University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage

International Conference on Engineering and Ecohydrology for Fish Passage 2012

Jun 5th, 1:50 PM - 2:10 PM

Session C2 - Bed and Bank Design Considerations When Selecting Culvert Width

William Rice

U.S. Fish and Wildlife, Anchorage Field Office Habitat Restoration Branch, Anchorage, Alaska

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Rice, William, "Session C2 - Bed and Bank Design Considerations When Selecting Culvert Width" (2012). *International Conference on Engineering and Ecohydrology for Fish Passage*. 26.

 $https://scholarworks.umass.edu/fishpassage_conference/2012/June5/26$

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Bed and Bank Considerations in Culvert Design

William Rice, P.E.

Habitat Restoration Hydrologist

U.S. Fish and Wildlife Service Anchorage Field Office

Culvert Designs

Make the Road Crossing "Invisible"

Bankfull a good estimator of channel forming flows (Wohlman and Miller, 1960).

Objectives

- Fish and Other Aquatic Organism Movement
- Stream Functions (Sediment, Debris, Water)
- Minimize Risk of Road Failure
- Terrestrial Animal Movement

Watershed Position and Geomorphic Processes

Step-Pools

Steps

Riffle-Pool

Edgerton Parks Road, Elk Creek - Matanuska-Susitna Borough

Roughened Riffle

Schwald Road, Unnamed Creek - Matanuska-Susitna Borough

Riffle with Low Flow Channel

Streambanks

Duncan Drive, Kenai (6 foot channel)

Streambanks are to be immovable at design flows – consider in low entrenched environments!

Coal Creek, Kenai (12 foot channel in 18 foot pipe)

1.2 Bankfull (Alluvial Systems)

Culvert Diameter (ft)

Streambanks

Transition Zones

Rosie Creek, Northern Region

Remember to transition rock banks to natural banks!!

Streambank Transition from Rock to Rootwads, Coal Creek, Kenai

Points to Remember

• What are your objectives?

 Emulate the stream type in your culvert and make bed features that reflect it.

• Size your stream banks to reflect stability at large flow events, not to a set standard.

 Culverts are not bridges. Consider risk, design conservatively.