

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

Author(s): Doungsa-ard, C., Dahal, K. P., Hossain, M. A. and Suwannasart, T.

Title: An automatic test data generation from UML state diagram using genetic
algorithm.

Publication year: 2007

Conference title: Second International Conference on Software Engineering
Advances (ICSEA 2007).

ISBN: 0-7695-2937-2

Publisher: IEEE

Publisher’s site: http://www2.computer.org/portal/web/csdl/proceedings/i#1

Citation: Doungsa-ard, C., Dahal, K. P., Hossain, M. A. and Suwannasart, T.
(2007) An automatic test data generation from UML state diagram using genetic
algorithm. In: Proceedings of the Second International Conference on Software
Engineering Advances (ICSEA 2007). 25-31 Aug. 2007 Cap Esterel, France.
IEEE Computer Society Press. pp. 47-52.

Copyright statement: Copyright © [2007] IEEE. Reprinted from Second
International Conference on Software Engineering Advances (ICSEA 2007).

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Bradford's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www2.computer.org/portal/web/csdl/proceedings/i#1�
mailto:pubs-permissions@ieee.org�
mailto:pubs-permissions@ieee.org�

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

 1

Abstract— Software testing is a part of software development

process. However, this part is the first one to miss by software
developers if there is a limited time to complete the project.
Software developers often finish their software construction
closed to the delivery time, they usually don’t have enough time
to create effective test cases for testing their programs. Creating
test cases manually is a huge work for software developers in the
rush hours. A tool which automatically generates test cases and
test data can help the software developers to create test cases
from software designs/models in early stage of the software
development (before coding). Heuristic techniques can be applied
for creating quality test data. In this paper, a GA-based test data
generation technique has been proposed to generate test data
from UML state diagram, so that test data can be generated
before coding. The paper details the GA implementation to
generate sequences of triggers for UML state diagram as test
cases. The proposed algorithm has been demonstrated manually
for an example of a vending machine.

Index Terms— test data generation, gray-box testing, artificial
intelligence, genetic algorithm

I. INTRODUCTION
 Software testing is an important activity to assure the
quality of software. Unfortunately, software testing is very
labor intensive and very expensive. It can take about 50
percents of total cost in software developing process [1].
Automated test data generation reduces an effort of software
developers for creating test cases. The software testers may
need to spend a longer time using many test cases if the test
data used are not of high quality. Therefore, a performance of
executing test data is an important issue to reduce the testing
time.
 Software testing is usually the first part of software
development stages, which software developers decide to omit
when there is a limited time to deliver the software. In other
word, developers may not have enough time after they

C. Doungsa-ard is with Bradford University, Bradford, West Yorkshire,

BD7 1DP, UK, on leave from College of Art, Media, and Technology,
Chiangmai University, Chiangmai 50200 Thailand. (phone: 665-389-3216;
fax: 665-389-3217; e-mail: chartchai.d@ camt.info).

K. Dahal is with Bradford University, Bradford, West Yorkshire, BD7
1DP, UK (e-mail:K.P.Dahal@bradford.ac.uk)

A. Hossain is with Bradford University, Bradford, West Yorkshire, BD7
1DP, UK (e-mail:M.A.Hossain1@bradford.ac.uk)

T. Suwannasart., is with deparment of computer engineering, faculty of
engineering, Chulalongkorn university, Bangkok 10330, Thailand (e-mail:
Taratip.s@chula.ac.th).

This work is supported by EAST-WEST project (Euro-ASia
CollaboraTions and NetWorking in Information Engineering System
Technology) Ref: TH/Asia Link/004 (91712)

finished their coding to create test cases to test their code.
Generating test cases before coding can resolve these
problems. This not only helps developers to test their program
when they finish coding but also controls the developers to
program the software as defined in the software specification
[2]. In this case the software specifications are the main
sources for generating test cases as these documents describe
the software system to be developed in detail. Software
specifications may be UML diagrams, formal language
specification, or natural language description.
 In this paper, an approach for generating test data from
software specification using heuristic technique is proposed.
Our approach uses heuristic technique for determining
appropriate test data for testing software. Genetic algorithm is
selected due to its effectiveness and simplicity. Test data is
generated from UML state diagram. In section 2, a review of
testing problem and some automated test data generation
techniques are presented. A short description of UML state
diagram and an automatic test data generation technique are
given in section 3. Section 4 illustrates an example of the use
of the proposed approach. Finally, section 5 presents
conclusion and future work.

II. RELATED WORKS

A. Software Testing
 During a testing stage, software testers use test data as input
to drive the software program. The testers usually have an
expected outcome from these data, which is also test oracle. It
may include a return value, a sequence of method calls, or any
types of output that the testers want to inspect. After program
has been executed, it returns output which is an actual output.
Testers have to compare between test oracle and actual result
to decide whether a program executes correctly for the given
test, and make a verdict of “pass” or “fail”.
 If testers want to test functional requirements, they may use
black-box testing technique. Black-box testing [3]does not
need knowledge of how software is programmed. Test oracles
are specified by software design or software specifications.
Testers inject test data to execute program, then compare
actual result with the specified test oracle. By contrast, white-
box testing needs knowledge of how software is programmed.
In white-box testing, paths or statements which has been
executed are test oracle. These are called coverage criteria.
There are three main types of coverage criteria: statement
coverage, branch coverage, and path coverage. Statement
coverage reports whether each statement is encountered by the
test suite or not. Branch coverage reports whether every

An Automatic Test Data Generation from UML
State Diagram using Genetic Algorithm

Chartchai Doungsa-ard, Keshav Dahal, Alamgir Hossain, and Taratip Suwannasart

 2

branch structure (if – else clause or while clause) has been
executed for true and false condition in each branch. Finally,
path coverage reports whether all possible paths in function
has been tested.
 In Object-oriented context, the structure of software is more
complicated than the structural one. Conventional test
approaches may not be enough for testing. The combination of
those two traditional approaches is called Gray-box testing
[4]. In Gray-box testing, test data generates based on the high
level design which specifies the expected structure and
behavior of system. Gray-box testing investigates the
coverage criteria of white-box method and finds all possible
coverage paths. In addition, the generated test case should be
satisfied with functional requirement as in the black-box
testing criteria.

B. Test Data Generation on Gray-Box Techniques
 Many automated test data generation techniques produce
test data based on gray-box method. Not only does gray-box
testing concern functional requirement as black box testing,
but also concerns on behaviors of system. Clarke [5] proposed
an empirical study which compared efforts between automate
test generation and manual test generation. In his report test
data was generated from extended finite state model (EFSM).
The research shows that the automate test data generation
could reduce an effort from manual test data generation for
more than 88 percents. Xu and Yang [6] proposed test data
generation framework called JMLAutoTest framework.
JMLAutoTest framework generates test data from Java
Modeling Language(JML) [7, 8]. JML is a notation for
specifying behavior and interface in Java class and method.
Since JML is a formal specification, developers should spend
efforts to understand JML before writing specification.
 Because UML diagrams are now widely used for software
development [9], generating test data from UML diagrams

should help developer to reduce a great number of effort.
Wang, et.al [10] proposed test data generation from activity
diagram. They extracted a test scenario from activity diagram.
The test scenario is a sequence of possible paths in activity
diagram. From these paths, the executing sequence of program
has been generated in order to cover all possible paths.
However, activity diagram describes flows of system, not the
behavior of the system.
 Due to performance of generating test data and a concern of
size of test data set, heuristic techniques are applied for test
data generation. GADGET [11] and TGEN [12] use genetic
algorithm to improve quality of generating test data.
GADGET generates test data from a control flow graph
generated from source code. A fitness function is defined for
each condition node in control flow graph. An empirical study
showed that test data generated by GADGET covers more
than 93 percents of source code, while random testing
achieves around 55 percents.
 TGEN transforms a control flow graph to a control
dependency graph (CDG). Each part of CDG represents the
smallest set of predicate to traverse every node in control flow
graph. Both GADGET and TGEN generate test data using
white box method; therefore, test data can be generated only
after software is finished.
 Using Genetic algorithm to generate test data from software
model is proposed in [13]. JML is a model for generating test
data. Fitness function is calculated by coverage of paths and
post condition defined by JML.

III. A TEST DATA GENERATION FROM UML STATE DIAGRAM
USING GENETIC ALGORITHM

A. UML State Diagram
 In our approach, we focus on generate test data from UML
state diagram [14]. UML state diagram is a graph-like
diagram. It describes the system in a state machine. The
system has states at a time. States of system are changed due
to an event trigger that happens to the system. Trigger and
attributes of system specify the transition of current states into
new states. Fig 1 is an example of state diagram of a coffee
vending machine.
 The coffee vending machine starts from “off” state. When
user turns on the machine, the status of machine is changed to
“on”. If user adds money to the machine, then a money sub
state is moved from “Empty” state to “notEmpty” state and
attribute “money” is increased. At this moment, money is
greater then zero; therefore, if a user requests for coffee, the
state of the vending machine in supply part is moved from
“Idle” to “busy” to give the user a glass of coffee and attribute
“money” is reduced. After finishing coffee preparation, the
status of the machine is returned to “Idle”.
 From the example, every state contains a state name and
transitions. The state name is used for specifying a particular
state. Transition defines how status of the system is changed.
From the transition “t3:coffee[money > 0]/dec”, t3 is a name
of transition. Coffee is an event trigger name, this mean that if
the system is “On” an “Idle” state and user makes a coffee
event-trigger, state may change form ‘Idle” to “Busy”, but

Fig. 1. An example of vending machine state diagram

 3

guard condition should be considered before state changed.
Some event triggers may consist of parameters. These
parameters are for changing attributes of system. Guard
condition is an option for each transition. If it is specified, it is
defined in block bracket. Guard condition may be
mathematical expressions or sentences that can be evaluated
as be true or false. If sentences or statements in guard
condition are true, the state of the system is changed to a
target state of this transition. The last component of transition
is an action. An action is an executable and atomic
computation. It may be a statement which changes attribute of
the system, an event trigger for the system itself, or other
system. In the example, an action for transition “t3” is placed
after “/” symbol which is “dec”. “dec” is a event trigger for
this system. “dec” may trig a transition “t7”.

B. Genetic Algorithm
 Our proposed approach targets to generated test data set

which covers maximum states and transitions using a genetic
algorithm (GA) technique [15]. GA is a search technique
based on natural genetic and evolution mechanisms which can
be used to solve many categories of problems in machine
learning and function optimization. GA is an iterative
procedure which works with a population of candidate
solutions (chromosomes). A population of candidate solutions
is maintained by the GA throughout the solution process.
Initially a population of candidate solutions is generated
randomly or by other means. During each iteration step, a
selection operator is used to choose two solutions from the
current population. The selection is based upon the measured
goodness of the solutions in the population - this is being
quantified by a fitness function. The selected solutions are
then subjected to crossover. The crossover operator exchanges
sections between these two selected solutions with a defined
crossover probability. A simple one-point crossover operation
is shown in Fig 2. One of the resulting solutions is then
chosen for application of the mutation operator, whereby the
value at each position in the solution is changed with a
defined mutation probability. An example of using mutation
operator is shown in Fig 3. The algorithm is terminated, when
a defined stopping criterion is reached.

C. GA implemetation
A number of decisions must be made in order to

implement the GA for test data generation. There are problem
specific decisions which are concerned with the search space
(and thus the chromosome representation) of feasible
solutions and the form of the fitness function.

We propose to use a sequence of triggers for UML state

diagram as a chromosome. The sequence of triggers is an
input for the state diagram. Our approach search for a state
and transition coverage occurred by the sequence. The
sequence of triggers is extracted one by one for tracing for the
coverage. When the first trigger is consider, the trigger is
determined whether it can activate any transitions connected
to the current status. If the trigger can make a transition from
current state, the current state is moved to new state. Then
next event trigger is selected to consider again and so on. If no
transition can be made, tracing for the state coverage will be
stopped and the state and transition coverage are recorded
without taking the rest of the sequence to consider. Extracting
new event trigger in a sequence after a trigger which cannot
make any transition in state may break an order of reaching
state. For example, in case of Fig. 1 if a chromosome is shown
as a sequence of “power-on, inc, tm, dec”, after “inc” trigs,
current state is “Idle”, and “notEmpty”. From this status “tm”
can not make any new coverage state or transitions. If “dec” is
considered to unveil new coverage transition which is “t7”, it
is look like “power-on, inc, tm, dec” can cover transition “t7”.
But “tm” trigger does not involve any transitions which help
to reach transition “t7”. Omitting that trigger may make the
length of chromosome changed, suggesting to use a GA with
variable chromosome length.
 The coverage of state and transition is considered as shown
in Table 1. A sequence of trigger is power-on - inc - inc - tm -
inc – tm, which is generated randomly. The sequence is
applied for revealing state and transition coverage as follows.
Starting from initial state, there is one transition connected to
initial state and there is no event trigger on that transition.
Hence, current state has been move to off. Then, the tool
extracts the first trigger in the sequence, “power-on” to
execute. With event trigger “power-on”, there is a transition
from state “off”, which needs “power-on” trigger. That is a

Fig. 2. An example of crossover operation.

Fig. 3. An example of mutation operation.

TABLE 1
AN EXAMPLE OF TRACING UML STAE DIAGRAM

Sequence: power-on - inc - inc - tm - inc - tm
Trigger State executed current state attribute Status
- Initial state,ti1, off Off money = 0

power-on t1, On, Initial state: supply,ti2, Idle
 Initial state: money,ti3, Empty

Idle, Empty money = 0

inc t5, noEmpty Idle, NoEmpty money = 1
inc t6, noEmpty Idle,NoEmpty money = 2
tm end
inc
tm

 4

transition “t1”. Current state is now moved to state “on”. Now
there are two sub initial states in state “on”, therefore, current
state has been moved to two initial states. These two initial
states bring system to new current states “idle” and “empty”.
Next event trigger has been taken, “inc”. Transitions from
state “idle” and “empty” is checked whether they contains a
trigger “inc”. From the diagram, transition “t5” from “empty”
state contains “inc” trigger, as a consequence, current state is
moved from “empty” to “notEmpty”. Moreover, during the
transition of “t5”, there is an action declared in diagram as
“money = 1”, so an attribute of system has been set as money
= 1. “Idle” state is still a current state because “inc” does not
make any changes to “idle”. So, current statuses are
“noEmpty” and “Idle”. Next event trigger is “inc”. “Inc”
drives transition “t6” and changes current status. Transition
“t6” is a loop transition, so, the current status from “noEmpty”
is still “noEmpty”. Next event trigger is “tm”. Unfortunately,
event “tm” does not drive any transitions, which are connected

state “noEmpty” and “idle”. The search for coverage is
stopped, because no new state is covered.
 Fitness function is calculated by a number of states and
transitions covered by the chromosome. In addition, states and
transitions, which are covered by a pool of chromosome in
each generation, are recorded. If a chromosome in a new
generation covers new state or transition has not been covered
before, there will be an addition score for that chromosome.
These values used for analysis in selecting function and
evolutionary operation. An algorithm of proposed system is
shown in Fig 4.

IV. EXAMPLES
 In this section we demonstrate the application of the
proposed algorithm manually to generate test data for the state
diagram shown in Fig 1. In this experiment, we fix the size of
pool to 6. While the crossover probability used is 0.4, the
mutation probability is around 0.3. The mutation probability is
set high in order to evaluate the technique manually.

TABLE 2
AN EMPIRICAL STUDY OF PROPOSED APPROACH

iteration covered states and transtions number of
coverage states

number of coverage
transition

Initial Initial state, off, on, Idle, InitMoney, InitSupply, Empty
ti1, ti2, ti3, t1

7 4

1 Initial state, off, on, Idle, InitMoney, InitSupply, Empty, notEmpty
ti1, ti2, ti3, t1, t5, t6, t7, t8

8 8

2 Initial state, off, on, Idle, InitMoney, InitSupply, Empty, notEmpty
ti1, ti2, ti3, t1, t5, t6, t7, t8

8 8

Since round 1,2 does not covered any new states, or transition. But there are some states and transitions which were not covered; therefore, list of
state and transition is stored in a coverage repository.

3 Initial state, off, on, Idle, InitMoney, InitSupply, Empty, notEmpty
ti1, ti2, ti3, t1, t2, t5, t6, t7, t8

8 9

4 Initial state, off, on, Idle, InitMoney, InitSupply, Empty, notEmpty,Busy
ti1, ti2, ti3, t1, t2, t3, t4 ,t5, t6, t7, t8

9 11

Reachable transition is a transition which its source state can be executed by current test cases.
Reachable transition source is a state which is a source of reachable transition
Test cases: set of sequences of trigger to run from the beginning of state diagram.
1. Generate test cases randomly, keep it in repository
2. Run test case in state diagram
3. Collect all coverage then store in Coverage table, keep history of attribute changed in state diagram
4. If all transitions and states are covered go to End.
5. Select one transition which are reachable, and have not been marked as covered; by
 5.1 if there are transitions which do not have a guard condition, select one of them,
 Else select transition randomly.
6. Defined objective function as follow: objective function for test case is aW + bX+ cY + Z
 Where
 a, b,c are constant value where a = 0 when there is no guard condition in selected transition
 W is a number of states in test cases which value of attribute in that state make guard

 condition to be true.
 X is a number of transitions which is covered by this test but have not been covered by previous test

set
 Y is a number of states that can be reached by test case to reachable transition source.
 Z is a number of state and path coverage for the test case.
7. Select initial test data by ranking objective function from the repository,
8. If the initial population is not enough, randomly generate them
9. Repeat GA using above objective function state in 6 until all uncovered transition are covered, or there are no new

covered transition for some times
 9.1 Store all test cases generated in repository.
10. Mark selected transition as subjected to GA
11. If there is some transition which is not covered by previous test cases and have not marked as subjected to GA and

reachable. goto 5
 Else End system.

Fig. 4. An algorithm for proposed approach

 5

Firstly, a list of coverage states and transitions should be
created as a coverage repository. For the initial round, the
coverage repository is empty. Then chromosomes are
generated randomly, and stored in an initial pool. After all
sequences are executed, a list of coverage states and
transitions is recorded. Fitness value is calculated for each
chromosome using the fitness function. Then a selction
operator based on the fitness vales is used to select
chromosomes for crossover and mutation operators. After a
new generation of chromosome is generated, UML state
diagram is executed again.
 In the third round, the generated sequence could not cover
any new states or transitions, then a list of coverage states and
transition is added to the coverage repository. A new fitness
function is generated. The new function gives an extra score
for a sequence which covers states or transitions which are not
stored in the coverage repository. Then, a new generation of
chromosomes is generated.
 In this experiment, GAs ran for two generations to cover all
states and transitions. Table 2 shows detail of each iteration.

V. CONCLUSION AND FUTURE WORK
 An approach for generating test data from UML state
diagram using genetic algorithm is proposed. This approach
will help software developers to reduce their effort in
generating test data before coding. In order to create an
effective and robust solution we have demonstrated how
genetic algorithm can be applied as a concept.
 A proof-of-concept tool development is in progress. The
tool contains two parts. The first part is for executing or
tracing for coverage states or transitions when an input has
been given to an UML state diagram. A search for coverage
part is described in section III. The second part of the tool is
for calculating fitness values and GA evolution process. We
expect this approach to be a useful tool for software
developers to help generating test data from UML state
diagram to test their software program.

VI. ACKNOWLEDGEMENT
 This research has been supported by the EU Asia-link
project - TH/Asia Link/004 (91712) -Euro-Asia Collaboration
and Networking in Information Engineering System
Technology (EAST-WEST).

VII. REFERENCES
[1] Myers, G., The Art of Software Testing. 2 ed. 2004: John Wiley & Son.

Inc. 234 pages.
[2] Beck, K., Test-Driven Development by Example. 2003: Addison-

Wesley. 220.
[3] Beizer, B., Black-box testing : techniques for functional testing of

software and systems. 1995: John Wiley & son Inc. 294.
[4] Hung, N.Q., Testing Application on the Web. 2003: John Wiley &

Sons.
[5] Clark, J.M. Automated Test Generation from a Behavioral Model. in

the 11th International Software Quality Week (QW98). 1998.
[6] Xu, G. and Z. Yang. JMLAutoTest: A Novel Automated Testing

Framework Based on JML and JUnit. in Lecture Notes in Computer
Science. 2004.

[7] Burdy, L., et al. An overview of JML tools and applications. in Eighth
International Workshop on Formal Methods for Industrial Critical

Systems (FMICS '03), ser. Electronic Notes in Theoretical Computer
Science. 2003. Elsevier.

[8] Leavens, G.T., et al., JML Reference Manual. 2005.
[9] Lange, C.F.J., M.R.V. Chaudron, and J. Muskens, In practice: UML

software architecture and design description. Software, IEEE, 2006.
23(2): p. 40-46.

[10] Wang, L., et al. Generating test cases from UML activity diagram
based on Gray-box method. in Software Engineering Conference, 2004.
11th Asia-Pacific 2004.

[11] Michael, C., G. McGraw, and M.A. Schatz, Generating software test
data by evolution. Software Engineering, IEEE Transactions on, 2001.
27(12): p. 1085-1110.

[12] Pargas, R., M. Harrold, and R. Peck, Test-data generation using genetic
algorithms. Software Testing, Verification and Reliability, 1999. 9(4):
p. 263-282.

[13] Cheon, Y., M.Y. Kim, and A. Perumandla. A Complete Automation of
Unit Testing for Java Programs. in Proceedings of the 2005
International Conference on Software Engineering Research and
Practice (SERP ’05). 2005. Las Vegas, Nevada, USA,.

[14] OMG, OMG Unified Modeling Language Specification version 1.4.2.
2001: OMG.

[15] Bäck, T., D. Fogel, and Z. Michalewicz, Evolutionary Computation 1:
Basic Algorithms and Operators: Institute of Physics, London, 2000.

