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Abstract  
 
The problem of parametric surface meshing for the purpose of design 
optimisation using finite element analysis is considered. Here the surface mesh 
is generated as a solution of a suitably posed boundary value problem 
implemented on a 2D parameter space. A robust meshing scheme is presented 
where an initial mesh is manipulated, with the aid of the 2D parameter space, so 
as to obtain a suitable surface triangulation. This meshing scheme can then be 
used to create suitable finite element meshes with which accurate design 
optimisations can be carried out.  
 
 
Introduction  
 
The problem of creating a surface triangulation suitable for engineering analysis 
is of great interest for many Computer-Aided Engineering (CAE) applications. 
There are great many references citing the significant efforts that have been 
made towards developing efficient and robust algorithms for automatic 
triangulation of complex geometric shapes. Among the existing techniques for 
surface triangulations are algebraic mapping methods [9], variational methods 
[15], Delaunay triangulation [4], Quadtrees [18] and Advancing Front method 
[12]. While the bulk of these existing methods are well equipped to tackle the 
problem of meshing complex domains, from the point of view of physical 
analysis, certain problems still need addressing with regard to the actual quality 
of the mesh [10, 5]. Furthermore the existing mesh improvement techniques can 
be computationally extensive.  
    
There exist many methods whereby surface meshes are generated by means of 
mapping meshes produced in the parameter space onto surface. All of these 
methods fall into the general mesh generation techniques described earlier. For 
example, [19] uses an algebraic mapping technique to generate surface meshes 



where a triangulation update scheme (based on edge swapping and smoothing) 
is adopted on the parameter space in order to improve the surface mesh. 
Similarly, in [6] the use of Delaunay triangulation is made to generate surface 
meshes. Here, as a means of checking and improving the quality of the surface 
mesh, a mapping technique based on the circumcircle property of the triangular 
elements in the parameter space is used to update the surface mesh.  
 
This paper shows how a PDE formulation can be used to generate suitable 
surface meshes from the point of view of design optimisation using finite 
element analysis. In the following sections an overview of the PDE method is 
discussed, which shows how a 6th order biharmonic PDE can be used to create 
an initial mesh over a complex parametric surface. A discussion of how an 
initially created PDE surface mesh can then be improved to generate a mesh, 
which is suitable for use in finite element analysis is presented.  
 
Surface Design and Mesh Generation using the PDE 
Method 
 
In geometric design, it is common practice to define curves and surfaces using a 
parametric representation. Thus, surfaces are defined in terms of two parameters 

and  so that any point on the surfaceu v X  is given by an expression of the 
form:  

),( vuXX = .                                                                                                  (1) 
Equation (1) can be viewed as a mapping from a domain Ω  in the  
parameter space to Euclidean 3-space. In the case of the PDE method [2, 3] this 
mapping is defined by means of a partial differential operator: 
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where the elliptic partial differential operator  is of degree m . Thus, 
effectively, surface design is treated as an appropriately posed boundary-value 
problem with appropriate boundary conditions imposed on 

L

Ω∂ , the boundary of 
. The chosen PDE is solved subject to a set of boundary conditions which are 

usually defined at the edges of the surface patch.  
Ω

 
The Design Approach  
 
For the work described here, the sixth order PDE:   
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 is used, where the condition on the function ),( vuX , its first and second 
derivatives can be imposed at the edges of the surface patch. The parameter a  



is a special design parameter which controls the relative smoothing of the 
surface in the u and  directions [3]. For periodic boundary conditions (e.g. 
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where the vector-valued constant coefficients in (5), (6) and (7) are determined 
by the imposed boundary conditions at and 

,2
6

anu
n eua −+

,2
6

anu
n eub −+

1=u . 
 

 
 

(a) (b) (c) 
Figure 1 A typical PDE surface resulting from the solution of the 6th order 
PDE. (a) The boundary curves. (b) A section of the parameter space 
showing the triangulation. (c) The corresponding PDE surface patch. 
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Although the boundary conditions can be imposed by means of standard analytic 
functions, for the purpose of demonstration here the boundary conditions are 
defined in terms of curves in 3-space [16, 17]. For example, assuming  to be 
the periodic parameter, Figure 1(a) shows a typical set of boundary curves 
where the corresponding PDE surface is shown in Figure 1(c). A section of the 
corresponding parameter space is also shown in Figure 1(b). The curves 
marked  and  correspond to the boundary conditions on the function 

v

)v
1p 2p

,(u

,(uX )v . A vector field corresponding to the difference between the points on 
the curves marked and and those marked and respectively, 

corresponds to the conditions on the function 
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where s is a scalar. The condition 2
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where t is another scalar. As the format of the equations  (8) and (9) suggests, 

the definitions of the boundary conditions 
u
X
∂
∂  and 2

2

u
X

∂
∂  resemble that of a 

finite-difference approximation scheme. Note that the surface patch does not 
necessarily pass through the curves defining the first and second derivative 
boundary conditions. 
 
For the purpose of design optimization a parameterization is introduced via the 
boundary curves defining the surface. The design parameters are defined as 
linear transformations of these boundary curves, i.e. translations, dilations and 
rotation of the boundary curves corresponding to the boundary conditions of the 
PDE produce a wide variety of alternative shapes within a chosen design space. 
  
Surface Meshing   
 
As described above the PDE method produces a parametric surface patch of two 
parameters and . To produce a mesh on such a surface, a suitable 
discretization of the  parameter space is first carried out. The resulting 
surface mesh inherits the topological characteristics of the mesh resulting from a 
discretization based on the constant , lines of the parameter space. There are 
a number of methods by which a triangulation of a 2D region can be created, 
which include domain decomposition techniques such the Delaunay 
triangulation. For the purposes of demonstrations the following simple 
procedure has been used for generating a triangular mesh in the parameter 
space.  First a uniform discretization of the  parameter space, leading to 
rectangular elements, is carried out.  Each rectangular element is then halved 
along its diagonal to obtain two triangular elements. The triangulation on the 
surface shown in Figure 1(c) has been implemented by using this triangulation 
procedure carried out on the  parameter space shown in Figure 1(b). 
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It is clear that as a result of the PDE mapping from parameter space to physical 
space a satisfactory mesh in  parameter space could result in a very poor ),( vu



mesh on the surface.  Therefore, the aim here is to present a technique to check 
and improve the quality of such a surface mesh by means of direct mesh 
manipulation in the  parameter space.  ),( vu
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Before the procedure for local mesh manipulation is applied, a suitable 
subdivision of the parameter space along and is sought, based on the 
intrinsic parameterization of the surface patch. This is an important step since 
the relative subdivisions along u  and directions have a direct influence on the 
aspect ratio of the individual triangles within the mesh.  
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To compute a suitable value for the aspect ratio of the initial subdivision surface 
patch, first an arbitrary number of uniform subdivisions along the and  
directions of the  parameter space are carried out, and the corresponding 

u v
(u

),( vuX points on the PDE surface patch are computed. Then along the , 
parameter lines on the surface patch the corresponding arc-lengths of the 

curves on the surface are calculated.  By using these arc-lengths, a measure of 
the average aspect ratio, 

u
v

r , is obtained using: 
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where   and   are the arc lengths along  and  isoparametric 
lines respectively. The sum and  are measures for the 
average arc-lengths along the given  and parameter lines respectively of the 
surface patch. 
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M and are the positive integers corresponding to the arbitrary 
uniform subdivisions along u and directions respectively. 
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Once the  parameter space is discretized according to the aspect ratio of 
the surface patch, mesh improvement by means of adjusting individual vertices 
is performed.  Considering a triangular element 

),( vu

t in the initial mesh, a shape 
regularity criterion [11, 1] based on the analysis of interpolation error can be 
defined so as to obtain a measure for the quality of individual triangles of the 
mesh. Given that a triangle, t , has edges ,  and and area , its shape 
regularity criterion 

1d 2d 3d a
)(tα can be defined as: 
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where the function )(tα is normalized such that 1)(0 ≤≤ tα . The value of 
)(tα will attain the value 1.0 if the triangle is equilateral and approaches zero for 

triangles with small internal angles. For finite element analysis purposes, for a 
given triangle, if 6.0) ≥(tα  then the triangle is considered to be acceptable [7].     



 

Figure 2. A section of the  parameter space showing edges relating 
to a given vertex . 
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To describe the procedure adopted here in detail, refer to Figure 2 showing a 
section of  parameter space , and consider the vertex labeled 

, where 
),( vu iΩ

),( iii vuV = Ω⊆Ω i  contains all the elements of the mesh with the 
vertex . For a series of triangulations in iV kT iΩ  a local optimization problem 
can be formulated such that: 

∑ −= i ik tT ]))(0.1(min[ 2* α , .                                                               (12)  ki Tt ∈
 
Referring to the elements of the mesh in iΩ , it is clear that to effect the 
quality )(tα of the elements of the corresponding PDE surface defined by those 
in we can iteratively change the position of  within the space of iΩ iV iΩ . This 
local optimization problem is solved by implementing a line search algorithm 
[13] with appropriately imposed constraints so that the search space is restricted 
within a given . These constraints are imposed to preserve the topology of 
the mesh structure and to prevent the unfolding of the mesh.  Since this local 
problem is always bounded from above, the function can only 
be decreased or at worst left unchanged.  Thus, the unconstrained vertices (all 
vertices except those forming the edge) of the mesh are in turn updated 
iteratively improving the mesh in general.  In practice one could iterate the 
global problem until a formal convergence criterion is met. However, it is 
common practice to only perform a fixed number of iterations. In fact, good 
quality meshes are usually obtained by using very few iterations. 
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Figure 3. (a) An initial surface mesh in which triangles at u 21= whose 
quality needs improving. (b) The improved mesh resulting from the 
smoothing process, by means vertex manipulation. 
 
To illustrate the implementation of the above procedure to smooth a given mesh, 
consider the surface shown in Figure 3(a). The particular shape of this surface 
patch is created to exemplify a mesh in which some of the triangles have 
undesired geometric shapes that can be quantified in terms of the )(tα criterion 
described above. In particular, one can see that the elements towards the middle 
region 21=u  of the surface patch are of worst quality. The aim is to improve 
the quality of these elements and in general to improve the quality of triangles of 
the whole mesh.  As a measure of the overall quality of the elements in the 
surface mesh the minimum value of )(tα taken over all the elements of the mesh 
is calculated here. For the initial shape shown in Figure 3(a) this minimum value 
of )(tα  is 0.561.  
 
Figure 3(b) shows the surface patch that results after the mesh smoothing 
process has been applied by taking into account the aspect ratio of the surface 
patch. As can be seen for the mesh on this surface patch there has been a 
significant improvement on the quality of its elements, as indicated by the 
minimum value of )(tα for the improved mesh which is now 0.738.  
 
Numerical Example illustrating a Design Optimization 
 
In this section, the PDE surface meshing scheme and the parameterization 
scheme is used to illustrate how a given design optimization can be carried out.  
The problem considered here is the minimization of the mass of a container with 
both a fixed volume and a prescribed level of strength. 
 
Consider the shape shown in Figure 4 (a) describing the shape of a container 
suitable for packaging a food product such as yogurt. To formulate the design 
optimization, the problem of stacking such containers on top of each other is 
considered. Assuming the container to be considered is at the bottom of the 
stack, such a container will experience a level of stress (due to the weight of the 
rest of the containers in the stack) and hence becomes slightly deformed. It is the 
excessive shear stress that can cause most damage to the material under 
consideration. Thus, a measure for the required strength of the container can be 
computed by calculating the maximum plastic shear stress within the loaded 
container.  Assuming the container is composed of the plastic with the material 
properties of that of polystyrene the strength of the container is characterized by 
means of the non-linear elasto-plastic thin-shell stress analysis using finite 
element method.  A vertical force of 15Nm-1 (equivalent to the weight of about 



30 yogurt containers) is applied around the rim of the container.  It is also 
assumed that the base of the container is fixed.  
 
With the above formulation the design objective here is set to be the 
minimization of the mass of the container subject to a given maximum shear 
stress. The optimization is performed by solving a constrained optimization 
problem using an augmented Lagrange multiplier method [8] along with the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [14]. 
   

 
                                               (a) 

 
             (b) 

Figure 4. Example illustrating the optimal design of a container for 
strength. (a) The initial design (b) The optimal design. 
 
As mentioned earlier a surface parameterization is formulated via the linear 
transformation of the boundary curves. The objective here is to find the internal 
shape of the container with fixed edges.  Therefore, the changes in the design 
parameters introduced on the first and second derivative boundary curves 
corresponding to the shape of the container are only varied, i.e. both the 
positional boundary curves are kept fixed. The required volume of the container 
was taken to be as 150ml. The required strength of the container is specified so 
as the level of stress occurring within the loaded structure is always less than 
30% of the yield stress.  
 
Once the geometry is parameterized, the design parameters and their ranges 
along with the value for the required volume of the container are automatically 
varied by the optimization routine. The routine searches the design space in 
order to find the design with the lowest possible value of the chosen merit 
function. For each iteration of the optimization a new design is generated where 
the corresponding triangular mesh is improved before the finite element analysis 
is performed.  
 
Due to the extensive finite element analysis computations, the optimization took 
a little over 10 hours on a fast PC. The resulting optimal shape is shown in 
Figure 4 (b). This new design had a relative reduction in mass of 23.8%.    
  
 
Conclusion 



 
The problem of automatic triangulation of surfaces suitable for use in finite 
element analysis applications is addressed. The surface meshing is carried out by 
means of a sixth order elliptic PDE subject to suitable boundary conditions 
defined at the edges of the surface patch. A vertex manipulation procedure is 
adopted by means of a local optimization procedure where the mesh is 
iteratively updated by adjusting the individual vertices of the mesh. This local 
optimization problem is solved so as to optimize a geometric measure based on 
the shape of the triangles of mesh.  
 
The existence of a closed form solution of the chosen PDE enables complex 
surfaces to be created and re-created very quickly thus making the mesh 
optimization scheme very fast. Furthermore, since the necessary computation for 
the surface meshing scheme is effectively carried out on the 2D parametric 
space, the process of mesh smoothing is very efficient and robust.  
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