

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’s website. Where
available access to the published online version may require a subscription.

Author(s): Varghes, B., Hossain, M. A. and Dahal, K. P.

Title: Scheduling of tasks in multiprocessor system using hybrid genetic
algorithms.

Publication year: 2007

Book title: Applications of soft computing.

ISBN: 978-3-540-88078-3

Publisher: Springer Verlag.

Original publication is available at http://www.springerlink.com

Citation: Varghes, B., Hossain, M. A. and Dahal, K. P. (2007) Scheduling of tasks
in multiprocessor system using hybrid genetic algorithms. In: Kacprzyk, J.(ed.)
Advances in soft computing: Updating the state of the art. (12th Online World
Conference on Soft Computing in Industrial Applications. (WSC12) October 16th-
26th, 2007).Berlin: Springer. pp. 65-74.

Copyright statement: © 2007 Springer Verlag. Reproduced in accordance
with the publisher's self-archiving policy. Original publication is
available at http://www.springerlink.com

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.springerlink.com/�
http://www.springerlink.com/�

Scheduling of Tasks in Multiprocessor System using
Hybrid Genetic Algorithms

Betzy Varghes, Alamgir Hossain, and Keshav Dahal

 Modeling Optimization Scheduling And Intelligent Control (MOSAIC) Research Centre
Department of Computing, University of Bradford, Bradford, BD7 1DP, UK

 betzymol@yahoo.com;{m.a.hossain1,k.p.dahal}@bradford.ac.uk

Abstract — This paper presents an investigation into the optimal scheduling of real-
time tasks of a multiprocessor system using hybrid genetic algorithms (GAs). A com-
parative study of heuristic approaches such as ‘Earliest Deadline First (EDF)’ and
‘Shortest Computation Time First (SCTF)’ and genetic algorithm is explored and
demonstrated. The results of the simulation study using MATLAB is presented and
discussed. Finally, conclusions are drawn from the results obtained that genetic algo-
rithm can be used for scheduling of real-time tasks to meet deadlines, in turn to obtain
high processor utilization.

Index Terms — Optimal scheduling, hard real-time tasks, multiprocessor system,

heuristics, genetic algorithm.

1 Introduction

Optimal scheduling is an important aspect in real-time systems to ensure
soft/hard timing constraints. Scheduling tasks involves the allotment of resources
and time to tasks, to satisfy certain performance needs [1]. In a real-time applica-
tion, tasks are the basic executable entities that are scheduled [2]. The tasks may
be periodic or aperiodic and may have soft or hard real-time constraints. Schedul-
ing a task set consists of planning the order of execution of task requests so that
the timing constraints are met. Multiprocessors have emerged as a powerful com-
puting means for running real-time applications, especially where a uniprocessor
system would not be sufficient enough to execute all the tasks by their deadlines
[3]. The high performance and reliability of multiprocessors have made them a
powerful computing means in time-critical applications [4]. In multiprocessor
systems, the scheduling problem is to determine when and on which processor a
given task executes.

Real-time task scheduling could be done either statically or dynamically. Dy-
namic schedule for a set of tasks is computed at run-time based on the tasks that is
really executing. Static schedule on the other hand is done at compile time for all
possible tasks. In the case of preemptive scheduling, an executing task may be
pre-empted and the processor allocated to a task with higher priority or a more
urgent task [2].

Real-time systems make use of scheduling algorithms to maximize the number
of real-time tasks that can be processed without violating timing constraints [5]. A
scheduling algorithm provides a schedule for a task set that assigns tasks to proc-
essors and provides an ordered list of tasks. The schedule is said to be feasible if
the timing constraints of all the tasks are met [2]. All scheduling algorithms face
the challenge of creating a feasible schedule.

A number of algorithms have been proposed for dynamic scheduling of real-
time tasks. It is said that there does not exist an algorithm for optimally scheduling
dynamically arriving tasks with or without mutual exclusion constraints [6]. This
has motivated the need for heuristic approaches for solving the scheduling prob-
lem. Page and Naughton [7] gives a number of references in which artificial intel-
ligence techniques are applied for task scheduling. They have also reported good
results from the use of GAs in task scheduling algorithms.

This paper aims to provide an insight into scheduling real-time tasks by using
genetic algorithm incorporating traditional scheduling heuristics to generate a
feasible schedule based on the work done by Mahmood [5]. That is, the use of a
hybrid genetic algorithm to dynamically schedule real-time tasks in multiproces-
sor systems. The scheduling algorithm considered, aims in meeting deadlines and
achieving high utilization of processors. The paper also provides a comparative
study of on applications of heuristic approaches, such as ‘EDF’ and ‘SCTF sepa-
rately, and genetic algorithms. The scheduler model considered for the study
would contain task queues from which tasks would be assigned to processors.
Task queues of varying length would be generated at run time. From the task
queue only a set of tasks would be considered at a time for scheduling. The size of
the task sets considered for scheduling would also be varied for a comparative
study. The MATLAB software tool was used for the simulation study as it inte-
grates computation, visualization and programming in an easy to use environment.

2 Related Research Work

Scheduling algorithms for multiprocessor real-time systems are significantly
more complex than the algorithms for uniprocessor systems [5]. In multiprocessor
systems, the scheduling algorithm, other than specifying the ordering of tasks
must also determine the specific processors to be used.

Goossens and others have been studying the scheduling of real-time systems
using EDF scheduling upon uniform and identical multiprocessor platforms. They
justify that EDF remains a good algorithm to use in multiprocessor systems. They
also propose a new priority-driven scheduling algorithm for scheduling periodic
task systems upon identical multiprocessors [8].

Manimaran and Siva Ram Murthy [4] says that there does not exist an algo-
rithm for optimally scheduling dynamically arriving tasks with or without mutual
exclusion constraints on a multiprocessor system. This has stimulated the need for
developing heuristic approaches for solving the scheduling problem. In heuristic

scheduling algorithms, the heuristic function H evaluates various characteristics of
tasks and acts as a decision aid for the real-time scheduling of the tasks.

Myopic scheduling algorithm is another heuristic scheduling algorithm for
multiprocessor systems with resource constrained tasks. The algorithm selects a
suitable process based on a heuristic function from a subset; referred to as win-
dow, of all ready processes instead of choosing from all available processes like
the original heuristic scheduling algorithm. Another difference of the algorithm
from the original heuristic algorithm is that the unscheduled tasks in the task set
are always kept sorted by increasing order of deadlines. Hasan et al. [9] presents
the impact of the performance in implementing the myopic algorithm for different
window sizes.

Page and Naughton [7] gives a number of references to examples where artifi-
cial intelligence techniques are being applied to task scheduling. They say that
techniques such as genetic algorithms are most applicable to the task scheduling
problem because of the need to quickly search for a near optimal schedule out of
all possible schedules. The paper presents a scheduling strategy which makes use
of a genetic algorithm to dynamically schedule heterogeneous tasks on heteroge-
neous processors in a distributed system [7]. Genetic algorithm has been utilized
to minimize the total execution time. The simulation studies presented shows the
efficiency of the scheduler compared to a number of other schedulers. However
the efficiency of the algorithm for time critical applications has not been studied.

Oh and Wu [10] presents a method for real-time task scheduling in multiproc-
essor systems with multiple objectives. The objectives are to minimize the number
of processors required and also minimize the total tardiness of the tasks. A multi-
objective genetic algorithm has been made use of for scheduling to achieve opti-
mization. The work considers scheduling tasks of precedence and timing con-
strained task graph. The algorithm was shown to give good performance. While
Oh and Wu [10] focuses on multiobjective optimization, the algorithm discussed
in the paper aims to meeting deadlines of tasks and achieving high resource utili-
zation. There are also examples where genetic algorithm has been used for sched-
uling tasks in uniprocessor systems. Yoo and Gen [11] presents a scheduling algo-
rithm for soft real-time systems. They have used proportion-based genetic algo-
rithm and focused mainly on the scheduling of continuous tasks that are periodic
and preemptive.

The scheduling algorithm presented in this paper is based on the work done by
Mahmood [5]. The genetic algorithms in their purest form could be called as blind
procedures. They do not make use of any problem specific knowledge which may
speed up the search or which may lead to a better solution. That is why special-
ized techniques which make use of problem specific knowledge out-performs
genetic algorithms in both speed and accuracy. Therefore it may be advantageous
to exploit the global perspective of the genetic algorithm and the convergence of
the problem specific techniques.

3 System Model

As discussed earlier, dynamically scheduling tasks in a multiprocessor system
using a hybrid genetic algorithm presented in the following sections is based on
the principle of the work done by Mahmood [5]. The task and scheduler model for
the simulation system considered is discussed below.

Task Model: The real-time system is assumed to consist of m, where m > 1,
identical processors for the execution of the scheduled tasks. They are assumed to
be connected through a shared medium. The scheduler may assign a task to any
one of the processors. Each task Ti in the task set is considered to be aperiodic,
independent and nonpreemptive.

Each task Ti is characterised by: Ai : arrival time; Ri : ready time; Ci : worst
case computation time; Di : deadline.

The scheduler determines the scheduled start time and finish time of a task. If
st(Ti) is the scheduled start time and ft(Ti) is the scheduled finish time of task Ti ,
then the task Ti is said to meet its deadline if (Ri ≤ st(Ti) ≤ Di – Ci) and (Ri + Ci ≤
ft(Ti) ≤ Di). That is, the tasks are scheduled to start after they arrive and finish
execution before their deadlines [3]. A set of such tasks can be said to be guaran-
teed.
 Scheduler Model: As discussed before the dynamic scheduling in a multiproces-
sor system could be either centralized or distributed. This paper assumes a central-
ized scheduling scheme with each processor executing the tasks that fill its dis-
patch queue. Since a centralized scheduling scheme is considered, all the tasks
arrive at a central processor called the scheduler. The scheduler has a task queue
associated with it to hold the newly arriving tasks. Thus the incoming tasks are
held in the task queue and then passed on to the scheduler for scheduling of tasks.
It is the central scheduler that allocates the incoming tasks to other processors in
the system.

Each processor has a dispatch queue associated with it. The processor executes
tasks in the order they arrive in the dispatch queue. The communication between
the scheduler and the processors is through these dispatch queues. The scheduler
works in parallel with the processors. The scheduler schedules the newly arriving
tasks and updates the dispatch queue while the processors execute the tasks as-
signed to them. The scheduler makes sure that the dispatch queues of the proces-
sors are filled with a minimum number of tasks so that the processors will always
have some tasks to execute after they have finished with their current tasks. Thus
the processing power can be utilized without making it idle.

The minimum capacity of the dispatch queues depends on factors like the
worst case time complexity of the scheduler to schedule newly arriving tasks [6].
A feasible schedule is determined by the scheduler based on the worst case com-
putation time of tasks satisfying their timing constraints.

The scheduling algorithm to be discussed has full knowledge about the set of
tasks that are currently active. But it does not have knowledge about the new tasks
that may arrive while scheduling the current task set.

The objective of the dynamic scheduling is to improve or maximize what is
called the guarantee ratio. It is defined as the percentage of tasks arrived in the
system whose deadlines are met. The scheduler in the system must also guarantee
that the tasks already scheduled will meet their deadlines.

4 The Scheduling Algorithm

A hybrid genetic algorithm for scheduling real-time tasks in multiprocessor
system is discussed in this section. Initially a task queue is generated with tasks
having the following characteristics namely, arrival time, ready time, worst case
computation time and deadline. The tasks are sorted in the increasing order of
their deadlines. The tasks are ordered so that the task with the earliest deadline
can be considered first for scheduling. The algorithm considers a set of tasks from
the sorted list to generate an initial population. In the initial population, each
chromosome is generated by assigning each task in the task set to a randomly
selected processor and the pair (task, processor) is inserted in a randomly selected
unoccupied locus of the chromosome. The length of the chromosome depends on
the number of tasks selected from the sorted list. The tasks in each chromosome
are then sorted based on their deadline. This is done because the chromosome
representation also gives the order in which the tasks are executed in a processor.
The sorting ensures that the tasks with earliest deadline are given priority. The
fitness evaluation of the chromosomes in the population is then performed. The
fitness value of a chromosome is the number of tasks in the chromosome that can
meet their deadlines (i.e. the objective is to maximize the number of tasks in each
chromosome that meet their deadlines). The chromosomes in the population are
then sorted in the descending order of their fitness value.

Genetic operators are then applied to the population of chromosomes until a
maximum number of iterations have been completed. When applying genetic
operators to the population, selection is applied first followed by crossover, par-
tial-gene mutation, sublist-based mutation and then order-based mutation. In each
iteration, the tasks in the chromosomes are sorted based on their deadline and the
evaluation of the chromosomes and sorting of the chromosomes based on fitness
value is performed. After number of iterations the best schedule for the set of
tasks is obtained.

The tasks that are found infeasible are removed from the chromosomes so that
they are not reconsidered for scheduling. For a task Ti to be feasible it should
satisfy the condition that (Ri ≤ st(Ti) ≤ Di – Ci) and (Ri + Ci ≤ ft(Ti) ≤ Di) where
Ri is the ready time, Di is the deadline and Ci is the worst case computation time
of task Ti . st(Ti) and ft(Ti) denoted the start time and finish time of task Ti respec-
tively. If the condition is not satisfied it is said to be infeasible.

5 Implementation and Results

The simulation study (using MATLAB) considers the assigning of a set of
tasks to a number of processors. For these, task queues of different lengths were
generated at run time from which a set of tasks were chosen at a time for schedul-
ing. The lengths of task queues considered were 100, 200, 400 and 600. The worst
case computation time, Ci, of a task Ti has been chosen randomly between a mini-
mum and maximum computation time value denoted by MIN_C and MAX_C.
The values of MIN_C and MAX_C were set to 30 and 60 respectively. The value
for the deadline of a task Ti has been randomly chosen between (Ri + 2 * Ci) and
(Ri + r * Ci) where r ≥ 2. This ensures that the computation time is always less
than the deadline. For the study, the value of r has been chosen to be 3. The mean
of the arrival time was assumed to be 0.05. The number of processors, m consid-
ered was 10.

The values for the number of iterations for the application of the genetic opera-
tors have been based on number of trials. For the value of ‘x’, which denotes the
percentage of tasks to be killed before applying reproduction operator, it has been
reported in [5] that best results were obtained with x = 20. Therefore the value of
20 percent has been considered for the algorithm presented in the paper. The
chromosome size has been assumed equal to the number of tasks considered at a
time for scheduling. Depending on this, the value for the chromosome size has
been varied between 20 and 60. As mentioned before the fitness value determines
the number of tasks in the chromosome that can meet their deadlines, i.e., the
number of tasks that are feasible. Hence here, for chromosome size 20 the maxi-
mum fitness value that can be obtained is 20. The population size for the algo-
rithm has been assumed to be 30. That is 30 chromosomes have been considered
at a time for the application of genetic operators. Thus the tasks which have been
generated with the values for their characteristics chosen appropriately have been
considered for scheduling. Initially the tasks were assigned to processors based on
‘Earliest Deadline First’. After the results have been observed, the tasks were
scheduled using the proposed hybrid genetic algorithm. The algorithm was then
implemented by incorporating the heuristic ‘Shortest Computation time First’ with
genetic algorithm. Set of tasks were scheduled using the modified algorithm and
the results were observed.

For an initial evaluation the fitness value by assigning tasks based on Earliest
Deadline First (EDF) was calculated. For this, a task queue of 100 tasks was gen-
erated randomly and it was divided into task sets of 20 each. The tasks were or-
dered in the increasing order of their deadlines and assigned to processors consid-
ering earliest deadline first. The processors were chosen randomly between 1 and
10. The fitness value obtained for each task set is shown in Figure 1. The graph
shows that the maximum number of tasks that meet their deadlines is 16 when
considering 20 tasks for scheduling. The majority of the task sets gave a fitness
value of 12.

The hybrid algorithm presented in the paper was then used to schedule the
same task sets. The algorithm incorporates the heuristic ‘Earliest Deadline First’

and also genetic algorithm. Here also a set of 20 tasks was considered at a time.
The graph showing the fitness value of tasks obtained using the algorithm is
shown in Figure 2.

As shown by the graph, a better performance is obtained by using genetic al-
gorithm with the heuristic. Thus it could be seen that, the percentage of tasks that
are feasible is 95 percent and above. The algorithm was also studied for different
task sets with the same chromosome size. In all the cases the percentage of tasks
that are feasible was always 90 percent and above when the chromosome size
considered was 20. These demonstrate that genetic algorithm could be used to
schedule task to meet deadlines and also achieve better processor utilization.
However, it is worth noting that genetic algorithms do have the disadvantage of
spending much time in scheduling.

As mentioned earlier in the paper, the population size for the genetic algorithm
was taken to be 30. In the initial population the fitness value of chromosomes
were low. As the number of iterations increases a better solution is obtained. The
number of iterations considered for the algorithm was 50.

A graph which depicts the change in the feasibility value from the initial to the
final iteration for a particular task set of 20 tasks is shown in Figure 3. The graph
shows that the fitness value of chromosomes changes gradually from a minimum
value of 12 to a maximum value of 20. Thus a better solution can be obtained by
applying genetic algorithm for a good number of iterations. The number of itera-
tions needed for the genetic operators was based on a trial method. This was
mainly considered for the chromosome size 20.

The results of incorporating the heuristic ‘Earliest Deadline First’ with genetic
algorithm demonstrated better performance. This motivated to study the efficiency
of the algorithm by incorporating other heuristics. The heuristic, Shortest Compu-
tation time First (SCF) was incorporated with genetic algorithm for this.

Fig. 3. Feasibility value vs change of chromosomes in the population

For the study, the chromosome size was kept at 20. The length of the task

queue considered was 100, like before. The algorithm was slightly modified to
incorporate SCF heuristic. In the case where the tasks were sorted based on the
deadline, the algorithm was modified so that the tasks were sorted based on their
computation time. The tasks were sorted in the increasing order of computation
time. The fitness function was not changed. It determines the number of tasks that
can be scheduled without missing their deadline. It was seen that, the result was
almost similar to that obtained in the case of using earliest deadline first. That is to
say, it gave almost similar performance.

It was then decided to change the length of the task queue while maintaining
the chromosome size at 20 and the not altering anything else. The results were
compared for the two cases, that is, using earliest deadline first and shortest com-
putation time first. The task queue lengths considered were 100, 200, 400 and
600. The comparison of the heuristics has been made based on the fitness value.
As the chromosome size has been fixed at 20, the maximum value for fitness that
can be obtained is 20. It could be seen that for all the cases the number of tasks
that were feasible was 90 percent and above for both the heuristics. This gives the
impression that the heuristic shortest computation first could also be incorporated
with genetic algorithm to give feasible solutions. The graph of the comparison is
shown in the Figure 4. This demonstrates a better overview of the results dis-
cussed above.

The results were then compared for task queues of different length by chang-
ing the chromosome size. The lengths of task queue considered were same as
before namely, 100, 200, 400 and 600. The chromosome size chosen were 40 and
60. Though both the heuristics showed almost similar performance in the case of

chromosome size 20, the result was not same for higher values of chromosome
size. It could be seen that the use of heuristic shortest computation time first gave
better fitness values compared to earliest deadline first when incorporated with
genetic algorithm. This shows that the heuristic shortest computation time first is a
better option for incorporating with genetic algorithm. Fig. 5 shows the compari-
son of the heuristics based on fitness value for chromosome size 40.

Table 1 shows the comparative fitness function of SCF and EDF. It is noted
that only 48 percent of the tasks could be scheduled when the chromosome size is
60, whereas in the case with chromosome size 20, nearly 100 percent of the tasks
could be scheduled. It should be mentioned that the result considers a fixed num-
ber of processors, i.e. 10. Thus a comparative study shows that best results are
obtained with chromosome size 20. It could also be noted that better results are
obtained when the length of the task queue is 100.

100 200 400 600
0

5

10

15

20

25
Fitness values for chromosome size 20

Task queue

Fi
tn

es
s

va
lu

e

SCF
EDF

 Fig. 4: Comparative fitness values for
 chromosome size 20

100 200 400 600
0

5

10

15

20

25

30
Fitness values for chromosome size 40

Task queue

Fi
tn

es
s

va
lu

e

SCF
EDF

Fig. 5. Comparative fitness values for
 chromosome size 40

From the above results it could be said that traditional scheduling heuristics

could be incorporated with genetic algorithm to schedule real-time tasks if the
scheduling time used by genetic algorithm is reduced by some efficient method.

Table1. Fitness value obtained for different Chromosome size
Fitness value

Chromosome size 20 Chromosome size 40 Task queue

SCF EDF SCF EDF

100 20 20 24 22

200 18 19 25 21

400 19 18 23 20

600 18 19 25 20

6 Conclusion

A hybrid genetic algorithm for scheduling tasks in multiprocessor system has
been presented based on the work done by Mahmood [5]. The paper has discussed
that genetic algorithm incorporating traditional heuristics could be used to obtain
optimal solutions. A comparative performance of using heuristics EDF and SCTF
with genetic algorithm has been presented and discussed through a set of experi-
ments. It is noted that incorporating SCTF with genetic algorithm offered better
performance as compared to the EDF. The algorithm presented in the paper has
been successful in obtaining feasible solutions for a task set of 20 and also achiev-
ing high utilization of processors.

However it is noted that the implementation of the genetic algorithm is quite
costly since populations of solutions are coupled with computation intensive fit-
ness evaluations. This can be overcome by employing high performance comput-
ing platform or parallel processing technique in multiprocessor computing do-
main.

REFERENCES
[1] Ramamritham, K. and Stankovic, J. A., 1994, Scheduling Algorithms and Operating Systems

Support for Real-time Systems, Proceedings of IEEE, Vol.82, No.1, pp. 55-67.
[2] Cottet, F., Delacroix, J, Kaiser, C., Mammeri, Z. 2002, Scheduling in Real-time Systems, John

Wiley & Sons Ltd, England, pp. 1-64.
[3] Eggers, E., January 1999, Dynamic Scheduling Algorithms in Real-time, Multiprocessor Systems,

Term paper 1998-99, EECS Department, Milwaukee School of Engineering, North Broadway,
Milwaukee, WI, USA.

[4] Manimaran, G., Siva Ram Murthy, C., March 1998, An Efficient Dynamic Scheduling Algorithm
for Multiprocessor Real-time Systems, IEEE Transactions on Parallel and Distributed Systems,
Vol.9, No.3, pp.312-319.

[5] Mahmood, A., 2000, A Hybrid Genetic Algorithm for Task Scheduling in Multiprocessor Real-
Time Systems, Journal of Studies in Informatics and Control, Vol.9, No.3.http://www.ici.ro/; ac-
cessed on 27/06/2005.

[6] Manimaran, G., Siva Ram Murthy, C., November 1998, A Fault-tolerant Dynamic Scheduling
Algorithm for Multiprocessor Real-time Systems and Its Analysis, IEEE Transactions on Parallel
and Distributed Systems, Vol.9, No.11, pp.1137-1152.

[7] Page, A., J. and Naughton, T., J., April 2005, Dynamic task scheduling using genetic algorithms
for heterogeneous distributed computing, 8th International Workshop on Nature Inspired
Distributed Computing, proceedings of the 19th International Parallel & Distributed Processing
Symposium, Denver, Colorado, USA. IEEE Computer Society. 27 July 2005

[8] Goossens, J., Baruah, S. & Funk, S., 2002, Real-time Scheduling on Multiprocessors.
<http://citeseer.ist.psu.edu/; accessed on 12/08/05.

[9] Hasan, M., S., Muheimin-Us-Sak, K. & Hossain, M., A., 2005, Hard Real-Time Constraints in
Implementing the Myopic Scheduling Algorithm. International Journal of High Performance
Computing Applications, SAGE Publications (to appear)

[10] Oh, J. and Wu, C., May 2004, Genetic-algorithm-based real-time task scheduling with multiple
goals, The Journal of Systems and Software, Volume 71, Issue 3, pp. 245-258.

[11] Yoo, M., R. and Gen, M., 2001, Bicriteria real-time tasks scheduling using proportion-based
genetic algorithm, 15 Aug. 2005, pp. 213-222. http://www.complexity.org.au
/conference/upload/yoo01/yoo01.pdf

