
 Generational and Steady State Genetic Algorithms for
Generator Maintenance Scheduling Problems

K.P. Dahal, J.R. McDonald

Centre for Electrical Power Engineering, University of Strathclyde, UK
(presented at International Conference on Artificial Neural Networks and Genetic Algorithms, ICANNGA’97)

Abstract

 The aim of generator maintenance scheduling
(GMS) in an electric power system is to allocate a proper
maintenance timetable for generators while maintaining a high
system reliability, reducing total production cost, extending
generator life time etc. In order to solve this complex problem
a genetic algorithm technique is proposed here. The paper
discusses the implementation of GAs to GMS problems with
two approaches: generational and steady state. The results of
applying these GAs to a test GMS problem based on a
practical power system scenario are presented and analysed.
The effect of different GA parameters is also studied.

1 Problem description

 Generator maintenance scheduling (GMS) is an
essential part of the problem of economic operation and
control of power systems, and involves finding the
optimum timing of the outages of generating units. This
is important primarily because other planning activities
are directly affected by such decisions. In modern
power systems the demand for electricity has increased
with related expansions in system size, which has
resulted in higher numbers of generators and lower
reserve margins making the GMS problem more
complicated. A good maintenance schedule increases
system operating reliability, reduces generation cost,
extends equipment life time and relaxes new installation
pressure.
 The GMS problem is a complex combinatorial
constrained optimisation problem. There are generally
two categories of objective functions in GMS based on
reliability or economic cost criteria. The problems have
the following general constraints to be satisfied.
• Maintenance window - defines the limitation on the

earliest and latest times and the duration of
maintenance for a unit.

• Sequence constraints - the maintenance of certain
units is allowed only after the maintenance of other
specified units.

• Non-simultaneous constraints - the simultaneous
maintenance of certain units is not allowed.

• Crew and resource constraints - consider the
availability of manpower and resources.

• Load constraints - consider the demand and the
reliability of power supply.

 Mathematically, GMS problems can be
formulated as integer programming problems using
binary variables associated with answers to "When
does maintenance start?". The use of these variables
instead of the variables associated with answers to
"When does maintenance occur?" reduces the number
of variables [1]. The first formulation satisfy the
constraints on the periods and duration of maintenance.
The answer to the first question automatically provides
the answer to the second.
 Several deterministic mathematical methods and
heuristic techniques are reported in the literature for
solving these problems [1,2,3]. General solution methods
are based on integer programming, branch-and-bound
techniques, dynamic programming, etc. However, such
approaches are severely limited by the 'curse of
dimensionality' and are poor in handling the non-linear
objective and constraint functions that characterise the
GMS problem. The heuristic approach uses a trial-and-
error method to evaluate the maintenance objective
function in the time interval under examination. This
requires significant operator input and in some
situations it fails to produce even feasible solutions [3].
 Genetic algorithms (GAs) provide a new
approach to the solution of complex combinatorial
optimisation problems. This paper describes the
procedure for implementing GAs for solving the GMS
problem. Two GA approaches, namely generational and
steady state, have been applied to test GMS problems
which include features of real systems. The paper
discusses the application of GAs to GMS problems
using a reliability criteria based on levelling reserve
generation [3]. This is achieved by minimising the sum
of squares of the reserves over the entire operational
planning period.

2 GA approach

 Two basic approaches, known as the
generational approach and the steady state approach,
may be implemented in the realisation of a genetic
algorithm (GA). In each iteration step, called a
‘generation’, a generational genetic algorithm (GN GA)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

replaces the population of the previous generation by
off-spring which are reproduced by applying genetic
manipulation to parents selected from the population of
the previous generation according to some selection
procedure. The iteration is continued until a termination
criteria has been reached. A widely available GA
package GENESIS [4] has been used to carry out the
numerical tests for GMS problems using this GN GA
approach.
 A steady state genetic algorithm (SS GA)
selects two individuals from the population pool in each
iteration step according to some selection procedure. A
new off-spring is created by applying genetic
manipulation to the selected individuals, and is inserted
into the population pool replacing a less fit individual.
Hence, the parents and off-spring can co-exist in the
population pool for the next iteration step. A SS GA
software package GENITOR [5] which uses this steady
state structure has been applied to GMS problems
 The ranking selection method, where parents
are selected according to their ranked fitness score has
been used for both algorithms.
 In order to tackle GMS problems using a GA, a
candidate solution of a GMS problem is encoded as a
one dimensional binary array as follows.

 [X1,e1, X1,(e1+1), ... , X1,(l1-d1+1), X2,e2, X2,(e2+1),...
 . . . , X2,(l2-d2+1), . . . , XN,eN, XN,(eN+1), ... XN,(lN-
dN+1)]

where

Xit =
1
0
 if unit i starts maintenance in period t,
 otherwise,





ei = earliest period for maintenance of unit i to begin,
li = latest period for maintenance of unit i to end,
di = duration of maintenance for unit i,
N = total number of generating units.

 This binary string (chromosome) consists of
sub-strings which each contain the variables over the
whole scheduling period for a particular unit. The size of
the GA search space for this type of representation is

2
2

1
()l d ei i i

i

N
− − +

=
∑

.
 To take into account the various constraints of
GMS problems, we have taken a penalty function
approach. The penalty value for each constraint
violation increases linearly with the amount by which
the constraint is violated. The evaluation function is a
weighted sum of penalty values for each constraint
violation and the objective function itself, hence

evaluation = ω ωc c o

c
V F+∑ ,

where ωc and ωo are the weighting coefficients, Vc is
the violation of constraint c and F is the objective value.
The coefficients are chosen in such a way that the
violation of harder constraints gives a greater penalty
value than for the soft constraints. In general the
penalty value for the constraint violations dominates
over the objective function. Feasible solutions with low
objective values have high fitness values while
unfeasible solutions with high objective values take low
fitness measures.
 In the test problem described below the crew
constraint was assigned a low penalty coefficient. This
is because a solution with a high reliability but requiring
more manpower may well be accepted for a power utility
as the unavailable manpower may be hired.

3 Test Results

 Table 1: Data for the test system.
Unit Capacity

(MW)
Allowed
period

Outage
(weeks)

Manpower required for
each week

1 555 1-26 7 10+10+5+5+5+5+3
2 555 27-52 5 10+10+10+5+5
3 180 1-26 2 15+15
4 180 1-26 1 20
5 640 27-52 5 10+10+10+10+10
6 640 1-26 3 15+15+15
7 640 1-26 3 15+15+15
8 555 27-52 6 10+10+10+5+5+5
9 276 1-26 10 3+2+2+2+2+2+

2+2+2+3
10 140 1-26 4 10+10+5+5
11 90 1-26 1 20
12 76 27-52 3 10+15+15
13 76 1-26 2 15+15
14 94 1-26 4 10+10+10+10
15 39 1-26 2 15+15
16 188 1-26 2 15+15
17 58 27-52 1 20
18 48 27-52 2 15+15
19 137 27-52 1 15
20 469 27-52 4 10+10+10+10
21 52 1-26 3 10+10+10

 A number of small problems have been tested
with the proposed GAs with different objectives and
constraints. GAs with both generational and steady
state approaches yield the optimum solution for small

problems when appropriate GA parameters are chosen.
Here we present the results of applying a steady state
GA to a larger test problem comprising 21 units over a
planning period of 52 weeks, which was loosely derived
from the example presented in [2] with some
simplifications and additional constraints. The data for
the test problem is given in Table 1.
 The objective is to schedule the maintenance
outages of generators to minimise the sum of the
squares of the reserve generation. Each unit must be
maintained exactly once and the maintenance for each
unit must occupy the required time duration without
interruption. The system’s peak load is 4739 MW. There
are only 20 people available for the maintenance work
each week. Due to its complexity the optimum solution
for this problem is unknown.
 Table 2 presents the results of a number of
runs of the GN GA and SS GA taking different values of
the GA parameters. The total number of trials for each
run was fixed at 100000. The crossover operator used
for both GAs is a simple two-point crossover. In
GENITOR crossover is applied in each iteration of the
SS GA when the exchanged information is unique to
each parent. In the GN GA the crossover probability
was similarly set to be 1.
 The first part of Table 2 demonstrates the test
results obtained with varying values of the mutation
probability (MP), while taking other GA parameters as
constant. The selection bias (SB) and population size
(PS) are taken as 2.0 and 50 respectively. Each case
presents the outcome of 5 GA runs, using a different
random seed.

Table 2: Effect of GA parameters for 100000 trials.
 GN GA SS GA

 Value min avg max min avg max
 .001 278 488 885 2987 4441 8051

MP .005 342 616 971 679 1495 2105
SB=2 .01 7870 1.2e5 3.0e6 1285 1851 2701
PS=50 .05 7.1e6 7.6e6 8.1e6 3.5e6 4.6e6 5.2e6

 1.01 2.0e5 4.5e5 7.0e5 818 878 950
SB 1.25 217 305 378 914 1627 2758

PS=50 1.5 227 585 807 703 1056 1925
 2.0 278 488 885 679 1495 2105
 25 229 268 339 433 1162 2388
 50 278 488 885 818 878 950

PS 100 355 642 1132 363 1107 2954
 200 253 349 543 412 1041 2011
 500 6.0e5 6.6e6 7.0e5 166 408 918

With seeding 163 172 184 163 183 203
Best solution 163.62 163.62

CPU time 1m1.59s 1m53.28s

 The results show that the GN GA is more
sensitive than the SS GA to variations in MP. For both
GAs, lower values of MP are recommended to achieve a
better solution.
 For each unit i=1,2,...,N, the maintenance
window constraint (2) forces exactly one variable in
{Xit: ei≤t≤li-di+1} to be one and the rest to be zero.
Therefore, a maintenance window feasible genetic
structure contains many more ‘0’ bits than ‘1’ bits. For
our test problem, only 21 out of 496 bits in the string
must be ‘1’ and the rest ‘0’. Hence the most of the
search space represents unfeasible solutions. A high
mutation probability increases the chance of changing
these ‘0’s into ‘1’s and has the potential to disrupt and
degrade the search process. With higher mutation
probabilities the GA could not find a maintenance
window feasible solution even in 100000 trials.
However, with lower mutation probabilities the GA
found maintenance feasible solutions.
 The selection bias value specifies the amount
of preference to be given to the superior individuals in
selection of parents. If SB=2, for example, then the
selection probability for the best individual is twice that
of the mean individual. When SB is close to 1, the
distribution of selection probability becomes nearly
uniform. In general, if the selection bias is too high, then
a superior solution strongly dominates the less fit
solutions and this may lead the GA to converge
prematurely to a local minimum. Low values of the
selection bias cause less preference to be given to the
good genetic structures previously found. The second
part of Table 2 presents results found using 4 different
bias values for each of the two GAs, with MP chosen to
give the best performance from above. Taking selection
bias 1.01 for the SS GA and 1.25 for the GN GA gives
the best solution. Thus the SS GA gives good results
when all individuals in the pool have virtually uniform
probability of selection. For the GN GA selection
pressure towards fitter individuals leads to better
performance.
 Table 2 also presents the outcomes of 5 GA
runs for different population sizes with other GA
parameters chosen to give the best performance from
above. For a fixed number of trials, the number of
generations in the GN GA decreases as the population
size increases. Hence the GN GA performance is poor
for the large population size. The SS GA performs better
with larger population size.
 In order to enhance the performance of the
GAs, one of the individuals in the initial population was

created meaningfully and the remainder chosen
randomly as before. The ‘seeded’ solution was
developed heuristically by ranking the generating units
in order of decreasing capacity to level the reserve
generation while considering the maintenance window
constraints. The results of 5 runs of both GAs are
shown in Table 2. The seeding significantly improves
the performance of both GAs. During the early
iterations, the GAs with random initial population spend
most of their time on finding maintenance window
feasible solutions. Therefore, the inclusion of a
maintenance window feasible solution incorporating
domain knowledge in the initial population leads to the
improvement of the GA performance. In the real system
problem, some previously used solutions may be
available for initialisation.
 In the GN GA the reproduction of individuals
within a generation is independent of the offspring
produced in that generation as parents and children do
not co-exist in a genetic pool. The influence of new
offspring in the reproduction procedure can only occur
in the next generation. For each generation a number of
individuals equal to the population size are selected for
genetic manipulation which helps to preserve the
diversity of population in the genetic pool. This reduces
the chance of premature convergence.
 In the steady state GA, there is no concept of
'generation' and the produced offspring enter to the
genetic pool before the next trial. Hence, the influence
of the offspring in the reproduction procedure is
immediate. As a fitter solution generally replaces a less
fit solution in the pool at every trial there is a chance of
filling the genetic pool with individuals converging
towards the top individual of the pool during the course
of GA run. The crossover operator acts to improve the
solutions in the initial trials. However, in the later trials
the improvements to the offspring are expected to be
due to the mutation operator only, as the crossover
operator does not change any information between
identical parents. Therefore, the improvement of
candidate solutions in the pool is faster for initial trials.
 The CPU times on a DEC Utirx 5000/260
workstation for both GAs are shown in Table 2. With
GA parameters chosen to give the best performance for
each GA, the GN GA takes about a half of the
computation time than that of the SS GA to obtain the
same result.

4 Conclusions

 Two GAs with generational and steady state
design were tested for a GMS problem. The effects of

varying the mutation probability, selection bias and
population size were studied. The test results show that
both GAs are sensitive to variation in these parameters
and appropriate values must be chosen in order to
obtain good solutions. In both cases a low value of
mutation probability must be chosen. The GN GA gives
better results with a small population. For the SS GA
large population size and virtually uniform selection
gives the best results. The effect of seeding a
heuristically derived individual in the initial pool was
investigated for both GAs. Seeding greatly enhances
the performance of both GAs in finding better solutions.
The obtained results show that the GN GA gives better
performance than the SS GA in terms of the speed and
the average quality of the solution.
 Binary values were used for representing the
maintenance start period during the encoding of the
GMS problem. However, the problem variables are
numeric so representing them directly as a integers
rather than bit strings can reduce the size of the GA
search space greatly. The use of problem specific
knowledge in the formulation of the evaluation function
and in the design of the GA operator could reduce the
computational time of the GA. Furthermore, domain
knowledge may be used to prevent obviously unfit
chromosomes, or those which would violate problem
constraints from being created within the GA. Further
research is in progress to investigate all these and other
issues and the results will be reported else where.

5 References

[1] J.F. Dopazo, H. M. Merrill, “Optimal generator

maintenance scheduling using integer programming”, IEEE
Transactions on Power Apparatus and Systems,
Vol.PAS-94, No. 5, September/October 1975, pp1537-
1545.

[2] Z. Yamayee, S. Kathleen, "A computationally efficient
optimal maintenance scheduling method", IEEE
Transactions on Power Apparatus and Systems, Vol.
PAS-102, No. 2, February 1983, pp 330-338.

[3] X. Wang, J.R. McDonald, "Modern Power System
Planning", McGraw-Hill, London, 1994, pp247-307.

[4] J. J. Grefenstette, “A User’s Guide to GENESIS Version
5.0”, available at ftp site:
ftp.aic.nrl.navy.mil:/pub/galist/src/ga/genesis.tar.z. 1990.

[5] Darrel L. Whitley, “GENITOR”, available at ftp site:
ftp.cs.colostate.edu/pub/GENITOR.tar, Colorado State
University, 1990.

