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Abstract 
 

Automatic test data generation helps testers to validate 

software against user requirements more easily. Test 

data can be generated from many sources; for example, 

experience of testers, source program, or software 

specification. Selecting a proper test data set is a 

decision making task. Testers have to decide what test 

data that they should use, and a heuristic technique is 

needed to solve this problem automatically. In this 

paper, we propose a framework for generating test data 

from software specifications. The selected specification 

is Unified Modeling Language (UML) state machine 

diagram. UML state machine diagram describes a 

system in term of state which can be changed when 

there is an action occurring in the system. The 

generated test data is a sequence of these actions. 

These sequences of action help testers to know how they 

should test the system.  The quality of generated test 

data is measured by the number of transitions which is 

fired using the test data. The more transitions test data 

can fire, the better quality of test data is. The number of 

coverage transitions is also used as a feedback for a 

heuristic search for a better test set. Genetic algorithms 

(GAs) are selected for searching the best test data. Our 

experimental results show that the proposed GA-based 

approach can work well for generating test data for 

some types of UML state machine diagrams. 

Keywords- Test data generation, UML state machine 

diagram, Genetic algorithm 
 

1. Introduction 
 

Software testing is a labor intensive and very 

expensive task. It accounts 50 % of software life cycle 

[1]. The crucial part of software testing is to select the 

test data for testing software. The appropriate amount 

of test data can reduce unnecessary execution time. In 

addition, the quality of this test data should be good 

enough; otherwise, test data cannot capture all 

requirements of the software. Automatic test data 

generation is proposed to deal with the balance between 

amount of test data and quality of test data, because 

random test data generation could not assure the quality 

of test data.  

Automatic test data generation is firstly proposed 

using control flow graph with a deterministic algorithm 

to search for a quality test data set [2]. More recently, 

non-deterministic techniques are also investigated for 

this problem. Michael, McGraw, and Schatz [3] 

presented an application of genetic algorithm to solve 

the same problem reported in [2] to search for a quality 

test data set from source code with adequate results. 

Moreover, having test data before coding can help 

developers to control their software to conform to the 

software specification during their development [4]. 

Software specifications can be UML diagrams, formal 

language specifications, or any forms of software 

descriptions. 

In this paper, a tool and an approach for generating 

test data from the software specification using a 

heuristic technique are proposed. Test data generated by 

the tool are sequences of actions from the software 

specification, the UML state machine diagram; the 

input is a sequence of triggers which can change states 

of the UML state machine diagram. The quality of test 

data is measured by the number of transitions which is 

fired by the input. In essence, this is an optimization 

problem to find the best sequence of triggers to cover 

the most transitions. Genetic algorithms (GAs) have 

been selected as the optimization technique because of 

its simplicity and effectiveness. In section 2, reviews of 

automatic test data generation are presented. A short 

description of the UML state machine diagram and the 

proposed automatic test data generation framework are 

given in section 3. The experimental results and 

discussion are shown in section 4. Finally, section 5 

presents the conclusion and future work. 
 

2. Related works 
 

2.1. Software testing 
 

The purpose of software testing is to validate and 

verify whether the software is working properly 

following software requirements. The simple technique 



is to test software against software requirements. This 

technique is called black-box testing [5], in which 

testers prepare test input and expected output which 

program should return from the given input. The 

expected input is created from the specification. The 

test is to compare the value from the expected output 

and the actual output from program. Another approach 

is to measure the quality of test data with the source 

code. The more piece of code test data cover, the more 

quality it is. This is called white-box testing. The basic 

white box testing uses coverage criteria as a 

measurement of test data [6]. Source code is 

transformed to a control flow graph. The path of the 

graph which is covered by test data is determined as the 

coverage criteria. The combination between black-box 

testing and white-box testing is gray-box testing [7]. 

Gray box testing measures the quality of test data using 

the software specification as black-box testing. In 

addition, gray-box testing also considers the behavior of 

software specification as white-box testing. In other 

words, gray box testing has to satisfy the software 

requirements as black-box testing and use the internal 

information as white-box testing. 
 

2.2. Test Data Generation from Software 

Specification 
 

There are many researches on software test data 

generation on a gray-box testing approach. Clarke [8] 

proposed an empirical study on automated test data 

generation using the state based specification EFSMs 

(Extended Finite State Machines). In his research, the 

commercial tool TestMaster was used to provide test 

data from EFSMs specification comparing with 

providing test data from the software engineer. The 

result showed that the effort was reduced by 88 % when 

using the automated test data generation. A state-based 

specification is not only the specification that is used 

for automated test data generation. Java Modeling 

Language (JML) [9, 10], which is a notation to specify 

the behavior of Java program, is also used for 

automated test generation. Xu and Yang [11] proposed 

a framework for generating test data from JML. 

However, in order to use their technique, developers 

have to spend some time in studying JML specification. 

As Unified Modeling Language (UML) is a main 

stream in software development [12], generating test 

data from UML diagrams helps developers to reduce a 

great amount of their efforts for learning new 

specifications. Many UML diagrams are selected for 

automated test data generation. Hong et.al [13] 

proposed a technique to select the test path from a state 

diagram. The concept of used and defined variable is 

applied with the EFSMs which generated from the state 

machine diagram. The test data generation should be 

using this generated path but they did not mention 

about this in their paper. More complete framework for 

automated test data generation is proposed in [14]. 

They provided a tool for dividing the UML state 

diagram into sub scenario. They needed to flatten the 

diagram and transform it to other forms before 

generating the test scenario. This approach still needs 

many transformations before test data can be generated.  

To avoid the transformation problem, some 

researchers proposed heuristic techniques. Cheon, Kim, 

and Perumandla studied on using the genetic algorithm 

to generate test data automatically from JML [15]. 

Genetic algorithms generate and find the best test data 

for each method which JML specify. They concluded 

that using genetic algorithm for generating test data is 

possible. Moreover, their framework is also possible to 

generate unit testing framework in which developer can 

use it for JUnit testing. 
 

3. Proposed Test Data Generation Tool 
 

In this section, we discuss related techniques used in 

our proposed approach. We use a UML state diagram as 

the software specification and genetic algorithm as the 

technique for generating test data. The quality of the 

generated test data is measured by the coverage of 

transitions occurred by each test data. The design of our 

approach is discussed at the end of this section. 
 

3.1. UML State Machine Diagram 
 

The UML state machine diagram is used for 

modeling discrete behavior of an object through finite 

state transition[16]. A system which is described by the 

UML state machine contains states in a particular time. 

Each state in the UML state machine is as same as in 

other finite state transition system. They are connected 

by transitions. States of the system can be changed if 

the system receives a trigger associated with the current 

states. The trigger will activate the transition which is 

adjacent with the current states. If the trigger fires 

transition, the current state will move to the target state. 

 
Figure 1 is an example of the UML state machine 

diagram for a coffee vending machine. When user turns 

 
Figure 1. A coffee vending machine state 

machine diagram 



on the machine, the status of machine is changed to 

“on”. If user adds money to the machine, the amount of 

money is increased. If users request for a cup of coffee, 

the state machine will check if there is money in the 

machine, then prepare a cup of coffee. After that the 

money in state machine is decreased. 

A transition is an edge which connects between 

states. In each transition, there are four components; 

transition name, trigger, guard condition, and action 

expression. All of them are optional, which means 

software designers do not have to specify all of them. 

For example, in transition “t8:dec[money=1]/money = 

0”, “t8” is a transition name. “dec” is a trigger. “money 

= 1” is a guard condition, and “money = 0” is an action 

expression. A transition name is a name of the 

transition. It is used for the transition ID. A trigger is a 

member of a set of events which can occur within the 

system. For a state machine diagram in Figure 1, 

members of a set of triggers are “dec”, “inc”, “power-

on”, “power-off”, and “coffee”. The trigger can be fired 

based on the current state of the state machine diagram 

and the trigger which is input to the diagram. A guard 

condition is declared in a block bracket. The guard 

condition is needed to evaluate to be true if the 

transition is considered to be fired. Finally, an action 

expression can be trigger or expression. If an action 

expression is a trigger, the system acts like there is a 

trigger from outside the system. If the action is an 

expression, the expression will be executed. 
 

3.2. Coverage Criteria 
 

The quality of a test data that we evaluate based on 

the number of coverage the test data can cover. The 

coverage of test data can be defined by many criteria. 

Offutt and Abdurazik[17] proposed the coverage level 

for using with UML diagrams. They proposed four 

levels of coverage; transition coverage level, full 

predicate coverage level, transition-pair coverage level, 

and complete sequence level.  

• Transition coverage level is a set of transitions 

which test data satisfy.  

• Full predicate level coverage is a test set that 

contains test data which examines each clause in 

each predicate.  

• Transition-pair coverage level designs coverage 

from pairs of adjacent transitions.  

• Complete sequence level is a meaningful 

sequence of transitions to which is designed by 

the software designer.  

In our work, we use transition coverage level for 

measuring the effectiveness of test data. For example, 

our generated test data for a coffee vending machine 

should fire transition “ti1”, “ti2”, “ti3”, “t1”, “t2”, “t3”, 

“t4”, “t5”, “t6”, “t7” and “t8”. 
 

3.3. Tool Design and Implementation 
 

In our proposed approach, the test data to be 

generated is a sequence of triggers. From the sequence 

of triggers, the trigger is extracted and used to fire 

transitions in the state machine diagram. An example of 

a sequence of triggers and how the trigger fires the 

transitions in the state diagram depicted in Figure 1 is 

shown in Table 1.  

A sequence of triggers is used as a chromosome of 

genetic algorithm. In our current approach, the 

transition coverage level is used for measuring the 

quality of each test data. In other word, the number of 

fired transitions is a fitness value of each test data. The 

test data is a sequence of triggers represented by a GA 

chromosome. For instance, a sequence in Table 1 

covers seven transitions; therefore, the fitness value for 

the sequence is seven. 

Tool to automatically generate the sequence of 

triggers consists of two parts as shown in Figure 2. The 

design and implementation of these parts are described 

below. 

3.3.1. UML State Machine Execution 
UML state machine execution contains the 

SDExecutor and DataCollector module. Its roles are to 

receive state machine information through a 

chromosome (as described below), and to calculate the 

fired transitions. The tool evaluates the fired transitions 

by executing the input triggers. For any given input, the 

fired transition is evaluated by its attributes, such as a 

needed trigger, a guard condition. In addition, some 

transitions contain an action to do when they are fired 

in an action part of the transition. A constraint of the 

proposed tool is that the guard condition should be a 

mathematical expression. Otherwise, the tool cannot 

Table 1. An example of tracing uml state diagram 
Sequence: power-on - inc - inc – power-on - inc –dec 

Trigger State executed  Current state(s) Attribute status 

- Initial state,ti1, Off Off money = 0 

power-on t1, On, Initial state: Supply,ti2, Idle 

            Initial state: Money,ti3, Empty 

Idle, Empty money = 0 

inc t5, NotEmpty Idle, NotEmpty money = 1 

inc t6, NotEmpty Idle, NotEmpty money = 2 

power-on - (no change) Idle, NotEmpty money = 2 

inc t6, NotEmpty  Idle, NotEmpty money = 3 

dec t7, NotEmpty Idle, NotEmpty money = 2 

 



execute it automatically. In order to execute an action 

declared in transition; the action is in an assignment 

statement form or a trigger. If an action is a trigger, the 

tool will use the action as it comes from a sequence of 

triggers before executing the next trigger in the 

sequence. 

 
The state machine diagram executor (SDExecutor) is 

responsible for executing the states and the transitions 

which are changed. The SDExecutor receives a 

sequence of triggers, and then extracts each trigger to 

test with the UML state machine diagram. The 

transition, which is fired by the trigger, is recorded by 

DataCollector module. DataCollector creates data 

structure which represents transition path from the 

given triggers. This data structure is used for 

calculating fitness value in FitnessCalculation part. 

FitnessCalculation part calculates fitness value 

depending on coverage level. Currently, the transition 

level coverage is used. Finally, the genetic algorithms 

part is responsible for the genetic algorithm operation. 
 

3.3.2. Genetic Algorithm design 
Our proposed approach targets to generate test data 

set to cover maximum transitions using genetic 

algorithms technique [18]. GAs are search techniques 

based on natural genetic and evolution mechanisms 

which can be used to solve many categories of 

problems in machine learning and function 

optimization. GA is iterative procedures which work 

with a population of candidate solutions 

(chromosomes). A population of candidate solutions is 

maintained by the GAs throughout the solution process. 

Initially a population of candidate solutions is generated 

randomly or by other means. During each iteration step, 

a selection operator is used to choose two solutions 

from the current population. The selection is based 

upon the measured goodness of the solutions in the 

population - this is being quantified by a fitness 

function. The selected solutions are then subjected to 

crossover. The crossover operator exchanges sections 

between these two selected solutions with a defined 

crossover probability. One of the resulting solutions is 

then chosen for application of the mutation operator, 

whereby the value at each position in the solution is 

changed with a defined mutation probability. The 

algorithm is terminated, when a defined stopping 

criterion is reached.  

Since our approach focuses on finding out a set of 

triggers to fire most transitions as possible, a 

chromosome in our genetic algorithm is a sequence of 

triggers itself. The first population will be generated 

from all possible triggers in the UML state machine 

diagram to a sequence of triggers. An example of 

sequence of triggers for the coffee machine state 

diagram is shown in the top row of Table 1. The 

sequence is mapped in to an integer string as show in 

Figure 2. 

The fitness value for each chromosome is calculated 

from the number of transitions which is fired by the 

input sequence. If there is any trigger which cannot fire 

any transition, the tool skips it and gets the next trigger 

in the sequence. For example, the second “power-on” in 

Table I. In this case, the tool picks up the next trigger in 

sequence, which is “inc” 

The genetic algorithm part is composed of GAs and 

FitnessCalculation module. Its functions are: randomly 

generating the initial population of chromosomes, 

running the UML state machine execution for retrieving 

fitness value of each chromosome, implementing 

crossover operation and mutation operation, and 

creating new set of chromosomes. The genetic 

algorithm part is implemented by extending the ECJ 

module developed by Evolutionary Computation 

Laboratory, George Mason University [19]. 

GAs operators used in the tool are the two point 

crossover and random mutation. Based on some 

experimentation and previous knowledge on GAs 

application with other problem [20], the parameters of 

genetic operation are set as follow:  

• The crossover probability is 0.5.  

• The mutation probability is 0.05. 

• The size of population in each generation is 10. 
 

4. Experimentation 
4.1. Case Studies 

 

The following four case studies with some different 

properties have been done through an experiment set of 

with the proposed tool: 

Case study 1: Coffee vending machine in Figure 1, 

the explanation of this state machine diagram is in 

section 3.1. 

Case study 2: Enrollment system taken from [21] is 

shown in Figure 3. An enrollment system diagram 

describes the activity of the enrollment for each course. 

The students enroll for the course. When the course is 

 
Figure 2. The overview of proposed 

approach. 



full, no more students can enroll for the course. The 

course can be closed for enrollment anytime. 

 
Case study 3: A class management system taken from 

[21] is shown in Figure 4. The diagram describes a 

simple course management. Students enroll for the 

course. While the teacher is teaching, students can drop 

their course and have the final exam before finishing 

the course. 

 
Case study 4: A telephone system taken from [16] is 

shown in figure 5 to demonstrate how the system 

works. It starts from user lift receiver, waits for the dial 

tone and starts dialing. It checks every digit for 

correctness, when every digit is dialed. Then the phone 

is connected. The user can hang the phone anytime to 

cancel the operation.  

 
These diagrams have been customized for our tool.  
 

4.2. Result and Discussion 
 

We have experimented all four test cases discussed 

in the previous section by varying the length of 

chromosome from 5 to 10. Each time of run, the 

chromosome which covers maximum number of 

transitions is the best solution. The GAs approach was 

run 20 times to eliminate the possibility of being lucky 

in the stochastic GAs search process. The experimental 

results are summarized in Table 2. The table shows the 

average % coverage, and the maximum % coverage 

given by the best solution of 20 GAs runs for all four 

case studies using five different chromosome lengths. 

From the results, GAs worked well in case study 1 

(coffee vending machine diagram). The best solution is 

always found when the chromosome length is greater 

than eight. In case study 2 (enrollment diagram), case 

study 3 (class management diagram) and case study 4 

(telephone system diagram), the average coverage 

increases, if the chromosome length is increased. 

However, the best solution for each case is the same for 

the larger chromosome length (less than 5 in enrollment 

diagram and top-level class management diagram, and 

8 in telephone system).  

GAs can obtain 100 % coverage from case study 1. 

The coffee vending machine can work indefinitely 

because the system does not contain the final state. 

Without the final state, the coffee vending machine can 

run through all state transitions; therefore, genetic 

algorithm can find the optimized sequence of triggers.  

The other three case studies contain the final state. 

Moreover, there is more than one path to reach the final 

state. Therefore, a single test data cannot cover all 

transitions. For example, in case study 3 (class 

management diagram), one order of fired transitions 

may be “t1”-“t2”-“t3”-“t5”-“t3e”. This sequence will 

never execute the path “t1e” – i.e. this is an infeasible 

transition which only one test data cannot reach. In 

order to overcome the problem of infeasible transitions 

we need multiple test date set (i.e. multiple sequences 

of triggers). 

Furthermore we need to consider a looping problem 

while a transition is fired. For example, in Case study 2 

(enrollment state machine), transition “t4” to state 

“Full” cannot be fired unless the number of students 

who enroll this course is equal to the maximum seat of 

the class. The number of enrolled student is increased 

when transition “t3” is fired. As a consequence, in a 

sequence of triggers which can cover the transition “t4” 

must contain triggers which can fired “t3” to make the 

number of enrolled of students reach the maximum seat 

number consecutively. 
 

5. Conclusion and future work 
 

In this paper, we propose a framework for using 

genetic algorithm to generate test data from a UML 

state machine diagram. The test data to be generated is 

a sequence of triggers which are fed into the system. 

The fitness function used in the system is the transition 

coverage. In our experiment we select only the best 

solution which covers most of transitions. It is observed 

that our system works very well with the system which 

does not contain the final state. The coverage result of 

 
Figure 5. The telephone system state 

machine diagram 

 
Figure 4. The class management system 

state machine diagram 

 
Figure 3. The enrollment state machine 

diagram 



some examples is not good because of the complexity 

of the design and the approach we use. Since we select 

only one best solution, not all transitions can be reached 

in the diagrams with the final state (i.e. an infeasible 

transition). In addition, the looping problem is another 

concern. Some software design requires some 

transitions to be fired continuously until the attribute 

reaches some value before transitioning to next state. A 

subsequence of triggers which can increase or decrease 

the attribute value to reach the criteria is needed. 

Our future work will concentrate on these two 

problems. The infeasible transition problem may be 

resolved using a set of test data rather than just one test 

data. The fitness value should be calculated from the set 

of test data, not only from the individual test data. We 

will also like to extend this approach to the other UML 

diagrams; for example UML class diagram, can be 

merged with our test data to generate more flexible and 

usable test data. 
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Table 2. An Coverage result for our case studies 
 Coffee Vending 

machine 

Enrollment Top-level Class 

Management 

Telephone System 

Chromosome 

length 

% Coverage % Coverage % Coverage % Coverage 

Average Best Average Best Average Best Average Best 

5 86.36 90.91 32.86 35.71 72.50 75.00 40.67 46.67 

6 91.82 100.00 34.29 35.71 75.00 75.00 42.00 46.67 

7 99.55 100.00 34.64 35.71 75.00 75.00 45.00 53.33 

8 99.55 100.00 35.71 35.71 75.00 75.00 48.00 53.33 

9 100.00 100.00 35.71 35.71 75.00 75.00 48.67 60.00 

10 100.00 100.00 35.71 35.71 75.00 75.00 52.00 60.00 

 


