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Abstract

We propose the use of Partial Differential Equations
(PDEs) for shape modelling within visual cyberworlds.
PDEs, especially those that are elliptic in nature, enable
surface modelling to be defined as boundary-value prob-
lems. Here we show how the PDE based on the Bihar-
monic equation subject to suitable boundary conditions can
be used for shape modelling within visual cyberworlds. We
discuss an analytic solution formulation for the Biharmonic
equation which allows us to define a function based geom-
etry whereby the resulting geometry can be visualised effi-
ciently at arbitrary levels of shape resolutions. In partic-
ular, we discuss how function based PDE surfaces can be
readily integrated within VRML and X3D environments.

1. Introduction

Cyberworlds within the cyberspace can be considered
as entities where information modelling can be undertaken
through the integration of both spatial and temporal models.
There is no doubt that visualisation within cyberworlds is
an important aspect which requires special attention. As the
gap between the cyberworlds and the real world gets nar-
rower, the demand placed for realism within these shared
virtual worlds, both in terms of the complexity of geometric
models as well as their appearance, is ever increasing.

3D web visualization of cyberworlds can be achieved
through several ways. For a strong server and weak client
configuration image transmissions can be used. In this case
the 3D rendering is performed at the server side and the
clients receive only streamed images which they can use for
interactive navigation through the scene and communica-
tion with other clients. This mode is quite typical of grid-
based visualization when either a very powerful server or a
cluster of networked computers are used for rendering. Its

disadvantage is in a limited resolution of the image and slow
update rate due to bandwidth limitations. Another scenario
assumes that all the models are preloaded to client comput-
ers and only even transmission is performed between the
clients and an optional server. This mode is quite common
for MMORPG games and assumes downloading of an ad-
vance rendering engine and a large model database which
may have gigabytes of information stored. Though this
method provides very photorealistic rendering, the disad-
vantage is in difficulties which result when a new model is
to be introduced into the scene, i.e. it has to be somehow
delivered to all the participating clients to update the model
databases. A compromise model transmission method as-
sumes that the model of the scene is progressively down-
loaded on to client computers while it is being rendered.
The rendering engines can be lightweighted like plug-ins
to web browsers (e.g. VRML and X3D plug-ins to MS
Internet Explorer and Mozilla Firefox), as well as stand-
alone applications (viewers) with some preloaded textures
and models (e.g. SecondLife viewer). This method is con-
sidered in our research.

An important aspect of the model transmission based vi-
sualisation of cyberworlds involves reduction of the mod-
els since large sizes prohibit them to be readily downloaded
or transmitted within reasonable time frames. There has
been a number of attempts, in the past, to address this prob-
lem. Some of the solutions proposed include mesh com-
pression methods [8, 13, 26] and progressive data trans-
mission [7, 11, 21]. Although many methods for geometry
compression and progressive data transmission have been
proposed, they have not yet come to the required level of
maturity for them to be commonly utilised for practical pur-
poses, such as real-time interactions with complex geome-
try within visual cyberworlds. Therefore, the most promis-
ing practical solution as we see it to reduce the amount of
transmitted data, i.e. to represent the underlying geometry
of objects in an efficient manner.



To this end, function based shape modelling is an av-
enue which would provide solutions. The basic idea behind
function based shape modelling is to minimise the geomet-
ric data of a complex object through its geometric repre-
sentation using mathematical functions. Compared to mesh
based models, function based modelling has the advantage
that the functions represent the geometry in a compact form
and has the ability to display the model at unlimited level of
detail.

The idea of function based modelling involves the shape
functions fi which can be defined analytically or procedu-
rally. These functions then define the geometry of the object
along with other underlying properties such as colour and
texture. Then, the functions describing the shape geometry
and its properties are merged to form a single shape func-
tion. This process of merging can be performed in various
ways depending on the underlying function models used for
defining the geometry and other relevant properties.

The bulk of function based modelling techniques in-
volve the use of parametric, implicit and explicit mathe-
matical functions. As far as parametric functions are con-
cerned the main dominant methods are based on Splines
[10] such as the use of Coons surfaces, Bézier surfaces and
Non-Uniform Rational B-Splines (NURBS). As far as func-
tion based implicit modelling is concerned, skeleton based
modelling [2, 24] and the use of algebraic methods are no-
table [1]. Examples of explicit function based modelling
include adaptive sampled distance fields (ADFs) [12] and
the method of Function Representation (FRep) [20].

It is clear that function based modelling has promising
prospects, for defining and reducing the amount of data used
to represent geometric models and their underlying proper-
ties. One of the bottlenecks, however, faced by these meth-
ods are their inherent limitation for efficiently describing
the geometry and other relevant properties. For example,
in the case of spline based parametric models, the underly-
ing geometry representation requires the storage and trans-
mission of hundreds of control points and weights associ-
ated with the polynomial functions. Therefore, in order to
address this problem, it is necessary to look for methods
that can efficiently represent the geometry in terms of ba-
sic mathematical functions and yet be able to describe and
parameterise complex geometry.

In this paper we are primarily concerned with the use
of parametric PDEs to efficiently describe complex geom-
etry within visual cyberworlds. From a traditional point
of view PDEs, especially those that are elliptic in nature,
have been mainly utilised in solving engineering related
problems such as electromagnetism, stress/strain in phys-
ical structures and fluid flows. However, from a geomet-
ric design point view, nowadays PDE based techniques are
increasingly becoming popular in many applications area.
These include, for example, computer simulation of natu-

ral phenomena and animation [9], variational fairing [22],
image inpainting [3], and Biharmonic polynomial surfaces
[19]. For a more detailed discussions of the use PDEs in
geometric design the reader is also referred to [6].

The work discussed in this paper centres around the pi-
oneering work of Bloor and Wilson on the so called PDE
method [4, 5, 25]. The particular approach used here treats
shape modelling as a boundary-value problem. Hence a sur-
face is characterised by defining a number of boundary con-
ditions corresponding to the edges of the surface along with
the associated derivative information which define how the
surface propagates into its interior. The chosen PDE is usu-
ally low order and is elliptic in nature such as the Bihar-
monic equation.

The paper is organized as follows. Section 2 dis-
cusses the general idea of geometric modelling using PDEs
whereby the idea of surface modelling using the Bihar-
monic equations is discussed. An analytic solution formu-
lation for the chosen PDE is also presented. Further dis-
cussions on the geometric behaviour surfaces resulting from
low order elliptic PDEs are also presented in this section. In
Section 3 we discuss how the PDE geometry modelling can
be utilised for function based modelling within visual cyber-
worlds. In particular, we discuss how PDE surfaces can be
readily integrated with VRML and X3D environments. In
this section we also present a number of examples demon-
strating the use of PDE geometry and their potential use to
create complex environments efficiently within visual cy-
berworlds. Finally in Section 4 we conclude the paper and
indicate possible future directions of this work.

2 Partial Differential Equations for Geome-
try Modelling

We assume that a parametric surface patch is defined by
a function X(u, v) such that,

X(u, v) = (x(u, v), y(u, v), z(u, v)),

where u and v are parameters defining a finite two-
dimensional region Ω which map onto a point in physical
space (x, y, z). In order to generate a surface one seeks as a
solution to an equation of the type,

2r∑

n=0

αn(u, v)
∂n

∂ul∂vm
X(u, v) = 0. (1)

Equation (1) represents a linear elliptic PDE of order 2r,
where l, m, n ≥ 0 and l + m = n. Note that in general
terms PDEs can be classified as to whether they are ellip-
tic, hyperbolic, parabolic or mixed type depending on the
boundary and/or initial conditions that are necessary for a
particular problem to be well-posed. In this case the type



of PDE given in Equation (1) is elliptic so as the result-
ing solution gives rise to smooth surfaces and are subject
to boundary conditions. The boundary conditions required
to solve Equation (1) can be specified as variations of the
function and/or its normal derivatives along the edges of the
domain over which Equation (1) is solved. Thus, the order
of the PDE determines the number of unknown functions
that must be specified at the boundary conditions.

In principle, based on Equation (1), one can choose an el-
liptic PDE of any order to generate a surfaces. For the work
described in this paper we utilise the Biharmonic equation.
Thus, the generating equation in this case is based on the
Laplace equation whereby the PDE is in the form,

∇4X =
∂4X
∂u4

+ 2
∂4X

∂u2∂v2
+

∂4X
∂v4

= 0. (2)

2.1 Analytic Solution Method

The solution of the Biharmonic equation given in (2) is
a well studied problem and therefore there exist a variety
of techniques to solve Equation (2). These include Eigen-
function expansions, integral transforms, Greens functions
and numerical techniques such as finite difference and finite
element method. The main point of this work is to ensure
we have complex geometry at our disposal which can be de-
scribed using functions that are in analytic form so that they
can readily be integrated within function based modelling
environments. Therefore, here we seek an analytic form of
the solution to Equation (2).

Given that the functions representing the boundary con-
ditions are defined as function X and normal Xu, we take
the (u, v) parameter space Ω to be the region {u, v : 0 ≤
u ≤ 1; 0 ≤ v ≤ 2π}. Thus, we assume that all the boundary
conditions are periodic in v in the sense X(0) = X(2π) and
Xu(0) = Xu(2π). We represent these boundary conditions
as,

X(0, v) = P0(v), (3)

X(1, v) = P1(v),
Xu(0, v) = d0(v),
Xu(1, v) = d1(v).

We further assume that all the boundary conditions are con-
tinuous functions within the domain of Ω.

With the above assumptions on the boundary conditions
we can utilise the method of separation of variables to write
the analytic solution of Equation (2) as,

X(u, v) = X(u) cos(nv) + X(u) sin(nv), (4)

where n is a positive integer.

Substituting the terms in Equation (4) into Equation (2)
yields a linear homogenous ordinary differential equaiton of
the form,

d4X
du4

− 2n2 d2X
du2

+ n4X = 0, (5)

Using Equation (5) the form of X subject to appropriate
boundary conditions can be given as,

X(u) = c1e
nu + c2uenu + c3e

−nu + c4ue−nu, (6)

where c1, c2, c3 and c4 are given by,

c1 = [(−P0(2n2e2n + 2ne2n + e2n − 1) (7)

+P1(ne3n + e3n + nen − en)
−2d0ne2n − d1(e3n − en)]/r,

c2 = [(P0(2n2e2n + ne2n − n) (8)

−P1(ne3n + 2n2en − nen) − d0(2ne2n − e2n + 1)
+d1(e3n − 2nen − en)]/r,

c3 = [(P0(e4n − 2n2e2n + 2ne2n − e2n) (9)

−P1(ne3n + e3n + nen − en)
+2d0ne2n + d1(e3n − en)]/r,

c4 = [(P0(ne4n + 2n2e2n + ne2n) (10)

−P1(2n2e3n + ne3n − nen) + d0(e4n − 2ne2n − e2n)
+d1(2ne3n − e3n + en)]/r,

where r = e4n − 4n2e2n − 2e2n + 1.
Assuming the boundary conditions are continuous func-

tions which are also periodic in v, we can represent each
of the boundary conditions in terms of a Fourier series such
that,

f(v) = A0 +
∞∑

n=1

[Cn(v) cos(nv) + Sn(v) sin(nv)]. (11)

This formulation then gives rise to a linear system involv-
ing the unknowns c1, c2, c3 and c4 which can be then deter-
mined by solving the system using standard techniques.

It should be stressed here that in order to take advantage
of the solution formulation given in (4), it is necessary that
the boundary conditions (i.e. the edges of a given surface
patch and how these edges propagate into the interior of the
surface patch) can be expressed in terms of a finite Fourier
series. Although this may seem to be a restriction on the
type of geometry that can be generated through this solution
scheme a surprisingly large variety of geometry can indeed



(a)

(b)

Figure 1. A surface patch generated using the
Biharmonic PDE. (a) Illustration of the bound-
ary conditions. (b) The resulting surface in
the region 0 ≤ v ≤ π.

be generated through this scheme as described later in this
paper.

As an example consider the surface shown in Fig. 1(b).
The boundary conditions to generate this surface are,

P0 = (cos(πv) + cos(2πv),
1
2

sin(2πv),
4
5
), (12)

P1 = (cos(2πv), sin(2πv) + sin(πv), 1 − α),
d0 = (cos(2πv), sin(2πv), sin2(2πv)/α),
d1 = (cos(2πv), sin(πv),− sin2(πv)/α),

where α =
√

cos2(2πv) − 1. These boundary conditions
are illustrated in Fig. 1(a) where the curves P0 and P1

illustrate the boundary conditions defined at X(0, v) and
X(1, v) respectively where 0 ≤ v ≤ π. The arrows marked
at the boundary curves define the normal boundary condi-
tions where the size and the direction of the arrow illustrates
the variation in these boundary at the edges of the surface
patch which then determines the internal shape of the sur-
face patch. The above boundary conditions which can be
represented as a finite Fourier series is utilised to formulate
a linear system involving the unknowns c1, c2, c3 and c4.
The resulting surface is obtained purely in analytic function
form which allows us to compute the surface efficiently at
any display resolution.

2.2 Geometric Properties of the Bihar-
monic PDE

As discussed above, the Biharmonic operator can be seen
to act as a smoothing operator which enables to produce

an interpolating surface for a given set of boundary data.
The resulting surface in the above case is provided as an
analytic expression and is infinitely differentiable. An im-
portant point to highlight here is that since we are treating
surface generation as a boundary-value problem the result-
ing surface is entirely dependent on the boundary conditions
and hence the boundary conditions can be utilised as a sur-
face manipulation tool [25].

Common parametric surface generation methods, such
as those based on spline techniques, have attractive geomet-
ric properties through which the behaviour of the surface
subject to changes in the relating control points are some-
what intuitive. For example, in the case of Bézier surfaces,
the convex hull property guarantees that the resulting sur-
face is entirely bounded within the convex hull of the con-
trol polygon which determine the shape of the surface. In
the case of surfaces generated as solutions of PDEs, in par-
ticular low order elliptic PDEs, similar geometric proper-
ties can be identified. Thus, in the case of PDE surfaces
discussed here one can also show that the resulting sur-
face behaves in an intuitive fashion subject to changes in
the boundary data.

For instance, for the Laplace equation ∂2X
∂u2 + ∂2X

∂v2 = 0
one can show (through the min/max principle) that the
minimum/maximum of the interpolating function occurs
at the boundaries of the surface patch. Whilst this de-
sirable property holds for the Laplace equation, the sur-
faces generated by it are somewhat limited since there are
only two boundary conditions available for the user to de-
fine a surface patch. The Biharmonic equation on the
other hand is preferable since the user can impose four
boundary conditions, two defining the edges of the sur-
face patch and the two defining the rate of change of these
edges which determine the interior of the surface patch.
Though there is no minimum/maximum principle for the
Biharmonic equation, one can still find a priori estimates
on the bounds of the interpolating function resulting from
the Biharmonic equation. This can be undertaken by ap-
plying the minimum/maximum principle for the quantity
‖ ∇X ‖2 −X∇2X and applying the maximum modulus
theorem [23] so that

‖ X ‖≤ K(‖ X0 ‖ + ‖ ∂X/∂n)0 ‖, (13)

where Equation (2) is solved over the region Ω subject to
the conditions X = X0 and ∂X/∂n = (∂X/∂n)0 on
the boundary of Ω. Here K is a constant which depends
only on the Biharmonic equation and the geometric shape
of Ω. Equation (13) indicates that the resulting surface will
be of order corresponding to the maximum dimensions of
the boundary conditions summed with the maximum rate of
change of distance with which the surface moves away from
the boundary.



Figure 2. An example of modelling PDE ge-
ometry within FVRML and FX3D virtual envi-
ronment.

3 Modelling Framework and Examples

Here we discuss how the PDE geometry can be imple-
mented to enhance the function based modelling within
FVRML and FX3D which are extensions of VRML and
X3D respectively. The FVRML/FX3D was originally intro-
duced in [14] and subsequent work on this theme have been
discussed in [16, 17, 15]. This framework enables mod-
elling of function based shapes and their metamorphosis in
visual cyberworlds in an efficient and neat way. It enables
to define complex mathematical functions through combi-
nations of basic functions. Hence, individual expressions
corresponding to complex shapes, their appearances can be
directly defined within the source code through script like
mathematical language.

The scripting is based on a subset of JavaScript for both
individual formulas and function scripts. In addition to
existing built-in simple mathematical fucntions (such as
exp(x), log(x), sin(x), cos(x) etc) additional flow control op-
erators such as for loops, while loops and if-else operations
are also implemented.

Further to the standard VRML/X3D nodes, the imple-
mentation of FVRML/FX3D contains ten additional nodes,
which are FShape, FGeometry, FAppearance, FMaterial,
FTexture3D, FPhysics, FDensity, FFriction, FForce and
FTransform. These nodes can be used together as well as

Figure 3. Shape of a cup and a vase. In each
case we use two surface patches with com-
mon boundary conditions.

with the standard VRML and X3D nodes. The FShape
node is a container for the FGeometry or any standard ge-
ometry node, and the FAppearance or the standard Appear-
ance node. These nodes define the geometry and the ap-
pearance of the shape, respectively, as illustrated in Fig.2.
FShape may be called from the FTransform node or from
the standard Transform node. The FGeometry node is de-
signed to define a geometry using implicit, explicit or para-
metric functions defined straight in the code or in the exter-
nal library. The FAppearance node may contain the FMate-
rial or the standard Material nodes, as well as the standard
color Texture and the FTexture3D nodes. In the FMaterial
node, the components of the illumination model are defined
with mathematical functions. The FTexture3D node con-
tains displacement functions for the geometry defined in the
FGeometry node. The FPhysics node is used for defining
physical properties associated with the shape’s geometry. It
contains the FDensity, FFriction and FForse nodes. With
reference to the topic of the paper, parametric functions in
FVRML and FX3D define surfaces, solid objects, force vec-
tor coordinates and colors as x, y, z Cartesian coordinates
and r, g, b values of colors. Parametric functions can be
functions of parameters u, v and w and the time t.

The implementation of FVRML and FX3D is done as
plug-ins for blaxxun Contact (http://www.blaxxun.com)
and Bitmanagement BS Contact VRML/X3D
(http://www.bitmanagement.com) browsers which en-
able to build visual cyberworlds using VRML or X3D and
their function-based extensions FVRML/FX3D.

3.1 Examples

In order to demonstrate the capability of the PDE sur-
faces within the FVRML/FX3D framework, here we show
a series of examples whereby we show how it is possible to
model function based complex geometry.

Fig 3 show the geometry of a cup like shape and a vase
like shape. Each of these two shapes are generated using
two PDE surface patches with common boundary condi-



Figure 4. Shape of faces. In each case we use
eight surface patches with common bound-
ary conditions.

tions. As usual, the boundary conditions are defined in
terms of a finite Fourier series which are utilised to generate
the function definition of the surfaces through the PDE. In
each case where the surface patches meet each other at the
common boundaries, the derivative boundary conditions
were chosen to ensure that the surfaces are blended together
with tangent continuity. Thus, the geometry definition for
the blended two surface patches for each case of the two
examples are defined as,

geometry FGeometry {
...
parameters [0.00001 2.0 0.0001 6.28]
...
function parametric x(u,v,w,t){
if(u<1) return (x component of surface patch 1)
if(u>1) {
u = u-1.0;
return (x component of surface patch 2)
}
}
...
}

In the next example shown in Fig. 4 we show how com-
plex geometry such as the shape of human faces can be gen-
erated via function based geometry through the use PDE
surfaces.

Similar to the previous examples, the geometry of the
faces is generated by means of utilising a series of con-
nected PDE surface defined through appropriate boundary
conditions with common boundary conditions where the
surfaces meet each other. In this particular case we have
utilised 3D human facial scan data to extract a series of pro-
file curves through which we define the necessary boundary
conditions. Thus, from a given human facial 3D data scan
(which provides us with a dense point cloud) we automati-
cally extracted an ordered set of points by means of defining
a series of horizontal planes through which the facial data

intersect. For this purpose we assume the facial data is nor-
malized and appropriately aligned within a Cartesian coor-
dinate system. Note, there exist several techniques which
enable the automatic pre-processing of data for this pur-
pose. For example the use of Principle Component Analysis
(PCA) algorithms are common in normalizing and aligning
facial data. For more details the interested reader is referred,
for example, to [18].

Once an appropriate number of horizontal profile data
is available, Fourier analysis is then performed on the dis-
crete data sets in order to determine the boundary conditions
suitable for generating the analytic functions describing the
face through the PDE equation. In this particualar case of
the two faces shown in Fig. 4 we have utilised a series of
nine horizontal planes which define the position boundary
condition for eight surfaces patches. Again the derivative
boundary conditions for each blending surface patch is de-
fined so as to ensure there is tangent plane continuity be-
tween the patches. In each case it was found that a total of
five Fourier modes are enough to adequately represent each
face. Note in this case the analytic solution domain is valid
for the region 0 ≤ v ≤ π.

An important point that needs to be highlighted here is
that the original scan data for each face is over 1MB whilst
the PDE version of the face within FVRML file requires a
mere 45kb, thus showing a substantial reduction in the size
of the data utilised.

In the next example we show how a series of airplane
shapes can be efficiently generated and stored using the
PDE formulation for use within a visual cyberworld envi-
ronment. Fig. 5 shows the shape of a delta airplane gener-
ated using six surface patches with common boundary con-
ditions where appropriate. In this case we have generated
the fuselage shape using a single surface patch to which the
wing surface patches are blended. In a similar fashion the
surface patches corresponding to the tail part of the airplane
is generated.

Fig. 6 shows the shape of a fighter airplane generated us-
ing six surface patches with common boundary conditions
where appropriate. The fuselage shape in this case is de-
fined using two surface patches which are blended. The
wing surface patches are blended to the rear surface patch
corresponding to the fuselage. In addition, four separate
surfaces are then generated which corresponding to the four
engine shapes shown.

Fig. 7 shows the shape of a B17 airplane generated us-
ing eight surface patches with common boundary conditions
where appropriate. The fuselage shape in this case is gener-
ated using a single surface patch to which the wing surface
patches are blended. In a similar fashion, surface patches
corresponding to the tail part of the airplane are generated.
In addition, two separate surfaces are then generated cor-
responding to the two engine shapes shown. Note in this



Figure 5. Shape of a delta airplane surface
generated using six surface patches with
common boundary conditions where appro-
priate.

Figure 6. Shape of a fighter airplane surface
generated using six surface patches with
common boundary conditions where appro-
priate

Figure 7. Shape of a B17 airplane surface
generated using six surface patches with
common boundary conditions where appro-
priate.

case that we have utilised a simple material function within
FVRML in order to enhance the appearance of the B17.

Since, compared to the polygon-based VRML and X3D
models, the function-based PDE models are small in size, it
is possible to perform their rapid exchange across the Inter-
net for making collaborative interactive modifications with
concurrent synchronous visualization at each client com-
puter with any required level of detail. It is also possible
to use the function-based PDE models together with large
data sets from 3D scanners. In that case only the modifica-
tions to the models can be exchanged while the original data
are kept on the client computers or shared on a web server.

As a final example we show how function based anima-

Figure 8. Function based animation using
morphing between two faces.

tion can be carried out. Fig. 8 shows a morphing sequence
between the two faces shown in Fig. 4. In this case the
morphing is undertaken using a time dependent function of
the form X(u, v, t) = X1(u, v) + t(X2(u, v) − X1(u, v))
where X1(u, v) and X2(u, v) are the PDE functions defin-
ing the faces and t is the time parameter where 0 ≤ t ≤ 1.

4 Conclusion

The discussion of this paper centres around the use of
PDEs for geometry modelling for function based modelling
within visual cyberworlds. The proposed solution enables
surface modelling to be defined as a boundary-value prob-
lem. In this paper we have presented an analytic solution
formulation for the chosen PDE, i.e. the Biharmonic equa-
tion which allows us to define a function based surface en-
abling the geometry to be visualised efficiently for arbitrary
surface resolutions. Details of how the PDE geometry mod-
elling can be utilised for function based modelling within
FVRML and FX3D has been presented.

We can think of several extensions to this work which
can be undertaken in the future. First this paper clearly
demonstrates that the concept of the PDE based shape mod-
elling is a viable solution for use within visual cyberworlds
where fast solutions and real time data exchange of complex
geometry is required. In this work we have only demon-
strated static objects which are defined as surfaces. The
work can be extended for generation and parameterisation
of solid objects. It can also be extended to generate time de-
pendent geometry enabling complex animations within cy-
berworlds. This work can be also extended to study other
various properties associated with the geometry, such as
texture defined within function based modelling framework
where functions arising as solutions to PDE equations can
be applied. All these extensions will require further studies
on efficient analytic solution methods in order to be com-
patible with the existing functions based modelling and vi-
sualisation frameworks.



References

[1] C. Bajaj and I. Ihm, Algebraic Surface Design with
Hermite Interpolation, ACM Transactions on Graphics,
11(1), 61-91, 1992.

[2] J. F. Blinn, A Generalization of Algebraic Surface
Drawing, ACM Transactions on Graphics, 1(3),235-
258, 1982.

[3] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester,
Image Inpainting. In SIGGRAPH 2000, 417-424, 2000.

[4] M.I.G. Bloor and M.J. Wilson. Using Partial Differ-
ential Equations to Generate Freeform Surfaces, Com-
puter Aided Design, 22(4),202-211, (1990).

[5] M.I.G. Bloor and M.J. Wilson. Functionality in Solids
Obtained from Partial Differential Equations, Comput-
ing, 8, 21-42, (1993).

[6] Castro G, H Ugail, P. Willis and I. Palmer, A Survey
of Partial Differential Equations in Geometric Design,
The Visual Computer, 24(3), 213-225, 2008.

[7] B. Y. Chen, T. Nishita, Multiresolution Streaming Mesh
with Shape Preserving and QoS-like Controlling, Pro-
ceedings of the Seventh International Conference on 3D
Web Technology, 35-42, 2002.

[8] M. Deering, Geometry compression, in Proceedings of
the 22nd annual conference on Computer graphics and
interactive techniques, 13-21, 1995.

[9] D.S. Ebert, F.K. Musgrave, P. Prusinkiewicz, J. Stam,
and J. Tessendorf, Simulating Nature: From Theory to
Practice, SIGGRAPH 2000 Course Notes 25, 2000.

[10] G. Farin J. Hoschek M.-S. Kim, Handbook of Com-
puter Aided Geometric Design, North Holland, 2002.

[11] E. Fogel, D. Cohen-Or R. Ironi, T. Zvi, A web Ar-
chitecture for Progressive Delivery of 3D Content, Pro-
ceedings of Sixth International Conference on 3D Web
Technology , 35-41, 2001.

[12] S. F. Frisken, R. N. Perry, A. P. Rockwood, T. R.
Jones, Adaptively Sampled Distance Fields: A Gen-
eral Representation of Shape for Computer Graphics,
in Proceedings of the 27th annual conference on Com-
puter Graphics and Interactive Techniques , 249-254,
2000.

[13] B. Kronrod and C Gotsman, Efficient Coding of Non-
Triangular Mesh Connectivity, in Proceedings of Pa-
cific Conference on Graphics and Applications, 235-
242, 2000.

[14] F. M. Lai, and A Sourin, Function-Defined Shape
Node for VRML, in Eurographics 2002, Short Presen-
tations, 207215, 2002.

[15] K. Levinski and A. Sourin, Interactive function-based
shape modelling, Computers & Graphics 31(1), 66-76,
(2007).

[16] Q. Liu and A. Sourin, Function-Based Representation
of Complex Geometry Appearance, in Proceedings of
ACM Web3D ’05, 123134, 2005.

[17] Q. Liu and A. Sourin, Function-Defined Shape Meta-
morphoses in Visual Cyberworlds, The Visual Com-
puter, 22, 977-990, 2006.

[18] S. Malassiotis and M.G.Strintzis, Robust Real-time
3D Head Pose Estimation from Range Data, Pattern
Recognition, 38(8), 1153-1165, 2005.

[19] J. Monterde and H. Ugail, A General 4th-Order PDE
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