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PART III: Modeling 

Chapter 10 

USING GENETIC ALGORITHMS ON GROUNDWATER 
MODELING PROBLEMS IN A CONSULTING SETTING 

Karen M. Madsen1§, A. Elizabeth Perry2 
1AECOM, 2 Technology Park Drive, Westford, MA 01886, 2AECOM, 2 Technology Park Drive, Westford, 
MA 01886 

ABSTRACT 

This paper presents a practical application for writing and applying simple genetic 
algorithms (GAs) for the common groundwater flow model, MODFLOW.  The 
method employed by GAs is derived from the driving forces of evolution in the 
natural world.  They employ functions that mimic natural evolutionary processes 
including selection, mutation, and genetic crossover.  A GA solves mathematical 
problems where a desired outcome to the problem is defined (for example, 
calibration targets or remediation goals), but the inputs needed to arrive at this 
outcome are unknown.  Our paper includes an introduction to genetic algorithms, 
the pseudocode of our genetic algorithm for MODFLOW, and the results of an 
experiential application.  Due to the lack of commercially available GAs for 
MODFLOW, we coded a simple algorithm in Visual Basic Script and applied it to 
an example model.  In the example model, the GA was used to conduct parameter 
estimation on a MODFLOW model of a river basin in New England that we had 
previously developed and calibrated in our practice.  The calibration target used 
was net groundwater flow into the river.  Four model input parameters were 
selected as chromosomes for the GA to act on: recharge, river conductance, and 
two general head boundaries.   An initial population of 100 models was developed 
by varying the value of the gene parameters.  The GA ran a MODFLOW 
simulation for each member of the population, extracted each output file, and 
established the error of each model from the calibration target.  It then evolved the 
entire population of models towards the calibration target.  The GA converged on 
a single set of input parameter that established best-fit values for all of the 
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chromosome parameters.  Genetic algorithms provide a practical alternative to 
trial-and-error and automated statistical calibration procedures, and can also be 
used for optimization.  

Keywords: groundwater modeling, MODFLOW, parameter estimation, 
optimization, genetic algorithm. 

1. INTRODUCTION 

This paper presents a practical application for writing and applying simple genetic 
algorithms for MODFLOW.  Such algorithms can be used for optimization and/or 
parameter estimation in groundwater modeling problems.  The method presented 
is intended for environmental consultants who may tend away from using 
evolutionary algorithms in their practice due to the associated complexities and 
costs.   Below we have presented a brief introduction to genetic algorithms, the 
pseudocode of our genetic algorithm for MODFLOW, and the results of an 
experiential application of this code to a parameter estimation problem. 

1.1 Uses and Structure of Genetic Algorithms 

The purpose of genetic algorithms (GAs) is to solve complex mathematical 
problems.   GAs can be applied to almost any real world problem that can be 
structured numerically, from manufacturing supply-chain management to 
host/parasite relationships.  Economic, legal, or political optimization can also be 
solved, as long as the problem can be constructed numerically (Mitchell and 
Taylor, 1999). 

GAs are derived based on the driving forces of evolution in the natural world 
and include functions that mimic natural evolutionary processes including 
selection, mutation, and genetic crossover.  A GA solves mathematical problems 
where a desired outcome to the problem is defined (for example, calibration 
targets or remediation goals), but the inputs needed to arrive at this outcome are 
unknown (input parameter values, numbers and locations of pumping wells, etc).  

Genetic algorithms have many advantages over derivative-based optimization 
techniques, such as linear programming (Rizel and Eheart, 1994).  They do not 
require continuity or convexity of the objective function (Espinoza et al., 2005).  
They are also free of the numerical difficulties that are frequently associated with 
derivative based optimizers (Wang and Zheng, 1997), and they can incorporate 
changing conditions and noisy observational data (Fogel, 2008).   

In GA terminology, the term member refers to a set of trial input parameters.  
Chromosomes refer to each input parameter.  When the chromosomes of a 
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specific member are input into the problem and the problem is solved, the result 
will contain some degree of error when compared to the desired solution to the 
problem.  Those members with less error are described as being fitter than those 
members with more error.   Population refers to a collection a members.  
Populations are developed in a series of iterations, called generations.  Parent 
population refers the ith iteration of populations and child population refers to the 
ith + 1 iteration (Mitchell and Taylor, 1999).  Genetic algorithms allow the 
population to evolve over many generations until the population of resulting 
members converge on the desired solution.  The evolutionary process includes 
these basic steps: 1.) an initial population is developed 2.) the fitter members of 
the population are selected as parents for the next generation 3.) mutation and 
genetic cross-over  are conducted on the parent generation to create the child 
population, and 4.) steps 1-3 are repeated iteratively to move the entire population 
closer to the desired solution (Fogel, 2008).  

An important step in any GA effort is the selection of GA operative 
parameters.  These are differentiated from the chromosome parameters as follows: 
The chromosome parameters are inputs to the mathematical problem to be solved.  
The GA operative parameters are the parameters that control the GA 
mathematical algorithm.  These include the population size, the number of 
generations, and the mechanism and frequency of cross-over, and mutation.  

Since the 1970s researchers have been striving to identify a set of guiding 
principals that apply across all applications to establish equations for calculating 
operational parameters  (Fogel, 2008).  However, the work of D.H. Wolpert and 
W.B. Macready, No Free Lunch Theorems for Optimization, presented a proof 
showing that any possible guideline to setting operational parameter values is, by 
definition, problem-specific (Wolpert and Macready, 1997).  That is, there are no 
universally applicable guidelines that can be used with all problems. 

Although the No Free Lunch theorem indicates that absolute guidelines for 
setting parameter values cannot be established, it is certainly possible to set 
unsuccessful parameter values that will cause the GA to fail.  For example, too 
large a mutation/crossover rate could cause the GA not to converge; too low a 
mutation/crossover rate could cause the GA to converge early; too small a 
population size could result in fewer solution sets being explored; etc.  Another 
problematic phenomenon that has been identified is genetic drift, which occurs 
when mutation/crossover causes genes to fluctuate away from the best solution set 
and converge on non-optimal values.  Reed et al. (2000) presented a method for 
setting certain GA operational parameters with the goal of avoiding genetic drift 
and poor solution set search for water resource problems.  Such techniques may 
be helpful in establishing initial parameter values which can then be refined 
through trial and error. 
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Considering the still weak theoretic basis for GAs, perhaps the best method of 
determining that GA operative parameters have been set appropriately is that they 
result in convergence on a successful solution.  As Back et. al. (1997) explained 
in their work Evolutionary Computation: Comments on the History and Current 
State, “We know that they work, but we don’t know why.”  Thus the GA can be 
considered successful when it successfully locates input sets that satisfy the needs 
of the user. 

In our application, trial and error were used to establish all GA parameters 
including the probability values for the rates of mutation and crossover.  When a 
mutation occurred, its size was managed through a mutation scale factor, which 
represented the maximum percentage of the original value that could be added or 
subtracted.  The coded equation for the mutated MODFLOW input parameter had 
the following structure: 
 

FRPPP oon **+=  
 
Pn = new MODFLOW input parameter value 
Po = old MODFLOW input parameter value 
R = random number between -1 and 1 
F = the mutation scale factor (a constant) 

Our work contains a noteworthy derivation from canonical GAs.  We did not 
convert the gene parameters to binary strings.  Historically, there has been a 
strong preference for mapping gene parameter values to binary strings prior to GA 
manipulation, the basis of which comes from GA schema theory.  The schema 
theory, the roots of which go back to Holland, sought to characterize the 
underlying mathematical structure of GA search (Fogel, 2008).  The theory stated 
that binary mapping would provide for more optimal sampling of the solution 
space (Back et al., 1997).  More recent work has called schema theory into 
question, at least as it applies to many real world problems (Fogel, 2008).  Binary 
coding may improve the performance of some models, but there are some known 
disadvantages to using binary strings.  Primarily, that such coding may introduce 
additional multimodality, making the binary problem more complex than the 
original one (Back et al., 1997).  For the purposes of this exercise, the 
disadvantage of mapping parameters to binary strings is more prosaic: it adds 
complexity to the writing, reviewing, and debugging of the code and, as our 
primary objectives are efficiency and cost effectiveness, this approach has not 
been employed.  However, the method described in this paper could be easily 
modified to include mapping to binary strings. 
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Finally, an important step in GA development is placing appropriate 
constraints on the MODFLOW input parameters.  In our application, when 
constraints were not controlled, the GA gravitated to unrealistic results, such as 
reversing the direction of flow in the river or converging on a water table 100 feet 
below sea level.  In real world applications, parameters such as the elevation of 
the water table would probably be known within some narrow range.  Placing 
tight constraints on MODFLOW input parameters, when appropriate, will limit 
the solution set such that  only realistic values can be searched. 

2. MATERIALS AND METHODS 

Our impetus for this effort was the lack of commercially available GA codes for 
MODFLOW 2000.  MODFLOW 2000 is one of the most popular groundwater 
modeling programs in existence, and thus is familiar to many consultants, their 
clients, and regulators (McDonald and Harbaugh, 1988; Winston, 1999).  We 
chose to focus on MODFLOW 2000 because it is the program that we use most 
often in our own practice for large scale groundwater modeling problems. 

We are not aware of any commercially available MODFLOW GUI software 
that includes a GA function.  Because no commercial GA software is available, 
we also looked into open source GAs for MODFLOW.  At the time of this 
writing, we are aware of one open source genetic algorithm for MODFLOW 
1988, published by Chunmiao Zheng of the University of Alabama.  This code is 
called MGO (Zheng and Wang, 2003).  MODFLOW 1988 has been replaced in 
most consulting settings by MODFLOW 2000.  A search was conducted for an 
open source GA for MODFLOW 2000, but a code was not found.  Zheng and 
Patrick have written a genetic algorithm for MODFLOW 2000, called ModGA, 
which is owned by DuPont and is not commercially available (Zheng, 1997).   

In the example presented in this paper, we developed a Visual Basic Script 
code to run a simple GA in conjunction with MODFLOW code to conduct 
parameter estimation.  The presented code could be easily restructured for 
optimization problems.  In order to apply the GA, the MODFLOW model must 
first be set up and roughly calibrated.  Those input parameters designated as 
chromosomes must be identified and the range of reasonable values for these 
parameters must be established.  A calibration target must be identified (for 
example, water table elevations could be used as the calibration target.) 

The steps of our code are as follows:   

1. The code is given the developed MODFLOW model and chromosome 
parameter values for the initial population.  
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2. The code reads the existing MODFLOW input files and duplicates those files 
for each population member while replacing the original chromosome parameters 
with unique chromosome parameter values for each member.  

3. The code calls and runs MODFLOW for each population member.  

4. The code reads the MODFLOW output files and calculates the error between 
each model’s output and the user defined calibration target.  

5. The code selects the fitter solutions using tournament selection; these fitter 
models become the parents of the next generation. 

6. The code randomly conducts mutation and genetic crossover on some of parent 
models to create child models; other parent models advance into the next 
generation without mutation. 

7. The entire process is repeated for the user-specified number of generations.   

We used a simple naming convention for all MODFLOW files that included 
the generation number and the population member number in each name.  This 
allowed for ease of coding, as the i and j integers from the do-loops were simply 
encoded in the file names.  For ease of analyzing the results, each generation was 
saved in a unique folder. 

The simple genetic algorithm for MODFLOW is presented in Figure 1 in 
Chapra and Canale's pseudocode (Chapra and Canale, 2002). 

3. RESULTS AND DISCUSSION 

3.1 GA Application 

In our application, the GA was used to conduct parameter estimation on a 
MODFLOW model of a portion of a river basin in New England that had 
previously been developed in our practice and calibrated by trial-and-error 
methods.  The model grid is shown in Figure 2.  Four parameters were selected as 
the genes for the GA to act on: recharge, riverbed conductance, and two general 
head boundaries which define the upstream and downstream limits of the basin 
within the model.  These were considered the parameters with the most 
uncertainty associated with them due to the inability to measure them in the field; 
other model parameters were kept constant.  An initial population of 100 models 
was developed by varying the values of these chromosome parameters.   The 
calibration target used in this application was net flow of groundwater into the 
river (calculated as the difference in streamflow between up and downstream 
USGS gauging stations).  The GA code ran a MODFLOW simulation for each 
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Figure 1.  Pseudocode for the MODFLOW GA (continued on next page) 
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Figure 1. Pseudocode for the MODFLOW GA (continued from previous page) 

 

member of the population, extracted each output file, calculated the groundwater 
discharge from each output file, and established the error of each model from the 
calibration target.  Then, the GA selected the most fit solutions (closest to the 
calibration target) and developed the next generation.  Repeating this process for 
several generations evolved the entire population towards the calibration target as 
described above until the all the members converged on a single set of input 
parameters. 

Due to the simplicity of the experimental application described (i.e. only four 
genes were manipulated), the model rapidly converged until the error of the entire 
population was below an absolute percent error of 10%.  After which, 
convergence continued more slowly.  Figure 3 shows a graph of the absolute 
percent error versus the generation number.  Each point on the graph is the error 
(different between model result and calibration target) for one member of the 
generation.  Each generation includes 100 members.  Thus at later generations, 
the error for all members of the population had converged on to a low level. 
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Running our GA application for a population size of 100 members for 50 
generations took approximately 11 hours of computation time on a desktop PC.  
For the purposes of observing the evolutionary progress, all input and output files 
were saved.  These files represented a memory burden of 260 MB.  The GA could 
be programmed to delete files after use as needed based on memory constraints.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Model Grid 

3.2 History and Present State of Genetic Algorithms in Water Resource 
Problems 

This section briefly describes the history and current state of genetic algorithms as 
the relate to water resource problems.  Genetic algorithms were first 
conceptualized in 1962 by J. H. Holland in his work Outline for a Logical Theory 
of Adaptive Systems (Holland, 1962).  However, due to the expense and limited 
capacity of the computers at the time, GAs were not widely used until the 1970s.  
In the 1980s, improvements in computer technology allowed practitioners to 
apply GAs and other evolutionary algorithms to real world optimization 
problems.  Their application became so common in the 1980s that by 1985, 
international conferences began being held on the subject (Back et. al., 1997). 
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Figure 3.  Error Summary – Absolute Percent Error versus Generation Number 

 
For more than a decade, evolutionary algorithms have been applied to a wide 

variety of groundwater modeling problems.  They are especially useful for the 
placement of wells in pump-and-treat well-field remediation systems, due to large 
possible solution set for these problems and the difficulty of testing all possible 
variations by hand (Chang and Hsiao, 2002).  They have also been applied in 
parameter estimation in water resource problems (Kalwij and Peralta, 2006). 

While research continues to advance on this subject, the practical application 
of these techniques is still hampered by resource limitations (Johnson and Rogers, 
1995).  These practical constraints are mainly associated with computational 
limitations, (Wang and Zheng, 1997) but they also include the human effort 
involved in properly setting up and coding the problem. 

The uses of GAs are very broad in groundwater modeling applications, but 
they can generally be categorized as either parameter estimation or optimization 
problems (Babbar and Minsker, 2006; Tsai et. al., 2003). 

A simple GA is best suited to finding a single set of input parameters that 
result in the desired solution to a problem, as the interaction between population 
members causes the chromosomes of the all members in a population to cluster 
around a single value.  However, complex GA protocols have been developed 
which find multiple chromosome sets.  Research continues to be conducted on so-
called niche GAs.  The theory of niche GAs is metaphorically parallel to 
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evolutionary niches that occur in nature, where populations are isolated from each 
other and evolve different mechanisms for solving the same problems.  Some 
examples of work that has been conducted in this area include Vector Evaluated 
GAs (Schaffer, 1985) and Niched Pareto GAs (Horn et al., 1994). 

In their work Massive Multimodality, Deception, and Genetic Algorithms, 
Goldberg et al. (1992) set up an experimental function with over five million local 
optima and 32 global optima.  They showed that a simple GA could find one of 
the global optima if the correct GA operational parameters were used.  They also 
developed a niched GA that successfully located all 32 global.  

All of these trends indicate the advances and likely long-term utility of GAs in 
water resources applications in the future.  

4. CONCLUSION 

In conclusion, genetic algorithms provide a practical alternative to trial-and-error 
and automated statistical calibration procedures, and can also be used for 
optimization.  Here we have presented a practical method for writing and 
applying simple genetic algorithms for  MODFLOW to be used in optimization 
and/or parameter estimation in groundwater modeling problems.  Genetic 
algorithms have advantages over other commonly-used parameter estimation and 
optimization methods.  It is hoped that this example increases awareness of the 
availability of these methods, demonstrates the use of GAs in a non-academic 
setting, and encourages further such applications in the future. 
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