

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’s website. Where
available access to the published online version may require a subscription.

Author(s): Doungsa-ard, C., Dahal, K. P., Hossain, M. A. and Suwannasart, T.

Title: Test data generation from UML state machine diagrams using GAs.

Publication year: 2008

Conference title: Second International Conference on Software, Knowledge,
Information Management and Applications (SKIMA, 2008).

ISBN: 9781851432516

Publisher’s site: http://www.kec.edu.np/skima2008/

Citation: Doungsa-ard, C., Dahal, K. P., Hossain, M. A. and Suwannasart, T.
(2008) Test data generation from UML state machine diagrams using GAs. In:
Hossain, M. A. and Ouzrout, Y. (eds.) Proceedings of the Second International
Conference on Software, Knowledge, Information Management and Applications
(SKIMA, 2008), 18-21

st

March 2008, Kathmandu, Nepal.

Copyright statement: © 2008 SKIMA Conference Organising Committee.
Reproduced in accordance with the publisher's self-archiving policy.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Test Data Generation from UML State Machine Diagrams using GAs

Chartchai Doungsa-ard*, Keshav Dahal*, Alamgir Hossain*, and Taratip Suwannasart**

*School of Informatics University of Bradford Bradford, United Kingdom

{c.doungsa-ard, k.p.dahal, m.a.hossain1}@bradford.ac.uk

**Department of Computer Engineering Chulalongkorn UniversityBangkok, Thailand

taratip.s@chula.ac.th

Abstract

Automatic test data generation helps testers to validate

software against user requirements more easily. Test

data can be generated from many sources; for example,

experience of testers, source program, or software

specification. Selecting a proper test data set is a

decision making task. Testers have to decide what test

data that they should use, and a heuristic technique is

needed to solve this problem automatically. In this

paper, we propose a framework for generating test data

from software specifications. The selected specification

is Unified Modeling Language (UML) state machine

diagram. UML state machine diagram describes a

system in term of state which can be changed when

there is an action occurring in the system. The

generated test data is a sequence of these actions.

These sequences of action help testers to know how they

should test the system. The quality of generated test

data is measured by the number of transitions which is

fired using the test data. The more transitions test data

can fire, the better quality of test data is. The number of

coverage transitions is also used as a feedback for a

heuristic search for a better test set. Genetic algorithms

(GAs) are selected for searching the best test data. Our

experimental results show that the proposed GA-based

approach can work well for generating test data for

some types of UML state machine diagrams.

Keywords- Test data generation, UML state machine

diagram, Genetic algorithm

1. Introduction

Software testing is a labor intensive and very

expensive task. It accounts 50 % of software life cycle

[1]. The crucial part of software testing is to select the

test data for testing software. The appropriate amount

of test data can reduce unnecessary execution time. In

addition, the quality of this test data should be good

enough; otherwise, test data cannot capture all

requirements of the software. Automatic test data

generation is proposed to deal with the balance between

amount of test data and quality of test data, because

random test data generation could not assure the quality

of test data.

Automatic test data generation is firstly proposed

using control flow graph with a deterministic algorithm

to search for a quality test data set [2]. More recently,

non-deterministic techniques are also investigated for

this problem. Michael, McGraw, and Schatz [3]

presented an application of genetic algorithm to solve

the same problem reported in [2] to search for a quality

test data set from source code with adequate results.

Moreover, having test data before coding can help

developers to control their software to conform to the

software specification during their development [4].

Software specifications can be UML diagrams, formal

language specifications, or any forms of software

descriptions.

In this paper, a tool and an approach for generating

test data from the software specification using a

heuristic technique are proposed. Test data generated by

the tool are sequences of actions from the software

specification, the UML state machine diagram; the

input is a sequence of triggers which can change states

of the UML state machine diagram. The quality of test

data is measured by the number of transitions which is

fired by the input. In essence, this is an optimization

problem to find the best sequence of triggers to cover

the most transitions. Genetic algorithms (GAs) have

been selected as the optimization technique because of

its simplicity and effectiveness. In section 2, reviews of

automatic test data generation are presented. A short

description of the UML state machine diagram and the

proposed automatic test data generation framework are

given in section 3. The experimental results and

discussion are shown in section 4. Finally, section 5

presents the conclusion and future work.

2. Related works

2.1. Software testing

The purpose of software testing is to validate and

verify whether the software is working properly

following software requirements. The simple technique

is to test software against software requirements. This

technique is called black-box testing [5], in which

testers prepare test input and expected output which

program should return from the given input. The

expected input is created from the specification. The

test is to compare the value from the expected output

and the actual output from program. Another approach

is to measure the quality of test data with the source

code. The more piece of code test data cover, the more

quality it is. This is called white-box testing. The basic

white box testing uses coverage criteria as a

measurement of test data [6]. Source code is

transformed to a control flow graph. The path of the

graph which is covered by test data is determined as the

coverage criteria. The combination between black-box

testing and white-box testing is gray-box testing [7].

Gray box testing measures the quality of test data using

the software specification as black-box testing. In

addition, gray-box testing also considers the behavior of

software specification as white-box testing. In other

words, gray box testing has to satisfy the software

requirements as black-box testing and use the internal

information as white-box testing.

2.2. Test Data Generation from Software

Specification

There are many researches on software test data

generation on a gray-box testing approach. Clarke [8]

proposed an empirical study on automated test data

generation using the state based specification EFSMs

(Extended Finite State Machines). In his research, the

commercial tool TestMaster was used to provide test

data from EFSMs specification comparing with

providing test data from the software engineer. The

result showed that the effort was reduced by 88 % when

using the automated test data generation. A state-based

specification is not only the specification that is used

for automated test data generation. Java Modeling

Language (JML) [9, 10], which is a notation to specify

the behavior of Java program, is also used for

automated test generation. Xu and Yang [11] proposed

a framework for generating test data from JML.

However, in order to use their technique, developers

have to spend some time in studying JML specification.

As Unified Modeling Language (UML) is a main

stream in software development [12], generating test

data from UML diagrams helps developers to reduce a

great amount of their efforts for learning new

specifications. Many UML diagrams are selected for

automated test data generation. Hong et.al [13]

proposed a technique to select the test path from a state

diagram. The concept of used and defined variable is

applied with the EFSMs which generated from the state

machine diagram. The test data generation should be

using this generated path but they did not mention

about this in their paper. More complete framework for

automated test data generation is proposed in [14].

They provided a tool for dividing the UML state

diagram into sub scenario. They needed to flatten the

diagram and transform it to other forms before

generating the test scenario. This approach still needs

many transformations before test data can be generated.

To avoid the transformation problem, some

researchers proposed heuristic techniques. Cheon, Kim,

and Perumandla studied on using the genetic algorithm

to generate test data automatically from JML [15].

Genetic algorithms generate and find the best test data

for each method which JML specify. They concluded

that using genetic algorithm for generating test data is

possible. Moreover, their framework is also possible to

generate unit testing framework in which developer can

use it for JUnit testing.

3. Proposed Test Data Generation Tool

In this section, we discuss related techniques used in

our proposed approach. We use a UML state diagram as

the software specification and genetic algorithm as the

technique for generating test data. The quality of the

generated test data is measured by the coverage of

transitions occurred by each test data. The design of our

approach is discussed at the end of this section.

3.1. UML State Machine Diagram

The UML state machine diagram is used for

modeling discrete behavior of an object through finite

state transition[16]. A system which is described by the

UML state machine contains states in a particular time.

Each state in the UML state machine is as same as in

other finite state transition system. They are connected

by transitions. States of the system can be changed if

the system receives a trigger associated with the current

states. The trigger will activate the transition which is

adjacent with the current states. If the trigger fires

transition, the current state will move to the target state.

Figure 1 is an example of the UML state machine

diagram for a coffee vending machine. When user turns

Figure 1. A coffee vending machine state

machine diagram

on the machine, the status of machine is changed to

“on”. If user adds money to the machine, the amount of

money is increased. If users request for a cup of coffee,

the state machine will check if there is money in the

machine, then prepare a cup of coffee. After that the

money in state machine is decreased.

A transition is an edge which connects between

states. In each transition, there are four components;

transition name, trigger, guard condition, and action

expression. All of them are optional, which means

software designers do not have to specify all of them.

For example, in transition “t8:dec[money=1]/money =

0”, “t8” is a transition name. “dec” is a trigger. “money

= 1” is a guard condition, and “money = 0” is an action

expression. A transition name is a name of the

transition. It is used for the transition ID. A trigger is a

member of a set of events which can occur within the

system. For a state machine diagram in Figure 1,

members of a set of triggers are “dec”, “inc”, “power-

on”, “power-off”, and “coffee”. The trigger can be fired

based on the current state of the state machine diagram

and the trigger which is input to the diagram. A guard

condition is declared in a block bracket. The guard

condition is needed to evaluate to be true if the

transition is considered to be fired. Finally, an action

expression can be trigger or expression. If an action

expression is a trigger, the system acts like there is a

trigger from outside the system. If the action is an

expression, the expression will be executed.

3.2. Coverage Criteria

The quality of a test data that we evaluate based on

the number of coverage the test data can cover. The

coverage of test data can be defined by many criteria.

Offutt and Abdurazik[17] proposed the coverage level

for using with UML diagrams. They proposed four

levels of coverage; transition coverage level, full

predicate coverage level, transition-pair coverage level,

and complete sequence level.

• Transition coverage level is a set of transitions

which test data satisfy.

• Full predicate level coverage is a test set that

contains test data which examines each clause in

each predicate.

• Transition-pair coverage level designs coverage

from pairs of adjacent transitions.

• Complete sequence level is a meaningful

sequence of transitions to which is designed by

the software designer.

In our work, we use transition coverage level for

measuring the effectiveness of test data. For example,

our generated test data for a coffee vending machine

should fire transition “ti1”, “ti2”, “ti3”, “t1”, “t2”, “t3”,

“t4”, “t5”, “t6”, “t7” and “t8”.

3.3. Tool Design and Implementation

In our proposed approach, the test data to be

generated is a sequence of triggers. From the sequence

of triggers, the trigger is extracted and used to fire

transitions in the state machine diagram. An example of

a sequence of triggers and how the trigger fires the

transitions in the state diagram depicted in Figure 1 is

shown in Table 1.

A sequence of triggers is used as a chromosome of

genetic algorithm. In our current approach, the

transition coverage level is used for measuring the

quality of each test data. In other word, the number of

fired transitions is a fitness value of each test data. The

test data is a sequence of triggers represented by a GA

chromosome. For instance, a sequence in Table 1

covers seven transitions; therefore, the fitness value for

the sequence is seven.

Tool to automatically generate the sequence of

triggers consists of two parts as shown in Figure 2. The

design and implementation of these parts are described

below.

3.3.1. UML State Machine Execution
UML state machine execution contains the

SDExecutor and DataCollector module. Its roles are to

receive state machine information through a

chromosome (as described below), and to calculate the

fired transitions. The tool evaluates the fired transitions

by executing the input triggers. For any given input, the

fired transition is evaluated by its attributes, such as a

needed trigger, a guard condition. In addition, some

transitions contain an action to do when they are fired

in an action part of the transition. A constraint of the

proposed tool is that the guard condition should be a

mathematical expression. Otherwise, the tool cannot

Table 1. An example of tracing uml state diagram
Sequence: power-on - inc - inc – power-on - inc –dec

Trigger State executed Current state(s) Attribute status

- Initial state,ti1, Off Off money = 0

power-on t1, On, Initial state: Supply,ti2, Idle

 Initial state: Money,ti3, Empty

Idle, Empty money = 0

inc t5, NotEmpty Idle, NotEmpty money = 1

inc t6, NotEmpty Idle, NotEmpty money = 2

power-on - (no change) Idle, NotEmpty money = 2

inc t6, NotEmpty Idle, NotEmpty money = 3

dec t7, NotEmpty Idle, NotEmpty money = 2

execute it automatically. In order to execute an action

declared in transition; the action is in an assignment

statement form or a trigger. If an action is a trigger, the

tool will use the action as it comes from a sequence of

triggers before executing the next trigger in the

sequence.

The state machine diagram executor (SDExecutor) is

responsible for executing the states and the transitions

which are changed. The SDExecutor receives a

sequence of triggers, and then extracts each trigger to

test with the UML state machine diagram. The

transition, which is fired by the trigger, is recorded by

DataCollector module. DataCollector creates data

structure which represents transition path from the

given triggers. This data structure is used for

calculating fitness value in FitnessCalculation part.

FitnessCalculation part calculates fitness value

depending on coverage level. Currently, the transition

level coverage is used. Finally, the genetic algorithms

part is responsible for the genetic algorithm operation.

3.3.2. Genetic Algorithm design
Our proposed approach targets to generate test data

set to cover maximum transitions using genetic

algorithms technique [18]. GAs are search techniques

based on natural genetic and evolution mechanisms

which can be used to solve many categories of

problems in machine learning and function

optimization. GA is iterative procedures which work

with a population of candidate solutions

(chromosomes). A population of candidate solutions is

maintained by the GAs throughout the solution process.

Initially a population of candidate solutions is generated

randomly or by other means. During each iteration step,

a selection operator is used to choose two solutions

from the current population. The selection is based

upon the measured goodness of the solutions in the

population - this is being quantified by a fitness

function. The selected solutions are then subjected to

crossover. The crossover operator exchanges sections

between these two selected solutions with a defined

crossover probability. One of the resulting solutions is

then chosen for application of the mutation operator,

whereby the value at each position in the solution is

changed with a defined mutation probability. The

algorithm is terminated, when a defined stopping

criterion is reached.

Since our approach focuses on finding out a set of

triggers to fire most transitions as possible, a

chromosome in our genetic algorithm is a sequence of

triggers itself. The first population will be generated

from all possible triggers in the UML state machine

diagram to a sequence of triggers. An example of

sequence of triggers for the coffee machine state

diagram is shown in the top row of Table 1. The

sequence is mapped in to an integer string as show in

Figure 2.

The fitness value for each chromosome is calculated

from the number of transitions which is fired by the

input sequence. If there is any trigger which cannot fire

any transition, the tool skips it and gets the next trigger

in the sequence. For example, the second “power-on” in

Table I. In this case, the tool picks up the next trigger in

sequence, which is “inc”

The genetic algorithm part is composed of GAs and

FitnessCalculation module. Its functions are: randomly

generating the initial population of chromosomes,

running the UML state machine execution for retrieving

fitness value of each chromosome, implementing

crossover operation and mutation operation, and

creating new set of chromosomes. The genetic

algorithm part is implemented by extending the ECJ

module developed by Evolutionary Computation

Laboratory, George Mason University [19].

GAs operators used in the tool are the two point

crossover and random mutation. Based on some

experimentation and previous knowledge on GAs

application with other problem [20], the parameters of

genetic operation are set as follow:

• The crossover probability is 0.5.

• The mutation probability is 0.05.

• The size of population in each generation is 10.

4. Experimentation
4.1. Case Studies

The following four case studies with some different

properties have been done through an experiment set of

with the proposed tool:

Case study 1: Coffee vending machine in Figure 1,

the explanation of this state machine diagram is in

section 3.1.

Case study 2: Enrollment system taken from [21] is

shown in Figure 3. An enrollment system diagram

describes the activity of the enrollment for each course.

The students enroll for the course. When the course is

Figure 2. The overview of proposed

approach.

full, no more students can enroll for the course. The

course can be closed for enrollment anytime.

Case study 3: A class management system taken from

[21] is shown in Figure 4. The diagram describes a

simple course management. Students enroll for the

course. While the teacher is teaching, students can drop

their course and have the final exam before finishing

the course.

Case study 4: A telephone system taken from [16] is

shown in figure 5 to demonstrate how the system

works. It starts from user lift receiver, waits for the dial

tone and starts dialing. It checks every digit for

correctness, when every digit is dialed. Then the phone

is connected. The user can hang the phone anytime to

cancel the operation.

These diagrams have been customized for our tool.

4.2. Result and Discussion

We have experimented all four test cases discussed

in the previous section by varying the length of

chromosome from 5 to 10. Each time of run, the

chromosome which covers maximum number of

transitions is the best solution. The GAs approach was

run 20 times to eliminate the possibility of being lucky

in the stochastic GAs search process. The experimental

results are summarized in Table 2. The table shows the

average % coverage, and the maximum % coverage

given by the best solution of 20 GAs runs for all four

case studies using five different chromosome lengths.

From the results, GAs worked well in case study 1

(coffee vending machine diagram). The best solution is

always found when the chromosome length is greater

than eight. In case study 2 (enrollment diagram), case

study 3 (class management diagram) and case study 4

(telephone system diagram), the average coverage

increases, if the chromosome length is increased.

However, the best solution for each case is the same for

the larger chromosome length (less than 5 in enrollment

diagram and top-level class management diagram, and

8 in telephone system).

GAs can obtain 100 % coverage from case study 1.

The coffee vending machine can work indefinitely

because the system does not contain the final state.

Without the final state, the coffee vending machine can

run through all state transitions; therefore, genetic

algorithm can find the optimized sequence of triggers.

The other three case studies contain the final state.

Moreover, there is more than one path to reach the final

state. Therefore, a single test data cannot cover all

transitions. For example, in case study 3 (class

management diagram), one order of fired transitions

may be “t1”-“t2”-“t3”-“t5”-“t3e”. This sequence will

never execute the path “t1e” – i.e. this is an infeasible

transition which only one test data cannot reach. In

order to overcome the problem of infeasible transitions

we need multiple test date set (i.e. multiple sequences

of triggers).

Furthermore we need to consider a looping problem

while a transition is fired. For example, in Case study 2

(enrollment state machine), transition “t4” to state

“Full” cannot be fired unless the number of students

who enroll this course is equal to the maximum seat of

the class. The number of enrolled student is increased

when transition “t3” is fired. As a consequence, in a

sequence of triggers which can cover the transition “t4”

must contain triggers which can fired “t3” to make the

number of enrolled of students reach the maximum seat

number consecutively.

5. Conclusion and future work

In this paper, we propose a framework for using

genetic algorithm to generate test data from a UML

state machine diagram. The test data to be generated is

a sequence of triggers which are fed into the system.

The fitness function used in the system is the transition

coverage. In our experiment we select only the best

solution which covers most of transitions. It is observed

that our system works very well with the system which

does not contain the final state. The coverage result of

Figure 5. The telephone system state

machine diagram

Figure 4. The class management system

state machine diagram

Figure 3. The enrollment state machine

diagram

some examples is not good because of the complexity

of the design and the approach we use. Since we select

only one best solution, not all transitions can be reached

in the diagrams with the final state (i.e. an infeasible

transition). In addition, the looping problem is another

concern. Some software design requires some

transitions to be fired continuously until the attribute

reaches some value before transitioning to next state. A

subsequence of triggers which can increase or decrease

the attribute value to reach the criteria is needed.

Our future work will concentrate on these two

problems. The infeasible transition problem may be

resolved using a set of test data rather than just one test

data. The fitness value should be calculated from the set

of test data, not only from the individual test data. We

will also like to extend this approach to the other UML

diagrams; for example UML class diagram, can be

merged with our test data to generate more flexible and

usable test data.

6. Acknowledgement

This research has been supported by the EU Asia-

link project - TH/Asia Link/004 (91712) -Euro-Asia

Collaboration and Networking in Information

Engineering System Technology (EAST-WEST).

7. Reference

[1] G. Myers, The Art of Software Testing, 2 ed: John Wiley

& Son. Inc, 2004.

[2] B. Korel, "Automated software test data generation"

Software Engineering, IEEE Transactions on, vol. 16, pp.

870-879, 1990.

[3] C. Michael, G. McGraw, and M. A. Schatz, "Generating

software test data by evolution" Software Engineering, IEEE

Transactions on, vol. 27, pp. 1085-1110, 2001.

[4] K. Beck, Test-Driven Development by Example:

Addison-Wesley, 2003.

[5] B. Beizer, Black-box testing : techniques for functional

testing of software and systems: John Wiley & son Inc., 1995.

[6] R. S. Pressman, Software Engineering : a practitioner's

approach: McGraw-Hill, Inc., 2000.

[7] N. Q. Hung, Testing Application on the Web: John

Wiley & Sons, 2003.

[8] J. M. Clark, "Automated Test Generation from a

Behavioral Model", The 11th International Software Quality

Week (QW98), 1998.

[9] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.

Leavens, K. Leino, and E. Poll, "An overview of JML tools

and applications" Eighth International Workshop on Formal

Methods for Industrial Critical Systems (FMICS '03), ser.

Electronic Notes in Theoretical Computer Science, Elsevier,

2003.

[10] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,

D. Cok, P. Muller, and J. Kiniry, "JML Reference Manual"

2005.

[11] G. Xu and Z. Yang, "JMLAutoTest: A Novel Automated

Testing Framework Based on JML and JUnit" in Formal

Approaches to Software Testing, vol. 2931/2004, Lecture

Notes in Computer Science 2004, pp. 70-85.

[12] C. F. J. Lange, M. R. V. Chaudron, and J. Muskens, "In

practice: UML software architecture and design description"

Software, IEEE, vol. 23, pp. 40-46, 2006.

[13] H. S. Hong, Y. G. Kim, S. D. Cha, D.-H. Bae, and H.

Ural, "A test sequence selection method for statecharts"

Software Testing, Verification & Reliability, vol. 10, pp. 203-

227, 2000.

[14] L. C. Briand, J. Cui, and Y. Labiche, "Towards

automated support for deriving test data from UML

statecharts" in “UML” 2003 - The Unified Modeling

Language, vol. 2863/2003, Lecture Notes in Computer

Science: Springer Berlin / Heidelberg, 2003, pp. 249-264.

[15] Y. Cheon, M. Y. Kim, and A. Perumandla, "A Complete

Automation of Unit Testing for Java Programs" presented at

Proceedings of the 2005 International Conference on

Software Engineering Research and Practice (SERP ’05), Las

Vegas, Nevada, USA,, 2005.

[16] OMG, "OMG Unified Modeling Language

Superstructure version 2.1" OMG, 2003.

[17] J. Offutt and A. Abdurazik, "Generating Tests from

UML Specifications" presented at 2nd International

Conference on the UML, 1999.

[18] T. Bäck, D. Fogel, and Z. Michalewicz, Evolutionary

Computation 1: Basic Algorithms and Operators: Institute of

Physics, London, 2000, 2000.

[19] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, J.

Bassett, R. Hubley, and A. Chircop, "ECJ-A Java-based

Evolutionary Computation Research System", vol. 24

February 2006.

[20] K. P. Dahal, C. J. Aldridge, and S. J. Galloway,

"Evolutionary hybrid approaches for generation scheduling in

power systems" European Journal of Operational Research,

vol. 177, pp. 2050-2068, 2007.

[21] S. W. Ambler, The Object Primer: Agile Model-driven

Development with UML 2.0: Cambridge University Press,

2004.

Table 2. An Coverage result for our case studies
 Coffee Vending

machine

Enrollment Top-level Class

Management

Telephone System

Chromosome

length

% Coverage % Coverage % Coverage % Coverage

Average Best Average Best Average Best Average Best

5 86.36 90.91 32.86 35.71 72.50 75.00 40.67 46.67

6 91.82 100.00 34.29 35.71 75.00 75.00 42.00 46.67

7 99.55 100.00 34.64 35.71 75.00 75.00 45.00 53.33

8 99.55 100.00 35.71 35.71 75.00 75.00 48.00 53.33

9 100.00 100.00 35.71 35.71 75.00 75.00 48.67 60.00

10 100.00 100.00 35.71 35.71 75.00 75.00 52.00 60.00

