

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’s website. Where
available access to the published online version may require a subscription.

Author(s): Hossain, M. A., Tokhi, M. O. and Dahal, K. P.

Title: Impact of algorithm design in implementing real-time active control systems.

Publication year: 2004

Book title: Proceedings of the Second Asian Applied Computing Conference
(AACC 2004)

ISBN: 978-3-540-23659-7

Publisher: Springer.

Original publication is available at http://www.springerlink.com

Citation: Hossain M. A., Tokhi, M. O. and Dahal K. P. (2004): Impact of algorithm
design in implementing real-time active control systems. In: Proceedings of the
Second Asian Applied Computing Conference (AACC 2004), October 29-31,
Kathmandu, Nepal. Springer. Lecture Notes in Computer Science Vol, 3285, pp.
247-255.

Copyright statement: © 2004 Springer. Reproduced in accordance with
the publisher's self-archiving policy.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.springerlink.com/�

Impact of Algorithm Design in Implementing Real-time
Active Control Systems

M A Hossain 1, M O Tokhi2 and K P Dahal3

1,3Department of Computing, School of Informatics
The University of Bradford, Bradford, BD7 1DP, UK.

2Department of Automatic Control & Systems Engineering,
The University of Sheffield, Sheffield S1 3JD, UK

Email: m.a.hossain1@bradford.ac.uk;

Abstract. This paper presents an investigation into the impact of algorithm de-
sign for real-time active control systems. An active vibration control (AVC) al-
gorithm for flexible beam systems is employed to demonstrate the critical design
impact for real-time control applications. The AVC algorithm is analyzed, de-
signed in various forms and implemented to explore the impact. Finally, a com-
parative real-time computing performance of the algorithms is presented and
discussed to demonstrate the merits of different design mechanisms through a
set of experiments.

1. Introduction

Although computer architectures incorporate fast processing hardware resources,
high performance real-time implementation of an algorithm requires an efficient design
and software coding of the algorithm so as to exploit special features of the hardware
and avoid associated problems of the architecture. This paper presents an investiga-
tion into the analysis and design mechanisms that will lead to reduction in execution
time in implementing real-time control algorithms. Active vibration control (AVC) of a
simulated flexible beam based on finite difference (FD) method is considered to dem-
onstrate the effectiveness of the proposed methods.

In practice, more than one algorithm exists for solving a specific problem. Depend-
ing on its formulation, each can be evaluated numerically in different ways. As com-
puter arithmetic is of finite accuracy, different results can evolve, depending on the
algorithm used and the way it is evaluated. On the other hand, the same computing
domain could offer different performances due to variation in the algorithm design and
in turn, source code implementation. The choice of the best algorithm for a given prob-
lem and for a specific computer is a difficult task and depends on many factors, for
instance, data and control dependencies of the algorithm, regularity and granularity of
the algorithm and architectural features of the computing domain [1], [2].

The ideal performance of a computer system demands a perfect match between ma-
chine capability and program behaviour. Program performance is the turnaround time,
which includes, disk and memory accesses, input and output activities, compilation

time, operating system overhead, and CPU time. In order to shorten the turnaround
time, one can reduce all these time factors. Minimising the run-time memory manage-
ment, efficient partitioning and mapping of the program for concurrent system, and
selecting an efficient compiler for specific computational demands, could enhance the
performance. Compilers have a significant impact on the performance of the system.
This means that some high-level languages have advantages in certain computational
domains, and some have advantages in other domains. The compiler itself is critical to
the performance of the system as the mechanism and efficiency of taking a high-level
description of the application and transforming it into a hardware dependent imple-
mentation differs from compiler to compiler [3], [4], [5].

This paper addresses the issue of algorithm analysis, design and software coding
for real-time control in a generic manner. A number of design methodologies are pro-
posed for the real-time implementation of a complex control algorithm. The proposed
methodologies are exemplified and demonstrated with simulation algorithm of an AVC
system for a flexible beam. Finally, a comparative performance assessment of the pro-
posed design mechanisms is presented and discussed through a set of experimental
investigations.

2. Active Vibration Control Algorithm

Consider a cantilever beam system with a force ()txU , applied at a distance x from its

fixed (clamped) end at time t . This will result in a deflection ()txy , of the beam from

its stationary position at the point where the force has been applied. In this manner,
the governing dynamic equation of the beam is given by

() () ()txU

mt
txy

x
txy ,1,,

2

2

4

4
2 =+

∂
∂

∂
∂µ (1)

where, µ is a beam constant and m is the mass of the beam. Discretising the beam in

time and length using the central FD methods, a discrete approximation to equation (1)
can be obtained as [6]:

() ()txU

m
tSYYY kkk ,

2
2

11
∆+−−= −+ λ (2)

where, () ()[] 2422 µλ xt ∆∆= with t∆ and x∆ representing the step sizes in time and

along the beam respectively, S is a pentadiagonal matrix (the so called stiffness matrix
of the beam), iY ()1,,1 −+= kkki is an () 11 ×−n matrix representing the deflection

of end of sections 1 to n of the beam at time step i (beam divided into 1−n sec-
tions). Equation (2) is the required relation for the simulation algorithm that can be
implemented on a computing domain easily.

A schematic diagram of an AVC structure is shown in Figure 1. A detection sensor
detects the unwanted (primary) disturbance. This is processed by a controller to gen-

erate a canceling (secondary, control) signal so that to achieve cancellation at the
observation point. The objective in Figure 1 is to achieve total (optimum) vibration
suppression at the observation point. Synthesizing the controller on the basis of this
objective yields [7]

1

0

11
−

−=

Q
QC (3)

where, 0Q and 1Q represent the equivalent transfer functions of the system (with

input at the detector and output at the observer) when the secondary source is off and
on respectively.

C

Observed
Signal

Detector

Secondary
source

Primary
source

Fig. 1. Active vibration control structure

To investigate the nature and real-time processing requirements of the AVC algo-
rithm, it is divided into two parts, namely control and identification. The control part is
tightly coupled with the simulation algorithm, and both will be described in an integral
manner as the control algorithm. The simulation algorithm will also be explored as a
distinct algorithm. Both of these algorithms are predominately matrix based. The identi-
fication algorithm consists of parameter estimation of the models 0Q and 1Q and

calculation of the required controller parameters according to equation (3). However,
the nature of identification algorithm is completely different as compared with the
simulation and control algorithms [8]. Thus, for reasons of consistency only the simu-
lation and control algorithms are considered in this investigation.

3. Algorithm Analysis and Design

3.1 Flexible Beam Simulation Algorithm

The flexible beam simulation algorithm forms a major part of the control algorithm.
Thus, of the two algorithms, the simulation algorithm has higher impact due to data
dependency on real-time AVC. To demonstrate the real-time implementation impact,
the simulation algorithm is designed in seven different methods [9, 10]. Three of these
are considered here to explore real-time AVC. These are briefly described below.

Simulation Algorithm–1: Shifting of data array. The ‘Simulation Algorithm–1’
incorporates design suggestions made by Hossain, 1995 [8], is listed in Figure 2. It is
noted that complex matrix calculations are performed within an array of three elements
each representing information about the beam position at different instants of time.
Subsequent to calculations, the memory pointer is shifted to the previous pointer in
respect of time before the next iteration. This technique of shifting the pointer does
not contribute to the calculation efforts and is thus a program overhead. Other algo-
rithms were deployed to address this issue at further levels of investigation.

Loop {

//Step 1
 y0[2]=-y0[0]-lamsq*(a*y0[1]-4*y1[1]+y2[1]);
 y1[2]=-y1[0]-lamsq*(-4*y0[1]+b*y1[1]-4*y2[1]+y3[1]);
 :
 y18[2]=-y18[0]-lamsq*(y16[1]-4*y17[1]+c*y18[1]-2*y19[1]);
 y19[2]=-y19[0]-lamsq*(2*y17[1]-4*y18[1]+d*y19[1]);

//Step 2
 // Shifting memory locations
 y0[0]=y0[1]; y0[1]=y0[2]; y1[0]=y1[1]; y1[1]=y1[2];
 :
 y18[0]=y18[1]; y18[1]=y18[2]; y19[0]=y19[1]; y19[1]=y19[2];
}

Fig. 2. Design outline of ‘Simulation Algorithm–1’

Simulation Algorithm–2: Array rotation. The ‘Simulation Algorithm–2’ incorpo-
rates design suggestions made by Hossain et al, 2000 [9]. A listing of the algorithm is
given in Figure 3. In this case, each loop calculates three sets of data. Instead of shift-
ing the data of the memory pointer (that contains results) at the end of each loop, the
most current data is directly recalculated and written into the memory pointer that
contains the older set of data. Therefore, re-ordering of array in the ‘Simulation Algo-
rithm–1’ is replaced by recalculation. The main objective of the design effort is to
achieve better performance by reducing the dynamic memory allocation and, in turn,
memory pointer shift operation. Thus, instead of using a single code block and data-
shifting portion, as in ‘Simulation Algorithm–1’, to calculate the deflection, three code
blocks, are used with the modified approach in ‘Simulation Algorithm–2’. Note that in
‘Simulation Algorithm–2’, the overhead of ‘Simulation Algorithm-1’ due to memory
pointer shift operation is eliminated and every line of code is directed towards the
simulation effort.

Simulation Algorithm–3: Two-element array rotation. The ‘Simulation Algorithm–
3’ is listed in Figure 4. This makes use of the fact that access to the oldest time seg-
ment is only necessary during re-calculation of the same longitudinal beam segment.
Hence, it can directly be overwritten with the new value. The ‘Simulation Algorithm–3’
is optimized for the particular discrete mathematical approximation of the governing
physical formula, exploiting the previously observed features.

Loop {

//Step 1
 y0[2]=-y0[0]-lamsq*(a*y0[1]-4*y1[1]+y2[1]);
 y1[2]=-y1[0]-lamsq*(-4*y0[1]+b*y1[1]-4*y2[1]+y3[1]);
 :
 y18[2]=-y18[0]-lamsq*(y16[1]-4*y17[1]+c*y18[1]-2*y19[1]);
 y19[2]=-y19[0]-lamsq*(2*y17[1]-4*y18[1]+d*y19[1]);

//Step 2
 y0[0]=-y0[1]-lamsq*(a*y0[2]-4*y1[2]+y2[2]);
 y1[0]=-y1[1]-lamsq*(-4*y0[2]+b*y1[2]-4*y2[2]+y3[2]);
 :
 y18[0]=-y18[1]-lamsq*(y16[2]-4*y17[2]+c*y18[2]-2*y19[2]);
 y19[0]=-y19[1]-lamsq*(2*y17[2]-4*y18[2]+d*y19[2]);

 //Step 3
 y0[1]=-y0[2]-lamsq*(a*y0[0]-4*y1[0]+y2[0]);
 y1[1]=-y1[2]-lamsq*(-4*y0[0]+b*y1[0]-4*y2[0]+y3[0]);
 :
 y18[1]=-y18[2]-lamsq*(y16[0]-4*y17[0]+c*y18[0]-2*y19[0]);
 y19[1]=-y19[2]-lamsq*(2*y17[0]-4*y18[0]+d*y19[0]);

}

Fig. 3. Design outline of ‘Simulation Algorithm–2’

Loop {

 // Step 1
 y0[0]=-y0[0]-lamsq*(a*y0[1]-4*y1[1]+y2[1]);
 y1[0]=-y1[0]-lamsq*(-4*y0[1]+b*y1[1]-4*y2[1]+y3[1]);
 :
 y18[0]=-y18[0]-lamsq*(y16[1]-4*y17[1]+c*y18[1]-2*y19[1]);
 y19[0]=-y19[0]-lamsq*(2*y17[1]-4*y18[1]+d*y19[1]);

 // Step 2
 y0[1]=-y0[1]-lamsq*(a*y0[0]-4*y1[0]+y2[0]);

 y1[1]=-y1[1]-lamsq*(-4*y0[0]+b*y1[0]-4*y2[0]+y3[0]);
 :
 y18[1]=-y18[1]-lamsq*(y16[0]-4*y17[0]+c*y18[0]-2*y19[0]);
 y19[1]=-y19[1]-lamsq*(2*y17[0]-4*y18[0]+d*y19[0]);
}

Fig. 4. Design outline of ‘Simulation Algorithm–3’

3.2 AVC Algorithm

As mentioned earlier, the AVC algorithm consists of the beam simulation algorithm
and control algorithm. For simplicity the control algorithm in equation (3) can be rewrit-
ten as a difference equation as in Figure 5 [8], where b0, …, b4 and a0, …, a3 represent
controller parameters. The arrays y12 and yc denote input and controller output, re-
spectively. It is noted that the control algorithm shown in Figure 5 has similar design
and computational complexity as one of the beam segment described and discussed in
‘Simulation Algorithm-1’. Thus, the control algorithm can also be rewritten for recalcu-
lation in a similar manner as discussed in ‘Simulation Algorithm-2’ and ‘Simulation
Algorithm-3’.

yc[n]=b0*y12[n] + b1*y12[n-1] + b2*y12[n-2] + b3*y12[n-3]+ b4*y12[n-4]-(a0*yc[n-
1]+a1*yc[n-2] +a2*yc[n-3] +a3*yc[n-4]);
//Shift data array

y12[n-4]=y12[n-3] ; y12[n-3]=y12[n-2] ; y12[n-2]=y12[n-1] ; y12[n-1]=y12[n] ;
yc[n-4]=yc[n-3] ; yc[n-3]=yc[n-2] ; yc[n-2]=yc[n-1] ; yc[n-1]=yc[n] ;

Fig. 5. Design outline of the control algorithm (data array shifting method)

4. Implementation and Results

The AVC algorithms based on three different methods of the simulation and corre-
sponding similar design of the control algorithms were implemented with similar speci-
fication [7], with 0.3ms sampling time. It is worth mentioning that the AVC Algorithm-1
was implemented combining the ‘Simulation Algorithm-1’ and the data array shift
method of control algorithm as shown in Figure 5. The AVC Algorithm-2 implemented
in combination of the ‘Simulation Algorithm-2’ and similar recalculation method of
control algorithm. Finally, AVC Algorithm-3 was implemented combining the ‘Simula-
tion Algorithm-3’ and similar recalculation method of control algorithm. For reasons of
consistency, a fixed number of iterations (250,000) were considered in implementing all
the algorithms. Therefore, the execution time should be 75 sec in implementing each
algorithm to achieve real-time performance.

Figure 6 depicts a comparative performance of the AVC Algorithm–1 and Algo-
rithm–2 for 20 to 200 beam segments. It is noted that the execution time for both algo-
rithms increases almost linearly with the increment of the number of segments. It is
also noted that Algorithm-2 performed better throughout except for 100 segments.

Figure 7 shows a comparative real-time performance of implementing Algorithm-2
and Algorithm-3. It is observed that Algorithm-3 performs better throughout except for
smaller number of segments. It is also noted that the performance variation of Algo-
rithm-3 as compared to Algorithm-2 was not linear and performed best when the num-
ber segments was 80. This is further demonstrated in Table 1, which shows the per-
formance ratio of Algorithm-2 and Algorithm-3 relative to Algorithm-1. It is observed

that the transition towards weaker performance occurred in AVC Algorithm–3 halfway
between the transitions of Algorithm–1 and Algorithm–2. In spite of being outper-
formed by Algorithm–1 in a narrow band of around 100 segments, Algorithm–3 offered
the best performance overall. Thus, the design mechanism employed in Algorithm–3
can offer potential advantages in real-time control applications.

Fig. 6. Performance comparison of Algorithm–1 and Algorithm–2

Fig. 7. Performance comparison of Algorithm–2 and Algorithm–3

Table 1: Performance ratio of Algorithm–2 (A2) and Algorithm–3 (A3) as com-

pared to Algorithm–1 (A1).

Segments

20

40

60

80

100

150

200

A2/A1 0.67 0.83 1.0 1.4 1.6 0.83 0.83

A3/A1 0.83 0.83 0.83 0.83 1.3 0.83 0.82

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 150 200
Number of segments

E
xe

cu
tio

n
tim

e
(s

ec
)

Algorithm-1

Algorithm-2

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 150 200
Number of segments

Ex
ec

ut
io

n
tim

e
(s

ec
) Algorithm-2

Algorithm-3

5. Conclusion

An investigation into algorithm analysis, design, software coding and implementation
so as to reduce the execution time and, in turn, enhance the real-time performance, has
been presented within the framework of real-time implementation of active vibration
control algorithms. A number of approaches have been proposed and demonstrated
experimentally with the AVC algorithm of a flexible beam system. It has been observed
that all three algorithms have achieved real-time performance. Although, execution
time and in turn, performance of the algorithm varies with different approaches. De-
signs leading to large instructions cause non-linear transitions at certain stages where
internal built-in instruction cache is unable to handle the load. It is also noted that
such transitions with the AVC algorithm considered occur for computation of different
number of segments. Thus, none of the designed algorithms performed best for the
whole range of computation. Therefore, identification of the suitability of source code
design and implementation mechanism for best performance is a challenge.

References

1. Thoeni, U. A: Programming real-time multicomputers for signal processing, Prentice-Hall,
Hertfordshire, UK (1994).

2. Tokhi, M. O., Hossain, M. A: CISC, RISC and DSP processors in real-time signal process-
ing and control, Journal of Microprocessors and Microsystems, Vol. 19(1995), pp.291-300.

3. Bader, G. and Gehrke, E: On the performance of transputer networks for solving linear
systems of equation, Parallel Computing, 1991, Vol. 17 (1991), pp. 1397-1407.

4. Tokhi, M. O., Hossain, M. A., Baxter, M. J. and Fleming, P. J: Heterogeneous and homo-
geneous parallel architectures for real-time active vibration control, IEE Proceedings-D:
Control Theory and Applications, Vol. 142, No. 6 (1995), pp. 1-8.

5. Tokhi, M. O., Hossain, M. A., Baxter, M. J. and Fleming, P. J: Performance evaluation
issues in real-time parallel signal processing and control, Journal of Parallel and Distributed
Computing, Vol. 42 (1997), pp. 67-74.

6. Kourmoulis, P. K: Parallel processing in the simulation and control of flexible beam struc-
ture system, PhD. Thesis, Department of Automatic Control and Systems Engineering, The
University of Sheffield, UK (1990).

7. Tokhi, M. O. and Hossain, M. A: Self-tuning active control of noise and vibration, Proceed-
ings IEE - Control Conference-94, Vol. 1, Coventry, UK (1994), pp. 263-278.

8. Hossain, M. A: Digital signal processing and parallel processing for real-time adaptive noise
and vibration control, Ph.D. thesis, Department of Automatic Control and System Engi-
neering, The University of Sheffield, UK (1995).

9. Hossain, M. A., Kabir, U. and Tokhi, M. O: Impact of data dependencies for real-time high
performance computing, Journal of Microprocessors and Microsystems, Vol. 26, No. 6
(2002), pp. 253 – 261.

10. Tokhi, M. O., Hossain, M. A. and Shaheed, M. H: Parallel Computing for Real-time Signal
Processing and Control, Springer Verlag, ISBN: 1-85233-599-8, (2003).

