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Abstract: - In this paper we study a methodology for the numerical simulation of stable structures of fluid 
membranes and vesicles in biological organisms. In particular, we discuss the effects of spontaneous curvature 
on vesicle cell membranes under the bending energy for given volume and surface area. The geometric 
modeling of the vesicle shapes are undertaken by means of surfaces generated as Partial Differential Equations 
(PDEs).  We combine PDE based geometric modeling with numerical optimization in order to study the stable 
shapes adopted by the vesicle membranes. Thus, through the PDE method we generate a generic template of a 
vesicle membrane which is then efficiently parameterized. The parameterization is taken as a basis to set up a 
numerical optimization procedure which enables us to predict a series of vesicle shapes subject to given 
surface area and volume.   
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1 Introduction 
Biological membranes divide living tissues into 
different smaller parts or cells thus acting as cell 
border. These cell membranes facilitate the nature of 
all communications between the inside and the out 
side of the cells. These communications can take 
place via the actual passage of ions or molecules 
between two parts or via conformational changes 
induced in membrane components. Model bilayer 
lipid membranes in aqueous environments exhibit 
many of the attributes of the biological membranes. 
For example these membranes can form vesicles or 
more complex structures that divide the space into 
separate parts by means of blending or dividing. 
   
A lipid molecule is normally based on a polar 
hydrophilic head and hydrophobic tail consisting of 
hydrocarbon chains. Such molecules when put in 
water based solutions can spontaneously combine to 
form encapsulating bags called vesicles. Due to the 
physical and chemical properties of these molecules 
and their environments, an amphiphilic compound 
can accumulate into a wide range of different types 
aggregates like spherical, branched, flat miscelles 
etc [3]. Bilayer type of membrane is the primary 

structural mechanism of the boundaries of all cell 
and cell parts. Accordingly the behavior of vesicles 
composed of lipid bilayers under the effects of 
different chemical and physical environments have 
been used as simplified models for the behavior of 
cells. Theoretical reasoning for the shape or outline 
adopted by vesicles have tended to follow a 
continuum model in which the main effect is the 
bending elasticity of membrane. This is in contrast 
to the other types of fluid interfaces where surface 
tension plays the key role.  
 
First time, in 1970 Canham presented these ideas  
[4]. According to this model and also following later 
work it has been shown that the vesicles obtain their 
shapes for which their surface energy is minimal 
subject to suitable constraints. 
 
Our aim in this paper is to show how Partial 
Differential Equation (PDE) based geometric 
modeling combined with numerical optimization can 
be utilized to study the stable shapes adopted by 
vesicle membranes. Thus, through the PDE method 
we generate a generic template of a vesicle 
membrane which is then efficiently parameterized. 



The parameterization is taken as a basis to set up a 
numerical optimization procedure which enables us 
to predict a series of vesicle shapes subject to a 
given surface area and volume.   

 
2 PDE Surfaces 
A PDE surface is a parametric surface patch , 
defined as a function of two parameters and on a 
finite domain 
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2R⊂Ω , by specifying boundary data 
around the edge region of . Typically the 
boundary data are specified in the form of  
and a number of its derivatives on . Here one 
should note that the coordinate of a point  and v  is 
mapped from that point in  to a point in the 
physical space. To satisfy these requirements the 
surface is regarded as a solution of a PDE of 
the form,  
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where is a partial differential operator of 
order  in the independent variables u and , 
while is vector valued function of and . 
Since boundary value problems are of concern here, 
it is natural to choose to be elliptic. 
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The PDE method for geometric design is originally 
developed by Bloor and Wilson as a mechanism of 
blend shape generation [1]. Since this initial 
development, the applications of the method have 
broadened (e.g. see [1, 6, 10, 14, 16, 17]). Thus, 
apart from the method being utilized in blend and 
free form shape design, it has been successfully 
utilized for automatic design for function in various 
design scenarios. This is achieved by means of 
incorporating engineering design criteria such as 
functional constraints into the geometric design of 
PDE surfaces. Examples of automatic design using 
the PDE method include automatic design of ship 
hulls [11], propeller blades [5], aircraft  [2] and thin-
walled structures [15].  
 
In this paper we use the sixth order PDE for 
modeling. This PDE provides enough degrees of 
freedom not only to accommodate tangent, but also 
curvature boundary conditions and offers more 
shape control parameters to serve as user controls 
for the manipulation of surface shapes. In order to 
achieve real-time performance, we have constructed 
a surface function and developed a high-precision 
approximate solution to the 6th order PDE.   
 

PDE-based techniques are able to create free-form 
surfaces as fast and almost as accurately as the 
closed-form analytical solutions. Due to the fact that 
it has sufficient degrees of freedom to accommodate 
the continuity of 3-sided and 4-sided surface patches 
at their boundaries, this method is able to model 
complex surfaces consisting of multiple patches.  
 

 
2.1 Sixth Order PDE Surfaces  
In this work in order to model the complex shapes of 
membranes we use the elliptic partial differential 
equations, in particular equations based on the 
Laplace equation. For ease of setting up the problem 
with adequate degrees of freedom we use the 6th 
order PDE which is of the form,   
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where  is the surface function for each of the 
Cartesian coordinates

),( vuX
,x y  and . The 

“smoothing parameter”  controls the relative 
smoothing of the independent variables  and v  
and altering changes the length scale over which 
the boundary conditions influence the interior of the 
surface.  
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Taking the parameter space Ω  to be the region 
{ }π20;10:, ≤≤≤≤ vuvu and a solution that is 
periodic in , the solution of Equation (2) can be 
obtained analytically subject to boundary conditions,  
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where the subscript  denotes a partial derivative 
with respect to . Assuming the solution we are 
looking for is subject to periodic boundary 
conditions, the method of separation of variables can 
be utilized to write the down the solution as,  
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where the coefficient functions   )(uAn

and are of the form, )(uBn
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Using Fourier analysis, the boundary conditions, 

and  can be 
written in the form,  
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The vector constants of the general solution  and 

are calculated from the vector constant  and 
of the Fourier terms associated with the 

boundary conditions, where . 
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Figure 1 shows sample PDE surfaces generated by 
varying the Fourier modes associated with the 
boundary conditions. As one can see that a wide 
variety of surface shapes can be generated by 
varying the Fourier modes associated with the 
boundary conditions. Thus, in this work we use the 
Fourier modes associated with boundary conditions 
as a basis of parameterzing the shape of the surface.  
 

 

  

 
 
Figure 1.  Sample PDE surfaces generated by 
varying the Fourier modes associated with the 
boundary conditions.  

 
3 Mathematical Modeling of Vesicle 
Energy 
The simplest models for the biological cells and 
molecules are single component vesicles, which are 
bilayers assembled by certain amphiphilic molecules 
in water. The equilibrium shape of such a membrane 
may be determined by the asassociated energy 



function. These usually consist of the following 
bending energy [7, 8], 
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where 2

)( 21 kkH +=  is the mean curvature of the 
membrane surface, with  and being the 
principal curvatures. The principal curvatures are the 
eigenvalues of the Weingarten matrix of the surface 
[7, 8]. The parameter  is called the bending 
rigidity. Note that  usually depends on the local 
heterogeneous concentration of the molecules. 
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The bending energy in Equation (15) is a special 
case of a general form obtained using the Hooke’s 
Law [12], 
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where , , ,  and  are the Gaussian 
curvature, surface tension, bending rigidity, 
stretching rigidity and spontaneous curvature 
respectively. The spontaneous curvature describes 
the asymmetry effect of the membrane.  
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In the energy model we have utilized here the first 
term can be neglected, as it remains constant for 
the vesicles with a given surface area. For a smooth 
compact surface with a constant , the last term is 
related to the Euler index which represents the 
topological structure of the membrane [7]. For 
simplicity, here we only consider the energy given 
in Equation (16) and the case where the bending 
rigidity is a constant. Thus, if and 
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in Equation (16), the bending energy can be 
simplified as,   
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From the above Equation we can see that only the 
effect of the spontaneous curvature is retained and 
the bending rigidity is assumed to be a constant.  
 
Thus, the problem considered in this paper is to 
study the vesicle shapes minimizing the bending 
energy given in Equation (17) with constraints on 
the cell volume and surface area.  
 
We now assume that we have a domain Ψ in , 
and a smooth compact surface which is the 
candidate surface that minimizes the bending energy 

given in Equation (17). By following the work from 
[7], the bending energy can be defined as,  
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where 02kK = , )
2

)(tanh()(
ε

φ xdx =  is the so 

called phase field function defined for all Ψ∈x and 
 is the signed distance between point )(xd x  and Γ . 
)(xφ is utilized to mark the vesicle membrane 

through its sharp transition layer. ε is a transition 
parameter and it is taken to be a very small. 
 
With the above formulation the cell energy function, 
which is to be minimized, is of the form,  
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where  and  are the cell volume and area 
respectively and 

v a
)(φV and )(φA  are the target 

vesicle volume and surface area respectively.  
 
4 Results 
The approach to predicting the stable shapes of 
vesicles is to utilize the 6th order PDE method for 
surface parameterization which is coupled with a 
design optimization algorithm. The parameterization 
is achieved through the Fourier series representing 
the boundary conditions of the chosen PDE. The 
optimization is performed by solving a constrained 
optimization problem using an augmented Lagrange 
multiplier method [9] along with the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [13] 
whereby the objective function is taken to be that 
given in Equation (19). 
 
With the above formulation, the optimization is 
started at some initially chosen point in the 
parameter space within the Fourier domain. The 
routine allows to detect the local minimum of the 
surface energy for a given value of the spontaneous 
curvature, vesicle volume and surface area. To 
achieve this a starting value of spontaneous 
curvature, vesicle volume, surfaces area and a 
starting set of values of Fourier modes for the design 
parameters of the PDE are chosen. The optimisation 
procedure then enables to locate a stationary state 
for the energy of the vesicle. Hence for a given 
value of spontaneous curvature, once this initial 
stationary state is found the optimization is repeated 



by incrementing the volume until further stationary 
states are found.  

 
(a) 

 
(b) 

(c) 

 
Figure 2.  Sample stationary vesicle shapes 
obtained with varying spontaneous curvature and  
volume.  

 
Figure K  )(φV  )(φA  

2(a) 0.00 0.60 12.55 
2(b) 2.51 0.67 12.53 
2(c) 4.22 0.74 12.56 

 
Table 1.  Values of spontaneous curvature, 
vesicle volume and surface area for the stationary 
shapes shown in Figure 2. 

 
Figure 2 shows some sample stationary shapes 
obtained for a given value of spontaneous curvature, 
vesicle volume and surface area. The parameter 
values taken for this simulation is shown in Table 1.  
 
Figure 3 shows some sample stationary shapes 
obtained for various volumes and surface area with a 
given spontaneous curvature value. Here the 
spontaneous curvature value is taken to be 6.0. 
Table 2 shows the various parameter values taken 
for this simulation.  

Note all the stationary vesicle shapes obtained in the 
simulations we have undertaken are verifiable. 
Interested reader is for example referred to [8]. 

 
(a)  

(b) 

 
(c) (d) 

 
Figure 3. Sample stationary vesicle shapes for 
spontaneous curvature of 6.0 with varying volume 
and area.  

 
Figure )(φE  )(φV  )(φA  

3(a) 2.12 0.50 12.01 
3(b) 2.37 0.74 12.49 
3(c) 2.80 0.82 12.58 
3(d) 3.54 0.90 13.11 

 
Table 2.  Values of vesicle volume, surface area 
and bending energy for the stationary shapes 
shown in Figure 3. 

 
5 Conclusion 
In this paper we have demonstrated how one can 
study the effects of spontaneous curvature on the 
vesicle cell membrane under the bending energy for 
given volume and surface area. For this purpose, we 
utilized a sixth order PDE which is flexible for 



efficiently parameterizing the vesicle geometry. 
Thus, we have demonstrated how the choice of a 
PDE model enables us to create the geometry 
corresponding to complex biological vesicles.  
 
In order to simulate the stable structures of vesicle 
shapes, the geometry parameterization using the 
PDE is coupled with an optimization routine. This 
enables us to efficiently predict the stationary 
structures corresponding to a given spontaneous 
curvature, vesicle volume and surface area.  Several 
examples of possible stationary shapes that resulted 
in our simulation are shown. 
  
We have shown that the PDE based method we have 
presented in this paper is capable of efficient 
parameterization of complex geometry. Our future 
work will include extending the shape 
parameterization methodology in order to cater for 
complex geometry involving arbitrary topology 
changes. 
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