University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2012

Jun 6th, 2:10 PM - 2:30 PM

Session B5 - Modeling brook trout (Salvelinus fontinalis) passage success through road culverts: from theory to reality

Elsa Goerig

Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre et Environnement PhD program in earth sciences, elsa.goerig@ete.inrs.ca

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Goerig, Elsa, "Session B5 - Modeling brook trout (Salvelinus fontinalis) passage success through road culverts: from theory to reality" (2012). *International Conference on Engineering and Ecohydrology for Fish Passage*. 25. https://scholarworks.umass.edu/fishpassage_conference/2012/June6/25

This is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Modelling brook trout passage success through road culverts: from theory to reality

Elsa Goerig and Normand Bergeron INRS – Centre Eau, Terre et Environnement

Université d'avant-garde

Groupe de recherche interuniversitaire en limnologie et en environnement aquatique Transports Québec ***

CENTRE INTERUNIVERSITAIRE DE RECHERCHE SUR LE SAUMON ATLANTIQUE

Introduction

- Culverts often create velocity barriers that may impede upstream fish passage and fragment riverscape habitat
- Predictive approaches of fish passage success have been developed using fish swimming capacity data generally obtained in laboratory
- Few studies have attempted to validate these approaches in natural culverts

Objective

Determine the correspondence between

Observations of brook trout passage success/failure through natural culverts using PIT telemetry

and

Predictions of fish passage success/failure for the same conditions using the 'maximum distance of ascent' approach of Castro-Santos (2005)

Study sites

Nine culverts of southern Québec:

- 6 corrugated metal circular culverts
- 2 concrete circular smooth culverts
- 1 concrete box smooth culvert
- Slopes from 0,3 to 4,5%
- Length from 9 to 45 m.

Data collection

Semi-experimental approach

- Fish passage trials conducted at various culverts, discharges and water temperatures
- For each trial, a group of 24 PIT-tagged brook trout is released for 48h in a cage fixed at culvert outlet
- 3 size groups (F_l)
 - Small: 90 à 119 mm
 - Medium: 120-149 mm
 - Large: 150-230 mm

(E. Goerig, 2009)

Data collection

Fish passage attempts, progression and success monitored with four PIT antennas inside culvert

Culvert and hydraulic measurements

Culvert

• Type, diameter, length, slope

Hydraulics at 2 m spaced transects

- 3 measures of flow velocity, depth
- Before and after trial

Water temperature and water level

Continuously during trial

(E. Goerig 2009)

PIT-tagged fish swimming data

• Groundspeed (Ug)

$$Ug = \frac{D}{T(A2 - A1)}(A2 - A1)$$

Computed only for fish that reached at least antenna 2 The attempt with the farthest ascent distance is used

• Swim speed (Us)

Us = Ug + Uf

where Uf is mean flow velocity

Summary of field data

27 in rough culvert

13 in smooth culvert

958 brook trout of 90-230 mm

Flow velocity range: Water temperature range:

Corrugated metalSmooth concrete $0,5 a 1,6 m s^{-1}$ $0,3 a 2 m s^{-1}$ 3 a 16 °C9 a 19 °C

Predictive approach

- Laboratory data relating swim speed to time to fatigue for brook trout in prolonged swim mode (Peake, 1997)
- Varies with fish length and water temperatur:

Range of length: 63-259 mm Range of temperature: 14-20°C

Compare D_{max} to culvert length to predict success/failure

Observed vs predicted

Passage success

	Passage Success (%)							
	All	Rough culvert	Smooth culvert					
Observed	45	50	41					
Predicted	28	28	28					

N = 958 fish. 493 (51%) did at least one attempt

Predictive model <u>underestimates</u> passage success

- How good is the model at predicting the possible outcomes of an attempt ?
- In what situations does it perform better or worst ?

Observed vs predicted Confusion matrix

Corrugated metal culverts

Observations

ns		Success	Failure	Total	Correct classification rate (CCR):	50 %
tio	Success	33	35	68	Misclassifications	
Śdic	Failure	88	89	177	Underpredict : 72%	
Pré	Total	121	124	245	Overpredict : 28%	

Smooth concrete culverts

Observations

SU		Success	Failure	Total
ctio	Success	52	18	70
édi	Failure	51	133	184
Pr	Total	103	151	254

Correct classification rate (CCR): 73 % Misclassifications

Why are predictions better in smooth than rough culverts?

Conditions maybe more similar to lab conditions where fish swimming capacity data were obtained

- Different fish behaviour?
- Fish may use corrugations?
- Sequence of burst swim / rest period
- Fish may have access to more lower velocity zones
- Smaller fish maybe better at this

Elsa Goerig (INRS) 2011

Effect of fish size and flow velocity

Fish size

Fish length (FL =mm)	n	CCR (%)	TP (%)	TN (%)	FP (%) overpredict	FN (%) underpredict
Small (90-119)	176	63	87	13	5	95
Medium (120-149)	197	59	73	27	30	70
Large (150 +)	126	63	49	51	57	43

Flow velocity

Flow velocity (m s- ¹)	n	CCR (%)	TP (%)	TN (%)	FP (%) overpredict	FN (%) underpredict
Low (0-0.7)	150	28	76	24	75	25
Intermediate (0.7-1.3)	256	57	6	94	6	94
High (1.3-2)	92	82	0	100	6	94

Effect of water temperature

Water temperature (° C)	n	CCR (%)	TP (%)	TN (%)	FP (%) overpredict	FN (%) underpredict
Low (5-10)	61	57	29	71	100	0
Intermediate (10-15)	206	65	20	80	14	86
High (15-20)	232	60	31	69	17	83

- Misclassifications of the model are mainly underpredictions of passage success
- > Overpredictions at low temperature, low velocity and for large fish.
- Interaction between variables?

Deviation from optimal groundspeed

- Some fish swim close to the predicted optimum, but others deviate.
- The ones that deviate most were correctly predicted by the approach as true failures.
- The underpredicted cases had a groundspeed => of the optimum

Deviation from maximal distance of ascent

- The approach underpredicts Dmax for false negatives
- Dmax overpredicted for false positives
- Dmax overpredicted even for true negatives

Is optimal groundspeed efficient to predict passage capacity?

- Better at predicting true failures than success which is often underestimated
- Mean flow velocity may not be the appropriate input:
 - What is the real nose velocity experienced by the fish?
 - What is the appropriate correction factor to use?
 - How doest it vary with fish size and culvert type?
 - Need more knowledge of fish swimming behaviour in different types of culverts and flow conditions.

What's to come?

- Further exploration of the confusion matrix.
- Simulations with FishXing;
- Analysis of multiples attempts and passages for each fish;
- Analysis of groundspeed values during the ascent in relation to flow velocity distribution in cross section

Smooth concrete culvert Elsa Goerig (INRS) 2011

Acknowledgements

Normand Bergeron, research supervisor

Workmates :

Jean-Baptiste Torterotot, Steve Dugdale, Marc-André Pouliot Francis Bérubé André Boivin Carole-Anne Gillis, Laurie Beaupré

The research assistants in the field:

Maxim Fortin, Hugo Bouchard Christine Larouche Pascal Marcotte Flavien Pichon Joelle Bédard Clément Clerc.

Financial partners:

Fonds de recherche Nature et technologies Québec 🐼 🏘

