

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’s website. Where
available access to the published online version may require a subscription.

Author(s): Remde, S. M., Cowling, P. I., Dahal, K. P. and Colledge, N. J.

Title: Exact/heuristic hybrids using rVNS and hyperheuristics for workforce
scheduling.

Publication year: 2007

Book title: Evolutionary Computation in Combinatorial Optimization.

ISBN: 978-3-540-71614-3

Publisher: Springer-Verlag.

Original publication is available at http://www.springerlink.com

Citation: Remde, S. M., Cowling, P. I., Dahal, K. P. and Colledge, N. J. (2007)
Exact/heuristic hybrids using rVNS and hyperheuristics for workforce scheduling.
In: Evolutionary computation in combinatorial optimization. Proceedings of the
7th European Conference (EvoCOP 2007) Valencia, Spain, April 11-13, 2007. pp
188-197.

Copyright statement: © 2007 Springer-Verlag. Reproduced in accordance
with the publisher's self-archiving policy.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.springerlink.com/�

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 188 – 197, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Exact/Heuristic Hybrids Using rVNS and
Hyperheuristics for Workforce Scheduling*

Stephen Remde, Peter Cowling, Keshav Dahal, and Nic Colledge

MOSAIC Research Group, University of Bradford, Great Horton Road
Bradford, BD7 1DP, United Kingdom

{s.m.remde, p.i.cowling, k.p.dahal, n.j.colledge}@bradford.ac.uk

Abstract. In this paper we study a complex real-world workforce scheduling
problem. We propose a method of splitting the problem into smaller parts and
solving each part using exhaustive search. These smaller parts comprise a
combination of choosing a method to select a task to be scheduled and a method
to allocate resources, including time, to the selected task. We use reduced
Variable Neighbourhood Search (rVNS) and hyperheuristic approaches to
decide which sub problems to tackle. The resulting methods are compared to
local search and Genetic Algorithm approaches. Parallelisation is used to
perform nearly one CPU-year of experiments. The results show that the new
methods can produce results fitter than the Genetic Algorithm in less time and
that they are far superior to any of their component techniques. The method
used to split up the problem is generalisable and could be applied to a wide
range of optimisation problems.

1 Introduction

In collaboration with an industrial partner we have studied a workforce scheduling
problem which is a resource constrained scheduling problem similar to but more
complex than many other well-studied scheduling problems such as the Resource
Constrained Project Scheduling Problem (RCPSP) [1] and job shop scheduling
problem [2]. The problem is based on our work with @Road Ltd. which develops
scheduling solutions for very large, complex mobile workforce scheduling problems
in a variety of industries. Our workforce scheduling problem is concerned with
assigning people and other resources to geographically dispersed tasks while
respecting time window constraints and skill requirements.

The workforce scheduling problem that we consider consists of four main
components: Tasks, Resources, Skills and Locations. Unlike many RCPSP problems,
the tasks have locations and a priority value (to indicate relative importance).
Resources are engineers and large pieces of equipment. They are mobile, travelling at
a variety of speeds to geographically dispersed tasks. Tasks and resources have time
windows with different associated costs (to consider, for example, inconvenience to

* This work was funded by EPSRC and @Road Ltd under an EPSRC CASE studentship, which

was made available through and facilitated by the Smith Institute for Industrial Mathematics
and System Engineering.

 Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling 189

customers at certain times, the cost of overtime, etc.). Tasks require a specified
amount of specified skills, and resources possess one or more of these skills at
different competencies which affects the amount of time required. A major source of
complexity of our problem comes from the fact that a task’s duration is unknown until
resources are assigned to it. In this paper, the fitness of a schedule is given by one of
the single weighted objective functions used in [3], f = SP - 4SC - 2TT, where SP is
the sum of the priority of scheduled tasks, SC is the sum of the time window costs in
the schedule (both resource and task) and TT is the total amount of travel time. This
objective is to maximise the total priority of tasks scheduled while minimising travel
time and cost. [3] describes the problem in more detail and uses a Genetic Algorithm
to solve it. In this paper we will compare the Genetic Algorithm method with a new
reduced Variable Neighbourhood Search and hyperheuristic methods.

We propose a method to break down this “messy” problem by splitting it into smaller
parts and solving each part using exact enumerative approaches. Hence each part
consists of finding the optimal member of a local search neighbourhood. We then
design ways to decide which part to tackle at each stage in the solution process. These
smaller parts are the combination of a method to select a task and a method to select
resources for the task. We will take these smaller parts and use reduced Variable
Neighbourhood Search and hyperheuristics to decide the order in which to solve them.

This paper is structured as follows: we present related work in section 2 and
propose reduced Variable Neighbourhood Search and hyperheuristic approaches in
section 3. In section 4 we empirically investigate the new techniques and compare
them to a genetic algorithm in terms of solution quality and computational time. We
present conclusions in section 5.

2 Related Work

The RCPSP [1] involves a set of tasks which have to be scheduled under resource and
precedence constraints. Precedence constraints require that a task may not start until all
its preceding tasks have finished. Resource constraints require specified amounts of finite
resources to be available when the task is scheduled. Scheduling an RCPSP involves
assigning start times to each of the tasks. The RCPSP is a generalisation of many
scheduling problems including job-shop, open-shop and flow-shop scheduling problems.
The RCPSP has no notion of variable time dependant on skill or location of tasks and
resources. The time line is also discrete and assumes resources are always available.

The Multimode Resource Constrained Resource Scheduling Problem (MRCPSP)
extends the RCPSP [4]. In the MRCPSP, there is the option of having non-renewable
resources and resources that are only available during certain periods. In addition, a
task maybe executed in one of several execution modes. Each execution mode has
different resource requirements and different task durations. Usually the number of
these modes is small and hence exact methods can be used. In the workforce
scheduling problem considered in this paper, we have a very large number of
execution modes (as the task duration depends on the resource competency and the
task skill requirement which are both real values). [5] uses a genetic algorithm as a
solution to problems where using an exact method is intractable. [6] surveys heuristic
solutions to the RCPSP and MRCPSP.

190 S. Remde et al.

Solution methods such as Genetic Algorithms (GAs) were introduced by
Bremermann [7] and the seminal work done by Holland [8]. Since then they have
been developed extensively to tackle problems including the travelling salesman
problem [9], bin packing problems [10] and scheduling problems [11]. A Genetic
Algorithm tries to evolve a population into fitter ones by a process analogous to
evolution in nature. Our previous work [3] compares a multi-objective genetic
algorithm to a single weight objective genetic algorithm to study the trade-off
between diversity and solution quality. The genetic algorithm is used to solve the
dynamic workforce scheduling problem studied in this paper.

Variable Neighbourhood search (VNS) is a relatively new search technique and the
seminal work was done by Mladenović and Hansen [12]. VNS is based on the idea of
systematically changing the neighbourhood of a local search algorithm. Variable
Neighbourhood Search enhances local search using a variety of neighbourhoods to
“shake” the search into a new position after it reaches a local optimum. Several
variants of VNS exist as extensions to the VNS framework [13].

Reduced Variable Neighbourhood search (rVNS) [13] is an attempt to improve the
speed of variable neighbourhood search (with the possibility of a worse solution).
Usually, the most time consuming part of VNS is the local search. rVNS picks
solutions randomly from neighbourhoods which provide progressively larger moves.
rVNS is targeted at large problems where computational time is more important than
the quality of the result. In combinatorial optimisation problems, local search moves
like “swap two elements” are frequently used, and [14] for RCPSP as well as others
such as [15], apply VNS by having the neighbourhoods make an increasing number of
consecutive local search moves. [16] however defines only two neighbourhoods for
VNS applied to the Job Shop Scheduling Problem, a swap move and an insert move,
which proves to be effective.

VNS can be seen as a form of hyperheuristic where the neighbourhoods and local
search are low level heuristics. The term “hyperheuristic” was introduced in [17].
Hyperheuristics rely on low level heuristics and objective measures which are specific
to the problem. The hyperheuristic uses feedback from the low level heuristics (CPU
time taken, change in fitness, etc.) and determines which low level heuristics to use at
each decision point. Earlier examples of hyperheuristics include [18] where a genetic
algorithm evolves a chromosome which determined how jobs were scheduled in open
shop scheduling. A variety of hyperheuristics have been developed including a
learning approach based on the “choice function” [17], tabu search [19], simulated
annealing [20] and Genetic Algorithms [21].

3 Heuristic Approaches

Our proposed framework splits the problem into (1) selecting a task to be scheduled
and (2) selecting potential resources for that task. A task is randomly chosen from the
top two tasks which we have not tried to schedule ranked by the task order, to make
the search stochastic, to ensure that running it multiple times will produce different
results. We have implemented 8 task selection methods given in table 1. Note that
some of our task orders are deliberately counterintuitive to give us a basis for
comparison.

 Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling 191

Table 1. Task sorting methods

Method Description
Random Tasks are ordered at random.
PriorityDesc Tasks are ordered by their priority in descending order
PriorityAsc Tasks are ordered by their priority in ascending order
PrecedenceAsc Tasks are ordered by their number of precedences ascending
PrecedenceDesc Tasks are ordered by their number of precedences descending
PriOverReq

Tasks are ordered by their estimated priority per hour assuming
the task will take as long as the total skill requirement

PriOverMaxReq

Tasks are ordered by their estimated priority per hour assuming
the task will take as long as the maximum skill requirement

PriOverAvgReq

Tasks are ordered by their estimated priority per hour assuming
the task will take as long as the average skill requirement

R1

R3

Skill 1

Skill 2

R1

R2 (R1,R3)

(R2,R1)

(R2,R3)

200

300

100

Task 8

Δ fitness

Fig. 1. Resource Selector. The dotted subset of resources possessing the required skill is chosen
by a Resource Selector. The assignment (R2, R1) is chosen as the best insertion.

PriorityDesc, PriOverReq, PriOverMaxReq and PriOverAvgReq are attempts to
identify the tasks which will give us the most reward and schedule them first. They
estimate the task duration differently and use this estimate to calculate priority hour.
PrecedenceDesc attempts to schedule those tasks with the largest number of
succeeding tasks first. PrecedenceAsc, PriorityAsc and Random give us some
indication of the effect of task orders since intuition would suggest that they should
give poor results.

We then define Resource Selectors which select a set of potential resources for
each skill required by the selected task. The Resource Selectors first sort the resources
by their competencies at the skill required and then select a subset of them. This could
be, for example, the top five or the top six to ten etc. The subsets of resources are then
enumerated and exhaustive search used to find the insertion which will yield the
lowest time window and travel penalties subject to precedence constraints. Figure 1
illustrates this.

192 S. Remde et al.

Fig. 2. Resource selection “chains” for the rVNS

Fig. 3. Pseudo code for our rVNS method

The neighborhoods of our rVNS insert tasks selected by a task order using a given
resource selector. If an insertion is not possible, because of resource or task
constraints, we try the next resource selector and so on. We consider several
sequences of resource selection neighborhoods, or “chains”, as shown in figure 2.
These neighborhoods show a progression of an increasing range of resources used and

 k is the index of the resource selector in use
(N1, N2, …

maxkN) is our chain of resource selectors

Sort tasks using the chosen task order
k:=1
while (k<kmax)
 for each Unscheduled Task T
 Select Sets of Resources Using Nk for Task T
 Exhaustively Search the selected sets of resources

to find an optimal insertion I
 Insert task T into the schedule using I
 next
 if some tasks were inserted then
 k:=1
 else

 k:=k+1
 end if
end while

 Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling 193

smaller sets. Figure 3 shows the pseudo code for our rVNS method. Allowing search
to restart at the start of the chain allows the search to retry insertions that may have
failed before because of resource or task constraints. If s is the maximum number of
skills and n is the number of tasks, then the algorithm has time complexity O(nk|Nk|

s)
for each chain. With the 16 resource selection chains and the 8 task orders we have
defined, we have 128 different rVNS methods.

Our first hyperheuristic, HyperRandom, selects at random a Low Level Heuristic
(i.e. a (task order, resource selector) pair) to use at each iteration and applies it if its
application will result in a positive improvement. This continues until no
improvement has been found for a certain number of iterations. The second,
HyperGreedy, evaluates all the Low Level Heuristics at each iteration and applies the
best if it makes an improvement. This continues until no improvement is found. The
low level heuristics are the combination of a task selector and a resource selector.

The genetic algorithm we will use is that of [3]. The chromosome represents an
order of tasks to be scheduled by a serial scheduler. The initial population is generated
randomly and the task order is evolved. The way in which the tasks are inserted into
the schedule is a fast naïve approach as schedule must be generated many times per
generation. The serial scheduler takes the next task from the chromosome and
allocates resources to it greedily skill by skill. A resource is selected by finding the
resource which has the greatest amount of available time in common with the task’s
time windows and any other resources already selected. After each skill has been
allocated a resource, it is inserted into the schedule as early as possible. We use a
population size of 50, mutation rate of 1%, and a crossover rate of 25% using
Uniform Crossover based on out previous experience [3]. The GA is run for 100
generations (or for a maximum of 2.5 hours) and the result is the fittest individual in
the final population.

4 Computational Experiments

To compare the methods for solving the problem, we use each method (one Genetic
Algorithm, 128 rVNS and two hyperheuristics) on five different problem instances.
The five problem instances require the scheduling of 400 tasks using 100 resources
over one day using five different skills. Tasks require between one and three skills
and resources possess between one and five skills. The problems are made to reflect
realistic problems @Road Ltd. have identified and are generated using the problem
generator used in [3].

Each method is used for five runs of the five instances and an average taken of the
25 results. To ensure fairness, each method is also run for a 2.5 hour “long-run”
where the 25 results are repeatedly generated and the best average over all there
repeated runs is reported. As these experiments require nearly a CPU year to complete
(five runs of five instances using 131 different methods lasting 2.5 hours each =
8187.5 CPU hours) they were run in parallel on 60 identical 3.0 GHz Pentium 4
machines. Implementation was in C# .NET under Windows XP.

Figure 4 shows the results of the 2.5 hour “long run” for each rVNS approach.
Results for a single run of each approach are similar but 1-4% worse on average. The
intuitively “bad” task orders, PriorityAsc and Random are clearly shown to be worse
than the intuitively reasonable orders such as PriorityDesc. Measure based on

194 S. Remde et al.

Fig. 4. Heat graph of the performance of rVNS methods for 2.5 hour “long run”. Black = 4472,
White =26525.

Fig. 4a. Heat graph of the performance of selected rVNS methods for 2.5 hour “long run”.
Black = 25398, White =26525.

1.9

8.4

53.4

3.4
7.5

13.8

6.4

21.4

27.9

12.3

22.1

11.6

18.5

28.5

41.3

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chain

C
PU

 T
im

e
(s

)

357.7

Fig. 5. Average CPU time taken by each chain used in the rVNS methods

decreasing priority or priority per hour (PriorityDesc, PriOverReq, PriOverAvgReq,
PriOverMaxReq) are superior to other measures. Figure 4a compares the best
approaches in detail. Chain 12 produces the best results for all task orders. It is clear
to see the correlation between results with common chains or task orders. Chain 4
demonstrates that trying to estimate priority per hour is superior to PriorityDesc. This
is probably because with a limited amount of free time in the schedule, using tasks
that have lower priority but can be completed in a shorter time is more beneficial.

 Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling 195

Figure 5 compares the CPU time for a single run of rVNS using each chain. It is
clear that the approach would scale to very large problems using small resource
selection sets such as for chains 1, 5, 6, 8, 11 and 13. Moreover, it appears from figure
4 that little solution quality is lost when covering the resources with small subsets
rather than larger ones as in chain 4, but the CPU times are significantly reduced.
Chain 12 yields the best results of the chains which take reasonable amounts of CPU
time, and clearly outperform chain 2 and chain 7 which do not consider the whole set
of resources. It seems that resources of poor competence must be considered to get the
best possible results.

Table 2 shows the best result from the rVNS (Chain 12, Task Order PriOverReq)
compared with GA and the hyperheuristic methods. They quite clearly show that
HyperGreedy provided the fittest results on average while using more CPU time. The
GA provided the worst result and in the slowest time. This may result from its
insertion heuristic, however implementing a better one would make it even slower.
The rVNS is the fastest method we have tested and provides results nearly 20% better
than the GA in less than 1/350 of the CPU time required. Exactly solving small sub
problems appears very effective in this case.

Table 2. GA, rVNS and Hyper-Heuristic Results for one run and long run

Method
Fitness

(single run average)
CPU

Time (s)
Fitness

(after 2.5 hours)
GA 21401.3 9000.0 21401.3
rVNS (Best) 25662.5 25.1 26215.1
HyperRandom 24525.4 78.3 25645.4
HyperGreedy 26523.6 419.2 27103.1

HyperRandom performs poorly compared to the best rVNS method. rVNS task
selectors and resource selectors are sensible guesses which significantly improve on
the random approach of HyperRandom. The resource selectors of the rVNS tend to
select resources which are of similar competence, so that a high competence resource
is not combined with a low-competence resource (which might tie up the time of a
high-competence resource).

The HyperRandom, and the HyperGreedy heuristics try significant numbers of bad
low level heuristics which make local improvements which in the long run are far
from optimal. In the case of the HyperGreedy method, the bad low level heuristics are
evaluated every iteration which wastes CPU time. Analysis of the low level heuristics
used in the HyperGreedy method was performed and show that 19 (26.4%) of the low
level heuristics were never used and 56 (77.7%) of the low level heuristics were used
less than one percent of the time. Figure 6 analyses the low level heuristics (LLHs)
used. It shows the top 20 LLHs used together with when they are used in schedule
generation. First third, middle third and last third show the usage at different stages in
the scheduling process – from when the schedule is empty and unconstrained to when
the schedule is almost full and inserting a task is more difficult. From these results it
is clear that different LLHs contribute at different stages of the solution process, and
that many different LLHs provide a contribution. For example, LLH 32 is more

196 S. Remde et al.

Low Level Heuristic Analysis

0% 2% 4% 6% 8% 10% 12% 14% 16%

64

56

24

32

48

40

8

0

16

12

68

66

20

13

28

71

4

10

65

60

L
ow

 L
ev

el
 H

eu
ri

st
ic

Usage

First Third

Second Thrid

Last Third

Fig. 6. Usage of low level heuristics throughout the HyperGreedy search

effective at the start of scheduling, LLH 12 is more effective in the middle and LLH
64 is more effective at the end. Without access to a large number of LLHs it seems
that solution quality would be much reduced.

5 Conclusions

In this paper we have compared a large number (128) of reduced Variable
Neighbourhood Search (rVNS) approaches to hyperheuristics and Genetic Algorithm
approaches for workforce scheduling problem. We have demonstrated the
effectiveness of heuristic/exact hybrids which find optimal subproblem solutions
using an enumerative approach. Our rVNS method can produce good results to large
problems in low CPU time. Our hyperheuristics produce even better results using
more CPU time and we showed that the hyperheuristic uses a range of low level
heuristics throughout the search process.

The hyperheuristics we used are simple and learning could potentially decrease
CPU time and increase fitness. In future work we intend to implement learning
mechanisms. We have seen from the analysis that many low level heuristics were
never used and some used mainly at the beginning, middle or end. Learning the low
level heuristics behaviour could potentially lead to better solutions in less time.

References

1. Hartmann, S.: Project Scheduling under Limited Resources: Model, methods and
applications. Springer-Verlag, Berlin Heidelberg, New York (1999)

2. Pinedo, M. and Chao, X.: Operations scheduling with applications in manufacturing and
services. McGraw-Hill, New York (1999)

 Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling 197

3. Cowling, P., Colledge, N., Dahal, K. and Remde, S.: The Trade Off between Diversity and
Quality for Multi-objective Workforce Scheduling. Evolutionary Computation in
Combinatorial Optimization, Proc. Lecture Notes in Comp. Science 3906: 13-24 (2006)

4. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation. European Journal of Oper. Res. 90 (2): 320-333 Apr 19 (1996)

5. Alcraz, J., Marotom R., and Ruiz, R.: Solving the Multi-mode Resource-Constrained
Project Scheduling Problems with genetic algorithms. Journal of Operational Research
Society (2004) 54, 614-626

6. Kolisch, R. and Hartmann, S.: Experimental Investigations of Heuristics for RCPSP: An
Update. European Journal of Oper. Res. 174 (1): 23-37 (2006)

7. Bremermann, H.: The evolution of Intelligence. The Nervous System as a Model of it’s
environment. Technical Report No 1, contract No 477(17) Dept. of Math., Univ. of
Washington, Seattle. (1958)

8. Holland, J. H.: Adaptation in Natural and Artificial Systems, Ann Abor, MI: University of
Michigan Press, Michigan. (1975)

9. Whitley, D., Starkweather, T. and Shaner, D.: The travelling salesman and sequence
scheduling: Quality solutions using genetic edge recombination. In Handbook of Genetic
Algorithms, New York: Van Nostrand Reinhold (1991)

10. Falkenauer, E.: A Hybrid Grouping Genetic Algorithm for Bin Packing. Journal of
Heuristics, vol 2, No. 1, 5-30 (1996)

11. Ross, P., Hart E. and Corne, D.: Some observations about GA-based exam timetabling.
Lecture Notes in Computer Science 1408: 115-129 (1998)

12. Mladenovic, N. and Hansen, P.: Variable neighborhood search. Computers & Operational
Research 24 (11): 1097-1100 Nov (1997)

13. Hansen, P. and Mladenovic, N.: Variable neighborhood search: Principles and
applications. European Journal of Oper. Res. 130 (3): 449-467 May 1 (2001)

14. Fleszar, K. and Hindi, K.S.: Solving the resource-constrained project problem by a
variable neighbourhood scheduling search. European Journal of Oper. Res. 155 (2):
402-413 Jun 1 (2004)

15. Garcia, C.G., Perez-Brito, D., Campos, V. and Marti, R.: Variable neighborhood search for
the linear ordering problem. Comp. & Oper. Research 33 (12): 3549-3565 Dec (2006)

16. Sevkli, M., Aydin, M.E.: A variable neighbourhood search algorithm for job shop
scheduling problems. Lecture Notes in Computer Science 3906: 261-271 (2006)

17. Cowling, P., Kendall, G. and Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. PATAT III Springer LNCS 2079: 176-190 (2001)

18. Fang, H., Ross, P. and Corne, D.: A Promising Hybrid GA/Heuristic Approach for Open-
Shop Scheduling Problems. 11th European Conference on Artificial Intelligence, (1994)

19. Burke, E. K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and
rostering. Journal of Heuristics 9 (6): 451-470 Dec (2003)

20. Bai, R. and Kendall, G.: An Investigation of Automated Planograms Using a Simulated
Annealing Based Hyper-heuristics. In proc. of The Fifth Metaheuristics Int. Conf. (2003)

21. Kendal, G., Han, L. and Cowling, P.: An Investigation of a Hyperheuristic Genetic
Algorithm Applied to a Trainer Scheduling Problem. CEC, IEEE Press (2002) 1185-1190

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

