

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’s website. Where
available access to the published online version may require a subscription.

Author(s): Aldridge, C. J., Dahal, K. P. and McDonald, J. R.

Title: Genetic algorithms for scheduling generation and maintenance in power
systems.

Publication year: 1999

Book title: Modern optimisation techniques in power systems

ISBN:978-0792356974

Publisher: Springer (Kluwer)

Link to original published version:
http://www.springer.com/engineering/electronics/book/978-0-7923-
5697-4

Citation: Aldridge, C. J., Dahal, K. P. and McDonald, J. R. (1999) Genetic
algorithms for scheduling generation and maintenance in power systems. In:
Song, Y. H. (ed.) Modern optimisation techniques in power systems. Intelligent
systems, control and automation: science and engineering series.
Heidelberg: Springer. pp. 63-89.

Copyright statement: © 1999 Springer. Reproduced in accordance with the
publisher's self-archiving policy

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.springer.com/engineering/electronics/book/978-0-7923-5697-4�
http://www.springer.com/engineering/electronics/book/978-0-7923-5697-4�

GAs for scheduling generation and maintenance

GENETIC ALGORITHMS FOR SCHEDULING GENERATION AND MAINTENANCE
IN POWER SYSTEMS

C.J. ALDRIDGE, K.P. DAHAL, J.R. MCDONALD

Centre for Electrical Power Engineering
 University of Strathclyde, Glasgow, UK

1. Genetic algorithms

1.1 INTRODUCTION

Genetic algorithms (GAs) are search and optimisation methods based on a model of
evolutionary adaptation in nature. Unlike traditional ‘hill-climbing’ methods involving
iterative changes to a single solution, GAs work with a population of solutions, which is
‘evolved’ in a manner analogous to natural selection. Candidate solutions to an
optimisation problem are represented by chromosomes, which for example encode the
solution parameters as a numeric string. The ‘fitness’ of each solution is calculated using
an evaluation function which measures its worth with respect to the objective and
constraints of the optimisation problem.

Successive ‘generations’ of the population are created by several simple ‘genetic’
operators, as illustrated in Figure 1. In each generation, solutions are selected
stochastically according to their fitness in order to be recombined to form the next
generation. Relatively ‘fit’ solutions survive, ‘unfit’ solutions tend to be be discarded. A
new generation is created by stochastic operators - typically ‘crossover’, which swaps
parts of binary-encoded solution strings, and ‘mutation’, which changes random bits in
the strings. Successive generations yield fitter solutions which approach the optimal
solution to the problem.

Genetic algorithms were first developed by John Holland at MIT and described in his
1975 book ‘Adaptation in Natural and Artificial Systems’ [1]. More recent introductory
texts include those by Davis [2], Goldberg [3], Michalewicz [4] and Mitchell [5]. GAs are
inherently simp le, naturally parallelisable, and can generate a set of near-optimal
solutions for evaluation. They provide a powerful technique to resolve complicated
multi-dimensional optimisation problems, such as resource allocation and scheduling. A
plethora of information and public domain GA programs are available from sites on the
World Wide Web, for example [6].

GAs for scheduling generation and maintenance

selection

population
generation n

crossover mutation

population
generation n+1

 0 1 1 0 ... 0 1 1 0

string k, evaluation fk

evaluation

Figure 1: A generation of a basic genetic algorithm.

There are three important issues in the application of a GA to solve an optimisation
problem. Firstly, how are the candidate solutions to the optimisation problem
represented, in order to allow the genetic adaptation to be easily applied? Secondly, how
is the optimality (quality) of the solutions assessed? Finally, how is the ‘genetic
adaptation’ applied to existing solutions to yield new solutions? These issues are
addressed in the following sections.

1.2 SOLUTION REPRESENTATION

GAs were initially developed using binary strings to encode the parameters of an
optimisation problem. Binary encoding is a standard GA representation that can be
employed for many problems: a string of bits can encode integers, real values, sets or
whatever is appropriate. Furthermore, the genetic manipulation of binary chromosomes
can be done by simple and universal crossover and mutation operators. However, a
binary representation is often not appropriate for particular problems, and a problem-
specific representation, using strings of integers or floating point numbers, character
strings to represent sets, etc. may give a more coherent algorithm. Such representations
require appropriately designed genetic operators. Ideally, the solution representation
should be such that it represents only the feasible search space, though often this is not
possible in practice.

1.3 EVALUATION

An evaluation function is required to assign a figure of merit (fitness) to each new
solution, which should reflect the quality of the solution that the chromosome
represents. During the GA ‘reproduction’ process the selection of individuals is done
according to their fitness. If the structure of a good solution is well known it is easy to
construct a suitable evaluation function. For constrained optimisation problems, the
evaluation function typically comprises a weighted sum of the objective (or a simple
function of it) and penalty functions to consider the constraints. This approach allows

GAs for scheduling generation and maintenance

constraints to be violated, but a penalty depending on the magnitude of the violation is
incurred which degrades the fitness. A highly infeasible individual has a high penalty
value and will rarely be selected for reproduction, allowing the GA to concentrate on
feasible or near-feasible solutions.

Multiple objectives may be included in a weighted sum in the evaluation function.
However for more advanced problems, it may be useful to consider Pareto optimality [7]
or fuzzy logic [8], which are outside the scope of this introduction.

1.4 SELECTION

In order to mimic the principle of ‘survival of the fittest’, GAs introduce selection
pressure through choosing relatively good solutions for recombination and replacing
inferior solutions in the population with new individuals. Selection is a method that
stochastically picks individuals from the population according to their fitness: the higher
the fitness, the more chance an individual has to be a parent. The selection pressure
defines the degree to which better individuals are favoured, which drives the GA to
improve the population fitness over successive generations. In general, if the selection
pressure is too high, then a superior individual strongly dominates the less fit
individuals and this may lead the GA to converge prematurely to a local optimum.

There are three main types of selection methods: fitness-proportionate, ranking and
tournament. In fitness-proportionate selection the probability that a solution is selected
is directly based on its evaluation value. In order to prevent a highly fit individual
dominating the population, the evaluation values are typically scaled linearly. The
‘roulette-wheel’ method is the simplest and classical fitness-proportionate method. Each
individual is assigned a sector of a wheel whose size is proportional to its (scaled)
evaluation. A position on the wheel is chosen at random, and the individual to which
that position is assigned is selected. Stochastic universal sampling (SUS) selection is
similar to the roulette-wheel method, except that a set of individuals are picked
simultaneously, based on a random choice of a given number of positions spaced
equally around the wheel.

Ranking selection methods take account of the relative ordering of individuals with
respect to their evaluation measures. The probability of selecting an individual is then
given by a linear function of its rank in the population rather than its evaluation measure.
This approach reduces the dominance of highly fit solutions

The basic mechanism of tournament selection involves picking a subset of individuals at
random and then selecting one according to their fitness. Selection pressure is applied in
choosing from the subset of individuals - for example, the best is selected with a given
probability, otherwise the second best is chosen with that probability, and so on.

1.5 RECOMBINATION

GAs for scheduling generation and maintenance

Following their selection, ‘parent’ individuals are recombined to create ‘offspring’. This
is usually achieved using crossover and mutation operators as below, but other domain-
specific operators may also be used during this process.

Crossover exploits the current solutions by exchanging elements of selected parents.
This is done with a given probability, typically in the range of 0.6-1.0, otherwise parents
are unchanged. One-point crossover is the simplest crossover operator, which breaks
the two selected parent strings at a random position and swaps the two substrings to
create two offspring which contain information from each of the parent strings. Two-
point crossover is commonly used, as illustrated in Figure 2. As an alternative to such
‘N-point crossover’, the uniform crossover operator copies the value at each position in
the off-spring from one or the other parent at random. Off-spring therefore contain a
greater mixture of genetic materials from each parent.

parent strings crossed-over strings mutated string

101010110101 101110010101 101110010001

001110011110 001010111110

Figure 2: Two-point crossover and mutation of binary strings. Two crossover positions are chosen
randomly (here 3 and 7) and the enclosed bits are exchanged. One of the resulting strings is randomly
chosen and each bit is changed with given probability (here mutation is applied to the first string, and
the tenth bit is flipped).

A mutation operator is applied to the crossed-over solutions to introduce random
changes. This enables further exploration of the search space. Mutation is often seen as
a background operator to maintain the genetic diversity in the population. There are
many forms of mutation for different types of representation. A simple mutation operator
changes the bit/value at each position in the solution string with a given small mutation
probability, e.g. 0.01, as shown in Figure 2.

Mutation operators may employ hill climbing mechanisms and only apply mutation to a
solution if its evaluation is improved. Such an operator can accelerate the search, but
might reduce the diversity in the population and cause the algorithm converge towards
some local optima.

1.6 POPULATION UPDATING

There are two basic population updating approaches, known as generational and steady
state. The generational approach is as follows. In each generation, the population is
replaced by off-spring produced by selection and recombination of parents from the
population of the previous generation. The best individual in the population pool is
generally retained (elitism). In this case individuals can only recombined with those from

GAs for scheduling generation and maintenance

the same generation. In the alternative steady state approach, new offspring are
introduced immediately into the population, replacing an existing solution, which is
selected for example as the least fit or by tournament selection. Hence parents and off-
springs co-exist in the population.

The recombination of two individuals is effective provided there is a sufficient diversity
in the population. Ideally, the population size should be as large as possible to enhance
the exploration of the search space. However, the computational time and memory
required by a GA become costly as the population size increases. A population size of
around 100 is typical in practice. The genetic algorithms described in the case studies
below use a fixed population size, however in general this may be adapted during the
course of a GA run.

An initial population of a given size must be created to begin the GA search process.
The simplest way of creating the initial population is to sample the search space at
random. However, heuristic methods can be used to generate some or all of the initial
population. If some reasonable meaningful solutions are known or can be generated,
then their inclusion in the initial population can improve the performance of the GA. An
example is given in section 2 below. However the initial population should not lack
diversity in order to avoid exploration of a small part of the search space.

The simplest stopping criterion is to run the GA for a fixed number of generations or
iterations. Alternatively the algorithm may be continued for as long as the best solution
in the population is improving or halted when the solution reaches a required quality.

Instead of a single population, a GA may use a number of smaller populations, known as
‘islands’. Evolution proceeds on each island as for a single population GA, but with a
regular exchange of a limited number of individuals between islands. This approach
naturally lends itself to implementation on a parallel computer, with different islands
allocated to individual processors [9].

1.7 IMPLEMENTATION

GAs are straightforward to implement for practical optimisation problems, typically
requiring only the solution representation and evaluation function to be chosen. The
evaluation function and genetic operators can be easily modified. GAs also yield multiple
solutions which may be subsequently judged. The creation and evaluation of large
number of solutions can be computationally costly, though the generational GA is
naturally parallelisable.

The performance of a GA may be improved by hybridization with other solution
techniques. For example, a heuristic technique may be applied to produce a meaningful
initial population, as we describe below. Simulated annealing, an alternative stochastic
search technique, may be combined with a GA to improve the search process [10,11].

GAs for scheduling generation and maintenance

Solutions in the final population of a GA may also be refined by an appropriate local
search method.

A number of GA programs are available in the public domain, such as GENESIS [12],
GENITOR [13], and RPL2 [9], which have been employed for the case studies described
below. For a given application, the choice of the genetic operators and the values of
parameters such as population size, crossover and mutation probabilities must generally
be guided empirically.

Genetic algorithms have been applied to a range of search and optimisation problems
arising in planning, scheduling and operation of power sytems. A useful bibliography is
given in [14], and a recent comprehensive survey of applications of GAs and other
evolutionary computing techniques in this area is given in [15]. Problems tackled include
unit commitment, economic dispatch, maintenance scheduling, network expansion, alarm
processing and parameter estimation. In the remainder of this chapter, we describe two
case studies, in which GAs are applied to unit commitment and generator maintenance
scheduling.

2. A Knowledge-Based Genetic Algorithm for Unit Commitment

2.1 INTRODUCTION

In order to meet the customer demand in a power system, the generating units must be
scheduled to minimise the total cost and satisfy operating constraints. Calculating the
optimal commitments (on/off) and dispatched generation for each thermal unit at a
sequence of times in the scheduling period is known as the unit commitment &
economic dispatch problem. This is a highly constrained combinatorial problem and
continues to present a challenge for efficient solution techniques.

The constraints of the problem involve the individual units, groups of units and the
entire network. Each unit is generally constrained by minimum and maximum generation,
ramp rates which limit the rate of change of the generation, and minimum times that the
unit can remain on or off. There may also be specified bounds on the total generation of
local groups of units. The predicted demand must be met by the sum of the generation of
all the units; in addition the on-line units must together maintain a specified reserve
capacity. We seek the solution that satisfies these constraints and minimises the total
cost, typically given by the start-up costs and running costs incurred by each unit.

The unit commitment/economic dispatch problem has been tackled using a range of
solution methods. Sheble & Fahd [16] review the development of different heuristic,
mathematical programming and expert system techniques over the last 30 years. Initially
the commitment and dispatch problems were decoupled; indeed, the first to consider the
coupled problem was Garver [17] (1963). Prior to this, and even today, priority listing is

GAs for scheduling generation and maintenance

employed. In the priority list method, units are ordered according to a measure of cost
and committed in this order so that their cumulative generation satisfies the required
level; subsequently the dispatch of the committed units is calculated. This simple
approach can however give solutions far from the optimum. The chief mathematical
programming methods have been Dynamic Programming and Lagrangian Relaxation. The
main drawback of Dynamic Programming is that the number of combinations of states
which must be searched grows exponentially and becomes computationally prohibitive,
hence methods have included for example a priority list to reduce the search space.
Recent work has favoured Lagrangian Relaxation [18], in which the global constraints of
demand and reserve are admitted into the objective function, and the problem
decomposed into master problem and unit subproblems. This natural algorithmic
decomposition admits parallelisation [19]. The method provides bounds on the original
optimum but a heuristic must be employed to construct a feasible solution for the
original problem.

2.2 GENETIC ALGORITHMS

The combinatorial aspect of the commitment problem is a natural target for the
application of genetic algorithms, and in the last few years GAs have been used to solve
the unit commitment/economic dispatch problem. A review of different GA approaches
and results is given in [20]. Most studies have employed a single GA for the entire
scheduling period. In general, the commitments are represented in the solution string as
a binary array and the dispatch variables are calculated as part of the fitness function
evaluation [21-30]. Representations satisfying minimum on and off times have been
introduced using integers [31] and binary substrings [32,33], while in [34] both the
commitment and dispatch variables were encoded in the solution string. These single
GAs have included various problem-specific operators alongside the standard mutation
and crossover operators. Alternatively the solution may be calculated sequentially by
using a GA for each time interval in turn [35-38].

2.3 TEST PROBLEM FORMULATION

We consider a test problem involving 10 generating units over 24 hourly scheduling
points, though our approach may easily be extended for larger problems. A minimum
cost schedule is sought subject to the unit and system constraints described below. We
use the following notation:

D t demand at time t
Fi no-load cost for unit i

l t transmission constraint limit
N number of units
R reserve level
T number of time intervals
U i start-up cost

GAs for scheduling generation and maintenance

V Vi i, ,1 2, incremental cost gradients

Wi incremental cost function

xi
t generation of unit i at time t

x i
min minimum generation

xi
max maximum generation

xi
* breakpoint for piecewise linear incremental cost

αi
t commitment (binary)

βi
t start-up indictator (binary)

γ i
t shutdown indicator (binary)

ρi ramp rate

τ i
on minimum on time

τ i
off minimum shutdown time.

Start-up and shutdown indicators are defined by

{β
α α

i
t i

t
i
t

=
= =−1 0 1

0

1if
otherwise,

, ,
 (1)

{γ
α α

i
t i

t
i
t

=
= =−1 1 0

0

1if
otherwise.

, ,
 (2)

A commitment and dispatch schedule is given by the arrays { }α i
t and { }x i

t , which we

denote by α and x.

The total cost, composed of constant start -up costs and piecewise linear generating
costs, is minimised,

 min (,),
,α

α
x

C x (3)

where

C x U F W xi
t

i

N

t

T

i i
t

i i i
t(,) (),α β α= + +

==
∑∑

11
 (4)

{W
x V x x
x V x x Vi

i
t

i i
t

i

i i i
t

i i
=

≤
+ −

,
*

*
,

*
,()

1

1 2

 , if ,
 otherwise. ,

 (5)

subject to the following constraints:

Generation limits:

α αi
t

i i
t

i
t

ix x x i N, t Tmin max , ... , , ... ,≤ ≤ = = for .1 1 (6)

Ramp rates:

GAs for scheduling generation and maintenance

if then - ,
if then

if then
 for i

t

i
t

α α ρ ρ
β

γ ρ

i
t

i
t

i i
t

i
t

i

i
t

i

i
t

i i

RR

x x
x x

x x
i I t T

− −

−

= = ≤ − ≤
= =

= ≤ +









∈ =

1 1

1

1
1

1
1min

min
,

,
, ,.. ., . (7)

Minimum on times:

β γ
τ

i
t

i
t

MOT
t t

t T

i I t T
i
on

+ ≤ ∈ = −
′= +

+ −

∑ for
min

1 1 1
1

1

, , .. ., .
(,)

 (8)

Minimum shutdown times:

γ β
τ

i
t

i
t

MST
t t

t T

i I t T
i

+ ≤ ∈ = −
′= +

+ −

∑ for
min off

1 1 1
1

1

, , ... , .
(,)

 (9)

Demand:

x D t Ti
t t

i

N

= =
=
∑ for 1

1
, ... , . (10)

Reserve:

α i
t

i
t

i

N

x D R t Tmax for ≥ + =
=
∑ 1

1
,.. ., . (11)

Transmission constraint:

x l t Ti
t t

TC
i ITC

≥ ∈
∈
∑ for . (12)

Initial conditions:
αi ix i N0 0 1, given for = , ... , . (13)

In the above I RR , I MOT , I MST and I TC denote particular subsets of units associated

with the constraints, and TTC is a subset of times. Equations (1)-(13) define a mixed

integer programming problem. This may be made linear by formulating (1),(2) and (7) as
inequalities and introducing extra variables to reformulate (5). In this form the problem is
amenable to Lagrangian relaxation.

The parameter values for the units and demand profile are given in Tables 1 and 2. In
addition we take

 R l I Tt
TC TC= = = =200 1600 1 4 7 20 21 22 MW, MW, { , , }, { , , },

and initial conditions
 x x x1

0
2
0

3
0

10
0300 700 900 0= = = = = = MW, MW, MW, 4

0α α. .. .

In order to gauge the computation required to calculate the optimal solution to this
problem, a series of similar problems with fewer constraints and time intervals were
solved using branch-and-bound. These problems are given by objective function (3)-(5),
initial conditions (13) and generation limits (6), plus (a) demand constraint (10), (b)

GAs for scheduling generation and maintenance

demand and reserve constraints (10) and (11), and (c) all constraints (7)-(12), Branch-and-
bound was applied to these problems over the first T time intervals, for T=2,4,8,12,24,
using standard OSL [39] subroutines on a Sun Sparc workstation. The CPU time to
calculate the optimal solution to problem (a) with T=24 was over 10 hours; problem (b)
with T=12 required over 6 hours. The solution to problem (b) with T=24 and problem (c)
with T=8 was not found within 12 hours of CPU time.

Table 1: Generating unit data, where `-' indicates that the corresponding constraint

is not specified for that unit, and units other than 2 and 5 have x xi i
* = max .

i x i
min x i

max ρ i τi
on τi

on Ui Fi V V xi i i, ,
*, ;1 2

 (MW) (MW) (MW/h) (h) (h) (£) (£/h) (£/MWh);

1 300 1000 40 6 2 14,000 5000 10
2 300 1000 180 6 - 14,000 7875 3.75,15; 700
3 400 1000 600 6 - 20,000 9500 5
4 150 500 60 2 2 10,000 3750 15
5 150 500 240 2 - 10,000 5906.25 5.625,22.5;
6 200 500 300 2 - 25,000 7125 7.5
7 200 200 - - 2 2000 2000 30
8 200 200 - - - 1200 1200 31
9 100 200 - - - 800 800 35
10 100 200 - - - 0 0 40

Table 2: Demand profile.

 t D t (MW) 0700 3000 1400 3500 2100 3500
0100 2400 0800 4100 1500 3200 2200 2700
0200 2200 0900 4150 1600 3700 2300 2200
0300 2000 1000 4200 1700 4500 2400 1900
0400 1850 1100 4250 1800 5050
0500 1750 1200 4300 1900 4700
0600 1700 1300 4000 2000 4200

2.4 GENETIC ALGORITHM DESIGN

2.4.1 Solution Representation and Evaluation
We consider the unit commitment/economic dispatch problem (3)-(13) in the
decomposed form:

 min (),
α

αF (14)

subject to (8),(9), (11), and the following problem being feasible:

GAs for scheduling generation and maintenance

 min (,): satisfies (6), (7), (10) and (12)}.F C x x

x
() {α α= (15)

A GA is applied to the combinatorial minimisation unit commitment problem (14). The
continuous economic dispatch problem (15) parameterised by α is solved in the
evaluation function of the GA, and this may be done by linear programming.

The solution representation in the GA is therefore the binary commitment matrix α . In
the implementation of the GA this was stored as a binary string consisting of the
commitments ordered by time periods first and units second,

(, ... , ,. .. , , ... ,).α α α α1
1 1

1N
T

N
T (16)

Each string is evaluated by first solving (15) to give x, and then summing the total cost
given by (4) and penalty functions for violations of constraints (6)-(12). From (6) and (10)
a necessary condition on α is

α i
t

i
t

i

N

x D t Tmin for ≥ =
=
∑ 1

1
, ... , . (17)

The evaluation function is taken as

f C x w P w P w P w P w P xa a b b c c d d e e() (,) () () () () (,).α α α α α α α= + + + + + (18)

Here Pa is a penalty function associated with constraints (8) and (9), Pb with (11), Pc

with (17), Pd with (10) and (12), Pe with (6) and (7), and the wa etc. are weights. The

penalty functions increase linearly with the constraint violations, and are chosen with
the weights so that the penalty terms are typically larger than the cost terms.

2.4.2 Population Updating
An initial population of K solutions { , ... , }(1) ()α α K is created. These are chosen
randomly, or else the initial population is ‘seeded’ using the method described below.
The evaluation value f k() of each solution is then calculated. This may be done by

linear programming, but as explained below a heuristic method is used to approximate
f k() . A new population is created in the following steps.

1. The lowest evaluation solution α (*)k is copied to the new population (elitism).
2. A set of 2(m-1) parent solutions are selected from the old population by stochastic

universal sampling [4]. This is done by ranking the solutions in order of increasing
f K() , so α (*)k has rank 1. Solutions are then selected in proportion to a decreasing

linear function of their rank.
3. A pair of parent solutions are combined by one-point crossover with probability pc

to create a new solution. Bit-wise mutation is then applied to the new solution with

GAs for scheduling generation and maintenance

mutation rate pm . The mutated solution is then evaluated and placed in the new

population. This crossover, mutation and evaluation is done K-1 times to complete
the population in the next generation of the GA.

The population updating is repeated for J generations, using the heuristic method for
solution evaluation. The best solution in the final population is then re-evaluated by

calculating f k()*
 exactly by linear programming.

2.4.3 Selection of Initial Population
A method to identify the likely structure of the unit commitments was derived following
knowledge elicitation with scheduling experts, and the construction and validation of a
knowledge model. This was done using the KADS (Knowledge Acquisition and Design
Structuring) methodology [40].

Typically a number of units are committed throughout the scheduling period, while
others remain uncommitted. These groups of units may be heuristically determined,
largely by operating cost; however, the inflexibility of certain units and the transmission
constraints must also be taken into account.

The units are initially placed in merit order (here in order of increasing running cost/MW
at full output), and their cumulative total generations calculated. Units which lie
sufficiently (say ≥ m MW) below the minimum demand are classified as ‘must-run’; units
which lie sufficiently above the maximum demand are classified as ‘can’t-run’; and those
remaining are ‘can-run’ units. This classification is then revised at each time interval to
take account of unit inflexibilities and transmission constraints - in this case, constraint
(12) - and the can-run band subsequently narrowed to a margin of around the demand
curve. Here we use a margin of width m=500 MW.

The resulting ‘partition’ may then be used to initialise the population of the GA. For each
solution in the initial population, the commitments are then set as αi

t = 1 (must-

run), αi
t = 0 (can’t-run), or chosen randomly (can-run).

2.4.4 Heuristic Evaluation
The evaluation of each commitment string requires the solution of the economic dispatch
problem (15). In order to realise an efficient algorithm, a fast heuristic method was used
to solve (15) rather than a standard linear programming solver. An existing rule-based
method for generation scheduling (commitment and dispatch) was identified and
described in a knowledge model, again using the KADS methodology. From this model a
heuristic method was derived for economic dispatch with commitments given.

In this method the xi

t are calculated at a sequence of time intervals, ordered according to

the maxima and minima of the demand profile. At each time interval the xi
t are

GAs for scheduling generation and maintenance

successively decreased and increased, using merit order, in order to satisfy the group
constraints and demand. This is done taking into account the values of xi

t at previously

set times, the given commitments, and the unit capacities and ramp -rates. This
approximate method proved to a fast and sufficiently accurate alternative to an exact
linear programming method.

To gauge the effectiveness of these knowledge-based methods, the GA was initially
applied to a smaller, simple problem with a known optimum solution. Results showed that
choosing the initial population based on the derived partition and using the heuristic
dispatch method in the evaluation function significantly reduced the computational time
of the GA to find the optimum, compared to a GA with random initial population and
exact LP evaluation [21]. A schematic of the augmented GA is shown in Figure 3.

partition commitments into
must-run/can’t run/can-run

seed initial population

evaluate solutions by
heuristic dispatch

create next generation by
selection, crossover and mutation

evaluate solutions by
heuristic dispatch

re-evaluate best solution
by linear programming

gens = max

gens < max

Figure 3: Schematic of knowledge-based GA.

2.5 RESULTS

The GA was implemented using RPL2 [9] and the LP re-evaluation was done using
AMPL [41] with OSL solver routines on a Sun Sparc5 workstation. The results presented
in this section were obtained with the GA parameters J=1000, K=100, pc = 0 9. ,

pm = 0 0015. . These values were found to give the best results in a study of the

sensitivity of the GA performance on the above parameters.

GAs for scheduling generation and maintenance

The GA was applied to the test problem and the results compared with those obtained
using Lagrangian relaxation (LR). Table 3 shows the cost of the solution obtained using
LR with 10 sub-gradient iterations, the average cost over ten independent runs of the GA
solution, and the associated CPU times. A lower bound, given by the dual cost after 200
iterations, is also shown, which is useful in assessing solutions. The GA cost is 5.7%
higher than the lower bound, compared to 6.6% for LR.

Table 3: Comparison of results given by knowledge-based genetic algorithm and Lagrangian relaxation.

 solution cost 1.5603 *106
LR CPU time 145 s
 lower bound 1.4638*106
 solution cost 1.5470*106
GA CPU time 257 s
 improvement on 0.38%

2.6 CONCLUSIONS

A knowledge-based genetic algorithm has been developed for the unit commitment/
economic dispatch problem. In the GA each binary string is a complete commitment
schedule, and the corresponding dispatched generations are calculated in the evaluation
of each string. Expert knowledge of generation scheduling has been modelled and used
to define the initial conditions of the GA. This has been shown to significantly improve
the convergence. Scheduling rules have been incorporated in a fast approximate method
of evaluating solutions, accelerating the computational time of the GA to competitive
levels. The knowledge-based genetic algorithm has been applied to a representative test
problem and shown to obtain better solutions than Lagrangian relaxation (LR) in similar
computational times.

3. Generator Maintenance Scheduling using a Genetic Algorithm

3.1 INTRODUCTION

It is vital for a utility to determine when its generators should be taken off-line for
preventive maintenance. This is primarily because other short-term and long-term
planning activities such as unit commitment, generation dispatch, import/export of power
and generation expansion planning are directly affected by such decisions. In modern
power systems the demand for electricity has greatly increased with related expansions in
system size, which has resulted in higher numbers of generators and lower reserve
margins making the generator maintenance scheduling (GMS) problem more complicated.
The goal of GMS is to calculate a maintenance timetable for generators in order for
example to maintain a high system reliability, reduce total operation cost, and extend
generator life time, while satisfying constraints on the individual generators and the
power system.

GAs for scheduling generation and maintenance

There are generally two categories of objectives in GMS, based on reliability [8,42-48] and
economic cost [10,11,45,47-50]. The levelling of the reserve generation over the entire
operational planning period is the most common reliability criterion. This can be realised
by maximising the minimum net reserve of the system during any time period [45,46,48]. In
the case of a large variation of reserve, minimising the sum of squares of the reserves can
be an effective approach [46]. Alternatively, the quality of reserve is considered, whereby
the risk of exceeding the available capacity is levelled over the entire period by using the
equivalent load carrying capacity for each unit and an equivalent load for each interval
[46,48]. Minimising the sum of the individual loss of load probabilities for each interval
can also be a reliability objective under the conditions of load uncertainty and random
forced outages of units [46].

The most common economic objective is to minimise the total operating cost, which
includes the costs of energy production and maintenance. If outage durations are
allowed to vary, this results in a trade-off solution between the energy production cost
and the maintenance cost. Shorter outage durations lead to higher maintenance costs but
reduce the load of expensive generation and possible energy purchases, result ing in
lower energy production costs [47]. The production cost alone could also be chosen as
the objective function by minimising the total energy replacement cost due to preventive
maintenance scheduling. However, this is an insensitive objective as it requires many
approximations [47,48].

Any maintenance timetable must satisfy a given set of constraints. Typical constraints of
the GMS problem are:

• Maintenance window constraints, which define the possible times and the duration
of maintenance for each unit.

• Crew constraints, which consider the manpower availability for maintenance work.
• Resource constraints, which specify the limits on the resources needed for
maintenance at each period.

• Exclusion constraints, which prevent the simultaneous maintenance of a set of units.
• Sequence constraints, which restrict the initiation of maintenance of some units after
a period of maintenance of some other units.

• Load constraints, which consider the demand on the power system during the
scheduling period.

• Reliability constraints, which consider the risk level of a given maintenance
schedule.

• Transmission capacity constraints, which specify the limit of transmission capacity
in an interconnected power system.

• Geographical constraints, which limit the number of generators under maintenance
in a region.

In general GMS is a multi-criterion constrained combinatorial optimisation problem, with
nonlinear objective and constraint functions. Several deterministic mathematical methods

GAs for scheduling generation and maintenance

and simple heuristic techniques are reported in the literature for solving particular GMS
problems [45,46,47,48]. Mathematical methods are based on integer programming, branch-
and-bound and dynamic programming. However these methods are unsuitable for the
nonlinear objectives and constraints of GMS and their computational time grows
prohibitively with problem size. The heuristic methods use a trial-and-error method to
evaluate the maintenance objective function in the time interval under examination. They
require significant operator input and may even fail to find feasible solutions [46,47].

In order to overcome the above limitations a number of artificial intelligence approaches
for GMS have been studied [43]. Genetic algorithms (GAs) offer an effective alternative
method to solve complex combinatorial optimisation problems, and have recently been
applied to GMS using binary strings to represent the maintenance timetable [10,11,42,50]
and integer representation [8,42,43]. In all cases, penalty functions were used in the
formulation of the evaluation function to take account of violations of problem
constraints. GAs have been hybridized with other techniques in order to include
scheduling heuristics and improve the performance of the solution algorithm. In [8,49]
fuzzy logic was used in the evaluation of each candidate solution, in order to model
flexibilities in scheduling using expert knowledge. A knowledge-based technique was
employed in [49] for load flow calculation within the evaluation function to improve the
speed of the algorithm. GAs have been applied to GMS using the acceptance probability
of the simulated annealing (SA) method for the survival of a candidate solution during
the evolution process [10,11]. If a newly created solution is an improvement, it is
accepted, otherwise it is accepted with a defined probability. The hybridization improved
the convergence of the algorithms. In [10] a tabu search (TS) technique was also coupled
with the GA/SA hybrid method. In each generation, the best solution was selected as the
new trial solution for the TS to improve the search in the neighbourhood of the solution.

In the following sections we describe an application of GAs to a GMS test problem. Both
steady state and generational GAs are employed using an integer representation. The
GMS test problem and its mathematical model are described in section 4.2. Section 4.3
details the implementation of the genetic algorithm technique to the problem. The test
results and the performances of the GAs are discussed in section 4.4, and our
conclusions follow in section 4.5.

3.2 TEST GMS PROBLEM

A test problem of scheduling the maintenance of 21 units over a planning period of 52
weeks is considered, which is loosely derived from the example presented in [47] with
some simplifications and additional constraints. The problem involves the reliability
criterion of minimising the sum of squares of the reserves in each week. Each unit must
be maintained (without interruption) for a given duration within a specified window, and
the available manpower is limited. Table 4 gives the capacities, allowed periods and
duration of maintenance and the manpower required for each unit. The system’s peak
load is 4739 MW, and there are 20 people available for maintenance work in each week.

GAs for scheduling generation and maintenance

Table 4: Data for the test system.

Unit Capacity
(MW)

Allowed
period

Outage
(weeks)

Manpower required
for each week

1 555 1-26 7 10+10+5+5+5+5+3
2 555 27-52 5 10+10+10+5+5
3 180 1-26 2 15+15
4 180 1-26 1 20
5 640 27-52 5 10+10+10+10+10
6 640 1-26 3 15+15+15
7 640 1-26 3 15+15+15
8 555 27-52 6 10+10+10+5+5+5
9 276 1-26 10 3+2+2+2+2+2+2+2+2+3

10 140 1-26 4 10+10+5+5
11 90 1-26 1 20
12 76 27-52 3 10+15+15
13 76 1-26 2 15+15
14 94 1-26 4 10+10+10+10
15 39 1-26 2 15+15
16 188 1-26 2 15+15
17 58 27-52 1 20
18 48 27-52 2 15+15
19 137 27-52 1 15
20 469 27-52 4 10+10+10+10
21 52 1-26 3 10+10+10

The GMS problem can be formulated as an integer programming problem by using binary
variables, either indicating the period in which maintenance of each unit starts [8,42-
45,50] or representing the maintenance status of each unit at each time [10,11,46-48]. The
variables in the first formulation are bounded by the maintenance window constraints
and hence the search space is reduced. The test problem is formulated below using these
variables. We introduce the following notation:

i index of generating units
I set of generating unit indices
N total number of generating units
t index of periods
T set of indices of periods in planning horizon
ei earliest period for maintenance of unit i to begin
li latest period for maintenance of unit i to end
di duration of maintenance for unit i
Pit generating capacity of unit i in period t
Lt anticipated load demand for period t
Mit manpower needed by unit i at period t
AMt available manpower at period t

GAs for scheduling generation and maintenance

Suppose Ti⊂T is the set of periods when maintenance of unit i may start, so Ti={t ∈T: ei
≤t≤li-di+1} for each i. We define

 Xit=
1
0
 if unit i starts maintenance in period t,
 otherwise,





to be the maintenance start indicator for unit i∈I in period t∈Ti. It is convenient to
introduce two further sets. Firstly let Sit be the set of start time periods k such that if the
maintenance of unit i starts at period k that unit will be in maintenance at period t, so
Sit={k∈Ti: t-di+1≤k≤t}. Secondly, let It be the set of units which are allowed to be in
maintenance in period t, so It={i: t∈Ti}. Then the problem can be formulated as a
quadratic 0-1 programming problem as below.

The objective is to minimise the sum of squares of the reserve generation

 Min
X

it

Pit XikPik
k Si Ii I

Lt
t T itt

−
∈∈∈

−














∈

















∑∑∑∑

2

, (19)

subject to the maintenance window constraint

 Xit
t Ti

=
∈
∑ 1 for all i∈I, (20)

the manpower constraint

i I
Xik

k S
Mik AMt

t it∈ ∈
≤∑ ∑ for all t ∈T, (21)

the load constraint

 Pit
i I

Xik
k S

Pik Lt
i t it

−
∈ ∈

≥∑ ∑∑ for all t ∈T. (22)

3.3 GA IMPLEMENTATION

A solution to the test problem may be represented as a one-dimensional binary string
which consists of sub-strings Xi e di i, , , X ... , Xi,e i,li i+ − +1 1 for each unit i. The size

of the GA search space for this type of representation is

 2
2

1
()l d ei i i

i

N
− − +

=
∑

.

For each unit i=1,2,...,N, the maintenance window constraint (20) forces exactly one
variable in {Xit: t∈Ti} to be one and the rest to be zero. The solution of the problem

GAs for scheduling generation and maintenance

thus amounts to finding the correct choice of positive variable from each variable set

{Xit:t ∈Ti}, for i=1,2,...,N. The index ti
∗ of this positive variable indicates the period

when maintenance for unit i starts. In order to reduce the number of variables the ti
∗ ,

i=1,2,...,N, can be taken as new variables. These can be expressed as binary numbers, in a
‘binary for integer’ representation. However, a direct integer representation automatically
considers the maintenance window constraint (20) and greatly reduces the size of the GA
search space to

()l d ei i i
i

N
− − +∏

=
2

1
.

We present results obtained using the integer representation, which has been found to
give significantly better results than the binary representation or binary for integer
representation [44].

The merit of the solution represented by the GA string is calculated by an evaluation
function, given by a weighted sum of the objective and penalty functions for violations
of the constraints, which we seek to minimise. The penalty value for each constraint
violation is proportional to the amount by which the constraint is violated, hence

evaluation = ωO SSR + ωM TMV + ωL TLV, (23)

where SSR is the sum of squares of reserves as in (19), TMV is the total manpower
violation of (21), and TLV is the total load violation of (22). The weighting coefficients
ωO,, ωM and ωL are chosen so that the penalty values for the constraint violations
dominate over the objective function, and the violation of the relatively hard load
constraint (22) gives a greater penalty value than for the relatively soft crew constraint.
This is because a solution with a high reliability but requiring more manpower may well
be accepted for a power utility as the unavailable manpower may be hired. In fact, there
is a trade-off between the level of reliability and the required extra manpower. This
flexibility of the problem can be modelled using a fuzzy logic approach within the
evaluation function [8].

3.4 TEST RESULTS AND DISCUSSION

Both generational (GN) and steady state (SS) GAs were implemented for the test problem
using tournament selection, two-point crossover, random mutation and elitism. A
tournament replacement operator was employed for the SS GA. GAs were implemented
for the test problem using the RPL2 program [9] on a Sun Sparcstation 1000.

The performance of a GA is generally dependent on the GA parameters used, in
particular the crossover and mutation probabilities. The sensitivity of both GAs to the
variation of crossover and mutation probabilities CP and MP in the range of 0.6-1.0 and

GAs for scheduling generation and maintenance

0.001-0.1 respectively was therefore established. The results are depicted in Figure 4,
which shows for each case the average evaluation value of the best solutions obtained
from ten independent GA runs. A different initial population was randomly created for
each run but the same ten initial populations were used for each case. The total number
of iterations (solutions created) in each run was fixed as 30,000. The population size was
taken to be 100.

0.
00

1

0.
00

5

0.
01 0.
05 0.

10 . 6

0 . 8
1 . 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

Ev
al

ua
tio

n
va

lu
e

M P

C P

 0.
00

1

0.
00

5

0.
01 0.
05 0.

10 . 6
0 . 8

1 . 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0

2 6 0

Ev
al

au
tio

n
V

al
ue

M P

C P

Figure 4: Effect of variations of CP and MP on the performance of SS GA (left) and GN GA (right).

Table 5: Best results obtained from SS GA and GN GA.

 SS GA GN GA
CP, MP 1.0, 0.05 0.6, 0.01

average evaluation value (over ten
runs)

146.71 155.05

best evaluation value (over ten runs) 137.91 148.31
CPU time (one run) 34s 25s

As Figure 4 shows, the average results of both GAs do not vary greatly for varying CP,
but are more sensitive to variations of MP, particularly for the GN GA. The SS GA gives
the best performance at higher crossover and mutation probabilities than the GN GA.
The best results of both GAs are given in Table 5. Hence the SS GA finds better
schedules (with lower evaluation values) than the GN GA. However the CPU time (which
increases as MP increases) for the GN GA is smaller than that for the SS GA. For both
GAs, the best solution (over ten runs) is feasible, so the values shown in Table 5
represent the objective value (SSR multiplied by weighting coefficient ωO).

The best solution found by the SS GA, whose evaluation measure is 137.91, is illustrated
in Figure 5 (left). The schedule represented by the solution is set out in the top portion
of the figure, in which the horizontal bars indicate the maintenance of a generating unit.
The middle portion of the figure shows the reserve margins in each week for the
schedule, which are non-negative since the schedule satisfies the load constraint. The
manpower requirements in each week for the solution are depicted in the bottom portion
of the figure, which are within the available level.

In order to compare with the best GA solution, we developed a solution heuristically by
timetabling the maintenance outages of generators in order of decreasing capacity, to

GAs for scheduling generation and maintenance

level the reserve generation while considering the maintenance window and load
constraints. The schedule, reserve margins and manpower requirements for each week
given by the heuristic solution is illustrated in Figure 5 (right). The solution respects the
load constraints but violates the manpower constraints in three time periods. The
evaluation value of the solution is 222.61, which is the weighted sum of the objective
value (134.61) and the amount of the violation of the constraints. Hence the objective
value of the heuristic solution is better than that of the best GA solution, but the
solution is infeasible.

1 4 7 10 13 16 1 9 22 25 28 31 3 4 37 40 43 46 49 52

1 4 7 10 13 16 1 9 22 25 28 31 34 37 40 43 46 49 52

Schedul ing per iods

1
3
5
7
9

1 1
1 3
1 5
1 7
1 9
2 1

G
en

er
at

or
s

R
es

er
ve

 (M
W

)

0

2 5 0

5 0 0

7 5 0

10

20

30

M
an

po
w

er

1 4 7 10 13 16 1 9 22 25 28 31 3 4 37 40 43 46 49 52
0

Scheduling periods

1 4 7 10 13 16 19 2 2 25 28 31 34 37 40 43 46 49 5 2

1 4 7 10 13 16 19 22 2 5 28 3 1 34 37 40 43 46 49 52

1 4 7 1 0 1 3 16 19 22 25 28 31 34 37 40 43 4 6 49 52

Figure 5: The schedule given by the best GA solution (left) and the heuristically developed schedule
(right).

The convergence of the SS GA in finding the best solution (with CP=1.0, MP=0.05) is
depicted in Figure 6, which shows the evaluation value of the best solution found so far
and the mean evaluation value of the solutions in the population against the number of
iterations.

0

4 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

0 5 0 0 0 1 0 0 0 0 15000
No. of i terat ions

E
va

lu
at

io
n

va
lu

e

Best
Mean

Figure 6: Performance of the SS GA in finding the best solution.

GAs for scheduling generation and maintenance

The reduction of the mean evaluation value and the evaluation value of the best solution
is very quick in the initial stage, up to 5000 iterations, of the GA. During this stage, the
GA mainly concentrates on finding feasible solutions to the problem. The population
does not converge to the best solution even after a large number of iterations as the high
mutation probability (0.05) maintains the diversity in population. The convergence of the
algorithm can be improved even with a high mutation probability if the probabilistic
acceptance criteria of a SA technique is incorporated into the GA method. A further
improvement can be gained by initialising the population using a heuristic schedule.
This results will be reported elsewhere.

3.5 CONCLUSIONS

A GA technique using an integer representation has been demonstrated for a test
problem of generator maintenance scheduling. The use of an integer rather than binary
representation greatly reduces the GA search space and is straightforward to implement.
A penalty function approach has been employed to consider the constraints of the
problem. Two GAs with steady state and generational design were tested and the effect
of varying crossover and mutation probabilities were studied. The test results show that
both the GAs are stable to variation in crossover probability in the expected range. The
GN GA is found more sensitive to variation in mutation probability than the SS GA. The
integer SS GA gives better performance than the integer GN GA in term of finding better
solution in a fixed number of iterations, but the latter is found to be faster.

The results presented above show that the GA is a robust and stable technique for the
solution of GMS problems. Good solutions of the problem can be found if an appropriate
problem encoding, GA approach, evaluation function and GA parameters are selected for
the problem.

Acknowledgements
This work was carried out in the Rolls -Royce University Technology Centre in Power
Engineering at the University of Strathclyde. The first author was supported by the
Engineering and Physical Science Research Council and The National Grid Company,
and the second author was supported by Rolls -Royce plc. The authors also
acknowledge the use of the Reproductive Plan Language, RPL2, produced by Quadstone
Limited, in the production of this work.

4. References

1. Holland, J.H (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press.
2. Davis, L. (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold.
3. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimisation, and Machine Learning,

Addison-Wesley.

GAs for scheduling generation and maintenance

4. Michalewicz, Z. (1994) Genetic Algorithms + Data Structures =Evolution Programs, Springer-
Verlag.

5. Mitchell, M. (1996) An Introduction to Genetic Algorithms. MIT Press.
6. GA Archive, web site http://www.aic.nrl.navy.mil/galist/
7. Fonseca, C.M. and Fleming, P.J. (1993) Genetic algorithms for multiobjective optimization:

formulation, discussion and generalization, Proceeding of the 5th International Conference on
Genetic Algorithms (ICGA’93), Morgan Kaufmann Publishers, 416-423.

8. Dahal, K.P., Aldridge, C.J. and McDonald, J.R. (in press) Generator maintenance scheduling using
a genetic algorithm with a fuzzy evaluation function, Fuzzy Sets and Systems.

9. Quadstone Limited (1997) Reproductive Plan Language (RPL2), User manual.
10. Kim, H., Hayashi, Y. and Nara, K. (1997) An algorithm for thermal unit maintenance scheduling

through combined use of GA, SA and TS, IEEE Transactions on Power Systems 12, 329-335.
11. Kim, H., Nara, K. and Gen, M. (1994) A method for maintenance scheduling using GA combined

with SA, Computers and Industrial Engineering 27, 477-480.
12. Grefenstette, J. (1990) A user’s guide to GENESIS. ftp.aic.nrl.navy.mil/pub/galist/src/ga.
13. Whitley, D.L. (1990) GENITOR. Ftp.cs.colostate.edu/pub/GENITOR.tar.
14. Alander, J.T. (1996) An indexed bibliography of genetic algorithms in power engineering. Report

94-1-POWER, University of Vaasa, ftp.uwasa.fi,/cs/report94-1/gaPOWERbib.ps.Z.
15. Miranda, V., Srinivasan, D. and Proença, L.M. (1998) Evolutionary computation in power

systems, Electrical Power & Energy Systems 19, 45-55.
16. Sheble, G.B. and Fahd, G.N. (1994) Unit commitment literature synopsis, IEEE Transactions on

Power Systems 9, 128-135.
17. Garver, L. (1963) Power generation scheduling by integer programming --- development of

theory, AIEE Transactions 81, 1212-1218.
18. Oliveira, P., McKee, S., and Coles, C. (1992) Lagrangian relaxation and its application to the

unit-commitment-economic-dispatch problem, IMA Journal of Mathematics Applied in Business
and Industry 4, 261-272.

19. Oliveira, P., Blair-Fish, J., McKee, S., and Coles, C. (1992) Parallel Lagrangian relaxation in
power scheduling, Computer Systems in Engineering 3, 609-612.

20. Aldridge, C.J., McKee, S. and McDonald, J.R. (1997) Genetic algorithm methodologies for
scheduling electricity distribution, in M. Brøns, M.P. Bendsøe and M.P. Sørensen (eds.), Progress
in Industrial Mathematics at ECMI’96, Teubner, 364-371.

21. Aldridge, C.J., McDonald, J.R. and McKee, S. (1997) Unit commitment for power systems using a
heuristically augmented genetic algorithm, Proceedings of 2nd International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA’97), IEE
Conference Publication 446, 433-438.

22. Cai, X.-Q. and Lo, K.-M. (1997) Unit commitment by a genetic algorithm, Nonlinear Analysis,
Theory, Methods & Applications 30, 4289-4299.

23. Hassoun, M.H. and Watta, P. (1994) Optimization of the unit commitment problem by a coupled
gradient network and by a genetic algorithm, report no. TR-103697, Electric Power Research
Institute.

24. Kazarlis, S.A., Bakirtzis, A.G. and Petridis, V. (1996) A genetic algorithm solution to the unit
commitment problem, IEEE Transactions on Power Systems 11, 83-90.

25. Ma, X., El-Keib, A.A., Smith, R.E. and Ma, H. (1995) A genetic algorithm based approach to
thermal unit commitment of electrical power systems, Electrical Power Systems Research 34, 29-
36.

26. Maifeld, T.T. and Sheble, G.B. (1996) Genetic-based unit commitment algorithm, IEEE
Transactions on Power Systems 11, 1359-1370.

27. Numnonda, T., Annakkage, U.D. and Pahalawaththa, N.C. (1996) Unit commitment using
stochastic optimisation, Proceedings of Intelligent Systems Applications in Power Systems
(ISAP’96), 429-433.

GAs for scheduling generation and maintenance

28. Orero, S.O. and Irving, M.R. (1997) A combination of the genetic algorithm and Lagrangian
relaxation decomposition techniques for the generation unit commitment problem, Electrical
Power Systems Research 43, 149-156.

29. Sheble, G.B. and Maifeld, T.T. (1994) Unit commitment by geneticalgorithm and expert system,
Electrical Power Systems Research 30, 115-121.

30. Shebleé, G.B., Maifeld, T.T., Brittig, K., Fahd, G. and Fukurozaki-Coppinger, S. (1996) Unit
commitment by genetic algorithm with penalty methods and a comparison of Lagrangian search
and genetic algorithm - economic dispatch example, Electrical Power & Energy Systems 18, 339-
346.

31. Saitoh, H., Inoue, K. and Toyoda, J. (1994) Genetic algorithm approach to unit commitment, in
A. Hertz, A.T. Holen and J.C. Rault (eds.) Proceedings of the International Conference on
Intelligent System Application to Power Systems, 583-589.

32. Yang, P-C., Yang, H-T. and Huang, C-L. (1996) Solving the unit commitment problem with a
genetic algorithm through a constraint satisfaction technique, Electrical Power Systems Research
37, 55-65.

33. Yang, H.-T., Yang, P.-C. and Huang, C.-L. (1997) A parallel genetic algorithm approach to
solving the unit commitment problem: implementation on the transputer networks, IEEE
Transactions on Power Systems 12, 661-668.

34. Oliveira, P., McKee, S., and Coles, C. (1994) Genetic algorithms and optimising large nonlinear
systems, in J.H. Johnson, S. McKee and A. Vella (eds.) Artificial Intelligence in Mathematics,
OUP, 305-312.

35. Dasguptar, D. and McGregor, D.R. (1994) Thermal unit commitment using genetic algorithms,
IEE Proceedings C - Generation, Transmission and Distribution 141, 459-465.

36. Orero, S.O. and Irving, M.R. (1995) Scheduling of generators with a hybrid genetic algorithm,
Proceedings of 1st International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications (GALESIA’95), IEE Conference Publication no. 414, 200-206.

37. Orero, S.O. and Irving, M.R. (1996) A genetic algorithm for generator scheduling in power
system, International Journal of Electrical Power and Energy Systems 18, 19-26.

38. Orero, S.O. and Irving, M.R. (1997) Large scale unit commitment using a hybrid genetic
algorithm, International Journal of Electrical Power and Energy Systems 19, 45-55.

39. IBM (1992) Optimisation Subroutine Library (OSL) Guide and Reference, Release 2.
40. Wielinga, B.J., Schreiber, A.Th. and Breuker J.A. (1992) KADS: A modelling approach to

knowledge engineering, Knowledge Acquisition 4, 5-53.
41. Fourer, R., Gay, D.M. and Kernighan, B.W. (1993) AMPL - A Modeling Language for

Mathematical Programming, Boyd & Fraser.
42. Dahal, K.P., and McDonald, J.R. (1998) Generational and steady state genetic algorithms for

generator maintenance scheduling problems, in G.D. Smith, N.C. Steele and R. Albrecht (eds.),
Artificial Neural Nets and Genetic Algorithms, Proceedings of Third International Conference in
Norwich (ICANNGA’97), Springer-Verlag, Vienna, 260-264.

43. Dahal, K.P., and McDonald, J.R. (1997) A review of generator maintenance scheduling using
artificial intelligence techniques, Proceedings of 32nd Universities Power Engineering Conference
(UPEC’97), 787-790.

44. Dahal, K.P. and McDonald, J.R. (1997) Generator maintenance scheduling of electric power
systems using genetic algorithms with integer representation, Proceedings of 2nd International
Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications
(GALESIA’97), IEE Conference Publication 446, 456-461.

45. Dopazo, J.F. and Merrill, H.M. (1975) Optimal generator maintenance scheduling using integer
programming, IEEE Transactions on Power Apparatus and Systems 94, 1537-1545.

46. Egan, G.T., Dillon, T.S. and Morsztyn, K. (1976) An experimental method of determination of
optimal maintenance schedules in power systems using branch-and-bound technique, IEEE
Transactions on Systems, Man and Cybernetics 6, 538-547.

GAs for scheduling generation and maintenance

47. Yamayee, Z. and Sidenblad, K. (1983) A computationally efficient optimal maintenance
scheduling method, IEEE Transactions on Power Apparatus and Systems 102, 330-338.

48. Yang, S. (1994) Maintenance scheduling of generating units in a power system, in X. Wang and
J.R. McDonald (eds.), Modern Power System Planning, McGraw-Hill, London, 247-307.

49. Bretthauer, G., Gamaleja, T., Handschin, E., Neumann U. and Hoffmann, W. (1998) Integrated
maintenance scheduling system for electrical energy systems, IEEE Transactions on Power
Delivery 13, 655-660.

50. Burke, K.B., Clarke, J.A. and Smith, A.J. (1998) Four methods for maintenance scheduling, in
G.D. Smith, N.C. Steele and R. Albrecht (eds.), Artificial Neural Nets and Genetic Algorithms,
Proceedings of Third International Conference in Norwich (ICANNGA’97), Springer-Verlag,
Vienna, 265-270.

