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Abstract. In this paper we study a complex real-world workforce scheduling 
problem. We propose a method of splitting the problem into smaller parts and 
solving each part using exhaustive search. These smaller parts comprise a 
combination of choosing a method to select a task to be scheduled and a method 
to allocate resources, including time, to the selected task. We use reduced 
Variable Neighbourhood Search (rVNS) and hyperheuristic approaches to 
decide which sub problems to tackle. The resulting methods are compared to 
local search and Genetic Algorithm approaches. Parallelisation is used to 
perform nearly one CPU-year of experiments. The results show that the new 
methods can produce results fitter than the Genetic Algorithm in less time and 
that they are far superior to any of their component techniques. The method 
used to split up the problem is generalisable and could be applied to a wide 
range of optimisation problems. 

1   Introduction 

In collaboration with an industrial partner we have studied a workforce scheduling 
problem which is a resource constrained scheduling problem similar to but more 
complex than many other well-studied scheduling problems such as the Resource 
Constrained Project Scheduling Problem (RCPSP) [1] and job shop scheduling 
problem [2]. The problem is based on our work with @Road Ltd. which develops 
scheduling solutions for very large, complex mobile workforce scheduling problems 
in a variety of industries. Our workforce scheduling problem is concerned with 
assigning people and other resources to geographically dispersed tasks while 
respecting time window constraints and skill requirements.  

The workforce scheduling problem that we consider consists of four main 
components: Tasks, Resources, Skills and Locations. Unlike many RCPSP problems, 
the tasks have locations and a priority value (to indicate relative importance). 
Resources are engineers and large pieces of equipment. They are mobile, travelling at 
a variety of speeds to geographically dispersed tasks. Tasks and resources have time 
windows with different associated costs (to consider, for example, inconvenience to 
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customers at certain times, the cost of overtime, etc.). Tasks require a specified 
amount of specified skills, and resources possess one or more of these skills at 
different competencies which affects the amount of time required. A major source of 
complexity of our problem comes from the fact that a task’s duration is unknown until 
resources are assigned to it. In this paper, the fitness of a schedule is given by one of 
the single weighted objective functions used in [3], f = SP - 4SC - 2TT, where SP is 
the sum of the priority of scheduled tasks, SC is the sum of the time window costs in 
the schedule (both resource and task) and TT is the total amount of travel time. This 
objective is to maximise the total priority of tasks scheduled while minimising travel 
time and cost. [3] describes the problem in more detail and uses a Genetic Algorithm 
to solve it. In this paper we will compare the Genetic Algorithm method with a new 
reduced Variable Neighbourhood Search and hyperheuristic methods. 

We propose a method to break down this “messy” problem by splitting it into smaller 
parts and solving each part using exact enumerative approaches. Hence each part 
consists of finding the optimal member of a local search neighbourhood. We then 
design ways to decide which part to tackle at each stage in the solution process. These 
smaller parts are the combination of a method to select a task and a method to select 
resources for the task. We will take these smaller parts and use reduced Variable 
Neighbourhood Search and hyperheuristics to decide the order in which to solve them. 

This paper is structured as follows: we present related work in section 2 and 
propose reduced Variable Neighbourhood Search and hyperheuristic approaches in 
section 3. In section 4 we empirically investigate the new techniques and compare 
them to a genetic algorithm in terms of solution quality and computational time. We 
present conclusions in section 5. 

2   Related Work 

The RCPSP [1] involves a set of tasks which have to be scheduled under resource and 
precedence constraints. Precedence constraints require that a task may not start until all 
its preceding tasks have finished. Resource constraints require specified amounts of finite 
resources to be available when the task is scheduled. Scheduling an RCPSP involves 
assigning start times to each of the tasks. The RCPSP is a generalisation of many 
scheduling problems including job-shop, open-shop and flow-shop scheduling problems. 
The RCPSP has no notion of variable time dependant on skill or location of tasks and 
resources. The time line is also discrete and assumes resources are always available. 

The Multimode Resource Constrained Resource Scheduling Problem (MRCPSP) 
extends the RCPSP [4]. In the MRCPSP, there is the option of having non-renewable 
resources and resources that are only available during certain periods. In addition, a 
task maybe executed in one of several execution modes. Each execution mode has 
different resource requirements and different task durations. Usually the number of 
these modes is small and hence exact methods can be used. In the workforce 
scheduling problem considered in this paper, we have a very large number of 
execution modes (as the task duration depends on the resource competency and the 
task skill requirement which are both real values). [5] uses a genetic algorithm as a 
solution to problems where using an exact method is intractable. [6] surveys heuristic 
solutions to the RCPSP and MRCPSP. 
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Solution methods such as Genetic Algorithms (GAs) were introduced by 
Bremermann [7] and the seminal work done by Holland [8]. Since then they have 
been developed extensively to tackle problems including the travelling salesman 
problem [9], bin packing problems [10] and scheduling problems [11]. A Genetic 
Algorithm tries to evolve a population into fitter ones by a process analogous to 
evolution in nature. Our previous work [3] compares a multi-objective genetic 
algorithm to a single weight objective genetic algorithm to study the trade-off 
between diversity and solution quality. The genetic algorithm is used to solve the 
dynamic workforce scheduling problem studied in this paper. 

Variable Neighbourhood search (VNS) is a relatively new search technique and the 
seminal work was done by Mladenović and Hansen [12]. VNS is based on the idea of 
systematically changing the neighbourhood of a local search algorithm. Variable 
Neighbourhood Search enhances local search using a variety of neighbourhoods to 
“shake” the search into a new position after it reaches a local optimum. Several 
variants of VNS exist as extensions to the VNS framework [13]. 

Reduced Variable Neighbourhood search (rVNS) [13] is an attempt to improve the 
speed of variable neighbourhood search (with the possibility of a worse solution). 
Usually, the most time consuming part of VNS is the local search. rVNS picks 
solutions randomly from neighbourhoods which provide progressively larger moves. 
rVNS is targeted at large problems where computational time is more important than 
the quality of the result. In combinatorial optimisation problems, local search moves 
like “swap two elements” are frequently used, and [14] for RCPSP as well as others 
such as [15], apply VNS by having the neighbourhoods make an increasing number of 
consecutive local search moves. [16] however defines only two neighbourhoods for 
VNS applied to the Job Shop Scheduling Problem, a swap move and an insert move, 
which proves to be effective.  

VNS can be seen as a form of hyperheuristic where the neighbourhoods and local 
search are low level heuristics. The term “hyperheuristic” was introduced in [17]. 
Hyperheuristics rely on low level heuristics and objective measures which are specific 
to the problem. The hyperheuristic uses feedback from the low level heuristics (CPU 
time taken, change in fitness, etc.) and determines which low level heuristics to use at 
each decision point. Earlier examples of hyperheuristics include [18] where a genetic 
algorithm evolves a chromosome which determined how jobs were scheduled in open 
shop scheduling. A variety of hyperheuristics have been developed including a 
learning approach based on the “choice function” [17], tabu search [19], simulated 
annealing [20] and Genetic Algorithms [21]. 

3   Heuristic Approaches 

Our proposed framework splits the problem into (1) selecting a task to be scheduled 
and (2) selecting potential resources for that task. A task is randomly chosen from the 
top two tasks which we have not tried to schedule ranked by the task order, to make 
the search stochastic, to ensure that running it multiple times will produce different 
results. We have implemented 8 task selection methods given in table 1. Note that 
some of our task orders are deliberately counterintuitive to give us a basis for 
comparison. 
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Table 1. Task sorting methods 

Method Description 
Random Tasks are ordered at random. 
PriorityDesc Tasks are ordered by their priority in descending order 
PriorityAsc Tasks are ordered by their priority in ascending order 
PrecedenceAsc Tasks are ordered by their number of precedences ascending  
PrecedenceDesc Tasks are ordered by their number of precedences descending  
PriOverReq 

  
Tasks are ordered by their estimated priority per hour assuming 
the task will take as long as the total skill requirement 

PriOverMaxReq 
  

Tasks are ordered by their estimated priority per hour assuming 
the task will take as long as the maximum skill requirement 

PriOverAvgReq 
  

Tasks are ordered by their estimated priority per hour assuming 
the task will take as long as the average skill requirement 
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R1 
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Fig. 1. Resource Selector. The dotted subset of resources possessing the required skill is chosen 
by a Resource Selector. The assignment (R2, R1) is chosen as the best insertion. 

PriorityDesc, PriOverReq, PriOverMaxReq and PriOverAvgReq are attempts to 
identify the tasks which will give us the most reward and schedule them first. They 
estimate the task duration differently and use this estimate to calculate priority hour. 
PrecedenceDesc attempts to schedule those tasks with the largest number of 
succeeding tasks first. PrecedenceAsc, PriorityAsc and Random give us some 
indication of the effect of task orders since intuition would suggest that they should 
give poor results. 

We then define Resource Selectors which select a set of potential resources for 
each skill required by the selected task. The Resource Selectors first sort the resources 
by their competencies at the skill required and then select a subset of them. This could 
be, for example, the top five or the top six to ten etc. The subsets of resources are then 
enumerated and exhaustive search used to find the insertion which will yield the 
lowest time window and travel penalties subject to precedence constraints. Figure 1 
illustrates this. 
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Fig. 2. Resource selection “chains” for the rVNS 

 

Fig. 3. Pseudo code for our rVNS method 

The neighborhoods of our rVNS insert tasks selected by a task order using a given 
resource selector. If an insertion is not possible, because of resource or task 
constraints, we try the next resource selector and so on. We consider several 
sequences of resource selection neighborhoods, or “chains”, as shown in figure 2. 
These neighborhoods show a progression of an increasing range of resources used and 

 k is the index of the resource selector in use 
(N1, N2, … 

maxkN ) is our chain of resource selectors 

Sort tasks using the chosen task order 
k:=1 
while (k<kmax) 
 for each Unscheduled Task T 
  Select Sets of Resources Using Nk for Task T 
  Exhaustively Search the selected sets of resources  

to find an optimal insertion I 
  Insert task T into the schedule using I 
 next 
 if some tasks were inserted then 
   k:=1  
 else 

 k:=k+1 
 end if 
end while



 Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling 193 

smaller sets. Figure 3 shows the pseudo code for our rVNS method. Allowing search 
to restart at the start of the chain allows the search to retry insertions that may have 
failed before because of resource or task constraints. If s is the maximum number of 
skills and n is the number of tasks, then the algorithm has time complexity O(nk|Nk|

s) 
for each chain. With the 16 resource selection chains and the 8 task orders we have 
defined, we have 128 different rVNS methods. 

Our first hyperheuristic, HyperRandom, selects at random a Low Level Heuristic 
(i.e. a (task order, resource selector) pair) to use at each iteration and applies it if its 
application will result in a positive improvement. This continues until no 
improvement has been found for a certain number of iterations. The second, 
HyperGreedy, evaluates all the Low Level Heuristics at each iteration and applies the 
best if it makes an improvement. This continues until no improvement is found. The 
low level heuristics are the combination of a task selector and a resource selector. 

The genetic algorithm we will use is that of [3]. The chromosome represents an 
order of tasks to be scheduled by a serial scheduler. The initial population is generated 
randomly and the task order is evolved. The way in which the tasks are inserted into 
the schedule is a fast naïve approach as schedule must be generated many times per 
generation. The serial scheduler takes the next task from the chromosome and 
allocates resources to it greedily skill by skill. A resource is selected by finding the 
resource which has the greatest amount of available time in common with the task’s 
time windows and any other resources already selected. After each skill has been 
allocated a resource, it is inserted into the schedule as early as possible. We use a 
population size of 50, mutation rate of 1%, and a crossover rate of 25% using 
Uniform Crossover based on out previous experience [3]. The GA is run for 100 
generations (or for a maximum of 2.5 hours) and the result is the fittest individual in 
the final population. 

4   Computational Experiments 

To compare the methods for solving the problem, we use each method (one Genetic 
Algorithm, 128 rVNS and two hyperheuristics) on five different problem instances. 
The five problem instances require the scheduling of 400 tasks using 100 resources 
over one day using five different skills. Tasks require between one and three skills 
and resources possess between one and five skills. The problems are made to reflect 
realistic problems @Road Ltd. have identified and are generated using the problem 
generator used in [3].  

Each method is used for five runs of the five instances and an average taken of the 
25 results. To ensure fairness, each method is also run for a 2.5 hour “long-run” 
where the 25 results are repeatedly generated and the best average over all there 
repeated runs is reported. As these experiments require nearly a CPU year to complete 
(five runs of five instances using 131 different methods lasting 2.5 hours each = 
8187.5 CPU hours) they were run in parallel on 60 identical 3.0 GHz Pentium 4 
machines. Implementation was in C# .NET under Windows XP. 

Figure 4 shows the results of the 2.5 hour “long run” for each rVNS approach. 
Results for a single run of each approach are similar but 1-4% worse on average. The 
intuitively “bad” task orders, PriorityAsc and Random are clearly shown to be worse 
than the intuitively reasonable orders such as PriorityDesc. Measure based on  
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Fig. 4. Heat graph of the performance of rVNS methods for 2.5 hour “long run”. Black = 4472, 
White =26525. 

 

Fig. 4a. Heat graph of the performance of selected rVNS methods for 2.5 hour “long run”. 
Black = 25398, White =26525. 
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Fig. 5. Average CPU time taken by each chain used in the rVNS methods 

decreasing priority or priority per hour (PriorityDesc, PriOverReq, PriOverAvgReq, 
PriOverMaxReq) are superior to other measures. Figure 4a compares the best 
approaches in detail. Chain 12 produces the best results for all task orders. It is clear 
to see the correlation between results with common chains or task orders. Chain 4 
demonstrates that trying to estimate priority per hour is superior to PriorityDesc. This 
is probably because with a limited amount of free time in the schedule, using tasks 
that have lower priority but can be completed in a shorter time is more beneficial. 
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Figure 5 compares the CPU time for a single run of rVNS using each chain. It is 
clear that the approach would scale to very large problems using small resource 
selection sets such as for chains 1, 5, 6, 8, 11 and 13. Moreover, it appears from figure 
4 that little solution quality is lost when covering the resources with small subsets 
rather than larger ones as in chain 4, but the CPU times are significantly reduced. 
Chain 12 yields the best results of the chains which take reasonable amounts of CPU 
time, and clearly outperform chain 2 and chain 7 which do not consider the whole set 
of resources. It seems that resources of poor competence must be considered to get the 
best possible results. 

Table 2 shows the best result from the rVNS (Chain 12, Task Order PriOverReq) 
compared with GA and the hyperheuristic methods. They quite clearly show that 
HyperGreedy provided the fittest results on average while using more CPU time. The 
GA provided the worst result and in the slowest time. This may result from its 
insertion heuristic, however implementing a better one would make it even slower. 
The rVNS is the fastest method we have tested and provides results nearly 20% better 
than the GA in less than 1/350 of the CPU time required. Exactly solving small sub 
problems appears very effective in this case.  

Table 2. GA, rVNS and Hyper-Heuristic Results for one run and long run 

Method 
Fitness 

(single run average) 
CPU 

Time (s) 
Fitness  

(after 2.5 hours) 
GA 21401.3 9000.0 21401.3 
rVNS (Best) 25662.5 25.1 26215.1 
HyperRandom 24525.4 78.3 25645.4 
HyperGreedy 26523.6 419.2 27103.1 

HyperRandom performs poorly compared to the best rVNS method. rVNS task 
selectors and resource selectors are sensible guesses which significantly improve on 
the random approach of HyperRandom. The resource selectors of the rVNS tend to 
select resources which are of similar competence, so that a high competence resource 
is not combined with a low-competence resource (which might tie up the time of a 
high-competence resource). 

The HyperRandom, and the HyperGreedy heuristics try significant numbers of bad 
low level heuristics which make local improvements which in the long run are far 
from optimal. In the case of the HyperGreedy method, the bad low level heuristics are 
evaluated every iteration which wastes CPU time. Analysis of the low level heuristics 
used in the HyperGreedy method was performed and show that 19 (26.4%) of the low 
level heuristics were never used and 56 (77.7%) of the low level heuristics were used 
less than one percent of the time.  Figure 6 analyses the low level heuristics (LLHs) 
used. It shows the top 20 LLHs used together with when they are used in schedule 
generation. First third, middle third and last third show the usage at different stages in 
the scheduling process – from when the schedule is empty and unconstrained to when 
the schedule is almost full and inserting a task is more difficult. From these results it 
is clear that different LLHs contribute at different stages of the solution process, and 
that many different LLHs provide a contribution. For example, LLH 32 is more 
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Low Level Heuristic Analysis
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Fig. 6. Usage of low level heuristics throughout the HyperGreedy search 

effective at the start of scheduling, LLH 12 is more effective in the middle and LLH 
64 is more effective at the end. Without access to a large number of LLHs it seems 
that solution quality would be much reduced. 

5   Conclusions 

In this paper we have compared a large number (128) of reduced Variable 
Neighbourhood Search (rVNS) approaches to hyperheuristics and Genetic Algorithm 
approaches for workforce scheduling problem. We have demonstrated the 
effectiveness of heuristic/exact hybrids which find optimal subproblem solutions 
using an enumerative approach. Our rVNS method can produce good results to large 
problems in low CPU time. Our hyperheuristics produce even better results using 
more CPU time and we showed that the hyperheuristic uses a range of low level 
heuristics throughout the search process.  

The hyperheuristics we used are simple and learning could potentially decrease 
CPU time and increase fitness. In future work we intend to implement learning 
mechanisms. We have seen from the analysis that many low level heuristics were 
never used and some used mainly at the beginning, middle or end. Learning the low 
level heuristics behaviour could potentially lead to better solutions in less time.  
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