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Abstract

The aim of this paper is to show how the spine of a PDE surface can
be generated and how it can be used to efficiently parameterise a PDE
surface. For the purpose of the work presented here an approximate
analytic solution form for the chosen PDE is utilised. It is shown that
the spine of the PDE surface is then computed as a by-product of this
analytic solution. Furthermore, it is shown that a parameterisation
can be introduced on the spine enabling intuitive manipulation of PDE
surfaces.

1 Introduction

An important requirement for modern CAD systems is the ability to be
able to parameterise the shapes of complex objects with ease. In parametric
design the basic approach adopted is to develop a generic description of an
object or a series of objects to which a given set of design parameters can
be associated. Shape manipulation (usually in an interactive environment)
can then be carried out by choosing appropriate values for the chosen design
parameters. To this end it becomes essential that the chosen parameters not
only describe the shape intuitively but also enable the designer to manipulate
the shape with ease.

Presently there exist many commercial CAD systems which employ the
conventional polynomial surface modelling schemes. A fine example of the
polynomial based surface modelling scheme is the Non-Uniform Rational B-
Splines (NURBS) [8]. NURBS are based on simple polynomial functions to
which weights and knots collectively known as control points are associated.
These control points are often identified as the design parameters. For simple
shapes the interactive manipulation through changes in the position of the
control points become intuitive and somewhat predictable. However, as the
design becomes more complex the process of shape manipulation, by way of
manipulating the control points, becomes time-consuming and rather non-
intuitive.



PDE surfaces have recently emerged as a powerful shape modelling tech-
nique [5, 6, 11, 12]. It has been demonstrated how a designer sitting in
front of a workstation is able to create and manipulate complex geometry
interactively in real time [11]. Furthermore, it has been shown that complex
geometry can be efficiently parameterised both for intuitive shape manipu-
lation [12] and for efficient design optimisation [2].

Previous work on shape parameterisation allows a designer to choose
shape parameters on the boundary curves that define the PDE surface [11].
It has been shown that intuitive shape manipulation can then be performed
by means of changing these parameters. Although in this earlier work it
has been demonstrated that the manipulations of complex surface shapes
by means of manipulating the corresponding boundary curves is intuitive,
for complex objects that are built from a number of multiple PDE surface
patches, it has been noted that in certain circumstances the process of shape
manipulation can be time-consuming. Therefore, the motivation behind this
work is to introduce new techniques that allow a designer to manipulate
shapes of complex objects with less effort and to further parameterise the
object in an intuitive fashion. For this purpose the basic idea used here is to
exploit the use of a skeleton or a ‘spine’ associated with the PDE surfaces.

Generally speaking the spine of an object is described to be a curve in 3-
space that follows the ‘centreline’ of that object. Thus, the spine of an object
has a close geometric resemblance to the more widely known shape entity
known as the medial axis or the skeleton [3, 7]. Bearing this in mind, one
could therefore imagine that the spine of a shape brings out the symmetries
in that shape. It can also be noted that the spine in general has far richer
topologies than the shape it is derived from. Apart from the rich geometric
properties the spine posses, its intuitive appeal in applications in geometric
manipulations can also be noted. For example, many authors have stated the
flexibility of the medial axis and its ability to naturally capture important
shape characteristics of an object [10, 9, 4]. Since the spine of an object has
a close resemblance to the medial axis it can be seen that the spine of an
object can therefore naturally characterise the shape from which it is derived
from.

The aim of this paper is to show how the spine of a PDE surface can
be created and utilised in order to characterise PDE surfaces as well as to
enable the development of further intuitive techniques for powerful shape
parameterisation. By exploiting the structural form of a closed form solution
for the chosen PDE it is shown how the spine of a PDE surface can be
generated as a by-product of this solution. Furthermore, it is shown that the
spine of the PDE surface patch is represented as a parametric polynomial
function that can be used as a shape manipulation tool to deform the shape



in an intuitive fashion. To demonstrate the ideas presented here, practical
examples of shapes involving PDE surfaces are discussed throughout the

paper.

2 PDE Surfaces

A PDE surface is a parametric surface patch X (u, v), defined as a function of
two parameters v and v on a finite domain Q C R?, by specifying boundary
data around the edge region of 0€). Typically the boundary data are specified
in the form of X (u,v) and a number of its derivatives on 0€2. Moreover, this
approach regards the coordinates of the (u,v) point as a mapping from that
point in 2 to a point in the physical space. To satisfy these requirements the
surface X (u,v) is regarded as a solution of a PDE based on the bi-harmonic
equation V* = 0 namely,

(86; +a ;2)2&(%@) —0. (1)

Here the boundary conditions on the function X (u,v) and its normal deriva-
tives '?9 are imposed at the edges of the surface patch. The parameter a is a
special design parameter which controls the relative smoothing of the surface
in the v and v directions [12].

2.1 Solution of the PDE

There exist many methods to determine the solution of Equation (1) ranging
from analytic solution techniques to sophisticated numerical methods. For
the work described here restricting to periodic boundary conditions a closed
form analytic solution of Equation (1) is utilised.

Choosing the parametric region to be 0 < v < 1 and 0 < w
the periodic boundary conditions can be expressed as, X (0,v) =
1(17 U) = B2(v)7 Xu(oa U) = 6_11(1)), and Xu(la U) = 6—12(1))'

Note that the boundary conditions Py(v) and P;(v) define the edges of
the surface patch at v = 0 and u = 1 respectively. Using the method of
separation of variables, the analytic solution of Equation (1) can be written
as,

< 2m,
Py (v)

X(u,v) )+ Z ) cos(nv) + B,,(u) sin(nv)], (2)

where
Ay = agp + agiu + agu” + agsu’, (3)
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where agg, o1, Qo2, Qo3 Cnis Anos An3y Gpas Oni bno, b,s and b,, are vector con-
stants, whose values are determined by the imposed boundary conditions at
u=0and uv=1.

For a general set of boundary conditions, in order to define the various
constants in the solution, it is necessary to Fourier analyse the boundary
conditions and identify the various Fourier coefficients. Where the boundary
conditions can be expressed exactly in terms of a finite Fourier series, the
solution given in Equation (2) will also be finite. However, this is often not
possible, in which case the solution will be the infinite series given Equation
(2).

The technique for finding an approximation to X (u,v) is based on the
sum of the first few Fourier modes and a ‘remainder term’, i.e.,

X(u,v) ~ Ag(u) + Z[An(u) cos(nv) + B,,(u) sin(nv)] + R(u,v), (6)

n=1

where N is usually small (e.g. N < 10 ) and R(u,v) is a remainder function
defined as,

R(u,v) = ri(v)e"™ + ry(v)e”™ + ry(v)e™ + r4(v)e™", (7)

where 1, 1y, 13, r, and w are obtained by considering the difference between
the original boundary conditions and the boundary conditions satisfied by
the function,

F(u,v) = Ay(u) + Z[An(u) cos(nv) + B, (u) sin(nw)]. (8)

n=1

An important point to note here is that although the solution is ap-
proximate this new solution technique guarantees that the chosen boundary
conditions are exactly satisfied since the remainder function R(u,v) is cal-
culated by means of the difference between the original boundary conditions
and the boundary conditions satisfied by the function F'(u,v) [1].

Fig. 1 demonstrates the interactive design of a typical PDE surface
where the boundary conditions for the PDE are chosen in the form of curves
in 3-space shown in Fig. 1(a). The corresponding PDE surface shape is
shown in Fig. 1(b). Here the curves marked P; and P, correspond to the
boundary conditions on the function X(u,v), where P;(v) = X(0,v) and
Py(v) = X(1,v). A vector field corresponding to the difference between
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Figure 1: A typical PDE surface created interactively. (a) The boundary
conditions defined in the form of curves in 3-space. (b) The resulting surface
shape.

the points on the curves marked P; and P, and those marked d; and d,

respectively, corresponds to the conditions on the function %—% such that

%—% = [Q(U) - c_i(v)] s, where s is a scalar.

It can be appreciated that from a design point of view this boundary
curve based approach is a user-friendly tool for PDE surface manipulation
in an interactive environment. Previous work on interactive design using the

PDE method demonstrates these techniques [11].

2.2 The Spine of a PDE surface

Taking the form of Equation (2) one could observe the following properties
of the analytic solution that allows us to extract the spine of a PDE surface
as a by-product of the solution.

Firstly the term A, in Equation (2) is a cubic polynomial of the parameter
u. Secondly it can be seen that for each point X (u,v) on the surfaces the
term Y0, [A, (u) cos(nv)+B, (u) sin(nv)] in Equation (2) describes the radial
position of the point X (u,v) away from a point at A,. Finally applying the
triangle inequality to Equation (2) one can see that,

I A (w) [|<[] X(u,0) | = | i[An(U) cos(nv) + By (u) sin(nv)] [ . (9)

Thus, the term A, which is a cubic polynomial of the parameter u traces
out a curve in 3-space which follows the ‘centreline’ of the surfaces patch.
Therefore, using the solution technique described in Equation (2) a surface
point X (u,v) may be regarded as being composed of sum of a vector A,
giving the position on the spine of the surface and a radius vector defined
by the term >0°,[A,(u) cos(nv) + B, (u) sin(nv)] providing the position of
X (u,v) relative to the spine. More precisely one could state that for a PDE
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Figure 2: Description of the spine of a PDE surface. (a) The spine described
by the A, term. (b) A cylindrical PDE surface patch.

surface described by the Equation (2) the spine can be constructed by taking
that part of the solution with zero mean by way of removing the periodic
contribution. One should note that although the particular definition for the
spine of a PDE surface that is adopted here is a very convenient one from the
point of view of the underlying mathematical representation of the surface,
it is by no means a unique definition.

It is noteworthy that the introduction of the R(u,v) term in the new
solution described in Equation (6) hardly affect the interior shape of the
surface. This is due to the fact that for large n the Fourier modes make
negligible contributions to the interior of the patch. Therefore, as far as the
spine of the shape generated using Equation (6) is concerned since the spine
does not represent the detailed geometry of the shape, the Ay(u) term is
left unchanged by the introduction of the R(u,v) term in the approximate
solution and hence the spine of the shape is left unchanged.

To illustrate the idea of generating the spine of a PDE surface, based
on the above discussion, the following describes some examples of shapes
created using PDE surfaces and the corresponding spines relating to the A,
term given in Equation (2).

Fig. 2(b) shows a typical PDE surface of cylindrical form. This particular
shape is created by means of four appropriately spaced ellipses defining the
boundary conditions Py(v), P(v), dy(v) and d,(v). Fig. 2(a) shows the
image of the cubic polynomial described by the A, term corresponding to
the spine of this surface patch.

Fig. 3(b) shows a composite shape that looks like the shape of an air-
craft. This shape is created by means of five surface patches (one for the
fuselage and two for each wing) with common boundaries where necessary.
The corresponding composite spine for the aircraft shape is shown is Fig.
3(a). As can be noted, in both these examples the spine closely describes the
centreline of the object.
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Figure 3: Description of the spine of a composite shape. (a) The corre-
sponding composite spine for the aircraft shape. (b) The shape of an aircraft
created by means of five separate PDE surface patches

3 Shape Parameterisation using the Spine

One of the many attractive features of PDE surfaces is their ability to be
able to create and manipulate complex shapes with ease. Previous work on
interactive design has demonstrated that a user with little or no knowledge
of solving PDEs and how the boundary conditions affect the solutions of
the PDEs is able to use the method to create complex geometry with ease
[11, 12, 5]. The shapes in this case are parameterised using the boundary
curves that define them. However, it was noted that for very complex shapes,
in order to manipulate the shape, the number of curve manipulations can be
excessive. Since the spine of the surface characterises the surface patch as
a whole, rather than individual boundaries, a shape parameterisation based
on the spine would provide further intuitive tools for shape manipulation.

The aim of this section is to show that the spine of a PDE surface can
be used to parameterise the surface shape which in turn can be utilised to
develop design tools for further efficient shape manipulation. As shown in
the previous section the spine of a PDE surface comes as a by-product of the
analytic solution used. By virtue of the very definition of the spine it can
be seen as a powerful and intuitive mechanism to manipulate the shape of
surface once it is defined. There are many ways by which one could utilise
the spine to parameterise a PDE surface. One such possibility is described
here.

Consider the cubic polynomial described by the A, term in Equation (2)
to be a Hermite curve of the form,

H(u) = By (u)p, + By(u)p, + Bs(u)v; + By(u)vy, (10)

where the B; are the Hermite basis functions, the vectors PP, and vy, v,
define the position and the speed of the Hermite curve at u = 0 and v = 1
respectively. By comparing the Hermite curve given in Equation (10) with
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Figure 4: Shape parameterisation and manipulation using the spine. (a) The
spine described by the A, term defined as a Hermite curve. (b) A deformed
cylinderical PDE surface.

a b

Figure 5: Shape parameterisation and manipulation using the spine. (a) The
composite spine described by the corresponding A, terms defined as Hermite
curves. (b) Manipulated shape of the aircraft shape.

the cubic for the spine given as the A, term in Equation (2), the vector
constants agg, Gg1, gy and ayy given in Equation (3) can be related to the
position vectors and its derivatives at the end points of the spine. Since the
Ay term in Equation (2) is an integral part of the solution that generates
the surface shape any change in the shape of the spine will of course have a
resulting change in the shape of the surface. A useful mechanism to change
the shape of the spine would be to manipulate its position and the derivative
at the two end points. Therefore, the position vectors and its derivatives at
the end of points of the Hermite curve describing the spine are defined to
be a new set of shape parameters that enable to manipulate the shape in an
intuitive fashion.

To demonstrate this idea, consider the cylindrical shape shown in Fig.
2(b) where the corresponding spine is also shown in 2(a). Fig. 4(b) shows
a resulting shape after some manipulation of the shape shown in Fig. 2(b)
using the shape parameters defined on the spine. Fig. 4(a) illustrates the
resulting spine and the parameters p ,p, and v;, v, for the resulting surface
patch.



Fig. 5(b) shows another example of shape manipulation using the spine.
Here the shape of the aircraft shown in Fig. 3(b) was manipulated using
the parameters defined on the composite spine shown in Fig. 3(a). The
final shape of the composite spine and the parameters corresponding to the
resulting shape of the aircraft are shown in Fig. 5(a)

Note in both these examples the shape manipulations were carried out
interactively via the position vectors p and p, and the direction vectors v,
and v,, for each of the corresponding surface patch. In the case of the position
vectors they are changed by means of clicking and dragging the points in 3-
space and in the case of direction vectors they are changed by means of the
changing the size and the direction of the arrows shown.

4 Higher Order PDE Surfaces

This section focuses on how the previous discussions on the spine based shape
parameterisation can be extended to higher order PDE surfaces. Higher order
PDE surfaces posses extra degrees of freedom and therefore are capable of
generating more complex surface patches. Furthermore, due to the extra
boundary conditions that can be associated with the surface patch, there is
a greater level of user control on such a surface patch.

For the sake of keeping the discussion on higher order surfaces concise
the PDE chosen here is the tri-harmonic PDE,

(aZ + 282>3K(u,v):0, (11)

ou? " o2

which posses higher order than the widely used bi-harmonic form of the PDE
given in Equation (1).

In order to cater for the added boundary conditions the tri-harmonic PDE
requires extra curvature boundary conditions. For a given surface patch these
conditions are defined as ¢; and ¢; at u = 0 and u = 1 respectively. Fig. 6(a)
illustrates how the new boundary conditions can be defined. Following the
approach described in Section 2, for defining the boundary conditions using
space curves, the curvature boundary conditions, %27%, are defined by means
of the‘curves marked P, and P,, d; and dy and those marked ¢; and ¢y such
that ?;T% = [Q(v) —2d(v) + Q(v)] t, where ¢ is a scalar.

Using the approximate analytic solution approach outlined in Section 2.1
the solution of Equation (11) can be written as,

X(u,v) ~ Ay(u) + Z[An(u) cos(nv) + B, (u) sin(nv)] + R(u,v),  (12)

n=1
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Figure 6: A vesicle shape created using a sixth order PDE surface patch. (a)
The boundary conditions and the spine of the vesicle. (b) The shape of the
vesicle.

b

Figure 7: Shape manipulation on the vesicle shape. (a) The spine of the
vesicle and the shape parameters defined on the Hermite curve. (b) The
resulting shape of the vesicle.

where
2 3 4 5
Ao = Qpp T o1 U + QU™ + Ap3U™ + QpuU™ + g5, (13)

with aq4 and ag; being vector valued constants. The terms A,, B, and
R(u,v) take similar forms given in Equations (4), (5) and (7) respectively.

Fig. 6(b) shows the shape of a biological vesicle created using a single
PDE surface patch based on Equation (11). As discussed earlier the periodic
curves shown in Fig. 6(a) are chosen as the boundary conditions for the
vesicle shape. Fig. 6(a) also shows the spine for this higher order surface
patch described by the A, term given in Equation (13).

4.1 Spine Based Shape Parameterisation

Taking the approach of using Hermite curves described in Section 3 the sur-
face shape defined by the higher order PDE can also be parameterised using
the corresponding spine. An important point to note here is that the A, term
given in Equation (13) is now a quintic polynomial with two added degrees of
control to accommodate the curvatures. Thus, considering this polynomial
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Figure 8: Shape of a dolphin created using a mixture of tri-harmonic and
bi-harmonic PDEs. (a) The composite spine of the dolphin shape. (b) The
dolphin shape.

to be a Hermite curve of the form,
H(u) = By (u)p, + By(u)p, + Bs(u)vy + By(u)vy + Bs(u)a, + Bg(u)ay, (14)

where the B; are the Hermite basis functions, the vectors PP, and vy, v,
define the position and the speed of the Hermite curve and a,, a, define the
curvature of the curve at the end points of the spine. Therefore, the vectors
ay,a, define an extra set of parameters that can be used to manipulate the
shape.

In order to illustrate the shape manipulation using the higher order spine,
consider the vesicle shapes shown in Figs. 6(b) and 7(b) where the shape
manipulation between the two shapes is carried out using the above defined
shape parameters on the spine described by the Hermite curve. Fig 7(a)
shows the resulting shape of the spine with the shape parameters, p ,p, ,
V1,05 and aq, ay introduced via the Hermite curve. Again the shape manipu-
lation is carried out interactively by means of changing the position and the
direction of the vectors defining the shape parameters.

Figs. 8 and 9 further illustrates the use of shape parameters on the spine
for use in interactive shape manipulation. Here the shapes of the dolphins are
created using a mixture of tri-harmonic and bi-harmonic PDEs. In particular,
the main body of the dolphin is created as a single sixth order PDE surface
patch. The shape manipulation between the two shapes were carried out
using the shape parameters, p ,p, , v;,0, and a;,a,, defined on the spine
corresponding to the main body of the dolphin shape.

5 Conclusions

This paper describes how the spine of a PDE surface can be used to parame-
terise the shape of a complex object. Due to the analytic form of the solution
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Figure 9: Manipulated shape of the dolphin. (a) The resulting composite
spine of the dolphin shape. (b) The resulting dolphin shape.

used to generate the surface shape the spine is computed as a by-product of
the solution. It is shown that due to the canonical and intuitive nature of the
spine it can be used to parameterise a complex shape. This parameterisation
can then be used to manipulate the shape in real time once it is defined.

As shown here the shape manipulation using the spine can be seen as an
added bonus to the existing intuitive tools available for efficient shape manip-
ulation of PDE surfaces. Essentially the spine based shape parameterisation
undertaken here is formulated using Hermite curves. With this formulation
it has been shown that the shape can be efficiently parameterised.

Here we have discussed how the spine can be used to deform a PDE surface
globally. Should local control of shape is required this methodology can easily
be incorporated within a framework where the relevant PDE for local control
is solved (e.g. see [5]). In the examples discussed in this paper the boundary
conditions were taken to be curves in 3-space and the spine is interactively
manipulated to bring about real time changes in the shape. The interactive
design process enables the user to detect and avoid collision of PDE surfaces
when the object consists of multiple PDE patches. However, should the
manipulation procedure requires to be automatic, for example in the case of
automatic design optimisation, then a robust collision detection procedure
would have to be implemented in order to avoid collision of adjacent surface
patches during the deformation process.

An interesting future direction of study would be to extend the spine
based parameterisation to cater for geometry that can handle not only more
complex shapes but also shapes with changing topology. Such a parame-
terisation scheme can then, for example, be applied to design optimisation
problems where a wide variety of geometry with changing topology would be
available to the optimisation scheme.
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