University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2012

Jun 5th, 3:25 PM - 3:45 PM

Session B3 - Assessing Fish Passage through Culverts in Midwest Streams: Identifying Design Parameters that Correlate with Passage Success

Hans Tritico Youngstown State University, Department of Civil/Environmental and Chemical Engineering

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Tritico, Hans, "Session B3 - Assessing Fish Passage through Culverts in Midwest Streams: Identifying Design Parameters that Correlate with Passage Success" (2012). *International Conference on Engineering and Ecohydrology for Fish Passage*. 37. https://scholarworks.umass.edu/fishpassage_conference/2012/June5/37

This is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

STUDY OF FISH PASSAGE THROUGH CULVERTS IN NORTHEAST OHIO

Baral D, Rayamajhi B, Robinson TM, McMillen AN, Tritico HM YOUNGSTOWN STATE UNIVERSITY Center for Transportation and Materials Engineering & Ohio Department of Transportation

06/05/2012

Introduction

North East Ohio Flat terrain Spring is the wet season Study Area District 4 of Ohio Ashtabula, Mahoning, Portage, Stark, Summit, Trumbull

Study Area

Identify

- Percentage of culverts acting as barriers to fish passage in Northeast Ohio
- Elements that may be affecting passage success

Data Sources

Ohio Department of Transportation ■ 5837 culverts Ohio Gap Analysis Fish distribution information USGS Seamless Data Warehouse Digital Elevation Model (1/9 NED) Ohio Streamstats Discharge data FishXing Helpfile Fish dimensions and swimming speed

Fish Species

S.N.	Fish Name	Fish Length (ft)	Fish Height (ft)	Fish Velocity (ft/s)
1	Central stoneroller	0.2	0.05	1.31
2	White sucker	1.25	0.22	2.52
3	Northern pike	2.08	0.3	1.58
4	Greenside darter	0.17	0.02	1.02
5	Pumpkinseed	0.42	0.18	1.22
6	Longear sunfish	0.29	0.11	1.28
7	Smallmouth bass	1.13	0.3	2.68
8	Largemouth bass	1.38	0.39	3.44
9	Golden shiner	0.46	0.14	2.43
10	Blacknose dace	0.14	0.02	1.26

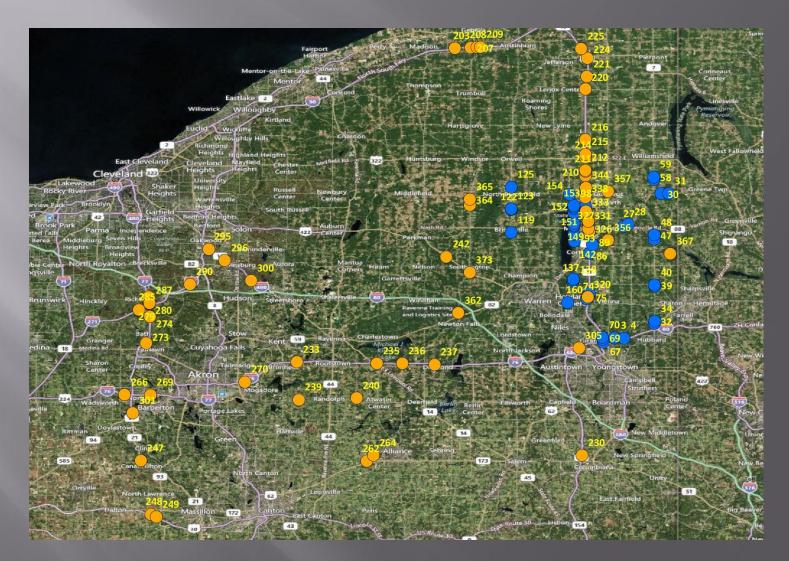
Methods

Identify fish presence

 Overlay of GIS layers

 Determine discharge

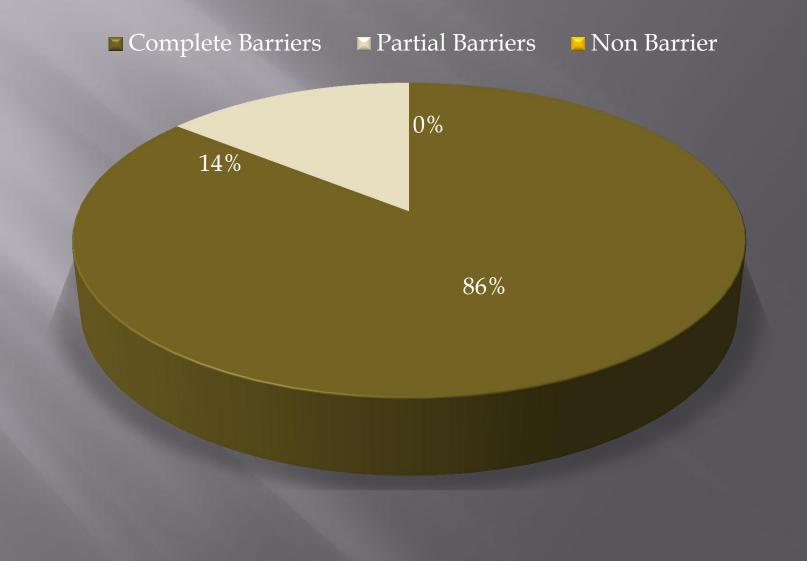
 StreamStats Ohio


 Extract stream Cross section and slope

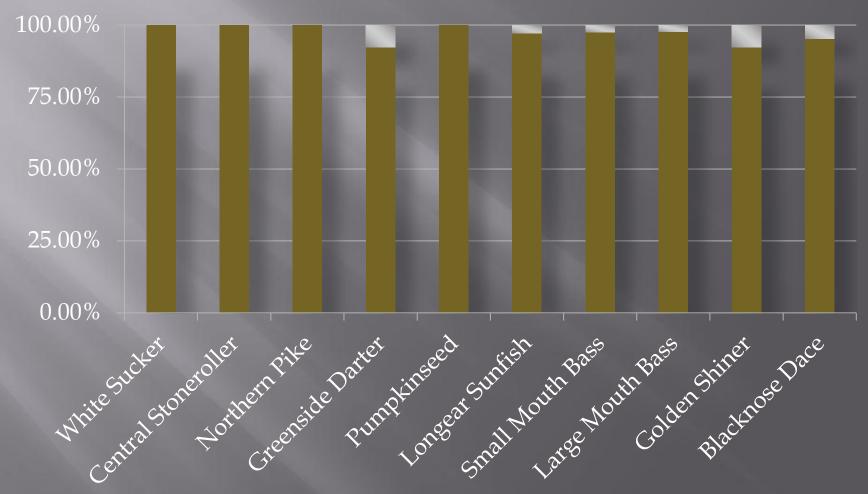
 From NED 1/9 DEM

Methods

- Selection of culverts for analysis
 - One celled circular culverts
 - Diameter greater than 24 inches
 - Having slope and length data
 - Having tributaries
 - Presence of Fish Species
 - Possibility to extract cross section and slope
 - 101 out of 5,837 culverts selected
 - 42 analyzed

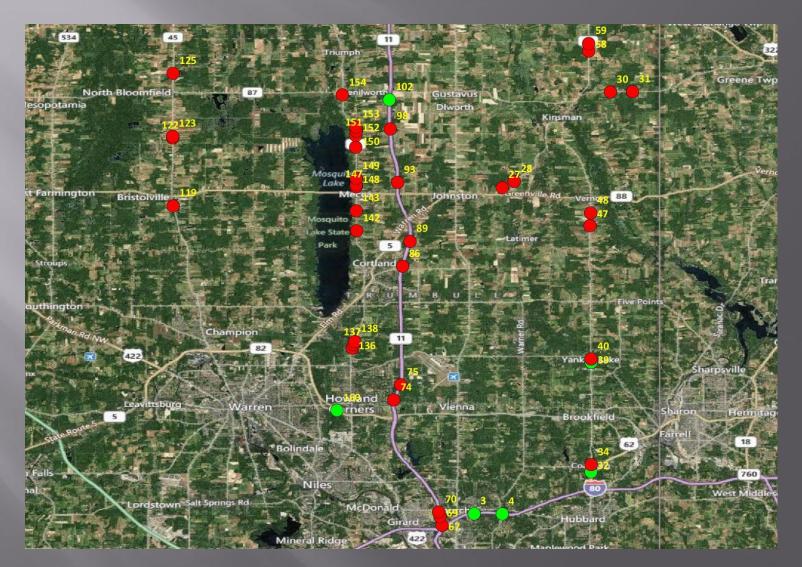


Methods


- Plug into FishXing
 - For four flow conditions
 - Minimum average monthly flow (usually September)
 - Maximum average monthly flow (usually March)
 - 2 year high flow
 - 25% low flow

Results

Complete Barrier Partial Barrier



Results

Parameter	Barrier Type	Nos	Mean	Std. Deviation	Std. Error Mean
Slope	Partial Barrier	6	1.1	1.2	0.5
	Complete Barrier	36	1.4	0.8	0.1
Diameter	Partial Barrier	6	47	23	10
	Complete Barrier	36	38	17	3
Length	Partial Barrier	6	129	59	24
	Complete Barrier	36	165	89	15

Student's t-test (p < 0.05) showed no significant relationship.</p>

Results

Sources of Error

Limitations of FishXing

 Considers one-dimensional flow
 Insufficient fish swimming speed data

 Temporal inconsistency in data
 Limiting precision of initial data

Conclusion

■ 42 culverts were analyzed for fish passage in four flow conditions

Barrier

14% partial barriers 86% complete barriers Design Parameters Slope Diameter

- Length

Future Work

- More culverts
- Broader geographic area
- More design parameters
- Analysis using HEC-RAS add-on

<u>For more info:</u> dbaral@student.ysu.edu people.ysu.edu/~hmtritico

THANK YOU!