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ABSTRACT 
 

New Artificial Intelligence (AI) approaches such as simulated annealing, genetic algorithms, simulated evolution, neural networks, tabu 
search, fuzzy logic and their hybrid techniques have been applied in recent years to solving Generator Maintenance Scheduling (GMS) 
problems. This paper presents a review of these AI approaches for the GMS problem. The formulation of problems and the 
methodologies of solution are discussed and analysed. A case study is also included which presents the application of a genetic 
algorithm to a test system based on a practical power system scenario. 
 
 

1. INTRODUCTION 
 
In recent years researchers have focused much attention on new 
theoretical and methodical approaches for Generator 
Maintenance Scheduling (GMS) from the power system 
planning, design and operational points of view. GMS for a 
power utility is a complex combinatorial constrained 
optimisation problem. A practical problem considering 
economic, security, reliability and operational requirements 
must be formulated, and an efficient methodology must be 
developed to solve the formulated problem. 
 
Conventional solution methods are generally based on heuristic 
techniques or mathematical methods including integer 
programming, branch-and-bound techniques and dynamic 
programming [1]. The heuristic approach uses a trial-and-error 
method to evaluate the maintenance objective function, usually 
by considering each unit separately. This requires significant 
operator input  and in some situations it fails to produce even 
feasible solutions [1]. In contrast, the above mathematical 
approaches are severely limited by the 'curse of dimensionality' 
and are poor in handling the nonlinear objective and constraint 
functions that characterise the GMS problem.  
 
In order to overcome the above limitations, a number of Artificial 
Intelligence (AI) techniques have been recently implemented for 
GMS problems. The general objectives and constraints of the 
GMS problem are described in Section 2. Section 3 reviews the 
application of simulated annealing, genetic algorithms, simulated 
evolution, neural networks, tabu search, fuzzy logic and their 
hybrid methods to the formulation and solution of GMS 
problems. Section 4 presents results from a case study of 
applying a Genetic Algorithm (GA) to a test system based on a 
practical power system scenario. Conclusions follow in Section 
5. 
 
 

2. GMS PROBLEM DESCRIPTION 
 

There are generally two categories of objective functions in 
GMS, those based on reliability [1,4,6-9] and those based on 
economic cost [2,3,5,9-11]. The levelling of the reserve 
generation over the entire operational planning period is the most 
common reliability criterion. This levelling can be realised by 
maximising the minimum net reserve of the system during any 
time period. In the case of a large variation of reserve, minimising 
the sum of squares of the  reserves can also be an effective 
approach. Alternatively, the quality of reserve is considered, 
whereby the risk of exceeding the available capacity is levelled 
over the entire period by using the load carrying capacity 
(ELCC) for each unit and an equivalent load (EL) for each 
interval. Minimising the sum of the individual loss of load 
probabilities (LOLP) for each interval can also be an objective for 
the reliability criterion under the condition of load uncertainty 
and random forced outage of units. 
 
The most common objective based on economic cost criteria is to 
minimise the total operating cost, which includes the costs of 
energy production and maintenance. If outage duration is allowed 
to vary in the minimisation of the generation operating cost, this 
results in a trade-off solution between the energy production and 
the maintenance cost. Higher maintenance costs lead to shorter 
outage durations, thus reducing the load of expensive generation 
and possible energy purchases, consequently resulting in a lower 
energy production. The production cost alone could also be 
chosen as the objective function by minimising the total energy 
replacement cost due to preventive maintenance scheduling. 
However, this is an insensitive objective as it requires many 
approximations [1]. 
 
The GMS problem has a series of constraints related to the 
generating units and the power system: 
• Maintenance window constraints - define the earliest and latest 

time and the duration of maintenance for each  unit. 
• Crew constraints - consider the manpower availability for 

maintenance work. 
• Resource constraints - specify the limits on the resources 

needed for maintenance at each period. 



• Exclusion constraints - prevent the simultaneous maintenance 
of a set of units. 

• Sequence constraints - restrict the initiation of maintenance of 
some units after a period of maintenance of some other units. 

• Load constraints - consider the demand on the power system 
during the scheduling period. 

• Reliability constraints - consider the risk level on the selected 
maintenance schedule. 

• Transmission capacity constraints - specify the limit of 
transmission capacity in the interconnected power system. 

• Geographical constraints - limit the number of generators 
under maintenance in each region. 

 
 

3. AI  SOLUTION  TECHNIQUES  
 
3.1 Simulated Annealing 
Satoh & Nara [2] solved a thermal GMS problem using 
Simulated Annealing (SA) to find the start period of 
maintenance for each unit. The SA method is based on the 
analogy between the physical annealing process of a solid and 
the problem of finding the minimum of a given function 
depending on many parameters, as encountered in combinatorial 
optimisation problems.  

The authors formulated the GMS problem as a mixed-integer 
programming problem, and three systems of different sizes were 
tested. At each stage (cf. temperature) a trial solution in the 
neighbourhood of the current solution is generated by selecting a 
generating unit (cf. molecule) with uniform probability and 
randomly changing its maintenance period. If the trial solution is 
an improvement, it is accepted, otherwise it is accepted with a 
defined probability. The process is repeated within each stage 
until the number of generated solutions in this stage is 
sufficiently large (equilibrium condition reached). Successive 
stages then lead to a gradual reduction in the probability of 
accepting trial solutions. When the number of acceptable 
solutions is small enough, the “freezing point” is reached and the 
algorithm is terminated.  

The authors showed that SA was between 12 and 70 times 
quicker than integer programming (IP) in finding the same 
solution for their small and medium sized problems 
respectively. For the large system studied, IP could not be 
adopted from the computational point of view but the SA 
approach was able to find a solution despite requiring a large 
computational time (about 21 hours). However, the authors do 
not see this as a defect as the maintenance scheduling is carried 
out over a year or more, and it is important to find a near 
optimal solution for a real size problem. 
 
3.2 Genetic Algorithms 
Genetic Algorithms (GAs) are based on natural genetic and 
evolution mechanisms and work on populations of solutions. 
GAs are iterative procedures which maintain a population of 
candidate solutions to an optimisation problem. First, an initial 
population of candidate solutions is generated randomly or by 
other means. During each iteration step, a new population is 
formed by applying selection and recombination (crossover and 

mutation) operators to solutions in the current population based 
on their individual goodness. The crossover operator exchanges 
information between candidate solutions and the mutation 
operator introduces a random change in the solution to reach 
new parts of the search space.  

For GMS problems, a binary [3-5] or integer [6] string can be 
used to represent each solution in the population, this 
represents a vector of parameters which is analysed by a fitness 
function in order to determine its goodness. GAs were initially 
developed using populations of binary strings, which for GMS 
may be used to represent the maintenance state [3] or 
maintenance start period [4,5] of a unit within the scheduling 
period. However, the GMS problem variables are numeric and 
representing them directly as integers rather than bit strings 
reduces the search space greatly making the GA very effective 
[6]. Section 4 describes a case study which uses this integer 
encoding to represent maintenance start periods. Generally 
penalty functions are introduced in the formulation of the 
fitness function for GMS problems [3-6], which take care of the 
various constraints imposed on the system.  
Kim et al. [3] presented an application of the GA approach for 
GMS using the acceptance probability of the SA method for the 
survival of individuals during the evolution process. Here the 
crossover was performed not only between solutions but within 
a solution as well (effectively implementing a mutation-like 
operator). This hybrid approach was applied to a test system 
with 15 units over 260 periods to obtain a solution whose cost 
value was around 0.1% less than the best solution obtained 
using a simple GA.  
 
3.3 Simulated Evolution 
Sutoh et al. [7] proposed a new method for solving a large scale 
GMS problem using Simulated Evolution (SE), which is also 
based on an analogy of the natural selection process in biological 
environments. Unlike GAs, each individual represents one 
variable and the whole population of individuals represents one 
solution. The SE algorithm allows the selection of many 
variables (individuals) simultaneously. The probability that a 
variable is selected depends on its suitability (goodness) to the 
environment.  
 
In this approach, each individual corresponds to a generating 
unit to be maintained. The goodness is effectively given by the 
variance of the ratio of reserve to load during the maintenance 
periods of the units. The method needs initialisation with a 
feasible initial solution, which was found using a branch-and-
bound based depth-first search approach. The subsequent 
iterative process involves evaluation, selection and rescheduling 
steps until a termination criterion is satisfied. A unit that is 
maintained in the low reserve margin periods is evaluated as 
having low goodness and is highly likely to be selected to be 
reset and rescheduled in higher reserve margin periods. A depth-
first search is applied to find a better schedule for the units in 
the rescheduling stage.  
 
The authors presented the results for systems with 10 units 
over 36 periods and 40 units over 52 weeks, and compared the 
SE technique’s effectiveness with the simple depth-first search 



approach. The SE method was about 32 times faster in finding 
the optimal solution for the small system, and found a 
significantly better solution for the large system than the depth-
first search for a fixed number of iterations. 
 
3.4 Neural Networks 
Yoshimoto et al. [8] presented a Neural Network (NN) based 
approach for a large-scale GMS problem. The design of a neural 
network is motivated by an analogy with the human brain for 
solving problems more complex than those based on 
conventional hard-wired design techniques. The authors used a 
Dynamic Canonical Network, which is an extension of the 
standard Hopfield Neural Network, in order to handle 0-1 
integer programming problems with nonlinear objective and 
inequality constraints. This network has variable neurons which 
represent the value of the variables in the programming problem 
and constraint neurons which represent the satisfaction of 
inequality constraints. If a constraint is not satisfied the 
corresponding neuron makes no output, otherwise it makes a 
non-zero output. Provided that the response time of the 
constraint neurons is much faster than that of the variable 
neurons, the energy function of the network decreases 
monotonically along with the action of the neural network, and 
converges to a stable equilibrium point. This convergence is 
however dependent on the selection of the initial state. The 
stable equilibrium point is one of the local minima of the 
objective function.  
The approach decomposes the scheduling period into several 
sub-periods and the NN is applied to the respective sub-
problems. As the number of target generators is small and the 
duration of the targeted periods is short within the sub-
problems, the volume of computation can be considerably 
reduced.  

The authors also adopted some heuristic ideas during the neural 
network procedure. The algorithm first checks the feasibility of 
the given conditions and constraints of the GMS problem. Then 
the maintenance of large-scale units is performed during the 
periods which have enough supply. After decomposing the 
problem by grouping generating units that require maintenance 
in the same sub-period, the neural network is applied to each 
sub-problem. The obtained schedule is evaluated and the part 
which is unsatisfactory is modified. When such an approach has 
been applied to all groups of units, the computation is 
completed.  

This approach was applied to two test systems using different 
initial conditions. The NN approach found a solution within 
10% of the optimal solution obtained by using implicit 
enumeration in 1/15th of the time. The effectiveness of the 
decomposition technique was demonstrated for the large 
system, for which a solution was found in 10 minutes whose 
cost was within 3% of the solution found by solving the whole 
system collectively in over 4 hours.  
 
3.5 Tabu Search 
Burke et al. [5] compared Tabu Search (TS) methods with a 
hybrid of SA/TS, SA and binary GA techniques for GMS 
problems. The TS method considers the neighbourhood of a 

current solution to create the next solution during the search 
process.  In each iteration, only one variable (maintenance start 
period) is moved by changing the start period either to each 
possible starting period or just to the periods adjoining it.  

Two different approaches, known as ‘solution tabu’ and ‘move 
tabu’, have been applied. The first method compares the state of 
a trial solution to the solutions from previous iterations, so it 
cannot revisit a solution from that number of iterations. The 
move tabu compares the move from the current solution to the 
trial solution with a number of previous moves and prevents the 
algorithm from performing the same move more than once during 
these iterations. The authors also presented a hybrid approach 
using TS within an SA technique in which a candidate solution 
in a neighbourhood is accepted only if it is not in the list of 
recently accepted solutions.  

These methods were compared for three systems as given in [2]. 
The solution tabu method found solutions with 0.2-2% lower 
cost but took 4 to 11 times more computational time than other 
methods. The move tabu found a solution whose cost was 0.5% 
of that found by the solution tabu method, but was 5 times 
faster. 
 
3.6 Fuzzy Logic 
The GMS problem involves multiple objectives. The general 
expression of the objective function for GMS may be a 
combination of several individual objectives that may conflict 
with each other. Furthermore, a real GMS problem includes 
many uncertainties. The maintenance window, manpower and 
resource constraints of a GMS problem are not as rigid as 
conventional deterministic techniques treat them. In fact, utility 
requirements to schedule maintenance work with minimum cost 
and maximum reliability are not as crisp as is commonly 
believed. 
An approach based on fuzzy sets can deal with multiple 
conflicting objectives [9] and  take account of the imprecise and 
flexible environment of the GMS problem [9-11]. In the 
formulation of maintenance scheduling problems under a fuzzy 
environment the objective function (multiple or single) and 
constraints, which include uncertain variables, are all expressed 
in fuzzy set notation. Huang et al. [9] implemented fuzzy 
dynamic programming to determine the optimal GMS decision. 
Imprecise constraints and two objectives, the reserve margin and 
the additional production cost at the maintenance time are 
fuzzified by using linear membership functions, and a recursive 
algorithm similar to conventional dynamic programming is 
applied to calculate the highest membership value at each stage 
of the search path.  

Gibson et al. [10] formulated the GMS problem with a fuzzy 
objective for levelling reserve which considered the uncertainty 
of the load. The branch-and-bound technique was used to 
achieve the optimal solution.  

Noor and McDonald [11] demonstrated fuzzy 0-1 linear 
programming for a small GMS problem. The linear fuzzy 
objective is converted into a fuzzy constraint by using an 
aspiration level and the flexible/imprecise constraints are 
represented by fuzzy functions. The problem is then converted 



into a crisp linear mixed integer programming problem to 
maximise membership in the decision set. These fuzzy methods 
provide a greater solution flexibility, but are based on 
mathematical methods and suffer from the corresponding 
limitations as explained in section 1.  
 
 

4. A CASE STUDY USING A GA TECHNIQUE 
 
In this section we demonstrate the application of a GA to solve 
a GMS test problem comprising 21 units over a planning period 
of 52 weeks. The data for the test problem is given in [4,6]. The 
objective is to schedule the maintenance outages of generators to 
minimise the sum of the squares of the reserve generation. The 
problem includes many features which characterise real systems, 
such as maintenance window, crew and load constraints. The 
GA was implemented using the publicly available GENITOR 
package. The following discussion is relatively limited, whereas 
the results are discussed in more detail in [6]. 

Integer strings are used to represent candidate solutions of the 
problem in the population. Each integer of the string indicates 
the period when maintenance for a unit starts. The evaluation 
function is the weighted sum of penalty values for each 
constraint violation and the objective function itself. Feasible 
solutions with low evaluation measures have high fitness values 
while unfeasible solutions with high evaluation measures have 
low fitness measures. 

The crossover operator used here is a simple two-point 
crossover. The crossover is applied in each iteration when the 
exchanged information is unique to each parent. The mutation 
operator takes each integer in a solution string and with the 
given mutation probability (MP) changes it within the allowed 
integer interval. The distribution of the new integer value within 
the interval is approximately uniform during mutation. The 
population size (PS) specifies the number of individuals in the 
solution population. The selection bias (SB) value specifies the 
amount of preference to be given to the superior individuals in 
the population.  
A number of GA runs have been carried out to observe the 
sensitivity of the GA to the variation of MP, SB and PS. Table 
1 presents the test results for different values of MP and SB 
taking other GA parameters as constant. Each case presents the 
minimum, average and maximum evaluation measures of the best 
solutions obtained for 5 GA runs. The total number of trials for 
each run was fixed at 30000.  
 
The top portion of Table 1 shows that the average evaluation 
measure of the best solutions varies from 200 to 144 with the 
variation of MP from 0.001 to 0.1. For this particular problem, 
higher than generally expected values of MP have been found to 
give better results. The second portion of Table 1 demonstrates 
that a trade-off needs to be applied in the choice of the SB value. 
If SB is too high, then a superior solution strongly dominates 
the less fit solutions and this may lead the GA to converge 
prematurely to a local minimum. There is however little 
difference between average evaluation measures of the best 
solutions for the studied problem. 

 
      Table 1 Effect of GA parameters for the GMS problem. 

 MP Value min avg max 
Selection 0.001 191 200 227 
Bias=2.5 0.005 144 176 194 

 0.01 141 160 198 
Population 0.05 138 144 157 

Size=50 0.1 147 157 170 
 SB Value min avg max 

MP=0.05 1.5 148 156 174 
 2.0 147 153 165 

Population 2.5 138 144 157 
Size=50 3.0 143 151 162 

 
The GA was also tested with different population sizes 
between 10 and 500 keeping other GA parameters fixed: SB=2.5 
and MP=0.05. It was found that the best solution was achieved 
with population size 175, though the performance of the GA 
did not vary greatly over the different cases.  
Unlike the binary GA [4], it can be seen from the above test 
results that the integer GA is very stable for a wide range of 
variation in the GA parameters. The best solution found by the 
GA, whose cost is 138, is feasible and better than a heuristic 
solution (cost 222) calculated by ranking the generator units in 
order of decreasing capacity to level the reserve generation. Due 
to its complexity the optimal solution for this problem is 
unknown. The GA took 16.81s computational time to find the 
best solution on a DEC Ultrix 5000/260 workstation.  
 
 

5. CONCLUSIONS 
 

To overcome the limitations of conventional methods, a variety 
of Artificial Intelligence techniques have been applied to tackle 
GMS problems with different degrees of success. It is difficult 
to say which method is most appropriate for GMS problems, as 
the reviewed studies applied different techniques for different 
problems with different assumptions. The success of a method 
depends on many factors such as size and composition of the 
studied power system, the objective to be optimised, 
constraints to be considered, and the particular implementation 
of the methodology. AI techniques are not guaranteed to find 
optimum solutions but it can readily achieve good solutions to 
complex problems like GMS.  

A case study of the application of a GA to a test GMS problem 
has  been  demonstrated. Good  solutions to the problem can be 
found if appropriate problem encoding, evaluation function and 
GA parameters are selected. The use of integer encoding to 
represent GMS problem variables in a genetic structure can 
implicitly consider some of the problem constraints and greatly 
reduces the GMS search space. The results presented above 
show the integer GA is a robust technique for GMS problems 
and can find good solutions with a wide range of variations in 
GA parameters. The use of problem specific knowledge in the 
solution representation, the formulation of the evaluation 
function and the design of the GA operators can improve the 
GA technique for use in solving genuine large-scale GMS 



problems. Research on these particular issues is on-going and 
will be reported elsewhere. 
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