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ABSTRACT 
 
The computation of curvature quantities over discrete 
geometry is often required when processing geometry 
composed of meshes. Curvature information is often 
important for the purpose of shape analysis, feature 
recognition and geometry segmentation. In this paper we 
present a method for accurate estimation of curvature on 
discrete geometry especially those composed of meshes. 
We utilise a method based on fitting a continuous surface 
arising from the solution of the Biharmonic equation 
subject to suitable boundary conditions over a 1-ring 
neighbourhood of the mesh geometry model. This enables 
us to accurately determine the curvature distribution of 
the local area. We show how the curvature can be 
computed efficiently by means of utilising an analytic 
solution representation of the chosen Biharmonic 
equation.  In order to demonstrate the method we present 
a series of examples whereby we show how the curvature 
can be efficiently computed over complex geometry 
which are represented discretely by means of mesh 
models.   
 
KEY WORDS  
Curvature computation, discrete geometry, Biharmonic 
surfaces.  
 
 
1.  Introduction 
 
The efficient computation of curvature over geometry is 
an important step in many of the geometric design related 
tasks. With the advent of range scanning systems, 
complex objects defined through discrete geometry, for 
example in form of 3D meshes, are increasing becoming 
popular in the area of geometric modelling and computer 
graphics. Therefore, the need for efficient and accurate 
computation of curvature on discrete geometry has also 
become a key task. Some of the geometric applications 
where curvature of the discrete geometry concerned is 
required include surface registration, geometry smoothing 
and simplification. Examples of areas of application 
include reverse engineering [1,15], segmentation [7,16] 
and recognition [3,6].  
  
Methods for computation of curvature over discrete 
geometry (in particular for triangular meshes) can be 

divided into two categories, namely discrete and 
continuous. Methods based on discrete formulation utilise 
a closed form of differential geometry operators which are 
applied to the discrete representation (e.g. on a 1-ring 
neighbourhood of the triangular mesh) of the underlying 
geometry.  Methods based on continuous formulation 
involve fitting a surface locally and computing curvatures 
using the definition of the local surface. Popular examples 
of discrete methods include that of Meyer et al. [9] and 
that of Taubin [13], while examples of continuous 
methods include the fitting methods suggested by 
Goldfeather et al. [5] and that proposed by Rusinkiewicz 
[10]. The method described in this paper fall under the 
continuous category where we fit a Biharmonic surface 
over a 1-ring neighbourhood of the mesh geometry in 
order to accurately estimate the curvatures.  
 

Figure 1. 1-ring neighborhood of vertex used for curvature 
computation using the method of Meyer et.al.  

 
The most common discrete method widely utilised for 
computation of curvatures over triangular meshes is that 
of Meyer et. al. and is formulated through the 
discretization of the Laplace-Beltrami operator applied to 
the 1-ring neighbourhood. Given a patch of triangles 
surrounding a point as shown in Figure 1, the estimates 
for the Gaussian curvature, and the mean curvature 

, at  is given by, 
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where is the sum of triangle areas, ,∑=

j
jfA ix jθ , ijα

and ijβ are as shown in Figure 1.  
 
The rest of the paper is organized as follows. In Section 
(2) we describe details of the local surface fitting 
methodology based on the boundary-value problem to the 
Biharmonic equation. In particular, we describe how the 
chosen Biharmonic equation is solved explicitly over a 1-
ring neighborhood of the discrete surface mesh. In this 
section we also discuss a test example where we compare 
our proposed method with the discrete method of Meyer 
et al. In Section (3) we present some further results and 
examples whereby we show the curvature computation on 
complex discrete geometry. Finally in Section (4) we 
conclude the paper.    
 
 
2.  Method of Biharmonic Surfaces 
 
The method discussed here for computing estimation to 
the curvatures is based on fitting a continuous surface 
patch based on the solution to a suitably posed boundary 
value problem whereby the Biharmonic Equation is 
solved over a 1-ring-neighbourhood of the mesh 
geometry. The problem of generating a continuous 
surface through solving the Biharmonic equation is based 
on defining the boundary-value problem within a 
parametric domain subject to a given set of boundary 
conditions.  
 
Thus, we define a parametric surface patch as a 
function of two parameters and on a finite domain 

, by specifying boundary data around the edge 
region of . The boundary data here are specified in the 

form of  and its normal 
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 of the domain . Hence we assume that the 
coordinate of a point u  and  in the parametric domain is 
mapped from that point in Ω  to a point in the physical 
space within which the continuous surface patch lies. To 
satisfy these requirements the surface is regarded 
as a solution of the standard Biharmonic equation,  
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Note that the motivation for using the above formulation 
for surface representation is that the partial differential 
operator associated with the Biharmonic equation (3) is an 
elliptic operator which posses smoothing properties. 
Hence, with this formulation one can see that the 
Biharmonic operator in Equation (3) represents a 
smoothing process in which the value of the function at 
any point on the surface is, in some sense, a weighted 
average of the surrounding values. In this way a surface is 
obtained as a smooth transition between the chosen set of 
boundary conditions. It is noteworthy to point out that 
similar methods based on the Biharmonic equation or its 
variations have been utilized for geometric design. e.g. 
[2,4,12,14,17] 
 
2.1 Explicit Solution of the Biharmonic 
Equation  
 
Our motivation here is to develop a method that can 
estimate the discrete geometry with a collection of 
continuous surface patches which has an analytic 
representation. Analytic representation of the surface 
patch has the advantage that the curvature quantities can 
be directly computed since the derivative information 
required for computation of the curvatures can be directly 
computed using the mathematical functions representing 
the surface patch.  
 
For this purpose we seek an exact solution of Equation 
(3). To do this we assume the boundary conditions for a 
continuous patch over a 1-ring neighborhood of the mesh 
is continuous and periodic.   
 

Figure 2. Description of the boundary conditions for the 
Biharmonic Equation over a 1-ring neighborhood of the 
mesh geometry.  
 
 
Figure 2 shows a typical 1-ring neighbourhood of the 
mesh geometry over which we can define a continuous 



surface patch by means defining appropriate boundary 
conditions.  
 
The specific form of the boundary conditions for 
generating a given surface patch over a 1-ring 
neighborhood is given as, 
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where  and  are the position boundary 
conditions and  and  are the normal 
boundary conditions at the edges of the surfaces patch. 
Referring to Figure 2, corresponds to the common 
vertex of the 1-ring neighborhood and  corresponds 
to a Fourier curve representing the other vertices of the 1-
ring neighborhood.  and  are the derivative 
vectors which are represented by arrows as shown in 
Figure 2.   
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Thus, assuming our region of interest for the PDE 
solution to be 0 ≤ u ≤ 1and 0 ≤ v ≤ 2π, and also assuming 
that the conditions required to solve Equation (3), are 
periodic functions, we can use the method of separation of 
variables to write down the explicit solution of Equation 
(3) as, 
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where  is an integer. The form of subject to the 
general boundary conditions given in (4)-(7) is given as,  
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where   .12 2 +ne4 2− n 2 −ne4= ne
 
Given the above explicit solution scheme the unknowns 

, ,  and  can be determined by the imposed 
conditions at the edges of the surface patch. The boundary 
conditions imposed (both position and derivative) can be 
represented by continuous functions, which are also 
periodic in 

1c 2c 3c 4c

v . We can then write down the Fourier series 
representation for each boundary condition such that,  
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where is the integer defined in (8) which represents the 
chosen Fourier mode. Thus, for each Fourier mode 
representing the boundary condition, an appropriate linear 
system involving , ,  and can be formulated 
which can be solved using standard methods such as LU 
decomposition [11].   
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2.1 Computation of the surface curvatures  
 
Using the above method we can fit an analytic and 
continuous surface patch for a given 1-ring 
neighbourhood of the mesh in question. This surface 
patch has the analytic form given in Equation (8). Given 
this, the computation of the relevant curvature quantities 
is a straightforward procedure involving the computation 
of the derivatives and normal for the surface. For 
example, given the unit normal to the surface 
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where, •= , , vuF XX •= vvG XX •= , 

nuue XX •= , nuvf XX •= and nXvvg X •= . 
 
2.1 Test Example  
 
Here we take a test example in order to compare the 
results of the curvature for the Biharmonic surface fitting 



technique discussed above. For comparison purposes we 
use the cartenoid surface for which the exact curvature in 
the form of an analytic function is available. Thus, we 
compute the curvature distribution over the catenoid using 
the explicit method. We also compute the curvature 
distribution using the method of Meyer et. al. These are 
then compared with the continuous Biharmonic surface 
fitting method discussed above.  
 
Figure 3 shows the surface of a cartenoid which can be 
analytically defined as, 
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Figure 3. Geometry of the cartenoid shape.  

Using Equation (16) the explicit description of the 
Gaussian curvature  is given as,                             cartenoidH

                          
4cosh

1
u

H cartenoid −= .                      (17) 

Figure 4 shown the distribution of the curvature using the 
discrete method of Meyer et. al. Here the solid line 
indicates the exact curvature distribution while the broken 
line describes the curvature computed using the discrete 
method of Meyers et. al.  
 
 

Figure 4. Comparison of the actual Gaussian curvature with 
that produced by the method of Meyers et al.   

Figure 5 shows the variation of the Gaussian curvature for 
the cartenoid along the u direction (i.e. along a vertical 
profile for the cartenoid surface shown in Figure 3. Again 
the solid line indicates the exact curvature distribution 
while the broken line indicates the discrete curvature using 
the Biharmonic method.  
 

Figure 5. Comparison of the actual Gaussian curvature with 
that produced by the method by Biharmonic surface fitting.  
 
Comparing the curvature results for the cartenoid shape 
(between Figures 4 and 5) one can clearly see that there is 
a more smooth distribution of the curvature when the 
Biharmonic method is used in comparison to that of 
Meyer et. al.  
 
3.  Results and Examples 
 
In this section we discuss curvature computation on 
several examples of complex geometric shapes which are 
discretely represented using triangular meshes.  
 
As a first example we take the geometry of the biological 
vesicle shown in Figure 6.  Figure 7 shows the Gaussian 
curvature distribution over the vesicle shape.  

Figure 6. Mesh geometry model of a vesicle shape.   
 



 

Figure 7.  Gaussian curvature distribution on the surface of 
the vesicle shape.    
 
As a second example in this section we discuss the 
computation of the curvature on the surface of a human 
head model shown in Figure 8. Again the head model is 
defined as a triangular mesh where for each 1-ring 
neighbourhood a continuous surface is fitted to compute 
the curvature explicitly. Figure 9 shows the distribution of 
the mean curvature over the head model.  
 

Figure 8.  Mesh geometry model of a head shape.    
 

Figure 9.  Mean curvature distribution on the surface of the 
head shape.    
 
As a third and final example we discuss the computation 
of the curvature on the surface of the terrain geometry 
shown in Figure 10. As usual the terrain geometry is 
given as a triangular mesh model on which the discrete 
curvature has been computed. Figure 11 shows the 
distribution of the absolute mean curvature over the 
terrain geometry model.  

Figure 10.  Mesh geometry model of a terrain surface.    
 

Figure 11.  Absolute mean curvature distribution on the 
terrain surface.    
 



 4.  Conclusion 
 
In this paper we have described a method of computing 
curvature quantities on discrete geometry especially those 
that can be described by a network of mesh. We utilize a 
boundary value approach whereby the solution of 
standard Biharmonic equation is solved for appropriately 
defined boundary conditions over the 1-ring 
neighborhood of the mesh geometry. The Biharmonic 
equation over the chosen 1-ring neighborhood is solved 
explicitly which enables efficient computation of the 
continuous surface over which curvature quantities can be 
computed explicitly. The results indicate that the method 
produces more accurate curvature distribution when 
compared with the discrete method of Meyer et al. We 
have demonstrated the capacity of the method proposed 
here through several examples whereby various curvature 
quantities are computed on meshes representing complex 
geometry.  
 
The method proposed here can be improved further. For 
example one can look into fitting surfaces over an 
extended area of the geometry such as the 2-ring 
neighborhood of the mesh.    This may require additional 
treatment of the boundary conditions and may also require 
looking into solution of higher order elliptic partial 
differential equations.  
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