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Abstract

A method for trimming surfaces generated as solutions to Partial Differential Equa-
tions (PDEs) is presented. The work we present here utilises the 2D parameter
space on which the trim curves are defined whose projection on the parametrically
represented PDE surface is then trimmed out. To do this we define the trim curves
to be a set of boundary conditions which enable us to solve a low order elliptic
PDE on the parameter space. The chosen elliptic PDE is solved analytically, even
in the case of a very general complex trim, allowing the design process to be carried
out interactively in real time. To demonstrate the capability for this technique we
discuss a series of examples where trimmed PDE surfaces may be applicable.

Key words: PDE Surfaces, Trimming, Laplace Equation
C & G Keywods: Modeling , Boundary representations, Curve and surface
representations, Numerical Algorithms and Problems

1 Introduction

Surface trimming can be broadly described as a process whereby a given sur-
face patch is mathematically re-defined subject to the condition that a given
unwanted portion of the original surface be removed. This process involves the
generation of new surface geometry for the trimmed patch by means of closely
approximating the corresponding portion of the surface on the original patch.

Surface trimming is considered to be a key design component of any free-form
surface modelling system [5,8]. Trimming, for instance, is an essential part of
Boolean operations commonly used in complex surface modelling. A simple
such operation which is commonly performed involves generating a hole on
the surface for shape blending purposes.
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There exist a wide variety of well-established techniques for free-form surface
design for which surface trimming is an essential component. Such techniques
include boundary based methods such as polygon based design [12], extrusions
and surface of revolution [20], polynomial patches [8]; procedural modelling
such as implicit surfaces [2]; and volumetric models such as constructive solid
geometry [21] and subdivision [6]. Among these free-form surface design tech-
niques the most widely used are polynomial patches and subdivision.

In the case of polynomial surface patches the problem of trimming was most
probably discussed by Hoscheck [13–15] at first. These early methods involved
the division of the parameter space of a given polynomial surface patch into a
set of subsets whose specific forms are defined by cubic Bézier surface patches.
The definition of the Bézier surfaces in this case involved a combination of
knot insertion and change of basis functions. Applegarth, around the same
time, proposed an approach to trim spline surfaces by using a method based
on clipping trim curves [1]. Here the work of Rojas is also notable. Roja’s
methods involved the use of Fleming’s constraint-based inversion algorithm to
define a new set of B-spline surface patches which make up the corresponding
regions of interest in the original surface [9] . More recent work on trimming
of spline surfaces, especially for NURBS, involve the identification of a trim
region within the domain whose evaluation is skipped by computing the pre-
image of the trim curve in the parametric domain [17,18,18]. It is noteworthy
that generally speaking the computations involved in trimming spline surfaces
demand high computational resources.

Subdivision surfaces, which have emerged to be a popular alternative, have
been considered as a way of overcoming topological limitations of spline sur-
faces. Due to the underlying formulations of subdivision surfaces it is often
not necessary to carry out trimming operations during the design process. A
notable piece of work on trimming subdivision surfaces has been discussed by
Litke [19]. This method is based on the use of combined subdivision schemes
which guarantee exact interpolation of trim curves. The latter, for example,
ensures that if two surfaces share a trim curve, they will meet exactly at the
trim curve. Unlike the trimming operations for spline surfaces, a new control
mesh is generated for each trim operation and the multiresolution details are
utilised to correct any unnecessary perturbation of the surface near the trim
during this multistage process. In order to enhance the computational perfor-
mance, a novel set of quasi-interpolation operators are utilised. For a detailed
discussions on this the interested reader may wish to consult [19] in which a
number of trimming examples for subdivisions are also given.

The work discussed in this paper is on the trimming of surfaces based on the so
called PDE method for surface design introduced by Bloor and Wilson [3]. The
method adopted for design here is somewhat different from other methods in
that a boundary-value approach is adopted whereby a surface is characterised

2



by defining a number of space curves with associated derivative information,
so as to form the surface’s edges, and then the surface is generated between
these curves by solving an elliptic partial differential equation (PDE).

The PDE method was originally developed as a mechanism of blend shape
generation. Since this initial application of the method on shape blending,
in recent years, PDE based shapes have broadened their uses in shape de-
scription, e.g. [16,7,22]. This is due to the fact that PDE shapes in principle
have the advantage that most of the information defining a shape is based
on a boundary representation making it possible for complex geometry to be
generated and controlled by very few design parameters [24].

The aim of this paper is to present a methodology by which complex trimming
operations on PDE surfaces can be carried efficiently within an interactive en-
vironment. Thus, we show how a trim curve which is defined on the parameter
space defining a PDE surface can be utilised to formulate a lower order bound-
ary value problem. This boundary-value problem, which in this case is based
on the well known Laplace equation, is then solved within the parameter space
enabling geometric meshing of the trimmed surface to be performed efficiently.
An analytic solution procedure is outlined which enables the boundary-value
problem to be solved over trim parameter space fast enough to be able to
design trimmed PDE surfaces interactively in real time.

The paper is organised as follows. Section (2) presents the outline of the PDE
method within the context of free-form surface design and discusses how the
chosen PDE is solved subject to a given set of function boundary conditions.
The discussions in Section (3) focus on the main point of the paper where
the methodology for trimming PDE surfaces is discussed. Section (4) then
presents a set of examples describing how the method can be utilised to carry
out a wide variety of trimming operations on free-form PDE surfaces.

2 The PDE Method for Surface Design

The PDE method produces a parametric surface, defined by two parameters
u and v over a finite region Ω ⊂ R2, as a solution to a suitably chosen partial
differential equation (PDE). The chosen PDE is solved subject to a set of
boundary conditions which are usually defined at the edges of the surface
patch. The PDE method has been discussed before in a number of different
references, e.g. [3,22,7]. It has been shown how surfaces satisfying a wide range
of functional requirements can be created by a suitable choice of the boundary
conditions and appropriate values for the various design parameters associated
with the method [23,24].
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For the work described here, and for the majority of previous work carried out
using the PDE method, the PDE chosen is of the form,

(
∂2

∂u2
+ a2 ∂2

∂v2

)2

X(u, v) = 0, (1)

where X(u, v) are the points of the surface in the physical space. The condi-
tions on the function X(u, v) and its normal derivatives ∂X

∂n
can be imposed

at the edges of the surface patch. Thus, in broad terms, one could think that
the PDE method generates a smooth surface patch by solving an elliptic PDE
such as Equation (1) subject to a set of boundary conditions that are imposed
at the edges of the surface patch.

The parameter a is a special design parameter [3]. Essentially the parame-
ter a produces a ‘waist’ effect within the interior of the surface patch where
the higher the value of ‘a’ the more waist it produces. This technique has
been utilised in an interactive setting to control the interior of the surface as
discussed in detail in [22].

It is noteworthy that the PDE method has several desirable features for surface
design. These include the ability to be able to define and control the shape
of the surface through a set of boundary data, the ability to generate smooth
surfaces and the ease by which shape parameterisation can be incorporated
enabling functional design to be carried out.

2.1 Outline of the PDE Solution Method

There exist many methods to determine the solution of Equation (1) ranging
from analytic solution techniques to sophisticated numerical methods. For the
work described here restricting to periodic boundary conditions a closed form
analytic solution of Equation (1) is utilised.

Choosing the parametric region to be 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π, for the work
discussed in this paper, we take the periodic boundary conditions to be of the
form,

X(0, v) = P 0(v), (2)

X(s, v) = P 1(v), (3)

X(t, v) = P 2(v), (4)

X(1, v) = P 3(v), (5)
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where 0 < s, t < 1.

Note that the boundary conditions P 0(v) and P 1(v) define the edges of the
surface patch at u = 0 and u = 1 respectively while the surface patch will also
pass through the curves P 1(v) and P 2(v) at u = s and u = t.

Using the method of separation of variables, the analytic solution of Equation
(1) can be written as,

X(u, v) = A0(u) +
∞∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)], (6)

where

A0 = a00 + a01u + a02u
2 + a03u

3, (7)

An = an1e
anu + an2ueanu + an3e

−anu + an4ue−anu, (8)

Bn = bn1e
anu + bn2ueanu + bn3e

−anu + bn4ue−anu, (9)

where a00, a01, a02, a03 an1, an2, an3, an4, bn1 bn2, bn3 and bn4 are vector con-
stants, whose values are determined by the imposed boundary conditions at
u = 0, u = s, u = t and u = 1.

For a general set of boundary conditions, in order to define the various con-
stants in the solution, it is necessary to Fourier analyse the boundary condi-
tions and identify the various Fourier coefficients. For certain types of bound-
ary conditions when the boundary conditions can be expressed exactly in
terms of a finite Fourier series, the solution given in Equation (6) will also
be finite. In general, however, it is often not possible to get a finite Fourier
series representation of a given set of boundary conditions. In such cases the
solution will be the infinite series given Equation (6).

The technique for finding an approximation to X(u, v) is based on the sum of
the first few Fourier modes and a ‘remainder term’, i.e.,

X(u, v) � F (u, v) + R(u, v), (10)

where

F (u, v) = A0(u) +
N∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)]. (11)

Here N is a small integer value, usually taken to be 6.
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The function R(u, v) is a remainder function defined as,

R(u, v) = r1(v)ewu + r2(v)uewu + r3(v)e−wu + r4(v)ue−wu, (12)

where r1, r2, r3, r4 and w are obtained by considering the difference between
the original boundary conditions and the boundary conditions satisfied by the
function F (u, v).

The point about the above solution method is that although the solution is
approximate the method guarantees that the chosen boundary conditions are
exactly satisfied since the remainder function R(u, v) is calculated by means
of the difference between the original boundary conditions and the boundary
conditions satisfied by the function F (u, v) [4].

Fig. 1. A set of boundary conditions for the PDE defined in terms of curves in
3-space.

Figure 1. shows a series of curves defined in 3-space which can be utilised to
generate a four-sided PDE surface patch. As described above here the curves
P0, P1, P2 and P3 will all be contained in the resulting surface patch.

Since the curves P0, P1, P2 and P3 are not periodic the parametric region for
which the PDE solved here is taken to be 0 ≤ u ≤ 1 and 0 ≤ v ≤ π/4.

Figure 2 shows the PDE surface patch generated using the boundary condi-
tions described in Figure 1 whereby the above described solution method has
been utilised. The value of a in this case has been taken to be 1.1. Note that
the shape of the surface patch can easily be controlled by the shape of the
boundary curves, in particular the boundary curves P0, P1, P2 and P3.

An important point one should bear in mind here is that due to the nature of
the boundary conditions taken here the method for surface generation is some-
what different from that originally proposed in [3]. In [3] and other previous
work on the PDE method the boundary conditions are usually defined using a
set of functions and derivatives defined at edges u = 0 and u = 1 of the surface
patch. In this work, however, we take a set of four function conditions which
enables the surface to satisfy exactly those conditions and hence the surface is
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Fig. 2. The PDE surface patch generated using the boundary conditions shown in
Figure 1.

a smooth interpolation between the chosen boundary conditions. One should
also note that the creases that appear on the surface patch shown in Figure
2 are due to the shape of the boundary curves chosen and are not due to the
chosen PDE nor due to the solution method utilised. In particular, one can
see that there are sharp edges on the curves marked P1 and P2 which result
in the interior creases as seen on the surface patch.

The above example demonstrates how a typical PDE surface patch can be gen-
erated. For the remainder of this paper we use the above example to discuss
how PDE surfaces can be trimmed. Thus, we show how complex trimming can
be carried out within the interior of the above the surface patch. It is note-
worthy that although we show how trimming can be carried out using a single
example, it is clear that one could appreciate that the trimming techniques
discussed below can be applied to any PDE surface or for that matter any
parametric surface patch.

3 Method of Trimming

In this section we discuss the main contribution of this work whereby we show
how a given complex shape can be trimmed out from a PDE surface. For the
purpose of demonstration we assume that the trim on the PDE patch can be
defined using the a corresponding trim curve defined on the (u, v) parameter
space. Given a trim curve in the (u, v) parameter space, the main task in
the process of trimming involves the determination of the interior region of
the trim curve whereby all the mesh points belonging to the region is then
discarded.

In previous work, described in [22], a simple procedure involving transfinite
interpolation has been successfully utilised to perform meshing of the (u, v)
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parameter space after performing a trim. There are several issues with this
procedure. For example, for complex regions where the trim curve is non-
convex, the meshing process has to be carried out in stages whereby the trim
curve has to be re-defined as a series of sub curves all of which are convex.
Furthermore, for complex trims involving curves which are not necessarily
connected to each other, this procedure is found to be not robust enough.

One could argue that there exist other well known robust triangulation pro-
cedures that could be utilised to overcome the above problem. One such well
known technique is Delaunay triangulation [10] which is capable of meshing
complex regions. Experience, however, shows that in the particular case of
PDE surfaces the use of Delaunay triangulation to mesh the trimmed (u, v)
parameter introduces more problems than it solves. For example, Delaunay
triangulation produces triangular meshes which are not necessarily uniform
and therefore prohibits utilising numerical solution techniques such as the Fi-
nite Difference methods to solve the PDEs. Furthermore, for complex regions
the speed of existing Delaunay triangulation algorithms may prohibit them
using for real time shape manipulation work.

Here we show a fast method that can be utilised to perform complex meshing
on trim regions of (u, v). The method is based on solutions to the Laplace
equation involving the trim curves over the (u, v) parameter space as discussed
below.

Fig. 3. A trim curve defined on the parametric domain. The boundary conditions
defined by C1 and C2 are utilised to solve the Laplace equation within the parametric
domain.

3.1 Fast Solution Method for Laplace Equation

Consider Figure 3. showing the parametric region where the circular curve
marked as C1 is a trim curve. In order to define a valid mesh within the interior
of the parametric region which discard the trim region, we solve the Laplace
equation subject to a set of two boundary conditions. Assuming the region
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in which meshing is to be performed can be mapped to a finitely discretised
region belonging to 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π we assume the mesh M(u, v)
to be the solution of the Laplace equation,

(
∂2

∂u2
+

∂2

∂v2

)
M(u, v) = 0. (13)

The boundary conditions for the Equation (13) is taken to be the curves C1

and C2 where C2 is the square border curve. Note that both curves C1 and
C2 are periodic with v = 0 being at the positions marked by the dotted line
in Figure 3. Thus, one could imagine that by solving Equation (13) between
the region defined by the curves C1 and C2 we can obtain a smooth transition
between the two curves which will enable us to obtain the required mesh.

In order to carry out the trimming fast enough to be able to generate trimmed
geometry in real time we utilise analytic solution scheme where the above
defined periodic boundary curves are utilised. This solution scheme is in fact
very similar to the analytic solution scheme for the Biharmonic Equation
previously discussed. Thus, for Equation (13) the periodic boundary conditions
can be expressed as, M(0, v) = C1(v), M(1, v) = C2(v). Now using the method
of separation of variables similar to that used to solve the Equation (1) we
can write the solution of Equation (13) as a Fourier series such that,

M(u, v) = A0(u) +
∞∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)], (14)

where

A0 = a00 + a01u, (15)

An = an1e
anu + an2ue−anu, (16)

Bn = bn1e
anu + bn2ue−anu, (17)

where a00, a01, an1, an2, bn1 bn2, are vector constants, whose values are deter-
mined by the imposed boundary conditions at u = 0 and u = 1.

Again in cases where trim curves are simpler the boundary conditions can be
expressed exactly in terms of a finite Fourier series. In such cases the solution
given in Equation (14) will also be finite. However, for complex trim curves
this is often not possible, in which case the solution will be the infinite series
given in Equation (14). For the purpose of meshing the interior region of the
trimmed surface an approximate solution of Equation (13) is obtained which
satisfy exactly at the given boundary conditions.
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Fig. 4. The trimmed PDE surface patch generated using the trim region shown
Figure 3.

This approximate solution of Equation (13) is given as,

M(u, v) � A0(u) + F (u, v) + R(u, v), (18)

where

F (u, v) = A0(u) +
N∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)], (19)

The specific form of the function R(u, v) used here is,

R(u, v) = r1(v)ewu + r2(v)e−wu. (20)

where r1, r2, and w are obtained by considering the difference between the
original boundary conditions and the boundary conditions satisfied by the
function F (u, v).

Figure 4. shows the PDE surface discussed originally where the circular portion
has been trimmed out using the method described. Thus, Equation (13) is
solved over the trim region subject to the boundary conditions defined by the
curves C1 and C2 shown in Figure 3 to generate a uniform mesh M which is
then utilised to generate the PDE surface with the trim.

3.2 Comparison with Delaunay triangulations

In order to test the speed and efficiency of the our proposed method we com-
pared it with a commonly utilised algorithm for surface meshing namely the
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(a)

(b)

Fig. 5. Example of interactive trimming. (a) Trim curve defined by means of a cubic
Spline. (b) The corresponding trimmed PDE surface patch.

Delaunay triangulation. The Delaunay triangulation essentially involves cre-
ating from the sample points a set of non-overlapping triangularly bounded
facets, where the vertices of the triangles are the input sample points. There
are a number of Delaunay triangulation algorithms available. For the purpose
of our test we utilised that of Fortune [11]. To undertake the comparison we
have essentially compared the time it took for our proposed method and the
Delaunay triangulation to produce an interior mesh for the trim region shown
in Figure 3. Table 1 shows the results of the time in milliseconds (ms) for
different mesh resolutions. The computations were performed on a fast Win-
dows based laptop computer. As one can see from these results our proposed
method in all cases is more efficient in producing the mesh when compared to
the Delaunay triangulation.
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(a)

(b)

Fig. 6. Example of an interactive trim manipulation. (a) Trim curve defined by
means of a cubic spline starting from that shown in Figure 5(a). (b) The corre-
sponding trimmed PDE surface patch.

Mesh Laplace Delauney

(u, v) (time in ms) (time in ms)

10×20 0.0313333 0.1391000

20×30 0.1561000 0.3333000

40×70 0.3912000 0.8900000

140×170 4.2265000 7.10128000
Table 1
Comparison of the proposed method with Delaunay triangulations. Time in mil-
liseconds to generate the mesh.

4 Examples of Trimming

In this section we further discuss the method of trimming described previously.
In particular, we discuss a series of examples which demonstrate how the
method can be applied to perform complex trims with ease.
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(a)

(b)

Fig. 7. Example of trimming where more than one disjoint curve is present. (a) Dis-
joint trim curves defined by means of cubic splines. (b) The corresponding trimmed
PDE surface patch.

As a first example we discuss the trimming problem shown in Figure 5. Here
a general shape of a curve is interactively drawn on the (u, v) parameter space
and the corresponding shape on the surface is removed. The curve here is gen-
erated as a cubic B-spline where its shape is adjusted using the corresponding
control points. Note that both the curves C1 and C2 are periodic with v = 0
being at the positions marked by the dotted line in Figure 5(a). Once the
desired shape of the curve is decided, Equation (13) is solved subject to the
boundary conditions represented by C1 and C2 as shown in Figure 5(a).

As a second example we show the trimming problem shown in Figure 6 where
the trim curve is shown in Figure 6(a) is generated by means of interactively
manipulating the spline shown in Figure 5 (a). Note that the trim curve here
is non-convex. The curves C1 and C2 are periodic with v = 0 being at the
positions marked by the dotted line in Figure 6(a). With these settings the
trim surface is generated by means of solving Equation (13) subject to the
boundary conditions represented by C1 and C2 as shown in Figure 6(a).

Figure 7. shows an example of a trim where multiple trim curves which are
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disjoint are involved. For such type of problems the disjoint curves are first
connected so as it forms a single periodic curve in the (u, v) parameter space.
In the case the curve segment C4 is used to join the curves C1 and C2 while
the curve segment C5 is utilised to join the curves C2 and C3. Thus, by this
mechanism a single periodic curve can be easily generated in a situation where
a set of disjoint curves are given.

Figure 7(b) shows the resulting surface after the trim. Like the previous exam-
ples, the position corresponding to v = 0 on the two boundary conditions can
be identified by dotted line in Figure 7(a). The trim surface is then generated
by solving the Equation (13) subject to the boundary conditions represented
by C1 and C2 shown in Figure 7(a).

5 Conclusions

The aim of this paper is to describe a method for trimming surfaces generated
as solutions to PDEs. The work presented here utilises the parametric region
over which the PDE surface is originally defined. The trim curves are defined
on the parametric domain and the projection of these curves on the paramet-
rically represented PDE surface is then trimmed out. To do this we define
the trim curves to be a set of boundary conditions which enable us to solve
the standard Laplace equation in the parameter domain. Here the Laplace
equation is solved analytically, even in the case of a very general complex
trim, allowing the design process to be carried out interactively in real time.
To demonstrate the capability of this technique we have discussed a series of
examples where trimmed PDE surfaces may be applicable.

An important point one should note here is that the method presented here,
although very applicable to PDE surface, is not necessary limited to just PDE
surfaces. The method can be equally utilised to trim other types of parametric
surfaces. Furthermore, it can be utilised as a fast meshing technique where
surface meshing is called for.

An interesting new direction of study stemming from this work would be
to look into the solutions of other elliptic PDEs especially those of higher
orders on the parameter space. This would increase the scope of re-defining
the boundary conditions for complex trimming operations in more convenient
ways. Often in situations, such as for design analysis, one requires convenient
and efficient ways of generating adaptive meshes. By utilising higher order
equation the scope of mesh adaptivity within the interior trim regions can
also be enhanced.
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