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ABSTRACT 

A COMPREHENSIVE MODEL OF HUMAN NEUROMUSCULAR FUNCTION 

DURING REPEATED ISOMETRIC CONTRACTIONS:  PREDICTING THE 

EFFECT OF AGE ON FATIGUE 

 

FEBRUARY 2012 

 

DAMIEN CALLAHAN, B.S., BOSTON UNIVERSITY  

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Jane A. Kent-Braun 

 

 

Repeated or prolonged activation of skeletal muscle results in an acute decline in 

the muscle‟s ability to produce force, which is typically referred to as fatigue.  Muscle 

fatigue is likely related to the by-products of cellular metabolism, alterations in neural 

activation and diminished membrane excitability that have been shown to accompany 

repeated contractions.  However, the complicated etiology of the fatigue process makes it 

difficult to understand the relative influence of these physiological responses.  

Computational modeling of the skeletal muscle response to repeated activation is an 

appealing means of gaining insight into the mechanisms of muscle fatigue.  A reasonably 

comprehensive model would include components that represent α motor neurons and 

populations of muscle fibers that reflect the range of metabolic and contractile 

characteristics known to exist in human skeletal muscle.  Consideration of joint and 

connective tissue mechanical properties will add translational value by predicting whole 

joint segment behavior that can be validated by in vivo experimentation.  The proposed 
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dissertation project involved the development of a computational model incorporating 

multiple components meant to represent the function of the intact neuromuscular system.  

The complete model combines previously-validated models of neural activation and 

contractile behavior with a control function that attempts to match torque output to a pre-

determined task.  The model uses experimentally-derived functions describing metabolic 

cost and force inhibition to predict the loss of force generating capacity during repeated 

activation.  Once tested using data from a group of adult men, the parameters of this 

model were altered to reflect age-related changes in the human neuromuscular system.  

The model‟s ability to predict the well-established phenomenon of age-related fatigue 

resistance during isometric contractions was then tested. The results from this series of 

studies support the utility of a computational approach to the investigation of muscle 

fatigue, and provide useful tools for future studies.  
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PREFACE 

 

 Chapters 1-3 of the following document were included in the dissertation proposal 

document submitted to the University of Massachusetts Graduate School in March, 2011.  

Chapters 4, 5, and 6 correspond to hypotheses 1-3 in the proposal document, respectively 

while chapter 7 is a summary of the work contained therein.  The focus of Chapter 4 has 

been altered to include aspects of hypothesis 2, after agreement between myself and the 

committee that this arrangement was more conducive to the logical progression of ideas 

proposed in this dissertation.  In accordance with the wishes of the committee, chapters 4, 

5, and 6 are formatted as manuscripts to expedite their submission for peer-review.   
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CHAPTER 1 

INTRODUCTION 

Development of the Problem 

The mechanisms of skeletal muscle fatigue, or the acute loss of force-generating 

capacity in response to repeated or prolonged contractions, is difficult to define.  

Voluntary activation of skeletal muscle requires the coordination of multiple systems 

(Figure 1).  Perturbations to the function of any one of these systems may contribute to 

fatigue.   

Beginning in the central nervous system (Figure 1, 1), excitatory action potentials 

are generated in the motor cortex of the brain, and are propagated along cortico-spinal 

tracts to groups of α motor 

neurons in the spinal cord.  These 

motor neurons are characterized 

by a range of recruitment 

thresholds and activation patterns.  

Activation of a given motor 

neuron (Figure 1, 2) causes the 

axon of that neuron to depolarize, 

thereby propagating an action 

potential down its length.  Each 

axon is connected to hundreds or 

thousands of skeletal muscle 

fibers (cells).  The motor neuron 

  Figure 1.1 

 Schematic of the events leading to muscle activation.  

Beginning with 1. Cortical excitation, 2. Motor unit 

activation, 3. Depoloarization of the sarcolemma and 

subsequent calcium release, 4. Actin-Myosin binding, 

dephosphorylation of ATP and force generation. 
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and all of the muscle fibers it innervates compose a single motor unit.  Voluntary force is 

thought to be regulated primarily by the number of motor units recruited and the rate at 

which activated motor units depolarize (78).   

Translation of a nerve action potential to muscle contraction is initiated by the 

release of acetylcholine (ACh) from the terminal ends of the motor axon (Figure 1, 3) to 

receptors on the muscle membrane.  Binding of ACh to these receptors causes 

depolarization of the muscle membrane.  This signal is propagated to the transverse 

tubules, which in turn triggers release of Ca
2+

 from the sarcoplasmic reticulum.  Released 

into the sarcoplasm, Ca
2+

 binds to troponin, which leads to tropomyosin moving on actin, 

and exposure of the myosin-binding site on actin (Figure 1, 4).  Myonsin, once bound to 

actin, undergoes a conformational change that results in force generation.  When 

adenosine triphosphate (ATP) binds to the actin-myosin complex, myosin dissociates 

from actin.  Hydrolysis of ATP by myosin ATPase causes the myosin head to revert to its 

original shape. The process of actin-myosin binding, ATP hydrolysis and force 

generation will repeat, provided Ca
2+

 remains in the sarcoplasm to keep the myosin 

binding site exposed.  Repeated muscle activations will cause an increase in adosine 

diphophate (ADP), inorganic phosphate (Pi) and proton (H
+
) concentrations due to the 

dephosphorylation of ATP and increased metabolism required to maintain ATP supply.   

Even with this simplified summary of events, it is clear that the process of force 

generation is complicated.  Because reductions in force generating capacity can result 

from alterations at any point along this pathway, understanding the distinct physiological 

cause(s) of muscle fatigue is inherently difficult.  This difficulty is illustrated by the fact 

that many studies focus on the outcome of neuromuscular activation (force) and, perhaps, 
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one or two of the many steps along the pathway of force production due to the 

complexity of simultaneously assessing the entire pathway in vivo.   

Several studies have reported that older adults fatigue less than their younger 

counterparts when performing repeated isometric contractions.  Although the 

phenomenon of age-related fatigue resistance is not always observed, the magnitude of 

age-related differences in fatigue tend to be more pronounced during prolonged, 

isometric contractions (11; 13) and attenuated or reversed during repeated dynamic 

contractions (5; 69; 117).  Unique physiological mechanisms that might explain age-

related fatigue resistance under certain conditions have been identified over the years (27; 

103; 105; 110; 111; 113).  However, multiple mechanisms likely contribute to fatigue 

simultaneously.  As a result, disentangling their relative contributions to the task-specific 

phenomenon of age-related fatigue resistance presents a significant challenge.    

A number of investigators have used computational modeling to successfully 

predict the net behavior of the intact neuromuscular system (15; 58; 75; 121; 187).  

Specific models have been constructed and tested that accurately predict behavior of 

individual components of the neuromuscular system.  These modeled behaviors include, 

but are not limited to, the activation (59), discharge, and spatial distribution (58) of motor 

units; depolarization of the sarcolemma (54); calcium kinetics (131; 187); acto-myosin 

binding kinetics (70; 83; 166); and control of oxidative phosphorylation by ADP (94).  

Still other models have been developed that predict the response of some of these 

components to repeated activation (40; 41; 43; 62; 63; 74; 128; 190).  However, rarely 

have multiple physiological components been included in the same model (63), and no 
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models investigating the response of skeletal muscle to repeated contraction specifically 

address the physiological changes that occur with old age.   

Although data exist that accurately quantify age-related changes in neuromuscular 

physiology for a variety of experimental conditions, the task remains to combine them in 

a comprehensive model of neuromuscular function that accurately predicts known 

responses of young and aged individuals.  A model that responds to excitation by 

simulating α motor neuron activation, intracellular Ca
2+

 dynamics, and force generation 

could be used to evaluate hypotheses related to altered neuromuscular function in aging 

humans.  Extending the function of such a model to include production of, and sensitivity 

to, the fatigue-inducing byproducts of cellular metabolism would allow testing of novel 

hypotheses related to age-related fatigue resistance.  Simulations designed, for example, 

to measure the impact of lower motor unit discharge rate, altered recruitment strategies, 

increased contractile economy or decreased reliance on glycolysis could be run using this 

single model.  Most important, similar experiments would be impossible in vivo. 

Statement of the Problem 

The interrelated nature of physiological processes thought to influence fatigue 

make their relative influence on fatigue difficult to discern in vivo.  Quantifying the 

extent to which these processes differ between younger and older individuals, and further, 

how they might mediate age-related differences in fatigue is an even greater challenge.  

While in vitro experimentation can provide explicit details about isolated systems, and in 

vivo studies typically describe the combined function of multiple systems, each are 

limited in addressing the phenomenon of age-related fatigue resistance.  Model 

simulations on the other hand, are commonly used to predict the responses of 
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complicated systems whose interrelated components might preclude direct measurement 

or control.  Currently, no model exists that describes neuromuscular function and the 

response to repeated activation while accounting for known age-related changes in 

neuromuscular physiology.   

 

Hypotheses 

A computational model of neuromuscular function will be constructed based on 

data from the literature and experimentally-derived values from a population of healthy 

young men.  Hypothesis 1:  Beginning with a maximal excitation signal, this model will 

accurately predict maximal ankle dorsiflexion torque within one standard deviation of the 

experimental data.   

The same model of neuromuscular function tested for Hypothesis 1 will be 

modified to predict fatigue during a bout of six, 12-second maximum voluntary 

contractions each separated by 12 seconds of rest (111; 113).  The model‟s accuracy will 

be evaluated by comparing predicted fatigue to literature values (111; 113).  Hypothesis 

2:  With repeated maximal activation, the model will predict fatigue within one standard 

deviation of experimental values.   

Parameters in the completed model from Hypothesis 2 will be adjusted to reflect 

age-related differences in neuromuscular function. These will include slowed rates of 

force relaxation, lowered maximal discharge rates, and lesser accumulation of H2PO4
-
 

during activation.  Hypothesis 3:  The model, run with new parameters, will predict age-

related fatigue resistance during intermittent, maximum isometric contractions within one 

standard deviation of experimental values for older men. 
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If the preceding hypotheses are supported, it will afford the opportunity to gain 

significant insight to the mechanisms of age-related fatigue resistance.  While the precise 

mechanisms of fatigue during repeated isometric contractions are debated, the most 

prominent features of current theories will be represented in the proposed model.  

Confirmation that the model predicts voluntary generation of torque will be provided by 

Hypothesis 1.  If Hypothesis 2 is supported, it will improve our confidence that the model 

is sensitive to pertinent aspects of neuromuscular function involved in fatigue.  Finally, 

accurate prediction of age-related fatigue resistance through modification of those 

parameters involved in voluntary force production will permit testing of additional 

hypotheses that are impossible using more traditional in vivo or in vitro experimental 

techniques.   

Sensitivity analyses can be performed to identify those parameters that have the 

greatest impact on force production and fatigue.  Further, individual parameters might be 

modified to reflect changes in neural (97) or muscular (57) function with training.  

Insight gained from these modifications might provide the basis for training modalities 

whose effectiveness could be tested using in vivo experimentation.  
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Significance 

Mathematical models of skeletal muscle function were first described in the 1950s 

by the work of A.V. Hill (82) and Hugh Huxley (90).  Since then, computational models 

have been proposed to explain the physiological behavior of skeletal muscle perfusion, 

neuromuscular activation and even fatigue during repeated activations.  However, a 

comprehensive model that allows simultaneous inquiry of multiple sites in the pathway of 

force production has not been developed, nor has such a model been used to address 

questions related to the effects of old age.   

The complicated etiology of age-related fatigue resistance is likely due to several 

differences in neuromuscular function between younger and older adults.  The relative 

impact of each of these changes is hard to quantify, as their influence cannot be separated 

in the intact organism.  Computational modeling affords the opportunity to independently 

modify each of these components to better understand their respective impact on age-

related fatigue resistance.  Doing so allows one to test hypotheses related to age-related 

changes in neuromuscular function that would be impossible using in vitro or in vivo 

experimental techniques. 
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CHAPTER 2 

LITERATURE REVIEW 

Introduction 

Age-related declines in muscle force and power generating capacity have been 

reported frequently in the literature (9; 55; 56; 164).  These reductions in force and power 

have been implicated in diminished athletic performance for the most capable individuals 

(47), and severe mobility disability in frail elders (65; 66).  Other deleterious age-related 

changes in neuromuscular physiology, such as reduced maximal motor unit discharge 

rates and smaller muscle size (30; 98; 176) are frequently, although not always, cited in 

the literature.  In contrast, fatigue resistance has been reported under a variety of 

conditions to remain unchanged or even improve with old age (21; 25; 44; 106; 111; 112; 

140; 160).  In fact, when fatigue is induced by prolonged or repeated isometric 

contractions, a majority of the literature supports the notion of age-related fatigue 

resistance (87; 88), although there are exceptions (34).   

While age-related fatigue resistance has been examined in great detail, few studies 

have provided an adequate explanation for this phenomenon.  This is understandable, as 

variations in neuromuscular function between young and older adults occur at multiple 

sites and likely interact with the fatigue process in myriad ways.  Because neuromuscular 

changes with age are difficult to identify independently with in vivo human 

experimentation, computational modeling is a promising means of parsing their relative 

influence on fatigue.   

Computational methodologies have their roots in studies of muscular kinetics and 

mechanics performed over 60 years ago (82).  The relatively recent expansion of 
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accessible computing power has greatly increased their utility in the last 20 years.  

However, computational modeling has not been used to address the age-related changes 

in fatigue resistance, despite the existence of several validated models that characterize 

either muscle fatigue (62; 63; 74; 118; 120; 171) or aspects of the aging neuromuscular 

system (175; 185).   

The recent validation of models shown to predict age-related changes in the 

neuromuscular system (175; 185) combined with existing models of muscle fatigue (63; 

118; 190) present an opportunity to apply computational modeling to the question of age-

related fatigue resistance.  While a combined synthesis of existing models would 

contribute to our understanding of the mechanisms of age-related fatigue resistance, 

greater insight can be gained with the addition of components that reflect the current state 

of knowledge regarding age-related changes to neuromuscular physiology.   

This literature review will focus on the proposed mechanisms of skeletal muscle 

fatigue, the age-related physiological alterations thought to mediate fatigue resistance in 

older adults, and the computational characterization of muscular and neural systems.  

Because this proposal focuses on simulating neuromuscular function at the macroscopic 

level, particular attention will be paid to studies that have characterized the net behavior 

of entire muscles or muscle groups using phenomenological models.  While the literature 

provides many excellent examples of mechanistic models that accurately predict 

contractile dynamics and neural behavior at the microscopic level, a significant review of 

their substantial contribution is beyond the scope of this dissertation.     
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Mechanisms of Skeletal Muscle Fatigue 

The mechanisms of fatigue are complicated (48; 186) and likely task-specific 

(86).  Our understanding of the fatigue process has benefited from years of in vivo and in 

vitro experimentation, during which, numerous insights into both cellular and systemic 

influences on force generating capacity have been attained.  However, both in vitro and in 

vivo (indeed all) methodologies have some inherent limitations.  In vivo experiments are 

typically challenged by a lack of control over interrelated processes that may be difficult 

to measure.  In vitro experimental conditions, while more tightly controlled, cannot 

usually mimic the complexity of in vivo systems.  In either case, the ability of researchers 

to quantify the relative contribution of multiple mechanisms to overall fatigue is 

somewhat compromised. 

Central Mechanisms 

The proposed mechanisms of fatigue can be referred to as either central, or 

peripheral in nature.  The term, “central fatigue” is used to describe a range of neural 

responses to contraction that ultimately reduce the ability to voluntarily excite skeletal 

muscle (173).  Central fatigue may result from reduced excitability and/or increased 

inhibition at the level of the motor cortex, or motor neurons (1 and 2 in Figure 1).  It is 

likely that both mechanisms contribute to fatigue during maximal contractions (173).  

Reduced excitation of α motor neurons manifests in reduced maximal discharge rates for 

active motor units, and/or derecruitment of motor units, beginning with those with the 

highest activation thresholds (98).  Signals from group III and IV afferent nerve fibers 

likely play a role in diminished cortical excitability, as well as increased α motor neuron 

inhibition (18; 172).  Central mechanisms of fatigue seem to play the greatest role during 
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prolonged, sub maximal isometric contractions (191) and a lesser role during intermittent 

maximal contractions (20; 112; 125).  Central mechanisms likely contribute to some 

degree in most situations involving skeletal muscle fatigue.  However, under most 

conditions, the magnitude of their effect is small compared with peripheral mechanisms.    

Peripheral Mechanisms 

Peripheral fatigue mechanisms refer to events occurring distal to the nervous 

system (3 and 4 in Figure 1).  These include reduced excitability of the sarcolemma (51; 

61) and decreased sensitivity of troponin to Ca
2+

 (33; 50).  Increased extracellular 

potassium is thought to mediate differences in sarcolemmal excitability (142), while 

changes in intracellular metabolite concentrations influence intracellular mechanisms for 

peripheral fatigue.  Repeated contractions of sufficient intensity will increase intracellular 

[ADP], [Pi] and [H
+
] which have been implicated in fatigue processes (106).  Through 

Figure 2.2  Cross Bridge Cycling: Steps in the interactions between actin, myosin, and ATP that 

result in force generation and shortening of the myofiliment.   
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multiple mechanisms, each of these metabolites alter the behavior of cross-bridge 

binding.  Their combined effect ultimately lowers force and rates of relaxation (49).   

The intracellular environment is thought to mediate loss of force-generating 

capacity through two primary mechanisms: decreased force generated per cross-bridge 

and decreased number of strongly bound myosin on actin at any given instant during 

activation (132; 133).  The chemical steps involved in actin-myosin interaction and 

subsequent force generation are illustrated in Figure 2.  The influence of increased [Pi], 

[H
+
] and [ADP] on these steps are likely different (49) and recent evidence suggests, 

highly dependent on temperature (36).   

During activation, force generation depends on binding of the acto-myosin 

complex in its strongly bound configuration (Figure 2, A) and dissociation of Pi from this 

complex (Figure 2, B).  Because these reactions occur in equilibrium within the 

sarcoplasm, and steps are reversible, increased cytoplasmic [Pi] may decrease its rate of 

dissociation from the acto-myosin complex, and thus, reduce force generation (Figure 2, 

B).   Significantly, the effects of increased [Pi] and [H
+
] are additive, suggesting alternate 

mechanisms (31; 143). 

Repeated contractions result in increases in cytoplasmic [ADP] which likely 

slows dissociation of ADP from the acto-myosin complex (Figure 2, C).  This step 

precedes binding of ATP to the acto-myosin complex, and subsequent dissociation of 

actin and myosin (Figure 2, D).  As a result, increases in [ADP] likely play a role in 

slowed rates of cross-bridge cycling and reduced contraction velocity.   

It could be postulated that increased [ADP] will tend to increase the number of 

bound cross bridges by reducing the rate of dissociation of myosin from actin (Figure 2, 
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C).  However, these events are accompanied by a reduced Ca
2+

 sensitivity and reduced 

force per cross bridge, which seem to influence force to a greater extent than [ADP].  It 

appears that increased [ADP] in vivo tends to have the greatest effects on prolonged rates 

of force relaxation.  Elevated [H
+
] depresses cross-bridge force in vitro, regardless of 

saturating levels of Ca
2+ 

(132), suggesting it has independent effects on cross-bridge force 

generating capacity (46). 

The effects of metabolite concentrations on fatigue also vary by muscle fiber-

type.  At temperatures close to the human physiological range (~30° C), the depressive 

effects of acidosis on force output are similar between slow, type I fibers and fast, type 

IIa fibers, but greater in type IIb (133).  Similarly, the depressive effects of increased [Pi] 

on force production are more pronounced in type II fibers than type I (36), but only at 

lower temperatures.  Significantly, the effects of increased [Pi] and [H
+
] are additive, 

suggesting alternate mechanisms (31; 143). 

Since the mid 1970s, when its use as a tool for in vivo study of muscle physiology 

was pioneered (7; 17; 84), 
31

P magnetic resonance spectroscopy (MRS) has provided 

significant insight into the metabolic perturbations associated with repeated contractions.  

By tracking the relative concentrations of phosphorus containing metabolites within 

contractile tissue during fatiguing contractions and subsequent recovery, investigators 

have been able to associate changes in these metabolites with fatigue.  Repeated or 

prolonged contractions increase rates of glycolysis, which produces excess H
+
, in 

addition to ATP and pyruvate.  Some investigators have observed an inverse, linear 

relationship between [H
+
] and force-generating capacity (106).  However, during 

recovery from fatigue, hysteresis is evident in this relationship, indicating that if [H
+
] is 
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directly mediating fatigue, its relationship with force-generating capacity is not constant.  

It seems likely that [H
+
] has an associative, rather than causal relationship with reduced 

force production in vivo.  This finding is in apparent conflict with results from in vitro 

experimentation that dictate a strong relationship between fatigue and cellular acidosis.  

However, it is important to note differences between in vitro and in vivo observations of 

muscle fatigue.  Several sites of force loss including sarcolemmal excitability and 

reduced motor unit activation and discharge rate may be present during voluntary 

activation, but lost during in vitro study.  Further, human spectroscopy data represent a 

signal acquired from relatively large volumes of tissue with likely heterogeneous 

metabolic and fatigue characteristics.  In contrast, in vitro studies typically draw from 

more homogeneous samples.   

Several investigators have observed associations between [H2PO4
-
] and skeletal 

muscle fatigue (31; 103; 106; 111; 113; 135) which seem more robust than associations 

between [H
+
] and fatigue alone.  

Increased [H2PO4
-
] during contraction 

reflects increased intracellular [Pi] 

and [H
+
] that result from the creatine 

kinase reaction and glycolysis 

respectively.  Multiple studies have 

demonstrated a linear association 

between [H2PO4
-
] and fatigue (31; 

106; 111; 113; 135).  The correlation 

between fatigue and [H2PO4
-
] persists 

Figure 2.3  Reproduction from Lanza et al (Figure 5 

(111)).  Linear relationship between fatigue and 

[H2PO4
-
] in old and young men and women during 

free flow (A) and ischemic (B) conditions. 
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across age groups during ischemia (Figure 3; (111)) and is consistent, whether fatigue is 

induced by intermittent or sustained contractions (135).   

It has been suggested that the strong relationship between fatigue and [H2PO4
-
] is 

lost during repeated bouts of dynamic contractions (156).  In light of this observation, and 

given the myriad influences on voluntary force-generating capacity, it seems unlikely the 

entirety of the fatigue process can be ascribed to a single metabolite.  However, the 

variety of conditions under which [H2PO4
-
] correlates with losses in force highlights its 

utility as a strong predictor of fatigue during isometric contractions.   

Age-Related Fatigue Resistance 

 Age-related fatigue resistance has been reported by a number of labs under a 

variety of experimental conditions (20; 21; 25; 44) while others have reported the 

opposite (10; 149).  A trend in the literature suggests that age-related fatigue resistance is 

reported least often during dynamic contractions (112).  On the other hand, age-related 

fatigue resistance is reported frequently during repeated isometric contractions (25; 44) 

and most frequently during sustained maximal and sub maximal endurance tasks (11; 88; 

125).  Several mechanisms have been proposed to explain age-related fatigue resistance, 

including greater reliance on oxidative metabolism (106), increased metabolic economy 

(80; 111) and reduced generation of fatigue-inducing metabolites (23; 26).   

Several studies have investigated the potential role of central activation in 

mediating age-related fatigue resistance, but with a few exceptions (168) most 

investigators have found little evidence for a role of activation in this phenomenon (3; 25; 

108; 112; 125).  However, altered recruitment strategies have been suggested as potential 

mechanisms in age-related fatigue resistance.  Older adults have lower maximal motor 
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unit discharge rates than young during non-fatigued maximal contractions (96; 147; 160).  

However, these lower discharge rates are observed with slower rates of force 

development and relaxation (160), potentially explaining a similar capacity for voluntary 

activation.   

Rubinstein and Kamen (160) showed that maximal motor unit discharge rates and 

relative force declined to a greater extent in young adults than in older adults during 30-

second, intermittent isometric contractions.  Age-related reductions in non-fatigued 

contractile kinetics and motor unit discharge rates may impact fatigue resistance by 

reducing the overall metabolic cost of contraction.  Maintenance of membrane 

polarization and re-uptake of Ca
2+

 following each depolarization event represents a 

significant (between 20% and 80%; (182; 193)) portion of the overall metabolic cost of 

contraction.  Reducing the number of depolarization events necessary to fully activate a 

given muscle may therefore reduce the overall metabolic cost of force maintenance.  In 

fact, reduced ATP per unit force production (metabolic economy) has been associated 

with fatigue resistance (167).  However, Russ and colleagues did not observe a 

relationship between stimulation frequency and metabolic cost when using multiple, 

supra-physiological electrical stimulation frequencies (161). 

Under most conditions, intracellular [ATP] is maintained during contraction 

despite the dramatic increase in ATP use.  Synthesis of ATP occurs via PCr hydrolysis, 

glycolysis, and oxidative phosphorylation.  In vitro observations reveal a strong 

correlation between oxidative function and mitochondrial density with fatigue resistance 

(169; 180).  Further, both exercise and low frequency electrical stimulation have been 

shown to promote greater oxidative capacity in target muscles, which correlates with 
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increased fatigue resistance (52; 93; 122).  Oxidative phosphorylation is a more fatigue-

resistant metabolic pathway because substrate availability is not limiting in most 

conditions, as opposed to PCr hydrolysis, and its byproducts do not promote loss of force 

generation as is the case with glycolysis.   

While some studies show reduced capacity for oxidative phosphorylation with old 

age (29; 165), others show a similar or even improved capacity in older adults (16; 26; 

106; 111; 154).  In vivo oxidative capacity is likely muscle-specific and at least partially 

dependent on habitual physical activity (64; 85; 114).  These observations prohibit broad 

generalization about age-related changes in muscle oxidative capacity.  However, recent 

evidence strongly suggests that intracellular metabolism plays a role in mediating age-

related fatigue resistance during isometric contractions (106; 111).  In these studies, a 

relatively greater relative reliance on oxidative phosphorylation and reduced 

accumulation of [H
+
] and [H2PO4

-
] were associated with improved fatigue resistance in 

the old, despite similar relative force production.   

It is important to point out that the metabolic properties of muscle fibers and the 

characteristics of the motor units that innervate them are related.  Evidence in the human 

and animal literature has shown that motor units with low activation thresholds and lower 

maximal discharge rates tend to innervate muscle fibers that express the type I myosin 

heavy chain (MHC) isoform.  These muscle fibers tend to have relatively slow contractile 

characteristics and a greater number of mitochondria than muscle fibers expressing type 

II MHC isoforms.  On the other hand, higher threshold motor units with faster maximal 

discharge rates tend to innervate muscle fibers expressing the type II MHC isoforms.  

These fibers have fast contractile characteristics, relatively few mitochondria, and rely 
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primarily on glycolytic metabolism to produce ATP.  Fibers expressing type II MHC can 

be further sub-divided into types a and b (sometimes referred to as “x”) in humans (71).  

In general, type IIb fibers have the fastest contractile kinetics, and rely most on 

anaerobic, glycolytic metabolism while type IIa fibers are intermediate between type I 

and IIb in terms of contractile and metabolic characteristics (71).  The relationship 

between motor unit properties and fiber type has been demonstrated by surgical reversal 

of the innervation of two muscles with opposite fiber type compositions (predominantly 

type I or type II) in multiple animal studies (8; 68; 163).   

A progressive loss of high threshold motor neurons has been proposed to occur 

with age (115).  It is thought that some of the fibers, “orphaned” by the loss of 

innervation, are “adopted” by the axons of neighboring motor neurons.  Thus, the 

surviving motor units are likely to have lower recruitment thresholds and maximal 

discharge rates.  Subsequently, these fibers take on characteristics to match the motor 

neurons innervating them.  This process leads to a gradual redistribution of fiber-type 

within the aging neuromuscular system.  The theory of fiber-type redistribution is 

supported by a tendency for greater “grouping” of like muscle fibers in animals (6) and a 

greater proportion of type I fibers in most muscle groups of older adults compared with 

young (92; 119).  It is possible that the combined effect of lower maximal discharge rates 

and a greater proportion of slow, type I muscle fibers contribute to age-related fatigue 

resistance.      

 While most studies have focused on peripheral mechanisms to explain age-related 

fatigue resistance, questions remain regarding the mechanisms of this phenomenon.  The 
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interrelated nature of neural activation, contractile properties, and metabolic response 

make if difficult to identify a single mechanism for age-related fatigue resistance.  

Computational Modeling 

When direct measurement proves exceedingly 

difficult, computational modeling has been applied to 

reveal the mechanisms of physiological systems.  It 

was not long after material engineers began 

describing the visco-elastic properties of building 

materials that these models were applied to biological 

tissues.  Muscle was a particularly interesting tissue to 

model due to its ability to actively shorten, while 

simultaneously exhibiting passive spring-like and 

damping properties.  As computing power grew along 

with an increased ability to characterize various aspects of physiological function, 

modeling became a more prominent research tool.    

Modeling Contractile Dynamics and Force Generation 

The pioneering work of A.V. Hill (81) was among the first to mathematically 

characterize the kinetics of skeletal muscle force development.  His mathematical model 

includes several rheological elements meant to represent characteristics of contracting 

skeletal muscle.  These typically include a contractile component (CC), capable of active 

shortening, a series elastic component (SEC), with non-linear spring constant 

characteristics in line with the CC, and a parallel elastic component (PEC) sensitive to 

overall changes in the combined length of the SEC and CC.   

Figure 4.  Representative Hill-

type muscle model.  Contractile 

component (CC), Series elastic 

component (SEC), Parallel elastic 

component (PEC) and pennation 

angle (θ).  (L) indicates length of 

the respective component 
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These elements are typically arranged as in Figure 4.  The angle θ represents the 

pennation angle of fascicles, or bundles of fibers.  While not strict analogues to physical 

structures, the combined behavior of the CC, SEC, and PEC mimic that of the observed 

contractile dynamics in intact skeletal muscle.  While the overall behavior of the Hill 

model matches well with the contractile properties of whole muscle, no single component 

of the model is meant to represent the physiological function of individual components of 

actual muscle tissue.  For example, the PEC in the Hill model captures the elasticity not 

only of structures within whole muscle such as the epimycium, but also the compliance 

of myosin heads during cross-bridge formation.  Unless these components share identical 

force-length characteristics, a classic Hill model is limited in its ability to independently 

describe them.  The strength of the Hill model however is its general accuracy, 

computational efficiency and reliance on relatively few assumptions.  This combination 

of attributes makes the Hill-type model a desirable tool for predicting muscle force 

during musculo-skeletal simulations.   

It was not until Hanson and Huxley proposed the organizational structure of 

skeletal muscle fibers (70) in 1953 and Huxley formalized the sliding filament theory 

(90) in 1957 that accurate mechanistic models could be developed.  These studies were 

the first to accurately describe the periodic, interdigitated structure of the sarcomere as it 

is currently understood.  Further evidence of cross-bridge formation between actin and 

myosin filaments (91) made it possible for scientists to understand the direct molecular 

mechanisms responsible for force generation in skeletal muscle.  These discoveries 

allowed for muscle models whose components would represent specific physical 

structures.  These models predict force by directly modeling the probabilistic interaction 
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of actin and myosin during excitation events.  Several investigations followed Huxley‟s 

initial work to refine the understanding of skeletal muscle function.  Notably, Lymn and 

Taylor described a kinetic model of ATP hydrolysis by actomyosin (123), which agreed 

with Huxley‟s proposed sliding filament theory and dramatically improved our 

understanding of the biochemical processes involved in skeletal muscle contraction.   

Huxley-type models characterize force using multiple, partial differential 

equations.  Force is predicted based on functions representing binding and un-binding 

rate parameters for actin-myosin interactions.  Their rates of attachment and detachment 

are products of probability functions related to contractile velocity and the distance from 

the equilibrium position of the cross bridge.  Terms may also be included to characterize 

the effect of various metabolite concentrations on actin-myosin interactions (146).  The 

effect of contractile velocity and metabolite concentration are implicit in Huxley model 

formulations, which facilitates their use in testing hypotheses related to cross-bridge 

cycling and force production at the level of the sarcomere.   

However, Huxley-type models depend on muscle length and do not consider 

elasticity, which limits the ability to scale the predictions they generate to whole muscle 

behavior.  In addition, the multiple, partial differential equations used to derive force in 

the Huxley-model approach are far more computationally-demanding than the ordinary 

differential equations in a Hill-type model.  A model of whole muscle forces would likely 

require many models, running simultaneously, to represent the range of characteristics 

present in a heterogeneous population of muscle fibers.  This consideration is not trivial 

and further limits scalability.    
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Clearly, the Hill and Huxley approaches to muscle modeling differ greatly and 

neither can be universally applied.  Researchers construct a model that best fits the 

questions they seek to answer.  As such, most computational models of muscle function 

can be described as either phenomenological (Hill-type) or mechanistic (Huxley-type), 

although models exist that attempt to capture the physiological relevance of the Huxley-

type model with ordinary differential equations (192).   

An interesting attempt at merging the physiological accuracy of the Huxley model 

with the relative computational simplicity of the Hill model was proposed by Zahalak in 

1981.  His compromise was a “distribution moment” model that retained key features of 

the Huxley model, but used a set of three ordinary differential equations.  The infrequent 

use of the distribution moment approach may be due to improvements in the capacity of 

personal computers in the 1980s and early 1990s, which minimized the need for 

mathematical simplifications.   

Models of similar “type” can vary greatly in terms of their complexity.  A more 

complicated model potentially allows the investigator to gain greater insight into the 

system represented by the model.  However, the more components used to make the 

model, the more opportunity for assumptions to be incorrect, thereby reducing any insight 

gained by their collective behavior.  Practical considerations of computational efficiency 

and scalability will also directly affect a model‟s utility, and will change from one 

application to another (189).   

Typically, model systems begin with simple versions that rely on relatively few 

assumptions.  If the outcome predicted by these models match well with experimental 

data, they may then grow in complexity, incorporating greater detail and more 
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assumptions as knowledge of a given system increases.  It is assumed that model 

expansion would rely on data from direct observation.  Natural evolution of model 

complexity is not always so straightforward.  Hill muscle models, which typically consist 

of ordinary differential equations, and Huxley-based models consisting of partial 

differential equations do not lend themselves well to an evolutionary progression from 

one to the other.  Rather, the demands of the required application typically determines 

which model is used.   

The greatest detail of contractile behavior can be gleaned from Huxley-type 

models, but it is exceedingly difficult to apply them to systems incorporating multiple 

systems (e.g. bone, tendon, body segments).  Hill-type models, on the other hand, predict 

behavior of these systems but reveal less about their underlying mechanisms.  While a 

mechanistic approach to muscle modeling may yield greater information on the 

influences of contractile kinetics at the microscopic level, phenomenological models are 

more appropriate for many applications.  For example, forward dynamics simulations of 

human movement, which depend on computationally-efficient and accurate prediction of 

force, use Hill-type models almost exclusively.   

Many early models characterizing the viscous and elastic properties of muscle-

tendon units were phenomenological (95; 158; 188).  An early mechanistic approach 

came from Pell and Stanfield (148).  They distinguished their model from more 

phenomenological approaches by focusing on a microscopic basis for the model‟s 

mathematical functions .  Specifically, they developed a model of the sarcomere based on 

predicted behavior of known physiological structures.  By modeling the interdigitation of 

actin and myosin they incorporated force-length relationships in their model without 
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explicit force-length terms.  However, viscous dampening, in this case attributed to 

resistance to the flow of sarcoplasm over myofiliments during contraction, was modeled 

by a dashpot similar to phenomenological models.  This serves as an example, repeated 

throughout the literature, of nomenclature playing a large role in the definition of a model 

as either mechanistic of phenomenological.   

Computational models of muscle force are more relevant if their force output can 

be compared with experimental joint torque (107).  Riener et al (157) used a 

phenomenological model to predict muscle force, which was then used to predict knee 

extensor kinematics in response to electrical stimulation.  Umberger et al (177) used a 

Hill-type muscle model  originally proposed by van Soest and Bobert (181) to predict 

energy liberation through heat and work during activation.  The model was refined to 

derive most parameter values from mammalian data in the literature.  The flexibility and 

ultimate utility of Umberger‟s refined van Soest model was demonstrated by its 

incorporation into musculoskeletal models of varying complexity (isolated muscle, single 

joint actuation, whole body movement).   

Thelen et al (175) used a Hill-based muscle model to accurately model forces 

produced during dynamic contractions.  Their model accurately predicted forces 

produced at various joint positions and velocities in the ankle dorsiflexor/plantar flexors.  

Perhaps their most significant contribution however was the accurate prediction of 

alterations in torque generation when they adjusted their model to predict the effect of 

age.  Specific properties reflecting the deactivation time constant, maximum shortening 

velocity, passive muscle strain and the ratio of lengthening force to isometric force were 

modified in an effort to reflect changes in muscle function with age.  Comparing their 
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predicted force with experimentally-derived values confirmed the accuracy of the model.  

These are a few of many examples demonstrating the utility of the Hill model as a 

component in multi-faceted, computationally-demanding simulations.   

Modeling Neural Activation 

While Hill and Huxley largely explained contractile dynamics, modern 

understanding of voluntary neural function is due primarily to the work of Henneman 

(78; 79).  The concept of ordered recruitment for motor units was first proposed in 1957, 

and has formed the basis of several models used to investigate neural behavior (78).  

Henneman‟s studies described an ordered recruitment of motor neurons such that 

stimulation threshold correlated with neuron size.  Smaller motor neurons, which tend to 

have slower conduction velocities and innervate fewer muscle fibers, were recruited 

before larger motor neurons, which tend to have faster conduction velocities and 

innervate a greater number of fibers.   

Given the range of forces generated by different motor units, not to mention their 

varied rates of force development, the order in which motor units are recruited is an 

important consideration when modeling voluntary activation.  Cogshall and Bekey (28) 

offered an early example of physiological activation with a stochastic model of motor 

unit recruitment.  To this point, most models used deterministic functions predicting 

activation in response electrical stimulation, or simply assumed complete and 

simultaneous activation.  In the case of supra-maximal electrical stimulation of the motor 

nerve, it can be assumed that all motor units are activated maximally and simultaneously.  

Therefore, model inputs do not consider recruitment strategy (motor unit recruitment 

order and rate coding).  During voluntary activation however, motor unit recruitment is 
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more stochastic; it follows an ordered recruitment pattern, but with a probabilistic time 

course.  Cogshall and Bekey constructed an aggregate model of motor unit recruitment 

that featured correlates to physiological motor control, including motor unit recruitment 

and rate coding.  Force was modeled as the linear sum of all active motor units and motor 

units were activated following a poisson distribution.  Contractile dynamics of these 

motor units, once activated, were characterized by motor unit type (high or low 

threshold) and a probability distribution determined their respective contribution to total 

force.  The shape of their wave forms were based on experimentally-derived values, but 

did not include explicit physiological components.  

A series of papers, published between 1991 and 1997, significantly advanced the 

field of neuromuscular modeling (58; 59; 77).  The model formulation providing the basis 

for these publications focused on predicted recruitment of a physiologically 

representative sample of motor units.  Their modeled output, however, extended to 

muscle force.  This series began with the work of Heckman and Binder (77) and was 

continued by Fuglevand et al (59).  Although the limited detail of their force model could 

be seen as a limitation, their model contributed significantly to the understanding of the 

mechanisms and utility of physiological recruitment patterns during progressive 

activation (58).  Heckman and Binder modeled a population of motor units with a range 

of recruitment thresholds.  Their model was limited by its reliance on several 

assumptions.  First, the effective synaptic current to motor neurons was assumed to sum 

linearly and distribute uniformly across the motor neuron pool.  Second, firing rate was 

assumed to increase linearly with effective synaptic current, a presumption that has since 
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been questioned (150).  Nevertheless, this approach made a significant contribution to the 

field by proposing and validating a model of physiological motor unit recruitment.   

Fuglevand et al (59) extended this simulation by adding components representing 

conduction of the action potential through multiple tissues and their summation at the 

surface of the skin.  This feature added a further means of confirming model output by 

comparison to measured surface electromyogram (EMG).  Additional model 

formulations, also led by Fuglevand, used their previous model to simulate the effect of 

spatial distribution and ordered recruitment of motor units to perfusion in the 

microcirculation (58).  A forward dynamics approach, as opposed to simple algebraic 

expressions, was used to arrive at muscle force in both of these simulations.  While each 

model motor unit had unique force-generating characteristics according to recruitment 

order and duration, contractile modeling was simplified, and did not consider elastic 

components or contractile history.   

Hawkins and Hull (75) combined models of neural activation and muscle force to 

predict the output of voluntary activation.  Experimentally-measured EMG was used to 

determine an activation coefficient for a model of muscle composition, architecture and 

force (75).  “Fiber pools” available for recruitment were designated as either slow 

oxidative, fast oxidative, or fast glycolytic.  These pools were defined by unique force 

and activation characteristics.  While this model lacked the mechanistic approach to 

motor unit activation and firing rate behavior pioneered by Heckman et al, it provided 

more detailed information on the force response.     
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Modeling Muscle Fatigue 

Time-sensitive models that predict the effect of repeated contractions have 

significantly expanded the utility of more traditional muscle models.  One of the earliest 

mathematical representations of work capacity is from Rohmert, published in 1960 (159).  

It is only in the last two decades however that computational models have emerged that 

take into account muscle characteristics of work capacity, fatigue and recovery.  Earlier 

attempts at modeling fatigue were directed at assessing occupational work capacity by 

predicting the expected number of repetitions one could perform for a given task.   

One of the earliest attempts to predict fatigue at a single joint using a valid muscle 

model came from Hawkins and Hull (74).  They adapted a previously validated model of 

muscle force generation (75) to predict fatigue with prolonged, consistent activation.  

Their model included separate functions for fatigue and endurance characteristics that 

were specific to three muscle “types” (fast oxidative, slow oxidative and fast glycolytic).  

Endurance was characterized as the predicted time a muscle could be activated before 

force would begin to decline.  Fatigue was the linear decline in force that resulted from 

activation that exceeded endurance time.  Model activation was based on a similar 

strategy employed in this groups work from 1992 (75), where EMG dictated activation of 

modeled fibers in a manner meant to represent physiological recruitment order.  

Experimental data from the diaphragm muscle (12) was used as the foundation for the 

relationship between endurance time, duty cycle and force output that characterized 

oxidative muscle types (fast and slow).  Endurance time for the fast glycolytic type was 

based on the amount of glycogen stored in the muscle.  The rate of force decline was 

linear after endurance time was reached and was unique for each fiber group.  Despite its 
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rather simple composition and gross assumptions, their model successfully predicted the 

rate and total amount of fatigue during 60 seconds of maximal elbow extension.  This 

significant contribution was one of the first computational models to predict voluntary 

fatigue and is augmented by their consideration of both activation (EMG control signal) 

and the differential response of multiple fiber-types (recruitment order, endurance time 

and fatigue rate).   

Since Hawkins et al, (74) significant advances have been made in modeling the 

fatigue response.  Most models of fatigue derive their parameters from studies of 

paralyzed, electrically stimulated human muscle.  Because a common aim for these 

studies is discovery of optimal stimulation strategies for use during functional electrical 

stimulation (FES), voluntary activation is typically ignored.  Several groups, most 

notably Binder-Macleod and colleagues, have devoted considerable effort to  these 

models (40; 43).   

After validating a muscle model that could predict force output in response to 

multiple trains of electrical stimulation (41), several new parameters were added to model 

declines in force with repeated stimulation (42).  Although others had associated EMG 

with fatigue during FES (62), and declines in peak torque during FES had been 

characterized (153), few had proposed a model based on physiological data that could 

predict fatigue a priori during FES (62; 63; 118).  The strongest feature of Ding et al‟s 

2000 model was its flexibility.  The model accurately predicted force output in response 

to stimulations of various frequencies and durations.  This greatly enhanced the 

applicability of this model to FES and improved the state of modeling literature as 

previous models were capable only of predicting fatigue resulting from simulation 
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protocols similar to those used to parameterize the model.  Their 2002 model (43) also 

accounted for variable rest periods, allowing the model to appropriately respond to 

changes in duty cycle.   

While Ding et al, (43) used EMG as the primary source of physiological input, 

others have used metabolite concentration as a limiting function on force-generating 

capacity.  This latter approach attempts to mimic the fatigue process in a way that is 

perhaps more representative of in vivo skeletal muscle function (62; 63; 118).  Giat et al 

(62) were one of the first to incorporate metabolic by-products of activation in a model of 

muscle fatigue.  Using 
31

P MRS to measure [H
+
] during stimulation, they correlated 

decreasing pH with force loss and included it as a function of the model (62).  These 

efforts were extended in 1996 when a recovery function was added to this model, 

allowing for the accurate prediction of muscle force in response to FES with varying 

periods of rest (63).  This was one of the first models designed to not only accurately 

predict fatigue, but also the recovery of force-generating capacity.   

Levin and Mizrahi (118) published an even more comprehensive model which 

used both recorded EMG and metabolic status of the muscle ([H
+
] and [H2PO4

-
]) to 

predict fatigue and recovery in electrically-stimulated quadriceps muscle.  Previous work 

had established a preliminary model of fatigue based on altered concentrations of 

phosphorus-containing metabolites, pH and force generating capacity (137).   However, 

EMG was included in this model to better predict multiple bouts of fatiguing 

contractions.  The behavior of their model seemed to suggest that metabolic factors 

(reflected by pH in the model) mediated fatigue acutely, while excitation-contraction 
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coupling failure (captured by EMG) during electrical stimulation dictated a more chronic 

loss in response to electrical stimulation. 

Since these ground-breaking studies were published, others have expanded the 

scope of muscle fatigue modeling.  Marion et al (128) recently advanced the models of 

Ding et al (40; 41) to predict fatigue during electrically stimulated dynamic contractions.  

Long term adaptation to training in terms of force and fatigue has been modeled by 

Gacesa et al (60), while Shorten et al, (166) have published one of the most 

comprehensive models to date investigating skeletal muscle fatigue in response to 

repeated stimulations.  The mechanistic model by Shorten et al, (166) described muscle 

sarcolemma and t-tubule action potentials, Ca
2+

 release and cross bridge dynamics.  

Fatigue was modeled by linking [Pi] with both slowed cross bridge cycling and Ca
2+

 

precipitation, thereby reducing the potential sites for strongly bound cross bridges and the 

forward rate constant for attachment.  Others have taken an alternate approach and 

prioritized computational efficiency (190).  The rapid advances in this area led to a range 

of validated models with myriad applications.  Despite these advances, researchers have 

yet to create a model that predicts the disparate fatigue responses of healthy young and 

older adults.  Such a model would permit the testing of hypotheses that would be 

impossible using in vivo or in vitro experimental methods.     

Summary 

The precise mechanisms of skeletal muscle fatigue are not well understood.  

Central mechanisms play a role in fatigue during voluntary contractions, although their 

role appears limited compared with peripheral mechanisms under most conditions.  The 

byproducts of intracellular, metabolic processes that maintain [ATP] in the face of 
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changing energetic demands have been implicated in fatigue.  While in vitro evidence 

suggest roles for several metabolites in the reduction of force-generating capacity, the 

extent to which these in vitro findings reflect the behavior of the intact neuromuscular 

system is not always clear.  Data from in vivo studies finds inconsistent effects of 

metabolites such as H
+
 and ADP.  However, most in vivo studies support a strong 

association between [H2PO4
-
] and fatigue that persists under a variety of conditions.  

While there is logical support from in vitro experimentation for mechanisms by which 

[H2PO4-] may influence force generating capacity, a single, or even most prominent 

mechanism remains elusive.   

Evidence in the literature strongly suggests that during both prolonged, and 

intermittent isometric contractions, older individuals tend to fatigue relatively less than 

their younger counterparts.  While conclusions are mixed when dynamic contractions are 

used to induce fatigue, age-related fatigue resistance has been observed by multiple 

investigators testing fatigue in response to a variety of voluntary contraction protocols in 

multiple muscle groups (20; 21; 25; 88; 130).  However, due to the many differences in 

neuromuscular function between young and older humans, it is difficult to ascertain the 

physiologic mechanisms of age-related fatigue resistance.  Reduced maximal motor unit 

discharge rates, a relatively greater abundance of type I muscle fibers, and increased 

metabolic economy may all contribute to the phenomenon.  A clear understanding of how 

each of these features of the aging neuromuscular system might contribute to fatigue 

resistance is difficult to determine in vivo.   

Human skeletal muscle has been described mathematically in many applications 

using multiple methods.  From intracellular events to the forces generated during 
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maximum jumping, computational modeling has emerged as an attractive means of 

combining what is known about isolated systems and what can be predicted about their 

combined behavior.  Models have been developed that successfully predict the function 

of musculo-skeletal interactions, nervous tissue and even individual sarcomeres within 

skeletal muscle.  Although models have been proposed that predict fatigue in response to 

repeated activation, and others have been designed to predict altered function with old 

age, no model has been designed to examine age-related changes of the neuromuscular 

system in the context of fatigue.  Given the questions that remain regarding the 

phenomenon of age-related fatigue resistance, we are presented with a great opportunity 

to apply existing methods to a computational model that might predict the relative 

influence of age-related changes to neuromuscular function on the ability to resist fatigue.
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CHAPTER 3 

 

METHODS 

Experimental Design 

 A combination of published model formulations and experimentally-derived 

functions will be used to construct a multi-component computational model of 

neuromuscular function.  Matlab software (MathWorks, Natick MA; Matlab 7.0 with 

appropriate toolboxes) will be used throughout for model formulation and testing.  The 

components responsible for predicting motor unit recruitment, calcium release and 

reuptake, force generation, and subsequent torque values will be combined to predict 

maximal voluntary ankle dorsiflexion torque in healthy young and older men.    

Initial validation will be attempted by comparing the modeled torque response to 

5 seconds of maximal activation with the maximal torque production during a 5-second 

Figure 3. 5  Computational model scheme.  The model will be run using a forward integration routine 

to calculate each model step (1-6) at each time point for the duration of the simulation. 

 



 

35 

maximal voluntary isometric contraction MVIC in healthy young men (Hypothesis 1).  

The model will then be modified to account for the production of H2PO4
-
 and subsequent 

fatigue associated with repeated activations (Hypothesis 2).  This additional component 

will be tested by comparing the relative decline in modeled force output during 6 

repeated, 12-second contractions with data from an identical protocol performed by 

healthy young men (111).  Finally, metabolic, motor unit, and contractile parameters will 

be adjusted to reflect reported differences in the aged neuromuscular system.  The 

adjusted model will again be tested for its ability to predict the relative decline in force 

output during six, 12-second MVICs (Hypothesis 3) by comparing the modeled 

simulation to literature values of healthy older men performing the same task (111).   

Each component of the proposed model will be derived from existing 

computational models, listed in the following section.  In most cases these components 

will be parameterized using data from the literature.  However, the musculoskeletal and 

metabolic cost portions of the model will draw from an available dataset (See Source 

Data, below). 

Computational Model 

Overview 

The proposed model will follow the general scheme outlined in Figure 5.  

Because the model will incorporate the output from multiple components meant to 

represent stages in the pathway to force production, they will be introduced (and 

computed in the forward dynamics simulation) sequentially.   

Briefly, a single parameter meant to represent voluntary excitation (E, Step 1) to 

the spinal cord will initiate the forward dynamics model by serving as the input for a 
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modeled pool of motor units (step 2).  If activated, modeled motor unit output will drive 

the model of calcium kinetics (step 3).  Modeled calcium concentration will be 

normalized and input to a Hill-type model of force production (step 4).  The linear sum of 

the muscle model‟s force will comprise part of a musculo-skeletal model to predict a 

resultant joint torque (JT) at the ankle (step 5).  Finally, comparison between a target 

torque (Tt) and Tc (step 6) will cause an adjustment of E such that the difference between 

JT and MT is minimized.  The next time step will be associated with a new Tt, and the 

procedure will repeat for the duration of the simulation.  An advantage of this control 

structure, as opposed to binary control (0 or 1), is the ability to model sub maximal 

activations.  In the case of repeated sub-maximal activation, modeled fatigue may be 

characterized by an increase in E to achieve the same target torque, or a failure to achieve 

target torque despite maximal E.   

Step 1. Excitation 

The initial step for the model represents excitation which begins at the motor 

cortex and descends through corticospinal tracts to α motor neurons in the spinal cord.  

Input from the central nervous system to pools of α motor neurons is physiologically 

complex and dictates many aspects of coordinated, voluntary muscle activation.  

However, several studies suggest that central mechanisms do not play a critical role in 

age-related differences in fatigue (88; 125).  Because of its complicated nature and 

incomplete definition in the literature, no attempt is made for the computation of E to 

reflect physical events in the process of motor unit excitation.   
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Step 2. Motor Unit Pool  

Modeling of the motor unit pool will closely follow procedures described by 

Fuglevand et al, (59). A pool of 120 individual motor units (single units responsible for 

the activation of populations of contractile function models, MU) will be activated in an 

orderly fashion in response to E.  The recruitment threshold (RT) for various MUs will be 

distributed such that many MUs have low RT while relatively few have high RT.  This 

approach can be described mathematically by the function:  

RT(i)=e
a*i

        (1) 

Where i is an index indicating MU number, and a is the coefficient indicating a range of 

threshold values.  Broad variation in recruitment thresholds has been observed 

experimentally (178) and will be reflected in the model.  Similar to Fuglevand et al (59), 

the range of RT values will be 30-fold.  Once activated, MU(i) will have a minimum 

firing rate (MFR) of 8 Hz (30; 178).  Although it is possible that MFR could vary 

between motor units in direct proportion to RT (67), empirical studies performed in 

humans during voluntary contractions suggest MFR is constant across MUs (35; 136).   

Once the threshold for excitation has been surpassed for a given motor unit, a 

single linear function will describe the relationship between excitation and motor unit 

firing rate.  The relationship between increased E and increasing FR will be similar for all 

modeled MUs.  Mathematically, this will follow the form: 

 FR(i) = g*[E(i) – RT(i)] + MFR(i)     (2) 

where g is a gain function affecting the magnitude of increasing FR, E(i) is the current 

excitation and RT(i) and MFR(i) are the threshold of recruitment and the minimum firing 

rate for the indexed MU respectively.  The FR will increase according to this function 
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until the ith motor unit achieves its peak firing rate (PFR).  The PFR for a given motor 

unit will be assigned such that PFR is directly proportional to RT (145) within a narrow 

range (10 Hz).  The fastest MUs will fire at 45 Hz (30).  Each pulse delivered by a given 

MU model will initiate modeled release of calcium, as described in the next section. 

Step 3. Calcium Kinetics   

Delivery of an action potential from the motor unit model will result in the release 

of calcium from the sarcoplasmic reticulum.  Physiologically, this event is mediated by a 

complicated series of events.  Binding of neurotransmitters released at the neuromuscular 

junction, depolarization of the sarcolemma and transverse tubules, activation of voltage-

sensing dihydropyridine receptors, and activation of ryanodine receptors all precede 

release of Ca
2+

 from the sarcoplasmic reticulum.  However, it is not entirely clear how 

these events change during fatigue in vivo, and there is little evidence to suggest the time 

course for membrane depolarization would be different between old and young human 

skeletal muscle in vivo.  In addition, the kinetics of the Ca
2+

 transient are slower than 

those of the depolarization event (45; 129).  Because of these considerations, the time 

course of the depolarization event will be ignored as an individual component in this 

model.  Release and resequestration of Ca
2+

  will be calculated similarly to Ding et al 

(43).  Muscle activation will be modeled using the following ordinary differential 

equation: 



dCN

dt


1

c
Ri exp (

i1

n


t  ti

c
)
CN

c
    (3)  

where CN represents the normalized amount of Ca
2+

 troponin complexed, Ri accounts for 

the nonlinear summation of the Ca
2+

 transients and τc is a time constant controlling the 
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rise and decay of CN.  Coefficients tested in Ding et al (42; 43) will be used to 

parameterize the current model.  An important difference between the proposed model 

and that of Ding et al (42; 43) is that modeled motor unit excitation will replace modeled 

electrical stimulation.   

Step 4. Muscle Model   

A Hill-type muscle model will 

be used to characterize the force and 

energetic responses to activation.  Input 

for 120 independent muscle models 

will be derived from the modeled Ca
2+

 

release from the previous step.  Each 

muscle model will include a contractile 

component to mimic the active force 

generating properties of skeletal 

muscle.  Force output will be sensitive to length (Figure 6) and velocity.  Parallel and 

series elastic elements will mimic passive force-length properties of the tibialis anterior 

(175).  Series elastic component (SEC) force-length relationship is represented 

graphically in Figure 6.  Parameters dictating activation and force for the contractile 

component will be adjusted such that their behavior will match experimental measures of 

motor unit force in the tibialis anterior muscle (178).  Total force predicted by the 

summed activation of all muscle models will be input to a musculo-skeletal model of the 

ankle, and torque values will be derived as described in step 5.   

Figure 3.6  Plot of force-length relationships for 

contractile component (CC) and series elastic 

components (SEC) of the hill type muscle mode.   
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To test hypotheses 2 and 3, a metabolic cost function, which predicts the 

increased [H
+
] and [Pi] as a consequence of force generation, will be added to the model.  

These values will be used to calculate diprotonated phosphate (H2PO4
-
) concentration 

based on [Pi], [H
+
] and the pK of phosphoric acid (6.75).  

[H2PO4
-
] = [Pi]/1 + 10

pH-6.75 
     (4) 

The [H2PO4
-
] will be directly related to a limit on the maximum force-generating capacity 

of the contractile element (F) based on relationships established in the literature for 

human muscle (14; 106; 111; 135).  The data from Lanza et al (91) will be used for initial 

attempts at predicting changes in F with increasing [H2PO4
-
] and forms the basis for the 

following equation: 

F% = 1.12 – 0.0215[H2PO4
-
]    (5) 

 Additional functions will describe alterations to the force-velocity relationship and Ca
2+

 

sensitivity with repeated activation, based on values derived from in vitro research (2).  

The association between muscle work and change in [H
+
] will be modeled in a similar 

fashion to Giat et al (62; 63).  While their experimental data in electrically-stimulated 

quadriceps will be used as a starting point, parameter values will be modified to better 

represent our population and muscle group.  Our own data will be used to model rates of 

glycolysis, PCr breakdown and H
+
 buffering capacity (see Source Data, below) to derive 

modeled rates of intracellular Pi and H
+
 formation.  During periods with no stimulation, 

modeled rates of restoration of [H
+
] and [Pi] to resting values will dictate [H2PO4

-
] and, 

as a result, recovery from fatigue.   

The distribution of muscle fiber types reported in the human tibialis anterior will 

be mimicked by adjusting parameters related to metabolic cost and contractile dynamics.  
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The tibialis anterior muscle is composed primarily of type I fibers, especially in older 

adults (92).  Muscle models will be parameterized such that 64.5% of the models 

represent the behavior of type I fibers and 35.5% are type II (92).  When the model is 

adjusted for age to test Hypothesis 3, these relative populations will be adjusted to 81.1% 

and 18.9% for fiber types I and II, respectively (92).  Because there are 120 motor units, 

there will be 97 type one muscle models representing type I characteristics and 23 

representing type II.  They will be assigned to like-numbered motor units so that a 

discharge of the i
th 

motor unit corresponds to the i
th

 muscle model.  “Type I” muscle 

models will be assigned lower numbers than all “type II” muscle models, following the 

association between motor neuron properties and contractile characteristics observed in 

vivo.  Contractile dynamics and metabolic cost characteristics will be invariant between 

muscle models of the same type.  However, the force generating capacity of each muscle 

model will reflect the up to 100 fold range of force per motor unit observed in human 

muscle (136).  This range will be reflected across the 120 muscle models using an 

approach similar to Fugelvand et al (59): 

F(i) = e
b*I

       (6) 

Where F refers to the peak force generating capacity of the ith muscle model and  

b = (ln 100)/120        (7) 

This will lead to model forces with the desired range (100 fold) across the desired 

number of models (120) expressed in terms relative to the first muscle model.   
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Step 5. Joint Torque   

A simplified musculo-skeletal model of the ankle joint will be added to the model 

computation to allow for translation of muscle force to joint torque.  The linear sum of 

forces generated by muscle models in step 4 will be scaled to the physiological cross 

sectional area of the tibialis anterior muscle to arrive at tendon force.  Physiological cross 

sectional area (PCSA) refers to the average cross section of anterior compartment (CSA) 

muscle area multiplied by the cosine of its fascicle pennation angle.  This step is taken to 

account for the angle of applied force of fascicles with respect to the line of action of 

their summed forces at the apponeurosis.   

PCSA = CSAcos(θ)      (8) 

Tendon force will be multiplied by a calculated moment arm to determine joint 

torque.  The moment arm length itself will depend on tendon force.  This relationship will 

be based on data available in the literature (127).  The correlation between force and 

moment arm length is meant to represent the elasticity of the extensor retinaculum, which 

binds the tendons of the muscles in the anterior compartment at the ankle, constraining 

their force path.   

Step 6. Controller  

A bounded, proportional 

controller will determine the E that 

minimizes error between MT and TT.  

The controller will have kinetics at 

least one order of magnitude faster 

than the contractile kinetics of the 

Figure 7.  Plot of a typical error function 

with Gaussian distribution.  The error 

function is bound between 1 and -1.   
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muscle model in order to minimize its effects on temporal prediction of force.  Its final 

form will be determined after other components of the model are complete.  The E 

controller will follow either a traditional root mean square error function or a state-

dependent function where a single rate constant dictates step size for E control (190).   

A Gaus error function will follow the form shown in Figure 7.  Solving for this 

function (bound between -1 and 1) will serve as a coefficient to be multiplied by the 

difference in Ei and Eo.   

Alternately, a state-dependent control function, similar to Xia et al, (2008) will be 

devised.  Briefly, if:  

MT < TT, Δ E = Ld(Eo-Ei)       (9) 

MT ≥ TT, Δ E = LR(Eo-Ei)      (10) 

Where Ld and LR represent rate constants describing the development and reduction of E.   

In addition to the preceding methods, E will be determined by optimizing an 

error-tracking function of the task to be performed.  A forward dynamics optimization 

will be applied, with the task of minimizing the difference between MT and TT by 

varying E.  Once complete, this time history for E will be used to numerically integrate 

the deterministic equations, which dictate subsequent model behavior.   

Determination of the control strategy will follow completion of testing for 

Hypothesis 1.  All proposed controller functions will be used to model a 5-second 

contraction, where TT is equal to 90% of the output for Hypothesis 1.  The control 

strategy that yields the fastest computation speed will be used for subsequent analysis.  In 

the case that the fastest control method yields unrealistic results (E, and consequently 

MT, wavering about TT, for example) the next fastest method will be selected.  
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Source Data 

 The model will draw on published and unpublished data sets available from 

multiple projects conducted in the Muscle Physiology and Biomechanics Laboratories at 

the University of Massachusetts, Amherst.  When necessary, as outlined in the preceding 

section, model components and parameters will be drawn from the literature.  Figure 8 

lists published muscle models and source data that correspond to each step of the 

proposed model, similar to Figure 5.   

Subject Characteristics  

Young men (21 – 35 years, n = 8) were healthy by self report, non-smokers, and 

at least recreationally active.  Participants were familiar with torque measurement using a 

Biodex dynamometer (Biodex Medical Systems, Shirley, NY) and refrained from 

exercise on all testing days.  Data for the same measures are also available in a sample of 

older men (65 – 80 years, n = 19).  However, data from older men are from two separate 

Figure 8.  Source data scheme for computational model components.  The source for data that will 

parameterize each model component is listed in the appropriate cell. 
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studies.  The biomechanical data were collected from a group of 11 older men, while the 

energetic data were collected in a separate sample of 8 older men.  All 19 older men in 

the combined data set were healthy by self report and non-smokers.  Experimentally-

derived values will be used in step 4a to formulate metabolic cost functions that predict 

generation of H
+ 

and Pi (H2PO4
-
).  These values will ultimately limit F in a Hill-based 

muscle model.  Tendon stiffness and pennation angle, measured in the tibialis anterior 

muscle will be used to parameterize the musculo-skeletal model that predicts joint torque 

in steps 5.    

Limits on F   

Force generation in the model will be associated with changes in the predicted 

concentration of H2PO4
-
 which will, in turn, limit F in the muscle model as described 

previously.  The metabolic perturbations associated with dorsiflexion (metabolic cost) 

were calculated as described elsewhere (Lanza et al (111)).  Briefly, 
31

P MRS was used to 

measure the concentrations of phosphate-containing metabolites, phosphocreatine (PCr), 

inorganic phosphate (Pi), adenosine triphosphate (ATP), and phosphomonoesters (PME) 

in the ankle dorsiflexors using a 4.0 tesla superconducting magnet (Bruker Biospin, 

Pi 

PCr γ, α, β ATP 

Figure 3.9  Stack plot of 
31

P MRS (magnetic resonance spectroscopy) data.  Peaks correspond to 

Pi, PCr, and the three phosphate groups on ATP (γ, α, β) 
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Rheinstetten, Germany).  A stack-plot of spectra acquired from a typical study are 

presented in Figure 9.  The recovery of PCr following a 12-second MVIC was used to 

calculate the in vivo capacity for oxidative phosphorylation (110; 134).  By measuring 

the changes in metabolite concentrations, and calculating pH, based on the chemical shift 

between Pi and PCr (138), the metabolic cost of contraction was calculated in mM 

ATPs
-1

.  Metabolic cost was calculated for contractions at a range of intensities (20%, 

50%, and 100% MVC) to better characterize the relationship between force and 

metabolic cost.  Oxidative flux, glycolytic flux, and ATP synthesis through the creatine 

kinase reaction were measured during contractions at each intensity by spectral analysis 

using NUTS software (Acorn NMR, Livermore CA).  Based on these data, model 

functions will be created to reflect the cost of force production and the subsequent change 

in pH across a range of activation levels.  

Muscle Architecture 

Muscle architecture measures were 

performed at the University of Massachusetts 

Amherst and Cooley Dickinson Hospital Imaging 

Facility in Amherst MA respectively. Muscle 

architecture and volume was measured using 

ultrasound and MRI techniques.  Ultrasound imaging 

was used to measure the tibialis anterior muscle and 

tendon while a subject was seated in a Biodex 

isokinetic dynamometer.  With the ankle fixed at 

120° relative to the tibia, subjects performed a 

Figure 3.10  Ultrasound image of 

the anterior compartment of the 

lower limb.  The horizontal line 

matches the orientation of the 

apponeurosis of the tibialis anterior 

muscle, and the angled line matches 

the pennation angle of visible 

fascicles under the ultrasound probe.   
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torque-tracking task by matching their effort to visual feedback.  When performed 

correctly, they steadily increased dorsiflexion torque from rest, to 100% MVIC over a 

period of 10 seconds.  During this time, fascicle pennation angle (Figure 10) and stretch 

of the tibialis anterior tendon was recorded on videocassette for subsequent analysis using 

custom written Matlab software (Hasson, unpublished communication).   

To measure muscle volume, serial sections of MRI (T1 weighted spin echo axial 

images; 4 mm slice thickness, 210 mm field of view, 512x512 matrix) were collected for 

the total shank length.  Custom written Matlab software 

was used to first identify a region of interest (ROI) 

representing the tibialis anterior muscle, and then 

decompose the pixels populating this ROI into 

contractile and non-contractile tissue based on signal 

intensity.  A sample MRI slice with defined ROI is 

shown in Figure 11.  Total muscle volume was 

determined from measured cross sectional area 

combined with the thickness of each slice.   

Hypothesis Evaluation 

Each component of the complete model will be tested by comparing the 

respective output to experimentally measured data.  When agreement is reached between 

model parameters and measured behavior for Hypothesis 1, the model will be adjusted to 

examine fatigue, and then adjusted to mimic age-related changes to the neuromuscular 

system.  The values used to validate model predictions, and sources for parameter 

modification are summarized in the Appendix. 

Figure 3.11  Magnetic 

resonance image (MRI) in the 

axial plane of the shank.  The 

dotted line represents the region 

of interest (ROI) for subsequent 

analysis of muscle size.   
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Hypotheses 1 will be tested by comparing predicted values for peak torque to the 

measured values in young men.  A step input will be used to compute the model‟s 

response to a 4-second MVC running at 2000 Hz during a 5-second simulation.  The E 

control signal will be equal to zero for 0.5 seconds (1000 data steps), at which point it 

will increase to 1.  At 4.5 seconds, the E will again be set to zero, where it will remain 

until the end of the simulation.  The peak torque calculated during this simulation will be 

compared to the average peak torque generated by young men recruited for experimental 

data collection.  The model will be considered valid if it predicts torque output within one 

standard deviation (6.9 Nm) of the mean (45.0 Nm).   

Hypothesis 2 will be tested by comparing modeled prediction to literature values 

of fatigue from Lanza et al (111).  Fatigue will be defined by expressing the time-torque 

integral (TTI) produced by the last of 6, 12-second contractions relative to an un-fatigued 

12-second contraction.  The TTI for an un-fatigued contraction was calculated by 

multiplying peak torque achieved at baseline by 12 seconds.  The model will be 

considered valid if its prediction is within one standard deviation (8.3%) of the mean 

fatigue (73.6%) in young men reported by Lanza et al (111).   

Hypothesis 3 will be evaluated in a manner similar to Hypotheses 1 and 2.  Once 

parameters within steps 2, 4, and 5 are adjusted to reflect age-related changes in the 

neuromuscular system, a step input will be used to predict MVC torque for older men.  

This value will be compared to experimentally-measured torque in the men from whom 

biomechanical data were derived.  The model will be considered valid if predicted torque 

is within one standard deviation (7.9 Nm) of the average value recorded in 8 older men 

(39.7 Nm).  Modeled age-related fatigue resistance will be tested by running a simulation 
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similar to Hypothesis 2, with age- adjusted parameters.  The model will again be 

considered valid if the predicted fatigue is within one standard deviation (6.9%) of the 

mean fatigue in older men (84.6%) reported by Lanza et al (111). 

Provided the completed model supports the three stated hypotheses, exploratory 

modification of model parameters will be undertaken to answer additional questions.  An 

important consideration when attempting to understand the mechanisms of age-related 

fatigue resistance is the potential role of improved metabolic economy that has been 

observed in older adults (174).  This may be due to slowed contractile characteristics due 

to a generally greater proportion of type I fibers in the muscles of older individuals.  

Reduced metabolic costs of activation due to decreased firing rates may also play a role 

in improved economy.   

The proposed model might be modified to associate metabolic cost to activation 

(based on Ca
2+

 transients) in addition to force generation.  The relative dependence of 

metabolic cost on force and activation can be modified to reflect the wide range reported 

in the literature to better understand its potential role in fatigue resistance.     

Additional testing might include modification of model parameters to reflect age-

related changes in muscle fiber type.  If muscle fiber type plays a strong role in fatigue 

resistance, it would be interesting to alter muscle fiber populations within the proposed 

model to reflect the range of phenotypes expressed within human skeletal muscle.  

Results from these modifications will address hypotheses related to the role of fiber-type 

in varying fatigue characteristics observed across different muscle groups.   
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CHAPTER 4 

AN INTEGRATED MODEL OF NEURAL ACTIVATION, MUSCLE FORCE 

DEVELOPMENT, METABOLIC PERTURBATION AND TORQUE 

GENERATION DURING VOLUNTARY CONTRACTION 

 

Abstract 

Development of joint torque through the voluntary activation of skeletal muscle is 

the result of a complicated series of events, beginning with the generation of excitatory 

action potentials in the motor cortex.  A theoretical pathway of voluntary joint torque 

production includes motor neuron recruitment and rate-coding, sarcolemmal 

depolarization and calcium release by the sarcoplasmic reticulum, and force generation 

by the contractile proteins.  The direct source of energetic support for this process is ATP 

hydrolysis.  Although it is possible to examine portions of this physiologic pathway using 

various in vivo and in vitro techniques, none provide a complete view of the multiple 

ways in which features of the pathway interact and ultimately impact joint torque.  

Computational modeling provides a means to simulate these interactions and their net 

outcome, and thereby make inferences about key variables of interest.  We present a 

novel, comprehensive computational model of the activated neuromuscular system.  

Components representing excitatory drive, calcium release, force generation, metabolic 

perturbations, and torque generated during human voluntary dorsiflexion were 

constructed from a combination of literature values and experimentally-derived data.  

Simulations were validated by comparing model output to voluntary and stimulated 

torque generation conditions in vivo.  The model successfully predicted peak torque 

output, approximated submaximal torque, and the metabolic perturbations associated 
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with those levels of muscular contraction.  The comprehensive model of neuromuscular 

function presented here provides a powerful tool for developing hypotheses related to 

voluntary torque generation.  
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Introduction 

Although muscle size is the single largest determinant of maximal voluntary joint 

torque in humans (104), only roughly two-thirds of maximal torque is accounted for by 

muscle size, and there are examples in the literature of considerable variation in specific 

strength (voluntary torque generated per muscle size) (141).  The generation of voluntary 

torque begins with neural excitation in the motor cortex that produces propagation of 

excitatory potentials down cortico-spinal tracks to the α motor neurons that synapse with 

the muscle cells and cause depolarization of the sarcolemma.  This is followed by release 

of Ca
2+

 from the sarcoplasmic reticulum, thereby activating cross-bridge cycling and the 

development of force.  Clearly, any variation in the processes along this pathway may 

result in alterations in muscle force and consequently joint torque.  Such variations could 

include those due to differences in motor unit, muscle fiber, muscle-tendon, or metabolic 

properties, or the interactions between these systems. 

The interrelated nature of the physiological processes involved in the generation 

of voluntary joint torque is difficult to discern in vivo.  While in vitro experimentation 

can provide explicit details about isolated systems, and in vivo studies typically describe 

the combined function of multiple systems, each are limited in addressing the coordinated 

events that lead to the development of voluntary joint torque.  Model simulations on the 

other hand, are commonly used to predict the responses of complicated systems whose 

interrelated components might preclude direct measurement or control.   
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Recently developed models have provided valuable insights that would have not 

been possible using standard in vivo or in vitro approaches.  Since the first mathematical 

models of skeletal muscle function, first described in the 1950s by A.V. Hill (82) and 

Hugh Huxley (90), computational models have been proposed to explain the 

physiological behavior of skeletal muscle perfusion, neuromuscular activation and even 

fatigue during repeated activations.  However each of these examples focus on a single 

portion of a system whose combined function is highly interrelated.   

While a unitary approach to modeling complicated systems is justified, a 

comprehensive model that allows simultaneous inquiry of multiple physiological events 

associated with the voluntary production of joint torque would be a useful tool to 

investigators interested in neuromuscular function.  Currently available simulations have 

been developed which simulate the behavior of activation (59), discharge, and spatial 

distribution (58) of motor units; depolarization of the sarcolemma (54); calcium kinetics 

(131; 187); acto-myosin binding kinetics (70; 83; 166); and control of oxidative 

phosphorylation by ADP (94).  However, rarely have multiple physiological components 

been included in the same model (63).      

The goal of the present study was to construct a comprehensive model of neural 

activation, contractile dynamics, and metabolic perturbation.  The approach combines 

previously-validated simulations of voluntary activation (59; 75), force development (76; 

177; 181) and torque generation (126) with a novel set of model components that 

regulated neural activation and predicted metabolic perturbation as a consequence of 

muscle activation.  Ours is the first to incorporate features of voluntary activation, force 

generation, metabolic perturbation and joint torque, along with predictions of multiple 
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intracellular metabolites.  Here, we present a model capable of predicting the kinetics and 

magnitude of voluntary torque generation, along with the neural excitation necessary to 

evoke such a response, and the intracellular metabolic consequences that follow.    

 

Methods 

Approach 

Our approach to an integrated, comprehensive model of neuromuscular function 

followed the general scheme outlined in Figure 1.  Considerable effort was made to base 

model parameters on human literature values and experimental measures available from 

recent, ongoing studies in the Department of Kinesiology at the University of 

Massachusetts Amherst.   

Source Data and Subject Characteristics 

The model drew on published and unpublished data, available from two available 

projects conducted in the Muscle Physiology, Biomechanics and Locomotion 

Laboratories at the University of Massachusetts, Amherst.  A musculoskeletal model was 

developed based on experimentally-obtained anatomical data in a group of healthy young 

men.  The same individuals were also underwent metabolic testing using non-invasive, 

31
P magnetic resonance spectroscopy (MRS).  When necessary, model components and 

parameters were drawn from the literature.  The young men (21 – 35 years, n = 8) who 

comprised the cohort in each available data-set, were healthy by self-report and non-

smokers.  All participants were recreationally active, engaging in endurance exercise 

multiple times per week.  Participants were familiar with the torque measurement 

procedures using a Biodex dynamometer (Biodex Medical Systems, Shirley, NY) and 

refrained from exercise on all testing days.    
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Figure 4.1 Computational approach.  The model will be run using a forward 

integration routine to calculate each model step (1-6) at each time point for the 

duration of the simulation.  Primary literature sources pertinent to model functions are 

listed with each step 
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Figure 1 lists published muscle models and source data that correspond to each step of 

the proposed model.   

Computational Overview 

  Because the model incorporates the output from multiple components meant to 

represent stages in the pathway to torque production, they are presented here sequentially, 

as they were computed in the forward dynamics simulation using Matlab software 

(MathWorks, Natick MA) throughout for model formulation and testing.  The steps are 

illustrated along with points corresponding to source data in Figure 1.   

Briefly, a single parameter representing voluntary excitation (Step 1) of the spinal 

cord initiated the forward dynamics model by serving as the input for a modeled pool of 

motor neurons (MN).  This simulated pool of 120 α motor neurons largely followed a 

recruitment scheme originally proposed by Fuglevand et al (59).  This pool responded to 

excitation by calculating firing rates (FR) for each modeled motor neuron (Step 2).  A 

model of activation (sarcolemal depolarization and intracellular calcium release) 

followed (Step 3) for a Hill-type muscle model (Step 4).  Because the output of each MN 

acts on a corresponding muscle model, this effectively simulates the organization and 

behavior of a motor unit (MU) in vivo.  The linear sum of forces produced by all muscle 

models was then used as the input for a musculo-skeletal model of the ankle joint to 

predict current joint torque (Tc) at the ankle (Step 5).  Finally, Tc was compared with a 

pre-defined timeline of a torque task (Tt) which allowed for adjustment to excitation (S, 

Step 1) such that the difference between Tc and Tt was minimized.  In this forward 

integration model, functions received no input beyond initial conditions and Tt.  
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Calculations were performed for time steps of 0.001s and repeated for each MU before 

advancing the time step.  Data for each time step were calculated using the „ode45‟ solver 

function within Matlab.  Three primary functions were used in the forward integration 

process.  First, a calling function initialized variables used in subsequent functions and 

adjusted the excitation signal meant to represent voluntary effort.  A second function 

predicted the motor unit discharge rates for all motor units in response to the current level 

of excitation.  Finally, a system of equations that determined force and bioenergetic 

variables determined the response to input from the motor unit function.  Additional 

detail regarding the output of these steps and formulation of these functions is provided 

below, and in Appendix D.   

Step 1. Excitation  

The initial step for the model represents excitation which begins at the motor 

cortex and descends through corticospinal tracts to α motor neurons in the spinal cord.  

Input from the central nervous system to pools of α motor neurons is physiologically 

complex and dictates many aspects of coordinated, voluntary muscle activation.  Because 

of its complicated nature and incomplete definition in the literature, no attempt is made 

for the computation of the excitation signal (S) to directly reflect physical events in the 

process of cortical excitation.   

Once initiated, the model adjusts S at each time step to minimize the difference 

between current modeled torque (Tc) and target torque (Tt) with respect to peak torque 

generating capacity: 



diff  c t        (1) 

in the case where Tdiff is < 0,  
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

S  S  (diff  (1 S))      (2) 

and in the case where Tdiff is > 0,  

 SSS R

diff  )(       (3) 

This simple control algorithm uses the value R= 0.7 to minimize unintended relaxation 

characteristics while maintaining predictions for activation and relaxation that were 

consistent with in vivo observation.  Specifically, R was set below 1 to allow for 

sufficiently rapid de-activation rates that eliminated persistent, low-level activation 

observed in simulations using lower rates of deactivation.  An estimate of peak torque 

generating capacity was established by multiplying the sum of peak force generating 

capacity for each muscle model by the maximum possible moment arm.  This estimate is 

not necessarily the same as actual peak torque generating capacity, which is also subject 

to other model elements (firing rate, activation, contractile element length and velocity).   

 

Step 2. Motor Neuron Pool  

The pool of 120 motor neurons responded to the level of excitation (S) according 

to procedures described by Fuglevand et al, (59). The recruitment thresholds (RT) for the 

pool of MNs were distributed such that many MNs had low RT while relatively few had 

high RT.  The distribution of recruitment thresholds is described mathematically by the 

equation: 

 



muRTm  exp(a)     (4) 

where muRTm is the (RT) of MN (m) and 



a  log(Ar) /m; Ar = 30 is the desired range 

(fold difference) for muRTm.  A 30-fold range of RT is consistent with the broad variation 

in recruitment thresholds observed experimentally (178).  Each MN is assigned a 
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minimum firing rate (MFR) of 8 Hz (30; 178).  Although it is possible that MFR could 

vary between motor neurons in direct proportion to RT (67), empirical studies performed 

in humans during voluntary contractions suggest that MFR is constant across MNs (35; 

136).   

Once a MN‟s threshold for excitation was surpassed, a single linear function 

described the relationship between excitation and FR: 



FR G  (S (muRTm))MFR     (5) 

where G is a gain function affecting the magnitude of increasing FR, S is the current 

excitation.  FR increased according to this function until the given motor neurons 

achieved its peak firing rate (PFR).  The PFR(m) is directly proportional to RT(m) within 

the relatively narrow range of 10 Hz (145).  The fastest MNs fired at 56 Hz (30).  Each 

“pulse” delivered by a given MN model initiated a model of muscle activation, described 

in the next section. 

Step 3. Muscle Activation   

Because the kinetics of the Ca
2+

 transient are significantly slower than those of 

the depolarization event (45; 129) and precise measurement of the calcium transient are 

exceedingly difficult in vivo, no effort is made to distinguish the two events in the present 

model.  The combined steps of post-synaptic muscle activation were modeled similarly to 

the approach used by He et al (76): 



act


 (Stim  act)  (rc1  Stim  rc2)    (6) 

 



rc2 1/tdeact     (7) 

 



rc1 1/tact  rc2     (8) 

where tact  has values between 0.060 - 0.039 depending on MN assignment (m) and 

represents the activation time constant.  Deactivation time constants are defined by tdeact 
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and have values between 0.092 - 0.064.  These values were based on Umberger and 

colleagues (177) and modified slightly for this application.  Specifically, values were 

altered to allow for a range of activation and deactivation kinetics within the MN pool, 

and optimized along with contractile kinetics (detailed later) to produced rates of force 

development and relaxation that were physiologically realistic.  Stim has a value of either 

“1” or “0” depending on whether a counter, initiated once a MN is recruited, is less than 

0.023.  The counter continues for the duration of the current interpulse interval (IPI) and 

Stim = 0 until it is reset (detailed description of this process can be found in Appendix D).  

This procedure is followed to mimic the duration and kinetics of the calcium transient.  

Accordingly, this activation strategy yields activation kinetics consistent with the time 

course of experimentally observed (151) calcium transients (20-30 ms) and complete 

summation of the calcium transient for the MN with the lowest maximal discharge rate 

during full stimulation.  

Step 4. Muscle Models   

A detailed list of equations describing the behavior of the muscle and metabolic 

perturbation model can be found in Appendix D.  The text that follows is a general 

description of the model formulation procedures.   

The activation signal from step 3 was input to a standard Hill muscle model that 

included contractile (CE) and series elastic (SEE) elements (181).  In keeping with the 

control structure of the model overall, 120 independent muscle models responded to the 

output of 120 MNs.  This coordination was intended to reproduce the physiological 

recruitment of motor units.  Peak force-generating capacity of each muscle model (fmax) 

was coordinated with muRT such that the unit with the lowest recruitment threshold had 
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the lowest force.  Forces were distributed across 120 MNs through a 100-fold range (see 

Appendix D).  The sum of fmax from all muscle models was adjusted to match a value 

derived from an optimization routine that determined specific tension from the study 

population (Umberger, XIII International Symposium on Computer Simulation in 

Biomechanics, June 30th - July 2nd 2011, Leuven, Belgium).  Total myotendonus muscle 

length was held constant as all modeled contractions where isometric, but CE and SEE 

length were free to change and behaved according to the equations in Appendix D.  All 

muscle models included components for eccentric and concentric force development, 

pennation angle, velocity and length.    

The modeled change in CE and SEE length, along with resulting changes in 

pennation angle were based on in vivo ultrasound measures performed at the University 

of Massachusetts.  Briefly, ultrasound imaging was used to measure the tibialis anterior 

muscle and tendon while subjects were seated in a Biodex isokinetic dynamometer.  The 

ankle was fixed with the foot at 120° relative to the tibia, and subjects performed a 

torque-tracking task by matching their effort to visual feedback.  When performed 

correctly, they steadily increased dorsiflexion torque from rest, to 100% MVC over a 

period of 10 seconds.  During this time, fascicle pennation angle (Figure 2) and stretch of 

the tibialis anterior tendon was recorded on videocassette for subsequent analysis using 

custom written Matlab software (72).   

Step 4a. Metabolic Perturbation 

The model used current activation level to predict changes in the concentration of 

intracellular metabolites related to the production of adenosine triphosphate (ATP).  The 

metabolic perturbations associated with dorsiflexion were modeled after measures of 
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phosphorus-containing metabolites, as described elsewhere (100; 110).  Briefly, 
31

P MRS 

was used to measure the concentrations of phosphate-containing metabolites, 

phosphocreatine (PCr) and inorganic phosphate (Pi), in the ankle dorsiflexors using a 4.0 

tesla superconducting magnet (Bruker Biospin, Rheinstetten, Germany).  The recovery of 

PCr following a 12-second maximum voluntary contraction (MVC) was used to calculate 

the in vivo capacity for oxidative phosphorylation (110; 134) while the distance between 

Pi and PCr spectral peaks were used to estimate intracellular pH (101).  ATP synthesis 

through creatine kinase, anaerobic glycolysis and oxidative phosphorylation was 

estimated by tracking changes in [PCr], [Pi], and pH during contractions at a range of 

intensities (20%, 50%, and 100% MVC).   

Tracking of intracellular concentration of phosphorus containing metabolites was 

accomplished by line fitting of time-averaged spectra, using NUTS software (Acorn 

NMR, Livermore CA).  Based on these data, model functions were created to reflect the 

cost of force production and the subsequent change in pH across a range of activation 

levels (See Appendix D).  The initial rate of PCr break down during contractions of 

varying intensity was used to predict rate constants for the appearance of Pi during 

contractions that were intensity-dependent (equations 21 and 22 in Appendix D).  This 

procedure is possible because a constant phosphate pool ([Pi] + [PCr] = 42.5 mM) and 

ATP concentration ([ATP] = 8.2 mM) can be assumed under these experimental 

conditions.  A three-parameter exponential decay line fit was performed using SigmaPlot 

software (Systat Software Inc. San Jose, CA) to derive coefficients used to formulate 

rates of Pi accumulation during activation (equation 1, Appendix E).   
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Intracellular pH was calculated for each muscle model, based on rates of change 

in [Pi], buffering capacity, and protons produced from glycolysis (H
+
).  Glycolytic rates 

were estimated from the Michaelis-Menten kinetic relationship between Pi and glycogen 

phosphorylase, where Km was assumed to be 18.94 mM (22; 155), and the maximum rate 

of anaerobic glycolysis was a range between 0.48 and 1.92 mM s
-1

. This range was 

chosen to reflect rates of glycolysis observed in vivo (113; 183) and resulted in an 

average across muscle models, weighted to fmax (a direct correlate to muscle volume), of 

1.5 mM ATP∙s
-1

 through glycolysis.  The rate of H
+
 produced by non-oxidative glycolysis 

was equal to the rate of glycolysis/1.5.  Glycolytic production of H
+
 was offset by the 

protons consumed in the creatine kinase reaction (net breakdown of PCr), which was 

calculated from the product of a proton stoichiometry coefficient (θ) and the rate of Pi 

accumulation (equivalent to PCr breakdown).  The net total of H
+ 

production and 

consumption was divided by the current buffering capacity to calculate the pH at each 

time point (equation 34, Appendix D).  Finally, [H2PO4
-
] was calculated based on current 

pH and [Pi] (equation 36, Appendix D). 

Step 5. Musculoskeletal Model 

The musculoskeletal model, as mentioned, was parameterized with data from a 

group of healthy young men.  Muscle architecture measures were performed using 

ultrasound and magnetic resonance imaging (MRI) at the University of Massachusetts 

Amherst and Cooley Dickinson Hospital Imaging Facility in Amherst MA respectively.   

To measure muscle volume, serial sections of MRI (T1 weighted spin echo axial 

images; 4 mm slice thickness, 210 mm field of view, 512x512 matrix) were collected for 

the total shank length.  Custom-written Matlab software was used to first identify a  
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region of interest (ROI) representing the tibialis anterior muscle, and then decompose the 

pixels populating this ROI into contractile and non-contractile tissue based on signal 

intensity.  A sample MRI slice with defined ROI is shown in Figure 3.  Total muscle 

volume was determined from measured cross sectional area combined with the thickness 

of each slice.   

The forces generated by all motor units were summed linearly to predict force at 

the tendon (Ft).   



Ft  fsee(m )

m1

MUnum

       (9) 

Current moment arm length (Lma) was dependent on force Ft such that greater Ft resulted 

in a larger Lma.   



Lma  Lma0  ((Lma0  LmaR) /(Fmax /Ft ))     (10) 

where Lma0 is maximum moment arm length, LmaR is resting moment arm length and Fmax 

is the highest possible isometric Ft.  Tc was calculated at the last step and compared with 

Tt (equation 1).   



c  Ft  Lma          (11) 
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Figure 4.2  Ultrasound image of the anterior compartment of 

the lower limb.  The horizontal line matches the orientation of the 

apponeurosis of the tibialis anterior muscle, and the angled line 

matches the pennation angle of visible fascicles under the 

ultrasound probe 
 

Figure 4.3  Magnetic Resonance Image (MRI) in the Axial Plane.  

The dotted line represents the region of interest (ROI) for subsequent 

analysis of anterior compartment muscle size 
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Simulation and Evaluation Procedures 

Equations describing the behavior of each modeled component were run for each 

MU at each time step (t), for a range of simulated conditions.  As an initial test of the 

validity of model predictions concerning excitation and contractile dynamics, a 

simulation routine was formulated to generate a torque-frequency curve.  Briefly, a train 

of “stimuli” delivered at a constant frequency was simulated by setting S = 1 for the first 

0.023 s of a simulated IPI.  For a given simulation, IPI was constant and depended on 

stimulation frequency.  This procedure was performed across a range of simulated 

stimulation frequencies, where IPI was calculated as the reciprocal of the desired 

stimulation frequency (1/Hz) in each simulation.  Simulated torque traces and peak 

torque achieved were compared with literature values (174).   

Next, a range of “voluntary” contraction intensities were simulated, for 

comparison with the experimental data used to parameterize the model as well as 

literature values.  Under these conditions, Tt was set to increase 1s into the simulation and 

remain at 110%, 50%, and 20% of predicted maximal Tc until second 13 of the 

simulation, thus simulating a 12s contraction.  The Tt value for the maximal stimulation 

condition was set in excess of 100% to ensure muscle activation was maximal.  Model 

performance was controlled by auto-regulation of S according to equations 1 and 2.  

Simulated torque, [Pi], [pH] and [H2PO4
-
] were compared with experimental and 

literature values for validation.   
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Results 

Torque – Frequency 

The recruitment and activation schemes used in the present model agreed well 

with experimental data.  Figure 4A shows model results for neuromuscular stimulation at 

20 Hz.  The model exhibited pulsatile activation kinetics and wave-summation behavior 

of torque similar to that observed in vivo.  Figure 4B illustrates the simulated torque 

response to a range of stimulation frequencies between 10 and 50 Hz.  The peak torque 

from each simulation is plotted against its corresponding frequency in Figure 4C along 

with experimental data from the literature (174).  Again, the model agreed well with in 

vivo torque production at all frequencies.  The mean squared difference between 

simulated and observed torque was 5.3% (between 10 and 45 Hz) with a maximal 

difference of 7.1% at 30 Hz. 

Maximum Voluntary Contraction 

 During a simulated maximum voluntary contraction (MVC), Tt was set to 110% 

of expected peak torque output to promote full excitation in the model (grey line, Figure 

5A).  The model (Figure 5A) predicted peak torque within 5.0% of measured torque in 

our study group of young men. Similar to in vivo measure, the model achieved ~97% of 

peak torque within 250ms.   

Changes in intracellular [Pi], pH, and [H2PO4
-
] during a 12s maximum voluntary 

contraction are compared with in vivo data in Figure 5B-D.  The model‟s predicted 

output, in each case, was within one standard deviation of in vivo measures for all but 

one time point (pH, 8s).   
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Submaximal Contractions 

To investigate the model‟s precision when attempting to match Tc with Tt during 

submaximal activations, Tt was set to 50% and 20% of predicted maximum torque 

capacity.  All other aspects of submaximal simulations were identical to MVC 

simulations.  Results from these simulations are shown in Figures 6A and 7A for 

contractions at 50% and 20% of MVC respectively.  The model‟s approximation resulted 

in torque within 2.1% for the middle 90% of contraction time in both simulations.  The 

wavering of Tc about Tt, which was a result of the excitation function‟s degree of 

precision and kinetics that were faster than the response of Tt, were consistent with torque 

variability observed in experimental conditions.   

Predicted [Pi], pH, and [H2PO4
-
] are shown with in vivo measures during a 12s 

contraction at 50% of MVC in Figure 6 B, C, and D respectively.  Figure 7 illustrates the 

same variables during a 12s contraction at 20% of MVC.  For [Pi], (Figures 6B and 7B) 

agreement with experimental data was good, and within the expected physiologic range.  

Note that the alkalosis typically seen during the onset of contraction was slightly under-

predicted (Figures 7C and 8C).  Overall, predictions for [H2PO4
-
], which is calculated 

from the predictions for [Pi] and pH, were excellent at 20% MVC (Figure 7D), but 

slightly above those at the end of the 12s 50% contraction (Figure 6D).   
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Figure 4.4 Simulated torque-frequency relationship.  A: Simulated stimulation 

protocol was a square wave with pre-determined frequency (20 Hz).  Simulated 

activation responses for the 1
st
 and 60

th
 motor unit are plotted in grey and black 

respectively.  Total simulated torque for the combined model is plotted in blue.  B: 

Simulated torque traces in response to stimulation at a range of frequencies (10, 15, 

20, 25, 30, 35, 40, and 45 Hz).  Stimulation for each simulation began at 0.2s, 

indicated by the vertical red line.  C: Comparison between simulated and 

experimental torque output in response to stimulation at frequencies between 10 and 

50 Hz.  Simulated torque values (closed symbols) were typically within one standard 

deviation of mean experimental values (open symbols ± SD) 
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Figure 4.5  Simulated maximum voluntary contraction. A: Simulated torque 

during 12s MVC in thin black line with experimental data (open symbols ± SD).  Blue 

line is the target torque (Tt) for the model to approximate.  It was set to increase from 

zero to 110% of expected peak torque output to ensure full activation at t=1s.  B:  

Simulated (black line) and experimental (open symbols ± SD) inorganic phosphate 

concentration (mM) during 12s maximum voluntary contraction.  C:  Simulated (black 

line) and experimental (open symbols ± SD) pH during 12s maximum voluntary 

contraction.  D:  Simulated (black line) and experimental (open symbols ± SD) H2PO4- 
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comparison 
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Discussion 

 By synthesizing previously published models for neural activation and force 

development with an adaptable approach to control of central motor drive and 

intracellular energetics, the present model is a novel contribution to the field of 

biophysical modeling.  The validation of current model predictions with in vivo data 

encourages the use of this adaptable control architecture to multiple model simulations. 

 Compared with previously validated models, some of which serve as bases for 

components in the present formulation, the model presented here represents a significant 

advancement in our ability to estimate the neuromuscular response to voluntary 

activation due to its high level of integration.  Several models provide simulations of 

individual components of neuromuscular function, but few incorporate the range of 

physiological function with corresponding levels of accuracy.  This level of integration is 

necessary to more completely represent the necessary physiological events involved in 

voluntary torque generation.  As a result, this validated model can be used for a range of 

simulation conditions to predict the relative effect of failure or enhancements at multiple 

points in the pathway to voluntary torque production. 

 A particularly useful feature of the present model is its modular structure, and the 

manner in which each module produces estimates that can be compared with relevant in 

vivo data.  Overall model behavior depends on the input of each module, and each can be 

substituted and modified without adjustment of other parameters.  In this way, 

manipulation of a single feature within the model allows for exploration of that 

component‟s impact on overall behavior.  Further, the ability to mimic voluntary attempts 

A 
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at achieving target torque allow for a potentially more realistic approximation of 

physiologic responses to submaximal effort.   

 Valuable information was gleaned from the formulation and informal 

optimization of functions used to create the modules presented here.  While parameters 

describing physiological behavior were based on literature values and our own 

experimental observations, it is important to note that most model inputs were adjusted to 

ensure realistic predictions by each module.  In particular, bioenergetic functions 

received a large amount of attention to ensure accurate predictions of pH and phosphate 

metabolites during voluntary activation.  Although within the range of values observed 

experimentally, it was necessary to elevate the value θ by 40% relative to the values 

reported by Walter et al (183).  The value θ is a coefficient that relates to the amount of 

H
+
 produced or consumed during the creatine kinase reaction and varies with cytosolic 

pH.  Using values reported by Walter et al (183) caused an underestimate of alkalosis 

during contraction.   It was found that buffering capacity and the value assigned to θ had 

the greatest impact on overall predictions of pH during contraction.  This was surprising 

considering the current dogma suggesting glycolysis and resulting acidosis are the 

primary features of the changing intramyocellular environment during high-intensity 

muscle contractions.  The model, however, suggests inherent buffering capacity and the 

breakdown of PCr likely have the greatest impact on intracellular pH during brief, 

isometric contractions.   

 The present model formulation lacks any consideration for recovery of 

intracellular metabolites.  While the model does an excellent job of predicting neural, 

contractile, and metabolic responses to torque generation for a range of activation levels, 
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it does not contain functions to predict proton efflux from the cytosol, recovery of resting 

[PCr], or alterations to buffering capacity that might accompany these responses.   

 In its present state, the model may be limited by a number of assumptions that 

were necessary to arrive at the present results.  While the range of glycolytic potential for 

the simulated motor units, and the levels of activation achieved in the simulation yielded 

values for glycolysis similar to the literature (113) evidence for an absolute limit to peak 

glycolytic rates in vivo is difficult to ascertain.  Further, our model of glycolysis depends 

on activation kinetics that were characteristically similar to, but relatively slower than our 

model of Ca
2+

 transients.  This is theoretically accurate based on the need for Ca
2+

 in the 

cytosol to promote glycolysis (152) and reports of slowed onset and offset of glycolysis 

relative to force generation and relaxation (53).  However, this function, like many 

aspects of the present model, is purely phenomenological and its formulation has little to 

do with the myriad reactions in the cytosol that likely have dramatic effects on glycolytic 

rates in vivo.   

 Finally, the model contains functions that describe the main contributions to 

[H2PO4
-
] concentration during muscle contraction.  However, it does not include a 

function to describe the kinetics of oxidative phosphorylation, or the role it plays in 

cellular homeostasis during contraction.  The generation of H
+
 from oxidative 

phosphorylation is negligible when compared with the amounts produced or consumed 

through glycolysis or the creatine-kinase reaction, but it plays a large role in synthesizing 

PCr and ATP, especially during prolonged contractions.  Its absence for the present 

application seems to have limited impact, but may limit the models utility in some 

applications.   



 

76 

Future efforts might be directed to including oxidative metabolism as a model 

component.  A model of oxidative ATP production would allow for simulation of 

intermittent contraction protocols and recovery of intracellular metabolite concentrations 

to resting levels.  Such a model would be useful in addressing questions related to cellular 

energetics and the maintenance of cellular homeostasis.   

 Overall, the model presented here provides simultaneous, accurate predictions of 

the contractile and metabolic responses to voluntary activation.  The novel contributions 

of the work presented here are twofold: a single, comprehensive model that employs a 

unique forward integration routine that predicts the neuromuscular response to a variety 

of contractile tasks; and the integrated components within the model that allow for 

prediction of multiple physiological responses using a computationally-efficient 

approach.  The model‟s agreement with experimentally-derived, in vivo data, across a 

range of contraction intensities, highlights its utility for use as a comprehensive, 

adaptable simulation tool.   
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 CHAPTER 5 

PREDICTING MUSCLE FATIGUE DURING INTERMITTENT, MAXIMUM 

VOLUNTARY CONTRACTIONS: A COMPUTATIONAL MODEL OF 

ACTIVATION, FORCE GENERATION, AND INTRACELLULAR 

BIOENERGETICS 

 

 

Abstract 

 

 

Muscle fatigue, an acute decrease in force generating capacity, is a process whose 

mechanisms remain difficult to discern, despite the many studies designed to better 

understand them.  This difficulty is due, in part, to the complicated nature of voluntary 

muscular force development in vivo.  Voluntary skeletal muscle force production is the 

result of a complicated, interrelated series of physiological events.  Reductions in force-

generating capacity can be due to alterations in any of these events, limiting our ability to 

discern their relative impact on force-generating capacity.  This limitation is illustrated by 

the fact that essentially all studies to date have focused on the ultimate outcome of 

neuromuscular activation (i.e. torque), plus a subset of the many physiological events 

involved, due to the complexity of assessing their impact simultaneously.  Computational 

modeling has been used as a means to gain insight into systems whose complexity limits 

direct observation or controlled experimentation.  The neuromuscular response to 

repeated voluntary activation is an attractive target for this approach Due to the fact that 

joint torque, the common outcome measure of many studies of neuromeuscular function 

is itself the result of a series of interrelated physiologic processes.  Here, we present a 
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comprehensive model of neuromuscular activation, torque generation, bioenergetics, and 

fatigue in order to provide a means to study the relative impact of several of the 

physiological processes thought to underlie the fatigue process.  Forward integration was 

used to calculate the output of a series of modular components, each meant to represent a 

component of neuromuscular function.  The models output was compared with in vivo 

data from the literature.   

This approach to modeling activation, torque generation, and metabolic response 

provides a novel means of investigating the mechanisms of fatigue during repeated 

voluntary contractions.  Specifically, this model predicts the neural, contractile and 

bioenergetic responses to voluntary activation during repeated, brief (12s) contractions.  

The model‟s strength and potential to provide insight is due to the fact that none of its 

components operate independently.  The process of model formulation and subsequent 

validation provide valuable information regarding the relative impact of these multiple 

components to overall fatigue, and the mechanism(s) regulating human neuromuscular 

fatigue.  
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Introduction 

The mechanisms of skeletal muscle fatigue involve multiple physiological 

systems (48; 186) and are task-specific (86).  Our understanding of the fatigue process 

has benefited from years of in vivo and in vitro experimentation, during which numerous 

insights into both cellular and systemic influences on force-generating capacity have been 

attained.  However, both in vitro and in vivo methodologies have some inherent 

limitations.  In vivo experiments are typically challenged by a lack of control over 

interrelated processes that may be difficult to measure.  In vitro experimental conditions, 

while more tightly controlled, cannot mimic the complexity of in vivo systems.  In either 

case, the ability of researchers to simultaneously quantify the multiple mechanisms that 

contribute to a loss of force-generating capacity is somewhat compromised. 

The mechanisms of fatigue often are referred to as either central or peripheral in 

nature.  The term “central fatigue” is used to describe a range of neural responses to 

contraction that ultimately reduce the ability to excite skeletal muscle voluntarily (173).  

Reduced excitation of α motor neurons results in reduced maximal discharge rates for 

active motor units, and/or derecruitment of motor units, beginning with those with the 

highest activation thresholds (98).  Peripheral fatigue mechanisms refer to those events 

occurring distal to the central nervous system.  These include reduced excitability of the 

sarcolemma (51; 61), slowed Ca
2+

 kinetics, and decreased sensitivity of thin filament 

proteins (Troponin C, T, I, and, Tropomyosin) to Ca
2+

 (33; 50).  It is likely that both 

central and peripheral mechanisms contribute to fatigue during maximal contractions in 

vivo (173).   
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The byproducts of intracellular, metabolic processes that maintain [ATP] in the 

face of changing energetic demands have been implicated in the development of fatigue 

during repeated or prolonged contractions.  Repeated contractions of sufficient intensity 

will increase intracellular [ADP], [Pi] and [H
+
] which have been implicated in fatigue 

processes (106).  Through multiple mechanisms, each of these metabolites alter the 

behavior of the cross-bridge.  Their combined effect ultimately lowers force, rates of 

relaxation, and possibly shortening velocity (49).  While in vitro evidence also suggest 

roles for these metabolites in the reduction of force-generating capacity, the extent to 

which these in vitro findings reflect the behavior of the intact neuromuscular system is 

not always clear.  Data from in vivo studies finds inconsistent effects of metabolites such 

as H
+
 and ADP (106; 156).  However, most in vivo studies support a strong association 

between [H2PO4
-
] and fatigue that persists under a variety of conditions (31; 103; 106; 

111; 113; 135).   

Direct, simultaneous measurement of intracellular metabolites, neural activation, 

and contractile mechanisms is difficult, particularly with sufficient temporal fidelity to 

make inferences regarding the mechanisms of fatigue.  Computational modeling of 

muscle fatigue is appealing due to the inherent complexity of the physiological events 

involved in voluntary torque development and the dynamic relationships that exist 

between them.  One of the earliest attempts to predict fatigue at a single joint using a 

valid muscle model came from Hawkins and Hull (74).  They adapted a previously 

validated model of muscle force generation (75) to predict fatigue during prolonged 

activation.  Despite a large number of assumptions and formulation that might be 

considered basic by more current standards, their model successfully predicted the rate 
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and total amount of fatigue during 60 seconds of maximal elbow extension.  This 

significant contribution was one of the first computational models to predict voluntary 

fatigue and is augmented by their consideration of both activation and the differential 

response of multiple fiber-types (recruitment order, endurance time and fatigue rate).   

Since Hawkins et al, (74) significant advances have been made in modeling the 

fatigue response.  Several groups have used models to predict fatigue during functional 

electric simulation for clinical application in paralysis (42; 43; 62; 63; 118).  Significant 

advances have been achieved under this paradigm, but most use electromyography, and 

its decrement during repeated activation, as an input signal to predict fatigue (40; 42; 

118).  Others have used metabolite concentration as a limiting function on force-

generating capacity (62; 63; 118).  This latter approach attempts to mimic the fatigue 

process in a way that is perhaps more representative of in vivo skeletal muscle function 

(62; 63; 118).   

The present model combines a previously-validated, forward-dynamics  model of 

neuromuscular function (Callahan et al, unpublished) with a recently developed model of 

metabolic perturbation, homeostasis and fatigue.  By using a series of ordinary 

differential equations, the forward-dynamics model predicts neural, bioenergetic, and 

contractile responses to voluntary activation.  A single stimulation signal served as the 

input for a number of independent models of motor neuron function, each corresponding 

to a Hill-type muscle model, complete with force-length, force-velocity, and bioenergetic 

parameters.  The linear sum of forces predicted from each muscle model was input to a 

musculo-skeletal model of the ankle dorsiflexors, used to predict torque.  The model was 

formulated primarily with metabolic and musculoskeletal data from the ankle dorsiflexor 
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muscles in a group of young adult males.  The output from the model was then validated 

by comparison with separate data from the literature (110; 134).  The purpose of this 

study was to adapt a previously-validated model (Callahan et al, unpublished) of 

neuromuscular function and bioenergetics to respond to repeated activations, recover 

metabolic homeostasis, and predict fatigue.  To achieve our goal, we designed a system 

of equations representing the neural excitation, muscle activation contractile kinetics, and 

metabolic costs associated with the development of contractile force.   

Methods 

Computational Approach 

 The current modular approach is similar to the earlier model, with several 

significant advancements, which represent neuromuscular function and bioenergetic 

response to repeated activations, maintenance of metabolic homeostasis, and ultimately, 

fatigue.  The system of equations that dictate neural excitation, muscle activation, 

contractile kinetics and metabolic costs associated with the development of contractile 

force is similar to the previously validated model.  However, the present model contains 

the addition of functions describing efflux of H
+
 in acidic conditions, the synthesis of 

phosphocreatine (PCr) following contraction and a mechanism whereby H2PO4
-
 limits 

force-generating capacity.  Model formulation and simulations were run using Matlab 

software (MathWorks, Natick MA). 

A forward integration routine with 0.001 s time resolution is used to predict the 

output of each sequential step of the model.  Each step is meant to represent a 

physiological event in the pathway from cortical excitation to torque generation at the 

ankle joint.  These steps include central excitation, motor unit recruitment, muscle fiber 
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activation (sarcolemma depolarization and calcium release from the sarcoplasmic 

reticulum), muscle cell contraction, force summation, and, torque generation.  These 

modeled steps are illustrated in Figure 1.   

To summarize the steps of forward integration for the model, a single parameter 

meant to represent voluntary excitation (S, Step 1) to the spinal cord served as the input 

for a modeled pool of 60 motor units (Step 2).  This simulated pool of α motor neurons 

largely followed a recruitment scheme originally proposed by Fuglevand et al (59).  

Excitation input was used to calculate the firing rate (FR) for each modeled motor 

neuron.  An activation transient model follows (Step 3) and serves as the input for a Hill-

type muscle model (Step 4).  Periods of muscle activity and recovery following activation 

initiated further steps to model metabolic perturbation and restoration of homeostasis 

respectively (Step 4a: this step, unique to the current model, is described in greater detail 

below).  The linear sum of forces produced by all muscle models was then used as the 

input for a musculo-skeletal model of the ankle joint to predict current joint torque (Tc) at 

the ankle (Step 5).  Finally, Tc was compared with the a priori defined timeline of a 

torque task (Tt), which caused an adjustment of S such that the difference between Tc and 

Tt was minimized (Step 6).  In this forward integration model, functions received no 

input beyond initial conditions and Tt.  A detailed description of the equations for of each 

step can be found in Appendix D.  The following is a general description of our approach 

to model parameterization and formulation, with emphasis placed on novel contributions 

of the current model to the previous iteration; namely the calculations related 

bioenergetics, intracellular metabolic homeostasis and fatigue (Step 4a).   
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Simulation Procedures 

 Multiple simulations were run to validate modeled predictions for the variables of 

interest ([Pi], [PCr], [H2PO4
-
], pH, Torque).  In order validate intermediate steps in the 

prediction of fatigue, contractions of 12s duration were simulated at 20%, 50% and 100% 

of maximum voluntary effort and compared with in vivo observations of the same.  These 

simulations were run by setting Tt to 20%, 50%, and 110% of predicted maximum torque, 

and allowing the control function in step 1 of the model to moderate excitation.  

Simulations predicted a 300-s response in the case of the MVC, and 145s in the case of 

submaximal contractions, to allow for testing of recovery dynamics in the model.  All 

simulations predicted data with 0.001s time-resolution.  The model was run at varying 

levels of activation to ensure predictions for metabolic perturbation were accurate when 

activation was submaximal.  This was especially important given the activation variable 

was the site targeted for manipulation during fatigue simulation trials.  

 To test fatigue prediction by the model, a simulation was run consisting of six 12-

s contractions with 12s rest between them.  This protocol was selected to match that of a 

recent study for comparison (113).  The simulation ran for a total of 144s with 0.001s 

time resolution.   

Source Data 

 Extensive effort was made to parameterize the model with experimentally-

collected data from the same set of subjects for each variable.  The model drew on 

published (110; 134) and unpublished data available from studies conducted in the 

Muscle Physiology and Biomechanics Laboratories at the University of Massachusetts, 
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Amherst.  When necessary, model components and parameters were drawn from the 

literature, with a preference toward human studies when available.   

Subject Characteristics 

Young men (21 – 35 years, n = 8) were healthy by self-report, non-smokers, and 

at least recreationally active.  Participants were familiar with torque measurement using a 

Biodex dynamometer (Biodex Medical Systems, Shirley, NY) and refrained from 

exercise on all testing days.  Data collection from these participants included measures of 

muscle architecture from ultrasound (Siemens Munich, Germany), anterior compartment 

muscle volume and moment arm measures from magnetic resonance imaging (MRI; 

Siemens Munich, Germany) and metabolic flux through 
31

P magnetic resonance 

spectroscopy (MRS) using a 4.0 tesla superconducting magnet (Bruker Biospin, 

Rheinstettn, Germany).   These methods have been described elsewhere (102).   

Muscle Architecture 

Measures of tendon stiffness, moment arm length, pennation angle and muscle 

volume were performed at the University of Massachusetts Amherst and Cooley 

Dickinson Hospital Imaging Facility in Amherst MA.  Ultrasound imaging was used to 

measure the distortion of tibialis anterior muscle fascicles and tendon during progressive 

contractions to maximum voluntary effort while a subject was seated in the Biodex 

isokinetic dynamometer (72; 73; 175). 

To measure muscle volume, serial sections of MRI were collected for the length 

of the lower leg (T1 weighted spin echo axial images; 4 mm slice thickness, 210 mm 

field of view, 512x512 matrix).  Custom written Matlab software was used to separate the 

anterior compartment in each slice into contractile and non-contractile tissue based on 
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signal intensity.  Total muscle volume was determined from measured cross sectional 

area combined with the thickness of each slice. 

Metabolic Perturbation and Homeostasis 

 As described previously (110; 134), 
31

P MRS was used to observe the relative 

concentration of metabolites during contraction and recovery with 4s time resolution.  

Phosphocreatine (PCr) and inorganic phosphate (Pi) were measured in the dorsiflexors 

using a 4.0 tesla superconducting magnet.  The depletion of PCr, accumulation of Pi and 

rate of ATP production through anaerobic glycolysis were measured during contractions 

performed at a range of intensities (110; 134) in order to establish a relationship between 

voluntary activation level and metabolic perturbation.  Quantitation of phosphorus 

containing metabolites was accomplished by line fitting of time-averaged spectra, using 

NUTS software (Acorn NMR, Livermore CA).  A stepwise approach to the formulation 

of the functions that dictate metabolic perturbation were similar to those used in the 

previous model formulation (Callahan et al, unpublished) and detailed in Appendix D.     

Modeling Fatigue and Recovery 

 The present model augments previous simulations of neural activation and 

metabolic perturbation by the inclusion of functions that predict the restoration of 

homeostasis, allowing for the prediction of intracellular metabolic status during 

intermittent contractions.  Fatigue was dependent on the predicted accumulation of 

H2PO4
-
 through a negative, linear association between [H2PO4

-
] and activation (Step 3).  

This is meant to reflect the relationship between [H2PO4
-
] and Ca

2+
 mediated force 

generation observed in vitro (143).  The model predictions for [Pi] and [H
+
] were based 

on the activation dependent accumulation of Pi (equations 1 and 2, Appendix E) and 
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glycolysis (equations 25-32, Appendix D).  Briefly, muscle activation level (Step 3, 

Figure 1) dictated coefficients that determined the rates of Pi accumulation during 

contraction.  This rate was limited by the square root of the percent of PCr remaining 

during contraction: 

(PCr/PCrrest)
0.5

       (1) 

The model of glycolysis was based on the Michaelis-Menten  relationship between [Pi] 

and glycogen phosphorylase (22), and predicted the rate of proton generation from this 

metabolic pathway.  The Km of the relationship was assumed to be 18.94 mM (22; 155).  

Protons were produced from non-oxidative glycolysis, consumed by the creatine-kinase 

reaction (rate of Pi accumulation) and buffered by several intracellular processes (see 

Appendix D).    

 Following contraction in which intracellular pH was more acidic than baseline 

values (pH = 7.05), [H
+
] returned to baseline through a model of efflux.  This calculation 

was based on measured values of proton efflux (179) and was expressed mathematically 

by the equation:  



Efflux  Erate
pH2

      (2) 

where Erate was the linear rate constant for proton efflux (102) and –pH was the 

difference between pH and baseline pH. 

 In vivo, 
31

P MRS was used to monitor the recovery to baseline levels of [Pi] and 

[PCr] following contractions at each intensity level.  Observed recovery rates of [Pi] and 

[PCr] were fit with a 3
rd

 order exponential decay, or rise to maximum respectively.  The 

first derivatives of these equations were used to calculate rates of change for [Pi] in the 

present model (equation 22b, Appendix D).   
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Experimental observation revealed that the recovery kinetics of [Pi] depended on 

the extent of [PCr] depletion, which contradicts previous reports (184).  These effects 

were reflected in the model by adding a function that related the coefficients of post-

contraction Pi recovery with the level of depletion (Equations 23 and 24, Appendix D).  

For a more complete explanation of these functions, and their derivation, see Appendix E.  

During recovery, [H2PO4
-
] was calculated from [Pi] and pH at each time point according 

to the equation: 



H2PO4  Pi /(110(pH6.75))     (3) 

Fatigue was modeled by using current [H2PO4
-
] to limit activation (act) in the vector 

equations in the muscle model (see Appendix D).  The limit on act (ActLim) was based 

on literature values (111) and expressed mathematically by the equation: 

 )09275.1(0175.0 42  POHActLim    (4) 

 The quality of model predictions was evaluated principally by comparing the 

output of each simulation to our experimental contractile and bioenergetic data in the 

case of maximal and submaximal 12s contractions.  Fatigue simulations were compared 

with literature values (113) for measures of fatigue.  
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Figure 5.1. Computational approach.  A block diagram is presented of each in the 

neuromuscular model, and the physiological events they are meant to represent.  

Source data used in each step are included in the appropriate block 
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Results 

 

Results for a single maximal, 12s contractions and the 287s recovery period are 

illustrated in Figure 2.  In all figures, modeled data are continuous (0.001 time resolution) 

but are sampled at 4s intervals for ease of comparison with in vivo data.  Model 

predictions for the decrease in [PCr] and increase in [Pi] during the 12s contraction were 

accurate and well within the standard deviations of the experimental data.  Similarly 

accurate predictions were made for intracellular pH and [H2PO4
-
] during contraction.  

Following the contraction, modeled recovery rates of these metabolites matched well 

with the experimental data.  Compared with in vivo measures, the model slightly under-

predicted acidosis during the recovery period, and the kinetics of alkalosis and acidosis 

were slightly delayed.  However, these differences were minor and the characteristic 

behavior of the intracellular metabolites was highly consistent with in vivo observations.  

Finally, predictions of [H2PO4
-
] were similar to in vivo measures. 

Results for single, submaximal contractions at 50% and 20% MVC are illustrated 

in Figures 3 and 4 respectively.  Modeled metabolite concentrations were generally in 

good agreement with experimental data at 50% MVC (Figure 3).  The exception was the 

prediction of pH following contraction.  Although the model predicted contraction-

induced alkalosis within the standard deviations of experimental values at this torque 

level, the model slightly over-predicted acidosis.  Given the relatively minor change to 

pH in both modeled, and experimental data during recovery, this deviation from 

experimental values was not sufficient to alter predictions for [H2PO4
-
], which compared 
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well with the experimental measures of this metabolite for the duration of both 

contraction and recovery periods.   

At the lowest torque level, 20% MVC, model predictions for [PCr] and [Pi] were 

consistent with experimental data.  The estimate of pH, while characteristically similar to 

the in vivo time-course, over-predicted acidosis during recovery.  In fact, the 

experimental data revealed little to no net acidosis following contraction at this lowest 

force level.  However, because the degree of predicted acidosis was minimal, it did little 

to upset predictions of [H2PO4
-
], which aligned well with experimental data.   

Overall, the changes in metabolites predicted by the model were well-

approximated during and following single, 12s contractions.  This result is critically 

important to the application of the model to simulations of repeated intermittent 

contractions, and the study of fatigue. 

Simulation of the contractile and bioenergetic response of 60 MUs to 6 repeated, 

12-s MVCs (Figure 5) was consistent with an independent dataset from the literature.  

Torque and pH ultimately fell, and [Pi] increased, as expected, and the magnitude of 

these changes were similar to those reported by Lanza et al (113).  Torque was reduced to 

79.1% of baseline, which compares well with the value of 74.2% reported in Lanza et al 

in vivo (113).  The root mean squared difference (RMSD) of fatigue prediction was 

therefore 6.6%.  The time-course and magnitude of changes in intracellular metabolites 

compared reasonably well with the experimental data reported by Lanza et al (113), 

(Figure 5).  At the end of the repeated contractions, model simulations predicted [Pi] = 

33.9 mM as compared with 32.6 ± 0.9 mM, a RMSD of 4.0%.  End-exercise pH was 

somewhat less consistent with values in the literature.  Lanza et al reported pH of 6.70 ± 
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0.03 at end exercise, while the model predicted pH = 6.81.  When converted to absolute 

proton concentration (1.99 ± 0.14 and 1.55 mM, respectively) this reveals a 22.4% 

RMSD.  Similar to the prediction of pH during a single contraction, acidosis was under-

predicted by the model.  However, the degree to which acidosis is under-predicted seems 

exacerbated during repeated simulated contractions.
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Figure 5.2 Maximum voluntary contraction and recovery.  Simulated (open 

circles, grey line) and in vivo (closed circles ± SD) data corresponding to 

phosphocreatine (PCr, A), inorganic phosphate (Pi, B), pH (C), and H2PO4
- 
during 

a 12s maximum voluntary contraction and subsequent return to homeostasis 
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Figure 5.3 50% Maximum voluntary contraction and recovery.  Simulated 

(open circles, grey line) and in vivo (closed circles ± SD) data corresponding to 

phosphocreatine (PCr, A), inorganic phosphate (Pi, B), pH (C), and H2PO4
- 
during 

a 12s contraction (50% MVC) and subsequent return to homeostasis 
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Figure 5.4 20% Maximum voluntary contraction and recovery.  Simulated 

(open circles, grey line) and in vivo (closed circles ± SD) data corresponding to 

phosphocreatine (PCr, A), inorganic phosphate (Pi, B), pH (C), and H2PO4
- 
during 

a 12s contraction (20% MVC) and subsequent return to homeostasis 
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Figure 5.5 Simulated repeated 12s contractions.  Simulated intracellular [PCr] 

and pH during 6 repeated 12s MVC (A).  Continuous (0.001s) simulated relative 

torque (solid black line) and in vivo relative torque (time tension integral) from 

young men (closed circles ± SD) from Lanza et al (111; 113) (B).  Average torque 

produced during repeated contractions in the simulation, plotted against average 

[H2PO4
-
] for those contractions (C) 
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Discussion 

Model Predictions 

 The model presented here accurately predicts voluntary activation, torque 

production, metabolic perturbation, and return to homeostasis during single and repeated 

contractions in the ankle dorsiflexor muscles.  These results have been confirmed by 

comparison with experimental data.  Both overall (fatigue) and intermediate (intracellular 

metabolic status) model predictions (Figures 2, 3 and 4) were found to be consistent with 

results in the literature (Figure 5).  A novel feature of this model is the capacity to predict 

metabolic recovery and thereby allow investigation of fatigue during repeated 

contractions. By associating [H2PO4
-
] with limitations in the molecular basis of muscle 

force generation (36) the model predicts changes in torque and intracellular metabolites 

during repeated activation that are characteristically similar to those measured in vivo.  

This was accomplished computationally by limiting the capacity for calcium-mediated 

activation (equation 3), (143).  The model therefor provides a novel tool for testing 

hypotheses related to fatigue resistance and intracellular bioenergetics.   

 Overall fatigue in our model was less than that observed by Lanza et al (113) 

using the same contraction protocol.  However, it should be noted that the subjects whose 

data were used to parameterize the present model were more active, and potentially more 

fit than the cohort of Lanza et al (113).  Indeed, kPCr, an indication of the in vivo 

oxidative capacity of voluntary contracting muscle, was reported as 0.036 in Lanza et al, 

markedly lower than the value predicted from the modeled data (0.044).  This greater 

capacity to synthesize PCr following MVC would result in predictions of less Pi 

accumulation, lower glycolytic rates, and overall lesser [H2PO4
-
] and fatigue.  
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 The prediction of less acidosis and fatigue during repeated contractions compared 

with in vivo data, despite similar depletion of PCr, highlights a potential limitation in the 

present model.  Faster PCr recovery kinetics in the model compared with in vivo data will 

affect pH predictions by limiting the overall load of Pi, and thus calculated rates of 

glycolysis.  However, the control of glycolysis in vivo is influenced by a number of 

factors (32; 109) not expressed in the present model.  While our predictions for glycolytic 

flux match well with experimental data, our phenomenological model of glycolysis is 

admittedly simplified, and may contribute to inaccuracies in model estimates.       

Mechanisms of Fatigue 

In the present application, fatigue was simulated by limiting the activation signal 

in step 3 of the model based on [H2PO4
-
].  This approach was used as it relied on the least 

number of assumptions and was supported by substantial evidence in the literature (143) 

(2).  During activation, force generation depends on binding of the acto-myosin complex 

in its strongly bound configuration, which is preceded by the dissociation of Pi.  Because 

these reactions occur in equilibrium within the sarcoplasm, increased cytoplasmic [Pi] 

may decrease its rate of dissociation from the acto-myosin complex, and thus, reduce the 

number of cross-bridges linked in a strongly-bound configuration.   

Elevated [H
+
] depresses cross-bridge force in vitro, regardless of saturating levels 

of Ca
2+ 

(132), suggesting it has independent effects on cross-bridge force generating 

capacity (46).  Some investigators have observed an inverse, linear relationship between 

[H
+
] and force-generating capacity (106).  However, during recovery from fatigue, 

hysteresis is evident in this relationship, indicating that if [H
+
] is directly mediating 

fatigue, its relationship with force-generating capacity is not constant.  It seems likely 
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that [H
+
] has an associative, rather than causal relationship with reduced force production 

in vivo.   

Several investigators have observed associations between [H2PO4
-
] and skeletal 

muscle fatigue (31; 103; 106; 111; 113; 135) which seem more robust than associations 

between [H
+
] and fatigue alone.  Increased [H2PO4

-
] during contraction reflects increased 

intracellular [Pi] and [H
+
] that result from the creatine kinase reaction and glycolysis, 

respectively.  Multiple studies have demonstrated a linear association between [H2PO4
-
] 

and fatigue (31; 106; 111; 113; 135).  The correlation between fatigue and [H2PO4
-
] 

persists during ischemia and is consistent, whether fatigue is induced by intermittent or 

sustained contractions (135).   

It has been suggested that the strong relationship between fatigue and [H2PO4
-
] is 

lost during repeated bouts of dynamic contractions (156).  In light of this observation, and 

given the myriad influences on voluntary force-generating capacity, it seems unlikely the 

entirety of the fatigue process can be ascribed to a single metabolite.  However, the 

variety of conditions under which [H2PO4
-
] correlates with losses in force highlights its 

utility as a strong predictor of fatigue during isometric contractions.    

In vivo, skeletal muscle fatigue during intermittent contractions is likely due to 

both peripheral and centrally-mediated changes in neuromuscular function.  Signals from 

group III and IV afferent nerve fibers, sensitive to the accumulation of intracellular 

metabolites, contribute to diminished cortical excitability, as well as increased α motor 

neuron inhibition (18; 172).  However, central mechanisms of fatigue seem to play the 

greatest role during prolonged, submaximal, and maximal isometric contractions (31; 

103; 106; 111; 113; 135; 191), and a lesser role during intermittent maximal contractions 
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(20; 112; 125).  The present model relied on a purely peripheral mechanism (limits to 

activation at step 3) to predict fatigue.  This mechanism was chosen based on the greatest 

volume of experimental in vivo evidence supporting this mechanism, including recent 

investigations using rat (124) and murine models (1).  Future applications of the present 

model might investigate the relative impact of varying the contribution of central (Step 2) 

and peripheral (Step 3, Step 4) mechanisms.  However, the focus of the current 

application was to validate the model‟s initial predictions.  As such, further manipulations 

were deemed beyond the scope of this project.    

Current Insights and Future Directions 

 Our accurate prediction of bioenergetic and fatigue responses to repeated 

voluntary activations provides some encouragement for the use of the present model in 

future applications that might answer questions related to the mechanisms of skeletal 

muscle fatigue in vivo. While additional studies are needed, the data presented here 

provide some insight as to the mechanisms of fatigue, and the nature of the assumptions 

related to the energetic response to voluntary activation and torque production.    

The range of glycolytic potential assigned to muscle models within our 60-motor 

unit pool, and how these might respond to varying activation levels, provides a 

modifiable variable related to the mechanisms of fatigue.  The ranges expressed by the 

present model are within those reported in vivo (113; 183) and were selected specifically 

to reflect the overall average glycolytic potential observed during maximal voluntary 

activation (113).  It should be noted however, that other combinations of values could be 

used to arrive at the same average for the total pool.  Evidence in the literature supports a 

fairly narrow range of glycolytic potential across human muscle fibers (162), similar to 
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the 4-fold range described in the model.  In the low-intensity (20% MVC), experimental 

contractions used as the basis of our model formulation, little post-contraction acidosis 

was observed, suggesting limited glycolytic flux during activation of low-threshold motor 

units. This might be explained by a pool of motor units with a low capacity for non-

oxidative glycolysis.  However, such a pool would contradict the narrow range of 

glycolytic potential typically reported in human muscle.   

 Glycolytic flux is one of several variables used to calculate pH at each time point 

in the model.  As such, much can be gleaned from interpretation of model variations 

necessary to approximate observed values for pH.  While our estimates of glycolysis, PCr 

depletion, Pi accumulation, and buffering capacity were within the standard deviation of 

our experimental means during single, 12-s contractions, subtle differences in each 

variable might impact our prediction of pH significantly.  This is especially relevant 

during simulation of prolonged, repeated contractions.  The kinetics of recovery of 

homeostasis are generally slower than those for depletion during activation.  As a result, 

the first in a series of contractions is the only instance during these simulations where 

metabolite concentrations were equal to resting values obtained experimentally.  Any 

prediction error will potentiate as periods of activation are repeated.  Further, the 

interrelated nature of equations used to predict intracellular status of the muscle model 

permits an inaccuracy in one function to cause inaccuracy in others (Pi impacting 

glycolysis and pH, for example).   

The dynamic range of buffering capacity used during the simulation, which 

depended on current [Pi], pH, and inherent buffering capacity was a physiologically 

relevant prediction provided by the model.  Values for inherent buffering in skeletal 
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muscle vary widely in the literature (99; 110; 183).  Here, inherent buffering in was set to 

5 mM/pH unit after optimizing for the most accurate pH response to contraction across 

contraction intensities.  A similar routine was performed for the calculation of buffering 

from Pi and the proton stoichiometry coefficient θ, a coefficient that determines protons 

consumed or produced via the creatine kinase reaction (equation 30, Appendix D).  

Although these values are within the range reported in the literature (99), further analysis 

could be performed to determine the relative impact of each variable on overall 

predictions of intracellular pH.  In the present application, these variables were optimized 

to increase predicted variation in pH to more closely match in vivo measures.  Reducing 

inherent buffering capacity, while increasing the buffering due to Pi, effectively increased 

the drop in pH observed following contraction, while allowing for accurate predictions 

during activation.  These adjustments may be used to provide insight to many 

assumptions made during calculations of intracellular metabolic status from 
31

P MRS 

data.   

 Overall, our model approximated the torque and metabolic responses to repeated 

maximal contractions as reported in the literature (113).  These predictions were based on 

a model whose functions were derived from in vivo measures of musculoskeletal 

architecture, torque, and metabolic perturbation during relatively brief, single 

contractions at varying torque levels in a young, male cohort, and validated by 

comparison with an independent data set from the literature.  This model represents a 

significant step forward for the field of computational modeling, based on its high level 

of integration, simplified control structure, and accuracy in predicting a wide range of 

variables.  
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 The current formulation and simulation results suggest an important role for peak 

oxidative capacity in fatigue resistance.  This assumption is based on the sensitivity of 

fatigue predictions to variation in the recovery kinetics of PCr and Pi.  Informal 

sensitivity analysis indicated that these kinetics had a greater impact on fatigue than other 

potential factors, like glycolytic rate and buffering capacity.  Although in-depth analysis 

of these assumptions were beyond the scope of present work, future applications will 

include formal sensitivity analysis to determine the relative impact of different indices of 

neuromuscular function on fatigue.     

In addition, the interaction of modules in the present model might be manipulated 

to test hypotheses related to identifying the physiological sites of fatigue development.  

For example, multiple computational strategies might be used to reduce force-generating 

capacity in the model.  Future iterations of the present model might use intracellular 

metabolic status to inhibit MN recruitment, and thus effectively emulate central 

activation failure.  Similar reductions to each muscle model fmax would characterize in 

vitro evidence for a direct inhibition of actin-myosin binding and subsequent force 

generation.  Further, ample in vivo evidence would support a slowing of activation and 

contractile kinetics during repeated contractions, and the present model is a unique 

platform to investigate their impact on fatigue during voluntary activation.  Indeed, 

several components of the present model, now validated, provide excellent targets for 

future evaluation. 
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CHAPTER 6 

EFFECTS OF AGE ON NEUROMUSCULAR FUNCTION: MODELING AGE-

RELATED FATIGUE RESISTANCE 

 

 

Abstract 

 

Strong evidence exists to suggest that the muscles of older individuals fatigue 

relatively less than their younger counterparts during either prolonged or intermittent 

isometric contractions.  However, due to the many differences in neuromuscular function 

between young and older humans, it is difficult to ascertain the physiological 

mechanisms of age-related fatigue resistance in vivo.  Reduced maximal motor unit 

discharge rates, a relatively greater abundance of slow, type I muscle fibers, and 

differences in bioenergetic properties all may contribute to the phenomenon of age-

related fatigue resistance.  Although models have been developed that predict fatigue in 

response to repeated activations, and others have been designed to predict altered 

function with old age, no model has been designed to examine age-related changes of the 

neuromuscular system in the context of fatigue.  We present a comprehensive 

computational model of neuromuscular function that significantly extends previous 

efforts to emulate multiple facets of neuromuscular function during repeated voluntary 

contractions.  In our present application, we test the validity of a model of neuromuscular 

function specifically tuned to highlight age-related differences in neuromuscular function 

that may play a role in the relative fatigue-resistance demonstrated by older adults 

compared with young adults.  By simulating repeated maximum voluntary contractions, 

similar to protocols used to test fatigue in the literature, we demonstrate the sensitivity of 
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the model to age-related differences in neuromuscular function.  The model predicted 

fatigue responses similar to those observed in vivo, and importantly, lesser in magnitude 

than those predicted by a model parameterized with data collected in a group of young 

individuals.  These findings validate the present model as a unique and powerful tool for 

testing hypotheses related to the phenomenon of age-related fatigue resistance.
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Introduction 

 Evidence in the literature suggests that skeletal muscle fatigue, the acute decline 

in force-generating capacity that accompanies repeated or prolonged contraction, occurs 

to a lesser extent in the muscles of older adults than in young adults  (24; 174).  Age-

related fatigue resistance has been reported by a number of labs under a variety of 

experimental conditions (20; 21; 25; 44).  However, others have reported the opposite 

(10; 149) and there is some controversy regarding the extent and prevalence of this 

phenomenon.  Recent analyses suggest that age-related fatigue resistance least often 

observed during dynamic contractions, and most frequently observed during sustained 

(11; 88; 125) or intermittent (25; 44) isometric contractions (24; 174).  Several 

mechanisms have been proposed to explain age-related fatigue resistance, including 

alterations in motor neuron behavior (4; 174), greater reliance on oxidative metabolism 

(106), increased metabolic economy (80; 111) and reduced generation of fatigue-

inducing metabolites (23; 26).   

The interrelated nature of the physiological processes thought to influence fatigue 

makes their influence difficult to discern in vivo.  Quantifying the extent to which these 

processes differ between younger and older individuals and further, how they might 

mediate age-related differences in fatigue is an even greater challenge.  While in vitro 

experimentation can provide explicit details about isolated systems, and in vivo studies 

typically describe the combined function of multiple systems, each are limited in 

addressing the phenomenon of age-related fatigue resistance.  Model simulations, on the 



 

109 

other hand, can be used to predict the responses of complicated systems whose 

interrelated components preclude direct measurement or control.   

Computational modeling has emerged as an attractive means of using what is 

known about isolated systems to predict their behavior when combined.  Models have 

been developed that successfully predict the function of multiple bio-physical systems, 

ranging in focus from nervous tissue (77) to individual sarcomeres within skeletal muscle 

(91).  Although models have been developed that predict fatigue in response to repeated 

activation (62), and others have been designed to predict altered function with old age 

(175), no model has been designed to examine age-related changes of the neuromuscular 

system in the context of fatigue.  Previously, we have presented a comprehensive model 

of neural activation, contractile dynamics, bioenergetics and fatigue (Callahan et al, 

unpublished).  Adapting this model to reflect what is known about age-related changes to 

the neuromuscular system would allow for testing of hypotheses related to age-related 

fatigue resistance that are impossible to evaluate in vivo.  Our approach was to focus on 

those aspects of neuromuscular function that are 1) known to differ between young and 

older adults, and 2) thought to play a role in the loss of force-generating capacity that is 

the hallmark of neuromuscular fatigue.  The goal of the present study was to adapt a 

model of neural activation, contractile properties and bioenergetics (Callahan et al, 

unpublished), to make valid predictions regarding age-related fatigue resistance and the 

attendant physiological responses observed during repeated voluntary contractions in 

vivo.  To accomplish this goal, variables related to contractile kinetics, activation, motor-

neuron discharge behavior and bioenergetics were altered from our previously-validated 

model of neuromuscular function.  The combined outputs of these functions were tuned 
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to ensure accurate prediction of neuromuscular function obtained experimentally in the 

ankle dorsiflexors of older men.  The overall prediction of fatigue in older adult men was 

validated by comparison with an independent data-set available in the literature.    

 

 

Methods 

Computational Approach 

A comprehensive model of neuromuscular function, formulated using literature 

values and in vivo experimental data collected from healthy young men was adapted for 

application to the study of aging.  Adaptations to the original model (Callahan et al, 

unpublished), referred to here as “Young model”, was accomplished by synthesizing 

results from the literature and a locally available data-set concerning intracellular 

metabolic data from the muscles of a group of older, healthy men.  The modified model is 

referred to as “Old model” in this document.  The overall computational approach is 

identical to that proposed previously with significant adjustments made to the 

computation of metabolic perturbation and return to homeostasis, glycolytic capacity, 

motor neuron recruitment and discharge properties, and contractile characteristics.  These 

alterations were made for the model to emulate age-related changes in the neuromuscular 

system thought to contribute to the phenomenon of age-related fatigue resistance (24; 

174).  Steps in the forward integration model are identical to previous iterations. These 

steps are illustrated in Figure 1.  Those steps altered to reflect age-related changes in 

neuromuscular function, are highlighted with dashed lines.    

Briefly, the steps of forward integration began with a single parameter meant to 

represent voluntary excitation (S, Step 1).  This value serves as the input for a modeled 
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pool of 60 motor neurons (Step 2) which closely follows a model by Fuglevand et al (59) 

and predicts a firing rate (FR) for each simulated neuron.  A calcium transient model of 

activation followed (Step 3) and provides input into a standard Hill muscle model (Step 

4).  Integrated with the muscle model were calculations related to metabolic perturbation 

and return to homeostasis (Step 4a).  At each stage, this cellular metabolism model 

interacted with the muscle model by affecting activation from step 3.  The linear sum of 

forces produced by all muscle models was then used as the input for a musculo-skeletal 

model of the ankle joint which predicted current joint torque (Tc) at the ankle (Step 5).  

Finally, Tc was compared with a priori defined timeline of a torque task (Tt) which 

caused an adjustment of S such that the difference between Tc and Tt was minimized 

(Step 6).  In this forward integration model, functions received no input beyond initial 

conditions and Tt.  A detailed description of the equations that dictate the outcome of 

each step can be found in Appendix D. 

Model Characteristics  

 Our previously validated Young model was parameterized using intracellular 

metabolic, and musculoskeletal data from a group of healthy young men (21 – 35 years, n 

= 8).  Physical activity habits ranged from recreationally, to competitively athletic within 

this group.  A complete description of data collection has been outlined previously 

(Callahan et al, unpublished).    

Data similar to those obtained in this single cohort for the Young Model were 

available in a sample of older men (65 – 80 years, n = 9).  These data were collected as 

part of a larger study of age-related changes in cellular metabolism and did not participate 

in measures of tendon stiffness.  Participants where healthy by self-report, relatively 
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sedentary and did not smoke.  Consent from older participant‟s primary care physician 

was obtained prior to participation.  A schematic of modeled steps they used to formulate 

simulated output is shown in Figure 1.  Those steps that were modified from the 

previously validated model are indicated by dashed lines in the Figure.  The following 

sections describe the steps that have been modified in the present application in greater 

detail.   
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Figure 6.1.  Computational approach and literature sources for model components.  Components with 

dashed lines (2, 3, 4, and 4a) were modified from a previously validated version of the model (Callahan 

et al, unpublished) to reflect age-related changes in those aspects of neuromuscular function 
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Model Parameters 

Model steps related to the forward integration of pertinent variables are outlined 

in Appendix D.  Detailed description of the derivation of modeled steps related to 

bioenergetics is described in Appendix E.  The focus of the present analysis is on those 

parameters that were altered to reflect age-related changes in neuromuscular function.  

While the characteristic behavior of functions described in Appendices D and E are 

consistent between the Young model and Old model, coefficients defining their range and 

kinetics were altered to ensure model predictions for their respective output matched in 

vivo observations.  Portions of the model that were adapted to differentiate the Old model 

from the Young model included the motor neuron pool, contractile kinetics, metabolic 

perturbation and the musculoskeletal model.  A more detailed discussion of model 

alterations follows.   

Motor Neuron Pool 

 The modeled pool of motor neurons (MN), was adjusted to reflect changes in 

discharge properties of alpha motor neurons of older adults.  Peak discharge rates for 

recruited motor neurons were reduced from 56 in YM, to 45 (160).  The range of peak 

firing rates across 60 simulated MN was also limited from 10 to 8 (160).  Minimum firing 

rate was set to 8 Hz, gain for activation (gain = 2) and activation thresholds (equations 9-

11, Appendix D) were identical to the Young model. 

Activation Kinetics 

 The equations defining activation and deactivation kinetics were altered slightly 

from those previously based on He et al (76).  Evidence for age-related changes in 
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activation kinetics are largely inconclusive.  It is possible that muscle fiber type 

dependent rates of calcium efflux (19) may lead to an overall slowing of activation in 

older adults based on a relatively greater population of type I muscle fibers.  To reflect 

this, the average time constant for activation (60 ms) was not changed, but the range of 

activation time constants was reduced from 35% to 25%.  In contrast to the limited 

evidence for age-related changes in activation kinetics, ample evidence supports the 

notion of prolonged deactivation.  Slowed calcium uptake from the cytosol varies by 

muscle fiber type (170) but is thought to be high as 35% (89) in humans and higher in 

rats (139).  This slowing of deactivation was described mathematically by Thelen at el 

(175) and has been accomplished here by a similar increase in the average deactivation 

time constant from 92 ms (Young model) to 120 ms (Old model).  Further revision of the 

model included a subtle increase in the “on” transient period of the Ca
2+

 signal (see II, 

Appendix D).  This was done primarily to ensure the model was capable of achieving 

complete activation, despite lower motor neuron firing rates.   

Contractile Kinetics 

 Several variables were altered in OM to reflect age-related changes in contractile 

characteristics when compared to YM.  These alterations are listed in Table 1.   

Contractile slowing is frequently observed in vivo (4; 174).  Often, this slowed rate of 

force development during isometric contractions, as well as in dynamic tasks, is 

attributed to altered fiber type distribution (116) and age-related contractile slowing that 

occurs within fibers of the same type (144).  In our approach, this contractile slowing was 

expressed across the population of muscle models (MM), each of which corresponds to, 

and receives its activation signal from one of 60 MNs.  These were coordinated such that 
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the earliest recruited, MN corresponded to the slowest, least force-fully contracting MM1.  

While MM1 had similar maximum shortening velocities (Vmax) to MM1 in YM, Vmax in 

the muscle model associated with the highest threshold motor neuron (MM60) was 

reduced by 12.5% compared with MM60 in YM.  Because the distribution of forces 

generated by these models was not linear, the overall Vmax of all muscle models was not 

equal to the average of the range.  The average of Vmax, weighted according to muscle 

force-generating capacity (expressed in terms of optimum contractile element lengths 

[Lce
o
 ] per second) was 16.43 Lce

o
 in YM and 14.84 Lce

o
 in OM.  This reduction in Vmax 

was somewhat less than the 20% reduction modeled by Thelen et al (175), but yielded 

appropriate torque-frequency relationships when compared to our experimental data 

(Figure 2).  

 

Table 6.1.  Age-Related Changes to Contractile and Activation Kinetics  
 

  MM1 MM60 
Weighted 
 Average 

Fmax 
(N) 

Young 0.57 54.51 28.06 

Old 0.53 50.73 26.11 

Vmax 
(Lce

0) 

Young 12.00 18.00 16.43 

Old 12.00 15.75 14.84 

tdeact (ms) 
Young 92 64.6 70.2 

Old 120 84.3 91.6 

Tact (ms) 
Young 60 39 43.4 

Old 60 45 48.2 

Contractile element (CE) parameters: Maximum force-generating capacity of (Fmax); 

maximum shortening velocity (Vmax); deactivation time constant (tdeact); activation 

time constant (Tact).  Data are presented for the Young and Old parameters of the 

muscle model.  To illustrate the range within each variable across the range of muscle 

models (MM), values are shown for the 1
st
 (MM1) and last (MM60) individual muscle 

models within the overall model.   
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 In addition to alterations made to the range of Vmax within the contractile 

element of the model, maximum force generating capacity (fmax) was reduced by 4.55%.  

This alteration was based on a similar reduction in anterior compartment muscle cross 

sectional area observed experimentally (unpublished observations).   

Bioenergetics  

Several alterations were made to the model of metabolic perturbation and return 

to homeostasis.  The changes were made based on a combination of literature values and 

experimental observations using 
31

P MRS.   

Changes to phosphocreatine (PCr) and inorganic phosphate (Pi) kinetics were 

based on experimental data from older males, described above.  Functions related to the 

kinetics of metabolic perturbation and returns to homeostasis were formulated in a 

procedure similar to that used in the Young model, and outlined in Appendix F.  

Important distinctions between the Young and Old model are also reviewed in Appendix 

F.  Briefly, 
31

P MRS was used to observe the relative concentration of phosphorus 

containing metabolites during contraction and recovery with 4s time resolution.  PCr and 

Pi were measured in the dorsiflexors using a 4.0 tesla superconducting magnet (Bruker 

Biospin, Rheinstetten, Germany).  The recovery of PCr following a 12-second maximum 

voluntary isometric contraction (MVC) was used to calculate the in vivo capacity for 

oxidative phosphorylation; kPCr (110; 134).  The rate of ATP production through the 

creatine kinase pathway and anaerobic glycolysis were calculated for contractions at a 

range of intensities (20%, 50%, and 100% MVC) to better characterize the relationship 

between force, activation, and metabolic perturbation.  Quantitation of phosphorus 

containing metabolites was accomplished by line fitting of time-averaged spectra, using 
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NUTS software (Acorn NMR, Livermore CA).  Based on these data, model functions 

were created to reflect the cost of force production and the subsequent change in pH 

across a range of activation levels (See Appendix C).   

As with the Young model, glycolytic rates were based on the Michaelis-Menten 

relationship between Pi and glycogen phosphorylase.  The Km of this reaction was set to 

18.94 mM (22) in both the Young and Old model.  While a similar, 4 fold range in 

capacity was modeled in both the Young and Old model, the weighted average of peak 

glycolytic rates of ATP synthesis were reduced from 1.50 ATP·s
-1

 to 0.74 ATP·s
-1 

in the 

Old model.  This magnitude of age-related reduction in glycolytic flux during voluntary 

isometric contractions is consistent with values reported in the literature (111).   

Simulation Procedures 

 To test the validity of model predictions concerning excitation and contractile 

dynamics in an aged neuromuscular system, a simulation routine was run meant to 

emulate traditional force-frequency analysis in vivo.  Briefly, a train of “stimuli” were 

simulated by setting S = 1 for the first 0.029 s of the simulated period between motor 

neuron firings.  For a given simulation, this duration was constant and depended on 

stimulation frequency.  The results of these simulations were compared with in vivo 

measures, and previous model output. 

To test the model‟s ability to predict torque, activation, and metabolic response to 

voluntary activation, contractions of 12s duration were simulated at 20%, 50% and 100% 

of maximum voluntary effort.  These simulations were run by setting Tt to 20%, 50%, 

and 110% of predicted maximum torque, and allowing the control function in step 1 of 

the model to moderate excitation.  In the simulation of MVC, Tt was set to 110% to 
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ensure Tc was always < Tt, thus ensuring maximal stimulation to the model.  Simulations 

ran for a total of 300s in the case of MVIC, and 145s for submaximal contractions to 

allow for testing of recovery dynamics in the model.  The output from these simulations 

was then compared with in vivo data from older men to test the validity of the newly 

formulated model.  

 In order to test fatigue prediction in the model, a simulation was run using both 

YM and OM, consisting of 6, 12s contractions, each separated by 12s rest.  This protocol 

was designed to match recently published data from our lab, which were selected for their 

provision of data related to fatigue and  intracellular metabolites for comparison  (111).  

The simulation ran for a total of 144s with 0.001s time resolution.   

 

Results 

Age related changes in to activation and contractile characteristics were evaluated 

for accuracy with in vivo data, effective differentiation from the Young model.  This was 

accomplished by simulating a stimulation pattern meant to emulate neuromuscular 

stimulation at a range of frequencies.  The results are illustrated in Figure 2.  Compared 

with in vivo results, the Old model predicted peak torque values in response to a range of 

stimulation frequencies that were, in some cases, slightly below observed torque, but 

largely within the standard deviation of measured values.  Further, the Old model 

demonstrated a significant leftward shift in the torque-frequency relationship compared 

with the Young model (dotted line for reference).   

Results from the simulation of a single voluntary, 12s MVC in the Old model are 

illustrated in Figure 3.  Simulated depletion and recovery of [PCr]  matched well with in 

vivo measures in both rate and amplitude (Figure 3A).  Similar results were seen in the 
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prediction of pH through the contraction and recovery cycle.  A slight over-prediction of 

Pi and H2PO4
- 
concentrations is observed following the contraction, although this may be 

an artifact of the spectroscopy measure itself (see discussion).   

Simulations of submaximal voluntary contractions (Figures 4 and 5) yielded 

accurate predictions of metabolites thought to be related to fatigue in vivo.  For the 

duration of the simulated 12s contraction and 118s recovery period, simulated data were 

well within the standard deviation of in vivo observations of PCr, Pi, pH, and H2PO4
-
.  

Fatigue predicted by the Old model was consistent with in vivo measures (111) 

and is illustrated in Figure 6A.  A comparison between identical simulation protocols, 

illustrated in Figure 6B, revealed less fatigue in the Old model than that predicted by the 

Young model (79.1%).  The degree of fatigue resistance demonstrated by the Old model 

(84.4%) was similar to that reported for similar contraction protocols in vivo (25; 111; 

112).   

Overall, the Old model was capable of predicting contractile and intracellular 

metabolic kinetics during single contractions. The Old model successfully emulated in 

vivo data and demonstrated relevant shifts in these variables with respect to the Young 

model that were consistent with in vivo observations.  Simulation of repeated MVC 

resulted in fatigue that was consistent with that observed in a separate cohort of older 

men.  Importantly, fatigue in the present model formulation was less than that predicted 

by the Young model, confirming those features modified in the present model contributed 

to the prediction of age-related fatigue resistance. 
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Figure 6.2 Simulated and in vivo torque-frequency relationships in older adults.  

Simulated (open circles) and in vivo (closed circles ± SE) observations of the torque 

response to stimulation at a range of frequencies (10-50 Hz).  The dotted line 

represents the output of the same simulation run on a similar model representing the 

neuromuscular system of young men (Young model) 
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Figure 6.3 (A, B, C and D) Simulated metabolic response to 12s contraction at 

100% MVC. Results from the simulation of voluntary, 12s MVC are illustrated in 

Figure 3.  Simulated (open circles) depletion and recovery of phosphocreatine (PCr) 

concentration (A), inorganic phosphate (Pi, B), pH level (C) and di-protonated 

phosphate (H2PO4
-
; D) correspond well with in vivo measures (closed circles ± SD) 

for both rate and amplitude 
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Figure 6.4 (A, B, C and D) Simulated metabolic response to 12s contraction at 

50% MVC.  Simulated responses of intracellular metabolites during a 12s voluntary 

contraction at 50% MVC.  Simulated (open circles) depletion and recovery of 

phosphocreatine (PCr) concentration (A), inorganic phosphate (Pi, B), pH level (C) 

and di-protonated phosphate (H2PO4
-
; D) correspond well with in vivo measures 

(closed circles ± SD) for both rate and amplitude.  During the latter stages of 

simulated H2PO4
-
 recovery, predictions were slightly elevated compared with in vivo 

measures 
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Figure 6.5 (A, B, C and D) Simulated metabolic response to 12s contraction at 

20% MVC.  Simulated responses (open circles) of intracellular metabolites (A: PCr, 

B: Pi, C: pH, D: H2PO4
-
) are compared with in vivo measures (closed circles ± SD) 

during a 12s voluntary contraction at 20% MVC.  Model predictions matched very 

well with in vivo data for all metabolites for the period of contraction and recovery 
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Figure 6.6 (A and B) Predicted fatigue from model simulation.  A: A simulation 

of repeated maximum voluntary contractions (solid black line) compared well with 

the identical contraction protocol performed in vivo (closed circles ± SD).  B: 

Comparison between current simulation (Old model, black line) and previously 

formulated version of the model meant to emulate neuromuscular function in young 

men (Young model, grey line).   Differences in peak torque (% initial) achieved 

during repeated contractions were consistent with in vivo measures (Lanza et al, 

2007) 
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Discussion 

 The model simulations presented here are the first to accurately predict 

contractile, bioenergetic, and ultimately fatigue responses to repeated isometric 

contractions.  Although previous models have been designed and validated to capture the 

effects of age on activation and contractile function  (72; 73; 175), and others have 

predicted fatigue (40; 118; 159; 190), this is the first to do both simultaneously.  Our 

model employs a physiologically relevant means of activation and high level of 

integration while maintaining accuracy.  Importantly, the Old model predicted age-related 

differences in contractile and metabolic variables implicated in fatigue resistance.  The 

validation of this model presents a powerful tool for gaining insight to the mechanisms of 

age-related fatigue resistance.   

Methodological Issues 

Certain methodological considerations are necessary before applying this model 

or interpreting its results.  Alterations to the present model, relative to that presented 

previously, were within the range of in vivo data available locally and in the literature.  

However, many of these measures have a large degree of variability and may depend on 

factors other than age (114).  In addition, variables such as pH depend on multiple inputs, 

whose precise value can only be approximated.  These two considerations open the 

possibility that multiple errors in our model offset one another and lead to a reasonable 

predictions through inappropriate means.  However, our phenomenological model was 

validated at multiple steps along its sequential pathway, providing strong evidence that 

our inputs did not vary widely from in vivo measure.   
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Multiple variables from the literature were manipulated to some degree, after 

tuning individual functions to ensure accurate prediction of intermediate steps along the 

pathway of force production.  However, none were altered by more than 50%, and all 

were within the range of measured values in our dataset, or the literature from which they 

were derived.     

A notable absence from our modeled prediction is ATP produced from oxidative 

metabolism during contraction.  Production of H
+
 from oxidative phosphorylation during 

isometric contraction is modest, and likely not different between old and young 

individuals.  However, during prolonged contractions, especially during fatigue, 

oxidative metabolism likely plays a key role in fatigue resistance.  The fact that older 

individuals tend to rely on oxidative metabolism to a greater extent than young during 

prolonged bouts of contraction is likely related to their greater fatigue resistance.  In our 

model, the effects of oxidative phosphorylation and age-related differences in cellular 

metabolism are captured implicitly by our predictions of PCr and Pi kinetics.  However, 

the absence of an explicit prediction of oxidative metabolism likely precludes the model 

from accurately predicting the metabolic and fatigue response during more energetically 

demanding dynamic contractions.   

Current Implications and Future Directions 

The utility of a computational model depends on accuracy and flexibility to 

predict results not used during formulation.  The model presented here accurately predicts 

contractile and metabolic responses to voluntary activation based on a combination of 

literature values and experimentally derived, in vivo data.  These formulations combine 

to predict age-related differences in independent simulations run using two models.  Each 
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of these models was tuned to reflect the neuromuscular responses to activation in older 

and younger adult males.  Our model has demonstrated both accuracy and flexibility by 

accurately predicting age-related fatigue resistance and overall magnitudes of fatigue 

consistent with independent data-sets from the literature (111).   

An important aspect of the present results is the influence of buffering capacity 

and Pi recovery kinetics on the fatigue response, and the role these aspects of 

neuromuscular function likely play in age-related fatigue resistance.  Although a formal 

sensitivity analysis was beyond the scope of the present work, tuning of the model 

functions to reflect known, age-related changes in neuromuscular function revealed these 

components had a particularly strong effect on prediction of fatigue.  Also noteworthy 

was the greater fidelity of the Old model than the Young model to fatigue predictions 

when compared with a separate data-set.  Initial indications are that the Pi recovery 

kinetics in the cohort of older men used to parameterize the Old model were very similar 

to those of the data-set used for fatigue estimate validation.  The calculated values for 

kPCr were more similar for these groups of older adult men than were the kPCr values in 

the Young model and young men from Lanza et al (113).  The fact that the Young model 

predicted less fatigue than that reported in Lanza et al is consistent with more rapid Pi 

recovery in the Young model compared with those in Lanza et al.  This highlights the 

importance of oxidative capacity in fatigue resistance, and provides an early target for 

future hypothesis testing with the present model. 

Future application of this model might include sensitivity analysis of key 

variables to determine their relative impact on overall fatigue prediction.  This process 

may shed light on the mechanisms of age-related fatigue resistance.  In addition, the 
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model could be adapted to predict the fatigue response in other muscle groups or study 

populations.   
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CHAPTER 7 

A COMPREHENSIVE APPROACH TO MODELING INTERRELATED IN VIVO 

SYSTEMS 

 

 

Novel Contributions 

 The work presented here contributes significantly to a growing list of 

computational models meant to capture the physiological response to repeated or 

prolonged activation (38; 39; 43; 118).  The development of models with progressively 

increasing complexity is a daunting process, filled with potential pitfalls.  The number of 

predictions made by a model is accompanied by a necessary increase in the number of 

assumptions included in the model‟s formulation.  Inaccuracies in these assumptions may 

have a sizeable impact on the overall conclusions made by the model.  A unique 

contribution of the model presented here is its modular computational structure.  Each 

portion of the models formulation results in a prediction of physiological behavior that 

can be compared with in vivo observations.  This approach provides some degree of 

security against the potential for single, inaccurate model assumptions to have an 

overwhelming impact on total model output.   

 Further, the present model uses a flexible means to control central excitation, in a 

model of neural activation similar to Fuglevand et al (59), but augmented by a modular, 

multi-system model of neuromuscular function.  Our efforts are, in some respects, similar 

to others in the literature (38; 39).  In many respects, the applications of Dideriksen et al 

(38; 39) serve as an interesting counterpoint to the model presented here.  In both models, 

the approach presented by Fuglevand et al (59) was adapted to predict fatigue during 
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repeated voluntary activations.  Our approach is distinguished by the use of 
31

P MRS, 

MRI and ultrasound data to construct models of metabolic perturbation, muscle force 

development and dorsiflexor torque generation, respectively.  Our model formulations 

demonstrated both internal consistency and external validity when each step was 

compared with available data.  This successful attempt to characterize physiological 

events in the pathway to joint torque generation, as opposed to a more generalized 

approach to describing physiological processes (especially metabolic perturbation) 

improves our model‟s ability to provide unique insights to the mechanisms of muscle 

fatigue.   

 

Methodological Considerations 

 Despite careful consideration of the impact of parameter optimization at every 

step along the model‟s development, the output from model simulations should always be 

interpreted with some caution.  Consistently accurate predictions at intermediate steps 

along the pathway to torque production limit the potential for widely inaccurate 

prediction of variables of interest.  However, as the model is applied to conditions that 

diverge from conditions used in its formulation, assumptions made regarding individual 

functions within the model may reduce the accuracy of model predictions in ways that 

have not been anticipated.   

 These considerations must be made with every model forumulation and are no 

different in the present application.  This is especially true of our metabolic perturbation 

model.  While this novel formulation provides a volume of interesting predictions and as 

well as a means for gaining insight to the role of intracellular metabolic status in fatigue, 

it may be especially prone to error.  This is because the measured values of metabolites 
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via 
31

P MRS depend on calculations with a number of assumptions.  Several investigators 

have demonstrated the accuracy and validity of 
31

P MRS under a variety of conditions.  

Combined with its non-invasive nature and high temporal fidelity 
31

P MRS is a powerful 

and useful tool, uniquely suited to the present application.  However extremely subtle 

variation in the values derived from our 
31

P MRS studies can have significant 

implications for the models overall prediction.   

 For example, informal sensitivity analysis in the present model (data not shown) 

revealed that the rate constant for PCr recovery has a significant impact on muscle fatigue 

predictions and likely has the greatest influence on the differences we have observed 

between our age-specific fatigue models (Chapter 6, Figure 5B).  This prediction agrees 

with the literature regarding the role of oxidative metabolism in fatigue resistance, but 

does not capture the variability, and sometimes inconsistent relationship, between whole 

muscle oxidative capacity and fatigue resistance (37).  These considerations do not 

necessarily represent limitations in this context, but are important to appropriately 

interpret the models output.   

 

Future Directions 

 Here, we present a novel and comprehensive computational model of 

neuromuscular function, capable of predicting metabolic perturbation and subsequent 

fatigue during repeated voluntary activations.  This model provides us with a powerful 

tool for improving our understanding of the phenomenon of age-related fatigue 

resistance.  In its current state, formal sensitivity analysis may be performed with the 

model to gain insight on the relative impact of age-related neuromuscular changes on 

fatigue resistance.  These estimates could be used to form the basis of hypotheses tested 
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in vivo.  Further utility can be found by applying the model in its present state to various 

fatigue protocols used in the literature to explore the “task-dependent” nature of skeletal 

muscle fatigue.   

 The present model has been parameterized to represent the function of healthy 

young, physically active younger men, and separately, a group of healthy, relatively 

sedentary older adults.  The inputs to the model used to characterize these subject groups 

could be adapted to represent other populations as well without significant alterations to 

the computational approach.  Clinical populations characterized by altered neural 

function (multiple sclerosis), cellular metabolism (McCardle‟s disease, diabetes) or 

skeletal muscle atrophy (cancer, HIV) could be emulated by the current version of the 

model.   

 Despite the comprehensive approach used here, the model‟s complexity does not 

approach that of the neuromuscular system, and many simplifications and assumptions 

were made to achieve reasonable computation times and limit sources of potential error.  

However, future incarnations of the model might be adapted to include, for example, 

oxidative metabolic processes during muscle activation.  Oxidative metabolism is 

necessary for cellular function and its role in skeletal muscle contractile function cannot 

be overstated.  The lack of an explicit function describing oxidative processes in the 

present model likely limits its application to certain experimental conditions.  Similarly, 

the present model is constrained to isometric contractions, but might be significantly 

more useful as a component in forward dynamic simulations of metabolic cost if it were 

adapted to perform dynamic contractions.  Compared with isometric contractile function, 

relatively little is known about the metabolic responses to dynamic contractions.  The 
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present model, adapted to voluntary activation during dynamic changes in overall muscle 

length, might contribute substantially to our understanding of intracellular metabolic 

function during dynamic muscle contraction. 
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APPENDIX A 

GLOSSARY OF TERMS 
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Alpha motor neuron: Neurons in the ventral horn of the spinal cord responsible for 

activation of skeletal muscle.  Alpha motor neurons receive excitatory signals primarily 

from cortico-spinal tracts that deliver signals from the motor cortex.  Activation of the 

alpha motor neurons results in depolarization and conduction down its axon to a group of 

muscle fibers. 

Central activation: The ability of the central nervous system to fully excite a muscle or 

muscle group.  In the case of complete central activation, additional stimulus will not 

elicit greater force from the activated muscle.   

Central fatigue: Component of fatigue that results from insufficient neural activation.  

Limitations may reflect diminished excitation of the motor cortex, and excitability of 

alpha motor neurons in the spinal cord. 

Cross bridge: Term referring to the bound actin and myosin during muscle activation.  

Cross bridges provide the foundation for active force generation in skeletal muscle. 

Dashpot: A mechanical damper that slows, or smoothes the movement of spring-like 

oscillators.   

Deterministic: Behaving in a definite manner.  Deterministic equations will reliably 

result in identical solutions if initial conditions are identical.   

Distribution Moment: Mathematical characterization of probability involving a number 

of points in space.  The even distribution of points around a central focus is typically 

referred to as a “normal distribution”. 

Dynamic contraction: Skeletal muscle contraction during which overall muscle length 

changes resulting in limb movement. 

Electromyography: Technique used to record electrical activity of muscles.  

Depolarization of the sarcolemma causes local changes in voltage that can be recorded 

using electrodes inserted into the muscle, or applied to the surface of the skin.   

Fatigue: Acute loss of force generating capacity in response to repeated or prolonged 

activation in skeletal muscle fibers. 

Group III and IV afferent nerve fibers: Sensory neurons that conduct signal from 

skeletal muscle to the spinal cord.  It is thought that activation of these fibers inhibit 

activation of alpha motor neurons and may decrease cortical excitability.  

Hill muscle model: Muscle model consisting of components that describe the passive 

and active components of skeletal muscle force generation.  Named for A.V. Hill, these 

phenomenological models describe the behavior of muscles or muscle groups without 

addressing intracellular mechanisms of force generation. 

Huxley muscle model: Muscle model that uses multiple partial differential equations to 

describe force generation in skeletal muscle at the level of the sarcomere.  Named for H. 

Huxley, these models predict force generation by calculating the probability of force 

generating interactions between actin and myosin for a given set of conditions. 
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Isometric contraction: Skeletal muscle contraction during which no external movement 

occurs.   

Magnetic Resonance Spectroscopy: Technique used in chemical sciences to identify the 

components of molecules, but also applied to physiologic tissues to non-invasively 

determine the relative concentration of compounds within them.  Magnetic resonance 

spectroscopy relies on the signal generated when nuclei, exposed to a strong magnetic 

field, are excited using a radio-frequency pulse.   

Mechanistic model: A model that mathematically describes a system and the 

components that determine its overall behavior.  Mechanistic models have the capacity 

not only to predict how a system will behave, but how its underlying mechanisms might 

individually contribute to that behavior. 

Motor unit: An alpha motor neuron and all of the muscle fibers innervated by that 

neuron.   

Myosin heavy chain: Intracellular protein in skeletal muscle formed by multiple myosin 

II molecules.  Myosin heavy chain is arranged in parallel with actin.  During activation, 

myosin heavy chain and actin bind to produce force.  

Ordinary differential equation: Mathematical relationship between functions of a 

single independent variable and one or more derivatives with respect to that variable. 

Partial differential equation: Mathematical relationship between several independent 

variables (functions) and their partial derivatives with respect to those variables.   

Peripheral fatigue: Component of fatigue resulting from reduced depolarization of the 

sarcolemma, reduced calcium release from the sarcoplasmic reticulum, reduced cross 

bridge formation or reduced force generated per cross bridge. 

Phenomenological models: A model that mathematically describes empirical 

observations of a system.  The observable features of the system in question may not 

reflect all of its underlying mechanisms.  

Poisson distribution: Mathematical characterization of event probabilities over time, 

formulated by Simeon-Denis Poisson.   

Stochastic: Behaving in a random manner.  Stochastic equations include an element of 

chance, such that identical initial conditions will not guarantee identical outcomes. 

Recruitment threshold: Minimum voltage necessary to cause activation (depolarization) 

of an alpha motor neuron.   

Rheological: Relating to the flow or deformation of matter.  Rheological components of 

a musculo-skeletal models refer to the passive spring-like, and active force-generating 

components of the model.   
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APPENDIX B 

SOURCE DATA AND PARAMETERS FOR HYPOTHESES 1-3 
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Table 2 Source of Equations and Data 

Model Step Source of equations and data 

Hypothesis 1 

Excitation (S) 
Equations 1,2, and 3 dictate S based on difference between target torque (Tt) 

and current torque (Tc) predicted by model.   

Motor Neuron Pool 

120 MNs described by Fuglevand (58)  

Equations 1 and 2 describe activation status and firing rate 

MFR = 8 Hz 

PFR = 46-56 Hz 

Muscle Activation 
Membrane depolarization and Ca

2+
 kinetics calculated with each pulse using 

equations [9,10,11] according to (75) 

Muscle Model 

Hill type model based on van Soest (179) and Umberger (175) 

F for each of 120 models will be distributed similar to recruitment threshold 

(equation 5) over a 100-fold range, and scaled to theoretical value of peak 

force generating capacity in the contractile component of ankle dorsiflexor 

muscle group (Umberger, XIII ISCSB, 2011). 

Metabolic Perturbation From spectroscopy data described in Appendix D, equations 22a and 22b 

Joint Torque 
Musculo-skeletal model from existing data and parameterized to account for 

changes in moment arm with force (124)  

Simulation Protocol Tt set to 110%, 50%, 20% predicted MVC torque for 12s 

Hypothesis 2 

Excitation (S) 
S begins at 0.  Increases and subsequent decreases determined by Controller 

function; equations [1,2,3].   

Motor Unit Pool 

120 MUs described by Fuglevand (58)  

Equations 4 and 7 describe activation status and firing rate 

MFR = 8 Hz 

PFR = 46-56 Hz 

Muscle Activation 
Membrane depolarization and Ca

2+
 kinetics calculated with each pulse using 

equations [9,10,11] according to (75) 

Muscle Model 

Hill type model based on van Soest (179) and Umberger (175) 

F for each of 120 models will be distributed similar to recruitment threshold 

(equation 5) over a 100-fold range, and scaled to theoretical value of peak 

force generating capacity in the contractile component of ankle dorsiflexor 

muscle group (Umberger, XIII ISCSB, 2011). 

Metabolic Perturbation From spectroscopy data described in and Appendix D, equations 22a and 22b 

Limits on F From metabolic data in Lanza (91); Equation 5 

Joint Torque 
Musculo-skeletal model from existing data and parameterized to account for 

changes in moment arm with force (104)  

Simulation Protocol 

Tt = 110% predicted MVC for 12s, and 0 for 288s 

Tt = 50% predicted MVC for 12s, and 0 for 128s 

Tt = 20% predicted MVC for 12s, and 0 for 128s 

Simulation Protocol Tt = 110% predicted MVC for 6,12s contractions, and 0 for 12s between  
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Hypothesis 3 

Excitation (S) 
S begins at 0.  Increases and subsequent decreases determined by Controller 

function; equations [1,2,3].   

Motor Unit Pool 

120 MUs described by Fuglevand (58)  

Equations 1 and 2 describe activation status and firing rate 

MFR = 8 Hz 

PFR = 35-45 Hz (Reduced ~10% according to (29)) 

Muscle Activation 
Membrane depolarization and Ca

2+
 kinetics calculated with each pulse using 

equations [9,10,11] according to (75) 

Muscle Model 

Hill type model based on van Soest (149) 

F for each of 120 models will be distributed in accordance with equations 5 

and 6 from Fuglevand (49) and scaled to muscle size ((O = 266 cm
3
) 

unpublished observations).  Further adjustments will reflect changes to 

contractile kinetics (144), force per motor unit (25) and pennation angle 

(unpublished observations) with age  

Limits on F From metabolic data in Lanza (91); Equation 5 

Joint Torque 
Musculo-skeletal model from existing data and parameterized to account for 

changes in moment arm with force (104)  

Controller Control model according to Xia (156) and equations 9 and 10 
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Table 3. Project Timeline

Task Task Components Duration Total Time 

Data 

collection/processing 

Assessment of contractile cost via 

MRS.  Musculo-skeletal 

parameterization from tendon tracing 

procedures.  Other model variables to 

be taken from literature 

4 weeks 4 weeks 

Model Formulation 

Each proposed parameter in the model 

will be tested and sensitivity analysis 

will be performed.  Model 

components will begin with 

commonly reported values in the 

literature but greater scrutiny will be 

given those components having the 

greatest influence.   

16 weeks 20 weeks 

Model Validation 

Once each component of the model is 

successfully run, it will be valid to 

determine fatigue within one standard 

deviation of experimental data 

reported in the literature.  Further 

sensitivity analysis will reveal which 

model components have the greatest 

effect on prediction of fatigue 

2 weeks 22 weeks 

Model Alteration 

The model will be altered to reflect 

known physiologic changes with age.  

These will include alterations to peak 

MU firing rates, slowed contractile 

kinetics, decreased contractile cost, 

and relatively less accumulation of 

hydrogen ion for a given amount of 

metabolic work.  The models 

predictions will again be compared to 

literature values. 

2 weeks 24 weeks 

Model Conclusions and 

Defense 

The results of these comparisons and 

model performance will be written 

into a formal dissertation document. 

8 weeks 32 weeks 
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CALCULATIONS FOR THE INTEGRATED NEUROMUSCULAR MODEL 
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The model parameters were sourced from experimental, and published values.  The 

model was constructed based on the following scheme.  Roman numerals correspond to 

model steps illustrated in Figure 1: 

 

I. An error function evaluates the difference between current torque (Tc) and a pre-

defined target torque (Tt); Equation 1.  Values for Tt are calculated prior to running 

the model, and Tc is calculated as show in equation 38.   

a. Stimulation (S) to model adjusted 



diff  c t          (1) 
 



S  S  (Rdiff  (1 S))      (2) 



S  S  (Rdiff )
r  S       (3) 

Where Tdiff is the absolute difference between the current and target torque values.  RTdiff 

is Tdiff expressed relative to the expected maximum torque generating capacity of the 

model.  The exponent r moderates the rate of decreasing stimulation.  Informal 

optimization for the most realistic stimulation kinetics resulted in a value of 0.7 for r.    

 

II. Recruitment model determines the firing rate (FR) within specified range (minimum: 

MFR; peak: PFR) for each motor neuron (m: 1-120) after recruitment threshold 

(muRT) is met. 

 

Current firing rate (FR) is the product of gain (G) and the difference between the current 

stimulation level (S) and the recruitment threshold of motor neuron m (mnRTm) when S 

exceeds mnRTm. 

 



FR G  (S (mnRTm))MFR       (4) 

a is a coefficient whose value is determined by the range of desired activation thresholds 

(Arange) and the total number of simulated motor neurons (MNnum). 

 



a  log(Arange) /MNnum       (5) 

 

The recruitment threshold of the last-recruited MN (RTlast) is a function of a and the index 

of the last MN (MNnum). 

 



RTlast  exp(a MNnum)        (6) 

 

The recruitment of each motor neuron (m) follows the same function. 

 



mnRTm  exp(a)        (7) 



 

145 

 

Peak firing rate for the mth motor neuron is determined by subtracting the product of the 

range of desired firing rates (FRrange) and the recruitment threshold of of the mth motor 

neuron (expressed relative to the highest recruitment threshold of the pool) from the 

desired peak firing rate (PFR).   

 



mnPFRm  PFR  (FRrange  (mnRT /RTlast))    (8) 

 

Where G = 2, the gain for the activation signal; Arange = 30, the desired range of activation 

thresholds;  FRrange = 10, the desired range of peak firing rates; MFR = 8, the minimum 

firing rate in Hz; PFR = 56, the highest observed firing rate; and MNnum = 120, the total 

number of motor neurons. 

 

III. Current firing rate (FR) is used to calculate the inter-pulse interval (IPI), which is 

compared with the calcium transient duration (Caon = 0.023s).  At each time step 

during the simulation, a counter is initiated for each active motor neuron, tracking its 

IPI.  Throughout the simulation, the active counter for reach MN is compared with 

Caon.  When the counter is less than Caon, Stim = “1”.  When the counter is greater 

than Caon, but less than IPI, Stim = “0”.   When the counter is = to IPI, the counter 

resets to zero.  Activation kinetics are determined by the following equations: 

 

     (9) 



rc2 1/tdeact        (10) 



rc1 1/tact  rc2        (11) 

Where tact has values between 0.060 - 0.039 depending on motor neuron (m) and 

represents the activation time constant.  Deactivation time constants are defined by 

tdeact and have values between 0.092 - 0.064. 

 

IV. Vector equations determine rates of change for state variables meant to represent 

contractile dynamics: The muscle model consists of a contractile element (ce) and 

series elastic element (see).  The behaviors of these elements depended on their 

respective lengths (lce, and sel respectively) and their sum always equaled the length 

of the myotendenous unit (lmt) in order to simulate an isometric contraction.    

 

 

a. Contractile dynamics 

Because simulated contractions are isometric, change in lmt is equal to zero. 



lmt


 0 (isometric)        (12) 

c0 is a coefficient defined by the width of the force-length relationship and is used to 

moderate isometric force generating capacity of the ce (fiso) depending on current lce with 

respect to the optimum force-generating capacity length lceopt.   



c0
1/         (13) 
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

f iso  c0  (lce /lceopt)
2 2  c0  (lce /lceopt) c0 1   (14) 



fact  act
0.3

        (15) 

Change in lce depends on current activation level (fact) fiso, and maximum shortening 

velocity, defined by arel and brel, modified Hill coefficients according to van Soest et al, 

1993 (179).  The following equation refers specifically to concentric contractions. 



lce


1 fact  lceopt  (((( f iso  arel) brel) /( fce /( fmax  act) arel))brel) (16con) 

Pennation angle (pen) is calculated based on current lce. 



pen  (180/)  (asin((lceopt  sin(( /180)  pen0)) /lce))    (17) 

The current values for pen and lce are used to determine sel.  



sel  lmt  lce  cos(pen   /180) lslack     (18) 

The see is modeled as a non-linear spring whose force (fsee) is based on sel and a spring 

constant ksee.   



fsee  ksee sel2        (19) 

Finally, force in the ce (fce) must equal that in the see while accounting for pennation 

angle.  



fce  fsee /cos(pen   /180)       (20) 

Where ω = 0.56 (179) and lceopt = 0.058; arel is between 0.2 - 0.14 and brel is between 

2.4 - 2.52.  These values correspond to a and b coefficients for a typical Hill muscle 

model respectively.   

 

IVa. Metabolic dynamics include inorganic phosphate (Pi), activation of glycolysis 

(Gact) and glycolytic rate (L).  Hydrogen production from glycolysis (H) is offset by 

consumption of proton during the creatine kinase reaction (H1).  During recovery 

from contraction, the resynthesis of PCr will produce protons, as will oxidative 

phosphorylation (H2).  Net proton production or consumption is buffered (H3) and 

used to calculate the current cytosolic pH (equation 31).   

 

b. Metabolic dynamics  

 

The activation level for metabolic dynamics (actrel) is expressed relative to the maximum 

rate of inorganic phosphate (Pi) accumulation observed in vivo. 



actrel  (0.0045(0.0161 (act 100) 4.19e5  (act 100)2))/1.189  (21) 

During muscle model activation, Pi accumulates at a rate depending on actrel, the 

duration of the contraction (Ct) and coefficients defining the sigmoidal relationship 

between contraction duration and Pi concentration (Pia, Pib, Pix).   



Pi  Pia /1 (exp((Ct  Pix) /Pib )
2 /(Pib  exp(Ct  Pix /Pib )

actrel) (22a) 
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Recovery to resting levels of Pi were dependent on the duration of recovery (Ct) and 

recovery coefficients Piar and Pibr. 



PiPiar  Pibr  exp(Pibr Ct)      (22b) 

Piar describes the amplitude of Pi recovery and depends on the peak concentration of Pi 

observed during muscle activation (Pip). 



Piar 5.0491.196  Pip        (23) 

Pibr is the rate constant for Pi recovery and also depends on Pip. 



Pibr  0.02961.0236  exp(0.4093Pip )    (24) 

A model of glycolytic rate (L) depends on the activation of glycolysis and current Pi 

concentration.  The activation of L is determined from rate constants determining 

activation and deactivation kinetics of L similar to ce activation, both of which are 

dictated by Stim. 



Grc2 1/GTdact        (25) 

       (26) 



Gact


 (Stim Gact)  (Grc1  Stim Grc2)     (27) 

Pi was assumed to influence L through Michaelis Menten kinetics. 



L


Gact


 ((Lo  (Pi Pirest)) /(Km Pirest) (Pi Pirest))   (28) 

Protons (H) generated from L were based on the assumption that 3 glycolytic ATP are 

generated per proton produced through anaerobic glycolysis.   



H


 L


/1.5            (29) 

Total protons produced must be balanced by those consumed in the creatine-kinase 

reaction.  This is the product of θ and the breakdown of phosphocreatine, which is 

stoichiometrically equivalent to the amount of Pi generated.   



H


1 H


0 (  Pi)          (30) 

During the recovery of Pi to resting levels, protons are also generated from oxidative 

phosphorylation.  Recovery of Pi is assumed to be an exclusively oxidative process but 

for possible minor contribution of glycolysis for a brief period immediately following 

sessation of activation.  This is reflected in the model by assuming the rate of Pi 

recovery, minus current L, is equivalent to the rate of oxidative phosphorylation.  The 

coefficient M defines the number of protons produced per oxidative ATP.   



H


2 H


1 ( (Pi


 L


))       (31) 

Finally, the total change in proton load (H2) is divided by the total cytosolic buffering 

capacity (βtotal) to determine the observed change in proton concentration (H3). 



H


3 H


2/total        (32) 

Where Pia =48.19, Pib = 10.94, and Pix= 6.03; Piar and Pibr are coefficients taken 

from a fit of Pi recovery following contraction.  GTact = 0.2, the time constant for 
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activation of glycolysis and GTdact = 1.2, the time constant for deactivation of 

glycolysis; L0 is the maximum rate of glycolysis and is a range between 0.86 - 1.71 

mM



ATP  s1
; Pirest = 3.94 and is the resting Pi concentration in mM;  Km = 15 and is 

the concentration in mM of Pi at which glycogen phosphorylase reaches half its full 

activation.  Coefficients for proton generation in the creatine kinase reaction (θ) and 

oxidative phosphorylation (M) were set at 0.357 and 0.14 respectively at the onset of 

exercise, but varied during the simulation, according to pH (183). 

 

c. Vector equations determine state variables for current time point (t).  

Variables reflecting the “intracellular state” for pH, diprotonated phosphate 

(H2PO4-) buffering capacity of inorganic phosphate (BPi) and phosphocreatine 

(PCr) for each MN(m) are then updated: 

 



pH log10(H3) 7        (33) 



H2PO4  Pi /(110(pH6.75))      (34) 



Pi  (3.303Pi) /(110(pH6.75))  (110(6.75pH))     (35) 



PCr  42.5Pi         (36) 

 

V. Metabolic and torque values are combined for all motor neurons/muscle model pairs 

(motor units), to calculate the sum total of modeled behavior at each time point.  

These are the representative output for each respective variable and are compared 

directly with experimental data.    

a. The weighted sum of metabolic variables are combined to reflect the value for 

each variable at each time point (t) for all motor units. 



MetT  (Metm 
m1

MUnum

 fmax m ) / fmax m

m1

MUnum

      (37) 

o fmaxm = 0.56 - 54.5 

VI. Force values for motor units are taken from fsee and summed linearly to estimate 

force at the tendon (Ft) which is then used to calculate moment arm length (Lma) and 

current torque (Tc).   

a.  



Ft  fsee(m )

m1

MUnum

         (38) 



Lma  Lma0  ((Lma0  LmaR) /(Fmax /Ft ))       (39) 

Finally, the newly calculated Tc is compared with the designated Tt and the preceding 

steps are repeated. 



c  Ft  Lma           (40) 
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Where Lma0 is the resting moment arm length (0.027m), LmaR is the potential range of 

increased moment arm length (0.249) and Fmax is the maximum force possible at the 

tendon: 



fmax m

m1

MUnum

 = 1433.4 N 
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APPENDIX E 

FORMULATION OF THE BIOENERGETIC MODEL  
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A key feature of the integrated neuromuscular model (Appendix D) is the bioenergetics 

component (Step IVa, equations 21-37).  During activation and subsequent recovery, 

functions simulated the metabolic perturbation and return to homeostasis, respectively 

observed in vivo.  A detailed description of the procedures followed to derive those 

functions follows below: 

 

Contraction 

     

The accumulation of inorganic 

phosphate (Pi) and depletion of 

phosphocreatine (PCr) during activation 

are based on maximal 12s contractions.    

The relationship between [Pi] and 

contraction time (Ct) was described by a 

sigmoidal function (Pia, Pib, Pix), 

selected for its goodness of fit with these 

experimental data.  Our in vivo 

observations were augmented by a 

theoretical data point at 60s according to 

Lanza et al (110; 134) in order to more 

completely describe the relationship 

between Ct and [Pi].  The first derivative of this function determines the rate of change of 

[Pi] in the bioenergetics model. 

 



))/exp(/()/)exp((1/ 2

bxbbxa PiPiCtPiPiPiCtPiPi  

 
(1) 

 

 

  

The relationship describing the initial 

rate of PCr depletion as a quadradic 

function of activation level (act) was 

used to scale changes in Pi predicted 

from equation 1.  The first derivative 

of this function is expressed relative to 

the maximum rate of PCr depletion 

(Depmax = -1.189) to scale the rate of 

change in activation (actrel).  

 

 

 

max

25 /)))100(19.4)100(0161.0(0045.0( Depacteactactrel  

 (2) 
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Recovery 

 

 

The bioenergetics model‟s calculations are highly dependent on Pi kinetics, but 

experimentally, these values suffer from inconsistent signal to noise during portions of 

the recovery from activation.  Because the model assumes the ration between PCr and Pi 

to vary inversely and linearly (Pi + PCr = 42.5 mM), the kinetics of Pi recovery in the 

model were based on a hybrid of in vivo PCr and Pi recovery kinetics, described below.   
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The time course of recovery to resting values for each metabolite was fit using 3-

parameter, monoexponential functions.  The coefficients for these functions (Y0, Piar and 

Pibr) were used define the rate of recovery of [Pi] following contraction. The first 

derivative of the function describing [Pi] with respect to recovery time (Rt) was used to 

defined instantaneous recovery rate: 

 

)exp( RtPiPiPiPi brbrar  


     
(3) 

 

 

In vivo observation revealed substantial 

variation in the recovery rate constant 

Pibr depending on intensity of the 

previous contraction, defined by the 

peak [Pi] achieved during activation 

(PiP).  To capture this within the model, 

Piar and Pibr were calculated as a 

function of PiP . 

 

 

 

 



Pibr  0.02961.0236  exp(0.4093Pip )     (4) 
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 A similar approach was applied to 

the calculation of Piar although less 

variation was observed between fits of 

PCr and Pi with Piar.  A linear function 

describing Piar as a function of PiP fit both 

data sets equally well.   

 

 

 

 

 



Piar 5.0491.196  Pip        (5) 
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APPENDIX F 

ALTERATIONS TO THE BIOENERGETIC MODEL TO REFLECT CHANGES 

WITH AGE 
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Alterations in the current model extended to bioenergetics formulation.  During activation 

and subsequent recovery, functions simulated the metabolic perturbation and return to 

homeostasis respectively observed in vivo.  A description of the procedures used to 

derive those functions, and how they differ from formulation of the Young model are 

listed below:  

 

Contraction 

 

Similar to the Young model, Pi 

accumulation kinetics during activation 

were based on in vivo observations of [Pi] 

during a 12s maximal isometric 

contraction in a cohort of older men 

(Christie et al, unpublished and Lanza et 

al (111)).  In the present application, the 

relationship between [Pi] and contraction 

time (Ct) was fit with an exponential rise 

to maximum function.  Corresponding 

data and sigmoidal line fit from the Young 

model are shown (grey circles, dashed line 

respectively) for comparison. 



))(exp( CtPiPiPiPi bba 


    
(1) 

 

The magnitude of changes in [Pi] were 

adjusted for current activation level (act) 

by dividing the output from equation 1 by 

the output of an equation that defined the 

rate of [PCr] depletion as a function of 

current activation level.  This equation 

was formulated based on in vivo 

observation of initial [PCr] depletion rate 

at multiple contraction intensities.  This 

relationship was fit with a 3 parameter 

exponential decay function.  The first 

derivative of this function was used with 

equation 1 to define the [Pi] 

accumulation, scaled to current activation level (actrel) and the maximum observed rate of 

PCr depletion (Depmax = 0.9944 mM∙s
-1

).  Corresponding data and fit are shown for the 

Young model (grey circles and dashed line respectively). 
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Recovery 
Similar to the Young model, the present application depends heavily on calculation of 

[Pi] during contraction and subsequent recovery.  Again, a hybrid of [Pi] and [PCr] 

recovery kinetics were used to formulate functions that predicted [Pi] in the model.  For 

either metabolite, recovery kinetics were described by a function whose derivation was 

similar to that of the Young model (equation 3, Appendix E): 

 

)exp( RtPiPiPiPi brbrar  


   
   (3) 

 

 The rate and amplitude recovery coefficients for equation 3 (Piar and Pibr) were 

dependent on the degree of [Pi] accumulation at the end of the preceding contraction (PiP  

mM).  Again, this feature of the model is similar to that outlined for the Young model 

(Appendix E, equations 4 and 5).   

 

Pibr varied minimally as a function of PiP 

in contrast to observations that dictated 

the Young model.  A similar function 

described the relationship between Pibr  

and PiP regardless of whether Pibr was 

calculated from [PCr] or [Pi] recovery 

kinetics.  This relationship was used to 

determine Pibr during recovery in the 

model.  The results of the same 

procedure for the Young model are 

illustrated for comparison (grey circles, 

dashed line). 

 

 

pbr PiPi  0009.00203.0        (4) 

 

The derivation for the function that 

defines recovery coefficient Piar in the 

model was similar to that described for 

the Young model.   However, the 

relationship between PiP and Piar was fit 

with a quadratic equation (equation 5) 

because this approach improved the 

goodness of fit compared with a linear 

approximation.  The formulation of 

Young model is included for the purposes 

of comparison (grey circles, dashed line). 
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