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ABSTRACT 

TERAHERTZ RADIATION FROM SINGLE WALLED CARBON NANOTUBES

SEPTEMBER 2011
MARTIN MUTHEE

B.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Sigfrid Yngvesson 

The Terahertz region of the electromagnetic spectrum is the region between 

microwaves and infra-red, dubbed the terahertz 'gap' due to its relative 

underdevelopment in terms of technology. This region is marked by expensive and 

inconvenient sources that are bulky or that require cryogenic cooling for normal 

operation, therefore creating a need for cheap and easy to use terahertz sources. 

Carbon nanotubes have received considerable attention since their discovery 

due to their unique physical and electronic properties. Many applications have been 

proposed using especially Single-Walled Carbon Nanotubes (SWCNTs), and a 

number of commercial technologies exist. In this work, we have proposed to use 

SWCNTs as the basis for a cheap, compact and room temperature-operating 

Terahertz source.

We have characterized the SWCNT source, and we present results on 

transport characteristics (I–V curves), radiation patterns, spectra, polarization as 

vi



well as optical, SEM and AFM imaging. We show that the radiation spectrum is 

determined by  integrated antennas coupled to the SWCNTs, and preliminary 

power calibration indicates that the radiated power exceeds the power predicated by 

the Nyquist formula. 
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CHAPTER 1

INTRODUCTION

1.1 Overview

The main goal of this work has been to demonstrate a terahertz source based 

on SWCNTs. Using a quasi-optical coupling scheme, we have demonstrated such a 

source and characterized the radiated beam by looking at the radiation beam 

pattern and spectrum. Furthermore, we have used various imaging techniques and 

transport measurements to characterize the SWCNT devices. 

Drawing from previous work on terahertz detection using SWCNTs [1,2] we 

have developed experimental techniques suited for the reverse problem of 

generating terahertz using SWCNTs, even though the various processes involved 

may be different. A big part of this project has been to develop the experimental 

techniques necessary to first create a device that radiates and thereafter one that 

radiates strongly enough to have it's spectrum measured. 

Part of the motivation for this project has been the successful demonstration 

of radiation in the near infrared and visible spectral regions from joule heated 

SWCNTs [3] and MWCNT [4]. Furthermore, the prediction of terahertz radiation 

from Joule heated SWCNTs [5], which has not been realized experimentally. The 

prediction from[5] was also that the radiation spectrum would show evidence of 

plasmon resonances, and while the plasmon resonances have not been verified, we 

have demonstrated that joule heated SWCNTs can produce strong terahertz 
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radiation, opening up a new avenue to study interactions between radiating 

SWCNTs and electromagnetic structures.  Importantly, we found that the radiated 

power is at least an order of magnitude greater than predicted for thermal Nyquist 

noise, hinting at the possibility of a so far unrealized non-equilibrium radiation 

process. With the ability to control the spectrum using integrated antennas and 

with room temperature operation, the SWCNT terahertz source has many potential 

applications.  

The structure of this thesis is as follows: we begin with an introduction 

summarizing the state of the art terahertz sources and a brief look at some carbon 

nanotube basics in chapter 1. Chapter 2 looks at the  background and motivation of 

this work and in chapter 3 we describe the experimental details. Results are then 

presented in chapter 4  where we demonstrate Terahertz radiation from SWCNTs. 

Ideas for future work are then briefly presented in chapter 5.

1.2  Terahertz Sources

The Terahertz region of the electromagnetic spectrum, commonly referred to 

as the terahertz gap, is the region between microwaves and infra red as shown in 

figure 1.1. It represents the intersection of classical and quantum mechanical 

descriptions of electromagnetic waves; one can ignore energy quantization at 

microwaves since the photon energy at microwaves is smaller than room 

temperature thermal energy, while quantization is strictly adhered to in the IR 
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region [6]. In terms of technology, THz is at the intersection of electronics and 

optics.

Figure 1.1: Electromagnetic spectrum showing the microwave, terahertz and infra red regimes

The origin of the name 'terahertz gap' lies in the fact that the terahertz 

region has been lacking in reliable terahertz sources and detectors and therefore 

underdeveloped in terms of technology.  Historically, the push to develop new 

sources came from time domain spectroscopists and astronomers [7], where the 

spectroscopists sought lower frequencies while the astronomers sought higher ones. 

Presently, many different types of sources exist and some of their attributes 

are summarized in table 1 [7]. Most of the sources are expensive, bulky or require 

cryogenic cooling for normal operation. There is therefore a need for cheap, 

compact and room temperature operating sources that can match the usability of 

the current systems. Figure 1.2 shows a plot of output power versus frequency for 

the most common type of sources used [8].

3

Wavelength                           3cm                    3mm                   300um                 30um                3um
Microwave THz                   Infra Red            

Frequency                           10GHz                100GHz               1THz                 10THz                 100THz



Table 1.1: Comparison of various THz sources commonly used [7].

Figure 1.2: Power versus frequency comparisons for various terahertz sources [8].

4

Optically 
Pumped Time Domain Backward Frequency Frequency Quantum

Terahertz Spectroscopy Wave Multipliers Mixers Cascade
lasers Oscillators Lasers

Average power >100mW ~1uW 10mW uW-mW nW mW

Usable Range 0.3-10 THz ~0.1-20 THz 0.1-1.5 THz 0.1-1 THz 0.3-20 Thz 1-4 THz

Tunability Discrete lines Broadband 200GHz
~10-15% 

Continuousof center
 frequency

CW/Pulsed CW or Pulsed pulsed CW CW CW CW

Yes Yes No Yes Yes NoTurnkey systems
available?



1.3 Carbon Nanotube Basics

Since their discovery by S. Iijima in 1991 [9], research and technology based 

on Carbon nanotubes(CNTs) has grown immensely,  leading many to tout them as 

the frontrunner for the next generation devices. Many applications have been 

proposed and some realized in fields ranging from optics [10], medicine [11], 

integrated circuits [12] among others. Propelling all the hype that surrounds CNTs, 

specifically the single-walled CNTs (SWCNTs), are unique properties that arise from 

their 1D structure . This section looks at the synthesis, structure and electrical 

properties of the SWCNTs.

1.3.1 Synthesis

Several CNT synthesis methods have been developed that allow for 

production of large quantities. The main methods are briefly described below [13]:

a) Arc discharge: S. Iijima in his initial experiment [9] produced multi - walled 

CNTs using DC arc discharge. The principle is generally as follows: An arc discharge 

is generated between two graphite electrodes in a chamber with a partial He/Ar 

pressure, which causes the temperature to increase to 6000oC. At this high 

temperature, the Carbon in the graphite anode sublimates and during the process 

Carbon atoms are ejected forming a plasma. The atoms migrate towards cooler parts 

of the chamber, arranging themselves such that nanotubes accumulate on the 

5



cathode. MWNTs are naturally formed, but the presence of catalysts, transition 

metals like Fe, Co and Ni, causes SWNTs to be produced

b) Laser ablation: Two methods exist depending on whether the laser is pulsed or 

CW. In a pulsed laser system, a Nd-YAG laser pulse sublimates a solid graphite 

target into an inert gas which flows through a quartz tube inside a high temperature 

oven. Nanotubes grow on the cooler parts of the chamber as the vapor condenses. In 

CW, a much lower laser light intensity is used.

c) High Pressure Carbon monoxide (HiPCO): SWCNTs are grown in high pressure, 

high temperature flowing CO on catalytic clusters of Iron. The iron clusters serve as 

particles on which the SWCNTs nucleate and grow.

d) Catalytic Chemical Vapor Deposition: In this process, a Carbon-containing gas 

like Acetylene is catalytically decomposed over a metal catalyst, leading to CNT 

growth. 

 1.3.2 Physical Structure 

CNTs can be  understood starting from the viewpoint that they are rolled up 

sheets of graphene.   A single graphene sheet is shown in figure 1.3 then rolled up 

to form a closed cylinder- the CNT.  Multiwalled CNTs can be envisioned as several 

graphene sheets rolled up concentrically.

6



Figure 1.3: (left) Sheet of graphene (right) rolled up sheet to form a SWCNT [14]

Basis vectors a1 and a2 generate the graphene lattice as shown in figure 1.4 
where the Carbon- Carbon bond length  is 0.142nm [15].  The circumferential 

vector which corresponds to the side of the graphene sheet that will eventually 

become the CNT circumference is given by

                                         C = na1 + ma2                                  (1.1)   

where the nanotube radius is obtained as

   

(1.2)

Three different classes of CNTs arise: 

• Zigzag :  m = 0 and C lies along either a1 or a2
• Armchair :  n = m and C lies along the direction exactly between a1 and a2

• Chiral : n ≠ m

7
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Figure 1.4: Graphene section showing basis vectors a1 and a2
1.3.3 Bandstructure

The  electronic properties of CNTs arise from the geometry dictated by 

equations (1) and (2).  CNTs are either metallic or semiconducting  depending on 

the indices n, m and their diameter [16].  Metallic tubes are formed when n-m = 3p 

where p is an integer, semiconducting when n-m = 3p +1. Furthermore, they are 

zigzag type when p is not 0 and armchair  type when p is 0.  Periodic boundary 

conditions are imposed in the circumferential direction C, requiring the 

quantization of the wavevector k to satisfy the condition in equation (1.3).

                                                   

(1.3)

Band structure calculated from the plane wave method [17] and the 

resulting density of states are shown in figure 1.5 for various indices. We see sharp 

peaks in the DOS known as the van Hove Singularities (VHS), a characteristic of 1D 

structures [18]. 
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Figure 1.5: Band structure diagrams (left plots) and the resulting density of states (right plots) for a 
(10,0) and (5,5) SWCNTs.

In principle, metallic tubes have no band gaps while semiconducting ones 

do. In reality however, this dichotomy is disrupted by curvature effects [19]. In 

terms of band gaps three types of SWCNTs exist: metallic (armchair) tubes which 

remain purely metallic as a result of their symmetry, quasi-metallic (zigzag) tubes 

which are ideally metallic tubes but have small band gaps in their bandstructure, 

shown in figure 1.6(a) and Semiconducting (chiral) tubes which always have band 

gaps. Apart from the purely metallic tubes, the rest have bands that are modulated 

by the radius as shown in figure 1.6 (b) 

9



Figure 1.6(a) DOS diagram showing a small band gap near zero [19] (b)(top panel)band gap 
dependence on radius- top curves are semiconducting SWCNTs, middle curves are quasi-metallic 
SWCNTs and bottom curves are metallic SWCNTs. (bottom panel) close up of top [16].

1.3.4 Electronic transport

Transport in CNTs is described starting with the Landauer formalism [20], 

which establishes conductance as a transmission coefficient through a carbon 

nanotube. Considering two metal contacts separated by a CNT as shown in figure 1.7,  the problem consists of understanding the movement of electrons from one 

contact to the other.

Figure 1.7: Illustration of a SWCNT bridging two metal contacts
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The two metal conductors are electron reservoirs in thermodynamic equilibrium at 

temperature T and electrochemical potential μL and μR. Electrons injected into the 

CNT are distributed over energy E according to the Fermi-Dirac distribution 

function

(1.4)

Electrons move along the CNT with a transmission probability as a result of elastic 

scattering, generating a current in the CNT given by [21] 

(1.5)

where fL and fR are the left and right electron distribution functions, and Tn(E) is the 

total transmission probability. Expressing the electrochemical potentials as [21]:

           (1.6)

and assuming a small applied voltage V, in the low temperature limit (KbT<<eV) the 

total current becomes [21]:      

            (1.7)

Where G is given by the Landauer formula [21]:

(1.8)
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L = −E L
eV
2

μR = −E R−
eV
2

I = − e2

π ℏ
V∑

n
T n(EF ) = G V

f E = 1
eE−E f

kT
1

I = − e
 ℏ∫ dE∑

n
[ f lE − f r E]T nE 

G = e2

π ℏ∑n T n(E F)



 n is the number of modes. For a metallic CNT, due to spin degeneracy (X2  for the 

subbands per spin), n = 4, and assuming Ohmic(perfect) contacts with the metal 

reservoirs, the maximum conductance that can be attained is

(1.9)

1.3.4.1 Ballistic versus Diffusive regimes

Ballistic transport occurs when there is unrestricted motion of electrons 

from one reservoir to another, implying no scattering events. This implies that the 

conductance of the sample does not depend on the channel length, but on the 

availability of transport modes. Diffusive transport occurs in the event of electron 

scattering. The motion of the electrons is stochastic, subject to scatterers along  a 

particular channel. The concept of the electronic mean free path arises and it is 

defined to be the average  length through which  an electron moves ballistically.

1.3.4.2 Scattering Processes

Elastic scattering has been mentioned in the Landauer formalism, however, 

other  scattering mechanisms also occur in metallic SWCNTs. Some scattering 

mechanisms include [21]:a. Impurity scattering (elastic)b. Electron-electron scattering (elastic)
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c. Acoustic phonon scattering (inelastic)d. Optical phonon scattering (inelastic)e. Zone boundary phonon scattering (Inelastic)

 Figure 1.8 is a  illustrates how these processes may occur.

Figure 1.8: Energy band diagram showing various scattering processes [21]

1.3.4.3 Contact Resistance

In the absence of Ohmic contacts, Schottky barriers form at the metal-CNT 

interface. Yao et al. [22] performed experiments on high-field electrical transport in 

SWCNTs and categorized contacts  into low resistance contacts (LRC) and high 

resistance contacts (HRC). The two types of contacts manifest themselves 

differently in the I-V curves as shown in figure  1.9.
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Figure 1.9: I-V Characteristics for (a) low resistance contacts and (b) high resistance contacts. Inset 
is SEM picture of the device [22]

The total resistance in the presence of imperfect contacts is therefore the sum of the 

ideal resistance and the contact resistance. In the scope of this work, I-V curves are 

used primarily to probe the transport characteristics from which we mainly infer the 

type of contacts, the various transport regimes (acoustic versus optical scattering) 

and an idea of the SWCNT configuration1.

1 Single tubes, ropes, films etc.
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CHAPTER 2

BACKGROUND AND MOTIVATION

2.1 Blackbody Radiation

Any object with a temperature above absolute zero emits thermal radiation, 

and since we'll be dealing with devices emitting radiation at room temperature and 

above, it is instructive to at look the general properties of thermal radiation. The 

formula describing the blackbody emission spectrum was discovered by Planck in 1900 while investigating the spectral distribution of the light emitted by heated 

objects [23].  In this context, a blackbody is defined as a cavity in which the 

electromagnetic modes are in thermodynamic equilibrium with the cavity walls at a 

temperature T [23], where the average energy in a mode of frequency v is given by 

the average number of photons in the mode multiplied by the energy of the 

photons: 

(2.1)

Taking the mode density per unit frequency and volume as [23]:

(2.2)

The energy density per unit frequency per unit volume in the cavity, is the product

of equations (2.1) and (2.2) and, is the Planck's blackbody law: 
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(2.3)

The power flow of thermal radiation (spectral emittance) through an area A in the 

cavity is obtained by integrating (2.3) over all solid angles [24], expressed in terms 

of wavelength (λ) and  frequency (v) [23] respectively as:

(2.4)

(2.5)

Two limiting cases are [23];

 1) Short wavelength limit: hc/λ  >>  kT , in which case (2.4) becomes:

(2.6)

2) Long wavelength limit:  hc/λ  <<  kT, in which case (2.4) becomes:

(2.7)

It is often convenient to use the long wavelength limit in the infrared to 

millimeter wave region [24]. Figure 2.1 shows a plot of the spectral emittance in  

[Wm-2um-1] for a blackbody at several different temperatures. Of relevance to this 

work is the featureless spectrum which is a characteristic of blackbody radiation. 

Furthermore, since we will be operating our devices at room temperature,  it will be 
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important to filter out the 10um (30THz) room temperature peak. This is 

accomplished by using a detector equipped with low pass filters, since our 

anticipated region of interest is up to around 10 THz.

 Figure 2.1: Blackbody emission spectrum at various temperatures

2.2 Light Emission from Single Walled Carbon Nanotubes

Light emission has been observed from electrically heated SWCNTs, with 

wavelength specific peaks that correspond to band gap transitions in the van Hove 

singularities [25, 26], in contrast to the featureless black body radiation spectrum. 

The observed spectrum is in the near IR regime and is attributed to Joule heating of 

the SWCNTs [25]. The light emission spectrum owing to band gap transitions can 

be calculated using [25]:

(2.8)
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Where E is the emitted photon energy Dj(E) is the joint density of states fo(E) is the 

Fermi Dirac distribution and 1/τ(E) is the emission rate, which comes from the 

photon transition rate given by the Fermi Golden Rule [27] as shown below:

     

(2.9)

Figure 2.2 shows the calculated emission spectrum from a semiconducting (4,0) 

SWCNT at two different temperatures: 3000K - Green curve, 1200K – Blue curve.

Figure 2.2: Emission spectrum for a (4,0) SWCNT.

In the experiment performed by Mann et al. [25], light emission is observed 

from  an electrically biased individual SWCNT. They determined the tubes to be 

quasi-metallic due to a negligible gate effect on the current. Light emission is 

attributed to Joule heating of the SWCNT where the applied electric field causes a 
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high electronic temperature which  increases the distribution of electron and holes 

as described by the Fermi Dirac distribution. These carriers then radiatively 

recombine producing light with peaks that correspond to first and second van Hove 

singularities as shown in figure 2.3(left).

Figure 2.3: (a) DOS diagram illustrating the thermal light emission. The curve on the blue region 
corresponds to the electron population at various energies calculated by multiplying the DOS (black 
line) and the Fermi-Dirac distribution function (red line) at 1200K. E11 and E22 are the energies 
associated with first and second VHS respectively. (b) The emission spectra for the supported and 
suspended parts of the tube. Inset shows the SEM picture of the device [25].

Comparison of the light emitted from the suspended section of the tube with 

that of the supported section supports the Joule heating model; As shown in figure 2.3(b), the peak near 1.6eV is more pronounced in the suspended section even 

though the supported section receives a greater electrical bias. This implies that the 

suspended tube is able to sustain a high electronic temperature and therefore a 

greater electronic distribution in the VHS than in the supported part of the tube, 

which in comparison loses heat to the substrate faster. Their experiments span the 

near-IR and the visible regime. By changing the source drain-voltage,  they were 

able to tune the peaks in both regimes, though not predictably. Quantum  effects 
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like phonon assisted transitions, transitions from defect states in the long tubes and 

inter-band transitions were proposed as possible reasons for the inexplicable peaks. 

Figure 2.4 shows the emission spectra in the near- IR (a) and in the visible (b).

Figure 2.4: (a) Light emission spectra in the infrared for three 2um long QM-SWNTs (red,green 
and blue) at a gate voltage of -20V and biased at V = 1.4, 1.1, 1.3V respectively. (b) Corresponding 
emission spectra for the three tubes in the visible range. V=1.5, 1.3,1.5 respectively [25].

Xie et al. [26] have performed the same experiment, where a SWCNT is 

electrically driven to emit light. As shown in figure 2.5 they also investigate 

emission from supported and suspended sections of the same SWCNT. 

Figure 2.5: Illustration of SWCNT device with supported and suspended sections [26].
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In the emission spectrum for the supported tube section, figure 2.6(a), an 

extra smaller peak is observed and attributed to a phonon assisted transition [26] 

because the energy difference between the two peaks (0.17 eV) is close to the 0.2eV 

and 0.16eV optical phonon energies. Figure 2.6(b) shows a depiction of phonon 

assisted emission.

Figure 2.6: (a) Emisson spectrum of suspended (lower curve) and supported (upper curve)sections 
of the same tube. Redlines represent Lorentzian fits to the results and the green lines are fits to the 
individual peaks. (b) Illustration showing various emission processes- direct M11(a-b), phonon 
assisted (c-d-b) Black dots denote excitons. The phonon-assisted emission energy is M11 + ΔE - Eph, 
where M11 is the lowest excitonic transition energy for metallic SWCNTs, ΔE is the average energy 
difference between the excitons at “c” and the excitons at “a”, and Eph is the phonon energy [26].

All  emission experiments on SWCNTs so far have resulted in observation of spectra 

in the infrared to visible. While there is theory [28] predicting THz emission from 

SWCNTs, no experimental results have been published or reported. In the band gap 

transition model described by (2.8), there is no explicit rule that limits transitions 

to semi- conducting bands, and it presumably extends to transitions due to small-

band gaps. It is therefore foreseeable that THz radiation will be emitted if such 
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transitions were to occur. In the following section absorption measurements on 

SWCNTs are shown, where the SBG model of SWCNT- THz interaction is invoked to 

explain a THz peak.

2.3. Carbon Nanotubes and Terahertz

SWCNTs have mainly been considered for use in optoelectronic devices, 

propelled mainly by a lot of research in semi-conducting SWCNTs. In this section, 

THz experiments with metallic SWCNTs are discussed as part of the motivation of 

this project. Furthermore, some EM calculations are presented that go further than 

the interaction of THz and SWCNTs, like in absorption and TDS experiments, to 

prediction of plasmon resonances in the THz emission spectra.

2.3.1 Absorption Measurements 

Majority of the absorption experiments consist of transmission spectroscopy 

in SWCNT thin films. This approach is advantageous especially due to the 

availability of many sources that span a wide range of the EM spectrum, for example 

Mercury arc lamps (Near IR), tungsten-based filaments(Mid IR), SiC globars (Far 

IR) etc. In essence, absorption measurements are a probe of the electronic 

structure, specifically the density of states in SWCNTs [29].

 Itkis et al. [29] investigate the absorbance of SWCNT thin films synthesized 

using  the HiPCO process, laser ablation and arc discharge. Using different 
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synthesis  methods yields  SWCNTs with different diameters which is especially 

important because of the radial (curvature) dependence of small band gaps (and 

therefore radiation spectrum), as shown in figure 1.6(b). The as-prepared SWCNTs 

were purified to remove amorphous carbon, catalysts and other nanoparticles. 

Absorption spectra from the three different SWCNT films are shown in figure 2.7, 

where curve a is from SWCNTs produced by electric arc discharge, b by laser 

ablation and c from the HiPCO process. The diameters are 1.37±0.1nm, 1.22 
±0.1nm and 0.8±0.1nm respectively. 

Figure 2.7: Absorbance spectra for purified SWCNT films. (Note 100cm-1 = 1THz) [29].

The main features in the spectra are the peaks in the near and far IR. The near IR 

peaks between 4000-15000 cm-1 are attributed to band transitions in metallic (M11) 
and semiconducting (S11, S22) SWCNTs  as shown in figure 2.8.
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Figure 2.8: Illustration showing the density of states showing interband transitions from (a) 
Semiconducting SWCNT, (b) Hole doped semiconducting SWCNT, (c) Metallic SWCNT (d) Quasi-
metallic SWCNT [29].

The far IR peaks are attributed to the small band gaps (M00) that open up in 

the otherwise purely metal SWCNTs. The dotted line in figure 2.7 helps to visualize 

the shift in peaks as the diameter shifts from the largest (a) to the smallest (c) 

which supports a band gap modulated peak. A similar study by Pekker et al. [30] 

also correlates the diameter and small band gap to the observed peaks, figure 2.9.

Figure 2.9: Optical conductivity curves from SWCNT films synthesized differently. The films have 
different SBG that is related to their diameter . Diameters in nm are: P3~1.43,Laser~1.25, 
P2~1.43,Laser-H~1.25, HiPCO~1.15,CoMoCat SG~0.8,CoMoCat CG~0.8 [30].
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While Itkis et al. measure the absorption spectrum, another similar transmission 

experiment performed by Borondics et al. [31] derive the conductivity of the thin 

SWCNT samples over a similar frequency range. The conductivity is estimated  for 

the films between 50K and 300K temperatures. While they experiment on various 

SWCNT (laser ablated) films investigating doping effects, of interest here is the 

Terahertz conductivity peak (TCP) and the temperature dependence. Figure 2.10 
shows the conductivity of one of their samples at different temperatures. 

Figure 2.10: optical conductivity curves for SWCNT film sample at various temperatures [31].

We see similar near and far IR peaks  to those of the absorption spectrum in 

figure 2.7. In terms of the conductivity, the far IR peak is described by a two 

component model consisting of a Drude free-electron contribution and a 

Lorentzian peak centered near 10meV, implying that the peak is due to SBGs. The 

temperature dependence in the far IR peak can be interpreted as follows: since 

room temperature thermal energy ~25meV contributes to spontaneous transitions 

in small band gaps, lowering the temperature implies that more carriers will now be 
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involved in absorption of the incident source radiation. 

It is the far IR peak, dubbed the TCP, that provides an impetus to perform the 

inverse emission experiment. While its origin is a contentious issue (being ascribed 

to either small band gaps as described or to plasmon resonances), its existent 

cannot be ignored.  The next section looks at some TDS experiments that have also 

resulted in the observation of a conductivity peak in the THz region.

2.3.2 Terahertz Time Domain Spectroscopy Experiments

THz-TDS is a technique in spectroscopy where material properties of a 

sample are probed with short pulses of THz radiation [32]. In general, the pulse 

photoexcites the sample which then re-radiates a THz pulse due to a change in the 

current or polarization of the sample. This re-radiated THz pulse is analyzed to 

uncover the dynamics of the underlying processes [33]. In one such experiment 

[34] Kampfrath et al. probe the THz properties of SWCNT thin films synthesized 

through the HiPCO method. From the transmitted THz pulse through the SWCNT 

film, they extract the effective dielectric function εeff( ω) averaged over the length 

scale of the pulse wavelength. The complex part of the dielectric function is 

obtained from effective-medium theory [34], and the real part of the conductivity is 

derived as: Re σ(ω) = εoω Im ε(ω). Figure 2.11(a) shows the complex dielectric 

function.  The Drude model predicts a large negative real part of the dielectric 

constant which means that light can penetrate only to a very small extent [35]. The 
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imaginary part of the dielectric constant describes the dissipation of energy 

associated with the motion of electrons [35]. Figure 2.11(b) shows the  resulting 

conductivity, which quantifies how strongly the sample absorbs light of frequency 

ω [35].

Figure 2.11: (a) Frequency dependence of the dielectric function and best fits to the data (solid 
lines) (b) Conductivity with Lorentz and Drude model fits. The blue, red and black dots denote 
different THz sources [34].  

The best fit for the conductivity curve is from the Lorentz model, whereas 

the Drude model typically used for metals gives a poor fit. As in the previous 

interpretation, the peak is SBG mediated since the Lorentz contribution 

corresponds to direct band transitions in small band gaps.  While all the 

experiments mentioned so far deal with free standing SWCNT films, there are 

others that have SWCNTs supported by a substrate. Seliuta et al. [36] perform THz-

TDS experiments on SiO2-CNT structures. By looking at the photoresponse, figure 2.12, they observed maxima at 1 and 4THz which they attribute to antenna

resonances of SWCNTs corresponding to reduced current excitation. 
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Figure 2.12: Dots: experimental dependence of the photoconductive component UPh on excitation 
frequency left scale. Lines: calculated absorbance of SWCNT plates of thickness d right scale. Inset: 
the experimental photoconductive component vs laser power [36].

With the antenna resonance interpretation in mind, the next section looks at some 

of the calculations that predict the surface waves in the SWCNTs.

2.3.3 Review of EM Calculations

Theoretical studies into the interaction of SWCNTs with electromagnetic 

waves as discussed here have been performed by Hanson [37], Nakanishi et al. [38] 

and Slepyan et al. [39], and are mainly motivated by the idea of a SWCNT as an 

optical antenna[39].  The calculations consist of numerical solutions to the Hallén 

integral equation[37] / Pocklington's integro-differential equation and  the 

Leontovich – Levin equation is solved  approximately analytically [39,40].

Problem Statement: To find the scattered electric field from a finite length SWCNT 

due to currents induced by an incident field.

Approach: An incident electric field Ez polarized in the direction of the tube 
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impinges on a SWCNT with a finite length L and a radius a, inducing an axial 

current. The electron motion is characterized by a distribution function which 

satisfies the Boltzmann kinetic equation [37].  

 (2.10)

Where f  is the electron's distribution function, vz is the electron velocity, e is the 

electron's charge, v is the relaxation frequency, p the 2D electron momentum and fo 

the equilibrium Fermi-Dirac distribution function. 

Assuming the axial  field to have the form of a traveling wave [37] : 

(2.11)

and

(2.12)

With δf as a small quantity to be found as (Assuming h=0 for local conductivity 

[37]) 

(2.13)

The surface axial current density is given by [37]

(2.14)

which when used with equation (2.13) yields [39]

(2.15)

29

∂ f
∂ t
eE z

∂ f
∂ pz

v z
∂ f
∂ z

= v [ f o p− f  p , z , t ]

E z = R e [E z
0 ehz− j t]

f = f oR e[ f ehz− j t]

 f = j
 f 0

 pz

E z
0

− jv

J z =
2e

(2 πℏ)2
∬ vz f d 2 p

J z = σ zz(h ,ω)E z
0



The axial conductivity is then given by [37, 39]:

(2.16)

The analytical expression for the axial conductivity is approximated for metallic 

SWCNTs using the appropriate dispersion relation [37, 39] and it is found to be

(2.17)

Where the propagation constant h = 0, implying local conductivity [39]. The 

rest of the formulation follows standard antenna procedure [41], where Hallén's 

integral equation is used since the SWCNT length is much larger than the radius 

L>>a and the wavelengths of interest (THz) also much larger than the radius λ>>a. 

The current is related to the axial current density by  I(z) = Jz(z)2πa and Ohm's law 

becomes [37]:

(2.18)

where E z s is the scattered field while Ez i is the incident field. A major result in [37] 

is shown in figure 2.13 for the input impedance for a 10 um long, 2.712nm 

diameter SWCNT  together with that of two dimensional bulk approximation 

(TDBA) Copper tube with similar length and diameter, where the SWCNT has a 

resonance whereas the TDBA copper does not. The resonances are attributed to 

plasmons with the slowed down propagation velocity of  vp ~ 0.02c [37]
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Figure 2.13: Input impedance for a 10um SWCNT and TDBA copper of the same length. Squares 
denote the resonances [37].

To find this propagation velocity, (at 160 GHz, but also applies at other 

resonances) the current distribution is sinusoidal, with a peak at the center of the 

tube with length 2L, and zero amplitude at the ends. In this case:  

λp = 4L , therefore, for L = 10um,  λp = 40um,

For a linear dispersion relation, the plasmon velocity is 

given by :    vp = λp .fr      

where fr is the resonant frequency, therefore, 

vp = 0.213c

where c is the speed of light. This plasmon velocity can be compared to the electron 

Fermi velocity (v f  = 9.7 x 107), where vp ~ 6.6vf. Using  a different approach, based 

on modeling a SWCNT as a transmission line Burke et al. [45] found that vp = 3vf. 
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The approximate analytical solution is found for the Leontovich - Levin 

equation [39,  40], and it is agrees well with the numerical solution presented  in 

[38]. The polarizability scalar determines the electromagnetic properties of the 

SWCNT and is given by [40]:

(2.19)

In [40], bundles of SWCNTs were also included in the calculation. A relevant result 

from [39, 40] is the frequency dependence of the polarizability as shown in figure 2.13. Resonances in the polarizability scalar occur at frequencies related to the 

SWCNT length by: 

(2.20)

where k(ω) is the plasmon wavenumber and s is a positive integer .

The result indicates that radiation properties of the SWCNT are mainly 

determined by the slowed down plasmon resonances (alternatively referred to as 

geometric resonances) [40]. For the SWCNT lengths of interest (L ~ 1um), the 

resonances lie in the THz range  where the long wavelength limit applies (L<<λ). 

They find the velocity of the slowed down plasmons to be ~0.02c comparable to 

that in [37].
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Figure 2.14: Frequency dependence of the imaginary part of the polarizability for an individual and 
a bundle of SWCNTs of 1um length [40].

Thermal radiation  spectra shown in figure 2.15 also have resonances which 

are attributed to slowed down plasmons [40].

Figure 2.15: Thermal radiation spectra from a metallic SWCNT with L=1um, at distances of 0.5L 
(black solid line) and 100L (blue dotted line) [40].
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2.3.3.1 Terahertz Conductivity Peak 

The peak in the absorption spectrum (TCP) has previously been explained 

using the small band gap model. A different explanation derived from the EM 

calculations based on polarizability is now offered. The power absorbed by a 

quantum system is related to the absorption cross section by [35]:

(2.21)

Where σ(ω) is the absorption cross section, 〈P (ω)〉  is the absorbed power and 

I(ω) is the intensity of the incident radiation, α(ω) is the polarizability and n(ω) is 

the refractive index. 

Since the polarizability is subject to the finite-length induced plasmon 

resonances, and given the direct relation of the absorbed power to the polarizability, 

we expect to see resonances in the absorption spectrum. Broadening of the 

otherwise sharp resonances can be mediated by the mean-free path of the SWCNTs 

as shown in figure 2.16 [38] and since absorption experiments are normally 

performed on SWCNT thin films, where the mean free path is expected to decrease 

as result of disorder and impurities present in films, this works to explain the broad 

peak observed experimentally.
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Figure 2.16: Absorption as a function of frequency for a SWCNT with various mean free paths as 
indicated. 0.5,0.1,0.02 represent clean, intermediate and dirty SWCNTs respectively [39].

2.3.4 Antenna and Silicon Lens Coupling

Antenna and Si lens coupling was employed previously in THz detection 

using SWCNTs [1,42]. In this work, we implement the same scheme for the reverse 

experiment, that is, THz radiation from SWCNTs. In using an antenna, we hope to 

couple a single mode EM single mode into space, and, as we shall see later on to 

tune the radiation. Used in conjunction with a Si lens, we are able to efficiently 

couple THz radiation to free space which in turn allows us to perform the necessary 

beam characterization. 

35



2.3.4.1 Single Mode Antenna Theorem

An antenna is a device that couples a single propagation mode to space 

[24,41]. By coupling SWCNTs to an antenna, assuming a matched impedance, the 

antenna will radiate all the power delivered to it thereby transforming the 3D em 

mode to a single mode. Using the Nyquist thermal noise formula, the single mode 

case is modeled as an ideal voltage source connected to resistor, representing the 

CNTs, in series with an antenna impedance as shown in figure 2.17. Assuming 

impedance matching, the total power radiated by the antenna is given by the 

Nyquist formula and it is simply the CNT thermal noise:

                        P = kbBT            (2.22)   

Figure 2.17: Circuit diagram representation of a SWCNT coupled to an antenna.

2.3.4.2 Silicon Lens Coupling

Optical coupling to the device is further achieved through an elliptical 

Silicon lens. The tubes can either radiate directly into the silicon substrate or via an 

antenna. Either way, the radiation appears as a point source on the surface of the 

Silicon lens as shown in figure 2.18. By ray tracing, the radiation from the source 
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becomes a planar wave in the focal plane of the lens [45]. The far field radiation 

pattern is therefore determined by the diffraction limit of the cross section of the 

elliptical lens [46]. Due to misalignment of the radiating source, the radiation 

source is normally off-center relative to the lens, causing a tilted wavefront as shown 

in figure 2.19. Consequently, beam pattern measurements are normally offset from 

zero degrees in both azimuthal and elevation directions.

Figure 2.18: Illustration showing coupling to a Silicon lens. Red section indicating a point source 
and the resulting radiation shown by the extended lines.

Figure 2.19: Schematic showing ray tracing from an off-center source and the resulting tilted 
wavefront [43].
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CHAPTER 3

EXPERIMENTAL METHODS

3.1 Fabrication

Devices were  fabricated on high resistivity Silicon wafers, which are known 

to have  relatively high transmission in the THz range [46]. To begin with, wafers 

were polished [47] on both sides up to a thickness of 325um. 

While the wafers were high resistivity(exact resistivity was not know), when probed 

directly, they presented a finite resistance (~MΩ) which hindered nanotube 

deposition via dielectrophoresis (DEP- section 3.2). To eliminate this effect, an 

SiO2 layer was deposited via Plasma Enhanced Chemical Vapor Deposition 

(PECVD) to a thickness between 200 – 300nm.  UV lithography was then used to 

define electrical contacts as shown in figure 3.1, 

Figure 3.1: Results of development after UV lithography. Purple areas indicate soon to be metalized 
areas. Device 1 is termed 9um Bars, 2 is LPA2 1and 3 is LPA4.

38



Metalization was then carried out where ~10nm of Titanium and ~200nm of 

gold were e-beam evaporated. After liftoff, devices were ready for dielectrophoesis 

(DEP), which we described in the next section. After DEP, devices were annealed  in 

a convection oven at 2000 C for ~2-3 hours to reduce the contact resistance of the 

devices, and thereafter imaged optically, or using a scanning electron microscope 

(SEM) or using an atomic force microscope (AFM). 

Figure 3.2:  Optical Images showing the results of the second lithography step. (a) and (b) are log 
periodic antenna patterns while (c)shows a patch antenna pattern.

While devices at this stage were usable, and in some cases we proceeded with 

the testing, most of the devices underwent another lithographic step, where either 

UV lithography was used in a two step alignment process to define log-periodic 

antennas as shown in figure 3.2 (a) and (b), or  e-beam lithography was used to 

define patch antennas as shown in figure 3.2 (c). Metalization for the second metal 

layer was done through dc-sputtering of ~50nm Palladium, which is known to 

create ohmic contacts with SWCNTs [60]. 

For some of the devices, an SiO2 passivation layer was deposited either by 
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PECVD or sputtering. In the case of suspended SWCNT devices, DEP was the last 

step. That is, after fabrication of the patch antennas, reactive ion etching (RIE) was 

done to remove the oxide layer, using the metalized areas of the device as the etch 

mask . This effectively created a trench over which SWCNTs were suspended during 

the DEP process. Some fabrication recipes and process parameters are included in 

the appendix. 

3.2 Dielectrophoresis (DEP)

In order to incorporate SWCNTs into devices, we used DEP to deposit them 

across a predefined electrical gap Moreover, it is effective in separating the metallic 

from semiconducting tubes. For a given dispersion of particles in a solvent, DEP can 

be defined according to Pohl [48] as the motion of the particles relative to that of 

the solvent resulting from polarization forces produced by an inhomogeneous 

electric field. Depending on the polarizability of the particle to that of the solvent, 

the field strength could push the particle towards regions of high electric field 

(Positive DEP) or low electric field (Negative DEP) [49]. The time averaged force on 

a particle is given by [50]:

(3.1)

where Γ is a factor depending on geometry, εm is the real part of the permittivity of 

the suspending medium and E is the electric field.  The factor Kf  depends on the 

complex permittivity of both the particle εp and the medium. 
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For  SWCNTs, owing to the fact that semiconducting SWCNTs have a 

permittivity ~2.5εo  [50] and a predicted permittivity of infinity [51] for metallic 

SWCNTs, the real part of the factor Kf  varies as follows in the low and high 

frequency limits:

(3.2)

This means that semiconducting SWCNTs experience a negative DEP force 

compared to metallic tubes at high frequencies. In the course of this work 

frequencies in the range of 5-50 MHz have been used successfully. Together with 

the ac field, a small dc voltage ~1V was applied via a bias tee for the purpose of 

monitoring the real time resistance across the electrodes, which changed as 

SWCNTs bridge the gap. Figure 3.3  illustrates the setup. 

Figure 3.3: DEP set-up
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Moreover, changing the amplitude of the applied field affected the 

number and length of tubes that bridge the gap as will be shown in chapter 4. 

Nominal values between  2-8Vpp were used. SWCNTs used in this work were 

purchased from Brewer Science [52] and are in a de-ionized water (DI)  based 

solution. Prior to DEP, the solution was further diluted in DI water, with 

concentrations ranging from 1μl to 1ml of CNTRENE 100 in 20ml of DI water. After 

the dilution, the resulting solution was ultrasonicated which helped in SWCNT 

dispersion. A drop of the dispersion was then applied between the electrodes as the 

resistance was monitored through a LabVIEW program. The process was stopped as 

soon as the desired resistance is achieved, by turning off the ac field and blowing off 

the drop using a Nitrogen stream. Figure 3.4 shows the real-time current change 

from the onset of the DEP process to the end of it.

Figure 3.4: Current versus time curve during the DEP process
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3.3 Transport Measurements

The current – voltage (I-V)  characteristic curves were measured using a two 

probe measurement set-up, where a source measuring unit (SMU) was used to 

apply a voltage while at the same time measuring the current flowing through the 

sample. The equipment used were the Keithley 2400/2602/4200SCS SMUs, and 

were controlled via a LabVIEW program.  Low temperature measurements were 

done using a dipstick where devices were connected to an SMA connected block, as 

in figure 3.5, using indium foil. Attached to the block was a temperature sensor.

Figure 3.5: SMA connected block showing mounted device

3.4 Terahertz Detectors

The THz detectors used were the HDL-5 model from Infra-red Laboratories 

[54]. They are liquid helium cooled Si bolometers, equipped with low pass filters 

that  enable measurement of THz radiation at various frequency ranges: Bolometer 1 has filters at 27um(11.1 THz), 103 um (2.91 THz) and 285um(1.053 THz) and 

Bolometer 2 (Courtesy of Vermont Photonics) has filters at 12.5um(25 THz), 27um 

and 100um(3THz). The transmission curves for the relevant filters are shown in the 
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appendix.

A noise equivalent power (NEP) of  ~10-13W/Hz0.5  enabled  detection of the 

relatively low power radiated by the carbon nanotubes. The Si bolometer is

connected to a preamplifier box which provided  gain at X200 or X 1000. The dewar 

also features a Winston cone which is used to [55]: 1) To concentrate the radiation 

onto the detector,  2) Restrict the field of view of the detector and 3) Distribute the 

incoming energy uniformly across the detector. Figure 3.6 is a cross-section 

illustration of the dewar showing the essential parts and THz radiation incident on 

the dewar window.

 In a typical measurement, radiation impinges on the HDPE dewar window, 

passing through a particular low pass filter and is collected by the Winston cone 

which then feeds the Si bolometer. There is a first stage amplification inside the 

dewar and the output of which is then connected to a second amplification stage 

outside. The output signal can then be connected to a lock-in amplifier or an 

oscilloscope where it is recorded or visualized respectively.
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Figure 3.6: Illustration showing the cross section of the dewar [54].

3.5 Power Calibration 

While the output of the detector  is directly related to the radiation power, 

there is no direct measurement available for power radiated by the SWCNTs 

sources. To estimate the power from the devices we therefore employed the 

following calibration procedure: We begun by measuring the power from a far-IR 

THz gas laser using a laser power meter (Scientech Astral AA30), which gave the 

absolute power in mW. Thereafter, we detected the signal from the same gas laser 

using the Si bolometer detector. Normally the far-IR laser had too much power and 

therefore saturated the bolometer. To attenuate the laser power, we placed manilla 

folders at the bolometer window, gradually increasing them until the bolometer was 

no longer saturated. Finally, we re-measured the laser power using the laser power 
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meter, to confirm the previous power measurement .We then found the attenuation 

factor A (for when the bolometer is no longer saturated i.e. from the nth folder) as, 

(3.3)

and the used it to calibrate the power as:   

(3.4)  

where x was the total number of folders used. We calibrated using laser lines at 184um (1.63THz), and since the bolometer's responsivity in the THz range is 

independent of frequency, we conclude that we get an estimate of the total power 

radiated by the SWCNT source. 

3.6 Beam Pattern Measurements

Beam pattern measurements established the angular dependence of the THz 

signal strength . To facilitate this measurement, the block  in figure 3.5 was 

mounted on a 2D stage that enabled translation in the azimuth and elevation 

directions as shown in figure 3.7. Measurements were taken every 0.5o which 

provided an acceptable resolution.
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Figure 3.7: Picture showing the beam pattern measurement set-up.

3.7 Fourier Transform Spectrometer (FTS)

An FTS is an instrument used to measure the spectrum of a radiating source 

by modulating the radiation through interference in the time domain, then Fourier 

transforming the signal to reveal the spectrum [56]. Preliminary measurements on 

a commercial FTIR (Bruker IFS66v) at the UMass Lowell STL indicated that the 

SWCNT source did not have enough detectable power through the instrument. 

This motivated us to construct our own interferometer. This section describes the 

working of an FTS and the specifics of the system as we built it.
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3.7.1 Basic Operation

The FTS is based on a Michelson interferometer, whose basic components 

include a movable and fixed mirror, a beam splitter, a source and a detector as 

shown in figure 3.8. An ideal beam splitter transmits half of the incident radiation 

and reflects the other half.

Figure 3.8: Illustration of the Fourier transform spectrometer [58].

Radiation from the source is incident on the beam splitter where it is separated into 

two equal beams. One beam goes to the movable mirror while the other goes to the 

fixed mirror. The beams are reflected by the two mirrors back towards the beam 

splitter where they recombine to form a beam which is then transmitted to the 

detector and the source in two equal proportions. The signal that reaches the 

detector is a function of the optical path difference (OPD), the difference between 

the fixed mirror length  and movable mirror length . The effect of translating the 

movable mirror is to a create a phase difference between the two beams [56]. The 

zero path difference (ZPD) is defined to be the point at which the OPD is zero, that 
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is, the two mirrors are equal distances from the beam splitter. At the ZPD, all 

wavelengths are in phase.

The interferogram is the signal acquired by the system. As the movable 

mirror is translated, an interference pattern is formed as the two phase shifted 

beams combine (interfere). The interference pattern is then detected and recorded. 

For a single frequency source, the interferogram is a sinusoid while that of a 

broadband source is a signal dominated by a centerburst that decays with increasing 

retardation from the ZPD. Having the ZPD as the reference, as the mirror moves on 

both sides of the ZPD, the interferogram created is two  sided and symmetric. 

Figure 3.9 (a) shows the interferogram from a SiC broadband source. 

Figure 3.9: (left) Interferogram from a SiC source, with the resulting spectrum (right).

Once the interferogram has been acquired, the next step is to get the spectrum, 

which is done by performing the Fourier transform. 
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3.7.2 Interferogram Fourier Transform

 Beam intensities for a monochromatic source are shown in figure 3.10, offset for 

clarity.

Figure 3.10: Beam intensities at various sections of the interferometer.

 The detected light intensity is given by the interference function [56]:

(3.4)

where I1 and I2 are the intensities and φ1 and φ2 are the phases. The  interference 

function is rearranged to[11] :

(3.5)

where the relative phase between the two interfering waves Ia and Ib is given by [56]:

(3.6)
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Assuming ideal optics and beam splitter

(3.7)

The interference function given by equation (3.4) becomes [56]:

(3.8)

Of interest is the modulated part of the signal that varies with x: 

(3.9)

For broadband signals , the spectrum can be  synthesized by a superposition of 

monochromatic sources which are best represented by sinusoidal waves as [56]: 

(3.10)

where the Cs are constants. 

The interferogram for broadband sources is therefore the summation of such 

individual monochromatic interference functions given by [56]:

(3.11)

Where C(λ) represents the spectral distribution recorded by the detector. 
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To retrieve the spectral information, the complex Fourier transform is evaluated 

[56]: 

(3.12)

In practice, this operation is done using the fast Fourier transform(fft) digital 

method of Cooley and Tukey [57] implemented in LabVIEW as FFT.VI. 

3.7.3 Implementation

a) Mirrors

The movable and fixed mirrors are 63 by 50 mm  gold coated  glass mirrors. 

The movable mirror is mounted on a linear translation stage controlled by a T-Cube 

DC Servo Motor Driver (Thorlabs model number TDC001). It has a 6mm range of 

motion and a minimum linear resolution of 0.8um and a minimum repeatability of 0.2um. The driver is PC controlled with an ActiveX control interfaced to a LabVIEW 

program. There is a collimating mirror that is a 90o  off-axis parabola (OAP) with a 

focal length of 178mm. There was a shutter at the focal length of the mirror which 

was used to define the source size. 

b) Beam Splitters

We used 6um and 25um mylar (polyethylene teraphalate) beam 

splitters. Radiation incident on the beam splitter is partially reflected and partially 
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transmitted, and ideally the reflected intensity Ro is equal to the transmitted 

intensity To. The relative efficiency of the beam splitter is given by [59]

(3.13)

The efficiency as a function of the radiation frequency produces interference fringes 

or Fabry-Perot resonances.  For a freestanding, non-absorbing parallel-sided, thin 

dielectric material, the frequency dependence of the reflectance and transmittance 

are [59]

(3.14)

(3.15)

where δ = 4π ωnd cos θi is the relative phase shift between two emerging rays, 

d is the thickness of the film, n is the refractive index, θi is the angle of incidence of 

the beam inside the film to the surface normal and R is the single bounce 

reflectance of the material. Ro and To depend on the polarization of the incident 

beam, where the reflectance R depending on the polarization is given by [59]:

(3.16)

(3.17)

where p represents radiation polarized with the electric field parallel to the 
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plane of incidence and s represents radiation polarized with the electric field 

perpendicular to the plane of incidence, θi and θt are the angles of incidence and 

transmission respectively. For  n= 1.6, figure 3.11 shows the beam splitter efficiency 

as a function of frequency upto the first minimum. For the full frequency range, 

there are minima at δ = 2mπ for m = 1, 2, 3,... and maxima near  δ = (2m-1)π.

Figure 3.11: Mylar beam splitter efficiencies for 23, 12, 6 and 3.5um mylar thickness [59] 

c) Sources

To measure the spectrum from the SWCNT source, the block with the 

mounted device as shown in figure 3.5, is placed at the focal length of the OAP, and 

like in the beam pattern measurements, the voltage bias is turned on and off at a 

modulation frequency of 100Hz. This signal is also used as the reference for the 
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lock-in amplifier. The other THz source which is used for alignment of the optics 

and calibration is a 24W SiC globar (Newport Corp. part # 80030). In lieu of a 

function generator to modulate the signal, we use an optical chopper placed in front 

of the the shutter.  

d) Alignment

Alignment is crucial to acquiring an acceptable interferogram. Interferogram 

alignment errors include phase, modulation and sampling errors [56]. The 

alignment procedure detailed in [56] was followed.

e) Data acquisition

The signal from the detector was connected to a lock-in amplifier as earlier 

described,  which was then connected to a computer via a GPIB interface allowing 

control of the data acquisition using a LabVIEW program. Allowing for real-timre 

visualization of the interferogram. The integration time when using the SWCNT 

source was 1s and  200ms for the SiC. Figure 3.12 (a) shows the block diagram of 

the FTS system and (b) shows a picture of the actual system.
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Figure 3.12(a) : Illustration of the FTS set-up

Figure 3.12(b): Picture of actual FTS set-up used in measurements; Radiation from the source is 
collimated by OAP1 and directed to the beam splitter, where it is split into two beams, one towards 
the movable mirror (M1) and the other towards the fixed mirror (M2). Upon reflection, the two 
beams combine and part of the resulting beam is sent to the focusing mirror(OAP2)
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The maximum spectral resolution for an FTS is given by [56]:

(3.18)

In a typical measurement, the mirror moved at a velocity of 1um/s for a total 

distance (OPD) of 1mm. From equation (3.18) the resolution was therefore 

~150GHz.
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CHAPTER 4

RESULTS and DISCUSSION

4.1 Devices

THz radiation experiments were performed on a variety of devices based on 

either the SWCNT configuration (ropes, few tubes, mats) or the type of antenna 

coupling (9um bars, patch , LPA4). The SWCNT configuration was determined by 

the dielectrophoresis parameters used. The three main parameters are the SWCNT 

solution concentration, ac-voltage amplitude and time allowed for deposition. In 

general, the single tube devices are obtained when using a very low SWCNT 

solution (~μL of CNTRENE 100 in 20mL of DI water) and the ropes and mats are 

formed with relatively high concentrations ( ~mL of CNTRENE 100 in 20mL DI 

water). The ropes are obtained by using higher voltages (5-10Vpp) for longer times 

(>2min), while mats are obtained by using relatively lower voltages (2-3Vpp)  and 

time (<2min). Ultimately, the type of SWCNT configuration is not unique to a 

particular set of deposition parameters since different combinations would achieve 

the same result. Optical, SEM or AFM microscopy  were used to characterize the 

devices. Figure 4.1  and 4.2 show typical devices .
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Few tubes

Ropes*

Figure 4.1: (a-c) SEM images of different LPA4 devices. (d) Optical, SEM and AFM images of the 
same rope device. (e) AFM picture of a rope device and (f) SEM picture of a rope device.  Scale bars: 
(a-c) 4um, (d-f) 9um

* Termed 'ropes' due to the rope like structures that form after DEP.
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Mats

Figure 4.2: SEM (a, b, d) images of 'mat' devices on 9um bars. (c) Optical picture of 9um bar device. 
(e) close up of contact area marked by red box in (a). Scale bars (a-d) 9um, (e) 2.5um
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Furthermore, we had other antenna coupled devices where we fabricated 

patch antennas onto otherwise 9um bar devices. This resulted in an entirely new 

device, with different transport and radiation properties from the underlying 9-um 

bar devices. Figure 4.3 shows optical pictures of several patch-antenna coupled 

devices with different dimensions.

Figure 4.3: Patch antenna devices showing various dimensions, with the exception of the 9um 
device.

Besides having patch antennas, this device configuration is unique because it 

transforms the highly networked (disordered) nature of films as shown in figure 4.2, by confining the SWCNTs to the gap area formed by the patch antennas. The 

resulting SWCNTs are relatively well aligned across the gap as shown in figure 4.4. 

While some of the disorder from the films is evident with some tubes traversing 

horizontally across the gap, a majority of the tubes run almost parallel to each other, 

and by varying the gap length, we vary the SWCNT lengths also.
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 Figure 4.4: SEM picture of a close up of the gap area of a patch antenna device. Scale bar 1um

The other main class of antenna devices were the suspended ones as shown in figure 4.5. Here, as described in chapter 3, DEP was done last in the fabrication procedure.

Figure 4.5: SEM pictures of two SWCNT devices suspended over a trench made through RIE of the 
oxide . Scale bars: 1um
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4.2 Transport Measurements

The transport properties of the devices are indicated by the current-voltage 

(I-V) characteristics, investigated using a two-probe measurement set up. The 

different SWCNT configurations observed via imaging also manifested themselves 

in these transport measurements. I-V curves characteristics were the main factor to 

consider before testing a device for its radiation properties. Typical I-V 

characteristic curves for some representative devices are shown in figure 4.6.

Figure 4.6: I-V curves for device 4.1(c) blue curve, 4.1(d) green curve, 4.2(b) red curve, 4.4 black 
curve, and 4.5(b) purple curve,  

The main information garnered was the amount of current each device was 

able to carry. The rope and mat devices exhibited relatively ohmic behavior, while 

the few tube and patch devices exhibit non-linear behavior. The ohmic nature of 

ropes can be explained by the availability of many transport channels that dominate 
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the conductance. The multiple conduction channels ultimately saturate the 

conductivity of the SWCNT rope networks [60]. In the SWCNT mats the I-V curves 

are also approximately ohmic, for the same reason, but with less current density. 

4.2.1 Current saturation

Devices with Palladium top contacts almost invariably exhibit current 

saturation. Palladium as a top contact is known to yield ohmic contacts with 

SWCNTs[61], a prerequisite for current saturation[62]. While the Palladium 

contacts we had were not perfectly ohmic they fell in the low resistance contact 

(LRC) category that was earlier described in chapter 1 of this thesis. With those 

types of contacts, we are able to see the effects of scattering, especially by optical 

phonons, that resulted in current saturation [64]. The black curve in figure 4.6 
indicates current saturation in higher biases. Figure 4.7 shows the before and after 

top contact fabrication I-V curves, where the improvement in the contact resistance 

was indicated by the current saturation.

Figure 4.7:  I-V curves for device 4.1(c) before (left) and after (right) Palladium top contact. Blue 
curves are for resistance (right axes) while red are for current (left axes)
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It has been mentioned that the SWCNT effective length was  determined by the gap 

size as in figure  4.4, and in figure 4.8 we see the effect of length scaling on the I-V 

curves. Optical phonon scattering is more pronounced in short SWCNTs as they 

have lower resistance [11]. Network effects like inter-tube junction resistances are 

also expected to be less.

Figure 4.8: I-V curves for three patch antenna devices with different gaps

4.2.2 Contact Barriers

In the absence of perfect contacts between the metal and SWCNTs, there are 

contact barriers [63] which present a finite resistance. Room temperature electron 

transport across the barriers is achieved through tunneling [63]. Although low 

temperature studies are not an integral part of this work, we took I-V curves at 

cryogenic temperatures for some devices. Figure 4.9  shows the I-V characteristic 

curves for devices in figure 4.4 and 4.1(c) at several temperatures below 300K. 
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Figure 4.9: (a-c) IV Curves for device in figure 4.4 at T=4.2K, 65K and 135K respectively. (d-e) IV 
curves for device in figure  4.1(c) at T= 4.2K and 293K respectively. Blue curves are for resistance 
(right axes) while red curves are for current (left axes)

At the low temperatures, near zero bias, we see that the device resistance is 

relatively high, but decreases with increasing bias. The resistance in this region is 

dominated by the contact resistance . This is an effect of the contact barriers: at low 

temperatures and bias, electrons lack enough energy  (E=KbT) to tunnel through the 

barriers. With increasing bias, electrons gain enough energy to tunnel through the 

barrier, and the resistance that we see thereafter is due to the SWCNT
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4.2.3 Annealing

The overall effect of annealing was to lower the contact resistance. Devices 

were annealed after DEP,  top contact fabrication or  SEM imaging. The change of 

resistance after annealing was  due mainly to out-gassing of adsorbed oxygen and 

other impurities at the metal - SWCNT contact [66]. In the band diagram picture, 

the annealing step lines up the bands at the metal - SWCNT junction thereby 

lowering the barrier and enhancing current injection from the metal to SWCNT 

[63]. Furthermore, the heat from annealing allows  for the healing of defects and 

alignment of tubes within bundles [68]. Figure 4.10 shows an example of resistance 

change for devices in figure 4.1(c) and 4.4  due to annealing, after a resistance 

change caused by SEM imaging, likely due to build up of charge that consequently 

increases the contact resistance.

Figure 4.10(a): I-V curves showing effect of SEM and subsequent annealing on the resistance.(a) 
device in figure 4.4 and b is device in figure 4.1(c)
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Figure 4.10(b): I-V curves showing effect of SEM and subsequent annealing on the resistance.(a) 
device in figure 4.4 and b is device in figure 4.1(c)

Investigation into any gate dependence was not comprehensively done but 

preliminary measurements showed no observable gate modulation effect. We 

assumed that the DEP process deposited primarily metallic tubes, an assumption 

justified by the high current densities and regularly ohmic  I-V characteristic curves, 

properties primarily attributed to metallic SWCNTs. Since semiconducting tubes 

have a much higher resistance, their effect would be negligible on the total 

resistance. SiO2 passivation resulted in ~ X5 resistance increase regardless of the 

type of device. It is not clear why SiO2 passivation increased the resistance, but 

passivated devices  could withstand relatively high bias, up to 15V without 

electrical breakdown. The lack of air (oxygen)  in the vicinity of the SWCNTs meant 

that the SWCNTs would not readily oxidize and breakdown [67]. In summary, we 

highlight the four main factors that determined the SWCNT transport properties:
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• SWCNT Configuration

• Top contacts

• Annealing

• Passivation

4.3 Radiation Patterns

The quasi- optical coupling scheme (figure 2.18) allowed us to perform 

radiation pattern measurements as shown in figure 3.7. Since the radiation pattern 

was primarily determined by the Si lens, most of the measured patterns have the 

same basic shape and change mainly due the varying power levels among devices.

Figure 4.11 shows typical radiation patterns for some devices in the two 

perpendicular directions.

Figure 4.11: Beam patterns for a variety of devices in the Azimuth and Elevation directions

We see the varying power intensities among the various devices and the 

angular dependency of the peaks. Sources that were not at the center of the lens, as 
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shown in figure  2.17,  radiated off- axis and therefore the peaks did not occur at 0o. 

We define the axis at 0o to be normal incidence on the dewar window and therefore 

also normal on the detector. In 4.11(a) the radiation from all the devices was offset 

to the left of zero: a possible reason for all of the spectra to be offset in the same 

direction would be that the detector was also off-axis. Another  reason as shown in 

figure 2.19, is an off-center source. This seems unlikely though since (i) it requires 

an unrealistically large misalignment (~1 mm) and (ii) that the misalignment occur 

consistently in one direction. Finally, collective phase shift causing the beam to be 

steered in one direction, due to some partial coherence in the radiation.  Resolving 

this issue will require further investigation. Centering the spectra and showing the 

results in dB, as shown in figure 4.12 shows the various beam widths. We conclude 

that the beams are  diffraction limited, with -3dB beam widths between 2-5o, 

Figure 4.12: Normalized beam pattern results for the elevation results in 4.11(b)
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Results for the radiation patterns in the near and far fields ( > ~D2/λ) are 

shown in figure 4.13.

Figure 4.13: Typical beam pattern results - (a,c) elevation and (b,d) azimuth.

We see that the near field patterns have wider -3dB beam widths of ~ 6-100. 
This is expected since in the near field, the beam is a collimated cylinder (figure 2.18) with about 4mm diameter.  Furthermore, in (b) we see  an extra peak at in the 

near field pattern. The small peak is a coma lobe due to aberration caused by an off 

axis source [69]. Knowledge of the beam patterns will be important when designing 

SWCNT source detector configurations.
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 4.4 Spectra

A major result of this work is the spectral distribution of the radiation 

produced by SWCNT devices. As discussed in chapter 2 and 3, there are 

expectations and predictions as to what the spectrum would be, however, the 

results we get using Fourier-transform spectroscopy are not purely indicative of the 

source's spectral distribution. They are also determined by the materials that make 

up the FTS system, mainly, the beam splitter, the HDPE dewar window, filters and 

atmosphere (specifically water content). The transmission through the materials is 

described by equation (3.12), and ultimately shows up in the spectral results. There 

is no way around this, and it is one of the inherent disadvantaged of Fourier-

transform spectroscopy. 

While the transmission function for these materials is known, figure (3.11) 

for beam splitter and Appendix for the filters, it is important to get the actual 

system response.  This was accomplished by using a broadband thermal source , a 

SiC globar, whose specifications were given in chapter 3. While the peak wavelength 

was specified at ~1um (300 THz) we assume it had a relatively flat spectrum in the 

THz range of interest. Therefore, using this source and a variety of beam splitter 

and filter combinations, we expect to retrieve the overall system response.  Figure 4.14 shows the spectral results  using the two different bolometer detectors. 4.14(a) 

and (b) are from bolometer 1, while (c)  and (d) are from bolometer 2. The main 

difference between the two bolometers is the different cut-off filters, evident from 
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the spectra.

Figure 4.14: SiC globar radiation spectra with different filters(shown in legends) taken with 
bolometer 2 (a,b) and bolometer 1(c,d). (a,c) taken using 25um Mylar, (b,d) taken using 6um Mylar

 

Spectra from the  25um mylar, (a) and (c) , show the expected Fabry-Perot 

resonances at every 4THz until the respective filter cutoffs occur. For the 6um 

mylar, the first Fabre-Perot resonance is noticeable only when using the 12.5um(24THz)  filter, blue curve in (b), whereas the 27um and 285um filters 

cutoff the response at lower frequencies.  The main conclusions we drew from these 

results in figure 4.14 are:
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• The 25um beam splitter had  better effieciency at the low frequencies (0-4 
THz) save for the beam splitter dips. Since the absorption measurements 

[12] have a THz peak at this range, this beam splitter is ideal assuming the 

emission spectra followed the absorption.

• The system has the highest efficiency at ~ 8THz for bolometer 2 and ~6THz 

for bolometer 1. This was relevant because it implied that otherwise 

relatively low signals in this range will be better transmitted through the 

system.

With the two broad conclusions, we can begin to compare SWCNT spectra from 

different types of devices.

4.4.1 Device Comparison

We started off by defining two types of devices: a) 9um bars and b) patch 

antenna devices. As described earlier, the 9um bar devices form the basic structure 

on which the patch antennas are later fabricated onto. The antenna dimensions of 

interest are shown in figure 4.15, and are marked L, W and g.

Figure 4.15: Patch antenna showing dimensions of interest
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Figure 4.16 is a comparison of the devices with different W values, taken 

using the 27um(24THz)  filter in bolometer 1. The results were normalized to the 

largest peak in each case.  Lower W (15x30 um) shifted the emphasis to the  lower 

frequency ( f1) while increasing W (45x30 um) shifted the spectrum to a higher 

frequency peak ( f2). The intermediate W (30x30um) yielded two peaks with 

comparable intensity. Note that while the spectrum shifts from one peak to another, 

the two peaks occurred essentially at fixed frequencies.

Figure 4.16: Spectra from three patch antenna devices with varying W

Figure 4.17 shows the result of varying the parameter L for a fixed W (45 um). 

There  was a clear dependence, where a higher L value tuned the higher frequency 

peak to a relatively lower frequency. 
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Figure 4.17: Spectra from three patch antennas devices with varying L

Figure 4.18 shows the results of varying g (3um, 1um, 500nm), for 45x30 um 

patches

Figure 4.18: Spectra from three different patch antennas with varying g

Evident from the figure, there was no clear trend when we changed the gap 

length g. Nevertheless, by changing g, we changed the effective SWCNT length, and 

consequently expected to probe  any length modulated geometric resonances [38] 
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predicts plasmon resonances that depend on the length  and that furthermore,  are 

affected by the mean free path. Therefore, by varying g, as earlier described we 

effectively varied the SWCNT length. We conclude that there is no observable 

dependence of the spectrum on the SWCNT length. However, it appears that the 

patch antennas dominate the spectrum and any effect of the length or order of the 

tubes across the gap is washed out. The question as to whether or not we can 

observe plasmon resonances is left for future work.

Figure 4.19  is a comparison of two 9um bar devices (without patches), one 

with an SiO2 passivation layer and the other without passivation. The two spectra 

have the same main feature, the single broad peak, which contrasts the prior results 

of figures 4.16,4.17,4.18. This result supports the conclusion that the patch 

antennas determine the resonances  (and not the SWCNTs)

Figure 4.19: Spectra from 9um bar coupled devices
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In summary, we draw the following conclusions from the various spectra; We note

that the patch antennas have two resonances which we interpret as coupled 

resonances:

• Resonance f2 is a dipole type resonance due to the patches, and is not 

sensitive to W or g. 

• A resonance near f1 occurs both with patches (Figure 4.16,17,18) and 

without (4.19). This resonance must be related to dipole radiation from the 9um bar structure . f1 is emphasized by making W smaller, which would 

facilitate feeding the currents from the SWCNTs through the patches to the 9um bars. 

• Suspending the SWCNTS results in similar spectra (not shown) to those of 

devices with on-substrate SWCNTs. We observed that the spectra are 

dominated by antenna effects and not due to intrinsic SWCNT properties. 

4.4.2 Bias Dependence

Based on the Joule heating model of emission, changing the electronic 

temperature changes the electronic distribution and therefore the intensity of the 

emitted radiation.  To investigate the bias dependency, we experimented with 9um 

bar devices, patch-antenna devices and suspended tubes as shown in figure 4.20
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Figure 4.20: Spectra showing bias dependency for 9um bars(a,b), patch devices (c,e,f) and a 
suspended device (d). (f) is from same device as (e) but taken using 6um mylar 

Increasing the bias voltage increased the total power emitted, but did not modulate 

the peak frequency, indicating that the spectrum was determined by the antenna.

79

0 4 8 12
0.00

0.03

0.06

0.09

(a) 3V
3.4V
4V

THz

In
te

ns
ity

 (a
.u

.)

0 4 8 12
0.00

0.07

0.14

0.21

(b) 7.6V
10.8V

THz

In
te

ns
ity

 (a
.u

.)

0 2 4 6 8 10 12
0.00

0.04

0.08

0.12

0.16

(d)
1.5V
1.3V
1V

THz

In
te

ns
ity

 (a
.u

.)

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

(e) 1V
1.2V

THz

In
te

ns
e 

(a
.u

.)

0 4 8 12 16
0.00

0.04

0.08

0.12

0.16

(f) 1V
1.2V

THz

In
te

ns
ity

 (a
.u

.)

0 2 4 6 8 10
0.00

0.04

0.08

0.12

(c) 1.32V
1.4V
1.6V

THz

In
te

ns
ity

 (a
.u

.)



4.5 Polarization

The polarization of the THz beams were measured using a wire grid polarizer 

placed in the path of the beam.  Table 4.1 shows some typical results from 

polarization measurements when the electric field was horizontal and vertical 

respectively. 

Table 4.1: Typical Results from polarization measurements

From the results, the E-field is perpendicular to the slots and parallel to the 

SWCNTs. In general, the polarization ratio,defined as vertical/horizontal signal  is ~ 2-4 for antenna coupled devices and ~1 for 9um bar coupled devices.

4.6 Power Considerations

The THz output from the SWCNT devices  varied linearly with the dc input 

power (Pinput = I2R) needed to produce THz radiation, as shown in figure 4.21 (a). 

This was consistent with an assumption that the radiation was thermal, that is 

P α ΔT, where ΔT is the temperature change due to the dc bias. Power calibration 

was performed as described in section 3.5. Results for laser attenuation using the 
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Signal (mV)
Device Type No Grid Horizontal Vertical Ratio(V/H)A2 Patch 10.5 3.85 7.6 1.97B3 Patch 1.85 0.5 1.5 3B1 Patch 1.2 0.25 1.02 4.08D3 Patch_Suspended 2.2 0.61 1.77 2.9A2 LPA2 0.18 0.1 0.1 1A4 9um Bars 2.12 1.51 1.55 1.03



manilla folders are shown in figure 4.21 (c) and (d) for the 184um (1.63 THz) laser

line. (b) shows results from bolometer 1, obtained using the 27um filter and (c) for 

bolometer 2 obtained using the 12.5um and 27um filters. 

Figure 4.21:(a) Results for output signal versus input power for a variety of devices and signal 
attenuation per manilla folder for bolometer 1 (b) and bolometer 2 (c).
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In 4.21 (b) there were two regions: first when the bolometer was saturated and the 

signal independent of the # of manilla folders and the region after 5 folders where 

the signal fell off linearly with every additional folder. 

In (b) however, there were three regions: one when the bolometer is saturated and 

thereafter two regions with different slopes. We consider the bolometer to be 

unsaturated after 6 folders, and ignore the intermediate part. Following section 3.5, 

we find:

Bolometer 1 Results: 

A = 2.386      A10 = 5980    

Power  W
mV

=10−3 W 
5980

× 1
124mV 

= 13.5×10−9=13.5  nW
mV


  

Bolometer 2 Results:

A12.5um = 1.455  A11 = 62.1
A27um  = 1.94     A12 = 2842

Power 12.5um
W
mV

=1.7×10−3 W 
62.1

× 1
1.5mV 

= 18×10−6=18  W
mV



Power 27um
W
mV

= 0.55×10−3W 
2842

× 1
14mV 

= 13.82×10−9=13.82  nW
mV


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The result from the 12.5um filter in 4.21(c) shows an unexpected attenuation 

curve, with varying slopes and could explain the inconsistent power calibration 

result. We therefore focus on the results from the 27um filters.

In the course of this work, we have had SWCNT sources with signals as strong as 100mV from rope device like in figure 4.1(d) and ~31mV from patch antenna 

devices like in figure 4.4. Furthermore we've measured signals as  meager as 1mV. 

Using the calibration results, we estimate that our devices have power in the range 

of:

We note that this power is lower than the actual source power due to losses 

in system, specifically through the Silicon lens (~30% loss) and air.

To compare with the power given by the Nyquist formula: P = KbBT, we estimate the 

bandwidths as shown in figure 4.22, to account for the beam splitter effect and 

estimate nominal SWCNT temperatures based on [67] .

Therefore, assuming  impedance  match, with 

               B  ~ 2-3 THz     and 

      ΔT ~ 200-500 

We get, 
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13nW ≤ P SWCNT ≤1.3μW (Rope devices)

5.5 nW ≤ P Nyquist ≤ 20.7 nW

13nW ≤ P SWCNT ≤465nW (Patch antennas)



Figure 4.22: Bandwidth estimation illustration

For the devices with relatively high signals measured close to the bolometer, it is 

possible that they had a high level of side lobe power in their antenna pattern, 

spread over wide angles and would therefore not be detected in the far field 

measurement. Nevertheless, as long as we can rely on the power calibration 

method, we seem to be exceeding the theoretical Nyquist limit as shown in the 

results. 
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CHAPTER 5

FUTURE WORK

5.1 Antenna Designs

So far in this work we have primarily coupled SWCNTs to patch antennas and 

have successfully measured spectra from such devices. The results indicate that the 

main resonances  were determined by the antenna, and could be tuned by changing 

the antenna  dimensions. We therefore propose to couple SWCNTs to different 

types of antennas, specifically bow-tie and slot antennas as shown in figure 5.1. Due 

to the different antenna properties like bandwidth and efficiency, using a variety of 

antennas may allow us to tune the resonances differently or observe resonances 

mediated by the SWCNTs (instead of the antennas).

Figure 5.1:  Antenna-coupling schemes.(top) Bowtie (bottom) Slot
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5.2 THz Detection Using Patch Antenna devices

From our previous work in THz detection using SWCNTs, we primarily 

employed Log-periodic antennas for coupling [70,71]. Since the patch antennas 

have shown good response in the 0.5 – 2.5 THz range, depending on the antenna 

dimensions, we will seek to investigate THz detection in the same devices. We 

expect to correlate the responsivity to device dimensions for a given frequency. 

Furthermore, since the patch antennas offer a wider area on which to suspend 

devices, we expect to observe better responsivity from our previous work in 

detection using suspended SWCNTs, due to an enhanced bolometric effect. 

5.3 Terahertz Integrated Circuits

The main idea behind a THz IC is the integration of the source and detector on the 

same circuit. The source would be a SWCNT based emitter as described in this 

work, while the detector could be a microbolometer like Niobium [72], a SWCNT 

detector [70] or a CMOS based detector [73]. The main requirement is that  they be 

lithographically compatible with the source. Transmission between the source and 

detector could be achieved through microstrips/waveguides. The implementation 

of such a circuit could pave way to a more sophisticated system, like an on-chip THz 

imaging system [73] .
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APPENDIX A

PROCESS PARAMETERS

Reactive Ion Etch (RIE): STS Vision 320 Mark II RIE System
Target: SiO2
• Process pressure: 40
• RF Setpoint: 250
• Stabilisation time: 15
• Steptime (m): 10
• CF4 (6): 24
• O2(5): 6

Plasma Enhanced Chemical Vapor Deposition (PECVD): STS Vision 320 Mark II 
PECVD System
Material: SiO2
• Cload Position: 50
• Ctune Position: 50
• Drive match: 1
• Process Pressure: 800
• RF Setpoint: 30
• Stabilization time: 30
• Steptime(m): ~10min
• 2%SiNH4/N2 (1): 400
• N2O(3): 1420

Sputtering: ATC ORION 8 UHV
Material: Palladium
• Gun parameters: DC, 750W, 100V, 1000mA
• Argon flow 12 SCCM
• Power STPT(%) 26.70
• Shutter Delay: 15.0
• Coat time: 95s

UV Ltihography: Suss MicroTec MA6 Mask Aligner:
a) Wafer preparation for 1813 Positive photoresist
• HMDS: 3000rpm, 15s 
• s1813: 3000rpm, 30s
• Softbake: 120os, 60s
• Exposure using 20mW/cm2, 3s, vacuum contact
• Toulene Soak, 5min, blow dry
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• Develop using Shipley 351 for 60-90s
• DI rinse followed by N2 blow dry

b) Wafer preparation for 1813 Positive photoresist: Suss MicroTec MA6 Mask 
Aligner
• HMDS: 3000RPM, 15S
• NR9-1000: 3000rpm, 30s
• Softbake: 150oc, 60s
• Exposure using 20mW/cm2, 2s, vacuum contact
• Post exposure bake: 100oc, 60s
• Develop in RD6 for 8s
• DI rinse followed by N2 blow dry

Ebeam Lithography
• Acetone followed by IPA 
• PMMA: 1500rpm, 60s
• Softbake: 180oc, 60s
• Exposure using JEOL JSM-7001F Ebeam Writer with Nanometer Pattern 

Generation System (NPGS v.9)
• Develop in MIBK:IPA (1:3) for 60s
• IPA rinse for 20s
• DI rinse for 20s followed by N2 blow dry
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APPENDIX B

INTERFEROGRAMS AND SPECTRA
HR7I                                                                                                 
A1  : 30X30 um
Bias: 1V, Scan length: 2mm

A2  :  30X30 um
Bias: 1.2V,  Scan Length: 1mm

A3 : 15X30 um
Bias: 1.52V, Scan Length: 1mm
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A4 : 30x30 um
Bias: 0.94V, Scan Length: 1mm

A5  : 15X30 um
Bias: 1.64V, Scan length : 1mm
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B1  : 15X30 um
Bias: 1.4V, Scan Length: 1mm

B2 :30X30 um
Bias: 1V, Scan Length 2mm
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B3 : 45X30 um
Bias: 0.94V, Scan Length: 1mm

C1 : 30X30um
Bias: 1.1V, Scan Length:  1mm
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C2 : 30X30 um
Bias: 1V, Scan Length: 2mm

C3 : 15X30um
Bias: 1.6V, Scan Length: 1mm
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C4 : 45X30 um
Bias: 1V, Scan Length: 1mm
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C5 :  15X30 um
Bias: 1.2V, Scan Length 2mm

D1 : 9um Bars
Scan Length: 1mm
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D2 _ 9um Bars
Bias: 3.44V, Scan Length: 1mm
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B5: 9umBars w/PMMA passivation
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APPENDIX C

BOLOMETER FILTER TRANSMISSION CURVES

a) Bolometer 1

b) Bolometer 2
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