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1. Genetic algorithms  
 
1.1  INTRODUCTION 
 
Genetic algorithms (GAs) are search and optimisation methods based on a model of 
evolutionary adaptation in nature. Unlike traditional ‘hill-climbing’ methods involving 
iterative changes to a single solution, GAs work with a population of solutions, which is 
‘evolved’ in a manner analogous to natural selection. Candidate solutions to an 
optimisation problem are represented by chromosomes, which for example encode the 
solution parameters as a numeric string. The ‘fitness’ of each solution is calculated using 
an evaluation function which measures its worth with respect to the objective and 
constraints of the optimisation problem. 
 
Successive ‘generations’ of the population are created by several simple ‘genetic’ 
operators, as illustrated in Figure 1. In each generation, solutions are selected 
stochastically according to their fitness in order to be recombined to form the next 
generation. Relatively ‘fit’ solutions survive, ‘unfit’ solutions tend to be be discarded. A 
new generation is created by stochastic operators - typically ‘crossover’, which swaps 
parts of binary-encoded solution strings, and ‘mutation’, which changes random bits in 
the strings. Successive generations yield fitter solutions which approach the optimal 
solution to the problem. 
 
Genetic algorithms were first developed by John Holland at MIT and described in his 
1975 book ‘Adaptation in Natural and Artificial Systems’ [1]. More recent introductory 
texts include those by Davis [2], Goldberg [3], Michalewicz [4] and Mitchell [5]. GAs are 
inherently simp le, naturally parallelisable, and can generate a set of near-optimal 
solutions for evaluation. They provide a powerful technique  to resolve complicated 
multi-dimensional optimisation problems, such as resource allocation and scheduling. A 
plethora of information and public domain GA programs are available from sites on the 
World Wide Web, for example [6]. 
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Figure 1: A generation of a basic genetic algorithm. 
 
There are three important issues in the application of a GA to solve an optimisation 
problem. Firstly, how are the candidate solutions to the optimisation problem 
represented, in order to allow the genetic adaptation to be easily applied? Secondly, how 
is the optimality (quality) of the solutions assessed? Finally, how is the ‘genetic 
adaptation’ applied to existing solutions to yield new solutions? These issues are 
addressed in the following sections. 
 
1.2  SOLUTION REPRESENTATION 
 
GAs were initially developed using binary strings to encode the parameters of an 
optimisation problem. Binary encoding is a standard GA representation that can be 
employed for many problems: a string of bits can encode integers, real values, sets or 
whatever is appropriate. Furthermore, the genetic manipulation of binary chromosomes 
can be done by simple and universal crossover and mutation operators. However, a 
binary representation is often not appropriate for particular problems, and a problem-
specific representation, using strings of integers or floating point numbers, character 
strings to represent sets, etc. may give a more coherent algorithm. Such representations 
require appropriately designed genetic operators. Ideally, the solution representation 
should be such that it represents only the feasible search space, though often this is not 
possible in practice. 
 
1.3  EVALUATION 
 
An evaluation function is required to assign a figure of merit (fitness) to each new 
solution, which should reflect the quality of the solution that the chromosome 
represents. During the GA ‘reproduction’ process the selection of individuals is done 
according to their fitness. If the structure of a good solution is well known it is easy to 
construct a suitable evaluation function. For constrained optimisation problems, the 
evaluation function typically comprises a weighted sum of the objective (or a simple 
function of it) and penalty functions to consider the constraints. This approach allows 
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constraints to be violated, but a penalty depending on the magnitude of the violation is 
incurred which degrades the fitness. A highly infeasible individual has a high penalty 
value and will rarely be selected for reproduction, allowing the GA to concentrate on 
feasible or near-feasible solutions. 
 
Multiple objectives may be included in a weighted sum in the evaluation function. 
However for more advanced problems, it may be useful to consider Pareto optimality [7] 
or fuzzy logic [8], which are outside the scope of this introduction. 
 
1.4  SELECTION 
 
In order to mimic the principle of ‘survival of the fittest’, GAs introduce selection 
pressure through choosing relatively good solutions for recombination and replacing 
inferior solutions in the population with new individuals. Selection is a method that 
stochastically picks individuals from the population according to their fitness: the higher 
the fitness, the more chance an individual has to be a parent. The selection pressure 
defines the degree to which better individuals are favoured, which drives the GA to 
improve the population fitness over  successive generations. In general, if the selection 
pressure is too high,  then a superior individual strongly dominates the less fit 
individuals and this may lead the GA to converge prematurely to a local optimum. 
 
There are three main types of selection methods: fitness-proportionate, ranking and 
tournament. In fitness-proportionate selection the probability that a solution is selected 
is directly based on its evaluation value. In order to prevent a highly fit individual 
dominating the population, the evaluation values are typically scaled linearly. The 
‘roulette-wheel’ method is the simplest and classical fitness-proportionate method. Each 
individual is assigned a sector of a wheel whose size is proportional to its (scaled) 
evaluation. A position on the wheel is chosen at random, and the individual to which 
that position is assigned is selected. Stochastic universal sampling (SUS) selection is 
similar to the roulette-wheel method, except that a set of individuals are picked 
simultaneously, based on a random choice of a given number of positions spaced 
equally around the wheel. 
 
Ranking selection methods take account of the relative ordering of individuals with 
respect to their evaluation measures. The probability of selecting an individual is then 
given by a linear function of its rank in the population rather than its evaluation measure. 
This approach reduces the dominance of highly fit solutions  
 
The basic mechanism of tournament selection involves picking a subset of individuals at 
random and then selecting one according to their fitness. Selection pressure is applied in 
choosing from the subset of individuals - for example, the best is selected with a given 
probability, otherwise the second best is chosen with that probability, and so on. 
 
1.5  RECOMBINATION 
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Following their selection, ‘parent’ individuals are recombined to create ‘offspring’. This 
is usually achieved using crossover and mutation operators as below, but other domain-
specific operators may also be used during this process. 
 
Crossover exploits the current solutions by exchanging elements of selected parents. 
This is done with a given probability, typically in the range of 0.6-1.0, otherwise parents 
are unchanged. One-point crossover is the simplest crossover operator, which breaks 
the two selected parent strings at a random position and swaps the two substrings to 
create two offspring which contain information from each of the parent strings. Two-
point crossover is commonly used, as illustrated in Figure 2. As an alternative to such 
‘N-point crossover’, the uniform crossover operator copies the value at each position in 
the off-spring from one or the other parent at random. Off-spring therefore contain a 
greater mixture of genetic materials from each parent. 
 

parent strings  crossed-over strings mutated string 
 

101010110101  101110010101  101110010001 
 

001110011110  001010111110   
 
Figure 2: Two-point crossover and mutation of binary strings. Two crossover positions are chosen 
randomly (here 3 and 7) and the enclosed bits are exchanged. One of the resulting strings is randomly 
chosen and each bit  is changed with given probability (here mutation is applied to the first string, and 
the tenth bit is flipped). 
 
A mutation operator is applied to the crossed-over solutions to introduce random 
changes. This enables further exploration of the search space. Mutation is often seen as 
a background operator to maintain the genetic diversity in the population. There are 
many forms of mutation for different types of representation. A simple mutation operator 
changes the bit/value at each position in the solution string with a given small mutation 
probability, e.g. 0.01, as shown in Figure 2. 
 
Mutation operators may employ hill climbing mechanisms and only apply mutation to a 
solution if its evaluation is improved. Such an operator can accelerate the search, but 
might reduce the diversity in the population and cause the algorithm converge towards 
some local optima. 
 
1.6  POPULATION UPDATING 
 
There are two basic population updating approaches, known as generational and steady 
state. The generational approach is as follows. In each generation, the population is 
replaced by off-spring produced by selection and recombination of parents from the 
population of the previous generation. The best individual in the population pool is 
generally retained (elitism). In this case individuals can only recombined with those from 
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the same generation. In the alternative steady state approach, new offspring are 
introduced immediately into the population, replacing an existing solution, which is 
selected for example as the least fit or by tournament selection. Hence parents and off-
springs co-exist in the population. 
 
The recombination of two individuals is effective provided there is a sufficient diversity 
in the population. Ideally, the population size should be as large as possible to enhance 
the exploration of the search space. However, the computational time and memory 
required by a GA become costly as the population size increases. A population size of 
around 100 is typical in practice. The genetic algorithms described in the case studies 
below use a fixed population size, however in general this may be adapted during the 
course of a GA run.  
 
An initial population of a given size must be created to begin the GA search process. 
The simplest way of creating the initial population is to sample the search space at 
random. However, heuristic methods can be used to generate some or all of the initial 
population. If some reasonable meaningful solutions are known or can be generated, 
then their inclusion in the initial population can improve the performance of the GA. An 
example is given in section 2 below. However the initial population should not lack 
diversity in order to avoid exploration of a small part of the search space.  
 
The simplest stopping criterion is to run the GA for a fixed number of generations or 
iterations. Alternatively the algorithm may be continued for as long as the best solution 
in the population is improving or halted when the solution reaches a required quality. 
 
Instead of a single population, a GA may use a number of smaller populations, known as 
‘islands’. Evolution proceeds on each island as for a single population GA, but with a 
regular exchange of a limited number of individuals between islands. This approach 
naturally lends itself to implementation on a parallel computer, with different islands 
allocated to individual processors [9].  
 
1.7  IMPLEMENTATION 
 
GAs are straightforward to implement for practical optimisation problems, typically 
requiring only the solution representation and evaluation function to be chosen. The 
evaluation function and genetic operators can be easily modified. GAs also yield multiple 
solutions which may be subsequently judged. The creation and evaluation of large 
number of solutions can be computationally costly, though the generational GA is 
naturally parallelisable.  
 
The performance of a GA may be improved by hybridization with other solution 
techniques. For example, a heuristic technique may be applied to produce a meaningful 
initial population, as we describe below. Simulated annealing, an alternative stochastic 
search technique, may be combined with a GA to improve the search process [10,11]. 
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Solutions in the final population of a GA may also be refined by an appropriate local 
search method. 
 
A number of GA programs are available in the public domain, such as GENESIS [12], 
GENITOR [13], and RPL2 [9], which have been employed for the case studies described 
below. For a given application, the choice of the genetic operators and the values of 
parameters such as population size, crossover and mutation probabilities must generally 
be guided empirically.  
 
Genetic algorithms have been applied to a range of search and optimisation problems 
arising in planning, scheduling and operation of power sytems. A useful bibliography is 
given in [14], and a recent comprehensive survey of  applications of GAs and other 
evolutionary computing techniques in this area is given in [15]. Problems tackled include 
unit commitment, economic dispatch, maintenance scheduling, network expansion, alarm 
processing and parameter estimation. In the remainder of this chapter, we describe two 
case studies, in which GAs are applied to unit commitment and generator maintenance 
scheduling.  
 
 
2. A Knowledge-Based Genetic Algorithm for Unit Commitment 
 
2.1 INTRODUCTION 
 
In order to meet the customer demand in a power system, the generating units must be 
scheduled to minimise the total cost and satisfy operating constraints. Calculating the 
optimal commitments (on/off) and dispatched generation for each thermal unit at a 
sequence of times in the scheduling period is known as the unit commitment  & 
economic dispatch problem. This is a highly constrained combinatorial problem and 
continues to present a challenge for efficient solution techniques.  
 
The constraints of the problem involve the individual units, groups of units and the 
entire network. Each unit is generally constrained by minimum and maximum generation, 
ramp rates which limit the rate of change of the generation, and minimum times that the 
unit can remain on or off. There may also be specified bounds on the total generation of 
local groups of units. The predicted demand must be met by the sum of the generation of 
all the units; in addition the on-line units must together maintain a specified reserve 
capacity. We seek the solution that satisfies these constraints and minimises the total 
cost, typically given by the start-up costs and running costs incurred by each unit.  
 
The unit commitment/economic dispatch problem has been tackled using a range of 
solution methods. Sheble & Fahd [16] review the development of different heuristic, 
mathematical programming and expert system techniques over the last 30 years. Initially 
the commitment and dispatch problems were decoupled; indeed, the first to consider the 
coupled problem was Garver [17] (1963). Prior to this, and even today, priority listing is 
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employed. In the priority list method, units are ordered according to a measure of cost 
and committed in this order so that their cumulative generation satisfies the required 
level; subsequently the dispatch of the committed units is calculated. This simple 
approach can however give solutions far from the optimum. The chief mathematical 
programming methods have been Dynamic Programming and Lagrangian Relaxation. The 
main drawback of Dynamic Programming is that the number of combinations of states 
which must be searched grows exponentially and becomes computationally prohibitive, 
hence methods have included for example a priority list to reduce the search space. 
Recent work has favoured Lagrangian Relaxation [18], in which the global constraints of 
demand and reserve are admitted into the objective function, and the problem 
decomposed into master problem and unit subproblems. This natural algorithmic 
decomposition admits parallelisation [19]. The method provides bounds on the original 
optimum but a heuristic must be employed to construct a feasible solution for the 
original problem. 
 
2.2 GENETIC ALGORITHMS 
 
The combinatorial aspect of the commitment problem is a natural target for the 
application of genetic algorithms, and in the last few years GAs have been used to solve 
the unit commitment/economic dispatch problem. A review of different GA approaches 
and results is given in [20]. Most studies have employed a single GA for the entire 
scheduling period. In general, the commitments are represented in the solution string as 
a binary array and the dispatch variables are calculated as part of the fitness function 
evaluation [21-30]. Representations satisfying minimum on and off times have been 
introduced using integers [31] and binary substrings [32,33], while in [34] both the 
commitment and dispatch variables were encoded in the solution string. These single 
GAs have included various problem-specific operators alongside the standard mutation 
and crossover operators. Alternatively the solution may be calculated sequentially by 
using a GA for each time interval in turn [35-38].  
 
2.3 TEST PROBLEM FORMULATION 
 
We consider a test problem involving 10 generating units over 24 hourly scheduling 
points, though our approach may easily be extended for larger problems. A minimum 
cost schedule is sought subject to the unit and system constraints described below. We 
use the following notation:  
 

D t  demand at time t 
Fi  no-load cost for unit i 

l t  transmission constraint limit 
N  number of units 
R  reserve level 
T  number of time intervals  
U i  start-up cost 



 
 
 
 
GAs for scheduling generation and maintenance 

V Vi i, ,1 2,  incremental cost gradients 

Wi  incremental cost function 

xi
t  generation of unit i at time t 

x i
min  minimum generation 

xi
max  maximum generation 

xi
*  breakpoint for piecewise linear incremental cost 

αi
t  commitment (binary)  

βi
t  start-up indictator (binary) 

γ i
t  shutdown indicator (binary) 

ρi  ramp rate 

τ i
on  minimum on time 

τ i
off  minimum shutdown time. 

 
Start-up and shutdown indicators are defined by  

{β
α α

i
t i

t
i
t

=
= =−1 0 1

0

1if  
otherwise,               

, ,
     (1) 

{γ
α α

i
t i

t
i
t

=
= =−1 1 0

0

1if  
otherwise.               

, ,
     (2) 

A commitment and dispatch schedule is given by the arrays { }α i
t  and { }x i

t , which we 

denote by α  and x. 
 
The total cost, composed of constant start -up costs and piecewise linear generating 
costs, is minimised,  

 min ( , ),
,α

α
x

C x      (3) 

where  

C x U F W xi
t

i

N

t

T

i i
t

i i i
t( , ) ( ),α β α= + +

==
∑∑   

11
   (4) 

{W
x V x x
x V x x Vi

i
t

i i
t

i

i i i
t

i i
=

≤
+ −

,
*

*
,

*
,( )

1

1 2

 ,                         if ,
 otherwise. ,

   (5) 

 
subject to the following constraints:  
 
Generation limits: 

α αi
t

i i
t

i
t

ix x x i N,  t Tmin max , ... , , ... ,≤ ≤ = =   for   .1 1                       (6) 

Ramp rates:  
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Minimum on times:  

β γ
τ

i
t

i
t

MOT
t t

t T

i I t T
i
on

+ ≤ ∈ = −
′= +

+ −

∑         for   
min

1 1 1
1

1

, , .. ., .
( , )

   (8) 

Minimum shutdown times:  
 

γ β
τ

i
t

i
t

MST
t t

t T

i I t T
i

+ ≤ ∈ = −
′= +

+ −

∑         for   
min off

1 1 1
1

1

, , ... , .
( , )

   (9) 

Demand:  

x D t Ti
t t

i

N

= =
=
∑    for  1

1
, ... , .     (10) 

Reserve: 

α i
t

i
t

i

N

x D R t Tmax   for  ≥ + =
=
∑ 1

1
,.. ., .    (11) 

Transmission constraint: 

x l t Ti
t t

TC
i ITC

≥ ∈
∈
∑    for  .      (12) 

Initial conditions: 
αi ix i N0 0 1,    given for = , ... , .     (13) 

 
In the above I RR , I MOT , I MST and I TC denote particular subsets of units associated 

with the constraints, and TTC  is a subset of times. Equations (1)-(13) define a mixed 

integer programming problem. This may be made linear by formulating (1),(2) and (7) as 
inequalities and introducing extra variables to reformulate (5). In this form the problem is 
amenable to Lagrangian relaxation.  
 
The parameter values for the units and demand profile are given in Tables 1 and 2. In 
addition we take 

      R l I Tt
TC TC= = = =200 1600 1 4 7 20 21 22 MW,  MW,   { , , }, { , , },  

and initial conditions  
     x x x1

0
2
0

3
0

10
0300 700 900 0= = = = = = MW,   MW,   MW,  4

0α α. .. .  

 
In order to gauge the computation required to calculate the optimal solution to this 
problem, a series of similar problems with fewer constraints and time intervals were 
solved using branch-and-bound. These problems are given by objective function (3)-(5), 
initial conditions (13) and generation limits (6), plus (a) demand constraint (10), (b) 
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demand and reserve constraints (10) and (11), and (c) all constraints (7)-(12), Branch-and-
bound was applied to these problems over the first T time intervals, for T=2,4,8,12,24, 
using standard OSL [39] subroutines on a Sun Sparc workstation. The CPU time to 
calculate the optimal solution to problem (a) with T=24 was over 10 hours; problem (b) 
with T=12 required over 6 hours. The solution to problem (b) with T=24 and problem (c) 
with T=8 was not found within 12 hours of CPU time. 
 

Table 1: Generating unit data, where `-' indicates that the corresponding constraint 

is not specified for that unit, and units other than 2 and 5 have x xi i
* = max . 

 

i x i
min  x i

max  ρ i  τi
on  τi

on  Ui  Fi  V V xi i i, ,
*, ;1 2    

 (MW) (MW) (MW/h) (h) (h) (£) (£/h) (£/MWh);  

1 300 1000 40 6 2 14,000 5000 10 
2 300 1000 180 6 - 14,000 7875 3.75,15;  700 
3 400 1000 600 6 - 20,000 9500 5 
4 150 500 60 2 2 10,000 3750 15 
5 150 500 240 2 - 10,000 5906.25 5.625,22.5;  
6 200 500 300 2 - 25,000 7125 7.5 
7 200 200 - - 2 2000 2000 30 
8 200 200 - - - 1200 1200 31 
9 100 200 - - - 800 800 35 
10 100 200 - - - 0 0 40 

 
 

 
Table 2: Demand profile. 

 
 t D t  (MW) 0700 3000 1400 3500 2100 3500 
0100 2400 0800 4100 1500 3200 2200 2700 
0200 2200 0900 4150 1600 3700 2300 2200 
0300 2000 1000 4200 1700 4500 2400 1900 
0400 1850 1100 4250 1800 5050   
0500 1750 1200 4300 1900 4700   
0600 1700 1300 4000 2000 4200   

 
 
 
2.4 GENETIC ALGORITHM DESIGN 
 
2.4.1 Solution Representation and Evaluation 
We consider the unit commitment/economic dispatch problem (3)-(13) in the 
decomposed form: 

 min ( ),
α

αF      (14) 

subject to (8),(9), (11), and the following problem being feasible: 
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 min ( , ):   satisfies  (6), (7), (10) and (12)}.F C x x

x
( ) {α α=   (15) 

 
A GA is applied to the combinatorial minimisation unit commitment problem (14). The 
continuous economic dispatch problem (15) parameterised by α  is solved in the 
evaluation function of the GA, and this may be done by linear programming. 
 
The solution representation in the GA is therefore the binary commitment matrix α . In 
the implementation of the GA this was stored as a binary string consisting of the 
commitments ordered by time periods first and units second, 

( , ... , ,. .. , , ... , ).α α α α1
1 1

1N
T

N
T      (16) 

Each string  is evaluated by first solving (15) to give x, and then summing the total cost  
given by (4) and penalty functions for violations of constraints (6)-(12). From (6) and (10) 
a necessary condition on α  is  

α i
t

i
t

i

N

x D t Tmin   for  ≥ =
=
∑ 1

1
, ... , .      (17) 

The evaluation function is taken as 
 

f C x w P w P w P w P w P xa a b b c c d d e e( ) ( , ) ( ) ( ) ( ) ( ) ( , ).α α α α α α α= + + + + +   (18) 

 
Here Pa  is a penalty function associated with constraints (8) and (9), Pb  with (11), Pc  

with (17), Pd  with (10) and (12), Pe  with (6) and (7), and the wa  etc. are weights. The 

penalty functions increase linearly with the constraint violations, and are chosen with 
the weights so that the penalty terms are typically larger than the cost terms. 
 
2.4.2 Population Updating 
An initial population of K solutions { , ... , }(1) ( )α α K  is created. These are chosen 
randomly, or else the initial population is ‘seeded’ using the method described below. 
The evaluation value f k( )  of each solution  is then calculated. This may be done by 

linear programming, but as explained below a heuristic method is used to approximate 
f k( ) . A new population is created in the following steps.  

 
1. The lowest evaluation solution α ( *)k  is copied to the new population (elitism).  
2. A set of 2(m-1) parent solutions are selected from the old population by stochastic 

universal sampling [4]. This is done by ranking the solutions in order of increasing 
f K( ) , so α ( *)k  has rank 1. Solutions are then selected in proportion to a decreasing 

linear function of their rank. 
3. A pair of parent solutions are combined by one-point crossover with probability pc  

to create a new solution. Bit-wise mutation is then applied to the new solution with 



 
 
 
 
GAs for scheduling generation and maintenance 

mutation rate pm . The mutated solution is then evaluated and placed in the new 

population. This crossover, mutation and evaluation is done K-1 times to complete 
the population in the next generation of the GA. 

 
The population updating is repeated for J generations, using the heuristic method for 
solution evaluation. The best solution in the final population is then re-evaluated by 

calculating f k( )*
 exactly by linear programming. 

 
2.4.3 Selection of Initial Population 
A method to identify the likely structure of the unit commitments was derived following 
knowledge elicitation with scheduling experts, and the construction and validation of a 
knowledge model. This was done using the KADS (Knowledge Acquisition and Design 
Structuring) methodology [40].  
 
Typically a number of units are committed throughout the scheduling period, while 
others remain uncommitted. These groups of units may be heuristically determined, 
largely by operating cost; however, the inflexibility of certain units and the transmission 
constraints must also be taken into account.  
 
The units are initially placed in merit order (here in order of increasing running cost/MW 
at full output), and their cumulative total generations calculated. Units which lie 
sufficiently (say ≥ m MW) below the minimum demand are classified as ‘must-run’; units 
which lie sufficiently above the maximum demand are classified as ‘can’t-run’; and those 
remaining are ‘can-run’ units. This classification is then revised at each time interval to 
take account of unit inflexibilities and transmission constraints - in this case, constraint 
(12) - and the can-run band subsequently narrowed to a margin of  around the demand 
curve. Here we use a margin of width m=500 MW. 
 
The resulting ‘partition’ may then be used to initialise the population of the GA. For each 
solution in the initial population, the commitments are then set as αi

t = 1  (must-

run), αi
t = 0  (can’t-run), or chosen randomly (can-run). 

 
2.4.4 Heuristic Evaluation 
The evaluation of each commitment string requires the solution of the economic dispatch 
problem (15). In order to realise an efficient algorithm, a fast heuristic method was used 
to solve (15) rather than a standard linear programming solver. An existing rule-based 
method for generation scheduling (commitment and dispatch) was identified and 
described in a knowledge model, again using the KADS methodology. From this model a 
heuristic method was derived for economic dispatch with commitments given.  
 
In this method the xi

t are calculated at a sequence of time intervals, ordered according to 

the maxima and minima of the demand profile. At each time interval the xi
t are 
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successively decreased and increased, using merit order, in order to satisfy the group 
constraints and demand. This is done taking into account the values of xi

t at previously 

set times, the given commitments, and the unit capacities and ramp -rates. This 
approximate method proved to a fast and sufficiently accurate alternative to an exact 
linear programming method.  
 
To gauge the effectiveness of these knowledge-based methods, the GA was initially 
applied to a smaller, simple problem with a known optimum solution. Results showed that 
choosing the initial population based on the derived partition and using the heuristic 
dispatch method in the evaluation function significantly reduced the computational time 
of the GA to find the optimum, compared to a GA with random initial population and 
exact LP evaluation [21]. A schematic of the augmented GA is shown in Figure 3. 
 
 

partition commitments into
must-run/can’t run/can-run

seed initial population

evaluate solutions by
heuristic dispatch

create next generation by 
selection, crossover and mutation

evaluate solutions by
heuristic dispatch

re-evaluate best solution 
by linear programming

# gens = max

# gens < max

 
Figure 3: Schematic of knowledge-based GA. 

 
 
2.5 RESULTS 
 
The GA was implemented using RPL2 [9] and the LP re-evaluation was done using 
AMPL [41] with OSL solver routines on a Sun Sparc5 workstation. The results presented 
in this section were obtained with the GA parameters J=1000, K=100, pc = 0 9. , 

pm = 0 0015. . These values were found to give the best results in a study of the 

sensitivity of the GA performance on the above parameters.  
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The GA was applied to the test problem and the results compared with those obtained 
using Lagrangian relaxation (LR). Table 3 shows the cost of the solution obtained using 
LR with 10 sub-gradient iterations, the average cost over ten independent runs of the GA 
solution, and the associated CPU times. A lower bound, given by the dual cost after 200 
iterations, is also shown, which is useful in assessing solutions. The GA cost is 5.7% 
higher than the lower bound, compared to 6.6% for LR. 
 
Table 3: Comparison of results given by knowledge-based genetic algorithm and Lagrangian relaxation. 
 

 solution cost  1.5603 *106 
LR CPU time 145 s 
 lower bound 1.4638*106 
 solution cost  1.5470*106 
GA CPU time 257 s 
 improvement on 0.38% 

 
2.6 CONCLUSIONS 
 
A knowledge-based genetic algorithm has been developed for the unit commitment/ 
economic dispatch problem. In the GA each binary string is a complete commitment 
schedule, and the corresponding dispatched generations are calculated in the evaluation 
of each string. Expert knowledge of generation scheduling has been modelled and used 
to define the initial conditions of the GA. This has been shown to significantly improve 
the convergence. Scheduling rules have been incorporated in a fast approximate method 
of evaluating solutions, accelerating the computational time of the GA to competitive 
levels. The knowledge-based genetic algorithm has been applied to a representative test 
problem and shown to obtain better solutions than Lagrangian relaxation (LR) in similar 
computational times. 
 
 
3. Generator Maintenance Scheduling using a Genetic Algorithm 
 
3.1 INTRODUCTION 
 
It is vital for a utility to determine when its generators should be taken off-line for 
preventive maintenance. This is primarily because other short-term and long-term 
planning activities such as unit commitment, generation dispatch, import/export of power 
and generation expansion planning are directly affected by such decisions. In modern 
power systems the demand for electricity has greatly increased with related expansions in 
system size, which has resulted in higher numbers of generators and lower reserve 
margins making the generator maintenance scheduling (GMS) problem more complicated. 
The goal of GMS is to calculate a maintenance timetable for generators in order for 
example to maintain a high system reliability, reduce total operation cost, and extend 
generator life time, while satisfying constraints on the individual generators and the 
power system.  
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There are generally two categories of objectives in GMS, based on reliability [8,42-48] and 
economic cost [10,11,45,47-50]. The levelling of the reserve generation over the entire 
operational planning period is the most common reliability criterion. This can be realised 
by maximising the minimum net reserve of the system during any time period [45,46,48]. In 
the case of a large variation of reserve, minimising the sum of squares of the  reserves can 
be an effective approach [46]. Alternatively, the quality of reserve is considered, whereby 
the risk of exceeding the available capacity is levelled over the entire period by using the 
equivalent load carrying capacity for each unit and an equivalent load for each interval 
[46,48]. Minimising the sum of the individual loss of load probabilities for each interval 
can also be a reliability objective under the conditions of load uncertainty and random 
forced outages of units [46]. 
 
The most common economic objective is to minimise the total operating cost, which 
includes the costs of energy production and maintenance. If outage durations are 
allowed to vary, this results in a trade-off solution between the energy production cost 
and the maintenance cost. Shorter outage durations lead to higher maintenance costs but 
reduce the load of expensive generation and possible energy purchases, result ing in 
lower energy production costs [47]. The production cost alone could also be chosen as 
the objective function by minimising the total energy replacement cost due to preventive 
maintenance scheduling. However, this is an insensitive objective as it requires many 
approximations [47,48]. 
 
Any maintenance timetable must satisfy a given set of constraints. Typical constraints of 
the GMS problem are: 
 

• Maintenance window constraints, which define the possible times and the duration 
of maintenance for each  unit. 

• Crew constraints, which consider the manpower availability for maintenance work. 
• Resource constraints, which specify the limits on the resources needed for 
maintenance at each period. 

• Exclusion constraints, which prevent the simultaneous maintenance of a set of units. 
• Sequence constraints, which restrict the initiation of maintenance of some units after 
a period of maintenance of some other units. 

• Load constraints, which consider the demand on the power system during the 
scheduling period. 

• Reliability constraints, which consider the risk level of a given maintenance 
schedule. 

• Transmission capacity constraints, which specify the limit of transmission capacity 
in an interconnected power system. 

• Geographical constraints, which limit the number of generators under maintenance 
in a region. 

 
In general GMS is a multi-criterion constrained combinatorial optimisation problem, with 
nonlinear objective and constraint functions. Several deterministic mathematical methods 
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and simple heuristic techniques are reported in the literature for solving particular GMS 
problems [45,46,47,48]. Mathematical methods are based on integer programming, branch-
and-bound and dynamic programming. However these methods are unsuitable for the 
nonlinear objectives and constraints of GMS and their computational time grows 
prohibitively with problem size. The heuristic methods use a trial-and-error method to 
evaluate the maintenance objective function in the time interval under examination. They 
require significant operator input and may even fail to find feasible solutions [46,47].  
 
In order to overcome the above limitations a number of artificial intelligence approaches 
for GMS have been studied [43]. Genetic algorithms (GAs) offer an effective alternative 
method to solve complex combinatorial optimisation problems, and have recently been 
applied to GMS using binary strings to represent the maintenance timetable [10,11,42,50] 
and integer representation [8,42,43]. In all cases, penalty functions were used in the 
formulation of the evaluation function to take account of violations of problem 
constraints. GAs have been hybridized with other techniques in order to include 
scheduling heuristics and improve the performance of the solution algorithm. In [8,49] 
fuzzy logic was used in the evaluation of each candidate solution, in order to model 
flexibilities in scheduling using expert knowledge. A knowledge-based technique was 
employed in [49] for load flow calculation within the evaluation function to improve the 
speed of the algorithm. GAs have been applied to GMS using the acceptance probability 
of the simulated annealing (SA) method for the survival of a candidate solution during 
the evolution process [10,11]. If a newly created solution is an improvement, it is 
accepted, otherwise it is accepted with a defined probability. The hybridization improved 
the convergence of the algorithms. In [10] a tabu search (TS) technique was also coupled 
with the GA/SA hybrid method. In each generation, the best solution was selected as the 
new trial solution for the TS to improve the search in the neighbourhood of the solution. 
 
In the following sections we describe an application of GAs to a GMS test problem. Both 
steady state and generational GAs are employed using an integer representation. The 
GMS test problem and its mathematical model are described in section 4.2. Section 4.3 
details the implementation of the genetic algorithm technique to the problem. The test 
results and the performances of the GAs are discussed in section 4.4, and our 
conclusions follow in section 4.5. 
 
3.2 TEST GMS PROBLEM 
 
A test problem of scheduling the maintenance of 21 units over a planning period of 52 
weeks is considered, which is loosely derived from the example presented in [47] with 
some simplifications and additional constraints. The problem involves the reliability 
criterion of minimising the sum of squares of the reserves in each week. Each unit must 
be maintained (without interruption) for a given duration within a specified window, and 
the available manpower is limited. Table 4 gives the capacities, allowed periods and 
duration of maintenance and the manpower required for each unit. The system’s peak 
load is 4739 MW, and there are 20 people available for maintenance work in each week. 
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Table 4: Data for the test system. 
 

Unit  Capacity 
(MW) 

Allowed 
period 

Outage 
(weeks) 

Manpower required  
for each week  

1 555 1-26 7  10+10+5+5+5+5+3 
2 555 27-52 5  10+10+10+5+5 
3 180 1-26 2  15+15 
4 180 1-26 1  20 
5 640 27-52 5  10+10+10+10+10 
6 640 1-26 3  15+15+15 
7 640 1-26 3  15+15+15 
8 555 27-52 6 10+10+10+5+5+5 
9 276 1-26 10 3+2+2+2+2+2+2+2+2+3

10 140 1-26 4 10+10+5+5 
11 90 1-26 1 20 
12 76 27-52 3 10+15+15 
13 76 1-26 2 15+15 
14 94 1-26 4 10+10+10+10 
15 39 1-26 2 15+15 
16 188 1-26 2 15+15 
17 58 27-52 1 20 
18 48 27-52 2 15+15 
19 137 27-52 1 15 
20 469 27-52 4 10+10+10+10 
21 52 1-26 3 10+10+10 

 
The GMS problem can be formulated as an integer programming problem by using binary 
variables, either indicating the period in which maintenance of each unit starts [8,42-
45,50] or representing the maintenance status of each unit at each time [10,11,46-48]. The 
variables in the first formulation are bounded by the maintenance window constraints 
and hence the search space is reduced. The test problem is formulated below using these 
variables. We introduce the following notation: 
 
i  index of generating units 
I  set of generating unit indices 
N total number of generating units 
t  index of periods 
T  set of indices of periods in planning horizon 
ei  earliest period for maintenance of unit i to begin 
li   latest  period for maintenance of unit i to end 
di    duration of maintenance for unit i 
Pit generating capacity of unit i in period t  
Lt   anticipated load demand for period t  
Mit  manpower needed by unit i at period t  
AMt  available manpower at period t   
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Suppose Ti⊂T is the set of periods when maintenance of unit i may start, so Ti={t ∈T: ei
≤t≤li-di+1} for each i. We define 

 Xit=
1
0
  if unit i starts maintenance in period t,
 otherwise,





  

to be the maintenance start indicator for unit i∈I in period t∈Ti. It is convenient to 
introduce two further sets. Firstly let Sit be the set of start time periods k such that if the 
maintenance of unit i starts at period k that unit will be in maintenance at period t, so 
Sit={k∈Ti: t-di+1≤k≤t}. Secondly, let It be the set of units which are allowed to be in 
maintenance in period t, so It={i: t∈Ti}. Then the problem can be formulated as a 
quadratic 0-1 programming problem as below. 
 
The objective is to minimise the sum of squares of the reserve generation 
 

 Min
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,  (19) 

subject to the maintenance window constraint  

  Xit
t Ti

=
∈
∑ 1   for all i∈I, (20) 

the manpower constraint     
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the load constraint  
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−
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≥∑ ∑∑     for all t ∈T. (22) 

 
3.3 GA IMPLEMENTATION 
 
A solution to the test problem may be represented as a one-dimensional binary string 
which consists of sub-strings Xi e di i, , , X  ... ,  Xi,e i,li i+ − +1 1 for each unit i. The size 

of the GA search space for this type of representation is  

 2
2

1
( )l d ei i i

i

N
− − +

=
∑

. 

For each unit i=1,2,...,N, the maintenance window constraint (20) forces exactly one 
variable in {Xit: t∈Ti} to be one and the rest to be zero. The solution of the problem 
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thus amounts to finding the correct choice of positive variable from each variable set 

{Xit:t ∈Ti}, for i=1,2,...,N. The index ti
∗  of this positive variable indicates the period 

when maintenance for unit i starts. In order to reduce the number of variables the ti
∗ , 

i=1,2,...,N, can be taken as new variables. These can be expressed as binary numbers, in a 
‘binary for integer’ representation. However, a direct integer representation automatically 
considers the maintenance window constraint (20) and greatly reduces the size of the GA 
search space to  

( )l d ei i i
i

N
− − +∏

=
2

1
. 

 
We present results obtained using the integer representation, which has been found to 
give significantly better results than the binary representation or binary for integer 
representation [44]. 
 
The merit of the solution represented by the GA string is calculated by an evaluation 
function, given by a weighted sum of the objective and penalty functions for violations 
of the constraints, which we seek to minimise. The penalty value for each constraint 
violation is proportional to the amount by which the constraint is violated, hence 
 

evaluation = ωO SSR + ωM TMV + ωL TLV,  (23) 
  

where SSR is the sum of squares of reserves as in (19), TMV is the total manpower 
violation of (21), and TLV is the total load violation of (22). The weighting coefficients 
ωO,, ωM and ωL are chosen so that the penalty values for the constraint violations 
dominate over the objective function, and the violation of the relatively hard load 
constraint (22) gives a greater penalty value than for the relatively soft crew constraint. 
This is because a solution with a high reliability but requiring more manpower may well 
be accepted for a power utility as the unavailable manpower may be hired. In fact, there 
is a trade-off between the level of reliability and the required extra manpower. This 
flexibility of the problem can be modelled using a fuzzy logic approach within the 
evaluation function [8]. 
 
3.4 TEST RESULTS AND DISCUSSION 
 
Both generational (GN) and steady state (SS) GAs were implemented for the test problem 
using tournament selection, two-point crossover, random mutation and elitism. A 
tournament replacement operator was employed for the SS GA. GAs were implemented 
for the test problem using the RPL2 program [9] on a Sun Sparcstation 1000. 
 
The performance of a GA is generally dependent on the GA parameters used, in 
particular the crossover and mutation probabilities. The sensitivity of both GAs to the 
variation of crossover and mutation probabilities CP and MP in the range of 0.6-1.0 and 
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0.001-0.1 respectively was therefore established. The results are depicted in Figure 4, 
which shows for each case the average evaluation value of the best solutions obtained 
from ten independent GA runs. A different initial population was randomly created for 
each run but the same ten initial populations were used for each case. The total number 
of iterations (solutions created) in each run was fixed as 30,000. The population size was 
taken to be 100. 
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Figure 4: Effect of variations of CP and MP on the performance of SS GA (left) and GN GA (right). 
 

Table 5: Best results obtained from SS GA and GN GA. 
 

 SS GA GN GA 
CP, MP 1.0, 0.05 0.6, 0.01 

average evaluation value (over ten 
runs) 

146.71 155.05 

best evaluation value (over ten runs)  137.91 148.31 
CPU time (one run) 34s 25s 

 
As Figure 4 shows, the average results of both GAs do not vary greatly for varying CP, 
but are more sensitive to variations of MP, particularly for the GN GA. The SS GA gives 
the best performance at higher crossover and mutation probabilities than the GN GA. 
The best results of both GAs are given in Table 5. Hence the SS GA finds better 
schedules (with lower evaluation values) than the GN GA. However the CPU time (which 
increases as MP increases) for the GN GA is smaller than that for the SS GA. For both 
GAs, the best solution (over ten runs) is feasible, so the values shown in Table 5 
represent the objective value (SSR multiplied by weighting coefficient ωO). 
 
The best solution found by the SS GA, whose evaluation measure is 137.91, is illustrated 
in Figure 5 (left). The schedule represented by the solution is set out in the top portion 
of the figure, in which the horizontal bars indicate the maintenance of a generating unit. 
The middle portion of the figure shows the reserve margins in each week for the 
schedule, which are non-negative since the schedule satisfies the load constraint. The 
manpower requirements in each week for the solution are depicted in the bottom portion 
of the figure, which are within the available level. 
 
In order to compare with the best GA solution, we developed a solution heuristically by 
timetabling the maintenance outages of generators in order of decreasing capacity, to 
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level the reserve generation while considering the maintenance window and load 
constraints. The schedule, reserve margins and manpower requirements for each week 
given by the heuristic solution is illustrated in Figure 5 (right). The solution respects the 
load constraints but violates the manpower constraints in three time periods. The 
evaluation value of the solution is 222.61, which is the weighted sum of the objective 
value (134.61) and the amount of the violation of the constraints. Hence the objective 
value of the heuristic solution is better than that of the best GA solution, but the 
solution is infeasible.  
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Figure 5: The schedule given by the best GA solution  (left) and the heuristically developed schedule 
(right). 

 
The convergence of the SS GA in finding the best solution (with CP=1.0, MP=0.05) is 
depicted in Figure 6, which shows the evaluation value of the best solution found so far 
and the mean evaluation value of the solutions in the population against the number of 
iterations.  
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Figure 6: Performance of the SS GA in finding the best solution. 
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The reduction of the mean evaluation value and the evaluation value of the best solution 
is very quick in the initial stage, up to 5000 iterations, of the GA. During this stage, the 
GA mainly concentrates on finding feasible solutions to the problem. The population 
does not converge to the best solution even after a large number of iterations as the high 
mutation probability (0.05) maintains the diversity in population. The convergence of the 
algorithm can be improved even with a high mutation probability if the probabilistic 
acceptance criteria of a SA technique is incorporated into the GA method. A further 
improvement can be gained by initialising the population using a heuristic schedule. 
This results will be reported elsewhere. 
 
3.5 CONCLUSIONS 
 
A GA technique using an integer representation has been demonstrated for a test 
problem of generator maintenance scheduling. The use of an integer rather than binary 
representation greatly reduces the GA search space and is straightforward to implement. 
A penalty function approach has been employed to consider the constraints of the 
problem. Two GAs with steady state and generational design were tested and the effect 
of varying crossover and mutation probabilities were studied. The test results show that 
both the GAs are stable to variation in crossover probability in the expected range. The 
GN GA is found more sensitive to variation in mutation probability than the SS GA. The 
integer SS GA gives better  performance than the integer GN GA in term of finding better 
solution in a fixed number of iterations, but the latter is found to be faster. 
 
The results presented above show that the GA is a robust and stable technique for the 
solution of GMS problems. Good solutions of the problem can be found if an appropriate 
problem encoding, GA approach, evaluation function and GA parameters are selected for 
the problem.  
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