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ABSTRACT 

DEVELOPMENT OF A NOVEL LATERAL-FLOW ASSAY TO DETECT 

YEAST IN YOGURT 

MAY 2012 

CATHERINE E. FILL, B.S., BUFFALO STATE COLLEGE 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Sam R. Nugen 

As demand for food increases, rapid testing methods are becoming increasingly 

important.  In the past few years, yogurt has become very popular.  Yeast species are the 

most common spoilage organism that cost consumers and food companies money.  A 

novel lateral flow assay has been developed to detect yeast oligonucleotide sequences.  

Gold nanoparticles were used as the standard reporter and fluorescent nanoparticles were 

developed as the novel reporter.  Specifically, the fluorescent nanoparticles were 

ruthenium-doped silica nanoparticles synthesized using the modified Stöber method.  

Visual analysis of the assays using gold nanoparticle reporters showed the limit of 

detection to be 10 femtomoles of target sequence.  Analysis of the fluorescent 

nanoparticles using a plate reader showed the limit of detection to be 0.027 femtomoles.  

The fluorescent reporter’s limit of detection is 1000 fold lower due to a more sensitive 

and sophisticated analysis method.  Gold nanoparticles are appropriate for presence or 

absence testing, but fluorescent nanoparticles are best for obtaining quantitative data with 

low detection limits. 

 Pathogens have been used as biological warfare for centuries.  Since the terrorist 

attacks of 2001, awareness of biowarfare agents has increased.  A brief review of 
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common biowarfare agents is included.  Yersinia pestis, the causative agent of the Plague, 

and Bacillus anthracis, the causative agent of Anthrax, are the focus.  They are both 

considered classical agents of biological warfare.  After B. anthracis spores were sent 

through the mail in 2001, increased research has gone into improved detection methods 

and decontamination processes.   

Gold nanoparticles were also used as a reporter in a sandwich assay to detect E. 

coli-like sequences with the Bioveris M384 Analyzer.  This reporter had several 

molecules of Ru(bpy)3
2+ immobilized on the surface.  It was compared to a control 

reporter, which was an oligonucleotide strand linked to a single ruthenium.  The 

hypothesis was that the novel reporter would have a higher sensitivity and lower limit of 

detection than the control.  Repeated testing showed the novel reporter had a limit of 

detection 24 femtomoles compared to the control’s 40 femtomoles.  This improvement is 

due to the novel reporter’s ability to bind more target than the control reporter. 
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CHAPTER 1 

STUDY OVERVIEW AND BACKGROUND INFORMATION 

Introduction 

Yogurt and yogurt based products are becoming increasingly popular due to 

health benefits, expanded product lines, taste, and nutritional value.  Increased production 

leads to an increased possibility of contamination by spoilage organisms, specifically 

yeast.  Traditional microbiological tests take several days before results are returned.  

Therefore, a rapid lateral-flow based test to detect Eukaryotic spoilage organisms in 

yogurt has been developed. 

Yogurt and possible contaminants 

Yogurt is a fermented milk product with a low pH due to the production of lactic 

acid by the fermenting starter cultures.  Yeasts thrive in dairy products because of the 

acidic, nutrient rich environment (Jakobsen and Narvhus, 1996).  These spoilage 

organisms are capable of fermenting lactose, producing extracellular proteolytic or 

lipolytic enzymes, or assimilating lactic and citric acids (Kosse et al, 1997).  As the yeast 

population increases, the bacterial population decreases from the lack of nutrient 

availability and decreasing pH.  Contamination sources include fruits, nuts, honey, and 

other raw products that are added to the yogurt, as well as dairy products, intermediate 

products, the environment, and poor plant sanitation or hygiene.  These additives provide 

additional substrates for the yeast (Jakobsen and Narvhus, 1996; Fleet, 2011; Mataragas 

et al, 2011).   
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Species of yeast that are common contaminants in yogurt and dairy products 

include Saccharomyces cerevisiae, Kluyveromyces marxianus, and species of Pichia and 

Candida (Fleet, 2011).  Some of the species can grow at refrigeration temperatures, resist 

preservatives, and tolerate high sugar or high salt environments.  Yogurt spoilage is 

detectable through analytical methods when growth reaches 104-106 colony forming unit 

per gram (CFU/g) and evident through sensory evaluation when populations reach 107-

108 CFU/g (Fleet, 2011; Viljoen et al, 2003).  Spoilage includes package distortion, 

yeasty flavor and odor, gassy appearance, and red colony growth (Viljoen et al, 2003; 

Fleet, 2011; Mataragas et al, 2011).  Yeast populations increase with increasing 

temperature (Viljoen et al, 2003; Mataragas et al, 2011).  The product can be re-

contaminated with environmental yeast following heat treatment due to increased 

automation in the production facility (Nugen and Baeumner, 2008).  The batch of yogurt 

may have been contaminated after the sample was taken for testing.  In this case, the test 

results would falsely state the batch does not have a detectable presence of yeast.  

Therefore, spoilage is likely to be a concern after it has left the production facility due to 

temperature abuse by the retailer or consumer. 

Enumeration and detection methods- current and proposed 

The isolation, enumeration, and identification of yeasts using traditional 

microbiological methods are most often used in the food industry.  Traditional methods 

based on biochemical, physiological, and morphological differences have been peer 

reviewed and are most accepted by regulatory agencies.  They are also considered open 

access methods, meaning media composition is available, the techniques used are clearly 

described to reproduce data, and the necessary materials can be purchased from several 
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suppliers (Jasson et al, 2010).  These processes are labor intensive and time consuming 

since it may take days to weeks to obtain and confirm results (Velusamy et al, 2010).  

After initial positive results are obtained, similar species of yeast may be difficult to 

distinguish (Kosse et al, 1997).  The materials used must be properly disposed of after the 

results have been obtained.  The yogurt samples must be washed and diluted before 

enumeration via spread plate, most probable number (MPN), microscopic, or other 

counting methods.  Isolates must then be purified before the genus, species, and 

subspecies can be determined.  Spread-plate methods are used to enumerate and isolate 

yeast.  A minimum of five days of incubation is required to develop colonies (Jakobsen 

and Narvhus, 1996).  Traditional methods are very selective and frequently do not 

provide a complete picture of the entire, complex microbial community present in the 

sample (Amann and Ludwig, 2000).  Alternative methods that provide results in hours 

instead of days are needed.  Methods that provide more complete information about the 

microbial population would also be useful to detect more than one target organism with 

one assay.  In order for these alternative methods to be accepted, they must the validated 

by a third party against the traditional method (Jasson et al, 2010). 

Lateral-flow tests are rapid, easy to use, specific, and robust (Al-Yousif et al, 

2002).  A lateral-flow test using sandwich hybridization to detect sequences of yeast 

DNA, similar to those found in yogurt has been developed.  Nucleic acid sequences were 

used as the detection elements and gold or fluorescent nanoparticles were used as the 

reporter element.  The surface of the nanoparticle was modified to facilitate the addition 

of a reporter sequence.  A schematic drawing of the test is shown in Figure 1.1.   
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Figure 1.1- Schematic drawing of the novel lateral-flow test strip.  The reporter 
nanoparticle is represented by the red circle with blue reporter sequence.  The test and 
control line areas are symbolized by the green and purple cylinder and nucleic acid 
sequence, respectively.  Biotin is symbolized by the black dot.  The target sequence is 
symbilized by the dark green line.  The absorbent pad is blue and the plastic backing is 
grey. 

A liquid sample is needed for testing and results are obtained within 15-30 

minutes.  Gold nanoparticle (GNP) reporter results can be seen with the naked eye.  Tests 

using the fluorescent nanoparticles are read in a plate reader and more quantitative data is 

obtained.  The lines that develop are long lasting, so the test can be evaluated at the user’s 

convenience.  The tests are easily transportable and do not require special training or 

equipment.  Ease of use facilitates near on-line detection in a production facility. 
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CHAPTER 2 

REVIEW OF LATERAL-FLOW TECHNOLOGY AND NANOPARTICLE 

DESIGN 

Introduction 

Rapid testing methods are becoming increasingly popular in the health care and 

private sector.  Lateral-flow assays are very popular.  The most well-known and well-

recognized example is the home pregnancy test.  It is used to detect human chorionic 

gonadotropin (hCG), a chemical marker associated with pregnancy (Butler et al, 2001).  

The test’s ease of use and rapid, clear results lead to an expansion of uses in the clinical 

and industrial settings.  Lateral-flow assays are used to detect failure of internal organs 

(Xu et al, 2009), contamination or infection with a specific pathogen (Yan et al, 2006; 

Oku et al, 2001; Esch et al, 2001), presence of toxins in food or environmental samples 

(Wang et al, 2005; Rong-Hwa et al, 2010; Muhammad-Tahir and Alocilja, 2004; Yang et 

al, 2009; Gessler et al, 2007), or to detect the use of illegal drugs (Biermann et al, 2004; 

Posthuma-Trumpie et al, 2009).  The lateral-flow format of testing is primarily used for 

presence or absence testing because it is hard to relate strength of the test line with target 

concentration without specialized equipment.   

Lateral Flow Components 

A typical lateral flow assay is shown in Figure 2.1.  The test strip is housed in a 

plastic cassette that allows for easy handling, transportation, and evaluation of results.  

The liquid sample is applied to the sample pad that is visible through the sample window.  

The sample pad (Fig 2.1A) can be made of cellulose or glass fiber.  It is used to filter out 
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unwanted components in the sample that may interfere with the results and to evenly 

distribute the sample to the next part of the assay (Leung et al, 2003).  The sample pad is 

overlapped by the conjugate pad (Fig 2.1B), which can be made of fiberglass, polyester, 

or synthetic, non-absorbent material (Koets et al, 2006).  The conjugate pad contains the 

dried reporter conjugate (Fig 2.1C), which is seen by the user in the viewing window as a 

colored line.  It is bound to a biorecognition element, such as an antibody or nucleic acid 

fragment, that will interact with the target in the sample or with the control line.  The 

most common reporters are gold nanoparticles (GNPs) and colored latex particles, but 

carbon particles or fluorescent particles can be used as well (Posthuma-Trumpie et al, 

2009).  Particle stability is most important when selecting a reporter material.   

The reaction chamber (Fig 2.1D) in this assay is typically made of nitrocellulose 

(NC) due to its low cost, ease of use, and its ability to support capillary flow.  The pore 

size of the membrane plays a major role in the performance of the assay.  Large pores 

will decrease the sensitivity of the assay because the test line will spread out and be 

difficult to read (Posthuma-Trumpie et al, 2009).  The pore size also dictates the flow rate 

of the reporter and target.  If the pores are too small, passage will be restricted.  The test 

and control lines (Fig 2.1E and F, respectively) give the user the test results.  The test line 

interacts with the target-reporter complex.  A visible line of the reporter conjugate 

appears if the target is present in the sample.  The control line interacts with the reporter 

conjugate to verify the sample is flowing up the NC and the reporter conjugate is working 

properly.  The test and control line can be applied to the NC in many different ways.  The 

recognition elements on the test and control lines and reporter conjugate are either 

antibodies or nucleic acids.  Nucleic acid recognition elements will be focused on in this 
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literature review and will be used in the subsequent experiments.  The absorbent pad (Fig 

2.1G) is used to help draw the sample up the NC once it has been fully saturated with 

liquid.  It is typically made of cotton and varying thicknesses have different absorbency 

rates (Posthuma-Trumpie et al, 2009).  The strip is assembled on plastic backing (Fig 

2.1H) which gives the assay strength and rigidity.   

 

Figure 2.1- Schematic representation of a lateral-flow test strip in sandwich format.  2.1A 
is the sample pad, 2.1B is the conjugate pad, 2.1C is the dried reporter conjugate, 2.1D is 
the nitrocellulose membrane, 2.1E and F are the test and control lines, respectively, 2.1G 
is the absorbent pad, and 2.1H is the plastic backing.  The test strip is protected by a 
plastic cassette.  The beginning of the sample pad and the test and control line area are 
left exposed for the user to apply the liquid sample and view the test result.   

Lateral flow assays are available in a variety of formats.  They can be set up in a 

sandwich or competitive format.  In the sandwich format, the target is “sandwiched” 

between the test line and reporter conjugate.  The intensity of the test line is directly 

proportional to the target concentration (Volkov et al, 2009).  Two lines indicate a 

positive test and one line indicates a negative test.  This format is very common (Al-

Yousif et al, 2002; Koets et al, 2006)).  In the competitive format, the target and reporter 

conjugate compete for open binding spots on the test line (Esch et al, 2001; Volkov et al, 

2009).  The reporter conjugate is pre-labeled with the target or target derivative.  A 

positive sample does not show a test line because the target in the sample binds to the test 

line before the reporter conjugate.  A negative sample shows a test line because the 
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reporter conjugate is able to bind to the reaction zone.  Therefore, signal strength is 

inversely proportional to the target concentration.   

Fluorescent nanoparticles 

Stöber and colleagues (1968) were the first to synthesize monodisperse silica 

particles.  This was achieved by combining alcohol, water, and alkyl silicate under 

alkaline conditions.  The reaction vessel was agitated, which helped the particles to form 

and keep them suspended.  It was reported that condensation began in about ten minutes 

due to the increased turbidity of the once clear solution.  The reaction went to completion 

in a few minutes after the solution turned milky white.  Electron micrograph evaluations 

of the particles revealed a monodisperse solution of silica particles.  The size of the 

particles and rate of synthesis was related to the type of alcohol and type of alkyl silicate 

used. 

Since its initial development, the Stöber method has become a common way to 

synthesize nanoparticles (Rossi et al, 2005; Santra et al, 2001b, Smith et al, 2006).  The 

“modified Stöber method” is often used because it is an easy, one pot method to make 

dye-doped silica nanoparticles.  A water-in-oil (W/O) emulsion is first formed.  The 

water phase serves as a nanoreactor and contains the dye.  It is surrounded by surfactants 

to improve solubility.  Silica is condensed around the water phase.  The reaction is 

allowed to continue for a set reaction time depending on the desired size of the particles.  

The size of the particles is determined by the nanoreactor size, volume of dye loaded into 

the nanoreactor, and incubation time.  Figure 2.2 shows a typical W/O emulsion.   
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Figure 2.2- Schematic drawing of a typical water in oil (W/O) emulsion.  The surfactant 
molecule is represented by the green circle and purple rectangle.  The green circle 
represents the hydrophilic head group which surrounds the water phase and the purple 
rectangle represents the hydrophilic tail group which interacts with the surrounding oil 
phase.  Surfactants are able to stabilize immiscible liquids because of their hydrophilic 
and hydrophobic natures. 

Surfactant molecules have a polar head group and non-polar tail.  The polar end is 

attracted to the polar water phase while the non-polar end interacts with the surfactants 

located in the non-polar oil phase and the dye is dissolved in the water phase.  After the 

emulsion is formed, the catalyst and silica reagent are added.  Silica layers condense 

around the water phase to trap the dye and form a nanoparticle (Ow et al, 2004).  The size 

of the particles is dependent upon reaction time and volume of materials added.  

Nanoparticles are typically imaged with transmission electron microscopy (TEM).   

Fluorescent nanoparticles have great potential for use in biotechnological 

applications as indicators or photon sources or in information technology applications as 

biological imaging, sensor technology, microarrays, and optical computing (Ow et al, 

2004).  Fluorophores such as organic dyes are used to detect biological components in 

living systems, but their use has some limitation.  Photobleaching decreases sensitivity 

and limits real-time monitoring (Santra et al, 2001a).  Poor signal amplification can lead 

to false negative results.  The component of interest may only be tagged with one or two 
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dye molecules and the signal may be undetectable when target concentration is low (Zhao 

et al, 2003).   

One way to overcome these hurdles is to use fluorescent nanoparticles.  The silica 

shell surrounds the dye and prevents leakage.  This “caging effect” also limits the dye’s 

contact with environmental oxygen and solvents, thus improving the dye’s photostability 

(Rossi et al, 2005).  The silica encased dye molecules have been reported to be several 

times brighter than free dye because a high concentration of dye molecules are trapped in 

the nanoparticles (Ow et al, 2005).  A high signal is produced when the particle is excited 

properly.  Now instead of one dye molecule labeling one target molecule, one 

nanoparticle containing dozens of fluorophores labels the target and a detectable signal is 

produced (Zhao et al, 2003).  Photobleaching experiments show the fluorescent 

nanoparticles are brighter and more stable than the free dye (Smith et al, 2006; Zhao et 

al, 2003).  The surface of the nanoparticle can also be easily modified using surface 

chemistry.  Surface modification allows for the addition of antibodies, nucleic acid 

sequences, or other recognition elements depending on the intended target.   

Biomolecules can be covalently linked to the nanoparticle for use in biological 

systems.  The silica surface is a biocompatible and versatile substrate.  Santra and 

colleagues (2001b) were able to link anti-leukemia cell antibodies to the doped 

nanoparticle and detect cancer cells.  Zhao and colleagues (2003) linked DNA sequences 

to their nanoparticles and detected target sequences at sub-femtomolar (10-12) 

concentration.  

Many different dyes can be doped into the silica matrix depending on the desired 

spectral characteristics and color of the end product.  Ruthenium is a transition metal that 
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exists in many forms and is a common fluorophore.  Tris(2,2’-bipyridyl)ruthenium(II), 

Ru(bpy)3
2+, is attractive because it is stable, bright, and can regenerate itself (Chang et al, 

2006).  The chemical structure contains several double bonds.  Ru(bpy)3
2+ was chosen for 

this project because it is stable, rapid, safe to use, and emits light at the desired 

wavelength (620 nm).   

Probe selection and design 

Selecting the correct probe is crucial for the success of an assay.  Nucleic acid 

probes are precise and can offer a quantitative description of the total microbial 

population of a sample (Kuritza and Salyers, 1985; Giovannoni et al, 1985; Amann and 

Ludwig, 2000).  The reporter probe must match perfectly to its target.  Even a single 

mismatch can destabilize an oligonucleotide hybrid (Giovannoni et al, 1988; Amann et 

al, 1990).  Targeting a nucleic acid probe to ribosomal RNA (rRNA), specifically to the 

16S or 18S region of the small ribosomal subunit, is a good way to analyze the microbial 

population.  There is a large amount of rRNA present in most cells, there is no lateral 

gene transfer, the small and large subunits have 1500-3000 nucleotides, and there is a 

range of conserved and variable regions (Amann and Ludwig, 2000; Woese, 1987).  

Actively growing cells can have 104 ribosomes.  With each ribosome acting as a probe 

target, it is possible to label and identify a single microbe (Giovannoni et al, 1988).  

rRNA databases are helpful for comparative analysis of sequences.   

When comparing the genetic material of two or more organisms, the regions of 

the DNA or RNA can be conserved or variable.  Conserved regions are sequences of 

nucleic acids that are similar or nearly identical across species (Lane et al, 1985; 

Giovannoni et al, 1988).  By targeting conserved regions of rRNA, “universal” probes 
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can be used to detect groups or kingdoms of organisms (Lischewski et al, 1996; Amann 

et al, 1990).  Universal probes are also useful in detecting the total rRNA content of a 

sample.  Microorganisms can be classified based on differences in their rRNA (Woese, 

1987).  Probes targeting these variable sequences can help identify an organism.  When 

designing a probe, it is important to select a target region that is easily accessible (Inácio 

et al, 2003; Fuchs et al, 1998; Fuchs et al, 2001).   

EUK516 (5’-ACCAGACTTGCCCTCC) was chosen as the reporter sequence in 

this experiment.  This is a universal Eukaryote probe targeting the 18S rRNA and would 

be able to hybridize to any Eukaryotic organism in the sample, giving a more complete 

estimate of contamination.  It was initially used by Amann and colleagues in 1990 as a 

universal probe to detect Eukaryotes in a mixed microbial population.  The number 516 

refers to the corresponding position on the E. coli 16S rRNA.   

After its discovery, this probe was used in several flow cytometric experiments as 

a control for yeast species (Inácio et al, 2003; Lischewski et al, 1996) and Eukaryotic 

organisms (Amann et al, 1990).  Kosse and colleagues (1997) used 18S rRNA-targeted 

oligonucleotide probes to identify yogurt spoiling yeasts.  Several species specific probes 

and the universal EUK516 probe were used to detect whole cells using fluorescent in situ 

hybridization (FISH) and using in situ hybridization to detect yeast inoculated into 

commercial yogurt.  All yeast species were detected by EUK516.  Its detection limit of  

S. cerevisiae in yogurt was 103 CFU/g.  These findings are significant because yeast 

spoilage of yogurt becomes detectable to the consumer at 104-106 CFU/g (Fleet, 2011; 

Viljoen et al, 2003).  The assay was able to detect spoiled before the consumer could 

taste it.   
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EUK1209 (5’-GGGCATCACAGACCTG) was used as the test line sequence.  

This is another universal Eukaryotic probe that targets the 16S rRNA.  Again, the number 

1209 refers to the corresponding position on the E. coli 16S rRNA.  This probe was 

developed by Giovannoni and colleagues in 1988 while developing phylogenetic group-

specific probes to identify single microbial cells in a mixed population.  Since its 

development, this probe has been used as a general Eukaryote probe (Biegala et al, 

2005).  Bochdansky and Huang (2010) used the two most common Eukaryotic probes, 

EUK516 and EUK1209, to design a new probe specific for a branch of Eukaryotes called 

Kinetoplastida.   

EUK516 Complement (5’-GGAGGGCAAGTCTGGT) was used as the control 

line because it would hybridize to the control sequence attached to the reporter probe and 

immobilize it in the reaction zone on the nitrocellulose.  The target sequence is a 

combination of EUK516 Complement and EUK1209 Complement separated by a poly-A 

spacer.  This sequence was designed by the author to prove that the novel system worked 

and could detect Yeast-like sequences in solution.  The reporter probe would be able to 

hybridize to the EUK516 Complement and the test line would be able to hybridize to the 

EUK1209 Complement, completing the sandwich style assay in the reaction zone. 

Once the nanoparticle reporters were synthesized, the reporter probe needed to be 

immobilized on the surface.  The test line sequence also needed to be immobilized on the 

nitrocellulose test strip.  The biotin-streptavidin link is the strongest non-covalent bond 

(Nobs et al, 2004).  This was used to anchor the reporter probe to the nanoparticle.  The 

surface was first coated with avidin.  The reporter probe was purchased premodified with 

biotin.  It was bound to the avidin on the surface of the reporter resulting in a nucleic acid 
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tagged nanoparticle.  The biotin-avidin link was also used to immobilize the test and 

control lines to the nitrocellulose (Edwards and Baeumner, 2006).  Avidin easily adsorbs 

to nitrocellulose. 

The fluorescent particles were prepared using covalent immobilization.  

Aminosilanes were first added to the silica surface.  The terminal amino group was 

activated by glutaraldehyde.  The amino-terminated reporter sequence was then 

permanently immobilized on the surface via the covalent bond between the amino group 

on the reporter probe and the aldehyde (Zhang et al, 2009; Nobs et al, 2004; Vandenberg 

et al, 1991; Howarter et al, 2006) 
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CHAPTER 3 

COMPARISON OF GOLD NANOPARTICLES TO FLUORESCENT 

NANOPARTICLES AS A REPORTER IN A LATERAL-FLOW ASSAY 

Research design and rationale 

The nucleic acid sequences were chosen based upon the literature.  These 

sequences are probes used for detection of yeast and other Eukaryotic organisms.  The 

target sequence is complementary to both the test line and reporter sequence.  The 

reporter sequence is complementary to the control sequence.  Two different reporter 

conjugates were used.  Gold nanoparticles are the accepted standard and are used in 

commercial products.  A novel fluorescent nanoparticle was developed to gain more 

qualitative data from the assay.  Nitrocellulose was used as the reaction chamber of the 

assay and was treated to allow for optimal movement of the nanoparticle reporters. 

Test strip preparation 

Nitrocellulose selection and preparation 

The nitrocellulose (NC) reaction chamber was prepared first.  AE98 (GE 

Whatman) was cut to a width of 38 mm using a paper cutter.  Double-sided transfer tape 

(3M) was used to anchor the NC to the plastic backing.  Plastic sheets cut to a width of 

75mm were used to provide strength and rigidity to the test strip.  The tape was placed 

10mm from the bottom of the plastic.  This left about 27 mm for the application of an 

absorbent pad.  After the NC was added, the assembly was kept in a desiccating chamber 

until needed. 
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Test and control line application 

All test and control line sequences were purchased with a biotin modification 

from Eurofins MWG Operon (Huntsville, AL).  All  sequences used are listed in Table 

3.1.  They were shipped as a lyophilized powder and were reconstituted to 300 µM with 

PBS buffer (phosphate buffered saline, pH 7.4; 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 

0.24 g KH2PO4 (Fisher Scientific, )) upon arrival, separated into aliquots, and stored at -

4°C until needed.   

Table 3.1. List of Yeast sequences used in the proceeding experiments. 
Sequence Name 5’-3’ Sequence Reference Common 

Sequence 
Name 

Biotin-terminated 
reporter 

Biotin-ACCAGACTTGCCCTCC Amann et 
al, 1990 

EUK516 

Amine-terminated 
reporter 

Amine- ACCAGACTTGCCCTCC Amann et 
al, 1990 

EUK516 

Test Line GGGCATCACAGACCTG-Biotin Giovannoni 
et al, 1988 

EUK1209 

Control Line Biotin-GGAGGGCAAGTCTGGT  EUK516 
Complement 

Target CAGGTCTGTGATGCCCAAAAAA
AAAAAGGAGGGCAAGTCTGGT 

 EUK516 
Complement
+ EUK1209 
Complement 

 
To finish preparing the NC, the control sequence was thawed.  Ten microliters of 

the stock control line sequence was mixed with 10 µL of 95nmol streptavidin 

(SouthernBiotech, Birmingham, AL) and 30 µL of a buffer containing 0.4M 

NaHCO3/Na2HCO3, pH 9.0, containing 5% methanol (Edwards and Baeumner, 2006).  

The three components were mixed in a small tube and incubated for 20 minutes.  While 

the control line sequence was incubating, the same procedure was repeated using the test 

line sequence.  After incubation, the control line mixture was drawn into a syringe and 
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applied to the NC using a Linomat IV (Camag, Wilmington, NC) approximately 28mm 

from the bottom of the NC.  The test line was applied in the same manner four 

millimeters below the test line.  The membrane was dried in a vacuum oven at 40°C at 

15” HG for 90 minutes.  It was then left overnight in a desiccating chamber before further 

treatment.   

Blocking 

After the completed application of the test and control lines, the NC must be 

blocked with protein to prevent the nanoparticle reporters from adsorbing to the surface.  

A blocking solution was made using 0.15% casein (MP Biomedicals, Ohio), 2% (w/v) 

polyvinylpyrrolidone (PVP; size K16-18; Acros Organics), 5% Tween 20 (Fisher 

Bioreagents), and 10X Tris-buffered saline (TBS; 200mM Tris, 1.37 M NaCl, 1% BSA) 

(Edwards and Baeumner, 2006).  The membranes were first cut into smaller, more 

manageable pieces and then blocked by placing the plastic backed membranes into the 

solution with the membrane side down and gently swirled for one minute.  Excess 

solution was blotted off and the membranes were dried in a vacuum oven at 25-30°C at 

15” Hg for 2-3 hours.  The blocked membranes were kept in a desiccating chamber until 

needed.   

Lateral flow strip assembly 

After blocking, the membrane was cut into 4 mm wide strips using a paper cutter.  

The absorbent pad (CF5; GE Whatman) was added to the NC strip using transfer tape.  

The CF5 absorbent pad was first cut into pieces measuring 4 x 25 mm.  It overlapped the 

NC by about 2 mm.  The assembled lateral flow strips were kept covered in the 

desiccating chamber until needed.   
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Reporter preparation 

The reporter is the visual aide that relays the test results to the user.  Gold 

nanoparticles (GNPs) are considered to be the standard in lateral flow assays.  They are 

used for visual detection in ‘presence or absence’ testing.  Fluorescent nanoparticles were 

used to obtain quantitative data from the test strips.  It is hypothesized that the assay’s 

limit of detection will decrease when using the fluorescent reporter.  Both reporters have 

the same oligonucleotide sequence immobilized on the surface.   

Gold nanoparticle functionalization 

Streptavidin dressed gold nanoparticles (GNPs; BioAssay Works, Maryland) were 

used as the control reporter in the assay.  The GNPs measured about 40nm in diameter.  

Before the reporter sequence could be added, the GNPs were diluted with water from 

OD520 of 15 to OD520 of 1.  The biotin terminated reporter sequence was diluted with PBS 

to a final concentration of 24µM and added to the dilute GNPs.  The GNP-DNA mixture 

was incubated at room temperature under 70 rpm rotation for 45 minutes.  The GNPs 

were then blocked with 10% bovine serum albumin (BSA Fraction V; Fisher Scientific), 

filtered, pH 9.0 for 20 minutes under 20 rpm rotation at room temperature.  The reporter 

was washed and concentrated by centrifuging at 3000-4000 x g for 20 minutes.  The 

completed GNP reporter was held at OD520 of 1 in 2mM sodium borate buffer.  

Fluorescent nanoparticle preparation and modification 

Fluorescent nanoparticles were synthesized to be used in the assay to gain more 

quantitative data.  Different surface modifications were explored to link the reporter 

sequence.  After the assay was completed, the strips were analyzed with a plate reader 

and a dose response curve was constructed.   
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Fluorescent nanoparticle synthesis 

Ruthenium (Ru(bpy)3
2+) doped silica nanoparticle (SiNPs) were synthesized using 

a water in oil (W/O) emulsion according to the literature (Chang et al, 2006).  Briefly, 

1.77 ml triton X-100 (EMD, Germany), 7.5 ml cyclohexane (Fisher Scientific, Pittsburg, 

PA), 1.8 ml hexanol (Acros Organics, New Jersey), and 0.34 ml of 0.04 mol/L ruthenium 

(Sigma Aldrich) were combined in a beaker and stirred with a magnetic stir bar for 30 

minutes at 600 rpm.  One hundred microliters of tetraethyl orthosilicate (TEOS; Sigma 

Aldrich) and 200 µL ammonia (Acros Organics, New Jersey) were then added.  The 

mixture was left to react for 24 hours under stirring at 600 rpm.  The reaction vessel was 

covered in foil to prevent photobleaching of the ruthenium.  Synthesis was carried out in 

a fume hood to prevent the escape of ammonia and other chemical vapors.   

The nanoparticles were washed and concentrated after formation.  The emulsion 

containing the SiNPs was transferred to a round bottom oak ridge centrifuge tube (Fisher 

Scientific) and 20 ml of acetone (Fisher Scientific) was added.  The mixture was 

sonicated for five minutes in a sonicating bath then centrifuged at 4°C at 12000 rpm for 

10 minutes.  The supernatant was discarded and the particles were washed three times 

with ethanol (Fisher Scientific) and three times with water using the same procedure.  

The washed SiNPs were held in 5 ml of water until needed for surface modification. 

Avidin Surface Modification 

Modification involved coating the SiNPs with avidin, then cross-linking the 

avidin with glutaraldehyde to improve the stability of the protein on the surface (Zhao et 

al, 2010).  To do this, one milliliter of the prepared SiNPs were centrifuged at 1.5xg for 

15 minutes and the supernatant was discarded.  One milliliter of 10mg/ml avidin solution 
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(Pierce, Rockford, IL) was added.  The solution was incubated for 24 hours in 10 mM 

phosphate buffer (2.0078 g NaCl, 0.0505 g KCl, 0.3610 g Na2HPO4, 0.0608 g KH2PO4; 

pH 7.5) at 7°C on a vortex set to 600 rpm.  Protein was also adsorbed to the nanoparticle 

surface at room temperature on a rotator set to 40 rpm.  In the room temperature 

experiment, 150 µL of 5mg/ml avidin was added along with 3 ml of 10 mM phosphate 

buffer.  After both experiments, the particles were washed three times with PBS by 

centrifuging at 1.5 x g for 15 minutes.  A 1% glutaraldehyde (Alfa Aeser, Ward Hill, 

MA) solution was added and incubated for one hour under rotation (40 rpm) at room 

temperature.  To make this solution, 40µL of 25% glutaraldehyde was added to 960µL 

PBS.  After washing three times with PBS, unreacted aldehyde groups were blocked with 

1 M Tris-HCl (pH 7.0).  One milliliter of the Tris-HCl was added to the nanoparticles and 

incubated under rotation (40 rpm) at room temperature for three hours.  The particles 

were washed three times in PBS as described above and held in 500µL of PBS until 

needed.   

The amount of protein on the surface of the particles and from the supernatant 

taken from the first washing step was measured using the Bicinchoninic Acid (BCA) 

Protein Assay Kit from Thermo Scientific Pierce (Rockford, IL).  The procedure was 

carried out in a 96-well plate and the absorbance was read at 562nm.  A standard curve 

was constructed and used to determine the amount of protein on the surface of the 

particles and in the supernatant.  Transmission electron microscopy was used to view the 

completed SiNPs to determine size distribution and shape.   

Further modification involved linking the biotin-terminated reporter sequence to 

the avidin on the surface.  Before hybridization, the nanoparticles were centrifuged as 
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above to remove the supernatant.  Twenty microliters of 300µM biotin-terminated DNA 

was added to 480 µL PBS before being added to the SiNPs.  The particles were left on a 

rotator set at 40 rpm for about 15 hours.  Excess DNA was removed by centrifugation at 

1.5 x g for 15 minutes.  The modified SiNPs were held in 500µL PBS until needed. 

Silane Surface Modification with APTMS 

Silane groups were added to the surface of the SiNP to attach the reporter 

sequence (Chang et al, 2006).  To begin, 500 µL of the SiNP were centrifuged at 10,000 

rpm for 2 minutes in a benchtop centrifuge.  The supernatant was discarded and 1 mL of 

2% (v/v) (3-aminopropyl)trimethoxysilane (APTMS; Gelest, Inc, Morrisville, PA) in 

95% ethanol was added.  This was held at room temperature on a vortex at 600 rpm for 

30 minutes.  The particles were centrifuged at 10000 rpm for 2 minutes and the 

supernatant was discarded.  They were washed once in ethanol and then in water by 

centrifuging at 10000 rpm for 2 minutes.  After the supernatant was discarded and the 

new solvent was added, the centrifuge tube was placed briefly in a sonicating bath to 

resuspend the pellet.  A 5% glutaraldehyde (Alfa Aeser, Ward Hill, MA) solution was 

added and incubated for 2 hours at 37°C on a vortex set to 600 rpm.  After centrifuging to 

remove the glutaraldehyde solution, the SiNPs were washed once in PBS as described 

above.  Ten microliters of amine-terminated reporter probe, 940 µL PBS and 50 µL 20X 

SSC (3.0 M NaCl, 0.3 M Na3C6H5O7) were added and mixed continuously for 2 hours at 

37°C.  The reporter probe had a concentration of 300 µM.  After incubation, the particles 

were centrifuged to remove excess reporter probe and washed once in PBS as described 

above.  The final step required the addition of 1 mL of 30mM glycine solution and 
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incubation at room temperature under shaking.  The particles were washed and held in 

PBS until needed. 

Silane Surface Modification with GPTMS 

A third method of fluorescent nanoparticle modification was also tested (Zhang et 

al, 2009).  Silane groups were deposited on the surface through the addition of (3-

glycidoxypropyl)trimethyoxysilane (GPTMS; Acros Organics) and amine-terminated 

DNA was then linked to the surface.  After synthesis, the nanoparticles were dialyzed in 

water for 48 hours to remove free dye and other contaminants from the water phase.  The 

particles were then washed twice in ethanol by centrifuging at 12,000 x g at 4°C for 30 

minutes.  The treated particles were allowed to dry in a vacuum oven overnight at 25°C 

and 25” Hg.  The weight of the dry nanoparticles was obtained and approximately 2 mg 

was used for further modification.   

The reserved portion of dried nanoparticles was re-suspended in 4.5 ml toluene in 

a glass vial and sonicated in a bath for 1 hour.  Five hundred microliters of 10% (v/v) 

GPTMS was added and the vial was transferred to a 65°C water bath to incubate for 2 

hours under shaking at 200 rpm.  The solution was transferred to five Eppendorf tubes 

before being centrifuged at 10,000 x g at 4°C for 30 minutes.  The supernatant was 

discarded.  The particles were then thoroughly washed.  Six hundred microliters of 

toluene was used to centrifuge at 6,000 x g at room temperature for 2 minutes.  The 

supernatant was discarded and replaced with 0.6 ml acetone.  The particles were 

centrifuged at 7,000 x g at room temperature for 2 minutes, the supernatant was 

discarded, and they were washed again in acetone.  The particles were washed twice in 

ethanol by centrifuging at 6,000 x g at room temperature for 2 minutes.  The solution was 
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transferred to new tubes before the second wash.  After washing, the particles were left to 

dry overnight in a vacuum oven set to 25°C and 25” Hg.   

Amine-terminated reporter sequence (Table 3.1) was then conjugated to the 

modified nanoparticles.  PBS (pH 6.8) was used to re-constitute the dry nanoparticles.  

The particles and DNA were transferred to a 10ml glass vial and put in a 37°C water bath 

under shaking at 200 rpm to incubate for approximately 48 hours.  The final steps include 

centrifuging at 3500 x g at room temperature for 2 minutes to collect the completed 

particles and then washing in 0.6 ml PBS by centrifuging at 3500 x g at room temperature 

for 2 minutes.  The nanoparticles were held in 100µl PBS until needed.  

Assay conditions 

The assay was performed in dipstick format in 10 ml glass culture tubes (Fisher 

Scientific).  The target sequence was diluted to concentrations of 50-0.25 fmol/µL with 

PBS.  The PBS was used as a control (0 fmol/µL).  The reporters were further diluted 

before use.  Five microliters of reporter (GNP or SiNP) and 2µL target (positive or 

negative control) were added to the culture tubes.  PBS was added to bring the volume to 

10 µL.  The reporter and conjugate were allowed to incubate on the bench top for five 

minutes before the lateral flow strip was added.  During the incubation period, the small 

bit of plastic at the end of the lateral flow strip was removed.  The lateral flow strip was 

added to the tube with the absorbent pad on top.  After one or two minutes, the strips 

were moved to a second set of tubes containing 35 µL of PBS, which acted as a running 

buffer to drive the reporter towards the reaction zone and reduce background.  After ten 

minutes, the strips were removed and allowed to air dry briefly before analysis.   
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When using the GNP, visual inspection was sufficient to determine the outcome 

of the test.  Two red lines indicated a positive test and one red line indicated a negative 

test.  The SiNPs were not visible, so the strips were loaded into a modified 96-well plate 

to be read in a Biotek plate reader.  This modified plate is shown in Figure 3.1.  Shallow 

wells corresponding to the rows of a regular 96-well plate held the lateral flow strips in 

place (Figure 3.1A).  A lid was placed on top that had holes exposing the areas of 

columns 4, 6, 7, and 8 or the beginning of the strip, the test line area, the control line area, 

and the absorbent pad, respectively (Figure 3.1B).  The plate was read at an excitation 

wavelength of 460 nm and emission wavelength of 620 nm. 

 
Figure 3.1A- The modified 96-well plate used to analyze the fluorescence produced by 
the ruthenium-doped SiNPs.  The bottom of the plate is shown on the left.  Shallow 
trenches hold the test strips in place.  Small grooves were cut to line up the test line (T) 
and control line (C) with openings in the lid.  The lid is shown on the right.  The oval 
holes expose the bottom of the test strip, the holes in columns 6, 7, and 8 expose the test 
line, control line, and absorbent pad, respectively. 

3.1A 
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Figure 3.1B- The assembled 96-well plate used to measure fluorescence produced by the 
ruthenium-doped SiNPs.  The lid was placed on top of the tray holding the test strips and 
was held in place with screws.  The exposed areas were read by the Biotek plate reader 
much like a normal 96-well plate. 

Results 

Effects of blocking 

The nitrocellulose reaction chamber must be blocked with proteins to prevent the 

streptavidin coated gold nanoparticles (GNPs) or avidin coated ruthenium doped silica 

nanoparticles (SiNPs) from adsorbing to the membrane.  Experiments were performed to 

determine the optimal blocking dilution and time for the membrane.  The composition of 

the blocking buffer was described previously.  The membranes were blocked in stock 

concentration of buffer and varying concentrations that involved diluting the buffer with 

water.  Plain water was used to act as a control.  These dilutions are given in Table 3.2.  

The results of blocking time are not shown, but blocking time ranged from 1 to 30 

minutes.   

 

 

 

3.1B 
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Table 3.2. List of the concentrations of blocking buffer used to treat the nitrocellulose 
membrane. 

LF Strip ID X parts blocking buffer : Y parts water 
A (stock concentration) 1:0 (all blocking buffer) 

B 1:1 
C 1:2 
D 1:3 
E 1:4 
F 1:5 

G (control) 0:1 (all water) 
 

The results of varying buffer dilution are shown in Figure 3.2.  The labels A 

through G correspond with the details in Table 2.  In Figure 3.2, strip G was blocked with 

water (control).  The pink patch on the right shows the place where the GNPs were added 

to the strip.  They were unable to flow up the strip.  Strips C through F show limited 

movement of the GNPs up the strip due to the pink smears on the right side.  These strips 

were blocked with one part blocking buffer and increasing parts water.   

 
Figure 3.2- Effects of blocking on GNP reporter movement up the nitrocellulose 
membrane.  Strip A shows optimal movement because the test and control lines are 
visible, while Strip B shows only an incomplete test line.  Strips C-F show impaired 
reporter movement due to lack of blocking.  Strip G was treated with water and shows 
limited movement of the reporter because the avidin is adsorbing to the nitrocellulose 
membrane. 

In Figure 3.2, strip B shows better movement of the GNPs than strips G through C 

because a partial test line is formed.  Strip A shows optimal movement up the strip 
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because the GNPs were able to reach the reaction zone.  A strong test line and weak 

control line are visible on the test strips treated with stock blocking buffer.  The test strips 

were then treated for varying times to determine optimal blocking time.  It was 

discovered that treating the test strips for 1 minute with stock concentration of blocking 

buffer provided the appropriate amount of coverage to allow the GNPs to reach the 

reaction zone of the test strip. 

GNP reporter optimization 

Optimal GNP reporter concentration was also determined.  The particles needed 

to be dilute enough to flow through the NC without aggregation, yet concentrated enough 

to provide a strong signal.  It was found that using a concentration of OD520 2.3 worked 

best.  Higher concentrations were used, but the GNPs became trapped in the test line and 

produced an invalid result because the control line did not develop.  Lower 

concentrations produced weak signals. 

GNP reporter results 

Assays were performed to validate the construction of the lateral flow cards and 

then to test their working range.  Synthetic target, which mimicked a portion of rRNA 

found in Eukaryotic organisms, was diluted to a range of 50 to 0.25 fmol/µL.  PBS was 

used as a negative control (0 fmol/µL).  The tests were performed in dipstick format in 

glass culture tubes.  Results from triplicate tests are shown in Table 3.3.  The results 

show that 10 fmol of target was consistently detected using the assay, although the first 

test detected 5 fmol.  Figure 3.3 shows typical results from the test.  The appearance of a 

control line indicated a valid test run. 
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Table 3.3. Results from triplicate testing using GNP as reporter. 
Total target concentration 

(fmol/2 µL) 
Test 1 Test 2 Test 3 

0 - - - 
0.5 - - - 
1 - - - 
5 + - - 
10 + + + 
25 + + + + + + 
50 + + + + + + + + + 
100 + + + + + + + + + 

Ten femtomoles of target was consistently detected using this reporter.  The first test was 
able to detect 5 fmol, but the next two tests were unable to do this.  One plus sign (+) 
represents a weak test line signal, two plus signs (+ +) represent a slightly stronger test 
line signal, and three plus signs (+ + +) represent a very strong test line.  All control lines 
appeared strongly (+ + +).  Each test was valid due to the appearance of a control line. 

 
Figure 3.3- Typical results of the assay using GNP as reporter.  The target concentration 
is listed on the left and the direction of sample movement is indicated.  Each test is valid 
due to the development of a control line.  Higher sample concentrations lead to darker 
test lines.  This format is best used for presence/absence testing. 

The average grey value of the test lines was also analyzed using Adobe® 

Photoshop® CS5.1 Extended to obtain more quantitative data.  The results are shown in 
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Table 3.4.  Grey scale values range from 0-255, with 0 representing pure black and 255 

representing pure white.  The test lines from the higher concentrations showed a darker, 

more intense red color and therefore received a lower value, while the test lines from the 

lower concentrations had less red color and received a higher value.  This relationship is 

also shown graphically in Figure 3.4.   

Table 3.4. Mean Grey Value of test lines from GNP assays. 
 Mean Grey Value 

Total Target 
Concentration 
(fmol/2 µL) 

 
Trial 1 

 
Trial 2 

 
Trial 3 

Average Grey 
Value 

0 102.72 119.00 121.27 114.33 
0.5 106.38 121.66 126.29 118.11 
1 111.69 132.05 131.81 125.18 
5 108.47 132.37 129.58 123.47 
10 101.97 121.53 122.82 115.44 
25 95.84 116.13 117.27 109.75 
50 87.98 104.96 102.44 98.46 
100 79.95 94.12 88.42 87.50 

The grey value of the test line was measured in Photoshop.  Lower values correspond to 
darker, richer colors while higher values correspond to brighter, whiter colors.  After the 
first two points, grey value is inversely proportional to target concentration. 
 

 
Figure 3.4- Graph of the Mean Grey Values for the test line in the assay using GNP as 
reporter.  Using this graph along with Figure 3.3, it is easy to see that the highest target 
concentration has the lowest mean grey value and the strongest test line signal.  Test line 
intensity decreases with decreasing target concentration. 

80
90

100
110
120
130
140

-20 0 20 40 60 80 100 120

M
ea

n 
G

re
y 

Va
lu

es
 

Total Target Concentration (fmol) 

Average Mean Grey Values 



 

30 

Ru(bpy)3
2+ doped silica nanoparticle synthesis and use 

Ruthenium doped silica nanoparticles (SiNPs) were synthesized using a modified 

Stöber method, which involves forming a water in oil (W/O) emulsion.  Surface 

modification involved coating with avidin to allow the linking of biotin-terminated 

reporter DNA, much like the GNPs.  Experiments were also conducted to deposit silane 

groups on the surface and link amine-terminated reporter probe.   

Transmission electron microscopy (TEM) was used to image the SiNPs.  Figure 

3.5 shows a sample of SiNPs modified with avidin.  Carbon coated copper grids were 

used for the TEM.  The SiNPs were first sonicated in ethanol for three minutes then 

applied to the copper grids.  After the grids were dried, they were viewed.  The particles 

are round, uniform in size, and concentrated.  They are approximately 70 nm in size.  

Although this is larger than the 40 nm GNP reporter, proper dilution of the SiNPs and 

treatment of the surface allowed movement up the NC test strip.   

 
Figure 3.5- Ruthenium-doped SiNPs synthesized by W/O emulsion.  The ruthenium core 
is darker than the surrounding silica shell.  The particles are approximately 70 nm in 
diameter and are uniform in size and shape. 
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In order to determine the amount of biotin-terminated reporter probe to add to the 

SiNPs, the amount of surface avidin must be determined.  This was accomplished using 

the BCA assay.  Figure 3.6 shows the standard curve generated from this assay.  Initially, 

150 µL of 5 mg/ml solution of avidin was added to the SiNPs which were then incubated 

at room temperature on vertical rotator.  The BCA assay showed the stock concentration 

of SiNPs had approximately 368.55 µg of avidin per milliliter of nanoparticle.  This 

corresponded to an approximate concentration of 5.6 nmol (10-9) avidin.  Avidin is a 

tetrameric protein capable of binding four biotin molecules.  This amount of avidin was 

able to bind about 22.4 nmol of biotin.   

 
Figure 3.6- Standard curve generated from the BCA assay used to determine protein 
content on SiNP surface when adsorbed at room temperature. 

However, this was not enough avidin to bind the appropriate amount of reporter 

probe to the surface.  One hundred microliters of 300 µM biotin-terminated reporter 

probe was added to the SiNPs.  This is equivalent to about 30 nmol of biotin-terminated 

probe.  There was not enough reporter probe immobilized on the SiNP to bind to the test 
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and control lines in the reaction zone.  Results are shown in Table 3.5.  The SiNPs were 

diluted to OD620 of 1 before use.  Absorbent pads CF3, 4, and 5 were used.  The pads 

differ in the amount of liquid they can hold and wicking rate, with 3 being slowest and 5 

being fastest.  PBS was used as a negative control and a total of 100 fmol of target 

sequence was used as a positive control.  The protocol describes previously was followed 

for testing the samples.  The test strips were analyzed with the Biotek plate reader at an 

excitation wavelength of 460 nm and emission wavelength of 620 nm. 

Table 3.5. Fluorescence data in arbitrary units (AU) from lateral-flow strips using OD620 
1.0 SiNP as reporter. 
Test Strip ID Bottom of Test 

Strip 
Test Line Control Line Absorbent Pad 

CF3 ( - ) 3388 342 335 1248 
CF3 ( + ) 4147 357 342 929 
CF4 ( - ) 2818 379 325 1810 
CF4 ( + ) 3724 349 341 1436 
CF5 ( - ) 2376 692 752 3482 
CF5 ( + ) 4320 397 408 2736 

 

This shows the SiNPs and target sequence did not hybridize to the reaction zone.  

The fluorescence readings for the test and control line are approximately the same and 

have rather low readings.  The SiNPs were trapped in the bottom of the test strip.  A 

portion of the SiNPs was able to travel up the test strip to the absorbent pad.  These 

results could be due to inadequate avidin adsorption to the nanoparticle surface.  If the 

surface is not fully coated, the biotin would not have a place to bind and the nanoparticle 

would not have enough reporter probe to be able to hybridize to the reaction zone. 

The experiment was repeated using a higher concentration of avidin and 

adsorbing the protein to the surface at 7°C using a vortex mixer.  One milliliter of 

10mg/ml avidin was added to the SiNPs.  The BCA assay was repeated and used to 
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measure the protein on the SiNPs and in the supernatant from the first washing step after 

adsorption.  Figure 3.7 shows the standard curve constructed from this assay.  The stock 

concentration of nanoparticles had approximately 156.33 µg/ml of avidin adsorbed on the 

surface.  This is equivalent to 2.37 nmol of avidin.  It would be able to bind 9.48 nmol of 

biotin.  The supernatant from the first washing step contained 7776.67 µg/ml of avidin.  

Twenty microliters of 300 µM reporter probe was added.  The reporter was used in an 

assay and the results were analyzed. 

 
Figure 3.7- Standard curve generated from the BCA assay used to determine protein 
content on SiNP surface and supernatant when adsorbed at 7°C. 

The optimal concentration of nanoparticles was obtained by diluting the SiNPs by 

100.  This allowed all of the nanoparticles to travel up the nitrocellulose reaction chamber 

without clogging the pores.  This dilution factor was used when comparing three types of 

modified SiNPs- avidin modified, APTMS modified, and un-modified SiNPs.  Each test 

strip used CF5 absorbent pad.  Again PBS was used as a negative control and 100 fmol of 

target sequence was the positive control.  The results are shown in Table 3.6.   
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Table3.6. Comparison of three ruthenium-doped SiNPs used as reporter. 
Reporter ID Bottom test 

strip 
Test Line Control Line Absorbent pad 

Avidin ( + ) 357 642 607 3209 
Avidin ( - ) 291 598 542 2873 
Silane ( + ) 468 585 497 3252 
Silane ( - ) 648 591 529 3478 

Un-mod ( + ) 488 500 458 4072 
Un-mod ( - ) 387 600 585 3322 

The avidin was adsorbed to the surface through Zhao's method, the silanes were 
deposited by APTMS through Chang's method, and 'un-mod' particles do not have any 
surface modification. 

The SiNPs were all diluted 1:100 before use.  Experiments were performed with 

various other dilutions, but most of the nanoparticles remained clogged at the beginning 

of the test strip (data not shown).  Again, neither surface modification was able to 

hybridize in the reaction zone.  The fluorescence readings from SiNPs that had reporter 

probe added were the same as fluorescence readings from SiNPs that did not have 

reporter probe added.  The high readings from the absorbent pad are from the collected 

SiNPs. 

The SiNPs modified with GPTMS were also tested.  The reporter was used as 

collected.  A kinetic read was used to analyze the strips in the Biotek.  One reading was 

taken every minute for 70 minutes.  The sum of the test line measurements was used.  

Concentrations from 0-12.5 fmol were tested.  The graph of the GPTMS reporter is 

shown in Figure 3.8.  GPTMS modified fluorescent SiNPs were able to detect 0.027 fmol 

of target sequence.   
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Figure 3.8- Graph of GPTMS modified SiNP reporter.  Error bars with standard deviation 
are shown.  This method was able to detect 0.027 fmol of target sequence.   

Discussion 

 Rapid testing methods are becoming increasingly popular in many sectors.  

Lateral-flow test strips are transportable, easy to use, and require minimal sample 

preparation.  Commercial products are contained in plastic cassettes that protect the inner 

components and allow for easy handling.  The novel test was used in dipstick format; the 

nitrocellulose of the test strip was added directly to the reporter conjugate and purified 

sample.  Commercial products use a sample pad to filter out undesired or inhibitory 

elements in the sample and a conjugate pad that contains dried reporter conjugate.  These 

parts were not used in the novel test method because proof of principle was being shown.  

Figure 3.9 shows a novel test strip in a commercial plastic cassette.  It is small and 

compact.  The sample would be applied through the small opening on the left and the test 

and control lines are visible through the labeled viewing window.  In a clinical setting, 

sample identification can be written on the cassette to avoid confusion.  A desiccant pack 
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can be stored next to the test strip to reduce the humidity inside and prolong the shelf life 

of the assay. 

 

Figure 3.9- Novel test strip housed in a commercial plastic cassette. 
Proper assembly of the lateral flow test strip is essential for a valid assay.  

Blocking the nitrocellulose membrane is necessary to enable uninhibited reporter and 

target movement towards the reaction zone.  Streptavidin and other proteins adsorb easily 

to nitrocellulose.  This is seen in strip G of Figure 3.2.  A large portion of GNPs were 

added to the bottom of the test strip and were unable to move past their entry point.  At 

least 100 µL of PBS was added to the strip to wash the nanoparticles up the strip but they 

didn’t move.  The nitrocellulose was treated with a casein solution to deposit proteins 

throughout the porous membrane.  Casein and the other components of the blocking 

buffer did not interact with the GNPs and helped them move up the test strip. 

 Using the appropriate amount of reporter in the assay is also important.  If the 

reporter is too concentrated, the membrane will be saturated with nanoparticles and 

movement will be hindered.  This was observed with both gold and fluorescent 

nanoparticles.  When concentrated GNPs were used, they were stuck behind the test line 

and could not reach the control line.  This imitated an invalid test because the control line 
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did not appear.  The correct dilution of GNP was found by running a series of dilutions 

until both test and control lines appeared.  When using the fluorescent nanoparticles, they 

were stuck at the bottom of the test strip.  Each particle was about 40 nm wider in 

diameter than the gold nanoparticles.  When concentrated, they were unable to travel 

towards the reaction zone.  The fluorescence detected in the absorbent pad could be free 

ruthenium or smaller nanoparticles that were able to travel up the strip.  After the correct 

concentration was determined, fluorescence was no longer detected at the bottom of the 

test strip. 

 Using GNP as a reporter works best for visual determination of a positive or 

negative result.  The test and control lines are red in color, easy to see with the naked eye, 

and permanent so analysis can be performed when it is convenient for the technician.  

The test is also easy to interpret and dispose of.  GNP reporter is best used for presence or 

absence testing because it is difficult to correlate test line intensity with target 

concentration.  Software was used to measure the grey value of the test line.  Grey value 

is used to measure brightness and ranges from 0 to 255.  Zero intensity is black and full 

intensity is white.  Darker and more intense colors have lower grey values while lighter 

and less saturated colors have higher grey values.  The color intensity of the test lines 

decreased as the target concentration decreased until the target concentration was below 

the test’s limit of detection.  It was observed that 100 fmol sample had the darkest test 

line and lowest average grey value.  Figure 3.4 shows a small decrease in grey value for 0 

and 0.5 fmol but that is due to uneven exposure of the image.  The edges of the picture 

were darker and lead to false values.  If the photograph was evenly exposed, the graph 

would be more linear and the error bars would be smaller. 
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 Fluorescent silica nanoparticles (SiNP) were used to obtain more quantitative 

data.  Ruthenium was chosen because it is water soluble, safe to use and easy to dispose 

of.  Using the modified Stöber method produced nanoparticles that were concentrated and 

uniform in size and shape.  The particles were approximately 70 nm in diameter.  The 

size is depended on reaction time and the amount of reagents used.  In Figure 3.5, the 

ruthenium is visible in the core of the nanoparticle because it is more electron dense than 

the silica that surrounds it.  In a transmission electron microscope, or TEM, a beam of 

electrons is passed through a sample and focused through several lenses before being 

magnified on a viewing screen.  It is a valuable tool in viewing objects that are too small 

to be viewed with a light microscope.   

 The surface of the SiNP was modified several ways to immobilize the reporter 

sequence to the reporter.  Avidin coating was attempted first because the GNPs were 

streptavidin dressed.  Differing avidin concentrations and adsorption temperatures were 

investigated and the amount of avidin was measured with the BCA assay.  It was 

observed that using a rotator that turned the SiNPs end over end was able to deposit more 

avidin on the NP surface than a vortex mixer that rapidly shook the SiNP.  The SiNPs on 

the rotator had three times more avidin on the surface than the SiNPs on the vortex mixer.   

Temperature was also investigated but it didn’t seem to have as big of an effect as the 

type of agitation. 

 The BCA assay is a colorimetric method used to detect and quantify total protein.  

It combines the reduction of Cu2+ to Cu1+ by protein in an alkaline medium with the 

selective and sensitive colorimetric detection of the cuprous cation (Cu1+) using 

bicinchoninic acid (Smith et al, 1985).  A purple color develops when two molecules of 
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BCA are chelated with one cuprous ion.  The complex absorbs at 562 nm and has a 

working range of 20-20,000 µg/ml.  A standard curve is generated and then used to 

determine the protein concentration of the unknown sample.  The BCA assay was an easy 

and accurate way to measure the amount of avidin adsorbed on the SiNP surface. 

 The amount of avidin was used to calculate the amount of biotin that can be 

bound.  An excess of biotin-terminated reporter probe was added to the SiNP.  However, 

the avidin coated SiNPs did not bind to the reaction zone.  The fluorescence detected by 

the reaction zone was similar to that detected at the bottom of the test strip.  There are 

several reasons why this could have happened.  The avidin may have fallen off the 

surface or was damaged during the washing steps and therefore the reporter probe was 

unable to bind to the surface.  The protein may not have fully coated the surface due to 

lack of electrostatic attraction.  This could have been due to the buffer the SiNPs were 

held in.  If the buffer was completely dialyzed away from the particles, the surface charge 

would have changed and the protein may have been more attracted to the surface.  

Without sufficient reporter probe attached to the nanoparticle, it would not be able to 

hybridize in the reaction zone.  The capillary forces would pull the SiNP away from the 

reaction zone, resulting in invalid results.   

 The GPTMS modified SiNPs were successfully used as a reporter in the assay.  

The APTMS may not have adsorbed to the surface properly because of the salts from the 

buffer that the particles were held in.  The GPTMS particles were dialyzed in water 

overnight to remove all buffer salts and impurities in the water phase.  Reaction 

temperature may have affected the outcome of the modifications.  The APTMS 

modifications were carried out in a vortex mixer in a walk-in incubator that was heated 



 

40 

by air and the GPTMS modifications were carried out in a heated shaking water bath.  

Water has better heat transfer than air and the agitation from the water bath kept the 

particles suspended in the reaction solution better than the vortex mixer. 

 A kinetic measurement was used because the larger SiNPs may have been delayed 

in traveling through the pores of the NC membrane.  Although a kinetic measurement 

was not used for the avidin or APTMS modified SiNPs, the strips were analyzed at 

intervals of 10 minutes to determine if a test or control line developed.   

 As hypothesized, the novel method was more sensitive than the standard method.  

This could be to the result of a more sensitive detection method.  GNP reporters could 

have hybridized to the test line at concentrations below 10 fmol, but the eye could not 

detect it.  Using the Biotek plate reader may have shown a lower limit of detection.  A 

‘hook effect’ is seen with the GPTMS SiNP (Koets et al, 2006).  An assay can best detect 

target in the linear portion of the dose-response curve.  As the target concentration 

increases past the working range, the assays sensitivity begins to decrease because the 

target is beginning to saturate the reporter conjugate and test line.  The reporter cannot 

bind to the test line due to steric hindrance and the signal decreases.    

Conclusions 

As the population increases and the demand for minimally processed foods 

increased, rapid testing methods will become indispensable.  A novel lateral-flow test 

was developed to detect yeast oligonucleotide sequences.  Gold nanoparticles were used 

as a standard reporter and were compared to a novel fluorescent nanoparticle.  

Streptavidin dressed GNP were linked to the reporter sequence with biotin.  The standard 

method was able to detect 10 fmol of target.  Ruthenium-doped silica nanoparticles were 
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synthesized with a modified Stöber method.  The particles modified with avidin and 

APTMS were unable to detect target sequences because the particle surface was 

unsuccessfully modified and sufficient reporter probe could not be immobilized.  

However, modifying the surface with GPTMS successfully detected 0.027 fmol of target 

sequence.  The improved limit of detection is due to a more sophisticated detection 

method.  To further improve the assay, the SiNP concentration and amount of reporter 

sequence on the surface could be optimized.   
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CHAPTER 4 

ADDITIONAL WORK 

Review of food borne biological warfare 

Brief introduction to food borne biological warfare 

Throughout history, bioterrorism and biological agents have been widely used.  

From the use of Plague infected corpses and Smallpox-contaminated blankets in centuries 

past, to Bacillus anthracis spores being sent through the mail in Fall 2001, the threat of a 

bioterrorist attack has been ever present.  There are several political, social, economic, 

and religious reasons for these attacks.  During World War II, Churchill knew of German 

rockets containing biological agents and prepared to retaliate by dropping anthrax-laced 

cattle cakes on the German countryside to ruin the beef supply (Bhalla, 2004).  Chilean 

grapes were found to contain small amounts of cyanide in the late 1980s (Grigg and 

Modeland, 1989).  Although fatalities were not encountered, Chile’s reputation and 

economy were disrupted.  A religious cult in Oregon contaminated several salad bars 

with Salmonella typhimurium type 2 in the 1980s.  Their plan was to make voters sick 

and influence outcome of an election on land use (Török et al, 1997).  On a smaller scale, 

a hospital worker in Texas was suspected of contaminating food in the staff break room 

with Shigella dysenteriae stolen from the hospital’s lab (Kolavic et al, 1997).  If a 

national chain such as Kraft or Campbell’s was infiltrated and contaminated, the effects 

on the population would be devastating.   

Yersinia pestis, B. anthracis, and Salmonella typhi are considered ‘classic’ agents 

of biological warfare.  They are related to food borne pathogens and have similar virulent 
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factors.  Food suppliers can be contaminated with Yersinia enterocolitica, Bacillus 

cereus, and Salmonella species and affect millions of people.  Typical food borne 

pathogens such as Escherichia coli O157:H7, Vibrio cholera, and Coxiella burnetti have 

been used in bioterrorism.  Clostridium botulinum and Staphylococcus aureus produce 

toxins that are a problem in the food industry and can be intentionally used to harm a 

population.  Viruses such as Norovirus and Variola major, the cause of Smallpox, can be 

added to food and infect a large portion of the population. 

The federal government and similar agencies test for these contaminants using 

immunological technology and nucleic acid-based techniques that are rapid, easily 

interpreted, and highly accurate.  The food industry comes into contact with many of the 

same contaminants, but relies on traditional microbiological test that are time consuming 

and sometimes misinterpreted.  Why is the food industry slow to adopt new detection 

methods? 

Biological agents- definitions and CDC classification 

According to the Department of Homeland Security, a biological agent (BA) is 

any “toxin, bacterial, or viral organism that can cause casualties when released.  To be an 

agent, it must be infectious to humans, capable of being produced in enough quantity to 

be toxic and stable through the dissemination process” (Fatah et al, 2007).  Biological 

agents are also characterized by low visibility, high potency, accessibility, and ease of 

transportation and dissemination (Danzig and Berkowsky, 1997).  The Centers for 

Disease Control and Prevention (CDC) has organized biological agents into several 

categories based on their mortality rate, transmissibility, degree of public health 

preparedness, risk to national security, and several other criteria.  Category A contains 
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top priority BAs that are easily passed from person to person, result in high mortality 

rates, and have the potential to cause a massive public health impact.  These BAs might 

also cause public panic and social disruption and require special action for public health 

officials.  The disease and causative agents found in Category A are listed in Table 4.1.  

Category B includes second priority BAs that are moderately easy to disseminate, result 

in moderate morbidity and low mortality, and require specific CDC diagnosis and 

enhanced disease surveillance.  The disease and causative agents found in Category B are 

listed in Table 4.2.  Category C contains the third highest priority agents that are 

emerging pathogens that have the potential to be engineered for mass dispersal because 

of availability, ease of production and dissemination, and a potential for high morbidity 

and mortality.  Agents found in Category C are listed in Table 4.3 (Fatah et al, 2007). 

Table 4.1. Category A diseases and causative agents 
Category A diseases and causative agents (Source: Fatah et al, 2007) 

• Anthrax (Bacillus anthracis) 
• Botulism (Clostridium botulinum toxin) 
• Plague (Yersinia pestis) 
• Smallpox (Variola major) 
• Tularemia (Francisella tularensis) 
• Viral hemorrhagic fevers (Filoviruses [ex Ebola, Marburg] and Arenaviruses [ex 

Lassa, Machupo] 
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Table 4.2. Category B diseases and causative agents 
Category B diseases and causative agents (Source: Fatah et al, 2007) 

• Brucellosis (Brucella species) 
• Epsilon toxin of Clostridium perfringes 
• Food safety threats (Salmonella species, E. coli, Shigella) 
• Glanders (Burkholderia mallei) 
• Melioidosis (Burkholderia pseudomoallei) 
• Psittacosis (Chlamydia psittaci) 
• Q fever (Coxiella burnetii) 
• Ricin toxin from castor beans 
• Staphylococcal enterotoxin B 
• Typhus fever (Rickettsia prowazekii) 
• Viral encephalitis (Alphaviruses ex Venezuelan equine encephalitis) 
• Water safety threats (Vibrio cholera, Cryptosporidium parvum) 

 

Table 4.3. Category C diseases and causative agents  
Category C diseases and causative agents (Source: Fatah et al, 2007) 

• Emerging infectious disease threats such as Nipah virus, Hantavirus, Tickborne 
Hemorrhagic Fever viruses, Tickborne Encephalitis virus, Yellow Fever, and 
Multidrug-resistant Tuberculosis  

 

Plague and Yersinia pestis 

Yersinia species are gram-negative, oxidase-negative, facultative anaerobic 

bacteria that ferment glucose.  There are 11 known species, four of which are pathogenic.  

Y. pestis causes the Plague, Y. pseudotuberculosis causes disease in rats and occasionally 

humans, Y. ruckeri causes disease in salmonoids and freshwater fish, and Y. entercolitica 

is the most prevalent Yersinia pathogen in humans.  Y. pestis is dispersed through the 

bites of infected fleas or a respiratory aerosol, while Y. pseudotuberculosis and Y. 

enterocolitica are food borne pathogens.  The food borne pathogens could theoretically 

be used as BAs, but they would not be as successful as Y. pestis.  These four species have 

essential virulence factors.  All are genetically similar, especially Y. pestis and Y. 
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pseudotuberculosis which share over 90% DNA homology.  The species are hard to 

distinguish through traditional microbiological techniques and few novel ways have been 

developed.   

Y. pestis and the Plague have been used in biowarfare since the Middle Ages.  The 

causative bacterium is a naturally occurring pathogen and can therefore be prepared for 

use as a weapon by anyone with appropriate skills and facilities (Ertner et al, 2003).  

Once prepared, the pathogen could easily be spread through an aerosol.  In 1970, the 

World Health Organization estimated that if 50 kg of Y. pestis was aerosolized over a city 

of 5 million, 150,000 would contract Plague and 36,000 of those infected would die 

(Inglesby et al, 2000).  This is a frightening figure because a vaccine against the Plague is 

no longer available and the antibiotics used to treat the disease are in limited supply.  Y. 

pestis would make a dangerous and effective biowarfare agent because of its availability, 

high mortality rate, ease of dissemination, rapid onset of symptoms, and limited treatment 

options (Ertner et al, 2003; Inglesby et al, 2000).  Although Plague has never been 

successfully used for biowarfare, there have been instances where vials of bacteria have 

gone missing (Ertner et al, 2003). 

Plague can present in two forms- bubonic and pneumonic.  Bubonic plague is a 

primary infection spread by the bite of an infected flea.  Pneumonic plague is spread 

through aerosolized droplets of bacteria.  This can be done intentionally or intentionally 

by breathing on someone.  Symptoms of bubonic plague, which include enlarge lymph 

nodes, septicemia, and gangrene, develop 1-3 days after infection and can last up to six 

days.  If left untreated, fatality rates can range from 30-75%.  Pneumonic plague occurs 

after the infection has spread to the lungs.  Symptoms develop 1-6 days after initial 
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infection and include fever, chills, malaise, vomiting, coughing, bloody sputum, 

respiratory failure, and circulatory collapse.  Pneumonic plague is highly contagious and 

results in death in 95% of cases, unless antibiotics are administered within the first 24 

hours of symptom onset (Fatah et al, 2007; Ertner et al, 2003).  It is easy to overlook the 

symptoms of pneumonic plague in the early stages of disease.  Since antibiotics are not 

administered quickly and are in limited supply, the disease is almost always fatal.   

The government and Homeland Security use several different types of detection 

methods to monitor Y. pestis.  Many of these techniques analyze aerosolized bacteria or 

require extensive sample preparation.  Meyer and colleagues (2007) have developed a 

biosensor to identify Y. pestis in different matrices.  This novel method utilized magnetic 

beads and the bacteria’s antigen fraction F1 to both detect and quantify the target in the 

sample.  The biosensor has a detection limit of 2.5ng/ml in PBS buffer and a detection 

range of 25-300 ng/ml in human blood.  This technique would be useful on the small 

scale.   

Yersinia enterocolitica 

Y. enterocolitica is a food borne pathogen that can survive in the intestinal tracts 

of mammals, birds, frogs, fish, flies, fleas, crabs, and oysters as well as water systems.  It 

is frequently found in pork, beef, lamb, poultry, and dairy products.  It has an infectious 

dose of 104 CFU and manifests as nonspecific, self-limiting diarrhea.  These symptoms 

are mainly seen in children.  In older children and teenagers, Y. enterocolitica infection is 

often mistaken for appendicitis.   

This could be used for biological warfare because Y. enterocolitica readily 

withstands several freeze-thaw cycles, can survive in frozen foods, and can easily grow at 
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refrigeration temperatures in cooked foods.  Cooked foods provide more available 

nutrients than raw food and the cooking process removes competitive bacteria.  This 

pathogen has been isolated from pasteurized milk, pasteurized liquid eggs, vacuum-

packed meat, cottage cheese, beef, pork, and seafood.  Contaminated foods are re-

inoculated after the cooking process because Y. enterocolitica and Y. pseudotuberculosis 

are killed by heat and pasteurization.  However, it would not be an effective biological 

warfare agent because of a low morbidity and mortality rate, self-limiting infection, and 

mild symptoms.  The organism is also easily destroyed through pasteurization.   

As previously mentioned, Yersinia species can have up to 90% DNA homology.  

Distinguishing pathogenic from non-pathogenic species can be difficult.  When grown on 

blood agar, Yersinia colonies are smaller than other Enterobacteriaceae colonies and can 

be overlooked.  For this reason, Whittaker (2009) has developed a way to distinguish Y. 

pestis from other closely related Yersinia species.  He used capillary gas chromatography 

with flame ionization detection (GC-FID) to determine the cellular fatty acid composition 

of six Y. pestis strains and then compared them to the compositions of other pathogenic 

and non-pathogenic Yersinia species.  Analysis of the fatty acid profiles showed 

differentiation of the species.  The method was sensitive, analytical, and useful of the 

small scale. 

Anthrax and Bacillus anthracis 

The Bacillus cereus group of bacteria are Gram-positive, rod shaped, aerobic 

spore-formers and include B. anthracis, B. mycoicles, B. thuringiensis, B. 

pseudomycoides, and B. weihenstephanensis (Granum, 2005).  B. cereus is most common 

and is known to cause food poisoing, B. anthracis is most well-known for causing 
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Anthrax, and the other bacteria in the group have been used as pesticides.  All species 

share a common ancestor and therefore have highly similar 16S and 23S rRNA 

sequences.  Differentiating B. anthracis from other B. cereus bacteria in the early stages 

of infection is imperative to survival, but can be difficult because of the genetic 

homology.  Novel ways have been developed to overcome this.   

Bacillus anthracis is distinguishable from other members of the group by the 

presence of two virulence plasmids, pXO1 and pXO2 (Koehler, 2009; Khan, 2009).  

These plasmids contain the genetic information for anthrax toxin proteins and capsule 

proteins.   

The bacterium requires a host for survival.  Outside of a nutrient-rich 

environment, B. anthracis will sporulate into hardy spores that can survive for decades in 

harsh environment (Hang et al, 2008).  B. anthracis spores are typically found in soil.  

Anthrax infection begins when the host comes into contact with the spores in the 

environment or an infected animal who obtained the spores from the environment.  

Person to person transmission of Anthrax has never been reported.  Once ingested, the 

spores rapidly germinate, multiply, and cause infection.  Anthrax will manifest in three 

forms- cutaneous, gastrointestinal and inhalation. 

Cutaneous anthrax is the most commonly encountered form of the disease.  

Legions appear on exposed skin and eventually turn into large ulcers with black centers 

after coming into contact with an infected animal (Brook, 2002).  The legions themselves 

are not fatal, but subsequent infections often lead to death.  Without treatment, the fatality 

rate of cutaneous anthrax is 20%.  The use of antibiotics reduces the fatality rate to 1% 

(Brook, 2002; Inglesby et al, 2002).   
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Gastrointestinal (GI) anthrax occurs after consuming a large amount of vegetative 

cells in contaminated raw or undercooked meat (Inglesby et al, 2002).  Contamination of 

the food supply by terrorists is a way to cause economic and psychological damages 

through human exposure to an atypical food borne pathogen (Khan et al, 2009).  

Symptoms include nausea, anorexia, vomiting and fever, then progress to severe 

abdominal pain and bloody diarrhea.  Death results in 2-3 days and is fatal in 25-60% of 

cases (Brook, 2002; Sirisanthana and Brown, 2002; Fatah et al, 2007).  Oropharyngeal 

and abdominal forms of anthrax also occur, where legions grow on the mouth, throat, and 

stomach of the host.  Early detection and treatment of gastrointestinal anthrax is difficult 

and therefore leads to a high mortality rate. 

Anthrax contamination is rare, but has been routinely reported in Africa and Asia 

(Inglesby et al, 2002).  Proper cooking and storage conditions can drastically reduce the 

threat of a possible B. anthracis contamination.  Khan and colleagues (2009) investigated 

the survivability of B. anthracis spores in processed liquid eggs.  They inoculated 

different preparations of liquid egg with spores and held each sample at a variety of low, 

moderate, and high temperatures.  The study found that spore viability decreased after 

storage in extreme temperatures, but increase at moderate temperatures.  Juneja and 

colleagues (2010) investigated thermal inactivation of B. anthracis spores in irradiated 

ground beef.  Pre-portioned beef patties were inoculated with spores and cooked to an 

internal temperature of 71.1°C, 82.2°C, or 93.3°C on an open flame grill or a commercial 

‘clam shell’ grill.  The study found that cooking to these temperatures lead to a 0.8-3.5 

CFU log reduction in spore count.  It is important to pass on the information gathered in 
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these studies to consumers and food handlers, especially in areas where GI Anthrax is 

common.  The effects of proper food storage and cooking must also be emphasized.   

Inhalation anthrax is the most severe form of anthrax.  Once the spores enter the 

body, they rapidly germinate, replicate, and release toxins that lead to early symptoms.  

The incubation period can last from a few days to over one month.  Early symptoms 

include muscle aches, malaise, coughing, headache, fever, and other flu-like symptoms.  

A brief period of relief may occur before the onslaught of secondary symptoms including 

respiratory failure, shock, and meningitis (Brook, 2002; Inglesby et al, 2002; Fatah et al, 

2007).  Inhalation anthrax is almost always fatal.  Non-specific symptoms prevent early 

diagnosis and administration of antibiotics.  An anthrax vaccine is available; however, it 

is mainly reserved for first responders and military personnel and not the general public.  

The stability of spores in aerosol form, long incubation period, and inability to quickly 

begin an antibiotic regimen makes inhalation anthrax one of the most effective forms of 

biological warfare.   

Throughout the 19th Century, the incidence of animal and naturally acquired 

Anthrax in the United States has declined due to improved animal husbandry and 

vaccination efforts of ‘at risk’ populations.  After the terrorist attacks of September 11, 

2001, Anthrax spores were sent through the mail in the form of a powder to political 

officials.  The spores were manufactured to ‘weapons grade’, meaning the powder had a 

high spore concentration, uniform particle size, low electrostatic charge, and were treated 

to reduce clumping (Inglesby et al, 2002).  Analysis reported that the powder contained 

between 100 billion to 1 trillion spores per gram.  These attacks lead to 11 confirmed 

cases of inhalation anthrax, five of whom died.  There were also seven confirmed and 
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four suspected cases of cutaneous anthrax (Brook, 2002; Inglesby et al, 2002).  After this 

incident, increased research has gone into Anthrax detection methods.   

Novel and Established Detection Methods 

Since 2001, research has been done to find ways to distinguish B. anthracis from 

B. cereus and other Bacillus species.  Differentiation can be difficult at low 

concentrations because of the high degree of DNA homology.  This is important because 

of the vastly different outcomes for the patient and community at large.  Kim and 

colleagues (2005) utilized multiplex real-time PCR and melting curve analysis to detect 

B. anthracis and the B. cereus group.  Primers were designed for the virulence plasmids, 

pXO1 and pXO2, and sspE, a gene coding for spore proteins.  Eleven strains of B. 

anthracis and 18 B. cereus group strains were analyzed with the assay.  The multiplex 

PCR assay did not produce false positive results from the 29 B. cereus groups.  All 

genotypes were detected.  The assay was able to detect approximately 500 picograms  

(10-12) of B. anthracis DNA in a sample.  Assuming there are three copies of pXO1 and 

two copies of pXO2, the sensitivity is approximately 83,200 genome copies per PCR 

reaction (Kim et al, 2005).  This method is promising considering the small amount of 

spores needed to cause illness in a patient and the low concentration that can remain in 

the air after an aerosolized attack. 

Hang and colleagues (2008) developed an immunoassay to detect and recover B. 

anthracis spores in environmental samples.  Previously, detecting spores at low 

concentrations was problematic because of cross-contamination between B. anthracis 

antibodies and antibodies for other Bacillus species which lead to false positive results.  

A liquid phase assay was used along with the Integrating Waveguide Biosensor.  The 
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spores were incubated with capture and detection probes prior to analysis.  The spores 

were allowed to germinate and were quantified with PCR.  This method allows for 

detection of 103 spores.  This low limit of detection is important again because of the low 

infectious dose and the low concentrations that are found in the environment.   

Dauphin and colleagues (2009) evaluated five commercially available nucleic 

acid extraction kits for their ability to inactivate B. anthracis spores.  They also compared 

DNA yields from spores and artificially inoculated environmental samples.  This study 

emphasized the importance of a kill step after the extraction process because of the 

pathogen’s hazardous nature.  The kill step also protects the laboratory worker who 

would likely be handling a large volume of samples in the case of a suspected Anthrax 

attack.  Spores can be hard to work with because of their protective outer shell.  Each of 

the five kits used a different method of detection- ChargeSwitch gDNA Mini Bacteria Kit 

(magnetic bead technology), Nuclisens Isolation Kit (silica bead technology), Puregene 

Genomic DNA Purification Kit (precipitation), QIAamp DNA Blood Mini Kit (silica gel 

spin column), and UltraClean Microbial DNA Isolation Kit (bead beating and silica gel 

spin column).  Sterile cotton swabs and powder samples were inoculated with spore 

concentrations ranging from 107-102 CFU/ml.  These matrices were chosen to test 

because they often come into contact with B. anthracis spores either as a transport media 

or sampling tool.  The protocol for each kit was followed.  PCR analysis was used to test 

DNA extraction.  This study found that the UltraClean kit was most efficient at reducing 

the viability of spores, with a 5 log reduction in spore viability.  PCR results showed that 

NucliSens, QIAamp, and UltraClean had the lowest limits of detection of spore 

suspension.  They were able to detect 103 CFU/ml.  ChargeSwitch had the worst limit of 
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detection at 105 CFU/ml.  Cost-per-extraction and processing time were also evaluated.  

This study is important because it objectively evaluated commercial kits and used 

different types of sample matrices to better simulate real world testing conditions.   

Use of gold nanoparticles as reporter in sandwich assay format to detect food 

borne pathogens 

Introduction 

Food borne pathogens are a major source of illness and death in the United States 

and around the world.  The inability to attend school or work leads to lost wages and 

decreased productivity, while hospitalization and treatment leads to rising health care 

costs.  Salmonella, Campylobacter jejuni, E. coli O157:H7, Listeria monocytogenes, 

Staphylococcus aureus, and Clostridium perfringens are the six major pathogens leading 

to human illness and death (Tauxe, 2002).  It is estimated that each year, food is 

responsible for 76 million cases of illness in the United States, resulting in 325,000 

hospitalizations and 5000 deaths (Mead et al, 2000).   

Escherichia coli is very common and causes severe stomach cramps and 

tenderness, watery or bloody diarrhea, nausea and vomiting, and can lead to kidney 

failure or death in rare but severe cases.  Enteritis can also develop in patients with pre-

existing conditions (Neal et al, 1997).  It is of particular concern because it has been 

linked to recent, multi-state outbreaks in unpasteurized apple juice, ground beef, raw 

milk, fresh spinach, and prepackaged cookie dough (Olsen et al, 2000).   

Pathogenic bacteria are transmitted to humans from animal sources or 

contaminated products (Olsen, 2000).  It is important for the safety of the consumer and 

the reputation of a food company to be able to detect and differentiate viable, pathogenic 
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bacteria from non-pathogenic bacteria in the complicated matrix of food.  These detection 

methods should be sensitive, rapid, easy to interpret, and inexpensive. 

Traditional microbiological methods include media plates and slants.  These 

methods require enrichment steps, purification procedures, lengthy incubation periods, 

and manual colony counting.  The need for enrichment and purification indicate the lack 

of sensitivity required to directly detect pathogens from a sample (Pyle, 1999).  Further 

steps are required to identify the sub-species or serotype.  Selective and differential media 

is used to distinguish pathogenic E. coli from non-pathogenic E. coli and other coliforms.  

The entire process of identification and confirmation can take several days.  Although 

they are time consuming and labor intensive, traditional methods provide definitive and 

reliable results when performed correctly (Lazcka et al, 2007). 

The spatial and labor requirements of traditional methods have led to DNA based 

detection methods.  Polymerase chain reaction (PCR) has revolutionized the ability to 

detect pathogens.  However, the DNA from viable and non-viable cells is amplified 

during PCR and can lead to inflated cell counts.  Viable but non-culturable (VBNC) cells 

are removed through enrichment steps (Olsen, 2000).  Amplification of non-virulent 

bacteria also leads to inflated cell counts when testing for a human pathogen.  For 

example, this is important when testing for Listeria species because only one species, L. 

monocytogenes, is a human pathogen.  Primers designed specifically for virulence genes 

will provide accurate amplification of pathogenic bacteria of a particular genus (Olsen, 

2000).  Naravaneni and Jamil (2004) accomplished this by amplifying the fimA gene of 

Salmonella and the afa gene of E. coli.  PCR is a sensitive and rapid technique for 
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pathogen detection, but food often contains compounds that inhibit amplification.  

Sample dilution solves this, but lowers sensitivity.   

Immunoassays are used to detect pathogens through the use of antibodies.  

Enzyme-linked immunosorbent assay (ELISA) is a rapid method to detect the presence of 

an antibody or antigen in a sample.  Because the capture structure is immobilized onto a 

micro-titer plate, the speed of antigen binding is diffusion limited (Stenberg and Nygren, 

1988).  The use of paramagnetic beads for pathogen detection has recently become 

popular.  These beads are smaller than the pathogen of interest (Pyle, 1999) and are 

capable of increasing the reaction rate through agitation and increased surface area (Yu 

and Bruno, 1996). 

Paramagnetic beads are often coupled with electrochemiluminescence (ECL).  

ECL is able to rapidly detect picogram or sub-picogram concentrations of target in a 

sample (Blackburn et al, 1991; Gatto-Menking et al, 1995; Yu et al, 1995).  The free end 

of the target is tagged with a compound that is capable of producing light after redox 

cycling.  Tripropylamine (TPA) is a cofactor in this reaction.  Ruthenium (II) 

trisbipyridal (Ru(bpy)3
2+) is commonly used as a reporter because it is stable and 

provides high signal-to-background ratios (Yu and Bruno, 1995).  Unlike radioisotopic 

methods, waste materials can be easily disposed of.   

ECL detection of the magnetic beads is carried out with a magnet, an electrode, 

and a detection device.  The target-bead hybrids are attracted to the magnet and unbound 

target is washed away.  The electrode is charged, the ruthenium undergoes 

chemiluminescence, and the detection device records the amount of light given off.  

Unbound target cannot generate light and therefore reduces background noise (Blackburn 
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et al, 1991; Yu and Bruno, 1995).  This eliminates the need for additional washing steps 

and aides in the system’s sensitivity.   

The use of gold nanoparticles (GNP) as a reporter in an assay carried out in the 

Bioveris M384 Analyzer (IGEN International, Inc, Maryland) was investigated.  The 

GNP will emit energy when the electrode is charged.  This energy will be passed to the 

ruthenium, which in turn will produce more light that ruthenium alone.  Ruthenium emits 

light at 620 nm and the emission wavelength of the GNP depends on their size.  Reporter 

DNA will also be immobilized on the surface of the GNP.  The novel GNP reporter is 

shown in Figure 4.1.  

 
Figure 4.1- Representation of the novel GNP reporter.  The GNP is the large red circle, 
which is coated in streptavidin (blue squares), biotinylated reporter sequence (black 
circles with black lines), and biotinylated ruthenium (black circles with larger yellow 
circles).  Upon excitation, the GNP will emit energy which will excite the ruthenium.  
This will have a synergistic effect on the total detectable signal. 

This will potentially increase the sensitivity of the assay because multiple copies 

of target sequence will be attached to the reporter.  The signal given off by the GNP 

reporters will be compared to another reporter consisting of Ru(bpy)3
2+ tagged reporter 

sequence.  Paramagnetic beads will be used as the capture probe.  The entire ‘sandwich’ 

will be attracted to the magnetic electrode and the light will be detected by a photo 

multiplier tube.  The sandwich scheme is shown in Figure 4.2.  Unbound reporter probe 
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and target will be washed away, thereby reducing background noise and eliminating false 

positives.   

 
Figure 4.2- Sandwich assay using two different reporters.  Both contain a 
superparamagnetic bead that acts as the capture probe.  The bead is bound to an 
oligonucleotide sequence that is complimentary to one half of the target sequence.  On 
the left, the standard reporter probe is a single strand of the reporter sequence bound to 
ruthenium.  On the right, the novel reporter probe is a GNP bound to several strands of 
reporter sequence.  The reporter sequence is complimentary to the other half of the target 
sequence.  Therefore, the target sequence is sandwiched between the capture and reporter 
elements. 

Materials and Methods 

All oligonucleotide sequences were obtained from Eurofins MWG Operon 

(Alabama) and diluted to the stock concentration according to the package insert.  They 

are similar to sequences found in E. coli.  Each sequence can be found in Table 4.4. 

Table 4.4. List of E. coli sequences used in the experiment. 
Sequence ID 5’-3’ Sequence 
Reporter 1 Biotin-GGT TGC GCT CGT TGC GGG ACT TAA CCC AAC AT 
Reporter 2 Amine-GGT TGC GCT CGT TGC GGG ACT TAA CCC AAC AT 
Capture ACG GTT CCC GAA GGC ACA TTC TCA- Biotin 
Target TGA GAA TGT GCC TTC GGG AAC CGT GAG ACA GGT GCT 

GCA TGG CTG TCG TCA GCT CGT GTT GTG AAA TGT TGG 
GTT AAG TCC CGC AAC GAG CGC AACC 
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Reporter preparation 

Biotin-terminated Reporter 1 oligonucleotide was diluted with phosphate buffered 

saline (PBS; pH 7.5) to a concentration of 250 µmol.  The DNA was further diluted to 20 

pmol before being added to streptavidin coated gold nanoparticles (Bioassay Works, 

Maryland).  After incubating at room temperature for 45 minutes, there were 

approximately 10 oligonucleotide strands per GNP.  N-hydroxysuccinimide-Ru(bpy)3
2+ 

(NHS-Ru(bpy)3
2+; Sigma, Germany) was hydrated with dimethyl sulfoxide (DMSO; 

Acros Organics, New Jersey) and biotinylated with Amine-PEG3-Biotin (Thermo, 

Illinois) and PBS.  This was incubated at room temperature for three hours then added to 

the GNP-oligonucleotide mixture to bind to open streptavidin.  The GNPs were run 

through a 1.5x16 cm column containing Sephadex G-50-80 beads (Sigma, Missouri) to 

remove free ruthenium from the system and dilute the GNPs.  The GNPs were used as 

collected from the column as the reporter in the sandwich assay. 

Amine-terminated Reporter 2 oligonucleotide was diluted to a stock concentration 

of 100 µM with PBS.  NHS-Ru(bpy)3
2+ was conjugated to the DNA as described above.  

Free ruthenium was removed via dialysis in PBS.  The reporter was diluted to a final 

concentration of 0.1 µM with PBS before it was used as a control in the assay. 

Capture probe preparation 

Superparamagnetic beads (Dynabeads M-280 Streptavidin; Invitrogen, Norway) 

were used as a capture probe.  Double strength (2X) binding and washing buffer (B&W; 

10mM Tris, 1mM EDTA, 2M NaCl, pH 7.5) was diluted to single strength (1X) to wash 

and store the beads until needed.  Biotin-terminated capture probe was diluted to a stock 

concentration of 250 pmol with PBS.  Five microliters of capture probe was added to 105 
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µL PBS before being added to the washed beads.  The beads were incubated for 15 

minutes at room temperature under gentle shaking and were washed again with 1X B&W 

buffer.  Open streptavidin was filled with 900x10-7 biotin in PBS.  After incubation, the 

beads were washed and stored in 1X B&W buffer to be used as the capture probe in the 

assay. 

Target preparation 

Target oligonucleotide was hydrated with PBS to a stock concentration of 100 

µM.  The target sequence was further diluted with PBS to a range of 25 fmol/µL to 1500 

fmol/µL.  PBS (0 fmol/µL) was used as a negative control in the assay. 

Assay assembly 

The assays were individually assembled in 96-well plates to be read by a Bioveris 

M384 Analyzer (IGEN International, Inc, Maryland).  Each day, quality control and 

calibration were performed on the instrument according to the manufacturer’s 

instructions to insure accurate and reproducible data.  Each well contained 25 µL of 

capture probe (further diluted 1:20), 100 µL target or PBS, 50 µL reporter probe (GNP or 

control), and 45 µL hybridization buffer (10X SSC and 60% formamide).  Each plate was 

incubated at room temperature under gentle shaking for 150 minutes.  Thirty microliters 

of PBS was added to each well prior to analysis.  The plate was analyzed and data was 

used to generate a dose response curve of ECL signal vs. target concentration in fmol/µL.   

Assay sensitivity was equal to the slope of the linear region of the dose-response 

curve.  Limit of detection (LOD) was calculated by relating the signal from zero target 

concentration plus three standard deviations to target concentration.   
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Results 

The Bioveris M384 Analyzer was used to detect generic E. coli DNA in a sample.  

Ruthenium-tagged GNPs (Ru-GNP) were used as the experimental reporter in a sandwich 

assay because they are thought to give a higher signal than the ruthenium-tagged DNA 

(Ru-DNA) control reporter.  Higher signal is linked to a more sensitive assay with a 

lower limit of detection.  Control and experimental assays were run with varying 

concentrations of target sequence and PBS as a negative control.   

Figure 4.3 shows the dose response curves of the GNP reporter and control 

reporter.  Although the linear portion of the graph is small, sensitivity and LOD can still 

be calculated.  The assay using Ru-DNA as a reporter has a LOD of 40 fmol/µL and a 

sensitivity of 55 fmol/µL, while the assay using Ru-GNP has a LOD of 24 fmol/µL and a 

sensitivity of 77 fmol/µL.  The GNP made a huge improvement in assay performance.   

 
Figure 4.3- Comparison of GNP-DNA and Ru-DNA reporter.  The different reporters 
were used identically in the assay.  The GNP reporter had a higher signal, higher 
sensitivity, and lower limit of detection than the ruthenium reporter. 
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Discussion 

As the global demand for ready to eat meals and minimally processed fresh items 

increases, the potential for contamination and large scale food borne illness outbreak 

greatly increases.  Traditional microbiological testing methods are accurate, but time 

consuming and labor intensive.  The batch that was produced must wait in the warehouse 

while samples go out for testing.  This reduces plant productivity and costs money, 

therefore the trend towards rapid methods is becoming increasingly popular.   

The reaction mechanism of electrochemiluminescence (ECL) is explained in 

detail in many sources (Lee et al, 2007; Richter, 2004).  Briefly, a series of oxidation and 

reduction reactions occur in sequence to produce an excited state that emits light.  The 

light is detected by a photo multiplier tube and relayed to the user in a numerical value 

quantified by arbitrary units (AU).  A stimulated electrode is needed to start the reaction 

and tripropylamine (TPA) is a necessary cofactor.   

The Bioveris is capable of simultaneously running eight independent ECL 

reactions.  The assay liquid is aspirated into the reaction chamber.  As it flows across the 

electrode, a magnetic force is applied and the superparamagnetic beads, along with target 

and reporter attached to them, are immobilized.  A TPA solution is passed through the 

chamber, removing unbound target and reporter.  The electrode is then stimulated, 

causing ECL to occur.  The signal is detected and a cleaning solution is passed through 

the chamber, regenerating the electrode surface for the next assay.  This scheme is 

depicted in Figure 4.4.  
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Figure 4.4- Details of the reaction chamber inside the Bioveris M384 Analyzer.  Part A 
shows the capture-reporter complex entering the reaction chamber.  Part B shows the 
magnetic field being applied.  The magnetic capture probe is immobilized on the 
electrode surface and any unbound components are washed away. This decreases 
background signal.   When the electrode is stimulated, light is generated by the bound 
capture-reporter complex, and is detected by the photomultiplier tube.  The data is 
relayed to the user.  Part C shows the capture-reporter complex leaving the reaction 
chamber.  The electrode surface is cleaned and regenerated before the next sample is 
analyzed. 

Traditional methods of pathogen detection can take several days to complete.  

Using the Bioveris takes only a few hours.  Sample preparation, including incubation 

takes about three hours.  Assembling the reporter and capture probes takes about five 

hours total, but the products can be used for several days.  The assay is assembled in a 

standard 96-well plate and up to 96 samples can be tested at once.  Reading a full plate 

takes about 15 minutes.  The Bioveris is equipped to work with a robotic arm to 

automatically load plates into the instrument.  This increases throughput.  In the end, 

Part A 

Part B 

Part C 
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detection time is decreased by several days.  This is beneficial as demand for processed 

food increases.   

Using the Ru-GNP reporter in this assay improves assay sensitivity and greatly 

lowers the LOD.  Sensitivity measures the assay’s ability to measure small changes in 

target concentration.  The assay using the Ru-GNP is almost three times more sensitive as 

the Ru-DNA reporter.  This could be due to a stronger binding affinity for the target 

sequence or the ability to capture more target and form large clumps that are joined to the 

paramagnetic capture probe.  Either way, higher signals were generated.  The LOD also 

decreased.  Limit of detection (LOD) measures the lowest amount of target concentration 

that can be detected through background signals.  The GNPs have more DNA in an area 

and are capable of detecting smaller amounts of target in a sample.  Adding a greater 

concentration of Ru-DNA would be ineffective. 

Conclusions 

Decreasing the amount of time necessary to detect pathogens while lowering LOD 

and increasing sensitivity is very important.  Using the Bioveris M384 Analyzer takes a 

few short hours.  This is rapid compared to the days of intensive work needed for 

traditional microbiological tests.  Sandwich assay format is an easy way to detect target 

sequences.  GNP reporters provide assays with low LOD and high sensitivity.  One way 

to further optimize the assay would be to construct an ECL reader and control all 

parameters.   
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