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FACTOR ANALYSIS REVEALS EFFECTS OF REDUCING 

CONDITIONS ON THE FATE AND TRANSPORT OF RDX IN 

GROUNDWATER 
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1§

 and Lonnie Fallin
1 

1
Jacobs Engineering, 6 Otis Park Drive, Bourne, Massachusetts 02532 

ABSTRACT 

Groundwater investigations conducted at the Massachusetts Military Reservation (MMR) 

show the impact of historic activities on the development of groundwater contaminant plumes 

emanating from military ranges.  Several of the plumes, located on the southeastern side of the 

reservation, contain elevated concentrations of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).  In 

most cases, these plumes show continuity from the source to the leading edge, indicating that 

very little attenuation of RDX is occurring in the aquifer.  Interesting exceptions to this trend are 

locations where plumes consisting of RDX and perchlorate intercept part of the aquifer that was 

previously impacted by a fuel spill; reducing conditions due to biological activity resulted from 

this spill.  RDX concentrations show a significant positive correlation with both dissolved 

oxygen and oxidation-reduction potential, and a significant negative correlation with specific 

conductivity.  The distribution of RDX is more consistent upgradient from the oxygen depleted 

zone and implies that RDX is degrading in the aquifer near the fuel spill.  A factor analysis 

yielded two geochemical (44 percent variability explained) and two contaminant (30 percent 

variability explained) factors.  This suggests that the geochemical nature of the aquifer is the 

primary source of groundwater parameter variability determined by this investigation. 

Keywords:  RDX, perchlorate, groundwater contamination, correlation matrix, factor analysis 

1. INTRODUCTION 

Investigations of groundwater chemistry and contamination have been conducted on the 

Massachusetts Military Reservation (MMR) since the mid-1970s.  These studies have focused on 

characterization and remediation of contaminated groundwater.  The groundwater plumes are 

located in a sole source aquifer called the Sagamore Lens that occupies the northwestern portion 

of Cape Cod (Figure 1).  The Sagamore Lens is an unconfined aquifer that occupies a series of 

glacial deposits primarily consisting of outwash as thick as 400 feet over bedrock.  The sandy 

nature of the glacial deposits has created a groundwater setting that is highly transmissive.  

Therefore, much of the remediation for MMR contamination has focused on source control and 

groundwater plume extraction and treatment.  Efforts to characterize these plumes are of 

particular interest to this study. 

                                                 
§
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Figure 1.  Location of L Range and L Range Plumes on the Massachusetts Military Reservation. 

 

Both the MMR and nearby areas outside the reservation are replete with groundwater 

monitoring wells that were installed to characterize the nature and extent of MMR-related 

contaminants in groundwater.  The subject of this investigation consists of a series of 

contaminant plumes emanating from a military test range (e.g. the L Range) on the MMR.  This 

range exhibits groundwater contamination from the explosives hexahydro-1,3,5-trinitro-1,3,5-

triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and from the 

propellant perchlorate.  Since the groundwater monitoring network for these plumes was 

designed to capture the variability of these three contaminants in the aquifer, it is reasonable to 

ask if only the variability in the three contaminants is actually what is shown within the 

groundwater data set.  It is possible that variability in other groundwater components is captured 

as well.  The purpose of this investigation is to explore what variability is actually characterized 

and what factors are responsible for this variability.   
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2. SITE SETTING 

The MMR is a military training facility located in the western portion of Cape Cod that 

covers approximately 22,000 acres (Figure 1).  The military began using portions of the MMR in 

the early 1900s; however, the majority of activity has occurred since 1935.  The most intensive 

military activity at the MMR occurred during World War II.   

The geologic setting of the MMR is dominated by Late Pleistocene deposits attributed to the 

Late Wisconsinan ice front advance and retreat.  Deposits on Cape Cod normally date no older 

than 18,000 to 22,000 years ago when the Laurentide Ice Sheet reached its maximum southward 

extent to the islands of Martha’s Vineyard and Nantucket (Oldale, 2001; Dyke and Prest, 1987; 

Fletcher, 1993).  The geology of the MMR is dominated by an outwash plain known as the 

Mashpee Pitted Plain.  The Mashpee Pitted Plain was formed by streams that drained the 

Buzzards Bay and Cape Cod Bay glacial lobes (Oldale, 2001).  The MMR is located within the 

Sagamore Lens of the western Cape Cod aquifer.  The Sagamore Lens is an unconfined aquifer 

that occupies a series of glacial deposits primarily consisting of outwash as thick as 400 feet over 

bedrock.  The Sagamore Lens is bounded on three sides by salt water: Cape Cod Bay and Cape 

Cod Canal to the north, Buzzards Bay to the west, and Vineyard Sound to the south.   

The L Range was used historically as a troop infiltration practice range in the 1940s and 

1950s and was converted to a grenade launcher range in the late 1970s.  From the late 1980s the 

L Range was used exclusively as a grenade launcher range until activities were discontinued in 

1997.  The southern end of the range contains a berm upon which eight firing points are located 

along the southeastern boundary.  The range extends northwest from the berm and there are 

multiple targets positioned at varying distances around the northern portion of the range. 

The military activities conducted at this site resulted in the development of groundwater 

contamination plumes containing elevated levels of perchlorate and RDX downgradient from the 

range.  The top of the groundwater mound is located a short distance northwest of the L Range 

and the general flow direction is south-southeast from the L Range.  The perchlorate and RDX 

groundwater plumes are diffuse and occur as isolated, noncontiguous zones or lobes detached 

from upgradient source areas.  The maximum perchlorate and RDX concentrations detected in 

the plumes are 2.8 µg/L and 9.2 µg/L, respectively.  HMX has been detected at, and less than 1 

µg/L.  The spatial and temporal distribution of perchlorate and RDX concentrations indicate 

plumes that are detached and attenuating, consistent with a depleted source.  The varying 

transport distance and depth of the contamination lobes of the two primary contaminants relative 

to the L Range footprint suggest that there were: (1) multiple source areas, (2) multiple release 

events, or (3) differences in the chemical-specific subsurface migration and attenuation rates.  

These plumes are believed to have been formed from low order detonations of grenades near 

target areas and subsequent particulate deposition of explosives across the soil surface (ECC, 

2005).  This particulate deposition has been noted in other range studies (Jenkins et al., 2000a; 

2000b; 2001a; 2001b).   

The development of the Fuel Spill-12 (FS-12) plume has complicated attempts to identify the 

processes that have affected the nature and extent of the explosives plumes emanating from the L 

Range.  The FS-12 plume was formed when an aviation fuel pipeline was breached and 

approximately 70,000 gallons of fuel leaked into the aquifer just south of the L Range.  This 
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plume consists primarily of ethylene dibromide and benzene with minor amounts toluene, 

ethylbenzene, and xylenes (AFCEE, 2001).  The L Range plume is co-mingling with the FS-12 

plume remnants, and the biological interaction between the former and latter plumes creates a 

unique geochemical environment that may influence the nature and extent of the L Range plume.   

Once in the groundwater, perchlorate, RDX, and HMX are variably subject to transformations 

based on geochemical conditions.  Perchlorate is relatively soluble and is not easily transformed 

once it reaches the aquifer.  Susarla et al. (1999) has shown that the distribution coefficient (Kd) 

values for perchlorate range from 8.91 L/kg to 0.76 L/kg based on the type of organic matter and 

particle size in the matrix.  Perchlorate does not adsorb readily to the soil matrix mineral fraction 

or organic fraction, and its transport is relatively rapid when it reaches groundwater.  Perchlorate 

is not readily degraded by chemical or biological means.  There is some indication of microbial 

reduction of perchlorate (Logan et al., 2001), but conditions in nature are relatively rare.  In some 

bench scale tests, perchlorate has been shown to biodegrade under anaerobic conditions 

(AFCEE, 2002a).  Regardless, perchlorate is a compound that migrates rapidly through 

groundwater with little degradation (particularly under aerobic conditions) and is the most 

mobile contaminant in groundwater at the MMR. 

RDX and HMX are not readily retained in the soil fraction and migrate to groundwater 

relatively rapidly.  Reported Kd values for RDX under variable soil conditions ranged from 0 to 

6.75 L/kg (Selim and Iskander, 1995; Townsend and Meyers, 1996; McGrath, 1995), and Kd 

values for HMX ranged from 0 to 13.25 L/kg (Townsend and Meyers, 1996).  The highest Kd 

values for HMX are associated with reducing environments (Price et al., 2001).  Because Kd 

values are variable under variable soil organic matter contents, the lower Kd values for RDX and 

HMX would be more applicable to characterizing the thin, low organic, sandy soils of the MMR.  

RDX and HMX are transformed anaerobically in the groundwater environment (Price et al., 

1998; McCormick 1984).  RDX and HMX are cyclic nitrogen-containing compounds that are 

moderately resistant to aerobic degradation and undergo ring cleavage and extensive 

mineralization (Hawari et al., 2000).  Anaerobic degradation of RDX and HMX involves direct 

microbial reduction of the nitro functional groups on the cyclic structure.  This process has been 

used to develop remedial strategies employing microbial degradation to address RDX and HMX 

contamination in groundwater (Kwon and Finneran, 2006; Young et al., 2006; Morley et al., 

2002; Doppalapudi et al., 2002). 

The primary source of contamination at the L Range area is probably from historical use of 

grenades and possibly mortars to produce localized discrete areas of contamination.  A 

conceptual site model for the L Range is presented in Figure 2.  During use, explosives would 

have detonated near targets and propellants would have accumulated near the firing points.  The 

sources would have accumulated particulates on or near the ground surface.  Groundwater 

modeling (ECC, 2005) suggests that rather than a widespread diffuse source, fewer small area 

sources of higher concentration may have dispersed particles or larger pieces, and infiltration 

would act to dissolve the constituent compounds and transport them to groundwater.  The 

heterogeneous nature of the source deposition combined with the episodic pattern of infiltration 

would have resulted in a heterogeneous (in both space and time) contaminant source to 

groundwater.  On the soil surface or in the aerobic vadose zone, little degradation of RDX, HMX 

or perchlorate would have occurred.  Once in the saturated zone, RDX, HMX, and perchlorate 

migrate under the influence of the flow patterns, which are generally south to southeast.   
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Figure 2.  L Range Site Groundwater Conceptual Model (Source: ECC, 2005). 

3. BACKGROUND 

Samples from the L Range groundwater study area were initially evaluated using a correlation 

matrix and an integrated multivariate factor analysis (FA) was used to provide an overall picture 

of contaminant trends in the L Range plumes.  FA is an exploratory multivariate method that can 

be used to explain the relationships among several variables.  In the simplest sense, the FA 

method arranges the sites and environmental variables in multidimensional space.  FA captures 

variability through the use of eigenvectors, which define linear factors that capture the maximum 

variability (i.e., environmental gradients) in a multivariate data set.  FA calculations result in 

clustering of sites (e.g. wells) based on their environmental similarity.  In such an analysis, 

samples that occur close together have similar environmental characteristics, and samples that 

plot far apart are environmentally different.  Likewise, environmental variables that lie near a 

specific variable tend to be “high” in that variable, and lower in others.  FA is particularly useful 

because it can provide a visual assessment of a large matrix of complex data by displaying 

relationships among variables and sites.   

The FA method extracts “principal components,” also known as “factors” that explain 

variation in the data.  These are derived by determining the eigenvectors of a given data matrix, 

where the eigenvector is the linear transform that produces a non-zero vector.  In FA, the 

eigenvectors of a covariance or correlation matrix correspond to factors, and eigenvalues to the 

variance explained by these factors.  These eigenvectors are arranged in multidimensional space 

such that they are orthogonal to each other.  The first eigenvector explains the greatest amount of 

variance (i.e., has the highest eigenvalue).  The second eigenvector captures the second most 

5

Morris: FACTOR ANALYSIS AND DISTRIBUTION OF RDX IN GROUNDWATER

Produced by The Berkeley Electronic Press, 2008



Factor Analysis and Distribution of RDX in Groundwater 

important amount of variance orthogonal to the first axis.  The third eigenvector is orthogonal to 

the first two axes, and it captures the next most important component of the remaining variance.  

FA deviates from principal components analysis (PCA) in that after the eigenvectors are defined, 

the factors are “rotated” to optimize the capture of the variability in the data set.  This is 

accomplished through a varimax rotation that maintains the same orthogonal relationship as the 

original eigenvectors.  This usually involves applying a correction factor to the provisional factor 

loadings that produces new factors that are each highly correlated with only a few of the original 

variables.  The goal is to cluster the variables into groups and each group can be interpreted as a 

factor.  The final stage of the analysis is the calculation of factor scores that are applied to each 

observation.  These observations can then be plotted in multidimensional space to interpret 

relationships between these observations.  If desired, FA calculations may continue until only 

random variation remains, but in most environmental data sets, four or fewer factors often 

explain most, if not all, of the nonrandom variation.  In turn, the factor scores can be calculated 

for each data point (well), and predicted factor scores can be calculated for each well and plotted 

in multiple dimensions.  Generally, eigenvalues that are greater than one are retained, and factors 

that explain a cumulative variation between 80 and 90 percent are considered important (Manly, 

1991). 

Statistical analyses of groundwater have been used to provide insight into the mechanisms or 

processes that control the distribution of analytes within a defined aquifer or groundwater 

location of concern.  Many of these studies demonstrate the utility of basic geochemical 

parameters in groundwater and understanding contaminant distribution.  One particular example 

is a groundwater FA that was applied to 13 hydrochemical parameters in Taiwan to determine 

the causes of variability in a blackfoot disease area (Liu et al., 2003).  The study isolated two 

factors (seawater salinization and arsenic pollutant) that explained almost 78 percent of the 

variability.  This study found that over pumping of groundwater led to subsidence, which caused 

introduction of more saline seawater into the water supply, thus possibly causing complicating 

health problems.  Other studies have shown that geochemical variability due to seawater-

groundwater interaction (Voudouris et al., 1997; Olobaniyi and Owoyemi, 2006) or surface 

water-groundwater interaction (Reghunath et al., 2002) can be effectively illustrated using FA.  

Chemical changes in groundwater due to transport through variable geologic formations have 

also been characterized using FA (Invernizzi and Barros de Oliveira, 2004).  Chemical 

variability due to human impact has been characterized using FA (Muñoz-Carpena et al., 2005; 

Gonçalves et al., 2007) and variability due to mixtures of varying geology and variable human 

impact was also characterized with FA (Pujari and Deshpande, 2005). In many of these studies, 

the importance of field geochemical parameters is paramount in understanding the distribution of 

contaminants in groundwater. 

4. METHODS AND MATERIALS 

Data for the multivariate investigation were collected from monitoring wells and groundwater 

screening borings in the vicinity of the L Range.  Groundwater samples were collected in 

accordance with approved work plans (AMEC, 2004) and were analyzed for explosives by U.S. 

Environmental Protection Agency (EPA) Method SW846/8330 (EPA, 1998) and for perchlorate 

by EPA Method E314.0 (EPA, 1999).  Metals analyses were conducted using EPA Method 

SW846/60108/7470A (EPA, 1998), and field parameters were collected using a Yellow Springs 
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Instrument water analyzer with a flow through cell.  Wells used in the study were installed as 

part of the L Range characterization effort and are presented on Figure 3.  All monitoring well 

locations were surveyed, and horizontal position was referenced to the North American Datum of 

1983, Universal Transverse Mercator Zone 19 North in meters.  The vertical datum was 

referenced with an accuracy of 0.005 ft vertical/horizontal control to the North American Datum 

of 1927 in feet.  Summary statistics for L Range groundwater are presented in Table 1. 

Table 1.  L Range Groundwater Summary Statistics 

Parameter n Mean Median Range 

RDX (µg/L) 354 0.58 ND ND to 9.2 

HMX (µg/L) 352 ND ND ND to 0.8 

Perchlorate (µg/L) 315 ND ND ND to 2.8 

Total Fe (µg/L) 20 23,800 74.25 ND to 99,400 

Total Mn (µg/L) 20 475 60.8 ND to 2,260 

Temperature (°C) 335 11.37 11.10 4.5 to 18.7 

pH 344 5.77 5.78 4.06 to 7.17 

DO (mg/L) 362 6.98 8.66 0.08 to 15.97 

ORP (mV) 99 192 213 -238 to 507 

SpC (µS/cm) 343 105 74 38 to 554 

Turbidity (ntu) 289 3.08 1.22 0 to 65.9 

Elevation (ft msl) 423 3.80 8.74 -127.84 to 70.04 

Northing (m) 423 - - 484 

Easting (m) 423 - - 1230 
Note:  detection limits are 0.25 µg/L for RDX and HMX, 0.35 µg/L for perchlorate, 14.5 µg/L for iron and 0.9 µg/L for 

manganese 

ND = below method detection limits 

 

Data from 425 groundwater samples collected from 42 well locations (many of which contain 

multiple screens) between January 1998 and May 2007 were used in this investigation.  For the 

statistical analyses, the non-detect data were transformed to one-half the detection limit.  The 

data were screened for outliers using Walsh’s test (EPA, 2000), however, no outliers were 

determined and no data were removed from the dataset.  After these treatments, the data were 

subjected to Correlation Analysis and FA.   

A correlation matrix was generated to evaluate relationships among specific parameters 

(Table 2).  Because not all locations were analyzed for all parameters, there were a number of 

null data points in the measured data set, so the number of pairwise comparisons in correlation 

calculations ranged from 423 (northing vs. easting) to 13 (manganese vs. ORP).  The 

nonparametric Spearman ranked correlation procedure was used for this analysis.  This 

procedure was used because many of the data points for perchlorate, RDX, and HMX were 

below the detection limits, assuring a non-normal distribution of values.  A value of α = 0.05 

was chosen as the significance level for this analysis. 
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Figure 3.  Location of L Range Groundwater Study Area, Factor Analysis Groundwater Zones, 

and anoxic zone. 

The FA procedure for this investigation used the following variables: perchlorate, RDX, 

HMX, pH, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific 

conductivity (SpC), turbidity, northing, easting, and elevation.  These variables were selected 

because they either conveyed contaminant concentration, general geochemistry of the aquifer, or 

location of the sample in three-dimensional space.  The FA procedure required that all cells be 

filled for each row, therefore a missed analyte removed that sampling point data from the 

analysis.  Because sampling of explosives and perchlorate were sometimes on different 

schedules, a large number of observations were removed from the analysis because perchlorate 
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was frequently sampled on a different date than explosives.  A total of 48 observations with 

sufficient data completeness were retained for the FA. 

5. RESULTS 

The statistical analyses performed for groundwater samples from the L Range indicated that 

the geochemistry of the aquifer was important in explaining the variability of other components 

in the aquifer such as contaminants.  The distribution of contaminants (perchlorate, RDX, HMX) 

is not only a result of anthropogenic deposition, but also the result of post-depositional processes 

that govern the nature of these groundwater plumes.   

The correlation analysis for perchlorate indicated that this analyte was significantly positively 

correlated with RDX (r = 0.l67), temperature (r = 0.183), and DO (r = 0.126) (Table 2).  The 

relationship between perchlorate and RDX suggests that there is some co-location of perchlorate 

(a propellant) with RDX (an explosive) and indicates either similar depositional processes or 

extensive co-mingling of these constituents in the plumes.  The significant correlation with 

increasing temperature likely reflects the shallow nature of the perchlorate contamination and the 

fact that the groundwater temperature in the aquifer decreases with depth.  The significant 

correlation with DO indicates that the perchlorate contamination, found mainly in the western 

portion of the L Range plumes (Figure 3) is located in an area not affected by the reducing 

conditions caused by the FS-12 Plume farther east.   

 

The correlation analysis shows that RDX and HMX are significantly positively correlated (r = 

0.635), indicating that these two explosive compounds are likely from a similar source(s) (Table 

2).  RDX and HMX are significantly negatively correlated with SpC (r = -0.186 and -0.128, 

respectively) and temperature (r = -0.133 and -0.209, respectively).  The negative correlation 

between SpC and each of these explosives is likely due to the tendency of the explosives to be 

more highly concentrated in the more oxic portions of the aquifer where lower SpC values likely 

reflect lower concentrations of redox-sensitive metals.  The negative correlation with 

temperature could be an indication of the location of these compounds in the deeper portions of 

the aquifer where temperatures are cooler.  This is also observed in the negative correlation 

between RDX and elevation (r = -0.322), confirming the higher occurrence of RDX in the deeper 

portions of the aquifer.  This could be the result of RDX source areas farther upgradient and thus 

occupying the lower portions of the aquifer with increasing distance from the source.  In 

addition, RDX has high positive correlations with DO and ORP (r = 0.157 and 0.233, 

respectively).  Because RDX is likely to decompose under reducing conditions, this correlation is 

expected (Table 2). 

Total iron and manganese concentrations were included in the correlation analysis because 

these metals are sensitive to reducing conditions and are generally more common in anoxic 

portions of an aquifer.  The development of the FS-12 plume, located downgradient from the L 

Range, provided a carbon source for bacteria; from its benzene, toluene, ethylbenzene, and 

xylenes (AFCEE, 2001).  This fuel spill created an anoxic to suboxic zone in the aquifer (Figure 

3).  As expected, total iron and manganese are significantly positively correlated with SpC and 

each other, and are significantly negatively correlated with ORP and DO (Table 2).  There is also 
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Table 2.  Correlation Matrix for L Range Groundwater 

 

 Perc RDX HMX Fe Mn pH Temp DO ORP SpC Turb North East Elev 

Perc 1.000              

RDX 0.167 1.000             

HMX -0.018 0.635 1.000            

Fe -0.313 -0.393 -0.379 1.000           

Mn -0.567 -0.050 -0.359 0.756 1.000          

pH -0.101 -0.088 -0.051 0.620 0.736 1.000         

Temp 0.183 -0.133 -0.209 0.111 0.430 -0.187 1.000        

DO 0.126 0.157 0.039 -0.681 -0.893 -0.465 -0.030 1.000       

ORP 0.077 0.233 0.079 -0.453 -0.445 -0.440 -0.013 0.676 1.000      

SpC -0.086 -0.186 -0.128 0.775 0.552 0.329 -0.011 -0.643 -0.640 1.000     

Turb -0.115 -0.025 0.077 0.912 0.750 0.266 -0.033 -0.241 -0.131 0.181 1.000    

North 0.094 0.072 0.022 0.491 0.511 -0.026 0.001 0.228 0.300 -0.240 -0.020 1.000   

East -0.007 -0.116 -0.110 0.628 0.861 0.240 0.068 -0.540 -0.363 0.439 0.209 0.031 1.000  

Elev -0.095 -0.322 -0.103 0.660 0.373 -0.054 0.034 -0.146 -0.299 0.381 -0.097 0.232 0.187 1.000 

Notes: 

Coefficients in BOLD are considered significant at α = 0.05. 
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a significant positive correlation with both pH (which is interpreted as an indicator of biological 

activity) and turbidity.  The turbidity could be related to fines in the aquifer that bear these 

metals, but it could also be attributed to by-products of biological degradation, such as an 

increase in dead cells and soluble metals.  The correlation coefficients for these two metals are 

much higher than the correlation coefficients for the explosives and perchlorate.  This is partially 

due to a lower number of samples, which makes higher correlation coefficients necessary to meet 

the level of significance.  It is also important to note that there is only one significant correlation 

between total manganese and perchlorate.  In fact all of the correlations between these metals 

and the explosives are negative but insignificant, indicating that these analytes do not necessarily 

occupy the same portions of the aquifer.  This analysis confirms that there is an active anoxic 

zone in the aquifer located downgradient from the L Range that has a significant effect on the 

aquifer’s geochemistry. 

The correlation analysis was used to compare two variables and interpret the correlation in 

terms of cause and effect.  However, that cause and effect can only be based on the coefficient 

for each two-variable comparison.  The FA represents a multivariate approach where all of the 

variables are analyzed simultaneously and interpretations are made based on how these 

observations are partitioned into multidimensional space.  The FA also showed the importance of 

the aquifer’s geochemistry in determining the distribution of contaminants in the aquifer (Table 

3).  A total of five factors were identified that explained more than 87 percent of the variability 

in the data set.  Based on the factor loadings for each eigenvector, these 5 factors have been 

identified as: Factor 1—oxic/anoxic water quality; Factor 2—biological activity; Factor 3—

perchlorate; Factor 4—RDX; and Factor 5—location.   

The first factor explains approximately 25 percent of the total variability, and this factor is 

loaded on two geochemical parameters.  Factor 1 is mostly influenced by the easting of the well 

with contributions from both DO and SpC (Table 3).  The negative easting and SpC and the 

positive DO factor loadings demonstrate that increasing DO is negatively associated with easting 

and SpC which shows that the areas of the aquifer with low SpC and high DO occupy the more 

western portion of the site.  This indicates that the presence (or absence) of reducing conditions 

in the aquifer is primarily responsible for the variability of the parameters used in this FA.  

Factor 1 is the oxic/anoxic water quality factor. 

Factor 2, which explains almost 20 percent of the variation in the dataset, has factor loadings 

on the pH and turbidity parameters (Table 3).  The pH in this aquifer has two major sources of 

variability.  First, there is a low to high pH gradient with depth that has been noted in other 

MMR studies (ECC, 2006).   This gradient has been attributed to recharge by acid rain and the 

influx of organic acids released by the predominantly acid-soil tolerant vegetation on the MMR.  

Higher pH values are also noted in other areas of the MMR exhibiting elevated biological 

activity, such as near fuel spills and sewage discharge areas (AFCEE, 2001; 2002b).  Factor 2 is 

determined to be biological because the combined higher pH and turbidity are associated with 

biological activity in the reducing zone (i.e., the remnants of the former fuel spill).  The pH in the 

reducing zone can be raised by iron bacteria, which form ammonia by metabolizing certain 

protein or protein derived materials and synthesize alkali hydroxyl groups by consuming the salts 

of organic acids.  Denitrification can also cause a pH increase in oxygen depleted groundwater 

zones as nitrate is consumed and bicarbonate and hydroxyl groups are produced.  The presence 

of these bacteria and by-products can lead to increased turbidity. 
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Table 3.  Eigenvalues and Factor Loadings for L Range Groundwater 

Factor 1 2 3 4 5 

Eigenvalue 1.90593 1.51169 1.36542 1.02061 0.89083 

Variability Explained (%) 24.65 19.55 17.66 13.20 11.52 

Cumulative Variability (%) 24.65 44.20 61.86 75.06 86.58 

Factor  Loadings after Varimax Rotation 

Perchlorate  0.162871 -0.045954  0.775064  0.063321 -0.063346 

RDX  0.034555 -0.165173  0.027123 -0.528309 -0.138301 

HMX  0.186822 -0.115209 -0.224360 -0.201112 -0.144153 

pH -0.211025  0.859164 -0.011842 -0.053552 -0.056475 

Temperature -0.377075 -0.293366  0.457436  0.017534 -0.251397 

Dissolved Oxygen  0.713282 -0.144288  0.012391 -0.241942 -0.350318 

Oxidation Reduction Potential  0.232568 -0.156122 -0.200806 -0.249305 -0.344063 

Specific Conductivity -0.594435 -0.017736  0.663904  0.186991  0.234547 

Turbidity -0.105161  0.662933 -0.096222  0.143898 -0.123877 

Northing  0.115200  0.234282  0.057466 -0.087637 -0.676596 

Easting -0.845562  0.248292 -0.091189 -0.038476 -0.018001 

Elevation -0.032654 -0.208017  0.227928  0.712981 -0.104661 
Note:  Bold indicates factor scores greater than │0.4│ 

 

A plot of factor scores between Factor 1 and Factor 2 shows how the wells in the eastern, 

central and western portions of the study area arrange themselves in two-dimensional space 

(Figure 4).  The wells were organized according to their location (east, central, or west) or 

whether they had measurable levels of contaminants (i.e. plume vs. non-plume wells).  In 

general, the eastern area contained the RDX plumes, the western area contained the perchlorate 

plumes, and the central area contained one location (two wells) that had measurable levels of 

HMX (as shown in Figure 3).  Figure 4 shows how the eastern areas (i.e., the RDX plumes) plot 

to the left in the direction of higher SpC values and lower DO values, and the western areas (i.e., 

the perchlorate plumes) plot toward the lower right quadrant in the direction of higher DO and 

lower SpC values.  A line divides the eastern portion into two sections on Figure 3.  The left side 

of the line represents eastern portion wells where RDX has not been detected since 2002 and the 

right side of the line represents eastern portion wells that have had RDX detected after 2002.  

The eastern portion wells on the left had side of the dividing line are all located within the 

portion of the aquifer characterized by reducing conditions.  This is the reason the eastern portion 

wells plot in the same direction as the non-plume wells because RDX is degrading over time.  

The Factor 2 axis is weighted with pH and turbidity, therefore, as expected, the western portion 

of the study area plots in the lower half of the graph and the eastern, perchlorate free zones plot 

in the upper half.  The central portion plots as a subsection of the western portion and this part of 

the aquifer is likely related to the western portion based on Factors 1 and 2.  The non-plume 

portion plots in the upper left quadrant, indicating that these wells are high primarily in pH and 

turbidity.  It is important to note that there is a relationship between non-plume areas and the 

presence of biologically active reducing conditions. 

Factor 3 is weighted mostly on perchlorate concentrations, temperature, and SpC, making this 

the perchlorate factor (Table 3).  This factor accounts for approximately 16 percent of the 

variability in the groundwater dataset; and indicates that portions of the aquifer with elevated 

perchlorate, groundwater temperatures, and SpC differentiate from lower perchlorate, lower 
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temperature, and lower SpC portions of the aquifer.  An examination of the plots of Factor 1 vs. 

Factor 3 (Figure 5) with Factor 1 on the x-axis and Factor 3 on the y-axis shows how Factor 3 

helps define the groundwater areas.  The central area, with measurable HMX concentrations, 

plots as a subset of the western area.  The western portion of the study area plots to the upper 

right quadrant toward high perchlorate and high DO, while the eastern portion plots to the left 

toward low perchlorate and high SpC.  The non-plume area plots as a subset of the eastern 

portion of the study area.  This graph mainly shows the difference between areas with 

measurable levels of perchlorate and areas devoid of perchlorate. 
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Figure 4.  L Range Groundwater Factor Analysis, Factor 1 vs. Factor 2 
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Figure 5.  L Range Groundwater Factor Analysis, Factor 1 vs. Factor 3 

13

Morris: FACTOR ANALYSIS AND DISTRIBUTION OF RDX IN GROUNDWATER

Produced by The Berkeley Electronic Press, 2008



Factor Analysis and Distribution of RDX in Groundwater 

Factor 4 is negatively loaded on the RDX parameter and positively loaded on the elevation 

parameter (Table 3).  Factor 4 is the RDX factor, and implies that there is a general increase in 

RDX values with depth.  This factor explains almost 13 percent of the variability in the dataset.  

Figure 6 shows a plot between Factor 1 and Factor 4.  While much of the discrimination is along 

the x-axis (Factor 1), the eastern portion of the aquifer shows a tendency to plot in the direction 

of high RDX and increased depth.  The western, central, and non-plume areas plot more in the 

direction of the upper half of the graph.  It is interesting to note that the left hand side of the 

eastern portion dividing line shows that the wells where RDX was not detected after 2002 plots 

similarly to non-plume wells.  Therefore, the variability explained by Factor 4 is primarily due to 

the increased presence of RDX with depth in the plume. 
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Figure 6.  L Range Groundwater Factor Analysis, Factor 1 vs. Factor 4 

The remaining Factor 5 explains almost 12 percent of the variability and is weighted on a 

single variable, northing (Table 3).  This factor is negatively weighted with all other factors 

based on a comparison to the contaminants and indicates that there is a relationship between the 

north to south well location and decreasing to increasing contaminant concentrations.  The 

correlation analysis (Table 2) indicates that the DO, ORP, and SpC have the strongest 

relationship to the northing parameter with decreasing values of DO and ORP and increasing 

values of SpC from north to south.   

6. DISCUSSION 

The results of the correlation analysis and FA indicate that knowing geochemical parameters 

(e.g., DO, ORP, and SpC) is critical to understanding the structure of these contaminant plumes 

(i.e., perchlorate, RDX, and HMX) in the aquifer.  Significant correlations between RDX and the 

parameters related to the redox conditions in the aquifer show the influence of a former fuel spill 

in controlling the distribution of the contaminants.  The biological interaction with the fuels from 
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the FS-12 plume has created an oxygen-depleted, chemically reducing area in the aquifer.  In 

turn, these reducing conditions are conducive to the reductive dissolution of iron and manganese 

oxyhydroxides in the aquifer matrix resulting in elevated dissolved concentrations of these 

metals in the groundwater.  Under oxygen-depleted conditions, dissolved iron and manganese 

complexes tend to remain in solution rather than re-precipitate as solid phases.  The resulting 

elevated levels of dissolved constituents increase the electrical conductivity of the water 

downgradient from the fuel spill.  The relationship between the concentrations of perchlorate, 

RDX, and HMX and reducing geochemical conditions has potential implication for the 

distribution of these contaminants in the aquifer.  Generally, the concentrations of perchlorate, 

RDX, and HMX are lower inside (and in the immediate vicinity of the FS-12 plume) and higher 

outside of the FS-12 source area.  This relationship implies that RDX and HMX are degrading in 

the aquifer near the fuel spill.  Perchlorate is absent in the area of the fuel spill mainly because it 

occupies a flow path that is west of the low DO area.  Biodegradation is one explanation for the 

decreasing levels of RDX and HMX near the fuel spill.  An alternative explanation is the abiotic 

reduction of nitroaromatic compounds (such as RDX and HMX) to primary amines by an 

oxidation-reduction reaction with metals where the reduced metals in solution are oxidized and 

the nitro-compounds are reduced.  A third explanation for lower RDX and HMX concentrations 

in the vicinity of the FS-12 plume could be the dispersion of the dissolved explosives plume as it 

migrates away from the source area.  Based on the results of the correlation analysis and FA, it 

seems most likely that the biodegradation of the fuels in the vicinity of the L Range is the most 

likely explanation for the distribution and/or degradation of contaminants in the aquifer.  The FA 

identified an oxic/anoxic and a biological activity factor that explained over 44 percent of the 

variation in the multivariate data set.  Therefore, biodegradation is the best explanation for 

decreasing levels of RDX and HMX near the fuel spill. 

Because both RDX and HMX can be degraded under anaerobic conditions, any local 

anaerobic conditions due to the FS-12 plume may facilitate the degradation of the RDX and 

HMX, and hence contribute to the laterally and vertically discontinuous distribution of RDX and 

HMX in L Range groundwater.  Statistical correlations between RDX and HMX with parameters 

such as DO and ORP (positive) and SpC (negative) indicate these compounds’ preference for the 

more oxic portions of the aquifer.  This may also indicate that the absence of these compounds in 

the anaerobic portions of the aquifer means the breakdown of these compounds.  The results of 

the FA show that Factor 1, the oxic/anoxic aquifer quality factor, is the primary factor that 

defines the variability of the parameters within the L Range aquifer.  The second derived factor 

is a biological factor weighted on pH and turbidity.  The third and fourth factors are perchlorate 

and RDX factors and explain more than 30 percent of the variation and are an indicator of 

anthropogenic impact on the aquifer.  Although they are of lesser importance, their contribution 

to variability is significant based on the FA.  Therefore, the sampling design for the L Range 

groundwater not only accomplished its goal of defining the distribution of contaminants in the 

aquifer, but also managed to show that the geochemical parameters are important in defining the 

distribution of all parameters within the aquifer.   

7. CONCLUSIONS 

Many of the investigations on the MMR, including those on the L Range, have emphasized 

the placement of groundwater wells in order to characterize the contamination emanating from 
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the various source areas.  It has been assumed that this monitoring design is biased toward 

capturing the variability of contaminants within each of the plumes.  However, multivariate 

studies indicate that the primary factors regarding variability of parameters in groundwater are 

related to the geochemical nature of the aquifer.  This is important in L Range groundwater 

because a known area of the aquifer is characterized by low DO, low ORP, and high SpC 

downgradient from the L Range.  A correlation analysis of groundwater parameters shows that 

there is a significant positive correlation between RDX and with DO and ORP and a negative 

correlation with SpC.  These correlations are consistent with the fact that RDX is preferentially 

found in the more oxic portions of the aquifer.  Because the RDX plumes in the eastern portion 

of the study area co-mingle with the reducing conditions promulgated by a former fuel spill, it is 

probable that RDX is subject to more rapid degradation when this contaminant migrates into the 

portion of the aquifer where reducing conditions prevail.  A multivariate FA showed that the first 

two derived factors were related to (1) the reducing conditions in the aquifer and (2) the 

biological activity associated with these reduced zones.  The distribution of  perchlorate and 

RDX in the aquifer were captured in the following two factors.  Therefore, knowing the 

geochemical patterns in the aquifer is critical to understanding the distribution of contaminants in 

the L Range plumes.  While the monitoring well placement design functions well in defining the 

nature and extent of perchlorate, RDX, and HMX contamination downgradient from the L 

Range, the sampling design was instrumental in demonstrating how important the geochemistry 

of the aquifer is in defining the distribution of contaminants. 

8. ACKNOWLEDGEMENTS 

The authors wish to thank the Army Environmental Center Impact Area Groundwater Study 

Group, Camp Edwards, Massachusetts; and the U.S. Army Corps of Engineers, New England 

District, Concord, Massachusetts, for access to the data collected in the L Range studies and for 

their comments on the manuscript.  These agencies provide the technical expertise and funding 

for the past and continuing L Range groundwater monitoring program. 

9. REFERENCES 

AFCEE (Air Force Center for Engineering and the Environment). 2002a. Perchlorate Treatment Technology Fact Sheet: In Situ 

Anaerobic Bioremediation. www.afcee.brooks.af.mil/products/techtrans/perchloratetreatment/anaerobicbioremediation 

August 2002. 

AFCEE (Air Force Center for Engineering and the Environment). 2002b. Final Ashumet Valley Axial 2000 Annual System 

Performance and Ecological Impact Monitoring Report. Prepared by Jacobs Engineering Group Inc. for AFCEE/MMR 

Installation Restoration Program, Otis ANG Base, MA 02542. A3P-J23-35Z01513-M31-0004. Final Report, March 2002. 

AFCEE (Air Force Center for Engineering and the Environment). 2001. Final Fuel Spill-12 2000 Annual System Performance 

and Ecological Impact Monitoring Report. Prepared by Jacobs Engineering Group Inc. for AFCEE/MMR, Installation 

Restoration Program, Otis ANG Base, MA 02542. A3P-J23-35Z01503-M31-0005. Final Report, December 2001.  

AMEC (AMEC Earth & Environmental, Inc) 2004.  Final L Range Supplemental Groundwater Workplan, Camp Edwards 

Massachusetts Military Reservation. Prepared by AMEC for NGB and USACE, Westford, MA 01886. EDMS No. 4797.  

Final Report, February 2004.  

Doppalapudi, R.B. Sorial, G.A., and Maloney, S.W. 2002. Electrochemical reduction of simulated munitions wastewater in a 

bench-scale batch reactor. Environ. Eng. Sci. 19(2), 115-130. 

16

International Journal of Soil, Sediment and Water, Vol. 1 [2008], Iss. 2, Art. 1 ISSN: 1940-3259

https://scholarworks.umass.edu/intljssw/vol1/iss2/1



International Journal of Soil, Sediment and Water, vol 1, no 2, 2008 

Dyke, A.S. and Prest, V.K. 1987. Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Geographie Physique et 

Quaternaire. 41(2), 237-263. 

ECC (Environmental Chemical Corporation). 2006. Draft J-3 Range Groundwater Remedial Investigation and Feasibility Study. 

Prepared by Environmental Chemical Corporation for U.S. Army Corps of Engineers, New England District, Concord, MA 

01742-2751. ECC-J23-35AY5301-M14-0006. Draft Report, December 2006. 

ECC (Environmental Chemical Corporation). 2005. Final L Range Groundwater Characterization Report.  Prepared by 

Environmental Chemical Corporation for U.S. Army Corps of Engineers, New England District, Concord, MA 01742-2751. 

ECC-J23-35AY5302-M14-0003. Final Report, November 2005. 

EPA (U.S. Environmental Protection Agency) 2000.  Guidance for Data Quality Assessment. Office of Environmental 

Information, Washington, D.C. 20460. EPA/600/R-96/084. Final Report, July 2000. 

EPA (U.S. Environmental Protection Agency). 1999. Determination of Perchlorate in Drinking Water using Ion 

Chromatography.    National Exposure Research Laboratory, Office of Research and Development, Cincinnati, OH 45268. 

Rev 1.0, EPA 815-B-99-003. 

EPA (U.S. Environmental Protection Agency). 1998. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. 

http://www.epa.gov/SW846/main.htm 

Fletcher, P.C. 1993. Soil Survey of Barnstable County, Massachusetts. United States Department of Agriculture Soil 

Conservation Service. U.S. Government Printing Office, Washington, D.C 20401. 

Gonçalves, C.M., Silva, J.C., and Alpendurada, M.F. 2007. Evaluation of the pesticide contamination of groundwater sampled 

over two years from a vulnerable zone in Portugal. J. Agric. Food Chem. 55(15), 6227-6235. 

Hawari, J., Beaudet, S., Halasz, A., Thiboutot, S., and Ampleman, G. 2000. Microbial degradation of explosives: 

biotransformation versus mineralization. App. Microbiology Biotechnology. 54, 605-618. 

Invernizzi, A.L., and Barros de Oliveira, S.M. 2004. Hydrochemical characterization of a watershed through factor analysis. Rev. 

Aguas Subterraneas. 18, 67-77. 

Jenkins, T.F., Pennington, J.C., Ranney, T.A., Berry, T.E., Miyares, P.H., Walsh, M.E., Hewitt, A.D., Perron, N.M., Parker, L.V., 

Hayes, C.A., and Wahlgren, E.G. 2001a.  Characterization of Explosives Contamination at Military Firing Ranges. U.S Army 

Corps of Engineering Engineer Research and Development Center (ERDC), Hanover, NH 03755. ERDC-TR-01-5. Final 

Report, July 2001. 

Jenkins, T.F., Ranney, T.A.,  Hewitt, A.D.,  Walsh, M.E., Stark, J.A., and Pennington, J.C. 2001b. Use of Snow-Covered Ranges 

to Determine the Amount of Explosives Residues Deposited from High-Order Detonations of Army Munitions. Geological 

Society of America National Meeting.  November 1-10, Boston, MA. 

Jenkins, T.F., Ranney, T.A., Walsh, M.E., Miyares, P.H., Hewitt, A.D., and Collins. N.H. 2000a. Evaluating the Use of Snow-

Covered Ranges to Estimate the Explosives Residues that Result from Detonation of Army Munitions. U.S. Army Corps of 

Engineers Engineer Research and Development Center (ERDC)/ Cold Regions Research and Engineering Laboratory 

(CRREL), Hanover, NH 03755. TR-00-15. 

Jenkins, T.F. Ranney, T.A., Miyares, P.H., Collins, N.H., and Hewitt, A.D. 2000b. Use of Surface Snow Sampling to Estimate 

the Quantity of Explosive Residues Resulting from Land Mine Detonations. U.S. Army Corps of Engineers Engineer 

Research and Development Center (ERDC)/ Cold Regions Research and Engineering Laboratory (CRREL). Hanover, NH 

03755. TR-00-12. Final Report, August 2000. 

Kwon, M.J, and Finneran, K.T. 2006. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by 

extracelluar electron shuttling compounds. App. and Environ. Microbiology 72(9), 5933-5941. 

Liu, C.W., Lin, K.H., and Kuo. Y.M. 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot 

disease area in Taiwan. Sci. Total Environ. 313(1-3), 77-89. 

Logan, B.E. Zhang, H., Mulvaney, P., Milner, M.G., Head, I.M., and Unz, R.F. 2001. Kinetics of perchlorate and chlorate-

respiring bacteria. App. and Environ. Microbiology 67, 2499-2506. 

Manly, B.F.J. 1991. Multivariate Statistical Methods. Chapman and Hall, London. 

McCormick, N.G., Cornell, J.H., and Kaplan, A.M. 1984. The Fate of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and Related 

Compounds in Anaerobic Denitrifying Continuous Culture Systems Using Simulated Wastewater. United States Army Natick 

Research and Development Laboratory. Natick, MA 01760. NATICK/85/008. 

McGrath, C.J. 1995. Review of Formulations for Processes Affecting Subsurface Transport of Explosives. U.S. Army Corps of 

Engineers, Waterways Experiment Station. Vicksburg, MS 39180. Report IRRP-95-2. 

17

Morris: FACTOR ANALYSIS AND DISTRIBUTION OF RDX IN GROUNDWATER

Produced by The Berkeley Electronic Press, 2008



Factor Analysis and Distribution of RDX in Groundwater 

Morley, M.C., Shammas, S.N., and Speitel, G.E. 2002. Biodegradation of RDX and HMX mixtures: Batch screening experiments 

and sequencing batch reactors. Environ..Eng. Sci. 19(4), 237-250. 

Muñoz-Carpena, R., Ritter, A., and Li, Y.C. 2005. Dynamic factor analysis of groundwater quality trends in an agricultural area 

adjacent to Everglades National Park. J. Contam. Hydrol. 80(1-2), 49-70. 

Oldale, R.N. 2001. Cape Cod, Martha’s Vineyard & Nantucket, The Geologic Story. On Cape Publications, Yarmouthport, MA. 

Olobaniyi, S.B. and Owoyemi, F.B. 2006. Characterization by factor analysis of the chemical facies of groundwater in the 

Deltaic Plain Sands aquifer of Warri, Western Niger Delta, Nigeria. African J. of Sci. and Tech. 7(1), 73-81. 

Price, C.B., Brannon, J.M., and Hayes, C.A. 2001. Relationship between redox potential and pH on RDX transformation in soil-

water slurries. J. of Environ. Eng. 127, 26-31. 

Price, C.G., Brannon, J.M., and Yost, S.L. 1998. Transformation of RDX and HMX under controlled Eh/pH conditions. U.S. 

Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS 39180. IRRP-98-2. 

Pujari, P.R. and Deshpande, V. 2005. Source apportionment of groundwater pollution around landfill site in Nagpur, India. 

Environ. Monit. Assess. 111(1-3), 43-54. 

Reghunath, R., Sreedhara Murthy, T.R., Raghavan, B.R. 2002. The utility of multivariate statistical techniques in 

hydrogeochemical studies: an example from Karnataka, India. Water Res. 36(10), 2437-2442. 

Selim, H.M., and Iskandar, I.K. 1995. Transport of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils. Soil 

Sci. 160, 328-339. 

Susarla, S., Collette, T.W., Garrison, A.W., Wolfe, N.L., and McCutcheon, S.C. 1999. Perchlorate identification in fertilizers. 

Environ. Sci. and Tech. 33, 3469-3472. 

Townsend, D.M. and Meyers, T.E. 1996. Recent Developments in Formulating Model Descriptors for Subsurface 

Transformation and Sorption of TNT, RDX, and HMX. United States Army Corps of Engineers, Waterways Experiment 

Station, Vicksburg, MS. Technical Report IRRP-96-1. 

Voudouris, K.S., Lambrakis, N.J., Papatheothorou, G., and Daskalaki, P. 1997. An application of factor analysis for the study of 

the hydrogeological conditions of Plio-Pleistocene aquifers of NW Achaia (NW Peleponnesus, Greece). Math. Geol. 29(1), 

43-59. 

Young, T.S.M., Morley, M.C., and Snow, D.D. 2006. Anaerobic biodegradation of RDX and TCE: single- and dual-contaminant 

batch tests. Pract. Periodical of Haz., Toxic, and Radioactive Waste Mgmt. 10(2), 94-101. 

18

International Journal of Soil, Sediment and Water, Vol. 1 [2008], Iss. 2, Art. 1 ISSN: 1940-3259

https://scholarworks.umass.edu/intljssw/vol1/iss2/1


	International Journal of Soil, Sediment and Water
	December 2008

	Factor Analysis Reveals Effects of Reducing Conditions on the Fate and Transport of RDX in Groundwater
	Michael W. Morris
	Recommended Citation

	Factor Analysis Reveals Effects of Reducing Conditions on the Fate and Transport of RDX in Groundwater
	Cover Page Footnote


	Microsoft Word - 147735-text.native.1228490272.doc

