 

frequency. 
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Figure 6: Nondimensional amplitude of oscillation versus frequency of wind speed for a tree with 

force along whole length, the linear and nonlinear structure coupled with flow. 

3.2 The influence of various wind profiles 

Trees can be subjected to wind velocities with various profiles. To investigate the 

influence of these profiles on the hardening effect discussed in previous section, four 

different flow profiles are considered. The first two flow profiles follow a power law to 

define the wind shear (Ray et al., 2006):  

max

xU x

U l

α
 =  
 

,                                                                                                               (27) 

where the velocities,  and  are the velocities at  and l. The power law exponent 

α  is chosen according to the terrain. For the first flow profile, a power law exponent of 

0.24 is chosen, which is expected in a place with trees and small buildings around. For 
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the second flow profile, a power law of 0.13 is chosen. The other two profiles are 

uniform flow and linearly sheared flow. The four different profiles of wind are shown in 

Figure 7. 

                                       

Figure 7: Wind shear profile with linear shear (dashed-dotted line), α ,as 0.13 (dashed line), 0.24 

(continuous line) and uniform flow (dotted line).   

Figure 8 shows the response for all the wind profiles for a maximum flow velocity of 5 

m/s. As seen in the figure, the hardening nonlinearity exists for all wind profiles.  

The maximum amplitudes increase slightly for the uniform flow and the shear parameter 

of 0.13, compared to the other two profiles as the shear exponent, α  decreases. As 

α decreases, the energy input into the structure increases resulting in higher amplitude 

and a more pronounced hardening effect. The presence of hardening effect for all the 

flow profiles considered indicates that structural nonlinearities are playing a role 

irrespective of the flow. 
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Figure 8: Nonlinear model with as 0, 0.13, 0.24 and 1with a maximum velocity of 5 m/s. 

 

Figure 9 shows the maximum nondimensional amplitude for α=0-1 and for a maximum 

velocity of 5 m/s. As the shear parameter increases, the nondimensional amplitude for the 

system decreases. 
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Figure 9: Dimensionless maximum amplitude for a maximum velocity of 5 m/s and different shear 

parameters. 

Figure 10 shows the tree response for the power law exponent of 0.24 and different 

maximum velocities. For wind velocities as low as 2 m/s, the structure shows a hardening 

nonlinearity in its response and the hardening effects increase as the maximum flow 

velocity increases. Overall, it is seen that changing the flow profile does not affect the 

results dramatically. The maximum flow is a more critical value in changing the resulting 

maximum speed. In any case, the hardening effect is observed. 
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Figure 10: Nonlinear model with wind shear and various maximum velocities. 

3.3 The influence of wind-velocity dependent drag coefficient 

It is shown that the drag coefficient varies with the wind speed (Mayhead, 1973; 

Kane et. al, 2008; Kane and Smiley, 2006). Mayhead used experimental data of various 

species to calculate regression lines for the drag coefficient as a function of wind speed as 

2

1 2D
C C m u m u= + +                                                                                               (28) 

where m1 and m2 are regression coefficients that have values depending on the tree 

species (Table 2). 

 

 

 

, 
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Table 2: Measured drag and regression coefficients for different trees (Mayhead, 1973). 

Tree CD C m1 m2 

Sitka Spruce 0.35 0.86 -0.0095 -0.0036 

Corsican Pine 0.32 1.135 0.0045 0.0015 

Lodgepole Pine 0.2 0.63 0.002 -0.0009 

Scots Pine 0.29 0.9117 -0.051 0.0012 

 

Mayhead also found that there was a variation in the drag coefficients within a tree 

species. Experiments conducted on other species (e.g. Kane et al., 2008, Kane and 

Smiley, 2006) showed a similar trend in variation of the drag coefficient with wind speed. 

Figure 11 shows the response of the system for a constant drag coefficient of 0.29 and a 

variable drag coefficient. The maximum wind speed is 5 m/s and the power law exponent 

is 0.24. To include the change in drag coefficient with respect to velocity, the regression 

coefficients, i.e. C, m1 and m2, were chosen from Mayhead's experiments on the Scots 

Pine (Mayhead, 1973). Due to a higher value for the drag coefficient for the same 

velocity, the tree experiences a larger maximum amplitude, for a varying drag coefficient. 

For both cases, the nonlinearities are apparent in the response. 
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Figure 11: Nonlinear model with a constant and varying drag coefficient and a maximum velocity of 

5 m/s. 

3.4 The influence of trunk’s taper 

 In reality, a tree's trunk tapers as a function of height. To accommodate for the 

effect of the taper on the response of the tree, a taper parameter is used as 

( ) /D d lλ = −  

where D and d are the diameters at the bottom and top of the trunk respectively; 

and l is the length of the tree. Thus, a taper parameter of 0 corresponds to a tree with 

constant diameter. Figure 12 shows the response of the tree oscillation for different taper 

parameters and for a maximum velocity of 5 m/s and a shear parameter of 0.24. The 

maximum amplitude of the tree reduces as the taper parameter increases, which is mainly 

due to the reduction of frontal area due to taper. This is in agreement with what has 
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already been observed for tall buildings by Kim and You (2004). Figure 13 shows the 

reduction in maximum amplitude of the tree.    
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Figure 12: Nonlinear model with a maximum velocity of 5 m/s and different taper parameters. 
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Figure 13: Nonlinear model with maximum amplitude and different taper ratios. 

3.5 Slenderness ratios 

The slenderness ratio of a structure is given by the ratio of its height to its diameter (L/D). 

Figure 14 shows the tree response for various slenderness ratios with a power law 

exponent of 0.24, a maximum wind speed of 5 m/s and a constant drag coefficient of 0.4. 

The original slenderness ratio of the tree was 67.62. 
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Figure 14: Nonlinear model with different slenderness ratios and a maximum velocity of 5 m/s. 

 

The hardening effects are observed for all slenderness ratios. Apart from the 

increasing amplitudes, the hardening effects are more profound with increasing 

slenderness ratio. This is expected as a larger aspect ratio results in a larger flexibility of 

the tree, and therefore a more significant nonlinear behavior of the structure. Figure 15 

represents the maximum amplitude for various slenderness ratios. As the slenderness 

ratio increases, the maximum amplitude increases linearly. 
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Figure 15: The maximum amplitude of oscillations with various slenderness ratios. The maximum 

velocity is 5 m/s, the drag coefficient 0.4 and the power law exponent 0.24. 

3.6 A discussion on the dynamical response of the younger trees versus the older 

trees 

To look at how younger trees behaved in comparison to an older tree, the material 

properties are chosen for a younger tree. The average Red Pine grows 0.3 m every year. 

The height of the Red Pine for a younger tree was thus chosen with relevance to its age. 

The diameter was calculated by keeping the slenderness ratio constant as 67.62. Table 3 

shows the parameters used for the younger trees.  
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Table 3: Properties of trees with age. 

Age E (*10
9
 N/m

2
) Density (kg/m

3
) Height (m) 

5 0.6 248 1.5 

10 0.6 268 3 

15 0.75 288 4.5 

20 0.75 308 6 

25 0.9 328 7.5 

30 0.975 348 9 

 

Deresse (1998) investigated the growth properties of Red Pine. The simulations 

were performed for 10-, 20- and 30-year-old Red Pines. The Red Pine used for previous 

calculations was estimated to be 40-60 years old. Figure 16 shows the response of 

younger trees with a shear parameter of 0.24 and a maximum velocity of 5 m/s. 
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Figure 16: Nonlinear model with a maximum velocity of 5 m/s for comparison with younger trees.  

The hardening effects for the younger trees are more pronounced than the older tree. The 

higher amplitudes for the younger trees may be due to their lower flexural rigidity. The 

stiffness in younger trees is lower, making them more flexible to bend over in wind. This, 

in turn, results in higher amplitudes. In this case, it also lends to more nonlinearity for the 

younger trees. Figure 17 shows the trend of the maximum amplitude with a maximum 

velocity of 5 m/s. It can be observed that the amplitude decreases slightly with age. This 

might be due to the stiffening of the trunk with age that leads to a smaller deflection 

when it is older. 
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Figure 17: The maximum amplitude of oscillations for trees of different ages. The maximum velocity 

is 5 m/s. 

3.7 The influence of variable mass per unit length and flexural rigidity along the 

length 

Spatz et al. (2007) investigated the branches for their properties in a Douglas fir, 

measuring the change in flexural rigidity, mass per unit length and the cross-sectional 

area along their lengths. This variation in the properties is included in the model to look 

at the response of a typical branch. Figure 18 shows the trend of the amplitude of the 

branch for a uniform flow of 5 m/s. The nonlinear effects are evident in the plot, with the 

branch showing its maximum amplitude at a frequency above its natural frequency. 

 



33 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

f / f
n

A
ti

p
 /

 L

 

Figure 18: Nonlinear model with a maximum velocity of 5 m/s for a branch with variable EI and 

diameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

CHAPTER 4 

 

CONCLUSIONS 

Previous studies on wind-induced oscillations have always involved in modeling 

the tree as a linear structure. In this thesis, a nonlinear model for wind-induced 

oscillations of trees is derived. The structural nonlinearities are considered and it is 

shown that by considering such nonlinearities, hardening behavior is observed in the 

tree's response. Such behavior implies that for certain range of wind frequencies, trees 

can oscillate with either a small amplitude or a large amplitude. The small-amplitude 

oscillations can be predicted without taking into account the structural nonlinearities, but 

the large-amplitude oscillations are predicted only when the structural nonlinearities are 

considered. The influence of various system parameters (wind profile, tree's taper, 

slenderness ratio, etc.) are also considered, and it is shown that the hardening effect 

occurs over a wide range of system parameters. This means that the hardening effect is 

natural to the system and is not the result of using a unique set of parameters.  

The model is not completely realistic. The addition of crown as a lumped mass 

and the porosity of the crown have to be taken into account. Crown asymmetry also plays 

a part in affecting the wind-induced oscillations. A much more complete 3D model of the 

tree can be derived, taking the transverse oscillations into account.  
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