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Abstract 
 
 The aim of generator maintenance scheduling 
(GMS) in an electric power system is to allocate a proper 
maintenance timetable for generators while maintaining a high 
system reliability, reducing total production cost, extending 
generator life time etc. In order to solve this complex problem 
a genetic algorithm technique is proposed here. The paper 
discusses the implementation of GAs to GMS problems with 
two approaches: generational and steady state. The results of 
applying these GAs to a test GMS problem based on a 
practical power system scenario are presented and analysed. 
The effect of different GA parameters is also studied. 
 
1 Problem description 
  
 Generator maintenance scheduling (GMS) is an 
essential part of the problem of economic operation and 
control of power systems, and involves finding the 
optimum timing of the outages of generating units. This 
is important primarily because other planning activities 
are directly affected by such decisions. In modern 
power systems the demand for electricity has increased 
with related expansions in system size, which has 
resulted in higher numbers of generators and lower 
reserve margins making the GMS problem more 
complicated. A good maintenance schedule increases 
system operating reliability, reduces generation cost, 
extends equipment life time and relaxes new installation 
pressure.  
 The GMS problem is a complex combinatorial 
constrained optimisation problem. There are generally 
two categories of objective functions in GMS based on 
reliability or economic cost criteria. The problems have 
the following general constraints to be satisfied. 
• Maintenance window - defines the limitation on the 

earliest and latest times and the duration of 
maintenance for a unit. 

• Sequence constraints - the maintenance of certain 
units is allowed only after the maintenance of other 
specified units. 

• Non-simultaneous constraints - the simultaneous 
maintenance of certain units is not allowed. 

• Crew and resource constraints - consider the 
availability of  manpower and resources. 

• Load constraints - consider the demand and the 
reliability of power supply. 

 Mathematically, GMS problems can be 
formulated as integer programming problems using 
binary variables associated with answers to "When 
does maintenance start?". The use of these variables 
instead of the variables associated with answers to 
"When does maintenance occur?" reduces the number 
of variables [1]. The first formulation satisfy the 
constraints on the periods and duration of maintenance. 
The answer to the first question automatically provides 
the answer to the second. 
 Several deterministic mathematical methods and 
heuristic techniques are reported in the literature for 
solving these problems [1,2,3]. General solution methods 
are based on integer programming, branch-and-bound 
techniques, dynamic programming, etc. However, such 
approaches are severely limited by the 'curse of 
dimensionality' and are poor in handling the non-linear 
objective and constraint functions that characterise the 
GMS problem. The heuristic approach uses a trial-and-
error method to evaluate the maintenance objective 
function in the time interval under examination. This 
requires significant operator input  and in some 
situations it fails to produce even feasible solutions [3]. 
 Genetic algorithms (GAs) provide a new 
approach to the solution of complex combinatorial 
optimisation problems. This paper describes the 
procedure for implementing GAs for solving the GMS 
problem. Two GA approaches, namely generational and 
steady state, have been applied to test GMS problems 
which include features of real systems. The paper 
discusses the application of GAs to GMS problems 
using a reliability criteria based on levelling reserve 
generation [3]. This is achieved by minimising the sum 
of squares of the reserves over the entire operational 
planning period.  
 
2 GA approach 
 
 Two basic approaches, known as the 
generational approach and the steady state approach, 
may be implemented in the realisation of a genetic 
algorithm (GA). In  each iteration step, called a 
‘generation’, a generational genetic algorithm (GN GA) 
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replaces the population of the previous generation by 
off-spring which are reproduced by applying genetic 
manipulation to parents selected from the population of 
the previous generation according to some selection 
procedure. The iteration is continued until a termination 
criteria has been reached. A widely available GA 
package GENESIS [4] has been used to carry out the 
numerical tests for GMS problems using this GN GA 
approach. 
 A steady state genetic algorithm (SS GA) 
selects two individuals from the population pool in each 
iteration step according to some selection procedure. A 
new off-spring is created by applying genetic 
manipulation to the selected individuals, and is inserted 
into the population pool replacing a less fit individual. 
Hence, the parents and off-spring can co-exist in the 
population pool for the next iteration step. A SS GA 
software package GENITOR [5] which uses this steady 
state structure has been applied to GMS problems  
 The ranking selection method, where parents 
are selected according to their ranked fitness score has 
been used for both algorithms. 
 In order to tackle GMS problems using a GA, a 
candidate solution of a GMS problem is encoded as a 
one dimensional binary array as follows. 
 
 [X1,e1, X1,(e1+1), ... , X1,(l1-d1+1), X2,e2, X2,(e2+1),... 
 . . .  ,  X2,(l2-d2+1), . . .  ,  XN,eN,  XN,(eN+1), ... XN,(lN-
dN+1)] 
 
where  

Xit =
1
0
  if unit i starts maintenance in period t,
 otherwise,





 

ei  = earliest period for maintenance of unit i to begin, 
li   = latest  period for maintenance of unit i to end, 
di   = duration of maintenance for unit i, 
N = total number of generating units. 
 
 This binary string (chromosome) consists of 
sub-strings which each contain the variables over the 
whole scheduling period for a particular unit. The size of 
the GA search space for this type of representation is  
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 To take into account the various constraints of 
GMS problems, we have taken a penalty function 
approach. The penalty value for each constraint 
violation increases linearly with the amount by which 
the constraint is violated. The evaluation function is a 
weighted sum of penalty values for each constraint 
violation and the objective function itself, hence 

 
evaluation = ω ωc c o

c
V F+∑ ,   

where ωc and ωo are the weighting coefficients, Vc is 
the violation of constraint c and F is the objective value. 
The coefficients are chosen in such a way that the 
violation of harder constraints gives a greater penalty 
value than for the soft constraints. In general the 
penalty value for the constraint violations dominates 
over the objective function. Feasible solutions with low 
objective values have high fitness values while 
unfeasible solutions with high objective values take low 
fitness measures. 
 In the test problem described below the crew 
constraint was assigned a low penalty coefficient. This 
is because a solution with a high reliability but requiring 
more manpower may well be accepted for a power utility 
as the unavailable manpower may be hired. 
 
3 Test Results 
 

  Table 1: Data for the test system. 
Unit Capacity 

(MW) 
Allowed 
period 

Outage 
(weeks) 

Manpower required for 
each week  

1 555 1-26 7  10+10+5+5+5+5+3 
2 555 27-52 5  10+10+10+5+5 
3 180 1-26 2  15+15 
4 180 1-26 1  20 
5 640 27-52 5  10+10+10+10+10 
6 640 1-26 3  15+15+15 
7 640 1-26 3  15+15+15 
8 555 27-52 6 10+10+10+5+5+5 
9 276 1-26 10 3+2+2+2+2+2+ 

2+2+2+3 
10 140 1-26 4 10+10+5+5 
11 90 1-26 1 20 
12 76 27-52 3 10+15+15 
13 76 1-26 2 15+15 
14 94 1-26 4 10+10+10+10 
15 39 1-26 2 15+15 
16 188 1-26 2 15+15 
17 58 27-52 1 20 
18 48 27-52 2 15+15 
19 137 27-52 1 15 
20 469 27-52 4 10+10+10+10 
21 52 1-26 3 10+10+10 

 
 A number of small problems have been tested 
with the proposed GAs with different objectives and 
constraints. GAs with both generational and steady 
state approaches yield the optimum solution for small 



problems when appropriate GA parameters are chosen. 
Here we present the results of applying a steady state 
GA to a larger test problem comprising 21 units over a 
planning period of 52 weeks, which was loosely derived 
from the example presented in [2] with some 
simplifications and additional constraints. The data for 
the test problem is given in Table 1. 
 The objective is to schedule the maintenance 
outages of generators to minimise the sum of the 
squares of the reserve generation. Each unit must be 
maintained exactly once and the maintenance for each 
unit must occupy the required time duration without 
interruption. The system’s peak load is 4739 MW. There 
are only 20 people available for the maintenance work 
each week. Due to its complexity the optimum solution 
for this problem is unknown. 
 Table 2 presents the results of a number of 
runs of the GN GA and SS GA taking different values of 
the GA parameters. The total number of trials for each 
run was fixed at 100000. The crossover operator used 
for both GAs is a simple two-point crossover. In 
GENITOR crossover is applied in each iteration of the 
SS GA when the exchanged information is unique to 
each parent. In the GN GA the crossover probability 
was similarly set to be 1. 
  The first part of Table 2 demonstrates the test 
results obtained with varying values of the mutation 
probability (MP), while taking other GA parameters as 
constant. The selection bias (SB) and population size 
(PS) are taken as 2.0 and 50 respectively. Each case 
presents the outcome of 5 GA runs, using a different 
random seed.  
 

Table 2: Effect of GA parameters for 100000 trials. 
  GN GA SS GA 

 Value min avg max min avg max 
 .001 278 488 885 2987 4441 8051 

MP .005 342 616 971 679 1495 2105 
SB=2 .01 7870 1.2e5 3.0e6 1285 1851 2701 
PS=50 .05 7.1e6 7.6e6 8.1e6 3.5e6 4.6e6 5.2e6 

 1.01 2.0e5 4.5e5 7.0e5 818 878 950 
SB 1.25 217 305 378 914 1627 2758 

PS=50 1.5 227 585 807 703 1056 1925 
 2.0 278 488 885 679 1495 2105 
 25 229 268 339 433 1162 2388 
 50 278 488 885 818 878 950 

PS 100 355 642 1132 363 1107 2954 
 200 253 349 543 412 1041 2011 
 500 6.0e5 6.6e6 7.0e5 166 408 918 

With seeding 163 172 184 163 183 203 
Best solution 163.62 163.62 

CPU time  1m1.59s 1m53.28s 
 
 The results show that the GN GA is more 
sensitive than the SS GA to variations in MP. For both 
GAs, lower values of MP are recommended to achieve a  
better solution. 
 For each unit i=1,2,...,N, the maintenance 
window constraint (2) forces exactly one variable in 
{Xit:  ei≤t≤li-di+1} to be one and the rest to be zero. 
Therefore, a maintenance window feasible genetic 
structure contains many more ‘0’ bits than ‘1’ bits. For 
our test problem, only 21 out of 496 bits in the  string 
must be ‘1’ and the rest ‘0’. Hence the most of the 
search space represents unfeasible solutions. A high 
mutation probability increases the chance of changing 
these ‘0’s into ‘1’s and has the potential to disrupt and 
degrade the search process. With higher mutation 
probabilities the GA could not find a maintenance 
window feasible solution even in 100000 trials. 
However, with lower mutation probabilities the GA 
found maintenance feasible solutions. 
 The selection bias value specifies the amount 
of preference to be given to the superior individuals in 
selection of parents. If SB=2, for example, then the 
selection probability for the best individual is twice that 
of the mean individual. When SB is close to 1, the 
distribution of selection probability becomes nearly 
uniform. In general, if the selection bias is too high, then 
a superior solution strongly dominates the less fit 
solutions and this may lead the GA to converge 
prematurely to a local minimum. Low values of the 
selection bias cause less preference to be given to the 
good genetic structures previously found. The second 
part of Table 2 presents results found using 4 different 
bias values for each of the two GAs, with MP chosen to 
give the best performance from above. Taking selection 
bias 1.01 for the SS GA and 1.25 for the GN GA gives 
the best solution. Thus the SS GA gives good results 
when all individuals in the pool have virtually uniform 
probability of selection. For the GN GA selection 
pressure towards fitter individuals leads to better 
performance. 
 Table 2 also presents the outcomes of  5 GA 
runs for different population sizes with other GA 
parameters chosen to give the best performance from 
above. For a fixed number of  trials, the number of 
generations in the GN GA decreases as the population 
size increases. Hence the GN GA performance is poor 
for the large population size. The SS GA performs better 
with larger population size.  
 In order to enhance the performance of the 
GAs, one of the individuals in the initial population was 



created meaningfully and the remainder chosen 
randomly as before. The ‘seeded’ solution was 
developed heuristically by ranking the generating units 
in order of decreasing capacity to level the reserve 
generation while considering the maintenance window 
constraints. The results of 5 runs of both GAs are 
shown in Table 2. The seeding significantly improves 
the performance of both GAs. During the early 
iterations, the GAs with random initial population spend 
most of their time on finding maintenance window 
feasible solutions. Therefore, the inclusion of a 
maintenance window feasible solution incorporating 
domain knowledge in the initial population leads to the 
improvement of the GA performance.  In the real system 
problem, some previously used solutions may be 
available for initialisation. 
 In the GN GA the reproduction of individuals 
within a generation is independent of the offspring 
produced in that generation as parents and children do 
not co-exist in a genetic pool. The influence of new 
offspring in the reproduction procedure can only occur 
in the next generation.  For each generation a number of 
individuals equal to the population size are selected for 
genetic manipulation which helps to preserve the 
diversity of population in the genetic pool. This reduces 
the chance of premature convergence.  
 In the steady state GA, there is no concept of 
'generation' and the produced offspring enter to the 
genetic pool before the next trial. Hence, the influence 
of the offspring in the reproduction procedure is 
immediate. As a fitter solution generally replaces a less 
fit solution in the pool at every trial there is a chance of 
filling the genetic pool with individuals converging 
towards the top individual of the pool during the course 
of GA run. The crossover operator acts to improve the 
solutions in the initial trials. However, in the later trials 
the improvements to the offspring are expected to be 
due to the mutation operator only, as the crossover 
operator does not change any information between 
identical parents. Therefore, the improvement of 
candidate solutions in the pool is faster for initial trials. 
 The CPU times on a DEC Utirx 5000/260 
workstation for both GAs are shown in Table 2. With 
GA parameters chosen to give the best performance for 
each GA, the GN GA takes about a half of the 
computation time than that of the SS GA to obtain the 
same result. 
 
4 Conclusions 
 
 Two GAs with generational and steady state 
design were tested for a GMS problem. The effects of 

varying the mutation probability, selection bias and 
population size were studied. The test results show that 
both GAs are sensitive to variation in these parameters 
and appropriate values must be chosen in order to 
obtain good solutions. In both cases a low value of 
mutation probability must be chosen. The GN GA gives 
better results with a small population. For the SS GA 
large population size and virtually uniform selection 
gives the best results. The effect of seeding a 
heuristically derived individual in the initial pool was 
investigated for both GAs. Seeding greatly enhances 
the performance of both GAs in finding better solutions. 
The obtained results show that the GN GA gives better 
performance than the SS GA in terms of the speed and 
the average quality of the solution. 
 Binary values were used for representing the 
maintenance start period during the encoding of the 
GMS problem. However, the problem variables are  
numeric so representing them directly as a integers 
rather than bit  strings can reduce the size of the GA 
search space greatly. The use of problem specific 
knowledge in the formulation of the evaluation function 
and in the design of the GA operator could reduce the 
computational time of the GA. Furthermore, domain 
knowledge may be used to prevent obviously unfit 
chromosomes, or those which would violate problem 
constraints from being created within the GA. Further 
research is in progress to investigate all these and other 
issues and the results will be reported else where. 
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