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ABSTRACT

BAYESIAN ESTIMATION OF SURFACE INFORMATION
FROM RADAR IMAGES

MAY 1993
KEITH DAVID HARTT, B.S.E.E., UNIVERSITY OF MASSACHUSETTS
M.S.E.E., UNIVERSITY OF MASSACHUSETTS
Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Donald Geman

The dissertation presents a method for deriving the shape of a surface from a radar
image of the surface. An appropriate model of radar image formation is derived from
physical principles. A Bayesian formulation of the inversion problem is developed upon
which a computational strategy is based. Theoretical results on random surfaces relevant
to the prior distribution are presented, and convergence and optimality properties of a
new sampling algorithm are described. The technique is applied to Magellan data of

Venus.
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CHAPTER 1
INTRODUCTION

This dissertation provides a technique for deriving surface properties from a radar
image of the surface. The application area is remote sensing, as in the radar imaging of
the surface of Venus by the Magellan probe. The goal is to derive from radar images
important surface properties such as shape and dielectric attributes which are important to
planetary geologists but not conveyed directly by the data. This is accomplished by

posing the problem, known as radarclinometry, as a stochastic inverse problem.

Radar images acquired by synthetic aperture radar (SAR) represent different
information than what ordinary visible-light images convey. For this reason radar images
are not well suited for interpretation by the human visual system. The radar spectrum
consists of lower frequencies relative to the visible spectrum; in addition, the imaging
geometry is different. Radar images are acquired by air- or space-borne sensors which are
“side looking™: a radar image represents energy returned as a function of flight-path
position and range from the sensor, as opposed to light energy as a function of position on
an image plane, which is the case for a standard image. An important benefit of
radarclinometry is that a standard visible-light image, suitable for human interpretation,
can be synthesized based on the surface shape the radarclinometry procedure generates.

In the case of Magellan, the radar image data convey information unavailable from other

sources, so radarclinometry is a valuable tool.

Previous Work

Techniques for radarclinometry, or radar shape-from-shading, are relatively rare
in the literature. The first work in the area is due to Wildey [5], [6], [7] who poses the

problem as the solution of a nonlinear first-order partial differential equation. Kirk [3]



uses a finite-element algorithm. Frankot and Chellappa [1] use shape-from-shading
techniques. Guindon [2] and Thomas ez al. [4] also present methods. As described later,
there is a relationship between Bayesian methods and regularization problems. The
techniques of Frankot and Chellappa and Thomas et al. pose radarclinometry as a
regularization problem, but the resulting cost function is different from the one developed
here.

A number of features distinguish the technique described here from previous
work: 1) The formulation is Bayesian, i.e., the problem is posed as a stochastic inverse
problem. 2) The height function is estimated directly, not through surface gradients. 3)
Parallel projection is not assumed. 4) The data term is based on a speckle model. 5) The
point spread function of the radar system is incorporated into the image formation
process. 6) A realistic model is used for the surface, in that samples of the surface

distribution are believable terrains.

Overview

The Bayesian model is derived from a physical model of the surface and a
prototypical radar imaging system. The two components of the Bayesian approach are: 1)
the image formation process, which provides the data distribution, the distribution of the
radar data given the surface; 2) the prior distribution, a distribution placed on the surface

shape which encodes prior knowledge about its statistical characteristics.

The SAR imaging system creates the radar image from the raw data: the radar
pulses reflected back to the radar from the surface. Each value of the radar image
- represents energy returned from a subset of the surface, and the SAR signal processing
localizes the energy from this ideally small subset. The image formation model, which
gives the data distribution, has two components: 1) an image formation operator, which

takes the surface attributes sought to a noise free version of the radar image; 2) the



distribution of the “speckle noise,” which is due to small-scale surface properties. Thus,

the second component gives the distribution of the fluctuations about the expected energy

specified by the first component.

The prior distribution is a Gibbs distribution with a second order Tikhonov
stabilizer as the energy. In other words, the energy penalizes large second-order discrete
partial derivatives. The choice of energy is motivated by regularization theory, but the

distribution is attractive from the Bayesian perspective: samples from the distribution

yield believable terrains.

Given the prior distribution and the data distribution, Bayes rule yields the
posterior distribution, the distribution of the surface given the data. The computational

method estimates the expected value of the surface given the radar image of the surface,

the posterior mean.

As given here radarclinometry is similar to other stochastic inverse problems in
image analysis. There is an image formation operator which takes attributes to image

data. The attributes represent important information that is statistically related to the data

but not directly conveyed by it.

The radarclinometry problem has large dimensionality, in that the height function,
the surface attribute sought, is an image, a large data structure. This requires creativity in
estimating the surface. The posterior mean cannot be computed directly as a weighted
average, because the sum is too large to be computationally practical. Monte Carlo
estimation is used instead, with a Markov chain (an extension of the Gibbs sampler) used
to generate samples from the posterior distribution. Also, the estimation is imbedded in a

multi-resolution hierarchy which gives rise to favorable convergence properties.



The computational procedure is most simply described as follows. Given a current
surface state, a minor change is proposed to it. The radar image formation operator is
applied to the resulting surface to obtain an ideal radar image based on the surface. This
image is compared to the observed radar image. The change to the current state tends to
be accepted if the comparison is favorable. The process is iterated, and in this way the

surface evolves to a state which is consistent with the observations.

Organization of Presentation

The organization of the presentation is as follows. Chapter 2 covers the image
formation process. The formulation of radarclinometry as a stochastic inverse problem is
given in Chapter 3. Chapter 4 presents a set of results on a family of random surfaces, a
member of which is used as the prior distribution of surface shape. Chapter 5 presents the
extended Gibbs sampler, which is the Markov chain algorithm used to generate samples
from the posterior distribution. Finally, Chapter 6 covers some final details of the
radarclinometry algorithm and experimental results of its application to synthetic and

Magellan Venus data.
Contributions of the Thesis

The novel aspects of the presentation are as follows. Chapter 2 represents a
careful, comprehensive, and mathematically correct explanation of the radar image
formation process. The result is a useful model for many applications, based on a
prototypical radar imaging system and an explicit surface model. The main result of
Chapter 4 is a representation theorem for a family of random surfaces based on using a
Tikhonov stabilizer as the energy in a Gibbs distribution. The representation theorem
allows derivation of : 1) the covariance structure of the field; 2) the normalizing constant
for the distribution, important for obtaining the maximum likelihood estimator of a scale

parameter; 3) a self-similarity property, which has been claimed to be appropriate in



modeling natural phenomena, and which also allows consistency of the prior among
levels of the multiresolution hierarchy. Chapter 5 presents an extended Gibbs sampler
used in the surface reconstruction procedure. Theoretical results are presented on
convergence and opti.mality of the Markov chain. Also, special cases of the extended
Gibbs sampler which are attractive for image reconstruction are presented. Chapter 6
presents a computational technique which can be applied to data such as that provided by

the Magellan probe of Venus in order to obtain information on surface structure not

available through other sources.
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CHAPTER 2
SAR IMAGE FORMATION FOR RADARCLINOMETRY

This chapter describes the image formation process for a synthetic aperture radar
image as is relevant to radarclinometry or radar shape-from-shading, the problem of
deriving surface information from a radar image of the surface. A surface model is
assumed which is valid for representing a useful class of terrestrial and planetary scenes.
An important special case, used in the Magellan experiments presented later, assumes that
surface composition is homogeneous so that the average radar energy reflected by surface
patches depends only on orientation of the patch relative to the sensor. From the surface
model the distribution of the radar image is derived, based on a realistic prototype SAR
system. This establishes the correspondence between surface shape and the distribution of

the radar image necessary in the formulation of radarclinometry as a stochastic inverse

problem.

An overview of the presentation is as follows. First the sensor geometry is
described. Next, the SAR signal processing mechanism is covered by deriving a point
spread function associated with the conversion of received radar pulses to a radar image.
The point spread function completely characterizes the SAR system signal processing to
the extent that is required for rendering of images from the surface, i.e., implementing the
forward imaging process. The physical surface model is presented next, from which the
distribution of speckle, a phenomenon due to fine surface structure, is derived. Finally,

the radiometric principles which govern the expected returned energy from the surface

are presented.



Imaging Geometry

The geometry of the imaging process is as follows. A cylindrical coordinate

system relative to the sensor is convenient, as depicted in Fig. 2.1.

—_—— e e N

Fig. 2.1. Imaging geometry.

Surface location is given as a point set S. The sensor moves along a straight flight path
(shown as a dotted line parallel to the y-axis) in the y-direction, known in radar literature
as the azimuth direction, at constant velocity. Cylindrical coordinates are given by range
r=+(z—z,)*+x%, and 0 = tan"!(x/(z, — 2)), where z, is the height of the flight path,
and x is the ground range. At regularly spaced positions (r,y) = (0,nAa), nAa € I, where
the subset / of the real line is an interval, along the flight path a pulse, an electromagnetic
signal of short duration, is transmitted by the sensor. Each pulse is assumed to illuminate
the entire surface, and the echo of each pulse reflected by the surface, called a rerurn, is
collected and stored by the radar system. The pulses are spaced so that there is no overlap
in the sense that each received pulse is due only to a single transmitted pulse. However,
since each pulse illuminates the entire surface, each point on the surface contributes to all

returns. A top view of the imaging geometry is given in Fig. 2.2.
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Fig. 2.2. Top view of imaging geometry.

The cylindrical coordinate system is convenient because a radar image is a
function of range r and azimuth y, and for each (r,y) represents the energy returned by
the set S, ) = {(r,y,0):r'=r,y =y, (r’,y’,0) € S}. Thus the image at (r,y) is the energy
retﬁrned from a subset of the surface. Referring to Fig. 2.1, for the purposes of data
interpretation there is usually a correspondence made between the range coordinate r and
estimated ground range x” given by x’ = w/rz - zg . Clearly the true ground range is
x= w/ r? - (z5 — 2)?, 50 x # x” unless z=0 for all points in S. This is a distortion peculiar
to radar images; the phenomenon of layover occurs when for two points x{ < x; yet
X1 2 x,. The correct correspondence between ground range and range can be made if the
surface shape is known, which is the purpose of this study. A shadow occurs in the radar

image at (r,y) if S, ,y is empty.

Surface location is reasonably described by means of a surface location function
p, in that the surface point set is given as S = {(,y,0): r = p(y,0), (¥,6) € G}, where
G c((y,6):y 20,0 <6 <m/2}. For a fixed y and 6, the surface element first encountered
along the corresponding ray, at a distance p(y,0) from the flight path, is physically
responsible for reflecting pulses. According to this principle, p is a well-defined function,
i.e., not multi-valued. The radar image conveys no information about a surface facet that
is hidden, so it is not represented by S. The definition of the surface location function is

naturally suited to the imaging geometry. However, the relationship between the physical



properties of the surface and the surface location function is more complicated than the

basics just portrayed; specifics are given later.

Summary. The radar image is a function of range and azimuth whose values
represent the energy returned from S, ). The conversion of the returned pulses, one for
each transmission location on the flight path, to the radar image is the province of the
SAR signal processing, described in the next section. The changing position of the sensor
relative to the surface allows what are essentially multiple views of the surface from
different perspectives. The SAR signal processing combines the information from all
returns (views) in the appropriate manner. As will be seen, the geometry of the situation
gives rise to a relationship among the returns that can be exploited to localize the energy
returned from the totality of S, represented in the raw returned pulses, to the energy
returned from S(,,y), for each (r,y). This localization is accomplished through' a
mechanism identical to the constructive and destructive interference of coherent light.
Another analogy to optics is perpetuated by the terminology: the localization process
afforded by the signal processing accomplishes what an aperture does, hence “synthetic

aperture.” The details are as follows.

SAR Signal Processing

In this section the mechanism for conversion of received radar returns from the
surface to a radar image is covered. A useful supplement to this development is Munson
and Visentin [9], because in this presentation the same viewpoint is taken, in that the
radar system is treated in a direct manner as a linear system, avoiding the confusing but
prevalent “doppler” terminology. The aforementioned paper provides some system-

specific detail not presented here, and contains references to the vast literature on SAR.

The next paragraph is preliminary.



Signal Representation. A complex-valued signal (function of time) x has an

associated signal

z(t) = x(t)expi2mnf,t (2.1)

where f, is a positive constant, known as the microwave carrier frequency, which is, up

to an order of magnitude, 106/sec. Under reasonable conditions (see Franks [4]) there is a

direct correspondence between z and a physical waveform, from which the signal x,

called the complex envelope of z, can be obtained. The quantity lx(t)l2 is referred to as the

energy of x(t) (or of z(¢)), and argx(z) is sometimes called the phase.

System Model. Let the complex envelope of the transmitted radar pulse be
denoted by p(#), where ¢ = 0 corresponds to the time at which each pulse is transmitted;
i.e., the time reference is reset at each pulse transmission. Let the surface consist of a
point scatterer at (r’,y’,0), ideal in the sense that it is a point reflector which returns the
transmitted radar pulse without distorting the waveform, i.e., the received signal for the
n'h sensing is simply a delayed version of the transmitted signal p(z)expi27f, t, so the

complex envelope h,(t,7’,y") of the n' received signal is given by

(1,7, y))expi2nf,t = p(t = ,(r", ")) expi2nf, (t—1,(r",y")) 2.2)

with 1, y) = g\[(y’ —nAa)? +r? (2.3)
C

where c is the speed of light and t,,(r’,y") is simply the two-way time delay between the

points (0,nAa,0) and (r’,y’,0). The left hand side of (2.2) corresponds to a physical

waveform. Note A, (z,r’,y") does not depend on 6 because the distance calculation does

not involve it.
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Note. As a practical matter, it has been tacitly assumed that the speed of the sensor
platform is negligible relative to the speed of light, so that the sensor location does not

change between the times of signal transmission and reception.

Now invoke the principle of superposition. Let the set of complex envelopes of

the returns from an arbitrary surface be given by {u,(z):nAa € I}, i.e., a set of complex-
valued functions of time, where for each return z = 0 corresponds to the time at which the

signal was transmitted. The returns are given by

u, (O = [[[a(r’,y’",O)h, @t,r",y)r'dddr’dy’ (2.4)

where a, a characteristic of the surface, is a complex valued function which weights the

ideal response assumed by A.

Note. The representation (2.4) is standard in the radar literature. However, as will be

evident when the complex reflectance function a is defined later, the representation (2.4)

is only symbolic, as in this presentation the integral reduces to a sum (see (2.23)).

The SAR processing is a linear operation, given by

Z(r,y)y= Y [u, (0w, @,r,y)dt (2.5)
neA(y)

where Z is the complex-valued radar image, and w,, (¢,r,y) for fixed (r,y) is a complex-
valued weighting function. The radar image is random because the returns are random, as
described later. The sum is over the set A(y) = {n:(y — nAa) € [-B/2,B/2)}, where B

determines an interval in azimuth. Ideally, the weighting function is constructed so it
selects the portion of each return u,,(¢) which corresponds to the energy reflected by

S(r.y)> In so doing resolving the surface, or scene.

11



ote. As a practical matter, B is chosen so that the antenna response is constant over the
interval, and so that the straight-line flight path geometry is valid. The sum in (2.5) is

what characterizes SAR relative to standard radar, giving improved resolution in azimuth.

Combining (2.4) and (2.5) and simplifying, notably changing orders of integration

Z(r,y) = [[[a(r’,y ,O)k(r,y,r’,y")r'd0dr’'dy’ (2.6)
where
k(r,y,r'\y) = S[h,(t,r,y ) W, (t,r,y)dt Q.7)
neA(y)

is the point spread function, the output of the SAR processing at (r,y) due to an ideal

oint scatterer at (r’,y’,0).
j% y

The above (2.6) shows the sufficiency of k& for characterizing the SAR system.
Recall that a is a function, characteristic of the surface, taking complex values which are

reflection coefficients, in that these values modify the ideal reflectance assumed by 4. The

radar image should estimate [ [ [a(r’,y’,0)r'd8dr’dy’ (related to S, ,)), so one seeks a
r”.:" ylzy

function £ which is impulsive, i.e., takes its largest values when y = y” and r = r’. Further,
k is determined by p and w. The important issue is that the point spread function is
essentially designed (to have desirable properties) through the choice of the functional
form of the illuminating pulse and specification of the way in which returns are

processed. This design is aided by the theory of radar ambiguity functions, which is

described in Franks [4].

Point Spread Function. In the following the point spread function, the response of

the radar system to an ideal scatterer, for a standard SAR system is derived (by specifying
the standard choices for p and w and computing an approximation to (2.7)). Although

only a prototypical situation is addressed (mainly for simplicity), the point spread

12



function is valid for a wide variety of systems such as Magellan. Further, the basic
formulation is applicable in more complex situations: any system can be characterized by

deriving the response to ideal elements.

The standard pulse is a “chirp.” Its complex envelope is

p(8) = exp(imyt® Y _gj0.1/2 (D) (2.8)

where v is a real, positive constant, and 7 is the pulse width. Let

E < (0,90) X (—e0,00) X[0,7t/2) be a compact set, known a priori to contain S, and let the
domain of the radar image be a finite set F. Clearly for any sensible system

F c{(r,y):(r,y,8) € E}. In typical situations

sup{l(y’— nAa)/r'|:(r’,y’,0) € E,nAa e I}
is small, so that the use of the Taylor expansion (1 +x2 )1/ 2=o1+ %—xz + O(x"') is justified
on (2.3), and the time delay

T, y) = %r’(l +e (' - nAa)/r’))
2.9)

T,(ry) = %r’(l + %((y’ - nAa)/r’)2 +e (' - nAa)/r’))

where errors e;(x) = (1+ x2)1/2 —1,and ;(x)=(1+ x2)1/2 -1+ %—xz). It is easy to verify

that |ey|, |e,| increase with |x]. Plots are shown in Fig. 2.3, which shows the second

approximation of (2.9) to be significantly better than the first. With regard to the

specification of w,(z,7,y), the expansions (2.9) for 1, are used to approximate the

matched filter (which has some optimality properties, see Franks [4]), which requires

w,(t,r,y) o< E,(t,r,y) (the bar denotes complex conjugation), yielding (see (2.2))

w,(t,r,y) = %ﬁ(t -1,(r,) Z Al 5P 27f T, (r,y) (2.10)

13



The function is normalized so that for any (r,y), k(r,y,r,y) = 1.1 Instead of (2.10), the

matched filter is épproxirnated using the expansions (2.9) for t,; the weighting function

is defined by
1_, 2r 1 .21 )
w,(t,r,y)=—Dp@ —— exp(i2nf,—(r+—(y—nlAa)“/r 2.11
(6r.3) = 1 Pt =20 o s exp (20 o T (r + 5 (7 2y @1D
0.5
04T //"
03f =l PP
' — |ed] -
02f //-" 1
//
0.1f -7 /

Fig. 2.3. Distance error functions.
Let g, (x) = (1—|x|/b)sinc((1 - |x|/B)x)1_p p1(x), with sinc(x) =sin(mx)/mx, and

o(r,y,r’,y") = i—n(2(r —r)y=(=y)2/r)
0 (2.12)

with A, = c/f,, the wavelength of the carrier.

—0asr — oo,

Y r—r, }’—}" . 7o,
k(r,y,r’,y)— o expid(r,y,r’,
(r,y.,r",y") ngz(c/z«/T)g (rlo/ZB) pid(r,y,7’,y")

r’— o and Aa—0.

Theorem 2.1.

Note. The limit conditions correspond to moving the set E farther and farther from the

flight path and letting the separation between sensings get closer together.

1Hence & is not a point spread function in the usual sense (without further normalization).
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The proof is deferred until after some preliminaries are proved. Let
8y = sup|(y’ — nAa)/r’|. Establish bounds for the approximations (2.9) as follows.
n

< —2—sup{|el(u)l < 8p} = ((1 +83)2 - 1) =1 0(83)

8, = sup|t, (r’ ,y)———

2
8 = Sglpf,,(r Ly - (C( QMD

<3—sup{]e2(u)[ ]u|<50}— ((1+52)1/2—(1+ =3 )) r’O(88)

(2.13)

Lemma 2.1. ll/Tf(p(t =1, (r.Y")) - p(t=2r'/c))B(t —2r/c)dt| — 0 as 7’ — o,

Proof. First establish a bound for Ip(t -1, (r’,y')) -p(t— 2r’/c)|. Let lt -1, (r’,y’)l <T/2,

|t=2r'/c| <T/2,and let v =1 -2r"/c. Then using the basic inequality
lexp(ix) — exp(iy)| < |x - y|, for x,y real,
Ip(t - Tn(r,’y,)) - p(t - 2’//6)’ = ICXPiTCY([ - tn(r’a y,))2 —€Xp iTC’Y(t - 2rl/c)2|

< Tc'yl(v +(2r'fc - ‘c,,(r’,y’)))z - v2l

= |exp iny(v +(2rfc =, (7, y’)))2 —expiny?
’ ’ ’ 4 ’ ’ 2
= ml(Zv(Zr Jc =T, (r",¥))+ (27 [c =T, (r,¥") )l < TC’Y(T51 +512)
Next, the following is needed to bound the integral. Let m = min(t,(r’,y"),2r/c),
M =max(t,(r’,y’),2r'/c). Assume §; <T. Then
|1, (7" Y)=2r[| ST M-m<T & M-T/2<m+T/2 (2.14)

using the identity max(x,y)— min(x,y) = |x — y|. Further,

M-T/2<t<m+T/2 & M-1<T/2 andt-m < T/2
< max(t,(r,y)—1t,2r'/c—1t) £T/2 and min(¢ — 1, (r’,y"),t —2r'/c) < T/2 (2.15)
= |r—-7,(r",y")| <T/2 and |t -2r'/c| < T/2

and m+T/2-(M-T/2)=T —(M —m) =T_|tn(r/,yf)_2r,

15



YT [(p(e = %a ", ¥")) = p(r=27/))B(r = 2r'fc)d]

YT ”(p(t —1,(r",y))-plt - 2r’/c))’dt

M-T)2 m+T/2 M+T/2
< [YTd+yT | ny(T8+8%)di+ [T dr <28,/T +ny(T8; +38})
m-T/2 M-T/2 m+T/2

which completes the proof.

Lemma 2.2.

#A.l__(y) A(z;)(exp(—iZﬂ;fo‘tn(r',)”)) - exp(—izfcfo %(r + %(y’ - nAa)z/r))) °

(2.16)

-0

exp(i27tfo %(r + %(y - nAa)z/r))

as 7 — oo and r’ — oo,

Proof.

""‘P(“‘?“fomf',y'))—exp(—izm%(m%(y'—ma)?/r)j

<27f|T,(r,y) - E(r’ +%(y' - nAa)2/r)
c

L 1or-nsa? (' —nbay’|

’

r r l

j 2.17)

T, (r,y) - Z(r’ + %(y’ - nAa)z/r’)
c

< 21rfo(

< 27rf0(82 + %sup((y' —nha)?[r+(y - nAa)z/r'))

using (2.13), and the proof is evident.

Proof of Theorem 2.1. By (2.2), (2.7), and (2.11),

KO 3r'y) = ol = 5P = 2rf)de

1 > exp(—i27tfo't,, (r',y’)) exp(i27tf0 -i—(r + %(y - nAa)z/rD

#A(Y) neA(y) (2.18)
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It is a straightforward but tedious calculation which shows that
YT [ p(r=2r[c)p(t —2r/c)dt

=T (T -2r-r'|/c) sinc((T -2l - r’]/c)-%cl(r - r,))1[—CT/2,CT/2] (r=r"

=g (r r J
T\ c/2oT (2.19)

Hence Lemma 2.1 provides an error bound for approximating the function given by the

integral term in (2.18) with g er( J Further,

¢/2AT

i § ol sl o)

i 2 , 1 2 4 2
=expi2n—i(r—r’) > expi2w (y — nAa)* — (¥’ — nAa)
Xo #A(y) neA(y) Thg ( )
y+B/2
= expi2n—%-(r—r')—- | expi2n ! ((y—u)2 - (y’—u)z)du
7\,0 y-B/2 Tho

= exp i27t-)%:(r -r’) exp(—i27r r?{o y- y')zjsinc(;zi-(y - y’))

’

y—y . ’ ’
=92 exXpio(r,y,r,
g (rxo/zBJ pio(r,y,r’,y")

(2.20)

Thus, the function given by the sum term in (2.18) is estimated by

gx( ;" _/;) Bjexp i¢(r,y,r’,y"), which results from replacing exp(—i2nf, T, (7, y’)) with
r (o}

2 1
exp(—ian0 —(r’ + E(y’ - nAa)2 /r)) The error bound for the sum in (2.18) is given by
c

the sum of the bound of Lemma 2.2 with an error bound 8, for the Riemann sum

estimation denoted by the “=” in the above (2.20).
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The Riemann sum error bound J, is given as follows. First, note that
(y? —y’?) can be factored

7 ’ 4 . 1
(y—u)2 -(y —u)? =y2 -y 2 —2(y-=Yy")u. Thus, expi2n wy
o

out of both the sum and the integral, and it suffices to bound

L 5 ey -1 T F
e n - u)au
#A®D) neA(y) y-B/2

o =y) u. Now
,

where f(u)=expi ”

1 y+B/2 1 (n+1)Aa 1
= Jf(u)du=§ z If(u)du=-§ 2 f(u,)ha

y-B/2 neA(y) nAa neA(y)

where the last equality follows from the mean value theorem, with u, € [nAa,(n+1)Aa].

B
Finally, using #A(y) =—,
y g #A(y) A

L5 rtnda) - L7 T fand < S|F ) - f(nda)] < 2255
N nAa) — = u)du| < u,) - f(nAa)| < —33Aa
#A(Y) neA(y) By pp #A(Y) neA(y) Ao -
using the bound
| () - f(nAa)| = expidE O i 2RO 7Y p,

Ay A, 1
4n |y -y’ 4
< 5\(—(}-' ry l]un —nAal < Z53Aa
where 85 = ll‘_J’l
r

The integral term and the sum term in (2.18) together with their estimating
functions are all bounded by one. Therefore the product of the two terms is estimated by
the product of their estimates, with a bound given by the sum of the bound of Lemma 2.1,

that of Lemma 2.2, and §,.This completes the proof, and also establishes bounds which

can be used in practice to verify that approximations are valid.
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Summary. It has now been established that

’ r_r’ y—y’ . Y
k I b b = -] b 9 b
r,y,r,y") gﬂz(c/zyr)g (rxo/wjexmcb(ryr )

(2.21)
with

85 (x) = (1 |x|/b)sinc((1 = x|/b)x )1_p 5 (x) (2.22)
Plots of g,(x) are given in Fig. 2.4. The first zero crossing of g, is approximately equal
to that of the sinc function for b large, i.e., inf{x: g, (x) = 0} = inf {x:sinc(x) =0} =1, as
b — oo, which is valid in (2.21) for a standard system in that yT 2 is sufficiently large.
Since g, is a real-valued function, the magnitude of £ is given by the product of the two
gp functions in (2.21). The range resolution is approximately given as ¢/yT, dictated by
the first term; the azimuth resolution, which depends on range r, is rA, /B, dictated by the

second term. Resolutions are defined as the width of the interval about zero on which g,

is positive.

Fig. 2.4. g, functions.

Surface Model

In this section a physical model is presented for the surface, which begins the
establishment of the relationship between a(r,y,0), the reflectance of the surface, and
p(y,6), the surface location function. The model is motivated as follows by the non-ideal

resolution of the sensor. As mentioned previously, the radar image at (r,y) can be
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thought of as the energy returned by the subset

Siry) = {(r,y,0):r'=r,y =y,(r',y’,6) € S}, where the accuracy associated with the “="
notation is precisely given by the resolution and functional form of the point spread
function, as given above. In a typical practical setting this subset is comprised of a
number of surface facets, randomly placed, representing fine-scale surface structure. The
individual scatterers are beyond the resolving capability of the sensor system, and it is
reasonable to express this by modeling small scale roughness, and, loosely speaking,
interpreting a value p(y,0) of the surface location function as providing the “average”

position of all surface facets in a neighborhood of the location (p(y, 0), y,G). This
discussion is made precise in the following.

Let L be a lattice, with associated grid {(y{,e ) e L} , where y; —y/_; = Ay
and 6; —8;_; = AB. The azimuth spacing Ay and angular spacing A6 are chosen small

enough to allow representing the highest spatial frequency component appropriate given
sensor resolution. Higher frequency components correspond to small-scale roughness.

Figure 2.5 shows the sensing of a small patch of the surface S for some (i, j) € L.

Fig. 2.5. Surface model.

A point Py =(p(y;,0;),¥;,6) serves as the representative location for the patch, and the

patch is assumed to consist of point scatterers Py, = (p(y/,8;) + MijnsYi + Noijns 0 + Nagjn)
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at random positions about the representative position, where there are Nj; scatterers, i.e.,

n=12,...,N;;, and {(nhj,,,nwn,ng,,-j,,):(i,j) elL,n= 1,2,...,N,-j} are independent zero-

ija
mean random vectors, and for each (i,j) e L, {(Thijmﬂz;ymn;;ij,,):n = 1,2,...,N,-j} are
identically distributed. Thus, there is some small-scale uncertainty in the position of the

point scatterers, physically surface facets. Also, assume that for all (i, j,n),

(Miijn>M2ijns M3ij=) has compact support, so scatterers are contained in a voxel about P;.
Each point Py, has a random complex reflectance ajj, independent of position (i.e., of
(M1gjns M2ijn> N33 )) and {a,-’j,,:(i,j) elL,n= 1,2,...,N,-j} are independent, and for each

(i,j))eL, {a,-’jn:n = 1,2,...,N,-j} are identically distributed. In particular, the complex

Nj

reflectance function a is defined as ra(r,y,0)= Y Y ai'jnS Py (r,y,0), where & Py, isa
(i,j)eL n=1

Dirac delta function with mass at Py,.
Now, plugging into the image formation equation (2.6),

Ny
Zry=|l] ¥ Zajdp, (r'y ,0)k(r,y.,r',y)dodr'dy’

i,j)eLl n=1
@ );"' (2.23)

if
= z Zai,jnk(r’y’p(yi’:ej)"'nlijn’yi’+n2ijn)
(i,j)eLn=1

In the next section the distribution of Z is derived.

Speckle Statistics

In this section the probabilistic component of the image formation process is
addressed; this results from small-scale surface roughness, and is usually referred to as

speckle noise.

The following theorem establishes the distribution of Z(r,y) for an ideal (al-jn =1)
point scatterer. Let 6; = ¢/2YT', G, = Ay /2B, by =YI'%, and let r’ = P(¥i,0;) + Nijjns

¥" = y{+ Mijn- Then by Theorem 2.1,
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’ 2 r—r’ -y . 77
k(r,y,r,y>=gb1( - ]g@[ymy ]expub(r,y,r,y) (2.24)
1 2

is the response to a randomly placed point Pj;,, where ¢(r, y,r’,y’) is given by (2.12).
Note that the reciprocal of the carrier wavelength A, appears as a factor in the phase
function ¢ in (2.12). As a result, a change in r’ by A, /2 brings about a change in the
complex exponential of one period. If Mijjn has a sufficiently smooth distribution with
standard deviation many times A, i.e., d(r,y,7’,y") has a distribution which is wide and
smooth relative to the interval [0,27), then expid(r,y,7’,y’) has a distribution which is
approximately the same as the distribution of expi¢’, where ¢’ is uniformly distributed on
[0,27).2 A typical value of A, is 10cm. A typical range resolution of 100m is clearly
insufficient to clear up small-scale uncertainty even on the order of many times A,
Indeed, if the width of the distributions of 1y;;, and My, are narrow relative to the sensor
resolution, then [k(r,y,r’,y")| = lk(r,}’, p(y:,0; ),}’1')' for all outcomes of (TN, M2jjn)-
Hence the assumption is that the distribution of (1y;;,,M7;7,) is narrow relative to the
resolution but wide relative to A,. This idea is presented in a slightly different context in

Kelly et al. [7]. In this context, the precise statement is as follows.

Theorem 2.2. Let &(r,y,r’,y") have a continuous p.d.f. which is directly Riemann
integrable in the sense of Feller [2, pp. 362-363] over the real line. Then

8b, ( r; - jgm(y ;y )exp id(r,y,r’,y") is approximately equivalent in distribution to
1 14%%)

r—p(y},0; -y
gbl( p((jy, d )]gm( Y oy L ]cxpiq)’, where ¢’ ~ U[0,27), in the following sense. As
1 rGy

C1,09 —> oo, with } fixed,

2In cngineering terminology, the phase response of the system is completely random.
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-0

r—r’ -y r—p(y,6;) -y
gbl 2. y—y _gbl J g.. Y=Yi
01 r0'2 61 r02

almost everywhere, and as A, — 0, expid(r,y,r’,y") = expi¢’ in distribution.

r - p(y:,8,)| /o1 — 0 and

Proof. Since (M4, M) has compact support,

Iy’ - y{l/cz — 0 almost everywhere, and g, < 1. Therefore, to prove the first assertion it

suffices to show that g, is uniformly continuous, which is done in Lemma 2.3. The

second assertion follows immediately from Lemma 2.4.

Lemma 2.3. For b € (0,°], g, is uniformly continuous.

Proof. First note that the derivative of the sinc function is given by

sinc’(x) = l(00511:x —sincx) = -l—O(xz)
X X (2.25)

soc= SUE sinc’(x) < e=. The derivative of the sinc function is plotted in Fig. 2.6. By the
Xe

mean value theorem, for x,y € R, [sinc(x) — sinc(y)| < sup lsinc’(2)[x — y| = c]x - y].
Further, since l(l —|xl/b) - (1- lyl/b)l < %lx -y, for x,y e [-b,b],
|(1=al/B)x = (1=[31/6)y] < (1= |xl/B)x = (1 =|l/B)y] +[(1 = |xl/b)y = (1= 1/

l}’l
S[I=|xl/blx=y|+=|x—-y|<2|x -y
l | l/ “ yl ; I ), | l (2.26)

so that [sinc(1~|x]/b)x - sinc(1 - |y|/b)y| < 2¢|x | It is now evident that for x,y €R,

with g, given by (2.22),
1
- <|(1=|xd/b)2elx = ¥+ —|x = < (2 + b)) x ~
250 =8, 0] < [(1=bp)ebx ol + Sl ot s Ger o)

and the proof is complete.
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Fig. 2.6. Derivative of the sinc function.

Lemma 2.4. Let X be a random variable with continuous p.d.f. f(x), directly R-integrable
over R. Then exp(i27:X/y)—d>expi(p as y — 0, where ¢ ~ U[0,27).

Proof. { = [-}—(—:l + Ay, where AY = —)-(— - [E:l, Ay €[0,1). Further,
Y Y Y Y

exp(i2wX/y) = exp i21A,, so it suffices to show that A, —d>U[O,1). Let t €[0,1).

oo

. ny+ty o
P(A,<0)= ZP(Xelny,my+m)= X [f()dx= Zf@w)ry (228)

n=-—oco n=-—oco n’Y n=-—oo

where u, €[ny,ny +1ty), and the last equality follows from the mean value theorem.

Finally, since fis R-integrable, E fu)ry =t [ f(w)du =1, which completes the proof.

n=-—oo —oco

Incorporating the result of Theorem 2.2 in the image formation equation (2.23),

the radar image is given by

Nj r—p(y,0;) —y!
Zor= T Y ‘ai}-ngbl( pc‘ 4 )g«.(y y‘JCXPf%n

[,j))eLl n=1 ro

(i,J)eLn s )1 2 2.29)
r—p(y,8; -y

(i,))eL Oy rGy

Njj
where Cj; = Za,-’j,, expiq)fj,, , and {¢fjn:(i,j) € L,n=12,..,N;} are iid. U[0,27),
n=1

independent of {a,j-,,:(i, J)el,n= 1,2,...,N‘-j}. Hence ¢j;, represents small-scale
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uncertainty in the location of facets, and aj, represents the reflective properties of the

facets.

A (zero-mean) complex normally distributed random variable Z has real and
imaginary parts that are normal and i.i.d., and, as a consequence, IZI?‘ exponentially
distributed, and arg Z uniformly distributed on [0,27). Using the central limit theorem in
the complex plane, applying it to the real and imaginary parts separately, as in Goodman
[5], results in a complex normal distribution (implicitly taken to be zero mean) for

C; = E‘{a{j,, expidj;, (letting N;; — o). Since the sum of complex normal distributed
n=1
random variables is complex normal, Z(r,y) is also complex normal.

The value typically stored in a radar image is |Z(r, y)]z, which due to arg Z(r,y)

being uniform, is sufficient from a statistical perspective (relative to marginal
distributions). Because Z(r,y) is complex normal, ]Z (r, y)|2 has an exponential

distribution. Since {Cij:(i, De L} are zero mean and independent, by squaring (2.29) and

taking the expectation,

r— ( :,9 ) —y! 2
Ez(ryf= 3 g;[ L5 )gi(y y]E,CJI (2.30)
(i.j)eL St )

2
The quantity E,C,J, has a standard physical interpretation as the expected returned
energy from the surface element (voxel) represented by 7. Let U(r,y) = IZ (r,y)lz.

EU(r,y) represents the total expected returned energy from S¢r.y)- For (r,y) and ', y)
separated and & suitably impulsive Z(r,y) and Z(r",y’) are approximately independent,
in that off-diagonal elements of the covariance matrix are approximately zero. Hence, U

is approximately independent exponential.

The basic result just established is that the distribution of U(r,y) is approximately

exponential with mean given by (2.30). This distribution is based on the assumption that
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the surface is “rough relative to a wavelength” (see Goodman [5], the preceding makes
this precise). Of course, there are many situations in which this assumption is not valid;
there is plenty of room for other models. The claim here is simply that the model given
above is appropriate for a large class of natural terrains. As support consider the
following from Pettingill ez al. [10]

At radar wavelengths the moon, Mercury, Venus and Mars

appear to be densely covered by facets that vary in

dimension from a few wavelengths to hundreds or even

thousands of wavelengths that are tilted at random to the
local horizontal. The same would be true of many points on

the earth...

Multi-look SAR. An extension of the distributional form from exponential to the

gamma family is often needed due to practical considerations. Consider the interval

[y —B/2,y + B/2) over which returned pulses are summed to obtain the radar image value
at (r,y). A multi-look SAR image is obtained by subdividing [y — B/2,y + B/2) into
disjoint intervals and for each element of the partition resolving what are independent
realizations of the image based on the same scene. These i.i.d. exponential realizations are
averaged, resulting in a gamma-distributed sum. The mean remains as above; however
the variance decreases as 1/n, where 7 is the number of looks, or independent realizations
of the image. Since the azimuth resolution is inversely proportional to B, it degrades as

the interval is subdivided. Thus resolution in azimuth can be traded off for a reduction in

the speckle noise.

Note. Multi-look averaging is important for reduction of noise in practical situations. Let
U have a gamma distribution, and let signal-to-noise ratio (SNR) be defined as

EU, / NvarU (called the coefficient of variation in statistics). For example, the one-look
distribution has SNR 1, for four-look it is 2, both quite low. The averaging of looks is
often referred to as incoherent averaging, since as in optics it refers to summing with

respect to energy, i.e., the magnitudes squared of the complex-envelope radar image
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values. The summing of complex envelopes is referred to as coherent averaging, again

because of the analogy to optics.

Summary. There is a random component in the image formation process for the

radarclinometry problem due to small-scale surface roughness beyond the resolution of
the sensor. Surface location is described by a point set {P,-j:(i, J)e L} which represents a
summary of local behavior. Random displacements of scatterers about these
representatives gives rise to the energy for each site in the radar image being a random
fluctuation about an expected energy. The energy is gamma distributed, with mean given
by (2.30). The phase, or argument, of the complex-valued output of the SAR signal
processing, not represented in the energy, is completely uninformative, as it is uniformly

distributed, and hence independent of the surface shape or dielectric properties.

The randomization of phase brought about by the surface effectively transforms
coherent source energy into incoherent returned energy. The final component of the
image formation process is the relationship between the surface location function, in
particular the point set {P,-j = (p(y{,ej),y{,ej): (i,j)e L}, and EIC,-J-IZ. In modeling the
expected returned energy from the surface, because of the random phase, the appropriate
physical perspective is that pertaining to incoherent energy, where interference effects are

random. This model is developed in the next section.

Reflectance Function

A reflectance function accounts for variation in returned energy due to surface
shape, and operates on the surface location function p. The radiometric law for the simple
case in which the surface composition is homogeneous, often referred to as the uniform
albedo assumption, and the reflectance function is Lambertian, is derived in this section
using a standard technique of geometric optics (see, e.g., Boyd [1]). With Lambert

reflectance, energy is radiated from the surface uniformly in all directions. This simple
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model is extended later in the presentation. The next three paragraphs are preliminary to

the development.

At this point the surface location function is defined only on the grid
{(y{, 0,):3, /) e L}. The technique of geometric optics used here requires that partial
derivatives be defined. Extend the surface location function p to the real plane using the

low pass representation (see Franks [4]):

PO = T Lsinc((y— ¥)/4y)sinc((6 - 8,)/A8)p (3.6 ;) (2.31)
1,])€E

i.e., the function is interpolated using a sinc-function kernel.

Note. By way of explaining the terminology, the low pass representation results from

applying a spatial filter with ideal low pass transfer function Yg,1/24y)x70,1/240) t0 the

function ; Z) . p(y/,0 j)a(y;,ej)- Hence, the information contained in the samples
i,j)e

{p(y,-’ ,0;)3, ) e L} is represented but no high frequency components, about which the

samples convey no information, are introduced.

In the following discussion the standard terminology of radiometry is used.
Ilumination power (energy per unit time) per unit area is called irradiance. The term is
used to describe light energy incident on a surface. Light radiated from a surface is
described by radiance, which is in units of power/(area - solid angle); solid angle is a
measure of a set of directions, given by the area of the intersection of a set of rays

pointing according to the set of directions, and the unit sphere.

Employ the simplifying assumption that for a point (r,y,0) on the surface, the

sensor is considered a point source of energy at (0,y,0).
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Note. The assumption is reasonable if the surface is distant from the flight path relative to

B. This has already been assumed in deriving the approximate form of the point spread

function.

Since the sensor is a point source, the power per unit solid angle radiated by the sensor is

constant with respect to direction, i.e., energy propagates spherically.

With the preliminaries out of the way, let the surface be S = {(p(y,G),y, 6)} Fix

(i, J), and consider a patch of the surface
8S = {(p(y,e), y.8)ly-yl<y/2.o-6)|< Ae/z}, and let r = p(y/,8,). Figure 2.7 depicts
a cross section of the sensing of the patch. There is an angle o between the vector s

pointing at the sensor and the normal »n to the surface patch. The solid angle subtended by

the patch is AyrAG/ r? , and the solid angle subtended by the sensor antenna is l, where
r

% is the area of the antenna (assume the distance from the antenna to the surface is large
relative to the area of the antenna). Note that the notation does not express dependence on

(i, J) of the quantities defined above for convenience.

. AyrAQIr2
~

Fig. 2.7. Sensing of a surface patch.

The power returned to the sensor by the patch &S is calculated in order to obtain

the relationship between returned energy and the surface shape. The integration of this
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power with respect to time carried out by the SAR signal processing yields the energy of
the return. Note that power and energy returned by the surface are in a strict sense

expected values, but are not referred to as such in the following for ease of presentation.

The power incident on &S is given by PAyr AG/ r? where P is the illumination

power per unit solid angle radiated by the sensor (assumed a point source). To obtain the
Ayr A8 of 85, so
coso

surface irradiance on the patch the incident power is divided by the area

) ) ) coso
the surface irradiance is P .
r

For a Lambertian surface radiance is proportional to irradiance with

proportionality constant 1/t. Hence, the radiance of the patch is —I-P coza. The power
T or

radiated in the direction of the sensor is calculated by multiplying the radiance by the

apparent area Ayr AB of the patch and the solid angle subtended by the sensor; so finally,

the power returned by the patch is given by Zp coia AyrA®.
T r

Summary. For a surface patch represented by the point (p(y{,e i) Yi0 j), the

' 9.
expected energy returned is ElCij I2 = %Ay A8, where
p (yuej)
1
cosa(y,0) = 5 - (232
2 (pa(»,9)
Py (3,0) +(——J +1
‘/( »0:0) P(7,6)

with subscripts denoting partial derivatives.
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Thus, by (2.30), for a Lambertian surface of uniform albedo, the expected energy

for the radar image is>

, , C0s0(y;,6;)
EU(r,y) = const. 3 K,(r—p(yi,ej),y—y,-)————AyAO (2.33)

(i)l p>(5.8;)
where ¥, (u,v) = ggl (i)gi(L) A mesh plot of k, for Magellan as used in one of the
(o] ro,
experiments presented later is shown in Fig. 2.8. Note the range resolution is worse than
the azimuth resolution. The above (2.33) is a Riemann sum which approximates the
integral

M dydd (2.34)

EU(r,y) = t.[x, (r-p(5,6),y—y") >
(r,y) = const. [[x, (r —p(y’,0),y =y 20/.6)

Before generalizing the radiometric law it is worth comparing the image formation

process to that for standard shape-from-shading.

3Note that the point spread function is obtained by integrating over time; incorporating this with the

constant ﬁP implies that the SAR image value has units of energy, as expected.
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Fig. 2.8. Mesh plot of «,.

Comparison to Standard Shape-from-shading

The main goal here is to allow comparing the results derived above with the
model in Frankot and Chellappa [3], in which radarclinometry is accomplished by shape-
from-shading techniques. Shape-from-shading (Horn [6]), or photoclinometry, is the
derivation of shape information from a standard image acquired with a frame camera
under incoherent illumination (usually visible-spectrum). Procedures typically involve

assumption of an ideal point spread function and parallel projection (described later).

The important distinction of radar imaging relative to standard frame sensing is
that sensors employ different mechanisms for recording information about the illuminated
surface. In standard shape-from-shading energy incident on an image plane is measured,
and cosa is expressed in terms of the image plane coordinate system, i.e., expressed as a
function of the same variables used to index the image. The analogue here is to express

cosa as a function of (r,y), not (y,0).
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Toward this end, assuming it is well defined, let 6(r,y) take the value

0:r =p(y,0). Taking partial derivatives of the expression r = p(y,0(r,y)) with respect to r

and y, using the chain rule,

Po(¥,Dlo=p(, )=;; Py (7,0)lo=p(- )=M (2.35)
=Y,y 0P8, (ry)
from which, using (2.32),
rer (r,)’) (236)

cosa(y,0(r,y)) = = >
\/(rO, (r.))" + (re), (r,y)) +1

Of course, this may be obtained by computing coso directly relative to the function

6(r,y). Consistent with the usual assumption, let the point spread function be ideal in

(2.34),1e,let x,(u,v) = 5(0'0)(u,v), where & denotes the Dirac delta function. After a
change of variables r’ = p(y’,0) and evaluation of the integral, the image formation

equation (2.34) becomes

EU(r,y) = const S5 ;9(”}' Do (r.y) 2.37)

Parallel Projection. Now also assume that parallel projection holds, defined as

follows. See Fig. 2.9 below. There exists an r, such that To ~1anda 6, such that
r

sin(6(r,y)—86,) = 6(r,y) —8,, for all r and y. Define u(r,y) = r,(8(r,y) — 6,). Then
u(r,y) = rosin(6(r, y) = 6,) = rsin(8(r,y) - 6,,) (2.38)

which is the distance from a point located a distance r along the ray oriented at an angle

0,, to the surface. In other words, there is a “direction” 6, around which the angular
spread of the surface is small. The term “parallel” refers to the fact that rays emanating

from the source to the surface are approximately parallel.
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=u(r,y)

Fig. 2.9. Parallel projection.

Substituting into the image formation equation (2.37) above, using the fact that

~
owl"“

b

\!wl —

EU(r,y) = const. 124, ) — 1l ry) (2.39)
\/(u, r,y) + (uy (r,y)) +1

The first term in the product above is cosc relative to a surface location function u(r,y).
Thus, under a Lambertian assumption the image is not proportional to cosa expressed in
the image coordinate system, which is the case in standard shape-from-shading for
standard visible-light images. The reason for this is the geometry is different; there is no

image plane on which power radiated in the direction of a normal to the (r,y)-plane

{(r,y,6):0=0,} is measured. The power measured is that radiated perpendicularly to this
direction, i.e., toward the flight path of the sensor. For a patch at (r,y,6), the power

radiated in the direction of the flight path is proportional to

cosadydu=cosa u,(r,y)drdy, by a change of variables u = u(r,y). The second term in
the product above results from this change of variables. Returning to radarclinometry, the
Lambert and uniform-albedo assumptions are relaxed after providing a couple of

examples.

Examples

In this section examples of image formation are provided for two simple surfaces.
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Flat Plate. Figure 2.10 depicts the geometry for the sensing of a flat plate. Assume

an ideal point spread function, i.e., K, =8 o). Since cos a(y,0(r,y)) =cosb(r,y) = z,/r,

from which 6,(r,y) = 1/ r\/(r/zo )2 —1, the image formation equation (2.37) yields

EU(r,y) = const. %o . Note that the function 6(r,y) need not exist, as
5 2
r’(r/z,)" -1

illustrated in the next example.

Zo

Fig. 2.10. Flat plate.

Cylindrical Section. Figure 2.11 shows the sensing of a cylindrical section.
Assume x,(u,v) = gg (u)dy(v). Here p(y,6) = c, and cosa(y,8) =1. Hence, by image

formation equation (2.34), EU(r,y) = const.i3 gg (r—oc).
c

Fig. 2.11. Cylindrical section.

General Radiometric Model

2
In the general model presented here the expression for EIC‘JI involves two

elements: not only the reflectance function, which allows for variation in returned energy
due to surface shape, but also the albedo function & which describes reflective properties

based on surface composition. The uniform albedo case corresponds to 6 = 1. This second
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element allows for variation in the dielectric properties of the surface. The model is given

by

Elcy[ = -9) 8(y1,6,)Ay AB (2.40)

The cosine dependence is extended using the function f. The case where fis the identity
function corresponds to the Lambert reflectance function. The case f = (¢)? for p>1is
the Minnaert [8] or generalized Lambert function, which allows for the radiated
distribution of energy to be concentrated orthogonally to surface patches, i.e., to be more

specular than the Lambert model. The albedo function simply weights the expected

energy. Note that a further generalization would have the map f depend on (y,6). In
sufficiently restrictive situations this might be tenable; it is rejected simply for the sake of

definiteness. The preceding results on image formation are summarized in the next

section.

Image Formation

The radar image represents energy as a function of range and azimuth. At each

site (r,y) is stored the energy returned by a portion of the surface, as determined by the
point spread function that is specified by the SAR signal processing. The expected energy

at (r,y) is given by

E, 5 U(r,y) = const. [, (r — p(y",6), - y')%%fz;—e))&y:mdy'de (2.41)

where p is the surface location function, d the albedo function, and a(y,) is the angle

between a vector normal to the surface at (p(y,0),y,0) and a vector pointing at the sensor.

The distribution of the radar image is independent gamma.
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CHAPTER 3
RADARCLINOMETRY AS A STOCHASTIC INVERSE PROBLEM

In this chapter the radarclinometry problem is posed as a stochastic inverse
problem. The approach is based on a Bayesian model, which has two components: 1) a
model for encoding a priori constraints or knowledge about the surface; 2) a model for
the forward process, i.e., the (random) transformation which takes the surface function to
the observed data, the radar image. The second component was treated in the previous
chapter. The stochastic inverse problem is to invert the forward process subject to the

prior constraints, i.e., recover the surface from the radar image.

Previous work in Bayesian image analysis and stochastic regularization is vast.

The reader is referred to Demoment [1] and Geman [2] for overviews.

Bayesian Formulation

The Bayesian formulation of radarclinometry is given as a special case of the

following general model, so that comparisons can be made to other application areas in

image analysis.

Stochastic Inverse Problems in Image Analysis. The situation is generically as

follows. There are data u = (u )S‘E 7 available, where F is an index set of sizes. The data

are viewed as an outcome of an observation process U, which is related to, i.e.,
statistically dependent on, an attribute process X. The goal is to recover the attributes
from the data. For example, in radarclinometry the data is a radar image, and the attribute
of interest is the surface shape which gave rise to the radar image. In image
reconstruction the data is a degraded form of an attribute image, the undegraded picture.

The attributes may be classification or boundary labels, as in remote sensing applications.
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The attribute process represents some information of interest, related to, but not directly
conveyed by, the data. Put this way the inverse problem is simply that of Bayesian

estimation. However, there are further components which are specific to inverse problems

in image analysis, given in the following.

Data Distribution. The observation process is related to the attribute process in the

following special way. There is an image formation operator @ which takes the attributes

x to an ideal, or non-random, version of the data; in particular, ®x = E(U|X = x). Further,
P(U edulX =x) = fe,(w)du (3.1

where fgq is parametrized by its mean, i.e., J'ufe (w)du = 6, and has the form

—log fo(u) =1 3 (h(®s, 1) + (1)) (3.2)
seF
where A is positive, and the function 4 is the penalty function, with the property thatk > 0

with equality only when its arguments are equal. Observe that (3.2) is a negative log-

likelihood, so argmin Zh((CDx) s,us) is the maximum likelihood estimate of x. The
X  seF

function & penalizes deviations of the data u from the synthetic rendering

®x = E(UIX =x) of the data based on x. Note that (3.1) and (3.2) are equivalent to

{u S}SE  being independent conditioned on X = x. Also, the conditional distribution of

the observation process, determined by the physics of image formation, depends on x only

through ®. Examples of distributions arising in image analysis which have the form (3.1),

(3.2) are given next.

Examples. Consider first the penalty function in radarclinometry. An independent

gamma distribution with mean 6 has p.d.f.

1 (a) A
— — X_l — —
fe(u)—slepl F(k)[esj Us CXP( 0. us) (3.3)
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so h(a,b)=bja—1log(b/a)—1, and A in (3.2) as well as in (3.3) is the number of looks
associated with the SAR signal processing (see the section on multi-look SAR in Chapter
2). A plot of h(1,e) for radarclinometry is shown in Fig. 3.1. For the Poisson distribution,
which arises in tomography and astronomy

b(a/b-1log(a/b)-1) b=1
a b=0

h(a,b) ={

For additive independent Gaussian noise, which arises in image segmentation and

reconstruction, A(a,b) = (a - b)2.

In the Gaussian case the penalty is based on a difference. For the gamma
distribution the penalty is based on the ratio b/a. Gamma noise is often termed
“multiplicative” because a gamma-distributed random variable has standard deviation
(noise) proportional to the mean. The posterior distribution for the Bayesian formulation

of image analysis problems is given in the next paragraph.

Fig. 3.1. Penalty function.

Posterior Distribution. Assume that the prior distribution has the Gibbs form

P(X e dx) = const.exp(—H(x))dx. By Bayes rule, the posterior distribution is

P(X € dxIU = u) = const. exp(—H(x) A Zh(((D(x))s,us))dx (3.4)
seF

40



Note that the normalizing constant depends on u. The Bayes point estimates used in
image analysis are the mean of, the mode of, or a sample from the posterior distribution.

The posterior also has the Gibbs form, with energy

H(x)+ A T h((Dx),,u;) (3.5)
seF
The first term is the prior, or regularization term, the second the data term. Note that the
energy (3.5) could simply be regarded as a cost function, avoiding the Bayesian
perspective completely. This is the approach in regularization (Poggio et al. [3]).

Minimizing the energy (cost) yields the mode of the posterior distribution, the maximum

a posteriori (MAP) estimate.

In this presentation on radarclinometry the perspective of Bayesian estimation is
taken because, as is not always the case for other standard problems in image analysis,
associating the a priori constraints with a prior distribution makes sense, for the
following reason: realizations of the prior distribution assumed are realistic, in that, with
high probability, they have the characteristics expected of the surface. The surface
location function is essentially a height function, and samples from the prior distribution
(described in the next chapter) placed on the space of surface functions are believable
natural terrains, i.e., planetary surfaces. This is appropriate for the remote sensing
applications of interest here. As a final point, note that for radarclinometry since A is the
number of looks, with which speckle noise variance decreases, it is intuitively satisfying

that in (3.5) the data term is emphasized relative to the prior term as the number of looks

increases.

Summary. Many image analysis problems fit within the framework used in posing
radarclinometry as a stochastic inverse problem. What distinguishes image analysis
problems from general Bayesian estimation is that statistical dependence between the data

and the attributes of interest occurs through an image formation operator. Another
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important consideration, which will be addressed later, is that the typically large data

dimensionality requires design of efficient sampling algorithms used to obtain point

estimates.
Discrete Image Formation Model

In this section, a discrete model (suitable for digital computation) is developed
based on the material of Chapter 2. It is assumed that albedo is uniform and the

reflectance function is Lambert. Some definitions are given first.

“The radar image is indexed by (r,y) € F < [0,0) X (—o0,e0). A reference surface

P, is chosen which is a good initial guess for the unknown surface function. Precisely,

the surface process X satisfies EX = 0, where an outcome x is given by

p(¥i,0;) =P, (¥,0;) + x;j, s0 x;; is the deviation from the reference surface. The prior

distribution is placed on these deviations. It is reasonable to base the reference surface on
a reference geoid, an analytical model of the shape of a planet. For example, the geometry

for a “flat-earth” model is given in Fig. 3.2, where the reference surface is based on the
distance from the flight path to grid points which are contained in a plane that

approximates sea level locally.
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Fig. 3.2. Reference surface for flat earth model.

Let (Px); = Y9, (x); hence @, provides the image formation model up to a
multiplicative constant, which accounts for gain due to unknown uniform albedo, antenna
response, atmospheric attenuation, etc. The discrete image formation equation is given by

(2.33), with partial derivatives approximated by differences:

COSQ;;
Ury@= T 1, (r= (x5 +po 1,8,y - ¥) L __AyA® 3.6)
(. J)eL (x5 +po /:8,))
where
040 =000 (0480 -p0i0; Y )
cosa; = (p o)~ P j) o B2 - PO | 4 (3.7)
Ay p(¥;,0;)A6

The remaining component of the model is the prior distribution for X, the surface
process, given as follows. The regularization energy is in the form of a Tikhonov

stabilizer, frequently used in regularization problems. The next chapter presents

43



properties of the corresponding Gibbs distribution. There is irony in the fact that using a
regularizer as the energy in a Gibbs distribution results in statistical characteristics that

support the Bayesian perspective. In other words, samples from the resulting distributions

are believable natural terrains.
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CHAPTER 4
REPRESENTATION OF STABILIZING PRIORS

This chapter provides results on the representation of a random field obtained by
using a Tikhonov stabilizer (Tikhonov and Arsenin [9]) as the energy in a Gibbs
distribution. The resulting distribution is often used as a prior in image analysis and

computational vision (Poggio er al. [7]), and is also related to “intrinsic” fields (Kiinsch

[4D.

The representation given here provides a method for generating samples (without
using stochastic relaxation), allows deriving the maximum likelihood estimator for a
scaling parameter, and gives a method for computing covariance structure. A self-

similarity property is described.

The organization of the presentation is as follows. First, the distribution is defined
in a general setting, and then a representation theorem is proved, based on which useful
properties are derived. A special form of the distribution which is frequently used in
practice is then assumed for the remainder of the presentation, for which other properties

such as self-similarity are valid.
Stabilizing Gibbs Distribution

Joint Distribution. Consider an image x with domain

L=(0,1,...,m =1} x{0,1,...,n, —1}. Let ¢, t, denote first-difference operators:

(IIX)(il,iz) = X(il,iz) —X(il —1,i2)

(822) iy g) = x (i p) — x(il,iz -1)

(4.1)

The boundaries are accommodated by periodic extension; i.e., an index (ij,i,) € L is

taken to be (i modn,i) modn,). This issue will be taken up again later. The operators 7;, 2,
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may be thought of as discrete partial derivatives. This chapter concerns a random field X

with outcomes in R™™ and Gibbs distribution
1
P(X e dx) = const.exp(——z—H (X0y)) dxp0y (4.2)

with

Hx)= ¥ I ak,((:{‘zéx)(il,iz))z 4.3)

(iy,ip )eL1<k+I<p

where () denotes that the (0,0) element is zero, and (o) that it is left out; i.e., x((y(0,0) =0
and xp) = (x(o)(il,iz ))(i!,iz)eL\(O’O). As given above H is the Tikhonov stabilizer of order
p on the two-dimensional lattice, which is quadratic, so the distribution is Gaussian. The
constraint X(0,0) =0 is necessary for the distribution to exist. With this condition and

each constant ay 2 0 and g, a,o >0, the normalizing constant is finite, and is

calculated later. It is useful to express H as H(x) = |Tx|*, where
. [ 2. [ 2 —
Tx = ( a0 11X,4/ Qo1 12X,/ Qyp 1 X4/ A1 [ila X,/ oo 12 X5 aop té,X) (44)

a vector of all weighted partial derivative operators up to order p. Let
m=(p+1)(p+2)/2 -1, the number of elements in T. For j =1,2,...,m, T;isusedto

denote the jM element of T In view of the fact that T is invariant to an additive constant, it

is beneficial to view an outcome X g, as the representative of an equivalence class

{x(0y + c:c € R}. The distribution is referred to here as the stabilizing Gibbs distribution of

order p.

Local Distributions. Let G:{z € C:|z|=1}> — C™ be a vector of polynomials given

by

G(z1,23) = (\Jayo (1 - z)),ag; A - 25), “s)
Vay (=2 Ny (1= 2)( = 25),[ag, A= 2,)%,....[ap, (1= 2,)7) '
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The domain of G is restricted to unit circles so that z, =z}, Z, =z, and |G|]* can be

expressed as a polynomial in z; and z,. Direct calculation by completing the square in

the quadratic Gibbs energy H(x) yields

var(X (i, 1) 1X (y, J) = X(jis o) Urs J2) # (i,15)) = b; (4.6)
(0,0)

E(X(i,in) 1X (o o) = X o) G o) # (o)) = % —22l x4 iy + )
Uroda)#Giiy) 00,0

4.7)
where b ; y is the coefficient of zlj1 z{z in the polynomial |G|[%. The coefficients
b( i) = 0 except for (ji,j,) in a neighborhood of the origin, so the field is Markov with

a relatively local neighborhood structure. The local distributions given by the local
variance (4.6) and local mean (4.7) represent conditional autoregressions (Besag [2],

Ripley [8]), in particular, intrinsic autoregressions (Kiinsch [4]) because of the form of

the coefficients.

Example. For the first order model Tx = (fx,#,x),

H(x)=|Tx|? = 2 COIEE 1,5)) + (x(ip, i) — x(ip, by — 1))
iy,ip )E

G(z,2) = (1~ 27),(1-2,)), |GGz, 2)|} =4 =27 — 7! =2, — 25", Hence, the local

variance is 1/4, the local mean is

%(x(il —1,i)) + x(iy +1L,ip) + x(ig, iy = 1)+ x(ip, i + 1))

which involves only the four nearest neighbors of (ij,i,). The following definitions are

needed later.
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Preliminaries

Complex Normal Distribution. A random vector Z € C” has a complex normal

distribution CN(Z) if

P(Zedz)= xp(—z’Z"lz) dz (4.8)

n 1 c
n" det(X)

where X =E(ZZ"), a prime denotes transposition and complex conjugation, and dz

denotes dxdy with x =Re(z) and y = Im(z). See Goodman [3] for standard properties.

For a function (matrix) { taking L to C, let there be an understood ordering on L,

so that { can be considered a vector, also denoted (C(z’l,iz))(i1 )eL:

2 2
Discrete Fourier Transform. Letz:L — C, and w; = exp(Z—JE), Wy = exp(ﬂ).
n ny

The discrete Fourier transform Z is the representation of z with respect to the orthonormal
i i : = —1/2. ik bk

Fourier basis {e(kl,kz)-(kl’kQ) € L}, where e 1) ((nlnz) wi wy )(il,iz)eL' In other

words, z = PZ for a unitary matrix P whose columns consist of the elements of the

Fourier basis, and ? = P’z. Further, |z|* =||Pz|* = 2P'Pz =||z|* = |P"2|], which is

Parseval’s relation. The discrete Fourier transform of a multi-dimensional image

A

(2:L—>C)_,, , isdefined as dft((z:)i1,..n) = (&), , _,- The main result of the

chapter is presented next.

Representation
Let
Alky, k) = (Jago 1—wi ™ h4/agr (1- wy 2 )infago (1 w2, 49

Vay Q= wi (1= wy2),fag, (1-wy* )2.nfag, (1 —w;%2)P)

It is easy to verify that T; has the eigenvalue A ;(kj,k;) relative to the Fourier

eigenvector €, ) for (k,k;) € L and all j, where A denotes the jth element of A. Note
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that the {Tj:j =1,2,...,m} have common eigenvectors, so in a sense A(ky,k;) is a vector-
valued eigenvalue of 7. Now

P'P3 = diag(A (k. ky)) 5 (4.10)

P'Tjz=P'TjP2 = P'Pdiag(A ;(k.k)) kel

(k. ke

so that for (k,k,) € L,

(P'T;2)(k,ka) = Ak, Ky )3 Cky ) (4.11)
This states that (dft(7Tz))(kk,) = A(kky )Z(kik, ), which can be verified directly. Also,
denote L\ (0,0) by L.
Theorem 4.1. Let (U(ky,k,)) kel ™ CN(21I), where I is the identity matrix, so that U
is i.i.d. complex normal. For (ij,i;) € L, let

Vipi)= 3 U(k,k,)

(i1,5) — €0.0y(iy>10) 4.12)
(k. k2 )eLg) ”A(kl’k2)” (e(kl»kz) Il 0,0){1>12 )

Then Re(V) has a stabilizing Gibbs distribution of order p.

Note. This representation provides a method of generating a sample from the distribution

based on an i.i.d. normal sample.

Proof. Follows immediately from Lemmas 4.1 and 4.2.

Lemma 4.1. Let W ~ CN(2I), with outcomes in C™""2, so that W has outcomes in

C™"™ for j=1,2,...,m.Let

2 = argin [0, - w’ (4.13)

where again, Z may be considered to have outcomes which are equivalence classes. Then

X =Re(Z) has a stabilizing Gibbs distribution of order p.
The proof is an application of Lemma 4.3, given later.
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2

Note. As an intuitive motivation, note that Z is the projection of “complex white noise’

into the subspace {Tz):7jo; € C™"™ 1y of m-dimensional images Tz consisting of

weighted discrete partial derivatives of z.

Example. Again, let Tx = (#x,2,x) . Then
2

Z = argmin
z(0y:L—C

hzoy | [ Wl:,
hzoy| |[Wa

Thus, Z is the projection of white noise onto the subspace of image pairs which are

discrete partial derivatives. In other words, the partials of Z best match the i.i.d. variables

w.
Lemma 4.2. V and Z have the same distribution.

Proof. It is convenient to use a Fourier basis in representing the above projection (4.13).

By Parseval’s relation and (4.11),
m

72w = Elrz-w = S| re-Pwf

3 2
) U@%)eL Ell(P,Tj 2)(k, k) = (PW )k by )l (4.14)

= 3 SIA k)t k)~ (PW, Yk k)|
(ky,ky)el j=1

Hence, the dft of Z is given by

. . 2
Z= i Ak, k) z(ky, ky) — W (ky, 4.15
g;Lf,r,%f}))=o(k1_%)eL“ (k1,kp)z(ky, ky) — W (kg kz)“ (4.15)

Because the Fourier basis is orthonormal, the dft of complex normal white noise is
complex normal white noise with the same variance (this is the reason for embedding the

projection in a complex space). The minimization may be carried out separately for each
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(k. ky) € L. Note that JJA(0,0)] = 0 so that Z(0,0) would be arbitrary were it not for the

constraint Z(0,0) = 0, which requires that 2(0,0) =- EZ(kl,kz).
(k1. k3 )eLig)

For (k,k,) € Loy, HA(kl,ch)” >0, the Z(kl,kz) are independent, and are given by

A(khkz)’w(kpkz) 4 Ulk,ky)

Z(ky, ky) = =
S TNCWS T XY
. L d (s .
With U(0,0) = (kl,kfiff?”‘”’ Uk e 2 (2000 k), - and applying

the inverse dft yields the result.

Note. The only dependence among the Fourier random variables Z (ky, k) results from

the constraint 22 (k1,ky) = 0. This is not true for X since there are further constraints
(ky by )EL

to ensure that X is real.

Lemma 4.3. Let W ~ CN(21), with outcomes in C”, and let a real-valued » X p matrix A
have full rank. Let

Z = argmin |Az - W (4.16)
zeC?
Then P(X e dx) = const.e:xp(—-%[]Ax”2 )dx , where X =Re(Z).

Proof. Because A is real,

Az - W]|? = |Re(Az - W)|* + |Im(Az - W)

(4.17)
= |ARe(z) - Re(W)|? +|AIm(z) - Im(W)|*

Hence the minimization of (4.16) can be carried out separately for the real and imaginary

parts, and

X =Re(Z) = argmin |Ax = Re(W)|? (4.18)
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Since Re(W) ~ N(0,I) and A has full rank, the minimization is a standard least-squares

problem, so X ~ N(0,(A’A)™!). The result is now obvious using ”Axl[2 =x"A’Ax.

Proof of Lemma 4.1. In Lemma 4.3, let A satisfy Azg) =Tz, so that mnyn, plays the
role of n in Lemma 4.3, and nyn, —1 the role of p. The matrix A so defined has full rank

because det(A’A) exists and is non-zero, as shown in the next paragraph. The result is

now evident, as ”Tx(o)”2 = ”Ax[o]ﬂz.

Properties

Normalizing Constant. The normalizing constant for the stabilizing Gibbs
distribution is computed as follows. Let Axo1=Txpy and X = Re(Z), as before. Since
X[0) is normally distributed, the normalizing constant is given by

-1/2
((21r)("1”2_1) det((A" A)‘l)) " To calculate det(A’A), first note that
o2 m . 2
PTix =3 3 |Ajak)30k)
J=I(ky ey )el
(4.19)

2 If(kpkz)lZZ,Aj(kl’kz)lz= Z”A(kl:kz)llzlfc(klvkz)lz
(k. Jy)eL = (ky.Jy)eL

i = S = 5
Jj=1 Jj=1

so that
*oiA Axgoy =[xy = " E)GLIIA(kI,/oZ)||2](P'x(0))(k1,k2)[2
1s
=xipyPdingfate.)l’ ), P (@20)

— . 2 ,
= x[O]F dlag(”A(kl,k2 )" )(kl_kz)e[,w] r X[()]

where I' = [(e(/q ko )(11,12 ))(il’iz)eL[O]o(klvkz)EL[o]], which is P with the first row and column

removed. The last equality in (4.20) follows from ||A(0,0)] =0 and x(0,0) = 0. Hence
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A'A= l"diag(”A(kl,kz )Hz)(k1 k)L O)F’. It is easy to verify that det(I'T) =1, so

, 2
det(A’A) = TI|ACk, k)|
(ky,k3)€Lqo)
Covariance Structure. The representation given in Theorem 4.1 provides a method
for computing the covariance structure of the random field. For (iy,iy),(j; J,) € L, since
Uky, by Wi wd?e S Uk, ky), using (4.12),

.. .4 1 Uk kp) (- Gi=jk (=)
Z(i,ip) = Z(J1,Jp) =—=— = w2
Nmny (g )eLo; ||A(k1,k2)||( )

Hence,
var(Z(iy, i) = Z(jy, j2)) = r(iy = Ji.la = j2) (4.21)
where
) =—— % sin(r(ih 4 22 (4.22)
mny (k.ky)elfo) "A(kl,kz)” n

Note. The increments are stationary, i.e., the difference variance is a function only of

differences (3; — j1,ip — jp). In geostatistics the function r is known as the variogram.
Let X = Re(Z). Covariances for X are obtained using X(0,0) =0,
ar(X (i, i) — X, o)) = EVaI(ZOl:IQ) —Z(j1,J2))

and

cov(X (.5, X (b Ja)) = (var(X(il,iz)) +var(X(jy, p)) - var(X(i1,5y) - X (j1, /o))

N | —

which results in
cov(X(iy,55), X (1, j)) = Z(r(ll,lz) +r(j,Jo) = r(y = iy = Jp)) (4.23)

Hence, the variogram completely characterizes the process.
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Standard Regularization Model

Hereafter a specific form is assumed for the coefficients ay of T. With ¢ and p

strictly positive, the special form of T is chosen so that

p P
llA(kl,kz>||2=51—2-(ll—w""*| +[pa- wﬁ)l) u (sm( =)+ psin (2 ,:Z))
(4.24)

which is equivalent to
1
T(Loyp)x = E(flx, pf2X)
1
T (2,0,0)% = E(zfx, \2ptyt,x,p212x) (4.25)

1
TaopX = 5(1‘13 X, ‘/59112 X, \[gpzflfzzx: p3;§x)

and so on; coefficients are given by Pascal’s triangle, and subscripts denote order and

parameter value. With T so defined, the resulting distribution is said here to be of

standard form.

Note. The pair o = (&,E&z—) is a spatial frequency. With sinx = x,
UG

Joo]* = sin? @, + sin? @,. Hence, the Fourier coefficients U/ A| of the representation
(4.12) for small || fall off as roughly 1/|w|/2. This is the law for the “1/f* noises of
Mandelbrot [6]. The case p # 1 allows for ellipsoidal falloff. With the above form (4.25)
for T the corresponding prior energy or regularization term H(x) = l]Txl]2 is commonly
used in image processing applications [7]. For example, the first order energy enforces
smoothness of x by penalizing large gradients. The smoothness increases with order, as

high spatial frequencies are increasingly damped in the Fourier representation (4.12).

Samples from the p =1 distributions, generated using (4.12), are shown in Figs.

4.1,4.2,4.3, 4.4, for orders p =1,2,3,4, respectively. Mesh plots for orders p =1,2,3 are
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shown in Figs. 4.5, 4.6, 4.7, respectively. As seen in Fig. 4.6, the sample from the second
order distribution has the visual characteristics of the height function for a planetary
surface. For this reason the second order distribution is used as the surface model in the

Bayesian formulation of radarclinometry presented in Chapter 3.

Fig. 4.2. Sample from second order distribution.
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Fig. 4.4. Sample from fourth order distribution.
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Fig. 4.7. Mesh plot of third order sample.

Alternate Representation. For stabilizing distributions in standard form and of

even order, the representation of Theorem 4.1 can be based on the discrete Laplacian.

Using (4.19),

IT2? = S|AGy k)| Rk
(ky,kp )eL

1

1 2 2V

- = ([-w[ +pa-wi) | i, k)

(ky.ky)eL ©
= L xPDP Py = L x'PDPPPDPI Py = S |ppPPpff =

(& o (o

. k|2 2
where D = diag |1—w1 ‘ +|p(1—w2 )‘ i n and
kl' 2 )E

1
— A
G2

Ax(iy i) = x(iy +1,5y) = 2x iy, ip) + X (i) — L,y

+ p2 (X(il,iz + 1) - 2X(i1,i2) + x(il?iZ - 1))

pl2

(4.26)

4.27)

which is the discrete Laplacian for p = 1. The last equality in (4.26) is verified by noting

that the diagonal elements of D are the eigenvalues of —A relative to the Fourier basis. In
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other words, (dft(—=Ax))(k,ky ) = A(ky, ky )X (ky, k,), where

2 2
Ak ky) = Il -w k l + lp(l - Wy ka )I . Hence, for the standard form and even orders
(when AP/? can be defined through composition) the projection (4.13) can be based on

the Laplacian, i.e.,

X 4Re argmin

Z(o) :L—-C

2
-I—AP/ZZ(O) - W“ (4.28)
)

where W for any order has outcomes in C""2. The equivalence (4.28) is true by (4.26)

and Lemma 4.3.

The representation of Theorem 4.1 is based on knowing the eigenvalues and
eigenvectors of the operator T. Using (4.28), the analogue of Lemma 4.2 for the operator
AP results in the same representation (4.12), which was based on the operator 7. This is

true because the eigenvectors are Fourier for both operators, and

-ll(kl,kz P12 = Ak, k)| (see (4.24)). In the next section a modification of the
c

Laplacian for which eigenvectors and eigenvalues are known is used to relax the toroidal

boundary conditions brought about by periodic extension.

Boundary Conditions. Toroidal boundary conditions are sometimes restrictive; for
example, in image processing applications, where dependence should not “wrap around”
at boundaries. To obtain alternative boundary conditions for stabilizing distributions in

standard form and of even order, modify the Laplacian in the following way. On

{Gyy):dy #0,m =1, 3, # 0,ny —1} let A=A, but for i; =0,m; —1 let

Ax(0,ip) = Ax(0,iy) — x(ny = 1,i5) + x(0,,)
Ax(ny —1,5,) = Ax(ny = 1,iy) = x(0,i,) + x(n; — 1,5,) (4.29)
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respectively, and similarly for the other coordinate, and carry out both modifications for

corner sites. This removes the bonds that wrap around the boundary. As pointed out by

Kiinsch [5], for (k,k;) € Lig), A has the eigenvalue
X(kpkz) = 4(Sin2(-n—k—1-) + p2 sin2 (n_k2))
2’11 2}1_2

relative to the eigenvector

€ by) = (Z(nlnz)'w cos(®L(; + %))cos(&(iz + l)))
K K (inip)eL

and, as above, an eigenvalue of zero for the eigenvector €g gy = <(n1n2)—1/2) .
’ (ir,ip)eL
Hence, a complex random field Z with the modified standard stabilizing Gibbs

distribution has representation

5. . Uk, ky) o
Z@,ih)=0c Y =——=5(g (4,i)—¢€ (0,0)) (4.30)
w (ky,kz )€Lo) Mk ky P12 ko)1 27 k)

where U is distributed as above.

To show the effect of the boundary conditions, samples from the second order
distribution, with both periodic and free boundary conditions, are shown in Fig. 4.8. The
sample for the periodic conditions is an outcome of Re(Z) where Z has the distribution of
Vin (4.12). For the free boundary the sample is an outcome of Re(Z) as given in (4.30).
As might be expected, local characteristics are similar but the free boundary sample is
more “ragged” at the boundaries. Fig. 4.9 shows the zoomed central portions of the
images of Fig. 4.8. The figure shows visual similarity (in distribution) of the samples if
attention is focused on interiors, away from boundaries. Figures 4.10 and 4.11 show mesh

plots of the images of Fig. 4.9.

In a different context the use of a prior based on the Laplacian and its

eigenvalue/eigenvector representation can be found in Amit et al. [1].
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Fig. 4.8. Samples from second order distribution;
left: periodic boundary; right: free boundary.

N

Fig. 4.9. Central portions of Fig. 4.5.
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Fig. 4.11. Mesh plot,

Fig

known in the standard model.

ing parameter G is un

ML Estimate. Assume the scal

Let x be a member of the equivalence class for an outcome of X. Using the normalized

written

form of the stabilizing Gibbs distribution, the likelihood function for 02 can be
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I(6?,x) = =(mny —1)log(c?) - lzucsTxu2 (4.31)
(¢

2
so the maximum likelihood estimate for 67 is simply L—"I.l For p even, the identity
mny =

(4.26) leads to a simplified computation of the quadratic.
Self-similarity Property

Self-similarity is the property that a scaling of coordinates is equivalent to a
scaling of the process (Mandlebrot [5]). In other words, if a sample from a self-similar
process is “zoomed in” the result looks similar to the original process. Self-similar
processes have “similar characteristics over a range of scales.” This is considered an

important property of the 1/ noises of Mandelbrot because self-similarity is claimed to

be characteristic of many natural phenomena.

It is not surprising that the stabilizing Gibbs distribution of standard form obeys a
self-similarity property given the aforementioned relationship to 1/ f noises. However,
only an asymptotic statement can be made, and it is valid only for orders p = 2. In any
event, the stabilizing Gibbs distribution is used here to model natural surfaces, which is
appropriate given the claim that self-similarity occurs in nature. Synthetic scenes

generated from 1/ f noises are shown in [6] to support this claim.

The important distinction between the stabilizing Gibbs distribution and 1/ f
noises for modeling surfaces is that the random field is directly defined on a lattice (as
opposed to the plane) and has a local neighborhood structure. These are important

computational considerations in the context of stochastic inverse problems. Further, as is

1By (4.25), the numerator does not depend on .
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described in detail later, there is another computational benefit due to self-similarity: the

property suggests a procedure for maintaining consistency among levels in a multi-

resolution hierarchy.

The basic result is presented next. In the following, let
L) = (0,1, my =1 X {0, 1,...,mp =1} and L™ = L")\ (0,0).

Corollary 4.1. Let g, a, be integers greater than or equal to one, and let the order p = 2.
Let o’ = al_p“/za%/zc and p’ = (a,/a;)p. Fix (n{,n;). Then the variogram obeys

1 oo
—— |, ) - s (@), @) 22220

n,n
uniformly for all (4,5,)#0, || < n{, [lo| < n5, where for r superscripts denote lattice size,
and (p,ll = r((l p)"2) (n{/2,n3/2), a normalizing constant which ensures that

Py Ty (1] 2,15 [2) = & for all (m,m).

Application. Let X and X” have stabilizing Gibbs distributions of order p, with sizes
(n,ny) and (ayny,a,n,), parameters (0,p) and (q; p+l/2a21/20',(a2 /a1)p), respectively. The

- corollary together with (4.23) implies that

-1/2 .. -1/2 ry s .
(pnll,/nz (X(ll’12))(1'1,1'2)6[,("1"'” = (pnl,/nz (X (alll’azl2))(il,i2)eL("{ nd) (432)

in distribution. The processes converge in distribution to each other on a fixed sublattice
L") However, the corollary states that for small spatial lags (};,,) the variograms
converge to one another, which is a statement about small-scale properties for all of
L") Thus, in a sense (admittedly weak), (4.32) holds for the processes defined on
[(mm)

Define G( v "2 = {(zlAl,zzAz) (iy,iy) € L™ "2)} a grid with spacing (A;,A,).

Associate X with the grid G(y"2)) and X* with the grid G{g!%,%4") | Thus
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(X iy, ))(il,iz)e m.my and (X’ (ayiy, apiy ))(‘.1 erinm) “correspond” to one another with

respect to the grids. The marginal distribution of X’ on the grid sites on which X is
defined is approximately equal to the distribution of X. This equivalence is important in

maintaining consistency of the stabilizing Gibbs distribution in the multi-resolution

scheme described later in Chapter 6.

Example. Let p=2, a; = a, =2. Then X has approximately the same distribution as

1 ; .
—X’ on its even numbered sites.

Self-similarity. Let a = g; = a,, and let X and X’ have stabilizing Gibbs
distributions of order p, common parameter (G,p), and sizes (nl,né) and (agyn,a3n,),

respectively. One then has the self-similarity property
-1 . . s e
a? (X(ll’lz))(il,iz)eL("l'"Z) = (X (011s012>)(.'1,12)eL("1'"2> (4.33)

in distribution, i.e., a scaling of the spatial coordinates is equivalent to scaling the process.

Fig. 4.12 shows the variograms r(((lfg,l%) and r((%:??) for comparison, which is strongly

suggestive of the approximate equivalence in distribution (on Z™*™2)). The origin is at

the center in both cases.
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Fig. 4.12. Difference variances.
left: 128 x 128; right: 64 x 64.

Proof. The method of proof is to bound |r """2)(11,12) (al"‘ an2)

T(o,p) ooy - (@h,axh) from above

and @, .n, from below. Proceeding with the former, using (4.22),

( ’ b
(?p’;z)(ll’lz) ((gvg ;’2"2)(alll,a212)l

_|2¢? 5 sin® (n(hy /my + boky /)
" gr 1, () [ 2 2.2 p
172 g dy )L™ (sin (mky /m) + p? sin (nky /)

1 ZPGQG z Sin2 (TC(llkl/nl + lzkz/nz )) |

p aiyny,azn : :
47 gy, (ke Je L1922 (s1n2(nk1/a1n1)+ (ay)ay)*p? smz(nkz/aznz))p’

2
S A NS (4.34)
4 n1n2 (k kz)EL%nl )

where
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8(ky,ky) = sin’(n(hky /ny + Ly 1))

1 5 p k) (4.35)
- (i, )\ 1> %2
(Sin2 (ke /m) + p? sin® (k| ”2))}7 (i ip)eL@e) " 2

1
Ll i) kkp) = > (4.36)

(af sin®(n(ky + imy )/ aymy )+ aFp? sin® (nky +igmy)/aymy )

Further,
1
syt 2| =
112 (&, oL
(k1.kp JeLig; 437)
1
—_ ek, k) +|  Xglk,k)+|  Tglkk)|+| X glk,ky)
i \ | (k,ky)eQ, (ky,kp )EQ, (ky, by )eQ;5 (ky ey )EQ,

where 0 =[0,7/2) X [0,1,/2)\(0,0), Oy = [11/2,1,) X[0, 12 /2),
03 =[0,m/2)x[ny/2,n3), and Oy =[ny/2,n) x[n2/2,m).

The sum is easy to bound except in the four corners of [0,7;) X[0,n,). Let @) = ntky /ny, -

®, = Tk, /n, . To bound the sum in the first quadrant,

zg(kl’kZ)
mny (k.ky)eQ
1 . 1
S— Y sin®(oy +Lo,) . T\ = f0,0)(k1,42) (4.38)
My (kb )eQ, (sin® @, +psin” @,)
1
+— 3 S itk

mny (k,k)eQ, (il-iZ)eL{g}'aZ)

First bound the second sum on the right-hand side as follows. For a,n > 1, k €[0,n/2),

and [/ €[1,a),

1a < (k+In)/an = kjan+1/a < (n)2)/an+(a-1)Ja=1-1/2a (4.39)
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o) sinz(n(k +1In)/an) 2 sin? (mt/2a). Applying this to the above, for (,k;) € O; and

(il:i2) € 485"12),

1
Fliip) Raskr) < (4.40)
()72 (min(af,a%pz)sinz(n/2max(al,¢_12)))p :

so the sum is bounded by a constant. It remains to bound the first sum on the right-hand

side above. First bound the summand as follows.

1

,; +p2 sin

sin? (hay + L) >~ f0,0)(k,k2)

2 2

(sin 0)2)

. 2 1 1
=sin"(hooy +Hdo)) - 2.2 VP (2.2 222 2
(sm ®; +p*sin 0)2) (al sin“(w; /@) + a3p” sin (mz/az))

(4.41)

Using the expansion sinx=x%+ e(x), where lin% E(—Zz =-12,
x—0 x

1 1

(sin2 o, + p2 sin? mz)p (alz sinz(ml/ﬂh) + a%PZ Sinz(mz/"a ))p

(al2 sinz(o)l/al) + a%p2 sin? (0y/a, ))p - (sin2 w; + p?sin? coz)p

. . 2 . . P
(sm2 ) + p2 sin? (1)2) (a12 51n2(0)1/a1) + a%p2 s1n2(a)2/a2))

B (col2 + pzco% + alze((nl /ay)+ a%pze(cnz /az))p - (mlz + p2m§ +e(w;)+ pze(coz))p

(sin @, +p?sin® , ) (af sin? (; /a;) + a2p? sin® (@, /ay))”

and by the binomial theorem, using e(x) = O(x4),
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f(" )(m% +p%3)((ale(@1/a)+ adpPe(w,/a) - (et +pPe(wy)) )

i=1

(sin® @, +p?sin’, ) (af sin (@, /ay) + adp? sin® (w0, /ay)) (4.42)

_ ("ol _
o(lwl*?)0(w]*?)

O(lw]*~*)

where @ = (©;,0,), and f(w;,0,) = O(|o|") denotes the fact that there exist constants

®,®
m, M >0 such that m slf_(l_ﬁ_)_l

o] < M for all |Jw| sufficiently small. Now, with
[V

sin?(40; + Lo,) = O(|o|%), it is evident that there exists an € > 0 such that for |o] <€,

1

sin? (ho, + Lo,) - —
sin“ @; +p*sin coz)

=~ f(0,0)(k1,k2) | < const. J]* 77 (4.43)

Hence,
1 .2 1
— % fsin(hoy +5y) — v~ Jootk)
MMy (k.ky)ey (sin ®; +p°sin 0)2)
<const——  Slaf?
M2 ((k .k )eQy ol<e)
1 1 1

+— > -
MM ((k .k )eQy ol2e) (sin2 w; + pZsin? mz)p (al2 sinz(ml /&) + a%p2 sin? (0, /a, ))p

(4.44)

The second sum in (4.44) is clearly bounded by a constant, as is the first for p =2. The
first term of (4.44) is a Riemann sum, and for all nj,n, and p 2 3, by definition of the

Riemann integral,
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o (% dudi,=m2  [r5Pdr

1 ((kk)eQulol<e) 82 o oy o n )<ful<e Sy my )<r<e
i
|3 Gogstm) - loge) p=3 (449
i ﬁ—_?)(g“”(nl,nz)—ss‘”) p=45,...
where ¢(ny,ny) = En_la—x%zl,—ng_); clearly ¢(ny,n,)—22"0.

The other three quadrants can be bounded similarly. Note that in all cases an expansion
about the origin may be used due to periodicity; there are copies of the remaining three

corners at the origin. The following summarizes the upper bounds established thus far.

P (1, b)) - r@msE) (il aply)
< {const. log(max(ny,n,)) + const. p=3

2p-6

const. (max(ny,n,)) + const. p=4,5,..

The normalizing function ¢, , is bounded from below in the following.

Py = Ty > (1 /2,m3/2)

__ 2 sin? (njay /2 + nja, /2) 447
—1 :
4P mny (ke L{gy ™) (sin2 ®; + p2 sin? W, )p
1 -
=—  YO(of*"?)

MM (kb )eLig) ™)

27

and for some & >0 and y(ry,n,) = ————,
min(ny,ny)

t. _ )
> 22 Slof*?  >const.  [r*"?Pdr
MMy (ky,kp )el0,m )x[0,12)\(0,0),]}<5 Y(ny,ny )<r<b
const. log(min(ry,m,)) + const. p=2 (4.43)
~ |const. (min(ny,n,))*P~* + const. p=34,..
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The result now follows.
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CHAPTER 5
EXTENDED GIBBS SAMPLER

The Gibbs sampler is a Monte Carlo algorithm originally devised for Bayesian
methods of image processing (Geman and Geman [5]). In this chapter an extension of this
computational technique used in the solution of radarclinometry as a stochastic inverse
problem is described. In the extension the Gibbs energy is a sum H = H; + H,. A state is
proposed by drawing from the standard Gibbs sampler based on Hj, and accepting based
on a Metropolis-type ratio involving H,. For radarclinometry, because the prior is normal
and the data term is computationally demanding, the method is well suited to the posterior

distribution with the regularization term playing the role of H; and the data term the role

of Hz.

The results are presented in more generality than is required for the
radarclinometry application. The opportunity is taken to extend the Gibbs sampler to
include additional attractive image processing and other practical applications. In
particular, the Gibbs sampler is extended in two ways: 1) a propose/decide scheme is
used, which is a special case of a non-stationary version of the Hastings extension [9] to
the Metropolis algorithm [11]; 2) transition operatdrs have general support, in that local
updates are based on restrictions of the state space more general than allowing only a
change at a single site. A convergence theorem is proved, optimality properties are

demonstrated, and some image analysis applications are described.

Algorithms of the type presented here have found wide use in image processing

and spatial statistics. For recent expositions see Besag and Green [1] and Tierney [14].
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Gibbs Sampler

The standard Gibbs sampler is given as follows. For a finite lattice, L, let
Q=A=(x= (x5)ser:Xs € A,s € L} be a product space based on the lattice, where A is
a finite set. Define a family, indexed by temperature T > 0, of probability mass functions

on this space, where each element is a Gibbs distribution: for x € Q,

IIr(x)= El——exp(—H(x) /T) (5.1)
T

with H a real-valued energy function, and Zr = Y exp(—H(x)/T) a normalizing
xeQ

constant. This form is not restrictive; any distribution IT which satisfies I1(x) > O for all

x € is a Gibbs distribution with H(x) = —logII(x). Let (@;);=012, . be a sequence of

sites in the lattice which represents a site-visitation schedule, in that i is a time index. Let

Pg) (x,y)= Ha; (ya.' Ix(ai))1y(a;)=x(ai) C2
where, for se L,
I (x)
I, (x,1x5)) = —=——— >
S\*S (S) ZHT (Z)
20 Z(5) = X(s)

is the local distribution at site s, with X(5y = (X;) 15, ter, - The results in Geman and Geman
[4] which are relevant here are summarized as follows. 1) Let (X ,-) be the non-stationary

Markov chain with transition operafors (Pl(i)), and for each s € L, suppose g; =

infinitely often. Then, for any starting point x, lim P(X; =y 1X, = x) =I1,(y) for all

[—oo
y € Q2. 2) Suppose there exists an integer T such that L < {a;,1,8;,2,-..,a;,..} forall i 2 0.

Fix a temperature schedule (T,-) which decreases to zero slowly enough that
liminf T; logi is sufficiently large. Let (X ,-) have transitions (P}‘)) Then
[—yo0 i
lim P(X; = y 1 Xy = x) =I1j(y), where I1j(x) = Tlirr%) 17 (x), which is the distribution
_)

[—yo0

uniform on the states which maximize IT;.
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The conditions on the site visitation schedule ensure that any state can be reached
from any other. The practical significance of the two results is the following. Typically in
an image processing setting the local distributions can be easily evaluated, in that through

cancellation between numerator and denominator, each calculation involves only a small

neighborhood m, c L of site s. The first result provides a method of sampling from II,

via these local calculations. The second provides a scheme for sampling from IT,.

The Gibbs sampler is essentially specified by an energy function and a site

visitation schedule. These two components are modified here in such a way that the

standard Gibbs specification is a special case.

The energy function determines the distribution from which the Gibbs sampler

generates realizations. In the extension given here the energy is a sum of two terms,

motivated by the Bayesian setting, as follows. A posterior distribution P(X =x 1Y =y) is
the object of interest where x is the scene, or desired information sought from the data y.
The posterior distribution is Gibbs (assuming positivity) with

H(x)=-logP(Y =ylX = x)—1logP(X = x). Either of these terms can play the role of
H;(x) or Hy(x), but this need not be the case. For example, as in Green and Han [6], H;

can be an approximation to H, with H, the error.

The calculation involved in generating samples from Il directly is reduced to
sampling from local distributions, and the site visitation schedule gives the order of
sampling from these. At each time i, the transition probabilities are restricted,

renormalized versions of I, i.e., of the form

P%“)<x,y>=—%1s,.(x)<y> (5.4)

2€5;(x)

where S;(x) = {z: Z(a)) = x(ai)}. So for each x € Q, S;(x) < Q. This is the motivation for

replacing the site visitation schedule (g;) with an arbitrary sequence (S;) of subsets of Q.
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Extended Gibbs Sampler

For an arbitrary finite sample space Q let

Iy (x) = er—exp(—(Hl (xX)+Hy(x))/T)

(5.5)

be a probability mass function on this space, where Zp = Y exp(—(H;(x)+ Hy(x))/ T).

xef

Define a sequence of maps (S,-)‘.=0 12> Where §;:Q — 22, Thus, for x € Q and each i

S;(x) is a subset of Q. Also, assume the property y € S;(x) < x € S;(y) holds for each

x,y € Q and each i. Define the transitions

o 0% (x,y)min(1,p{P (x,)) y#x
N S0P minpP ) y=x
where
0 _ exp(=H;(»)/T) ’
Or’(x,y) SZ(G;‘P(“ ACYES) 80 ()
exp(-H,(»)/T) Y exp(-Hy(z)/T)
pP(x,y) = 2e5(x)
exp(~H,(x)/T) Sz(e)xp(—Hl(z)/T)
z€0; (Y

M OO oo
(0 Oty 0 S

which equals

Following Hastings [9], p(Ti) is called the test ratio. It is easy to verify that these

transitions result from the following algorithm, carried out at each time i:

(5.6)

5.7

Propose: state y is proposed as a new state with probability Q}i)(x, y), where x is

the current state

Decide: the new state is accepted with probability min(l,p(Ti)(x, )

The following theorem extends the two results presented earlier for the Gibbs

sampler. Basically, the chain has the appropriate limit distribution. The constant
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temperature result corresponds to limit distribution IT” = IT; below, the simulated

annealing result to IT" =TI1,.

Theorem 5.1. Let (T}) =01 . D€asequence of positive numbers such that I, —IT’,

(Tk) is eventually decreasing, and lilgn inf T} logk is sufficiently large. Suppose there
— 00

exists a sequence 0 =1y < T; < Ty < such thatforall k20 and x,y € Q,

Y €8q,,,-1°5z,,,-2 ©** ©S¢, 4195z, (x), and there is an n such that T4, — T, < n Vk. This

condition ensures that any state can be reached from any other state in finite time. Let

) , where k; = k for
ki /i=0,1,2,..

(X:);g.1,._ beaMarkov chain with transitions (P}i)
ie [Tk,Tk_,,l). Then

lim P(X; =ylXg=x)=1I"(y) Vx,yeQ (5.8)

i—yoo
Before presenting the proof, some applications are described.

Applications

Existing and new algorithms are shown to be applications of Theorem 5.1. In all
cases, including the standard Gibbs sampler, the condition that each state can be reached
from any other is satisfied by ensuring that all sites are repeatedly visited. A number of

properties given below assume y € S;(x). Note that this simply means that y is proposed

from x with positive probability.

Standard Gibbs Sampler. The standard Gibbs sampler is retrieved by taking
H=H,H,=0,Q= AL, and S;(x)={ye: Ya) = x(ai)}. It is easily verified that if

y € S;(x), the test ratio is one, so P7(~i )= Q}i). Proposals are always accepted.

Multiple-site Updates. In the extension given in Geman and Geman [4], the site

visitation schedule is (A4;);=02,.., Where A; C L. The values of the field on a subset, not

necessarily a singleton, are updated at each time i. In the context presented here, H; = H
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and S;(x) = {y € A": y 4.y = x4} One expects that as |4;| — |L|, transitions P (x,e)
become “close” to Ilr; indeed, A; = L corresponds to direct sampling, in which case

P}i )(x,O) = I1r. This closeness is made precise in the discussion on optimality later in this

chapter.

Hybrid Gibbs Sampler/Metropolis Algorithm. Let S;(x) ={y € AL: Y(a;) = Xa; s
as in the standard Gibbs sampler, but let H = H, + H,. In this case the test ratio does not
involve H; whenever y € S;(x). Here, for example, H; can be either the prior or data
term in a Bayesian formulation. A new state is proposed by sampling from a one-term
Gibbs distribution locally as in the standard Gibbs sampler. The acceptance decision, as
in the Metropolis algorithm, is based on a test ratio, but here involving only the second
energy term. The advantage of the hybrid over the Metropolis algorithm is that the state
proposal is consistent with at least one of the energy terms. The advantage over the Gibbs
sampler is that it may be simple to sample from the one-term conditional distribution, as
when the energy is quadratic, but difficult to sample from the two-term conditional
distribution.

In the following, take H; = H, let (a;) be a site visitation schedule, and let
Si(x)={yeQ: Ya;) = Xa;)» Ya; € Eq, (x)}, where Eg(x) < {u:(u, x5)) € €2}. Note that if
E does not depend on x; the test ratio is always one whenever y € S;(x). The standard

Gibbs sampler has E (x) = A and 2 a product space.

Restricted Image Spaces. An example in which the sample space is not a product

space, i.e., E;(x) actually depends on x, is given in Geman et al. [3] and Yang [15].

There E; is chosen in a manner that is both sensible in an image reconstruction setting

and allows a reduction in computation. The choice has the very special properties that the

test ratio is always one when y € S;(x) (because E (x) does not depend on x,), and

Eg(x) = {u:(u, x(5)) € Q).
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Edge Dependence. This example is also relevant to image reconstruction. Let

Q= AL and E.(x)=[x;- g(x(s)),xs + g(x(s))] N A;i.e., at site s a range of values about

the current state is considered where the range may depend on the current state at all sites
except s. A reasonable choice for the function g is g(x)) = max(A, max x; — minx,),
ten, ten,

where T, is some neighborhood of s and A > 1. In particular, where there is an “edge” or

boundary in the image, a larger range of values is considered than where the scene is
relatively constant. This has the very desirable property of naturally concentrating the

computation around the edges, which was one motivation for the work on restricted

image spaces.
Back to Theorem 5.1
Before proving Theorem 5.1, some preliminary results are established.

"~ Lemma 5.1. The reversibility condition Pj(f) (eI (x) = P}i)(y,x)HT (y) is satisfied by

Il; and Pj(f). In particular, the invariance condition holds; i.e.,

ZQP?' ) (x, )17 (x) = T (9).

Proof. The case y = x is trivial. Let y # x, then

PP (e, )T (x) = 0 (6, ») T (1) min(L, pfP (x,))

. ) ) (5.9)
=min(Q{ (x, y) 17 (x), 08 (x, ) Ty (x)p$ (x, 7))

Further,
exp(—(H;(x)+ Hy(x)+ H;(»))/ T)

Zr Yexp(-Hy(2)/T)
2€85;(x)

exp(=(H\(») + Hy () + Hy(x)) / T)

Zr Yexp(-Hy(2)/T)
z€5;(y)

= 0¥y, 0TIz (y)

O (x, )T (x)= 15, )

O (x, ) 7 (x)p(x,y) = s (5.10)

(Recall that 15,4y () = 15,((x)). Hence, with g(x,y) = O (x, )Ty (%),
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PO (x,y) Iy (x) = min(g(x,y), (3 1) = P (3, 2) T () (5.11)

which completes the proof.

Lemma 5.2. P}i)(x,y) > —Lexp(—c/T) for y € S;(x), where

<

¢ = max H; —min H; + max H, —min H,

Proof. Let y # x, then

exp(—(H,(y) —minH,)/T) . exp(—(max H; - minH;) /T)

0) y) = > (5.12)
O ) = oy @) —min H) I T) 3, exp(=(Hy (2) — min Hy) I T)
zeS; (x) z€8;(x)
exp(—(maxH, —minH,)/T) Y exp(—(H,(z)-minH;)/T)
) z€S;(x)
pT (x:)’) 2 .
exp(—(H;(z)-min H,) /T
ze.g(y) (-, v/7) (5.13)
> rglilexp(—(matz —-minH,)/T) Y exp(—(H(z)-minH)/T)
2e8;(x)
Hence P}i)(x, y) = Q}i)(x, y) min(l,pgf')(x, y) 2 I—glz—'cxp(—c/ T).Let y=x, then
P (x,y) 2 08 (x,y) 2 I—é—lexp(—-(max H,-minH,)/T)> |—:2—|exp(-—c /T) (5.14)
Lemma 5.3. For x € Q, i II'IT,‘+1 (x) -1, (x)l < oo,
k=0
Proof. Let HT,C (x)= Pi , Where
di
0<p, =exp(—(H(x)—minH)/T;)<1 (5.15)
1<q, = Y exp(—(H(x)—min H)/T,)<|Q] (5.16)

xeQ)

with H = Hy + H,. Further,
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Pi+1 _ Pr| _
— - DiQk+1 — Pk+19k| S |PrQr+1 — Pr+19k
Qv G qkqml = Prente] <[Pudis = Pradd (5.17)

< Pkl4k+1 - ‘I/cl + lepk - Pk+1l = |4k+1 - le + IQ”Pk - Pk+1|

[, (0~ T, (0] =

Since (T} ) is eventually decreasing, for some ko, Pryq < Di» Grs1 < G, for all k > k,, and

2 lHTM (x) =TI, ()

k=k,
(5.18)

< k%‘lk = Qes1 Q| X Pk = Pres1 = i, —limgy +]Q|(py, —limp,) <o
=& k=ko

Proof of Theorem 5.1. The method of proof is that in Geman [2]. By Isaacson and

Madsen [10, Theorem V.4.3], the results of Lemmas 5.1 and 5.3 are sufficient if
(X,- )i=01 , is weakly ergodic. Weak ergodicity is implied by Z a(Pj(f" ’T"“)) = oo,

+11

where P;:" ) = H P(k) = I P(‘) and o denotes the ergodic coefficient. By
=T, ' =T,
hypothesis, given k£ and x,y € Q there exists a sequence

X =X, Xgy 415Xy, 15 %g,,, =Y Such that x;,; € S;(x;) for i =Ty, 7T, +1,...,7, — 1.

So, using Lemma 5.2,

(T Tre1) (z) T"”_l 1
Pr, (x,y)= H (x,y) 2 H PTk( X)) 2 —exp(—c/Ty)
1—1:,‘ l—‘tk i= Tk 'QI

(5.19)

Te+1~ Tk
1 exp(—nc/Ty)
exp(—c/T )J 22—
(IQI ¢ o]

Now, for liminf T logk = nc
k—oo0

2 OL(P(T" tkﬂ)) — Z min ¥ mln(P(T" Tk+1)(x 2),P (Tk.Tk+l)(y,Z))
k=0 %Y€QzeQ
(5.20)

S e exp(-nc/Ty) 1
= e €x nc / T,) =00
kgo x,Y€Q,e0 Q" ,an—l 2 p(- )

and the proof is complete.
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Note. It is not necessary that temperature be constant on the intervals {[T;,T;,1),k = 0},

i.e., that the schedule be of the form (Tk‘, ) Any eventually decreasing sequence (T{)

which satisfies T; 2 T for all i will suffice.

Extension

The level of generality of the above was chosen to adhere to the basic philosophy
of the Gibbs sampler, and to allow practically useful sampling schemes without imposing
undue complication. With respect to the design of reversible transition operators, a further
generalization of the above is suggested by a non-stationary version of the Hastings
extension to the Metropolis algorithm in its full generality. Given a distribution o,

transition operators which satisfy the reversibility condition, and therefore invariance, are

given by
09 (x,y) 0 (x,y) 09 (x,y)> 0,y # x
POUyy={1-  Y0Px2aP(xz) y=x (5.21)
Qm (x,2)>0,z#x
0 otherwise

where 09 is arbitrary except that Q(i) x>0« Q(i) (3,x) > 0 must be satisfied! for

all x,y and

s9x,y)

- - 5.22
19 09(x,y) o
%) 09.x)

oD (x,y) =

with 5@ symmetric and chosen so that 0 < o < 1. This framework gives a

propose/decide scheme; with the current state x, y is proposed with probability Q}i)(x, y),

1This condition is left out of the Hastings paper, but there is a divide-by-zero problem without it.

81



and accepted with probability a(i)(x, y). For an optimality result on the Hastings

acceptance schemes, see Peskun [13].

Optimality

The extended Gibbs sampler enjoys some optimality properties which are treated

below. Let Il be a probability mass function of the form (5.5), and let (S,-) be a

sequence of maps from  to subsets of Q as above. Define the proposal distribution

exp(—H,(x)/T)

2exp(-H(»)/T)
yeQ

P (x) =

and define @; , to be the set of probability mass functions f which satisfy f(y) =0 for all
yeS;(x). Also, let

I(f,8) =X )log(f(»)/g() (5.23)
Yy

denote the relative entropy between two probability mass functions f and g. Finally,

define R(Q(i),HT) to be the set of time-reversible propose/decide transition operators

associated with QI@ and Iy:
RO¥V M) = Q% = [0,1}: Tr(x,y)=1Vx, [ (x)r(x,y) =7 0)r 0V (x,y),

yeQ
r(x,y) < O (x,y)V(x,y):y # x)

(5.24)

The last condition ensures that the operators have the form (5.21) with 0 < a <1.

Theorem 5.2. Q}i) is optimal in the following sense. For each i and all x € Q,

0f(x,%) = argmin(f, I§)) (5.25)

ix

Further, P¥ ) is optimal in the following sense.
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PP = argmax #((x,y) e Q%r(x,) =0 (x,y) (5.26)
reR(Qr’,IIt)

In words, P}i) is the time-reversible transition operator which matches Q(‘) most
often. If H, =0, then Q}i) is in a sense “closest” to Il. For the case of a posterior

distribution when H, # 0, one of three situations is standard: 1) H, is the prior energy,

and QQ@ is closest to the prior, which may be viewed as the joint distribution of the scene
and data with the data “averaged out”; 2) H, is the data term, and Q(‘) is closest to the

distribution obtained by normalizing the likelihood function; 3) For the Metropolis case

where H; =0, Q%i) is closest to the uniform distribution on Q.

The following lemma is preliminary to the proof.

Lemma 5.4. Let g be a probability mass function on €2 and define gg = 5 g( )1 s fora
8y
yes

subset S < Q. Define @y to be the set of probability mass functions f which satisfy
f(y)=0forall ye S. Then

& = arj,gegl;inl (f.2) (5.27)

}mn I(f,g)=min Y f(y)log(f(»)/g(»))

yeSs

=min 3, f(y)(log( f ((yy )) ~ log( Zg(z»]

f yeS zeS
f)
= 1 +1
mfmygsf(y) og( e )) og(2 z ) (5.28)
zeS
1
= min/(f, 1
mj}n (f.8s)+ Og(zg(z))

ze$S

It is a standard property of relative entropy that it is greater than or equal to zero with

equality if and only if its two arguments are equal (Kullback [12]). Hence f = gg is
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optimum for the first term on the right-hand side above, in which case

1(gs,8) =log( ). Thus, as is intuitively plausible, the two distributions are close

1
28(y)

yes

when Y g(y) is close to one, i.e., g has a lot of mass on S.
yeSs

) — 0. In the multiple-site update Gibbs sampler

1
Note. Clearly, as |S| — |Q], log(
>8()

yes§

presented earlier, as [4;| = |L], [S;(x)| = |©|. As a result, the more sites that are
simulataneously updated, the closer P. (‘)(x e) gets to Il in the sense of relative entropy;

however, “close” is somewhat imprecise as relative entropy is not a metric.

Proof of Theorem 5.2. The proof of the first result of Theorem 5.2 is an application of

Lemma 5.4. To prove the second, let 7 € R(Q{”, T1z). By the reversibility condition
r(y,x) = Iy (x)r(x,y)/I (y); by the definition of p(')
0P (y,0pP (7,x) = I ()0 (x,y)/TIr (). Consequently,

r(x,y) <0 (x,y) & r(y,x) < 0 (3, 1)pP (v, %) V(x,7) (5.29)

A property of r, by definition of R(Q D ,I17) given in (5.26), is that for (x,y) such that
y#x, r(x,y)< Q(‘)(x,y) , S0 with the above (5.29), r(x,y) < Q}')(x,y) min(l,py)(x,y))

Y (x,y):y # x. Now,

#((x, ) (x,y) = 09 (x, )

(5.30)
= #{(x, )y # %, r(xny) = O (x, 7)) + #{(x, x):x € Q,r(x,x) = 08 (x,x))

Bounding the first term,

#((xy):y # x,r(x,y) = 08 (x,)
= #{(x,y)y = x,7(x,y) = 0¥ (x,y) min(1, p$P (x, y)), p (x,) 2 1) (5.31)
<#H{y)y = 1,pP(xy) 2 1)

and since pT)(x y) = l/p(’)(y,x),
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= #{(xy):y = 6pP (x,y) = 1)/2 + #{(x,y)y = %P (x,y) = 1) (5.32)

To bound the second term, for x € Q, the three conditions r(x,y) < Q}i) (x,y)Vy # x,
S r(x,y)=1,and ¥ 08 (x,y) =1 imply that r(x,x) > 0% (x,x), with equality iff
y y

r(x,y) =0 (x,y) ¥y # x (5.33)
& r(x,y) = 0 (x,y) min(1,p{ (x, )y # x, pP (x,y) 2 1Vy # x

Hence,

#{(,x):x e Q,r(x,x)= Q}i)(x,x)}

= #{x:r(x,y) = 0¥ (x,y) min(1, p{P (x, MV = x, piP (x,¥) 2 1y # x)

, (5.34)
< #{x:pP(x,y) 21 Vy # x)
The upper bounds for both terms are achieved when
r(xy) = 0P (x,y)min(L,pf (x,3)) V(x,y)y = x (5.35)

This completes the proof.

For some related work based on relative entropy, see Goutsias [6], [7].

Construction

The proof suggests the most general construction for elements of R(Q}i),HT), the
time-reversible, propose/decide operators associated with a given Il; and Q}i). Let
AcQ? satisfy (x,x)2 AVxeQ and (x,y)e A = (y,x) 2 AV(x,y) € Q2. For each

(x,y) € A let r(x,y) satisfy r(x,y) < Q}i) (x,y) rrlin(l,p(Ti)(x, y)), and set
r(y,x) = Iy (x)r(x,y)/IIr (). Finally for each x € Q let r(x,x) =1- Y r(x,y).

y#x
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CHAPTER 6
RADARCLINOMETRY ALGORITHM

This chapter provides a computational procedure for deriving surface shape from
a radar image of the surface. A sampling algorithm is described based on the extended
Gibbs sampler, and a hierarchical, multi-resolution technique suggested by the self-
similarity result for the stabilizing Gibbs distribution is described. The chapter also
includes experimental results of an application of the method to radar images of the

surface of Venus acquired by the Magellan probe.

Posterior Distribution

The point estimate employed in the radarclinometry algorithm is the posterior

mean E(XIU =u). This choice provides good results, and does not require selection of an
ad hoc temperature schedule as in the case of a posterior mode. Distributions do not seem

quite “peaked” enough to warrant the use of a sample from the posterior distribution as a

point estimate.

As given in Chapter 3 with the prior energy specified in Chapter 4, the posterior
distribution is P(X € dx|U = u) = const. exp(—Hu (x))dx, where

2
H,(0)=|Tg.0p +2 ZFh(y(ps(x),us) (6.1)
SE
and h(a,b) =b/a—log(b/a)—1. The set F is the domain of the radar image, as in Chapter
2.

Let L be the lattice on which the surface is defined. For computational purposes
the continuum state space RE forxis approximated by a finite state space AE, where A is

an appropriate subset of the real numbers. Let
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exp(—H, (x)) 62)
ZL exp(—H,(x))

x€A

n(xlu) =

for x e AF. The approximation (due to restriction to a finite sample space) to the posterior

meanis Y x7m(xlu).
xeAL

Since #(AF) = #A*E, direct computation of the expectation is computationally
prohibitive even for # A = 2 if the image lattice has a practically useful size. For this

reason a Monte Carlo estimate of the expectation is used, given by the average of a

sequence x; consisting of samples from n(xlu). However, there is the remaining

difficulty of sampling from m(xlu), which is addressed in the next section.

Sampling Algorithm

The sampling algorithm is a version of the extended Gibbs sampler given in
2
Chapter 5. In particular, H;(x) = "T(Z,o',p)x” , the quadratic prior term,

Hy(x)=A Zh(ycp s(x),us), the data term, and T, =1. Single-site visitation is used as in
seF

the standard Gibbs sampler, where the site visitation schedule is chosen so that
temporally neighboring sites (sites visited at contiguous instants) are spatially distant.

This helps to prevent artifacts which result from standard orderings of the lattice.

The motivation for the sampling algorithm, indeed the extension of the Gibbs
sampler, is as follows. The standard choices for Monte Carlo sampling are the standard
Gibbs sampler and the Metropolis algorithm. The standard Gibbs sampler is
computationally unwieldy because the local state space is large. It has # A elements, and
for each one the image formation operation, a complex calculation (see (3.5) and (5.3)),
must be carried out in calculating the data term. The Metropolis algorithm involves only
two image formation operations (one in the numerator of the test ratio, one in the

denominator), but the state proposal scheme is ad hoc. Because the prior is Gaussian the
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local distribution based solely on the prior is univariate Gaussian, from which a sample is
easy to generate on a computer. Therefore, an attractive scheme is to propose states by
sampling the local prior, and to accept based on a Metropolis-type ratio involving only
the data term. In this way the proposal, easily generated, is at least consistent with the
prior, and the Metropolis acceptance decision requires only two image formation

operations. This scheme is precisely the extended Gibbs sampler described earlier.

The prescription results in the following algorithm. Assume that site (7, j) is being

updated, and define Xi = (x(‘-,. j,))(,-,' P2 i.e., a vector containing all elements of x

except for x;;. A new state (v,x; ;) is proposed, where v is drawn from the univariate

normal distribution

n{D () = c(x[i,j])CXP(_"T(ZGP)(V’x["'f]) “2) “

where c(x;, j]) is the normalizing constant. The local conditional mean and variance is

obtained by completing the square in the exponent. The mean is

My = @ (Xoy,j + X1, )+ @ (X oy + X5 j41)
—a3(X;_1 joy F X1, jo1 F Xy ja1 + X, 1) (6.4)

—a4(Xi_g,j + Xiy2,j) — a5(Xi j2 + X ji2)

where
a, =1/(60+p")+8p%) a5 =ap*

a = 4ay(1+p%) | m=ap®  a=2ap"
and the variance is a4(52. Spatial isotropy of the surface is assumed, so p = n, /n; .

The proposal is accepted with probability

D) = rnin(l,exp(—?» th(y(ps(v,x[[‘ j]),us)) / exp(—x Zh(y(ps(x),us)j] (6.5)

seF
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Because of cancellation between the numerator and denominator, the sums can be taken
only over the set F; = {s:(p s 1) # @ (x)}, which is a relatively small subset of F if
the point spread function (approximated by truncating) has relatively local support. This
together with the fact that sampling from the local prior at (i, ) involves only 12
elements of x implies that the posterior distribution has a relatively local neighborhood

structure, an important computational consideration.

Implementation notes. In proposing changes based on the local prior, only the local mean
changes from site to site; the local variance is homogeneous. The quadratic associated
with the normal distribution is never evaluated, as would be the case with the standard
Gibbs sampler or the Metropolis algorithm. The Gaussian random variate is generated
using the inverse c.d.f. lookup table method. In updating a site, the time for the image-
formation calculation for the current state can be reduced by storing the data-term
computations carried out at the previous site visit (when either the current or proposed
energy was the now-current energy). In this way the Metropolis acceptance scheme
requires that only the data term for the proposed state need be evaluated at each site

update, reducing to one the number of image formation operations.

Multi-resolution Scheme

In theory (Theorem 5.1), given an arbitrarily large amount of time to visit sites
and carry out local computations, the extended Gibbs sampler generates samples from the
global posterior distribution, which can be used in Monte Carlo estimation. In practice a
limited amount of time is available. This is the motivation for the multi-resolution scheme
adopted in sampling from the posterior distribution. The basic idea is prevalent in image

processing (e.g., Gidas [2], Rosenfeld [3]).

A multi-resolution hierarchy of surface estimations is carried out. At the top level

the data and surface are defined with respect to the coarsest grids, and the grids are
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successively finer at lower levels. The finest level is level 0. At time i, level / of the
hierarchy, let the surface be denoted by X (it ), with lattice size (nl(l),ng)). Let

a = nl(l'l) / nl(l), and b, = ng’l) / ng), assumed to be positive integers. At each level the
posterior mean is approximated by first sweeping the image, applying the Gibbs sampler
until equilibrium of the Markov chain is assumed. Then realizations are averaged for a
series of sweeps. The highest level in the hierarchy, level 3 in the experiments presented
later, uses the reference surface as a starting point, which corresponds to X ©03)=0.1In
descending the hierarchy, the estimate at level / is upsampled by replication and used as
the starting point for the next lower level in the hierarchy; i.e., if x denotes the final

outcome for the Markov chain at level /, then the starting point at level / —1 is given by

0,/-1 P -1 -1
XD = xyya10i18,, for G ) e (nf 70,7,

The multi-resolution scheme is, practically speaking, the key to the success of the
procedure, which is supported by experimental observations presented later. The scheme
can be viewed as simply providing a good starting point for sweeping at the finest level of
the hierarchy. The advantages of a multi-resolution method are intuitively clear.
Information travels slowly across large distances when single site updates are used. The

situation is rectified by allowing large-scale properties to be established early at high

levels.

Model Consistency. A prominent difficulty in multi-resolution approaches is

maintaining model consistency among resolution levels. Here this is accomplished in the

following ways.

Prior. The self-similarity result given in Corollary 4.1 provides the appropriate

relationship among the stabilizing Gibbs distribution parameter values. At level / let the

parameter be denoted (G(l),p(l) ). With p = 2, the parameter values satisfy
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i -1 (6.6)
p® = (b /a)p*P

With parameters so defined, the self-similarity result states that at a higher level the

stabilizing Gibbs distribution is approximately equivalent to the marginal distribution of

the field on the corresponding subset of sites at a lower level, i.e., Xg,“;? = Xl-(,lj) in

distribution.

To demonstrate the effectiveness of the multi-resolution procedure, it was applied
to a hierarchy of second order Gibbs distributions in standard form, which corresponds to
the energy based solely on the prior. The result of both multi-resolution sampling and
direct Gibbs sampling can be compared to a sample generated based on the representation
theorem of Chapter 3. Fig. 6.1 shows the evolution of the multi-resolution sample, where
a 16 x16 grid is used at the highest level, a 128 x 128 grid at the lowest level. At each
level 1024 sweeps of the lattice were carried out, with the highest-level starting point an
image of zeros. The result should be compared for similarity in characteristics with Fig.
4.2, generated using the representation theorem. Demonstrating the advantage of the
multi-resolution approach, Fig. 6.2 shows the result of applying the Gibbs sampler
directly to a 128 x 128 lattice of zeros for 8192 sweeps. The result does not visually
compare favorably with Fig. 4.2, even though more computation was required. This
demonstrates that the starting point is crucial in using the Gibbs sampler, which motivates

the multi-resolution scheme.
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Fig. 6.1. Sample evolution.
top-left: 16 X 16; top-right: 32 x 32;
bottom-left: 64 x 64; bottom-right: 128 x128.
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Fig. 6.2. Result of direct application of Gibbs sampler.

Data. The radar image data at level / are created from the data at level / —1 by
smoothing with a product of Gaussian kernels (to prevent aliasing) and subsampling. That
is, let U @ denote the radar image at level /, where U ©) is the original data. Let U ® have
domain F (I), where the F®) grow coarser with /, i.e., satisfy F O < FD Then

Upy=ctry) 3 n0r=r'my=y)e),
',y)est

for (r,y)e F D where N=N(0,:"), the mean-zero Gaussian probability density function
-1

with variance ), and c(r, y) = Yn(r-r'’ME-y)| isanormalizing constant.
(r'y)estD

Thus the data hierarchy is created by ascending. The point spread function is smoothed

and subsampled in the same way to maintain consistency with the data.
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Experiments

The results of application of the method to synthetic and Magellan data are shown
in this section. The reference surface is depicted in Fig. 3.2, i.e., is flat. In grey-scale

depictions of image and surface data light areas correspond to large values, dark to small.

Synthetic Data. The first experiment presented is an application of the method to
synthetic data, so that the effectiveness of the procedure can be evaluated in a situation
with ground truth. A sample from the stabilizing Gibbs distribution of order two was
obtained using the representation given in Chapter 4. From this image a subimage, shown
in Fig. 6.3, was taken to avoid the effect of the periodic boundary conditions. The
parameter p of the stabilizing Gibbs distribution was chosen so that the field is isotropic
with respect to the surface grid. The scaling parameter ¢ was chosen to be typical of a
mountainous natural terrain, by drawing a sample x from the ¢ =1 distribution, and
choosing the ¢ necessary to make the range of values for ox typical. In other words, o is
chosen to scale the sample so that the size of structures (mountains, valleys, etc.) is
consistent with prior information in this regard. A noise-free radar image (Fig. 6.4) was
then synthesized from the sample, to which 16-look speckle was added (Fig. 6.5). The
sensor flight parameters used were taken to be the Magellan parameters (Table 6.1) of

one of the later experiments.

Fig. 6.3. Test surface.
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Fig. 6.4. Noise-free radar image.

Fig. 6.5. 16-look radar image.

Table 6.1. Flight parameters.

incidence angle () 23°

least range 5300 km
greatest range 5309.6 km
range resolution 230 m
azimuth resolution 120 m

Table 6.2 shows the remaining parameters used in the reconstruction procedure at each

resolution level. Note that the grid size (n,n,) was chosen so that synthetic radar images

were free of discretization artifacts; this required a non-square lattice at resolution level 0.
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Table 6.2. Reconstruction parameters.

level | n, | n, F o A iterations
128 |256 |96x64 0.14 16 32/32

64 64 48%32 0.2 32 256/128
32 32 24x16 0.4 64 256/128
16 16 12x8 0.8 128 512/256

WO

An iteration is a complete update corresponding to the visitation of all sites. With
respect to the iterations column in the table, the entries correspond to two cycles. As
previously mentioned, during the first cycle the state distribution is being driven toward
the invariant distribution. Iterations are averaged during the second cycle, forming a
Monte Carlo estimate of the expectation. The evolution of the reconstruction is shown in
Fig. 6.6, which shows the final surface state at each level. Figure 6.7 shows the noise-free

radar image of the reconstruction, which should be compared to Fig. 6.4.
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Fig. 6.6. Reconstructions; top-left: level 3; top-right: level 2;
bottom-left: level 1; bottom-right: level O.

Fig. 6.7. Noise-free image of reconstruction.

Figure 6.8 shows evolution of the maximum likelihood estimate of the scale parameter G,
and Fig. 6.9 is the evolution of update ratio, i.e., the ratio of accepted states to the total

proposed during each iteration.
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Fig. 6.8. Evolution of scale parameter estimate.

1.0
update ratio
09-4— ——— res-level 3
o res-level 2

08 et e an s A Ay A A e AN st An res-level 1
T e e e W e - res-level 0

0.7

0.6

0.5 v T T T T T T T T d T 1
0 200 400 600 800

iteration

Fig. 6.9. Evolution of update ratio.

To examine the effectiveness of the multi-resolution procedure, the reconstruction
at level 1 was carried out with the reference surface, rather than the reconstruction at level
2, as a starting point. The resulting surface, shown in Fig. 6.10, is significantly inferior to
the multi-resolution result shown in Fig. 6.6. The evolution of the data term is shown in
Fig. 6.11. Note that the energy decreases much more quickly for the multi-resolution
case, because the starting point is closer to a low-energy state. (A low-energy state is a
“representative” state, as it represents a “typical” sample under the posterior.) It is
interesting however that during the later iterations both energies are small, even though

the fixed-resolution result is clearly visually poor.
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Fig. 6.10. Fixed-resolution reconstruction.
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Fig. 6.11. Evolution of data energy.

Note that Fig. 6.5 is a sample from the data distribution. The model can be
verified by confirming that the sample has the same visual characteristics as the Magellan
data shown later. To allow comparison with the large Magellan images shown later, Fig.

6.12 shows a larger sample displayed in the same scale.
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Fig. 6.12. Sample from data distribution.

Magellan Data, Freyja Montes (77°N,337°E). A 512 x 512 overview image in the

area of Venus which is the first region chosen for experimentation is shown in Fig. 6.13.
The image represents energy (in decibels) returned from the surface as a function of range

and azimuth, where range increases in the downward direction on the page.

As presented in detail earlier, the image formation mechanism for radar is
different than for visible-band sensing, so a radar image cannot be interpreted as an
“ordinary” visible-light image, to which the human visual system is adapted. Indeed, the
main benefit of radarclinometry is the production of data products which are suitable for
geologic interpretation. A basic problem is the phenomemon which gives rise to layover,

described earlier in Chapter 2. In the words of Wildey [4]:

The geologic interpretation of surficial expression of terrain
through radar has been widely inhibited by the radar-
peculiar distortion that foreshortens the extent of terrain
sloped toward the radar and elongates terrain sloped away
from the radar...
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The distortion can be seen in Fig. 6.13, where bright snake-like patterns correspond to the
faces of hills. Ground range is different than range: the entire face of a hill oriented
perpendicularly to the sensor is at the same range from the sensor. The distortion can be

thought of as a coordinate transformation which depends on the surface shape.

Fig. 6.13. Magellan radar image.

Magellan also collects altimetry data through microwave soundings. However, the

corresponding elevation data are lower in resolution by roughly a factor of 60. As a result,
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as is evident in Fig. 6.14, which shows the elevation data corresponding to Fig. 6.13, the
data convey only large-scale surface properties and none of the information about small-
scale surface structure which is apparent in the radar image data. It is the role of
radarclinometry to reconstruct the small-scale surface features. One perspective is that the
altimetry data and radar data both convey elevation information, but in different portions

of the spatial frequency spectrum (see Frankot and Chellappa [1] for a discussion).

Fig. 6.14. Magellan elevation data.
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Figure 6.15 shows a 96 x 64 portion of Freyja Montes to which the
radarclinometry technique was applied. The flight and reconstruction parameters are
shown in Tables 6.1 and 6.2. The image-formation scale parameter y was estimated by
Y= Uy /9,(0), which is the maximum likelihood estimate in the situation that the

ses

surface function is given by the reference surface.

The reconstructed surface is shown in Fig. 6.16. The noise-free radar image of the
reconstruction is shown in Fig. 6.17, which compares favorably to Fig. 6.15, as expected.
Figure 6.18 is the height image based on the reconstruction, and Fig. 19 a mesh plot of
the height image. Fig. 6.20 is a visible image, suitable for human interpretation,
synthetically rendered from the height image, where the light source is to the top-right of
the page. The scale parameter and update-ratio evolutions are shown in Figs. 6.21 and

6.22.

Fig. 6.15. Radar image.
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Fig. 6.16. Reconstructions; top-left: level 3; top-right: level 2;
bottom-left: level 1; bottom-right: level 0.

Fig. 6.17. Noise-free image of reconstruction.
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Fig. 6.20. Synthetic visual image
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The result of processing a large data set (256 x192) from Freyja Montes using the
same parameters is shown in the following, where processing at the highest level of the
resolution hierarchy was omitted, because of computational considerations. Figure 6.23 is

the radar image, Fig. 6.24 the corresponding height image, and Fig. 6.25 the synthetic

visual image.

T T T T T T T T T 1
200 400 600 800
iteration

Fig. 6.22. Evolution of update ratio.
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Fig. 6.23. Radar image.

Fig. 6.24. Height image.
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Fig. 6.25. Synthetic visual image.

Magellan Data, Alpha Regio (24°S.2°E). A (512 x 384) overview image of the

second region of Venus chosen for experiments is shown in Fig. 6.26 along with a
synthetic visual image, based on a reconstruction taken up to level 2, in Fig. 6.27. Figure
6.28 represents a small 96 x 64 portion to which the complete radarclinometry technique
was applied. The flight parameters are shown in Table 6.3, the reconstruction parameters
are as before, in Table 6.2. The reconstructed surface is shown in Fig. 6.29. The noise-
free radar image of the reconstruction is shown in Fig. 6.30. Figure 6.31 is the height

image based on the reconstruction, and Fig. 6.32 is the visible image.
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Fig. 6.26. Magellan radar image.

111



image.

1

1sua

fic v

Synthe

ig. 6.27.

F

112



Table 6.3. Flight parameters.

incidence angle (6) 36~

least range 1300 km
greatest range 1309.6 km
range resolution 150 m
azimuth resolution 120 m

Fig. 6.28. Radar image.

Fig. 6.29. Reconstruction.
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Fig. 6.32. Synthetic visual image.
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Discussion

The experimental results based on uniform albedo (6 =1) and Lambert reflectance
are favorable. It is worth considering what is involved in designing a procedure based on
the general image formation model (2.41) presented in Chapter 2. The reflectance model
is not necessarily Lambert, but also the image formation operator maps not only the
surface shape function p but also the albedo function & to a noise-free radar image. Thus
the inverse problem is more challenging, and indeed is clearly ill-posed without
additional constraints. One possibility is to restrict the range of the albedo function to a
small set of possibilities. In other words, the surface is assumed to be composed of only a

few material types. This is a topic for further study.
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