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ABSTRACT 

BAYESIAN ESTIMATION OF SURFACE INFORMATION 
FROM RADAR IMAGES 

MAY 1993 

KEITH DAVID HARTT, B.S.E.E., UNIVERSITY OF MASSACHUSETTS 

M.S.E.E., UNIVERSITY OF MASSACHUSETTS 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Donald Geman 

The dissertation presents a method for deriving the shape of a surface from a radar 

image of the surface. An appropriate model of radar image formation is derived from 

physical principles. A Bayesian formulation of the inversion problem is developed upon 

which a computational strategy is based. Theoretical results on random surfaces relevant 

to the prior distribution are presented, and convergence and optimality properties of a 

new sampling algorithm are described. The technique is applied to Magellan data of 

Venus. 
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CHAPTER! 

INTRODUCTION 

This dissertation provides a technique for deriving surface properties from a radar 

image of the surface. The application area is remote sensing, as in the radar imaging of 

the surface of Venus by the Magellan probe. The goal is to derive from radar images 

important surface properties such as shape and dielectric attributes which are important to 

planetary geologists but not conveyed directly by the data. This is accomplished by 

posing the problem, known as radarciinometry, as a stochastic inverse problem. 

Radar images acquired by synthetic aperture radar (SAR) represent different 

information than what ordinary visible-light images convey. For this reason radar images 

are not well suited for interpretation by the human visual system. The radar spectrum 

consists of lower frequencies relative to the visible spectrum; in addition, the imaging 

geometry is different. Radar images are acquired by air- or space-borne sensors which are 

"side looking": a radar image represents energy returned as a function of flight-path 

position and range from the sensor, as opposed to light energy as a function of position on 

an image plane, which is the case for a standard image. An important benefit of 

radarclinometry is that a standard visible-light image, suitable for human interpretation, 

can be synthesized based on the surface shape the radarclinometry procedure generates. 

In the case of Magellan, the radar image data convey information unavailable from other 

sources, so radarclinometry is a valuable tool. 

Previolls Work 

Techniques for radarclinometry, or radar shape-from-shading, are relatively rare 

in the literature. The first work in the area is due to Wildey [5], [6], [7] who poses the 

problem as the solution of a nonlinear first-order partial differential equation. Kirk [3] 
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uses a finite-element algorithm. Frankot and Chellappa [1] use shape-from-shading 

techniques. Guindon [2] and Thomas et al. [4] also present methods. As described later, 

there is a relationship between Bayesian methods and regularization problems. The 

techniques of Frankot and Chellappa and Thomas et ai. pose radarclinometry as a 

regularization problem, but the resulting cost function is different from the one developed 

here. 

A number of features distinguish the technique described here from previous 

work: 1) The formulation is Bayesian, i.e., the problem is posed as a stochastic inverse 

problem. 2) The height function is estimated directly, not through surface gradients. 3) 

Parallel projection is not assumed. 4) The data term is based on a speckle model. 5) The 

point spread function of the radar system is incorporated into the image formation 

process. 6) A realistic model is used for the surface, in that samples of the surface 

distribution are believable terrains. 

Overview 

The Bayesian model is derived from a physical model of the surface and a 

prototypical radar imaging system. The two components of the Bayesian approach are: 1) 

the image formation process, which provides the data distribution, the distribution of the 

radar data given the surface; 2) the prior distribution, a distribution placed on the surface 

shape which encodes prior knowledge about its statistical characteristics. 

The SAR imaging system creates the radar image from the raw data: the radar 

pulses reflected back to the radar from the surface. Each value of the radar image 

represents energy returned from a subset of the surface, and the SAR signal processing 

localizes the energy from this ideally small subset. The image formation model, which 

gives the data distribution, has two components: 1) an image formation operator, which 

takes the surface attributes sought to a noise free version of the radar image; 2) the 
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distribution of the "speckle noise," which is due to small-scale surface properties. Thus, 

the second component gives the distribution of the fluctuations about the expected energy 

specified by the first component. 

The prior distribution is a Gibbs distribution with a second order Tikhonov 

stabilizer as the energy. In other words, the energy penalizes large second-order discrete 

partial derivatives. The choice of energy is motivated by regularization theory, but the 

distribution is attractive from the Bayesian perspective: samples from the distribution 

yield believable terrains. 

Given the prior distribution and the data distribution, Bayes rule yields the 

posterior distribution, the distribution of the surface given the data. The computational 

method estimates the expected value of the surface given the radar image of the surface, 

the posterior mean. 

As given here radarclinometry is similar to other stochastic inverse problems in 

image analysis. There is an image formation operator which takes attributes to image 

data. The attributes represent important information that is statistically related to the data 

but not directly conveyed by it. 

The radarclinometry problem has large dimensionality, in that the height function, 

the surface attribute sought, is an image, a large data structure. This requires creativity in 

estimating the surface. The posterior mean cannot be computed directly as a weighted 

average, because the sum is too large to be computationally practical. Monte Carlo 

estimation is used instead, with a Markov chain (an extension of the Gibbs sampler) used 

to generate samples from the posterior distribution. Also, the estimation is imbedded in a 

multi-resolution hierarchy which gives rise to favorable convergence properties. 
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The computational procedure is most simply described as follows. Given a current 

surface state, a minor change is proposed to it. The radar image formation operator is 

applied to the resulting surface to obtain an ideal radar image based on the surface. This 

image is compared to the observed radar image. The change to the current state tends to 

be accepted if the comparison is favorable. The process is iterated, and in this way the 

surface evolves to a state which is consistent with the observations. 

Organization of Presentation 

The organization of the presentation is as follows. Chapter 2 covers the image 

formation process. The formulation of radarclinometry as a stochastic inverse problem is 

given in Chapter 3. Chapter 4 presents a set of results on a family of random surfaces, a 

member of which is used as the prior distribution of surface shape. Chapter 5 presents the 

extended Gibbs sampler, which is the Markov chain algorithm used to generate samples 

from the posterior distribution. Finally, Chapter 6 covers some final details of the 

radarclinometry algorithm and experimental results of its application to synthetic and 

Magellan Venus data. 

Contributions of the Thesis 

The novel aspects of the presentation are as follows. Chapter 2 represents a 

careful, comprehensive, and mathematically correct explanation of the radar image 

formation process. The result is a useful model for many applications, based on a 

prototypical radar imaging system and an explicit surface model. The main result of 

Chapter 4 is a representation theorem for a family of random surfaces based on using a 

Tikhonov stabilizer as the energy in a Gibbs distribution. The representation theorem 

allows derivation of: 1) the covariance structure of the field; 2) the normalizing constant 

for the distribution, important for obtaining the maximum likelihood estimator of a scale 

parameter; 3) a self-similarity property, which has been claimed to be appropriate in 
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modeling natural phenomena, and which also allows consistency of the prior among 

levels of the multiresolution hierarchy. Chapter 5 presents an extended Gibbs sampler 

used in the surface reconstruction procedure. Theoretical results are presented on 

convergence and optimality of the Markov chain. Also, special cases of the extended 

Gibbs sampler which are attractive for image reconstruction are presented. Chapter 6 

presents a computational technique which can be applied to data such as that provided by 

the Magellan probe of Venus in order to obtain information on surface structure not 

available through other sources. 
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2. B. Guindon, (1989). "Development of a shape from shading technique for the 
extraction of topographic models from individual spaceborne SAR images," Proc. of 
IGARSS 1989, 2, pp. 249-263. 

3. R. L. Kirk, (1987). " A fast finite-element algorithm for two-dimensional 
photoclinometry," Ph. D. thesis, California Institute of Technology. 

4. I. Thomas, W. Kober, and F. Leber!, (1991), "Multiple image SAR shape-from
shading," Photogrammetric Eng. Rem. Sens., 57, pp. 51-59. 

5. R. L. Wildey, (1984). "Topography from single radar images," Science, 224, pp. 153-
156. 

6. R. L. Wildey, (1986). "Radarc1inometry for the Venus radar mapper," 
Photogrammetric Eng. Rem. Sens., 52, pp.41-50. 

7. R. L. Wildey, (1988). "The surface integral approach to radarclinometry," Earth, 
Moon, and Planets, 41, pp. 141-153. 

5 



CHAPTER 2 

SAR IMAGE FORMATION FOR RADARCLINOMETRY 

This chapter describes the image formation process for a synthetic aperture radar 

image as is relevant to radarclinometry or radar shape-from-shading, the problem of 

deriving surface information from a radar image of the surface. A surface model is 

assumed which is valid for representing a useful class of terrestrial and planetary scenes. 

An important special case, used in the Magellan experiments presented later, assumes that 

surface composition is homogeneous so that the average radar energy reflected by surface 

patches depends only on orientation of the patch relative to the sensor. From the surface 

model the distribution of the radar image is derived, based on a realistic prototype SAR 

system. This establishes the correspondence between surface shape and the distribution of 

the radar image necessary in the formulation of radarclinometry as a stochastic inverse 

problem. 

An overview of the presentation is as follows. First the sensor geometry is 

described. Next, the SAR signal processing mechanism is covered by deriving a point 

spread function associated with the conversion of received radar pulses to a radar image. 

The point spread function completely characterizes the SAR system signal processing to 

the extent that is required for rendering of images from the surface, i.e., implementing the 

forward imaging process. The physical surface model is presented next, from which the 

distribution of speckle, a phenomenon due to fine surface structure, is derived. Finally, 

the radiometric principles which govern the expected returned energy from the surface 

are presented. 
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Imaging Geometry 

The geometry of the imaging process is as follows. A cylindrical coordinate 

system relative to the sensor is convenient, as depicted in Fig. 2.1. 

z ~/ 
11 

/1 

'If 
/ 

/ 
/ 

/ 1 
/ 1 e 

1 
1 
1 
1 
1 
1 
1 

x 

Fig. 2.1. Imaging geometry. 

Surface location is given as a point set S. The sensor moves along a straight flight path 

(shown as a dotted line parallel to the y-axis) in the y-direction, known in radar literature 

as the azimuth direction, at constant velocity. Cylindrical coordinates are given by range 

r = ~ (z - zo)2 + x 2 , and 8 = tan -1 (x/(zo - z», where Zo is the height of the flight path, 

and x is the ground range. At regularly spaced positions (r,y) = (O,n1a), n.1.a E I, where 

the subset I of the real line is an interval, along the flight path a pulse, an electromagnetic 

signal of short duration, is transmitted by the sensor. Each pulse is assumed to illuminate 

the entire surface, and the echo of each pulse reflected by the surface, called a return, is 

collected and stored by the radar system. The pulses are spaced so that there is no overlap 

in the sense that each received pulse is due only to a single transmitted pulse. However, 

since each pulse illuminates the entire surface, each point on the surface contributes to all 

returns. A top view of the imaging geometry is given in Fig. 2.2. 
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Fig. 2.2. Top view of imaging geometry. 

The cylindrical coordinate system is convenient because a radar image is a 

function of range r and azimuth y, and for each (r,y) represents the energy returned by 

the set S(r,y) = ((r',y',S): r' = r, y' = y,(r',y',S) E S}. Thus the image at (r,y) is the energy 

returned from a subset of the surface. Referring to Fig. 2.1, for the purposes of data 

interpretation there is usually a correspondence made between the range coordinate r and 

estimated ground range x' given by x' = ~r2 - z; . Clearly the true ground range is 

x = ~r2 - (zo - z)2 , so x:;z!: x' unless z = 0 for all points in S. This is a distortion peculiar 

to radar images; the phenomenon of layover occurs when for two points xl < X2 yet 

Xl ~ x2· The correct correspondence between ground range and range can be made if the 

surface shape is known, which is the purpose of this study. A shadow occurs in the radar 

image at (r,y) if S(r,y) is empty. 

Surface location is reasonably described by means of a surface location function 

p, in that the surface point set is given as S = ((r,y,S): r = p(y,S), (y,S) E G}, where 

G c ((y,S):y ~ 0,0:::; S:::; nI2}. For a fixedy and S, the surface element first encountered 

along the corresponding ray, at a distance p(y, S) from the flight path, is physically 

responsible for reflecting pulses. According to this principle, p is a well-defined function, 

i.e., not multi-valued. The radar image conveys no information about a surface facet that 

is hidden, so it is not represented by S. The definition of the surface location function is 

naturally suited to the imaging geometry. However, the relationship between the physical 
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properties of the surface and the surface location function is more complicated than the 

basics just portrayed; specifics are given later. 

Summruy. The radar image is a function of range and azimuth whose values 

represent the energy returned from S(r.y)' The conversion of the returned pulses, one for 

each transmission location on the flight path, to the radar image is the province of the 

SAR signal processing, described in the next section. The changing position of the sensor 

relative to the surface allows what are essentially multiple views of the surface from 

different perspectives. The SAR signal processing combines the information from all 

returns (views) in the appropriate manner. As will be seen, the geometry of the situation 

gives rise to a relationship among the returns that can be exploited to localize the energy 

returned from the totality of S, represented in the raw returned pulses, to the energy 

returned from S(r.y), for each (r,y). This localization is accomplished through a 

mechanism identical to the constructive and destructive interference of coherent light. 

Another analogy to optics is perpetuated by the terminology: the localization process 

afforded by the signal processing accomplishes what an aperture does, hence "synthetic 

aperture." The details are as follows. 

SAR Signal Processing 

In this section the mechanism for conversion of received radar returns from the 

surface to a radar image is covered. A useful supplement to this development is Munson 

and Visentin [9], because in this presentation the same viewpoint is taken, in that the 

radar system is treated in a direct manner as a linear system, avoiding the confusing but 

prevalent "doppler" terminology. The aforementioned paper provides some system

specific detail not presented here, and contains references to the vast literature on SAR. 

The next paragraph is preliminary. 
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Signal Representation. A complex-valued signal (function of time) x has an 

associated signal 

z(t) = x(t)expi21tfo t (2.1) 

wherefo is a positive constant, known as the microwave carrier frequency, which is, up 

to an order of magnitude, 106/sec. Under reasonable conditions (see Franks [4]) there is a 

direct correspondence between z and a physical waveform, from which the signal x, 

called the complex envelope of z, can be obtained. The quantitylx(t)12 is referred to as the 

energy of x(t) (or of z(t)), and argx(t) is sometimes called the phase. 

System Model. Let the complex envelope of the transmitted radar pulse be 

denoted by pet), where t = 0 corresponds to the time at which each pulse is transmitted; 

i.e., the time reference is reset at each pulse transmission. Let the surface consist of a 

point scatterer at (r',y', 9), ideal in the sense that it is a point reflector which returns the 

transmitted radar pulse without distorting the waveform, i.e., the received signal for the 

nth sensing is simply a delayed version of the transmitted signal pet) exp i21tfo t, so the 

complex envelope h,. (t,r',y') of the nth received signal is given by 

with 

h,.(t,r',y')expi21tfo t = p(t - "en (r',y') )exp i27ifo (t - "en (r',y')) (2.2) 

"en (r',y') = 2 ~ (y' - n!:l.a)2 + r,2 
c 

(2.3) 

where c is the speed of light and "en (r',y') is simply the two-way time delay between the 

points (O,n!:l.a,9) and (r',y',9). The left hand side of (2.2) corresponds to a physical 

waveform. Note h,.(t,r',y') does not depend on 9 because the distance calculation does 

not involve it. 
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Note. As a practical matter, it has been tacitly assumed that the speed of the sensor 

platform is negligible relative to the speed of light, so that the sensor location does not 

change between the times of signal transmission and reception. 

Now invoke the principle of superposition. Let the set of complex envelopes of 

the returns from an arbitrary surface be given by {un (t):n!w. E l}, i.e., a set of complex-

valued functions of time, where for each return t = 0 corresponds to the time at which the 

signal was transmitted. The returns are given by 

Un(t) = Iff a(r',y',9)~(t,r',y')r' d9dr' dy' (2.4) 

where a, a characteristic of the surface, is a complex valued function which weights the 

ideal response assumed by h. 

Note. The representation (2.4) is standard in the radar literature. However, as will be 

evident when the complex reflectance function a is defmed later, the representation (2.4) 

is only symbolic, as in this presentation the integral reduces to a sum (see (2.23)). 

The SAR processing is a linear operation, given by 

Z(r,y) = L I Un (t)wn(t,r,y)dt 
neA(y) 

(2.5) 

where Z is the complex-valued radar image, and wn (t,r,y) for fixed (r,y) is a complex-

valued weighting function. The radar image is random because the returns are random, as 

described later. The sum is over the set A(y) = {n:(y - n!w.) E [-Bj2,Bj2)}, where B 

determines an interval in azimuth. Ideally, the weighting function is constructed so it 

selects the portion of each return un (t) which corresponds to the energy reflected by 

S(r,y) , in so doing resolving the surface, or scene. 
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~. As a practical matter, B is chosen so that the antenna response is constant over the 

interval, and so that the straight-line flight path geometry is valid. The sum in (2.5) is 

what characterizes SAR relative to standard radar, giving improved resolution in azimuth. 

Combining (2.4) and (2.5) and simplifying, notably changing orders of integration 

where 

Z(r,y) = Iff a(r',y',8)k(r,y,r',y')r'd8dr'dy' 

k(r,y,r',y') = I.I ~(t,r',y')wn(t,r,y)dt 
neA(y) 

(2.6) 

(2.7) 

is the point spreadjunction, the output of the SAR processing at (r,y) due to an ideal 

point scatterer at (r',y', 8). 

The above (2.6) shows the sufficiency of k for characterizing the SAR system. 

Recall that a is a function, characteristic of the surface, taking complex values which are 

reflection coefficients, in that these values modify the ideal reflectance assumed by h. The 
radar image should estimate I I I a(r',y', 8)r' d8dr' dy' (related to S(r,y»), so one seeks a 

r'==ry'=y 

function k which is impulsive, i.e., takes its largest values when y ,.. y' and r ,.. r'. Further, 

k is determined by p and w. The important issue is that the point spread function is 

essentially designed (to have desirable properties) through the choice of the functional 

form of the illuminating pulse and specification of the way in which returns are 

processed. This design is aided by the theory of radar ambiguity junctions, which is 

described in Franks [4]. 

Point Spread Function. In the following the point spread function, the response of 

the radar system to an ideal scatterer, for a standard SAR system is derived (by specifying 

the standard choices for p and w and computing an approximation to (2.7)). Although 

only a prototypical situation is addressed (mainly for simplicity), the point spread 
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function is valid for a wide variety of systems such as Magellan. Further, the basic 

formulation is applicable in more complex situations: any system can be characterized by 

deriving the response to ideal elements. 

The standard pulse is a "chirp." Its complex envelope is 

(2.8) 

where 'Y is a real, positive constant, and T is the pulse width. Let 

E c (0,00) x (-00,00) x [0, 1t/2) be a compact set, known a priori to contain S, and let the 

domain of the radar image be a finite set F. Clearly for any sensible system 

Fe {(r,y):(r,y,8) E E}. In typical situations 

sup{/(y' - n.1a)/r'I:(r',y',8) E E,n&J. E I} 

is small, so that the use of the Taylor expansion (1 + x 2 )1/2 = 1 + .!. x 2 + O(x4) is justified 
2 

on (2.3), and the time delay 

'tn(r',y') = ~r'(1 + el (y' - n.1a)/r')) 
c 

'tn(r',y') = ~r'(1 + ~ (y' - n&J.)/r,)2 + e2(y' - n.1a)/r')) 

(2.9) 

where errors el (x) = (1 + x 2)1/2 -1, and e2 (x) = (1 + x 2)1/2 - (1 + .!.x2). It is easy to verify 
2 

that lell, le21 increase with Ix/. Plots are shown in Fig. 2.3, which shows the second 

approximation of (2.9) to be significantly better than the first. With regard to the 

specification of wn(t,r,y) , the expansions (2.9) for 'tn are used to approximate the 

matchedjilrer (which has some optimality properties, see Franks [4]), which requires 

wn(t,r,y) oc: ~(t,r,y) (the bar denotes complex conjugation), yielding (see (2.2)) 

(2.10) 
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The function is normalized so that for any (r,y), k(r,y,r,y) = 1.1 Instead of (2.10), the 

matched fIlter is approximated using the expansions (2.9) for 'en; the weighting function 

is defined by 

Wn (t,r, y) =..!.. p(t - 2r) 1 exp(i2rifo 2 (r + !:...(y - n/3ollr» (2.11) 
T c #A(y) c 2 

0.5'---~-~-~-~~-~-~-~-'" 

0.4 

0.3 

0.2 

0.1 

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 2.3. Distance error functions. 

Let gb(X) = (l-/x//b )sinc(1-/xVb)x)1r_b,b](X), with sinc(x) = sin(ru:)jru:, and 

~(r,y,r',y') = ~1t (2(r - r') - (y _ y,)2Ir) 
o 

with /...0 = cj f 0' the wavelength of the carrier. 

(2.12) 

Theorem 2.1. k(r,y,r',y') - g.vr2 (r - r' Jgoo( y - y' JexPi~(r,y,r"Y') -? 0 as r -? 00, 

1~ cj2yr rA.o /2B 

r' -? 00 and !1a -? O. 

Note. The limit conditions correspond to moving the set E farther and farther from the 

flight path and letting the separation between sensings get closer together. 

1 Hence k is not a point spread function in the usual sense (without further normalization). 
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The proof is deferred until after some preliminaries are proved. Let 
00 = supl(Y' - n.&z)/r'l. Establish bounds for the approximations (2.9) as follows. 

n 

62 = S';P 'n(r',y') - ( ~(r+ ~ (y' - ;,Lla) 2 
) J 

(2.13) 

~ 2r' sup {le2 (u)I:lul :s; 00} = 2r' (1 + 05)1/2 - (1 + .!.05») = r'O(ori) 
c c 2 

Lemma2.1./lfT I(p(t-tn(r',y'»)- p(t-2r'/c))p(t-2r/c)dt/ ~ 0 as r' ~ 00. 

Proof. First establish a bound for Ip(t - 'tn(r',y'») - p(t - 2r'/c)l. Let It - 'tn (r',y')1 ~ Tj2, 

It - 2r' / cl ~ T /2, and let v = t - 2r' / c. Then using the basic inequality 

lexp(ix) - exp(iy)1 ~ Ix - yl, for x,y real, 

Ip(t - 'tn (r', y') ) - p(t - 2r'/c)1 = /expi1tY(t - t n(r',y,»)2 - expi1ty(t - 2r'jc )2/ 

= /exPi1tY( v + (2r'/c - 'tn (r',y') ))2 - eXPi1t')'V2/ ~ 1tY/( v + (2r'/c - 'tn (r',y') ))2 - v2/ 

= 1tY/(2V(2r'/c-'tn(r',y'»)+(2r'/c-'tn(r',y,))2)/ ~ 1tY(T01 +8f) 

Next, the following is needed to bound the integral. Let m = min('tn(r',y'),2r'/c), 

M = max('tn(r',y'),2r'/c). Assume 01 ~ T. Then 

l'tn(r',y')-2r'/cl:s; T <=> M -m ~ T <=> M -T/2 ~ m+T/2 (2.14) 

using the identity max(x,y) - min(x,y) = Ix - YI. Further, 

M - T /2 ~ t ~ m + T /2 <=> M - t ~ T /2 and t - m ~ T /2 

<=> max('tn(r',y') - t,2r'/c - t) ~ T/2 and min(t - 'tn(r',y'),t - 2r'/c) ~ T/2 (2.15) 

=> It - 'tn(r',y')1 ~ T/2 and It - 2r'/cl ~ Tj2 

and m+T/2 -(M -T/2) = T - (M -m) = T -ltn(r',y')-2r'/cl ~ T. Finally 
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11fT J(p(t - 'tn(r',y')) - p(t - 2r'jc))p(t - 2r'jc )dtl 

::;; 1fT fl(p(t - 'tn (r',y')) - p(t - 2r'jc) )Idt 

M-T/2 m+T/2 M+T/2 
::;; f 1fT dt + 1fT f 1ty(T01 + or )dt + f 1fT dt ::;; 201 IT + 1t"(T01 + or) 

m-T/2 M-T/2 m+T/2 

which completes the proof. 

Lemma 2.2. 

1 L (exP(-i27ifo'tn(r"y')) -eXP(-i27ifo 2(r' +!(y' - nl1a)2/r)))-
#A(Y)A(y) c 2 

exp(i27ifo ~(r+±(y-n&z)2/r)) -70 

as r -7 00 and r' -7 00. 

Proof. 

exp( -i21t!o 'tn(r',y')) - exp( -i2rr!o ;'(r' + ~ (y' - nl1a)2 Ir)) 

::;; 21t!o Itn (r',y') - ~ (r' + ~ (y' - n!::.a) 2 Ir)1 

(I 2 (1 )1 1 (' nl1a)2 (' nl1a)2 J ::;;2rr!o tn(r',y')-;- r'+ 2 (Y'-n!::.a)2/r' + c y - r - y -r' 

using (2.13), and the proof is evident. 

Proof of Theorem 2.1. By (2.2), (2.7), and (2.11), 

k(r,y,r',y') =1. I p(t - 'tn(r',y'))p(t - 2rjc)dt 
T 

1 L eXP(-i2rr!ot n (r',y'))eXP(i21t!o 2(r+!(y-nl1a)2/r)) 
# A(y) neA(y) C 2 

16 

(2.16) 

(2.17) 

(2.18) 



It is a straightforward but tedious calculation which shows that 

l/T f pet - 2r'/e)p(t - 2r/e)dt 

= lfT(T - 21r - r'Ve )SinC((T - 21r - r'lle) 2e'Y (r - r') }[-CT/2,CT/21(r - r') 

( r-r') 
= giT2 e/21I' (2.19) 

Hence Lemma 2.1 provides an error bound for approximating the function given by the 

integral term in (2.18) with g...J1'2( r -r'). Further, 
I~ e/21I' 

1 L exp(-i2rr.!0 3.(r' + !"(y' - nt:.a)2/r))exp( i2rr.Jo 2 (r + !:..(y - nt:.a)2/r)) 
#A(y) neA(y) e 2 e 2 

= expi2rr.2.(r - r') 1 L eXPi2rr.-1-(y - nt:.a)2 - (y' - nt:.a)2) 
Ao . # A(y) neA(y) rAo 

2 1 y+B/2 1 
""" expi2rr.-(r-r')- J expi2rr.-(y-u)2 -(y' -u)2)du 

Ao B y-B/2 rAo 

= expi2rr.2.(r - r')exP(-i2rr.-1-(y _ y')2)sinc( 2B (y _ y,)) 
Ao rAo rAo 

= g-CG;~ }XPi$(r,y,r"Y') 

(2.20) 

Thus, the function given by the sum term in (2.18) is estimated by 

g_ Ci:/;~ }Xp i$( r, y, r', y'), which results from replacing exp( -i21if 0 < n (r', y')) with 

eXP(-i2rr.!0 ~(r' + ~ (y' - nt:.a)2 /r)). The error bound for the sum in (2.18) is given by 

the sum of the bound of Lemma 2.2 with an error bound 84 for the Riemann sum 

estimation denoted by the """,," iIi the above (2.20). 
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The Riemann sum error bound 04 is given as follows. First, note that 

(y _ u)2 _ (y' _ u)2 = y2 _ y,2 _ 2(y _ y')u. Thus, exp i21t_l- (y2 - y,2) can be factored 
rAo 

out of both the sum and the integral, and it suffices to bound 

1 1 y+B/2 
'Lf(n&l)-- If(u)du 

#A(y) neA(y) B y-B/2 

41t (y - ') 
where feu) = expi 'I y u. Now, 

"'0 r 

1 y+B/2 1 (n+l)6a 1 
- I f(u)du = - 'L I f(u)du = - 'Lf(un)&l 
B y-B/2 B neA(y) ~a B neA(y) 

where the last equality follows from the mean value theorem, with un E [n~a,(n + 1)~a]. 

Finally, using #A(y) = !i., 
&l 

'Lf(n&l) - - f f(u)du ~ 'Llf(un) - f(n~a)1 ~ -;-03~a ~ 1 y+B/2 1 41t 

#A(Y)neA(y) B y-B/2 #A(Y)neA(y) "'0 

using the bound 

41t (y - y') 41t (y - y') 
If(un) - f(n&l)/ = expi un - expi n~a 

Ao r Ao r 

< 41t Iy - y'll _ A I < 41t s: A_ 
- Un nLla - U3LlU 

Ao r Ao 

Iy y'l 
where 03 = . 

r 

The integral term and the sum term in (2.18) together with their estimating 

functions are all bounded by one. Therefore the product of the two terms is estimated by 

the product of their estimates, with a bound given by the sum of the bound of Lemma 2.1, 

that of Lemma 2.2, and 04.This completes the proof, and also establishes bounds which 

can be used in practice to verify that approximations are valid. 
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Summary. It has now been established that 

( ') ( , J ' , r-r y-y . " 
k(r,y,r ,y ) "" gyr2 cj2yr goo rl..o/2B expz¢(r,y,r ,y ) 

(2.21) 

with 

gb (x) = (l-lx l/b )sinc( (l-lxl/b)x )1[-b,b] (x) (2.22) 

Plots of gb(X) are given in Fig. 2.4. The fIrst zero crossing of gb is approximately equal 

to that of the sine function for b large, i.e., inf{x:gb (x) = O} "" inf{x:sinc(x) = O} = 1, as 

b -7 00, which is valid in (2.21) for a standard system in that yr2 is sufficiently large. 

Since gb is a real-valued function, the magnitude of k is given by the product of the two 

gb functions in (2.21). The range resolution is approximately given as c/yr, dictated by 

the fIrst term; the azimuth resolution, which depends on range r, is rI..o / B, dictated by the 

second term. Resolutions are defined as the width of the interval about zero on which gb 

is positive. 

Surface Model 

lr-~--~------~--?r--~--------~---' 

0.8 

0.6 

0.4 

0.2 

o 
-0.2 

-g~ 

- - -gso 
•.•. glO 

-0.4 '---~ __ ~_~ __ ~ __ ~ ______ ~ __ ~ __ ....J 

-5 -4 -3 -2 -I o 1 2 3 4 5 

Fig. 2.4. gb functions. 

In this section a physical model is presented for the surface, which begins the 

establishment of the relationship between aCr,y, 8), the reflectance of the surface, and 

pCy,8), the surface location function. The model is motivated as follows by the non-ideal 

resolution of the sensor. As mentioned previously, the radar image at (r,y) can be 
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thought of as the energy returned by the subset 

S(r,y) = {(r',y',a): r'::::: r, y'::::: y,(r',y',a) E S}, where the accuracy associated with the ":::::" 

notation is precisely given by the resolution and functional fonn of the point spread 

function, as given above. In a typical practical setting this subset is comprised of a 

number of surface facets, randomly placed, representing fine-scale surface structure. The 

individual scatterers are beyond the resolving capability of the sensor system, and it is 

reasonable to express this by modeling small scale roughness, and, loosely speaking, 

interpreting a value p(y,a) of the surface location function as providing the "average" 

position of all surface facets in a neighborhood of the location (p(y, a),y, a). This 

discussion is made precise in the following. 

Let L be a lattice, with associated grid {(y[, a j): (i, j) E L}, where y[ - y[-l = Ily 

and a j - a j-l = Ila. The azimuth spacing Ily and angular spacing Ila are chosen small 

enough to allow representing the highest spatial frequency component appropriate given 

sensor resolution. Higher frequency components correspond to small-scale roughness. 

Figure 2.5 shows the sensing of a small patch of the surface S for some (i, j) E L. 

Fig. 2.5. Surface modeL 

A point P ij = (p(y[, a j)' y[, a j) serves as the representative location for the patch, and the 

patch is assumed to consist of point scatterers Pijn = (p(y[, a j ) + 11 1 ijn ,y[ + 112ijn' a j + 113ijn) 
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at random positions about the representative position, where there are Nij scatterers, i.e., 

n = 1,2, ... ,Nij, and {(l1lijn, 112ijn, 113ijn):(i,j) E L,n = 1,2, ... ,Nij} are independent zero

mean random vectors, and for each (i,j) E L, {(111ijn, 112ijn, 113ijn):n = 1,2, ... ,Nij } are 

identically distributed. Thus, there is some small-scale uncertainty in the position of the 

point scatterers, physically surface facets. Also, assume that for all (i,j,n), 

(l1lijn, 112ijn, 113ijn) has compact support, so scatterers are contained in a voxel about Pij · 

Each point Pijn has a random complex reflectance aijn independent of position (Le., of 

(l1lijn, 112ijn' 113ijn)) and {aijn:(i,j) E L,n = 1,2, ... ,Nij} are independent, and for each 

(i,j) E L, {aijn:n = 1,2, ... ,Nij} are identically distributed. In particular, the complex 
Nij 

reflectance function a is dermed as ra(r,y,S) = L L aijn8p .. (r,y,S), where 8p .. is a 
(i,j)eL n=l 1)11 1/11 

Dirac delta function with mass at Pijn. 

Now, plugging into the image formation equation (2.6), 

Nij 

Z(r,y) = JII L Laijn8Pijll (r',y',S)k(r,y,r',y')dSdr'dy' 
(i,j)eLn=l 

Nij 

= L Laijnk(r,y,p(y[,S j) + ll1ijn,y[ + 112ijn) 
(i,j)eLn=l 

In the next section the distribution of Z is derived. 

Speckle Statistics 

(2.23) 

In this section the probabilistic component of the image formation process is 

addressed; this results from small-scale surface roughness, and is usually referred to as 

speckle noise. 

The following theorem establishes the distribution of Z(r,y) for an ideal (aijn = 1) 

point scatterer. Let 0"1 = cJ2yr, 0"2 = A.o /2B, q = yr2, and let r' = p(y[,S j) + lllijn, 

y' = y[ + 112ijn. Then by Theorem 2.1, 
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" (r-r'J (y-y'J' " k(r,y,r ,y ) == gq -- g ... -- expzcj>(r,y,r,y) 
0'1 r0'2 

(2.24) 

is the response to a randomly placed point Pijn, where cj>(r,y,r',y') is given by (2.12). 

Note that the reciprocal of the carrier wavelength Ao appears as a factor in the phase 

function cj> in (2.12). As a result, a change in r' bYAo/2 brings about a change in the 

complex exponential of one period. If 111ijn has a sufficiently smooth distribution with 

standard deviation many times Ao, i.e., cj>(r,y,r',y') has a distribution which is wide and 

smooth relative to the interval [O,2n:), then expicj>(r,y,r',y') has a distribution which is 

approximately the same as the distribution of expicj>', where cj>' is uniformly distributed on 

[O,2n:).2 A typical value of Ao is lOcm. A typical range resolution of 100m is clearly 

insufficient to clear up small-scale uncertainty even on the order of many times Ao. 

Indeed, if the width of the distributions of 111ijn and 112ijn are narrow relative to the sensor 

resolution, then /k(r,y,r',y')/ == /k(r,y, p(y[, e j ),y[)/ for all outcomes of (111ijn, 112ijn)' 

Hence the assumption is that the distribution of (l1lijn, 112ijn) is narrow relative to the 

resolution but wide relative to Ao. This idea is presented in a slightly different context in 

Kelly et al. [7]. In this context, the precise statement is as follows. 

Theorem 2.2. Let cj>(r,y,r',y') have a continuous p.d.f. which is directly Riemann 

integrable in the sense of Feller [2, pp. 362-363] over the real line. Then 

gq (r - r'Jg ... (Y - y'JexPicj>(r,y,r"y') is approximately equivalent in distribution to 
0'1 r0'2 

( r - p(y[,e j)J (y - y~J gq g ... --' expicj>', where cj>' - U[O,2n:), in the following sense. As 
0'1 r0'2 

0'1,0'2 ~ 00, with q fixed, 

2In engineering terminology, the phase response of the system is completely random. 
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almost everywhere, and as Ao --70, expi<\l(r,y,r',y') --7 expi<\l' in distribution. 

Proof. Since (rhijn,112ijn) has compact support, Ir' -p(y[,S j)l/crl --7 ° and 

IY' - yiVcr2 --7 0 almost everywhere, and gb ~ 1. Therefore, to prove the first assertion it 

suffices to show that gb is unifonnly continuous, which is done in Lemma 2.3. The 

second assertion follows immediately from Lemma 2.4. 

Lemma 2.3. For bE (0,00], gb is unifonnly continuous. 

Proof. First note that the derivative of the sinc function is given by 

sinc' (x) = .!. (cos 1tX - sinc x) = .!. O(x2) 
X X (2.25) 

so c = sup sine'(x) < 00. The derivative of the sinc function is plotted in Fig. 2.6. By the 
xeR 

mean value theorem, for x,Y E R, /sine(x) - sine(y)/ ~ suplsinc'(z)/Ix- YI = c/x - y/. 
zeR 

Further, sinee j(l-lxl/b) - (l-/yl/b)1 S; ~ Ix - y/' for x,y E [-b,b] , 

/(1-lxllb)x - (l-/y//b )Y/ ~ l(l-lxllb)x - (l-lxllb )YI + l(l-lxllb)y - (l-lxl/b )yl 

~ 11-lxllbl/x - y/ + /yl/x - y/ ~ 2/x - y/ 
b ~2~ 

so that /sinc(l-/xllb)x -sinc(l-/y//b)y/ ~ 2c/x - y/. It is now evident that for x,y E R, 

with gb given by (2.22), 

19b (x) - gb (y)1 ~ l(l-/x/lb )12c/x - YI + .!.Ix - YI ~ (2c + 1/b )/x - y/ 
b (2.27) 

and the proof is complete. 
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Fig. 2.6. Derivative of the sinc function. 

Lemma 2.4. Let X be a random variable with continuous p.d.f.f(x), directly R-integrable 

over R. Then exp(i21tXlY)~expicp as 'Y -7 0, where cp - U[0,21t). 

Proof. ~ = [ ~] + 6 1, where 6 1 < -[ ~J 6 1 E [0,1). Further, 

exp(i21tXlY) = expi21t~'Y' so it suffices to show that ~'Y ~ U[O,l). Let t e [0,1). 

- - rry+ty -
P(~'Y S;t)= LP(Xe[n'Y,n'Y+ty»)= L ff(x)dx= IJ(un)ty (2.28) 

n=-- n=-- rry n=--

where un e [n'Y,n'Y + ty), and the last equality follows from the mean value theorem. - -Finally, sincefis R-integrable, Lf(un)ty -7 t f f(u)du = t, which completes the proof. 
n=-oo 

Incorporating the result of Theorem 2.2 in the image formation equation (2.23), 

the radar image is given by 

(2.29) 

Njj 

where Cij = Laijn expi<pijn, and {<Pijn:(i,j) e L,n = 1,2, ... ,Nij } are i.i.d. U[0,21t), 
n=1 

independent of {aijn:(i,j) e L,n = 1,2, ... ,Nij }. Hence <Pijn represents small-scale 
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uncertainty in the location of facets, and aijn represents the reflective properties of the 

facets. 

A (zero-mean) complex normally distributed random variable Z has real and 

imaginary parts that are normal and i.i.d., and, as a consequence, /zf exponentially 

distributed, and argZ uniformly distributed on [0,21t). Using the central limit theorem in 

the complex plane, applying it to the real and imaginary parts separately, as in Goodman 

[5], results in a complex normal distribution (implicitly taken to be zero mean) for 
Nii 

Cij = I,aijn expi~ijn (letting Nij -7 00 ). Since the sum of complex normal distributed 
n=l 

random variables is complex normal, Z(r,y) is also complex normal. 

The value typically stored in a radar image is /Z(r,y)f, which due to argZ(r,y) 

being uniform, is sufficient from a statistical perspective (relative to marginal 

distributions). Because Z(r,y) is complex normal, /Z(r,y)/2 has an exponential 

distribution. Since {Cij: (i, j) E L} are zero mean and independent, by squaring (2.29) and 

taking the expectation, 

(2.30) 

The quantity E/Cij/2 has a standard physical interpretation as the expected returned 

energy from the surface element (voxel) represented by Pij . Let U(r,y) = /Z(r,y)/2. 

EU(r,y) represents the total expected returned energy from S(r,y)" For (r,y) and (r',y') 

separated and k suitably impulsive Z(r,y) and Z(r',y') are approximately independent, 

in that off-diagonal elements of the covariance matrix are approximately zero. Hence, U 

is approximately independent exponential. 

The basic result just established is that the distribution of U(r,y) is approximately 

exponential with mean given by (2.30). This distribution is based on the assumption that 
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the surface is "rough relative to a wavelength" (see Goodman [5], the preceding makes 

this precise). Of course, there are many situations in which this assumption is not valid; 

there is plenty of room for other models. The claim here is simply that the model given 

above is appropriate for a large class of natural terrains. As support consider the 

following from Pettingill et al. [10] 

At radar wavelengths the moon, Mercury, Venus and Mars 
appear to be densely covered by facets that vary in 
dimension from a few wavelengths to hundreds or even 
thousands of wavelengths that are tilted at random to the 
local horizontal. The same would be true of many points on 
the earth ... 

Multi-look SAR. An extension of the distributional form from exponential to the 

gamma family is often needed due to practical considerations. Consider the interval 

[y - B/2,y + B/2) over which returned pulses are summed to obtain the radar image value 

at (r,y). A multi-look SAR image is obtained by subdividing [y - B/2,y + B/2) into 

disjoint intervals and for each element of the partition resolving what are independent 

realizations of the image based on the same scene. These i.i.d. exponential realizations are 

averaged, resulting in a gamma-distributed sum. The mean remains as above; however 

the variance decreases as lin, where n is the number of looks, or independent realizations 

of the image. Since the azimuth resolution is inversely proportional to B, it degrades as 

the interval is subdivided. Thus resolution in azimuth can be traded off for a reduction in 

the speckle noise. 

Note. Multi-look averaging is important for reduction of noise in practical situations. Let 

U have a gamma distribution, and let signal-to-noise ratio (SNR) be defmed as 

EUj..JvarU (called the coefficient o/variation in statistics). For example, the one-look 

distribution has SNR 1, for four-look it is 2, both quite low. The averaging of looks is 

often referred to as incoherent averaging, since as in optics it refers to summing with 

respect to energy, i.e., the magnitudes squared of the complex-envelope radar image 
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values. The summing of complex envelopes is referred to as coherent averaging, again 

because of the analogy to optics. 

Summary. There is a random component in the image formation process for the 

radarc1inometry problem due to small-scale surface roughness beyond the resolution of 

the sensor. Surface location is described by a point set {pi{(i,j) E L} which represents a 

summary of local behavior. Random displacements of scatterers about these 

representatives gives rise to the energy for each site in the radar image being a random 

fluctuation about an expected energy. The energy is gamma distributed, with mean given 

by (2.30). The phase, or argument, of the complex-valued output of the SAR signal 

processing, not represented in the energy, is completely uninformative, as it is uniformly 

distributed, and hence independent of the surface shape or dielectric properties. 

The randomization of phase brought about by the surface effectively transforms 

coherent source energy into incoherent returned energy. The final component of the 

image formation process is the relationship between the surface location function, in 

particular the point set {Pij = (p(y[, (3 j ),y[, (3 j ): (i, j) E L}, and E/Cij/2. In modeling the 

expected returned energy from the surface, because of the random phase, the appropriate 

physical perspective is that pertaining to incoherent energy, where interference effects are 

random. This model is developed in the next section. 

Reflectance Function 

A reflectance function accounts for variation in returned energy due to surface 

shape, and operates on the surface location function p. The radiometric law for the simple 

case in which the surface composition is homogeneous, often referred to as the uniform 

albedo assumption, and the reflectance function is Lambertian, is derived in this section 

using a standard technique of geometric optics (see, e.g., Boyd [1]). With Lambert 

reflectance, energy is radiated from the surface uniformly in all directions. This simple 
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model is extended later in the presentation. The next three paragraphs are preliminary to 

the development. 

At this point the surface location function is defined only on the grid 

{ (yr, e j): (i, j) E L}. The technique of geometric optics used here requires that partial 

derivatives be defined. Extend the surface location function p to the real plane using the 

low pass representation (see Franks [4]): 

(2.31) 

i.e., the function is interpolated using a sinc-function kernel. 

Note. By way of explaining the terminology, the low pass representation results from 

applying a spatial filter with ideal low pass transfer function 1[O,l/26Y)X[O,l/2.M) to the 

function L p(y[, e j )oV,a.). Hence, the information contained in the samples 
(i,j)eL • J 

{p(y[,e j):(i,j) E L} is represented but no high frequency components, about which the 

samples convey no information, are introduced. 

In the following discussion the standard terminology of radiometry is used. 

lllumination power (energy per unit time) per unit area is called irradiance. The term is 

used to describe light energy incident on a surface. Light radiated from a surface is 

described by radiance, which is in units ofpower/(area· solid angle); solid angle is a 

measure of a set of directions, given by the area of the intersection of a set of rays 

pointing according to the set of directions, and the unit sphere. 

Employ the simplifying assumption that for a point (r,y,e) on the surface, the 

sensor is considered a point source of energy at (G,y, e). 
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~. The assumption is reasonable if the surface is distant from the flight path relative to 

B. This has already been assumed in deriving the approximate form of the point spread 

function. 

Since the sensor is a point source, the power per unit solid angle radiated by the sensor is 

constant with respect to direction, i.e., energy propagates spherically. 

With the preliminaries out of the way, let the surface be S = {(p(y,S),y,S)}. Fix 

(i, j), and consider a patch of the surface 

oS = {(P(y,S),y,S):ly - yn::; Ay/2,/S - S j/::; AS/2}, and let r = p(y[,S j)' Figure 2.7 depicts 

a cross section of the sensing of the patch. There is an angle ex between the vector s 

pointing at the sensor and the normal n to the surface patch. The solid angle subtended by 

the patch is Ay r AS/ r2 , and the solid angle subtended by the sensor antenna is ~, where 
r 

X is the area of the antenna (assume the distance from the antenna to the surface is large 

relative to the area of the antenna). Note that the notation does not express dependence on 

(i,j) of the quantities defined above for convenience. 

" " " " " " " ..... " .......... " ..... " ..... " ..... 
" " " " " 

Fig. 2.7. Sensing of a surface patch. 

The power returned to the sensor by the patch oS is calculated in order to obtain 

the relationship between returned energy and the surface shape. The integration of this 
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power with respect to time earned out by the SAR signal processing yields the energy of 

the return. Note that power and energy returned by the surface are in a strict sense 

expected values, but are not referred to as such in the following for ease of presentation. 

The power incident on oS is given by P i1y r i18/ r2 where P is the illumination 

power per unit solid angle radiated by the sensor (assumed a point source). To obtain the 

surface irradiance on the patch the incident power is divided by the area i1y r i18 of 8S, so 
cosa 

h urf . di . P cos a 
t e s ace rrra ance IS --2 - . 

r 

For a Lambertian surface radiance is proportional to irradiance with 

proportionality constant lfIT.. Hence, the radiance of the patch is ...!.. P co~ a . The power 
IT. r 

radiated in the direction of the sensor is calculated by multiplying the radiance by the 

apparent area .6.y r.6.8 of the patch and the solid angle subtended by the sensor, so finally, 

the power returned by the patch is given by X P CO! a .6.y r.6.8. 
IT. r 

Summary. For a surface patch represented by the point (p(y[, 8 j ),y[, 8 j), the 

I 1
2 cos a(y[, 8 .) 

expected energy returned is E Cij = 3 I J.6.y.6.8, where 
p (Yi,8 j ) 

1 
cos a(y, 8) = -;========== 

(p (y,8))2 +(pe(Y,8)]2 +1 
Y p(y, 8) 

(2.32) 

with subscripts denoting partial derivatives. 
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Thus, by (2.30), for a Lambertian surface of uniform albedo, the expected energy 

for the radar image is3 

(2.33) 

where Kr Cu, v) = g~l (~)g?:,(.2....). A mesh plot of Kr for Magellan as used in one of the 
0"1 r0"2 

experiments presented later is shown in Fig. 2.8. Note the range resolution is worse than 

the azimuth resolution. The above (2.33) is a Riemann sum which approximates the 

integral 

cosa(y',e) 
EU(r,y) <= const.II KrCr - p(y',e),y - y') 3 dyde 

p (y', e) 
(2.34) 

Before generalizing the radiometric law it is worth comparing the image formation 

process to that for standard shape-from-shading. 

3Note that the point spread function is obtained by integrating over time; incorporating this with the 

constant X P implies that the SAR image value has units of energy, as expected. 
1t 
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Fig. 2.8. Mesh plot of 1(,. 

Comparison to Standard Shape-from-shading 

The main goal here is to allow comparing the results derived above with the 

model in Frankot and Chellappa [3], in which radarc1inometry is accomplished by shape

from-shading techniques. Shape-from-shading (Horn [6]), or photoclinometry, is the 

derivation of shape information from a standard image acquired with a frame camera 

under incoherent illumination (usually visible-spectrum). Procedures typically involve 

assumption of an ideal point spread function and parallel projection (described later). 

The important distinction of radar imaging relative to standard frame sensing is 

that sensors employ different mechanisms for recording information about the illuminated 

surface. In standard shape-from-shading energy incident on an image plane is measured, 

and cow. is expressed in terms of the image plane coordinate system, i.e., expressed as a 

function of the same variables used to index the image. The analogue here is to express 

cosa as a function of (r,y), not (y,S). 
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Toward this end, assuming it is well defined, let 8(r,y) take the value 

8:r = p(y,8). Taking partial derivatives of the expression r = p(y,8(r,y)) with respect to r 

and y, using the chain rule, 

( 8)1 = 1 Ps y, S=S(r,y) 8 ( ) 
r r,y 

from which, using (2.32), 

-8/r,y) 
py (y,8)ls=S(r,y) = 8 ( ) 

r r,y 

cos a(y, 8(r,y)) = -;====r8~r (;"";r,=y,;;,,,) ====== 
(r8r (r,y))2 + (r8/r,y))2 + 1 

(2.35) 

(2.36) 

Of course, this may be obtained by computing cos a directly relative to the function 

8(r,y). Consistent with the usual assumption, let the point spread function be ideal in 

(2.34), i.e., let lCr(U, v) == 8(o,o)(u, v), where 8 denotes the Dirac delta function. After a 

change of variables r' = p(y',8) and evaluation of the integral, the image formation 

equation (2.34) becomes 

EU(r,y) "'" const. cosa(y~8(r,y)) 8r (r,y) 
r 

(2.37) 

Parallel Projection. Now also assume that parallel projection holds, defmed as 

follows. See Fig. 2.9 below. There exists an ro such that ro :::: 1 and a 80 such that 
r 

sin(8(r,y) - 80 ) :::: 8(r,y) - 80 , for all rand y. Defineu(r,y) = ro(8(r,y) - 80 ). Then 

(2.38) 

which is the distance from a point located a distance r along the ray oriented at an angle 

80 , to the surface. In other words, there is a "direction" 80 around which the angular 

spread of the surface is small. The term "parallel" refers to the fact that rays emanating 

from the source to the surface are approximately parallel. 
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s --
----." 
r(9(r,y)-9 0 ) 

=u(r,y) 

Fig. 2.9. Parallel projection. 

Substituting into the image formation equation (2.37) above, using the fact that 
1 1 

r3 ... r3' 
o 

E U( ) ur(r,y) ( ) r,y := const. Ur r,y 
(ur (r,y))2 + (Uy(r,y))2 +1 

(2.39) 

The fIrst term in the product above is coscx relative to a surface location function u(r,y). 

Thus, under a Lambertian assumption the image is not proportional to coscx expressed in 

the image coordinate system, which is the case in standard shape-from-shading for 

standard visible-light images. The reason for this is the geometry is different; there is no 

image plane on which power radiated in the direction of a normal to the (r,y)-plane 

{(r,y,e):e = eo} is measured. The power measured is that radiated perpendicularly to this 

direction, i.e., toward the flight path of the sensor. For a patch at (r,y,e), the power 

radiated in the direction of the flight path is proportional to 

coscxdydu = coscx ur(r,y)drdy, by a change of variables u = u(r,y). The second term in 

the product above results from this change of variables. Returning to radarc1inometry, the 

Lambert and uniform-albedo assumptions are relaxed after providing a couple of 

examples. 

Examples 

In this section examples of image formation are provided for two simple surfaces. 
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Flat Plate. Figure 2.10 depicts the geometry for the sensing of a flat plate. Assume 

an ideal point spread function, i.e., ler = 0(0.0)' Since cosa(y,S(r,y)) = cosS(r,y) = zolr, 

from which Sr(r,y) = 1/ r~(rlzo)2 -1, the image formation equation (2.37) yields 

E U (r, y) - canst. ~ z, . Note that thefunctian 8(r, y) need not exist, as 
r5 (rlzo)2-1 

illustrated in the next example. 

Fig. 2.10. Flat plate. 

Cylindrical Section. Figure 2.11 shows the sensing of a cylindrical section. 

Assume ler(u, v) = g~(u)oo(v). Here p(y, S) = c, and cosa(y,S) = 1. Hence, by image 

formation equation (2.34), EU(r,y):::: const.~g~(r-c). 
c 

Zo 

Fig. 2.11. Cylindrical section. 

General Radiometric Model 

In the general model presented here the expression for EIC~l involves two 

elements: not only the reflectance function, which allows for variation in returned energy 

due to surface shape, but also the albedo junction 0 which describes reflective properties 

based on surface composition. The uniform albedo case corresponds to 0 == 1. This second 
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element allows for variation in the dielectric properties of the surface. The model is given 

by 

2 j(COS a.(y~ e .)) EIc.·1 = "} o( ~ e .)L1 L1e 
I} 3(y~ e.) YI'}:Y 

P "} 
(2.40) 

The cosine dependence is extended using the function! The case wherejis the identity 

function corresponds to the Lambert reflectance function. The case j = (.)p for p ~ 1 is 

the Minnaert [8] or generalized Lambert function, which allows for the radiated 

distribution of energy to be concentrated orthogonally to surface patches, i.e., to be more 

specular than the Lambert model. The albedo function simply weights the expected 

energy. Note that a further generalization would have the mapjdepend on (y,e). In 

sufficiently restrictive situations this might be tenable; it is rejected simply for the sake of 

dermiteness. The preceding results on image formation are summarized in the next 

section. 

Image Formation 

The radar image represents energy as a function of range and azimuth. At each 

site (r,y) is stored the energy returned by a portion of the surface, as determined by the 

point spread function that is specified by the SAR signal processing. The expected energy 

at (r,y) is given by 

Ep,o U(r,y):::: const.JI K,(r - p(y',e),y - y') j(cp~s(~~~~;e)) o(y',e)dy' de (2.41) 

where p is the surface location function, 0 the albedo function, and a.(y,e) is the angle 

between a vector normal to the surface at (p(y,e),y,e) and a vector pointing at the sensor. 

The distribution of the radar image is independent gamma. 
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CHAPTER 3 

RADARCLINOMETRY AS A STOCHASTIC INVERSE PROBLEM 

In this chapter the radarclinometry problem is posed as a stochastic inverse 

problem. The approach is based on a Bayesian model, which has two components: 1) a 

model for encoding a priori constraints or knowledge about the surface; 2) a model for 

the forward process, i.e., the (random) transformation which takes the surface function to 

the observed data, the radar image. The second component was treated in the previous 

chapter. The stochastic inverse problem is to invert the forward process subject to the 

prior constraints, i.e., recover the surface from the radar image. 

Previous work in Bayesian image analysis and stochastic regularization is vast. 

The reader is referred to Demoment [1] and Geman [2] for overviews. 

Bayesian Formulation 

The Bayesian formulation of radar clinometry is given as a special case of the 

following general model, so that comparisons can be made to other application areas in 

image analysis. 

Stochastic Inverse Problems in Image Analvsis. The situation is generically as 

follows. There are data u = (US)SEF available, where F is an index set of sites. The data 

are viewed as an outcome of an observation process U, which is related to, i.e., 

statistically dependent on, an attribute process X. The goal is to recover the attributes 

from the data. For example, in radarclinometry the data is a radar image, and the attribute 

of interest is the surface shape which gave rise to the radar image. In image 

reconstruction the data is a degraded form of an attribute image, the undegraded picture. 

The attributes may be classification or boundary labels, as in remote sensing applications. 
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The attribute process represents some information of interest, related to, but not directly 

conveyed by, the data. Put this way the inverse problem is simply that of Bayesian 

estimation. However, there are further components which are specific to inverse problems 

in image analysis, given in the following. 

Data Distribution. The observation process is related to the attribute process in the 

following special way. There is an image fonnation operator <I> which takes the attributes 

x to an ideal, or non-random, version of the data; in particular, <I>x = E(UIX = x). Further, 

P(U E dulX = x) = f iPx(u)du (3.1) 

where fe is parametrized by its mean, i.e., J ufe(u)du = e, and has the fonn 

-logfe(u) = A I,(h(es,us) + g(us») (3.2) 
SEF 

where A is positive, and the function h is the penalty function, with the property thath ;::: 0 

with equality only when its arguments are equal. Observe that (3.2) is a negative log

likelihood, so argrnin I,h((<I>x)s'us) is the maximum likelihood estimate of x. The 
x SEF 

function h penalizes deviations of the data u from the synthetic rendering 

<I>x = E(UIX = x) of the data based on x. Note that (3.1) and (3.2) are equivalent to 

{Us} SEF being independent conditioned on X = x . Also, the conditional distribution of 

the observation process, determined by the physics of image fonnation, depends on x only 

through <I>. Examples of distributions arising in image analysis which have the fonn (3.1), 

(3.2) are given next. 

Examples. Consider first the penalty function in radarclinometry. An independent 

gamma distribution with mean e has p.d.f. 

(3.3) 
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so h(a,b) = bja -log(bja) -1, and A. in (3.2) as well as in (3.3) is the number of looks 

associated with the SAR signal processing (see the section on multi-look SAR in Chapter 

2). A plot of h(1,e) for radarclinometry is shown in Fig. 3.1. For the Poisson distribution, 

which arises in tomography and astronomy 

h(a,b) = {b(ajb -log(ajb) -1) b ~ 1 
a b=O 

For additive independent Gaussian noise, which arises in image segmentation and 

reconstruction, h( a, b) = (a - b)2 . 

In the Gaussian case the penalty is based on a difference. For the gamma 

distribution the penalty is based on the ratio bja. Gamma noise is often termed 

"multiplicative" because a gamma-distributed random variable has standard deviation 

(noise) proportional to the mean. The posterior distribution for the Bayesian formulation 

of image analysis problems is given in the next paragraph. 

2~------~------~------~------~ 

o 1 2 3 4 

Fig. 3.1. Penalty function. 

Posterior Distribution. Assume that the prior distribution has the Gibbs form 

P(X E dx) = const.exp( -H(x))dx. By Bayes rule, the posterior distribution is 

P(X E dxlU = u) = const. eXP(-H(X) - A. Lh((<I>(x))s'us ))dx (3.4) 
seF 
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Note that the normalizing constant depends on u. The Bayes point estimates used in 

image analysis are the mean of, the mode of, or a sample from the posterior distribution. 

The posterior also has the Gibbs form, with energy 

H(x) + A :L h((<Dx)s'Us ) (3.5) 
seF 

The first term is the prior, or regularization term, the second the data term. Note that the 

energy (3.5) could simply be regarded as a cost function, avoiding the Bayesian 

perspective completely. This is the approach in regularization (Poggio et al. [3]). 

Minimizing the energy (cost) yields the mode of the posterior distribution, the maximum 

a posteriori (MAP) estimate. 

In this presentation on radarclinometry the perspective of Bayesian estimation is 

taken because, as is not always the case for other standard problems in image analysis, 

associating the a priori constraints with a prior distribution makes sense, for the 

following reason: realizations of the prior distribution assumed are realistic, in that, with 

high probability, they have the characteristics expected of the surface. The surface 

location function is essentially a height function, and samples from the prior distribution 

(described in the next chapter) placed on the space of surface functions are believable 

natural terrains, i.e., planetary surfaces. This is appropriate for the remote sensing 

applications of interest here. As a final point, note that for radarclinometry since A is the 

number of looks, with which speckle noise variance decreases, it is intuitively satisfying 

that in (3.5) the data term is emphasized relative to the prior term as the number of looks 

increases. 

SummarY. Many image analysis problems fit within the framework used in posing 

radarclinometry as a stochastic inverse problem. What distinguishes image analysis 

problems from general Bayesian estimation is that statistical dependence between the data 

and the attributes of interest occurs through an image formation operator. Another 
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important consideration, which will be addressed later, is that the typically large data 

dimensionality requires design of efficient sampling algorithms used to obtain point 

estimates. 

Discrete Image Formation Model 

In this section, a discrete model (suitable for digital computation) is developed 

based on the material of Chapter 2. It is assumed that albedo is uniform and the 

reflectance function is Lambert. Some definitions are given first. 

. The radar image is indexed by (r,y) E F c [0,00) x (-00,00). A reference surface 

Po is chosen which is a good initial guess for the unknown surface function. Precisely, 

the surface process X satisfies EX = 0, where an outcome x is given by 

p(y[,9j ) = Po(y[,9 j )+xij, so xij is the deviation from the reference surface. The prior 

distribution is placed on these deviations. It is reasonable to base the reference surface on 

a reference geoid, an analytical model of the shape of a planet. For example, the geometry 

for a "flat-earth" model is given in Fig. 3.2, where the reference surface is based on the 

distance from the flight path to grid points which are contained in a plane that 

approximates sea level locally. 
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Fig. 3.2. Reference surlace for flat earth modeL 

Let (<t>x)s = ,,(CJ>s(x); hence CJ>s provides the image formation model up to a 

multiplicative constant, which accounts for gain due to unknown uniform albedo, antenna 

response, atmospheric attenuation, etc. The discrete image formation equation is given by 

(2.33), with partial derivatives approximated by differences: 

(3.6) 

where 

(3.7) 

The remaining component of the model is the prior distribution for X, the surface 

process, given as follows. The regularization energy is in the form of a Tikhonov 

stabilizer, frequently used in regularization problems. The next chapter presents 
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properties of the corresponding Gibbs distribution. There is irony in the fact that using a 

regularizer as the energy in a Gibbs distribution results in statistical characteristics that 

support the Bayesian perspective. In other words, samples from the resulting distributions 

are believable natural terrains. 
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CHAPTER 4 

REPRESENT ATION OF STABILIZING PRIORS 

This chapter provides results on the representation of a random field obtained by 

using a Tikhonov stabilizer (Tikhonov and Arsenin [9]) as the energy in a Gibbs 

distribution. The resulting distribution is often used as a prior in image analysis and 

computational vision (Poggio et al. [7]), and is also related to "intrinsic" fields (Kiinsch 

[4]). 

The representation given here provides a method for generating samples (without 

using stochastic relaxation), allows deriving the maximum likelihood estimator for a 

scaling parameter, and gives a method for computing covariance structure. A self

similarity property is described. 

The organization of the presentation is as follows. First, the distribution is defined 

in a general setting, and then a representation theorem is proved, based on which useful 

properties are derived. A special form of the distribution which is frequently used in 

practice is then assumed for the remainder of the presentation, for which other properties 

such as self-similarity are valid. 

Stabilizing Gibbs Distribution 

Joint Distribution. Consider an image x with domain 

L = {G,I, ... , nl -I} x {G,I, ... ,~ -I}. Lettl, t2 denote first-difference operators: 

(tIx)CiI,i2) = xCi1,i2) - XCiI -I,i2) 

(t2x )CiI,i2) = xCiI ,l2) - XCiI' i2 -1) 
(4.1) 

The boundaries are accommodated by periodic extension; i.e., an index Cil, 0.) ~ L is 

taken to be Cil mod'1., i2 mod rlz). This issue will be taken up again later. The operators t 1, t2 
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may be thought of as discrete partial derivatives. This chapter concerns a random field X 

with outcomes in Rnl n2 and Gibbs distribution 

with 

1 
P(X E dx(o) = const.exp( --H(x(O)) dx[o] 

2 
(4.2) 

(4.3) 

where (0) denotes that the (0,0) element is zero, and [0] that it is left out; i.e., x(O)(O,O) = 0 

and x[O] = (x(O) Cil,i2») . . . As given above H is the Tikhonov stabilizer of order 
(ll,12)eL \(0,0) 

p on the two-dimensional lattice, which is quadratic, so the distribution is Gaussian. The 

constraint X(O,O) = 0 is necessary for the distribution to exist. With this condition and 

each constant aid ~ 0 and aop,apo > 0, the normalizing constant is finite, and is 

calculated later. It is useful to express H as H(x) = IITxIl2, where 

a vector of all weighted partial derivative operators up to order p. Let 

m = (p + I)(p + 2)/2 -1, the number of elements in T. For j = I,2, ... ,m, Tj is used to 

denote the i h element of T. In view of the fact that T is invariant to an additive constant, it 

is beneficial to view an outcome x(O) as the representative of an equivalence class 

{x(O) + C:C E R}. The distribution is referred to here as the stabilizing Gibbs distribution of 

orderp. 

Local Distributions. Let G:{z E C: Izl = If ~ Cm be a vector of polynomials given 

by 

G(zl,z2) = (~alO (1- zl),~a01 (1- z2)' 

~azo (1- Zl)2,{Q;'; (1- zl)(1- z2),~a02 (1- Z2)2 , ... ,~aop (1- z2)P) 
(4.5) 
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The domain of G is restricted to unit circles so that Zi. = Z11, 22 = z2"l, and "G112 can be 

expressed as a polynomial in zl and z2' Direct calculation by completing the square in 

the quadratic Gibbs energy H(x) yields 

(4.6) 

(4.7) 

where b(h .jz) is the coefficient of zll Z~2 in the polynomial "GII2. The coefficients 

bUI.jz) = 0 except for (lI, h) in a neighborhood of the origin, so the field is Markov with 

a relatively local neighborhood structure. The local distributions given by the local 

variance (4.6) and local mean (4.7) represent conditional autoregressions (Besag [2], 

Ripley [8]), in particular, intrinsic autoregressions (Kiinsch [4]) because of the form of 

the coefficients. 

Example. For the first order model Tx = (t1x,t2X) , 

H(x) = IITxll2 = L(x(il'~) - XCiI _1,~»)2 + (x(li,i2) - x(i1,i2 _1»)2 
(i1.i2 )EL 

variance is 1/4, the local mean is 

which involves only the four nearest neighbors of Ci1'£2)' The following definitions are 

needed later. 
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Preliminaries 

CompJex Nonna! Distribution. A random vector Z E Cn has a complex normal 

distribution CN(L) if 

(4.8) 

where L = E(Z Z'), a prime denotes transposition and complex conjugation, and dz 

denotes dxdy with x = Re(z) and y = Im(z). See Goodman [3] for standard properties. 

For a function (matrix) t; taking L to C, let there be an understood ordering on L, 
so that t; can be considered a vector, also denoted (t;UI,i2 ) )( .. ) L' 

11'lz e 

Discrete Fourier Transform. Let z: L ---7 C, and WI = exp( i21t), w2 = exp( i2n) . 
ni n2 

The discrete Fourier transform z is the representation of z with respect to the orthonormal 

Fourier basis {e(k k ): (kl'~) E L}, where e(k 1--) = (nlnzr1/2wtlw~2kz).. . In other 
l' 2 1 '~.l (11 ' lz )eL 

words, z = pz for a unitary matrix P whose columns consist of the elements of the 

Fourier basis, and z = P'z. Further, IIzl12 = IIPzl12 = z'P'Pz = 112112 = IIP'zl/2, which is 

Parseval's relation. The discrete Fourier transform of a multi-dimensional image 

(zi:L ---7 C)i=1,2, ... ,n is defined as dft(ZJi=1,2 .... ,n) = (Zi)i=1,2, ... ,n' The main result of the 

chapter is presented next. 

Representation 

Let 

A(k1,k2) = (~(1- wlk1 ),..jaOl (1- wzkz ),..ja20 (1- Wlkl)2, 

.fa;; (1 - w1k1 )(1 - WZk2 ), -J a02 (1- Wz kz )2, ... ,~ ao P (1 - WZk2 )P ) 
(4.9) 

It is easy to verify that T j has the eigenvalue A j(kl>k2 ) relative to the Fourier 

eigenvector e(k1 .kz) for (k1,k2) ELand allj, where Aj denotes thejth element of A. Note 
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that the {T/i = 1,2, ... ,m} have common eigenvectors, so in a sense A(k1,k2 ) is a vector-

valued eigenvalue of T. Now 

(4.11) 

This states that (dft(Tz»)(k1k2 ) = A(k1kz)z(k1k2 ), which can be verified directly. Also, 

denote L \ (0,0) by Ira]' 

Theorem 4.1. Let (U(kl,k2)\kl.~)ELrol - CN(2I), where I is the identity matrix, so that U 

is i.i.d. complex normal. For Cil,i2) E L, let 

Then Re(V) has a stabilizing Gibbs distribution of order p. 

Note. This representation provides a method of generating a sample from the distribution 

based on an i.i.d. normal sample. 

Proof. Follows immediately from Lemmas 4.1 and 4.2. 

Lemma 4.1. Let W - CN (21), with outcomes in Cmnl7lz , so that Wj has outcomes in 

Cnl7lz for i = 1,2, ... ,m. Let 

(4.13) 

where again, Z may be considered to have outcomes which are equivalence classes. Then 

x = Re(Z) has a stabilizing Gibbs distribution of order p. 

The proof is an application of Lemma 4.3, given later. 
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Note. As an intuitive motivation, note that Z is the projection of "complex white noise" 

into the subspace {Tz(o):z[OJ E Cnln2-1} of m-dimensional images Tz consisting of 

weighted discrete partial derivatives of z. 

Example. Again, let Tx = (tlx,t2X), Then 

Thus, Z is the projection of white noise onto the subspace of image pairs which are 

discrete partial derivatives. In other words, the partials of Z best match the Li.d. variables 

W. 

Lemma 4.2. V and Z have the same distribution. 

Proof. It is convenient to use a Fourier basis in representing the above projection (4.13). 

By Parseval's relation and e4.11), 

l: ~/(PITjZ )ekl,k2) - (P'Wj )ekl,k2f 
(k1.k2 )EL }=l 

(4.14) 

= L ~/A jekl,k2)zekl,k2) - (P'Wj )ekl,k2)/2 
(kl.k2 )EL]=1 

Hence, the dft of Z is given by 

e4.15) 

Because the Fourier basis is orthonormal, the dft of complex normal white noise is 

complex normal white noise with the same variance (this is the reason for embedding the 

projection in a complex space). The minimization may be carried out separately for each 
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(k1,10.) E L. Note that IIA(O,O)II = ° so that ZCO,O) would be arbitrary were it not for the 

constraint Z(O,O) = 0, which requires that 2(0,0) = - IZCk1,k2). 
(kl ,k2 )eLrO] 

For (k1,10.) E liD], //ACk1,10.)1I > 0, the 2(k1,k2 ) are independent, and are given by 

With U(O,O) = - IU(k1,10.), (U(k1,k2 »)(k k ) L 4 (Z(k1,10.») ,and applying 
(k k )eT. I' 2 e (kl .f0.)eL 

I' 2 ,0] 

the inverse dft yields the result. 

Note. The only dependence among the Fourier random variables Z(k1,k2 ) results from 

the constraint I 2 (k1, 10.) = 0. This is not true for X since there are further constraints 
(kl,k2)eL 

to ensure that X is real. 

Lemma 4.3. Let W - CN (21), with outcomes in Cn , and let a real-valued n x p matrix A 

have full rank. Let 

Z = arg min IIAz - Wll2 
zeCP 

(4.16) 

1 2 
Then P(X E dx) = const.exp(--IIAxIi )dx, where X = Re(Z). 

2 

Proof. Because A is real, 

IIAz - WII2 = IIRe(Az - W)1I2 + IIImCAz - W)/f 

= IIARe(z) - Re(W)1I2 +IIAlm(z) - Im(W)1I2 
(4.17) 

Hence the minimization of (4.16) can be carried out separately for the real and imaginary 

parts, and 

X = Re(Z) = argmin IIAx - Re(W)1I2 
xeRP 

(4.18) 
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Since Re(W) - N(O,I) and A has full rank, the minimization is a standard least-squares 

problem, so X - N(O, (A'Ar l ) . The result is now obvious using I/Axl/2 = x'A'Ax. 

Proof of Lemma 4.1. In Lemma 4.3, let A satisfy Az[o] = Tz(o), so that mnl~ plays the 

role of n in Lemma 4.3, and nIn2 -1 the role of p. The matrix A so defined has full rank 

because det(A' A) exists and is non-zero, as shown in the next paragraph. The result is 

now evident, as IITX(o)1I2 = I/Ax[O]//2 . 

Properties 

Normalizing Constant. The normalizing constant for the stabilizing Gibbs 

distribution is computed as follows. Let Ax[o] = Tx(o) and X = Re(Z) , as before. Since 

X[O] is normally distributed, the normalizing constant is given by 

(21t)(n1nz-l) det«A' A)-I) rl/2. To calculate det(A'A), first note that 

so that 

x{o]A'Ax[o] = IITX(o)112 = L IIA(kl,~)1I21(p'X(O»)(kl,~)12 
(kl.~)EL 

= X(o)Pdiag(//A(kl,~)1I2) P'x(O) 
(kl.~)EL 

= x{ol diag(//A(kl ,k2)//2) r'x[O] 
(kl.~)E~Ol 

(4.19) 

(4.20) 

removed. The last equality in (4.20) follows from I/A(O, 0)1/ = 0 and X(O) (0,0) = 0. Hence 
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A'A = rdiag(IIA(kl,k2)112) r/. It is easy to verify that det(rT) = 1, so 
(k1 ,k2 )eL \(0,0) 

det(A'A) = rrIlA(kl ,k2 )1I2 . 
(k1 ,"-2 )eLrol 

Covariance Structure. The representation given in Theorem 4.1 provides a method 

for computing the covariance structure of the random field. For (i1,iv,(j1 h) E L, since 

U(kl,k2)wflklwi2"-2 4 U(kl,k2), using (4.12), 

Hence, 

(4.21) 

where 

(4.22) 

Note. The increments are stationary, i.e., the difference variance is a function only of 

differences (li - jl>i2 - h). In geostatistics the function r is known as the variogram. 

Let X = Re(Z). Covariances for X are obtained using X(O,O) = 0, 

and 

COV(X(iI,i,z),X(jI,h)) = ~ (var(X(iI,i,z)) + var(X(jI,h)) - var(X(iI,i2) - X(h,h))) 

which results in 

cov(X(iI,i,z),X(h,h)) = l..(r(il,i2 )+r(h,h)-r(i1 - h,i2 -h)) (4.23) 
4 

Hence, the variogram completely characterizes the process. 
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Standard Regularization Model 

Hereafter a specific fonn is assumed for the coefficients aid of T. With cr and p 

strictly positive, the special fonn of T is chosen so that 

(4.24) 

which is equivalent to 

1 
T(1.cr.p)x = cr (t1X,pt2X) 

1 2 r::; 22 
T(2.cr,p)X = cr (t1 x,-y2pt1t2X'P t2 x ) (4.25) 

13 r;:; 2 r;:;22 33) 
T(3,cr,p)X = cr (t1 x ,-y3pt1 t2x ,-y3p tlt2x,P t2x 

and so on; coefficients are given by Pascal's triangle, and subscripts denote order and 

parameter value. With T so defined, the resulting distribution is said here to be of 

standard fonn. 

Note. The pair ro = (1tkl , 1tk2) is a spatial frequency. With sin x .,. X, 
n1 n2 

lirof .,. sin 2 rol + sin 2 ro2' Hence, the Fourier coefficients U II/All of the representation 

(4.12) for small llroll falloff as roughly 1/liroliP/2 . This is the law for the "1/1" noises of 

Mandelbrot [6]. The case p ¢ 1 allows for ellipsoidal falloff. With the above fonn (4.25) 

for T the corresponding prior energy or regularization term H(x) = IITxlf is commonly 

used in image processing applications [7]. For example, the first order energy enforces 

smoothness of x by penalizing large gradients. The smoothness increases with order, as 

high spatial frequencies are increasingly damped in the Fourier representation (4.12). 

Samples from the p = 1 distributions, generated using (4.12), are shown in Figs. 

4.1,4.2,4.3,4.4, for orders p = 1,2,3,4, respectively. Mesh plots for orders p = 1,2,3 are 
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shown in Figs. 4.5, 4.6, 4.7, respectively. As seen in Fig. 4.6, the sample from the second 

order distribution has the visual characteristics of the height function for a planetary 

surface. For this reason the second order distribution is used as the surface model in the 

Bayesian formulation of radarc1inometry presented in Chapter 3. 

Fig. 4.1. Sample from first order distribution. 

Fig. 4.2. Sample from second order distribution. 
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Fig. 4.3. Sample from third order distribution. 

Fig. 4.4. Sample from fourth order distribution. 
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Fig. 4.5. Mesh plot of first Order Sample. 

Fig. 4.6. Mesh plot of second order Sample. 
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Fig. 4.7. Mesh plot of third order sample. 

Alternate Representation. For stabilizing distributions in standard fonn and of 

even order, the representation of Theorem 4.1 can be based on the discrete Laplacian. 

Using (4.19), 

IITxf = 221/A(kl,k2)112Ix(kl,k2)12 
(k1.kz)EL 

= I ~(Il- wlkl l2 + /P(1- w;-kz )12)P Ix(kl>k2)12 
(k1.kz)EL (J 

~(il ,i2) = xUI + 1, ~) - 2x(iI' i2) + x(il -1,l2) 

+ p2(x(il,i2 +1)-2x(il,i2)+x(il,i2 -1)) 
(4.27) 

which is the discrete Laplacian for p = 1. The last equality in (4.26) is verified by noting 

that the diagonal elements of D are the eigenvalues of -Ll relative to the Fourier basis. In 
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other words, (dft( -.1x»)(kl ,k.l) = 'A(kl ,k2)i(kl ,k2), where 

'A(kl ,k2) = 11- Wlkl l2 + Ip(l-W2~ )12
• Hence, for the standard fonn and even orders 

(when IJ.p/2 can be defined through composition) the projection (4.13) can be based on 

the Laplacian, i.e., 

(4.28) 

where W for any order has outcomes in Cn11lz • The equivalence (4.28) is true by (4.26) 

and Lemma 4.3. 

The representation of Theorem 4.1 is based on knowing the eigenvalues and 

eigenvectors of the operator T. Using (4.28), the analogue of Lemma 4.2 for the operator 

IJ.p/2 results in the same representation (4.12), which was based on the operator T. This is 

true because the eigenvectors are Fourier for both operators, and 

1.'A(kl ,k2)P/2 = IIA(kl,k2)1I (see (4.24)). In the next section a modification of the 
0' 

Laplacian for which eigenvectors and eigenvalues are known is used to relax the toroidal 

boundary conditions brought about by periodic extension. 

Boundary Conditions. Toroidal boundary conditions are sometimes restrictive; for 

example, in image processing applications, where dependence should not "wrap around" 

at boundaries. To obtain alternative boundary conditions for stabilizing distributions in 

standard fonn and of even order, modify the Laplacian in the following way. On 

{(il,ll):il :f: O,nl -1, i2 :f: O,~ -l} let X = IJ., but for il = O,nl -1 let 

Ax(O,ll) = .1x(O,i2) - x(nl -1,i2) + x(O,ll) 

Ax(nl -I,ll) = .1x(nl -1,i2) - x(O,i2) + x(nl -I,ll) 
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respectively, and similarly for the other coordinate, and carry out both modifications for 

corner sites. This removes the bonds that wrap around the boundary. As pointed out by 

Kilnsch [5], for (k1,k2 ) E lio], ~ has the eigenvalue 

"I(k k ) - 4( . 2 (n:kl ) 2· 2 (n:k2 » 
I\, l' 2 - SIll - + P SIll --

2nl 2n2 

relative to the eigenvector 

and, as above, an eigenvalue of zero for the eigenvector e(O 0) = (nln2)-l/2) .. . 
, (11,12)EL 

Hence, a complex random field 2 with the modified standard stabilizing Gibbs 

distribution has representation 

(4.30) 

where U is distributed as above. 

To show the effect of the boundary conditions, samples from the second order 

distribution, with both periodic and free boundary conditions, are shown in Fig. 4.8. The 

sample for the periodic conditions is an outcome of Re(Z) where Z has the distribution of 

V in (4.12). For the free boundary the sample is an outcome of Re(2) as given in (4.30). 

As might be expected, local characteristics are similar but the free boundary sample is 

more "ragged" at the boundaries. Fig. 4.9 shows the zoomed central portions of the 

images of Fig. 4.8. The figure shows visual similarity (in distribution) of the samples if 

attention is focused on interiors, away from boundaries. Figures 4.10 and 4.11 show mesh 

plots of the images of Fig. 4.9. 

In a different context the use of a prior based on the Laplacian and its 

eigenvalue/eigenvector representation can be found in Amit et al. [1]. 
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Fig. 4.8. Samples from second order distribution; 
left: periodic boundary; right: free boundary. 

Fig. 4.9. Central portions of Fig. 4.5. 
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Fig. 4.10. Mesh plot, periodic boundary. 

Fig. 4.11. Mesh plot, free boundary. 

ML Estimate. Assume the scaling parameter 0' is unknown in the standard model. 

Let x be a member of the equivalence class for an outcome of X. Using the normalized 

form of the stabilizing Gibbs distribution, the likelihood function for d- can be written 
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(4.31) 

so the maximum likelihood estimate for cr2 is simply IlcrTxf .1 For p even, the identity 
nlnZ -1 

(4.26) leads to a simplified computation of the quadratic. 

Self~simiIarity Property 

Self-similarity is the property that a scaling of coordinates is equivalent to a 

scaling of the process (Mandlebrot [5]). In other words, if a sample from a self-similar 

process is "zoomed in" the result looks similar to the original process. Self-similar 

processes have "similar characteristics over a range of scales." This is considered an 

important property of the 1/ f noises of Mandelbrot because self-similarity is claimed to 

be characteristic of many natural phenomena. 

It is not surprising that the stabilizing Gibbs distribution of standard form obeys a 

self-similarity property given the aforementioned relationship to 1/ f noises. However, 

only an asymptotic statement can be made, and it is valid only for orders p;?: 2. In any 

event, the stabilizing Gibbs distribution is used here to model natural surfaces, which is 

appropriate given the claim that self-similarity occurs in nature. Synthetic scenes 

generated from 1/ f noises are shown in [6] to support this claim. 

The important distinction between the stabilizing Gibbs distribution and 1/ f 

noises for modeling surfaces is that the random field is directly defined on a lattice (as 

opposed to the plane) and has a local neighborhood structure. These are important 

computational considerations in the context of stochastic inverse problems. Further, as is 

1 By (4.25), the numerator does not depend on cr. 
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described in detail later, there is another computational benefit due to self-similarity: the 

property suggests a procedure for maintaining consistency among levels in a multi-

resolution hierarchy. 

The basic result is presented next. In the following, let 

L(111. 112) = {0,1, ••. ,n1 -I} x {O,l, ... ,nz -I} and 4~]·112) = L(111'~) \ (0,0). 

Corollary 4.1. Let aI, a2 be integers greater than or equal to one, and let the order p ;?; 2. 

Let cr' = a1p+1/2a:j2cr and p' = (~/al)p. Fix (n{'n2)' Then the variogram obeys 

uniformly for all (l1,12):;t: 0,1111 < n{, 1121 < n2, where for r superscripts denote lattice size, 

and <P 111'~ = rfLP~) (n{ /2, n2/2), a nonnalizing constant which ensures that 

-1 (111'~)( '/2 '/2) - 2 £; all ( ) <p111.~r«j.p) nl ,nz - cr or nl,n2' 

Application. LetX and X' have stabilizing Gibbs distributions of order p, with sizes 

(nl,n2) and (alnl'~nz), parameters (cr,p) and (alP+lf2a!j2cr,(~/al)p), respectively. The 

corollary together with (4.23) implies that 

(4.32) 

in distribution. The processes converge in distribution to each other on a fixed sublattice 

L(I1{·111). However, the corollary states that for small spatial lags (i1,12 ) the variograms 

converge to one another, which is a statement about small-scale properties for all of 

L(111'''2). Thus, in a sense (admittedly weak), (4.32) holds for the processes defined on 

L(111'''2) . 

Define Gf~~:s;) = {U1il1,i2il2):(il,i:2) E L(111'~)}' a grid with spacing (~l>il2)' 

A . X . h h 'd G(I1I'~) d X' . h th "d a(al l1l.a2"2) Th ssocmte wIt t e gn (dl'~2) an WIt e gn (~I/al'~2/a2)' US 
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respect to the grids. The marginal distribution of X' on the grid sites on which X is 

defIned is approximately equal to the distribution of X. This equivalence is important in 

maintaining consistency of the stabilizing Gibbs distribution in the multi-resolution 

scheme described later in Chapter 6. 

Example. Let p = 2, al = ~ = 2. Then X has approximately the same distribution as 

1 X" b d' - on Its even num ere sItes. 
2 

Self-similarity. Let a = al = ~, and let X and X' have stabilizing Gibbs 

distributions of order p, common parameter (a,p), and sizes (nb~) and (alnl,a2n2)' 

respectively. One then has the self-similarity property 

(4.33) 

in distribution, i.e., a scaling of the spatial coordinates is equivalent to scaling the process. 

Fig. 4.12 shows the variograms rt~::/28) and r&~.~i) for comparison, which is strongly 

suggestive of the approximate equivalence in distribution (on L(n1'''2»). The origin is at 

the center in both cases. 
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Fig. 4.12. Difference variances. 
left: 128 x 128; right: 64 x 64. 

Proof. The method of proof is to bound Ir~~:p7)(h,l2) - r~~~})211z>Calll,a212)1 from above 

and <Pn FL. from below. Proceeding with the former, using (4.22), 
1 '"-L. 

20-2 sin2 ( n(llkdnl + 12k2/n2)) 
= 4P- 1 nl~ (kl'k2)~4~I,n2) (sin2(nkdnl) + p2 sin2(n~/~) y 

(4.34) 

where 
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Further, 

where Ql = [O,nd2)x[0,nz/2)\(0,0), Q2 = [nI!2,nl)x[0,n2/2), 

Q3 = [0,nd2)x[n2/2 ,n2)' and ~ = [nI!2,nl)x[n2/2 ,nz)· 

(4.35) 

(4.36) 

(4.37) 

The sum is easy to bound except in the four corners of [0, nl ) x [0, nz). Let WI = nkl / nl , 

w2 = nk2/ n2' To bound the sum in the first quadrant, 

First bound the second sum on the right-hand side as follows. For a,n ~ 1, k E [0,nI2), 

and IE [l,a), 

lja::; (k + In)lan = klan + lla ::; (nI2)lan + (a -1)la = 1-lj2a (4.39) 
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so sin 2 (n(k + In)/an) ~ sin2(n/2a). Applying this to the above, for (k1'~) E Q1 and 

(i i ) E ,~al.a2) 
l' 2 ~O) , 

(4.40) 

so the sum is bounded by a constant. It remains to bound the flrst sum on the right-hand 

side above. First bound the summand as follows. 

Using the expansion sin 2 x = x2 + e(x), where lim e(~) = -12, 
x-+o x 

1 1 

(sin2 OOl + p2 sin2 C02t (al sin2(ooda1) + aip2 sin2(002/~) t 
_ (al sin2(ooda1) +aip2 sin2(002/~) t -(sin2 001 + p2 sin2 co2t 

(sin2 OOl + p2 sin2 002 y (al sin2(ooda1) + aIp2 sin2(002/~) y 
( 2 2 2 2 / 2 2 )P (2 2 2 2)P = COl +p 002 +a1 e(001 a1)+a2P e(002/a2) - COl +p 002 +e(ool)+p e(002) 

(sin2 OOl + p2 sin2 002 t (al sin2(ooda1) + aip2 sin2(002/~) t 

and by the binomial theorem, using e(x) = O(x4 ), 
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!( ~)( oor + p200~ y-i( (are(ooIlal) + aip2e(002/~»)i - (e(OOl) + p2e(002) /) 

(Sin2 OOI + p2 sin2 002 y (ar sin2(ooIlal) + aIp2 sin2(002/a2) r (4.42) 

= 0(11001/2(p-l»0(1I00114) = O(llool/2- 2p ) 
0(1100112 p )0(1100112 p) 

where 00 = (001,002), and 1(001,002) = O(I/ooln denotes the fact that there exist constants 

m, M >0 such thatm:::; 11C001,(02)1 :::; M for all 1/0011 sUfficiently small. Now, with 
lloor 

Hence, 

_1_ l: sin2(hOll +l:!0l2)( 1 - l(o.O)Ck1,k2)] 
nl ~ (k1.kz )eQl (sin2 001 + p2 sin 2002 Y 
:::; const.-1- IIl00l/4- 2p 

nl n2 {(k1.kz )eQdco~<£} 

+_1 l: [ 1 - 1 J 
nlnz {(k1 ,kz)eQdco~~£} (sin2 001 + p2 sin2 002 t (ar sin2 (ooIlal) + aip2 sin2(002/az) t 

(4.44) 

The second sum in (4.44) is clearly bounded by a constant, as is the first for p = 2. The 

first term of (4.44) is a Riemann sum, and for all nl' nz and p ~ 3, by definition of the 

Riemann integral, 
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1 I,IIroll4- 2p ::; J/lull4-2p dUld~ = rc/2 f r5- 2p dr 
ni ~ {(kI.kz )eQI :llooll<E} tan-I "2 e[O.1t/2).~(nl'~ )<I/"I/<E ~(nI'~ )<r<£ 

"1 

p=3 
(4.45) 

= 
rc (r6-2p (n n~) _ E6- 2p ) 

2(2p - 6) ., 1'··..:, 
p=4,5, ... 

The other three quadrants can be bounded similarly. Note that in all cases an expansion 

about the origin may be used due to periodicity; there are copies of the remaining three 

corners at the origin. The following summarizes the upper bounds established thus far. 

p=2 

p=3 

p=4,5, ... 

The nonnalizing function <j>n ..... is bounded from below in the following. 
1··· .. 

= 2 I, sin2(n;rod2 + n2ro2/2) 

4P- I nI~ (kI.kz)e4~\·1I2) (sin2 rol + p2 sin2 ro2t 

= _1_ I,O(llroI12- 2p ) 

nI~ (kI.kz)e4~\·1I2) 

> const. "II 112- 2p > _ £.... ro _ const. f r3- 2Pdr 
'Y(nI'~ )<r</; ni ~ (kI .k2 )e[O.nI )x[0.n2 )\(o.O).l/ool/di 

= {COnst.IOg(min(nl,~))+const. 

const. (min(nI,n2))2p-4 + const. 
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p=2 

p=3,4, ... 

(4.46) 

(4.47) 

(4.48) 



The result now follows. 
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CHAPTERS 

EXTENDED GIBBS SAMPLER 

The Gibbs sampler is a Monte Carlo algorithm originally devised for Bayesian 

methods of image processing (Geman and Geman [5]). In this chapter an extension of this 

computational technique used in the solution of radarclinometry as a stochastic inverse 

problem is described. In the extension the Gibbs energy is a sum H = HI + H2 . A state is 

proposed by drawing from the standard Gibbs sampler based on HI, and accepting based 

on a Metropolis-type ratio involving H2 . For radarclinometry, because the prior is normal 

and the data term is computationally demanding, the method is well suited to the posterior 

distribution with the regularization term playing the role of HI and the data term the role 

of H2 . 

The results are presented in more generality than is required for the 

radarclinometry application. The opportunity is taken to extend the Gibbs sampler to 

include additional attractive image processing and other practical applications. In 

particular, the Gibbs sampler is extended in two ways: 1) a propose/decide scheme is 

used, which is a special case of a non-stationary version of the Hastings extension [9] to 

the Metropolis algorithm [11]; 2) transition operators have general support, in that local 

updates are based on restrictions' of the state space more general than allowing only a 

change at a single site. A convergence theorem is proved, optimality properties are 

demonstrated, and some image analysis applications are described. 

Algorithms of the type presented here have found wide use in image processing 

and spatial statistics. For recent expositions see Besag and Green [1] and Tierney [14]. 
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Gibbs Sampler 

The standard Gibbs sampler is given as follows. For a finite lattice, L, let 

.0 = AL = {x = (xs)seL:xs E A,s E L} be a product space based on the lattice, where A is 

a finite set. Define a family, indexed by temperature T > 0, of probability mass functions 

on this space, where each element is a Gibbs distribution: for x E .0, 

1 
TIT(x) = -exp( -H(x) I T) 

ZT 

withH a real-valued energy function, andZy = "Lexp(-H(x) IT) a normalizing 
xen 

(5.1) 

constant. This form is not restrictive; any distribution TI which satisfies TI(x) > 0 for all 

x E .0 is a Gibbs distribution with H(x) = -logTI(x). Let (ai)i=O.I.2 •... be a sequence of 

sites in the lattice which represents a site-visitation schedule, in that i is a time index. Let 

(5.2) 

where, for s E L, 

(5.3) 

is the local distribution at site s, with x(s) = (xt)t;ol:s. teL' The results in Geman and Geman 

[4] which are relevant here are summarized as follows. 1) Let (Xi) be the non-stationary 

Markov chain with transition operators (pii)) , and for each s E L, suppose ai = s 

infinitely often. Then, for any starting point x, Jim P(Xi = Y 1Xo = x) = TIl (y) for all 
I~OO 

YEn. 2) Suppose there exists an integer 't such that L c {ai+l' ai+2'"'' ai+'t} for all i ~ O. 

Fix a temperature schedule (Ti) which decreases to zero slowly enough that 

li~infTi logi is sufficiently large. Let (Xi) have transitions (p¥?). Then 
I~OO I 

~im P(Xi = Y 1Xo = x) = TIo (y) , where TIo(x) = lim TIT (x), which is the distribution 
I~oo T~O 

uniform on the states which maximize TIl' 
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The conditions on the site visitation schedule ensure that any state can be reached 

from any other. The practical significance of the two results is the following. Typically in 

an image processing setting the local distributions can be easily evaluated, in that through 

cancellation between numerator and denominator, each calculation involves only a small 

neighborhood ils c L of site s. The first result provides a method of sampling from TIl 

via these local calculations. The second provides a scheme for sampling from TID. 

The Gibbs sampler is essentially specified by an energy function and a site 

visitation schedule. These two components are modified here in such a way that the 

standard Gibbs specification is a special case. 

The energy function determines the distribution from which the Gibbs sampler 

generates realizations. In the extension given here the energy is a sum of two terms, 

motivated by the Bayesian setting, as follows. A posterior distribution P(X = x IY = y) is 

the object of interest where x is the scene, or desired information sought from the data y. 

The posterior distribution is Gibbs (assuming positivity) with 

H(x) = -logP(Y = y IX = x) -logP(X = x). Either of these terms can play the role of 

HI (x) or H2 (x), but this need not be the case. For example, as in Green and Han [6], HI 

can be an approximation to H, with H2 the error. 

The calculation involved in generating samples from TIT directly is reduced to 

sampling from local distributions, and the site visitation schedule gives the order of 

sampling from these. At each time i, the transition probabilities are restricted, 

renormalized versions of ITT, i.e., of the form 

Pr(i)(X,y) = TIr(Y) 1 () 
ITIT(z) Sj(x) y 

ZESi(x) 

(5.4) 

where Si(x) = {z: z(aj) = XCaj)}. So for each x E Q, Sj(x) c Q. This is the motivation for 

replacing the site visitation schedule (ai) with an arbitrary sequence (Si) of subsets of Q. 
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Extended Gibbs Sampler 

For an arbitrary finite sample space ,Q let 

1 
TIT (X) = -exp(-(HI (x) +H2(x))IT) 

Zr 
(5.5) 

be a probability mass function on this space, where Zr = I, exp( -(HI (x) + H2 (x)) I T). 
xe.Q 

Define a sequence of maps (Si)i=O.I.2 .... ' where Si:,Q ~ 2.0. Thus, for x En and each i 

Si(x) is a subset of n. Also, assume the property y E Si(X) ~ x E Si(Y) holds for each 

x, YEn and each i. Define the transitions 

where 

. {Q~f)(X,Y)min(l,p¥)(X'Y)) 
p¥)(x,y) = 1- I,Q¥)(x,z)min(l,p¥)(x,z)) 

z;cx 

(i) exp( -HI (y) I T) 1 
QT (x,y) = I,exp(-HI(z)IT) Sj(x)(Y) 

zeSj(x) 

y;tx 

y=x 

exp(-H2(y) IT) I,exp(-HI (z) IT) 
(i) ( ) _ zeSj(x) 

PT x,y - exp(-H2(x)IT) I,exp(-HI(z)IT) 
zeSj(Y) 

which equals TIT(y) Qr(y,x) if y E Si(X). 
TIT(x) Qr(x,y) 

Following Hastings [9], p¥) is called the test ratio. It is easy to verify that these 

transitions result from the following algorithm, carried out at each time i: 

(5.6) 

(5.7) 

Propose: state y is proposed as a new state with probability Q¥)(x,y), where x is 
the current state 

Decide: the new state is accepted with probability min(l,p¥)(x,y)) 

The following theorem extends the two results presented earlier for the Gibbs 

sampler. Basically, the chain has the appropriate limit distribution. The constant 
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temperature result corresponds to limit distribution IT' = ITl below, the simulated 

annealing result to IT' = ITo. 

Theorem 5.1. Let (Tk )k=O,1,2, ... be a sequence of positive numbers such that ITrA: ~ IT', 

(Tk) is eventually decreasing, and liminf Tk logk is sufficiently large. Suppose there 
k~OQ 

exists a sequence 0 = 'to ::;; 'tl ::;; 't2 ::;; ... such that for all k ~ ° and x,y E n, 
y E S'!:A:+l-l oS'!:A:+1-2 0 ••• o S'!:A: +1 oS'!:A: (x), and there is an n such that 'tk+l - 'tk ::;; n \;jk. This 

condition ensures that any state can be reached from any other state in fmite time. Let 

(XJ-o 12 be a Markov chain with transitions (p¥).) , where ki == k for 
1- , , ,... A:, i=O,I,2, ... 

~im P(Xi = ylXo = x) = IT'(y) \;jx,y En (5.8) 
I~OQ 

Before presenting the proof, some applications are described. 

Applications 

Existing and new algorithms are shown to be applications of Theorem 5.1. In all 

cases, including the standard Gibbs sampler, the condition that each state can be reached 

from any other is satisfied by ensuring that all sites are repeatedly visited. A number of 

properties given below assume y E Si(X), Note that this simply means thaty is proposed 

from x with positive probability. 

Standard Gibbs Sampler. The standard Gibbs sampler is retrieved by taking 

HI = H, H2 == 0, n = AL, and Si(X) = {y E n: y(aj) = x(aj)}' It is easily verified that if 

y E Si(X) , the test ratio is one, so p¥) = Q¥). Proposals are always accepted. 

Multiple-site Updates. In the extension given in Geman and Geman [4], the site 

visitation schedule is (Ai )i=O,1,2, ... , where Ai C L. The values of the field on a subset, not 

necessarily a singleton, are updated at each time i. In the context presented here, HI = H 
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and Si(X) = (y E AL: Y(Aj) = X(Aj)}. One expects that as IAil-7ILI, transitions p¥)(x,e) 

become "close" to TIT; indeed, Ai == L corresponds to direct sampling, in which case 

p¥) (x, e) = TIT. This closeness is made precise in the discussion on optimality later in this 

chapter. 

Hybrid Gibbs SamplerlNletropolis Algorithm. Let Si(x) = (y E AL: Y(aj) = x(a;)}' 

as in the standard Gibbs sampler, but let H = HI + H2• In this case the test ratio does not 

involve HI whenever Y E Si(X). Here, for example, HI can be either the prior or data 

term in a Bayesian formulation. A new state is proposed by sampling from a one-term 

Gibbs distribution locally as in the standard Gibbs sampler. The acceptance decision, as 

in the Metropolis algorithm, is based on a test ratio, but here involving only the second 

energy term. The advantage of the hybrid over the Metropolis algorithm is that the state 

proposal is consistent with at least one of the energy terms. The advantage over the Gibbs 

sampler is that it may be simple to sample from the one-term conditional distribution, as 

when the energy is quadratic, but difficult to sample from the two-term conditional 

distribution. 

In the following, take HI = H, let (ai) be a site visitation schedule, and let 

Si(X) = (y E Q: Y(aj) = x(aj)' Yaj E Eaj (x)}, where Es(x) c {u:(u,x(s») E Q}. Note that if 

Es does not depend on Xs the test ratio is always one whenever Y E Si(X). The standard 

Gibbs sampler has Es(x) == A and Q a product space. 

Restricted Image Spaces. An example in which the sample space is not a product 

space, i.e., Es(x) actually depends on x, is given in Geman et al. [3] and Yang [15]. 

There Es is chosen in a manner that is both sensible in an image reconstruction setting 

and allows a reduction in computation. The choice has the very special properties that the 

test ratio is always one when Y E Si(X) (because Es(x) does not depend on xs), and 

Es(x) = {u:(u,x(s») E Q}. 
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Edge Dependence. This example is also relevant to image reconstruction. Let 

.Q = AL and Es(x) = [xs - g(xCs»'xs + g(x(s»] (1 A; i.e., at site s a range of values about 

the current state is considered where the range may depend on the current state at all sites 
except s. A reasonable choice for the function g is g(x(s» = max(~,maxxt - minxt ), 

tETJs tETJ.s 

where 11s is some neighborhood of sand /j. ~ 1. In particular, where there is an "edge" or 

boundary in the image, a larger range of values is considered than where the scene is 

relatively constant. This has the very desirable property of naturally concentrating the 

computation around the edges, which was one motivation for the work on restricted 

image spaces. 

Back to Theorem 5.1 

Before proving Theorem 5.1, some preliminary results are established. 

Lemma 5.1. The reversibility condition p¥)(x,y)ITT(x) = p¥)(y,x)TIT(y) is satisfied by 

TIT and p¥). In particular, the invariance condition holds; i.e., 
(i) IPT (x,y)TIr(x) = TIr(y)· 

XEQ 

Proof. The case y == x is trivial. Let y ;f= x, then 

p¥)Cx,y)TIr(x) = Q¥)(x,y)I1r (x)min(l,p¥)(x,y» 

= minCQ¥) (x, y) ITT (x), Q¥) (x,y) TIT (x)p¥) (x, y» 
(5.9) 

Further, 

Q(i)(x )I1 (x)p(i)(x )= exp(-(H1(y)+H2 (y)+H1(x»/T)1 () (5.10) 
T ,y T T ,y ZT I,exp(-Hl (z) / T) Si(x) Y 

zeSj(Y) 

= Q¥)(y,x)TIr(y) 

(Recall that 1Si (x)(y) = 1Si (y) (x». Hence, with g(x,y) = Q¥>Cx, y) TIT (x) , 
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p¥)(x,y)TIT(x) = min(g(x,y),g(y,X» = p¥)(y,x)ITT(y) (5.11) 

which completes the proof. 

Lemma 5.2. p¥)(x,y) ~ I~I exp(-c IT) for y E Sj(x), where 

Proof. Let y :¢: x, then 

(i) exp( -(HI (y) - minHI ) IT) exp( -(max HI - min HI) I T) (5.12) QT (x,y) = ~ ---'-----"----"--'--
2:exp(-(H1(z) - min HI) I T) Iexp(-(HI (z) - minH1) I T) 

zeSi(x) zeSi(X) 

exp( -(maxH2 - minH2 ) I T) Iexp( -(HI (z) - min HI) IT) 
p¥)(x,y) ~ zeSi(x) 

2:exp( -(HI (z) - min HI) IT) 
zeSi(Y) 

~ _,II exp(-(maxH2 -minH2 )IT) Lexp(-(HI(z)-minHI)IT) 
Q zeSi(X) 

Lemma 5.3. For x E Q, IIITT (x) - ITT (x)/ < 00. 

k=O .1:+1 Ie 

Proof. Let ITTIe (x) = Pk , where 
qk 

o ~ Pk = exp(-(H(x) - minH)jTk) ~ 1 

1 ~ qk = Lexp(-(H(x) - minH)jTk) ~ In! 
xeQ 

with H = HI + H2 . Further, 
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(5.13) 

(5.15) 

(5.16) 



/nT.t+l (x) - TIT.t (X)/ = Pk+l - Pk = 1 /Pkqk+l - Pk+lqk/ ~ /Pkqk+l - Pk+lqk/ 
qk+l qk qkqk+l (5.17) 

:::; Pk/Qk+l - qk/ + qk/Pk - Pk+l/ :::; /Qk+l - qk/ + Inl/Pk - Pk+l/ 

Since (Tk) is eventually decreasing, for some ko, Pk+l ~ Pk' qk+l :::; qk' for all k;;:: ko, and 

(5.18) 

Proof of Theorem 5.1. The method of proof is that in Geman [2]. By Isaacson and 

Madsen [10, Theorem VA.3], the results of Lemmas 5.1 and 5.3 are sufficient if 

(Xj )j=O.1.2 •... is weakly ergodic. Weak ergodicity is implied by f <x(p}:.t.'t.t+l») = 00, 

k=O 

('t 't ) 't.t+l-1 . 't.t+l-1 . 
where PTL.to .t+l = II p(l) = II p(l) and <X denotes the ergodic coefficient. By .. . T.ti . T.t 

I='t.t I='t.t 

hypothesis, given k and x,y E n there exists a sequence 

x = x't,t'x't.t+1, ... ,X't.t+l-1,X't.t+l = Y such that Xj+l E Sj(Xj) for i = 'tk,'tk +l, ... ,'tk+l-1. 

So, using Lemma 5.2, 

(5.19) 

Now, for liminf Tk logk;;:: nc 
k~-

> ~ . ~ exp(-ncITk ) 1 ~ ( IT ) 
- L.J rmn L.J = --1 L.J exp -nc k = 00 

k=O x.yen zen Injn Inln- k=O 

(5.20) 

and the proof is complete. 
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Note. It is not necessary that temperature be constant on the intervals {['tk> 'tk+l),k ~ O}, 

i.e., that the schedule be of the fonn (T ki ). Any eventually decreasing sequence (Tn 
which satisfies Tf ~ T k. for all i will suffice. , 

Extension 

The level of generality of the above was chosen to adhere to the basic philosophy 

of the Gibbs sampler, and to allow practically useful sampling schemes without imposing 

undue complication. With respect to the design of reversible transition operators, a further 

generalization of the above is suggested by a non-stationary version of the Hastings 

extension to the Metropolis algorithm in its full generality. Given a distribution n(i), 

transition operators which satisfy the reversibility condition, and therefore invariance, are 

given by 

QU) (x, y) a(i) (x,y) Q(i\x,y) > O,y:;z!: x 

p(i)Cx,y) = 1- IQ(i)(x,z)a(i)(x,z) y = x (5.21) 
Q(i) (x,z»o,Z;o~x 

o otherwise 

where' Q(i) is arbitrary except that Q(i)(x,y) > 0 <=:> Q(i)(y,x) > 0 must be satisfied! for 

allx,yand 

(5.22) 

with s(i) symmetric and chosen so that 0 :::;; a(i) :::;; 1. This framework gives a 

propose/decide scheme; with the current state x, y is proposed with probability Q¥) (x, y) , 

1 This condition is left out of the Hastings paper, but there is a divide-by-zero problem without it 
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and accepted with probability a(i)(x,y). For an optimality result on the Hastings 

acceptance schemes, see Peskun [13]. 

Optimality 

The extended Gibbs sampler enjoys some optimality properties which are treated 

below. Let ITT be a probability mass function of the form (5.5), and let (Sj) be a 

sequence of maps from n to subsets of n as above. Define the proposal distribution 

IT¥)(x) = exp( -HI (x) / T) 
I.exp( -HI (y) / T) 

yen 

and defme <;Pj,x to be the set of probability mass functions/which satisfy fey) = 0 for all 

y e: Sj(X)' Also, let 

[(f,g) = I./(y)log(j(y)/g(y)) 
y 

(5.23) 

denote the relative entropy between two probability mass functions/and g. Finally, 

define R(Qj!) ,ITT) to be the set of time-reversible propose/decide transition operators 

associated with Qj!) and ITT: 

R(Qj!) ,ITT ) = {r:n2 -7 [0,1]: Lr(x,y) = 1 'v'x, ITT (x)r(x,y) = ITT (y)r(y,x)'v'(x,y), 
yen 

r(x,y)::;; Qj!)(x,y) 'v'(x,y):y"# x} 

(5.24) 

The last condition ensures that the operators have the form (5.21) with 0 ::;; aU) ::;; 1. 

Theorem 5.2. Qj!) is optimal in the following sense. For each i and all x E n, 

(5.25) 

Further, p¥) is optimal in the following sense. 
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p(i) = argn;J.ax #{(x,y) E Q2: r (x,y) = Q(i)Cx,y)} 
T reR(Q~) ,TIT) r 

(5.26) 

In words, pSp is the time-reversible transition operator which matches Q¥) most 

often. If H2 == 0, then Q¥) is in a sense "closest" to ITr . For the case of a posterior 

distribution when H2 :;t: 0, one of three situations is standard: 1) HI is the prior energy, 

and Q¥) is closest to the prior, which may be viewed as the joint distribution of the scene 

and data with the data "averaged out"; 2) HI is the data term, and Q¥) is closest to the 

distribution obtained by normalizing the likelihood function; 3) For the Metropolis case 

where HI == 0, Q¥) is closest to the uniform distribution on Q. 

The following lemma is preliminary to the proof. 

Lemma 5.4. Let g be a probability mass function on Q and define gs = g 1s for a 
I,g(y) 

yeS 

subset SeQ. Define <Ds to be the set of probability mass functions/which satisfy 

/ (y) = 0 for all yeS. Then 

gs = argmin I(f,g) 
feeDs 

min I(f,g) = min L/(y)log(f(y)jg(y» 
fecD s f yeS 

= min L /(Y)(lOg( fCy) ) -loge Lg(Z») 
f yeS gs(y) zeS 

= min L /Cy)log( fey) ) + loge 1 ) 
f yeS gs(y) Ig(z) 

zeS 

= minI(f,gs) + loge 1 ) 
f I,g(z) 

zeS 

(5.27) 

(5.28) 

It is a standard property of relative entropy that it is greater than or equal to zero with 

equality if and only if its two arguments are equal (Kullback [12]). Hence / = gs is 
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optimum for the fIrst tenn on the right-hand side above, in which case 

l(gs,g) = loge 1 ). Thus, as is intuitively plausible, the two distributions are close 
1:g(y) 

yeS 

when I,g(y) is close to one, i.e., g has a lot of mass on S. 
yeS 

Note. Clearly, as /S/-7/Q/, loge I, 1 ) -7 O. In the multiple-site update Gibbs sampler 
g(y). 

yeS 

presented earlier, as lAd -7/L/, ISi(x)I-7/Q/. As a result, the more sites that are 

simulataneously updated, the closer p¥) (x,.) gets to IIT in the sense of relative entropy; 

however, "close" is somewhat imprecise as relative entropy is not a metric. 

Proof of Theorem 5.2. The proof of the fIrst result of Theorem 5.2 is an application of 

Lemma 5.4. To prove the second, let r E R(Q¥),IIT ). By the reversibility condition 

r(y,x) = IIT (x)r(x,y)/IIT (y); by the definition of p¥), 

Q¥)(y,x)p¥)(y,x) = IIT(x)Q¥)(x,y)/IIT(y). Consequently, 

A property of r, by definition of R(Q¥) ,IIT ) given in (5.26), is that for (x,y) such that 

y:;c x, r(x,y) S; Q¥)(x,y) , so with the above (5.29), r(x,y) S; Q¥>Cx,y)min(l,p¥)(x,y)) 

V(x,y):y :;c x. Now, 

#{(x,y):r(x,y) = Q¥)(x,y)} 
(5.30) 

= #{(x,y):y:;c x,r(x,y) = Q¥)(x,y)} + #{(x,x):x E Q,r(x,x) = Q¥>(x,x)} 

Bounding the fIrst tenn, 

#{(x,y):y:;c x,r(x,y) = Q¥)(x,y)} 

= # {(x,y):y :;C x,r(x,y) = Q¥)(x,y) min(l,p¥) (x,y)),p¥>Cx,y) ;;:: I} (5.31) 

S; #{(x,y):y:;c x,p¥)(x,y) ;;:: I} 
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= #{(x,y):y :;t: x,p¥)(x,y) :;t: 1}/2 + #{(x,y):y :;t: x,p¥)Cx,y) = I} (5.32) 

To bound the second term, for x E n, the three conditions r(x,y) ~ Q¥)(x,y)"iiy:;t: x, 

Lr(x,y) = 1, and LQ¥)(X,y) = 1 imply that r(x,x) ~ Q¥)Cx,x), with equality iff 
y y 

r(x,y) = Q¥)ex,y) "iiy:;t: x 

¢:> rex,y) = Q¥)(x,y) min (1, p¥) (x,y»Vy :;t: x, p¥)ex,y) ~ IVy:;t: x 

Hence, 

#{ex,x):X E n,r(x,x) = Q¥)(x,x)} 

= #{x:r(x,y) = Q¥)(x,y) min (1, p¥> ex, y»Vy :;t: x, p¥)ex,y) ~ l"iiy:;t: x} 

~ #{x:p¥)ex,y) ~ 1 Vy :;t: x} 

The upper bounds for both terms are achieved when 

rex,y) = Q¥)(x,y)minel,p¥)ex,y» Vex,y):y:;t: x 

This completes the proof. 

For some related work based on relative entropy, see Goutsias [6], [7]. 

Construction 

(5.33) 

e5.34) 

(5.35) 

The proof suggests the most general construction for elements of ReQ¥) ,ITT)' the 

time-reversible, propose/decide operators associated with a given ITT and Q¥). Let 

A c02 satisfy (x,x) e A Vx E 0 and ex,y) E A ¢:> (y,x) e A V(x,y) E 0 2 . For each 

(x,y) E A let r(x,y) satisfy rex,y) ~ Q¥)Cx,y)mine1,p¥)(x,y» , and set 

r(y,x) = ITT (x)r(x,y)/ITT (y). Finally for each x E n let r(x,x) = 1- I,r(x,y). 
y~x 
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CHAPTER 6 

RADAR CLINOMETRY ALGORITHM 

This chapter provides a computational procedure for deriving surface shape from 

a radar image of the surface. A sampling algorithm is described based on the extended 

Gibbs sampler, and a hierarchical, multi-resolution technique suggested by the self

similarity result for the stabilizing Gibbs distribution is described. The chapter also 

includes experimental results of an application of the method to radar images of the 

surface of Venus acquired by the Magellan probe. 

Posterior Distribution 

The point estimate employed in the radarc1inometry algorithm is the posterior 

mean E(XIU = u). This choice provides good results, and does not require selection of an 

ad hoc temperature schedule as in the case of a posterior mode. Distributions do not seem 

quite "peaked" enough to warrant the use of a sample from the posterior distribution as a 

point estimate. 

As given in Chapter 3 with the prior energy specified in Chapter 4, the posterior 

distribution is P(X E dxlU = u) = const. exp(-Hu(x))dx, where 

(6.1) 

and h(a,b) = bja -log(bja) -1. The set F is the domain of the radar image, as in Chapter 

2. 

Let L be the lattice on which the surface is defined. For computational purposes 

the continuum state space RL for x is approximated by a finite state space AL , where A is 

an appropriate subset of the real numbers. Let 
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exp( -Hu (x») 
rc(x I u) = ---'------'--,-

I exp(-Hu(x)) 
xeAL 

(6.2) 

for x E AL. The approximation (due to restriction to a finite sample space) to the posterior 
mean is Ixn(xlu). 

xeAL 

Since #(AL) = # A#L, direct computation of the expectation is computationally 

prohibitive even for # A = 2 if the image lattice has a practically useful size. For this 

reason a Monte Carlo estimate of the expectation is used, given by the average of a 

sequence Xi consisting of samples from rc(xlu). However, there is the remaining 

difficulty of sampling from n(xlu), which is addressed in the next section. 

Sampling Algorithm 

The sampling algorithm is a version of the extended Gibbs sampler given in 

Chapter 5. In particular, HI (x) = IIT(2,(j,p)XIl2, the quadratic prior term, 

H 2(x) = ')... Ih( ycpsCx),us), the data term, and Tk == 1. Single-site visitation is used as in 
seF 

the standard Gibbs sampler, where the site visitation schedule is chosen so that 

temporally neighboring sites (sites visited at contiguous instants) are spatially distant. 

This helps to prevent artifacts which result from standard orderings of the lattice. 

The motivation for the sampling algorithm, indeed the extension of the Gibbs 

sampler, is as follows. The standard choices for Monte Carlo sampling are the standard 

Gibbs sampler and the Metropolis algorithm. The standard Gibbs sampler is 

computationally unwieldy because the local state space is large. It has # A elements, and 

for each one the image formation operation, a complex calculation (see (3.5) and (5.3»), 

must be carried out in calculating the data term. The Metropolis algorithm involves only 

two image formation operations (one in the numerator of the test ratio, one in the 

denominator), but the state proposal scheme is ad hoc. Because the prior is Gaussian the 
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local distribution based solely on the prior is univariate Gaussian, from which a sample is 

easy to generate on a computer. Therefore, an attractive scheme is to propose states by 

sampling the local prior, and to accept based on a Metropolis-type ratio involving only 

the data term. In this way the proposal, easily generated, is at least consistent with the 

prior, and the Metropolis acceptance decision requires only two image formation 

operations. This scheme is precisely the extended Gibbs sampler described earlier. 

The prescription results in the following algorithm. Assume that site (i, j) is being 

updated, and define x[i,j] = (xU',j'»)U',j')*(i,j)' i.e., a vector containing all elements of x 

except for xij' A new state (v,x[i,j]) is proposed, where v is drawn from the univariate 

normal distribution 

(6.3) 

where c(x[i,j]) is the normalizing constant. The local conditional mean and variance is 

obtained by completing the square in the exponent. The mean is 

where 

Jlij = al (Xi-l,j + Xi+l,j) + a2 (Xi,j-l + Xi,j+l) 

-a3(xi-l,j-l +xi+l,j-l +Xi-l,j+l +Xi+l,j+l) 

-a4 (Xi-2,j + Xi+2,j) - as (Xi,j-2 + Xi,j+2) 

a4 = Y(6(I+p4)+ 8p2) 
al = 4a4(1 + p2) 

and the variance is a4(j2. Spatial isotropy of the surface is assumed, so p = ''1Jnl' 

The proposal is accepted with probability 
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Because of cancellation between the numerator and denominator, the sums can be taken 

only over the set Fij = {s:<Ps(v,X[i,)]):;t: <Ps(X)}, which is a relatively small subset of F if 

the point spread function (approximated by truncating) has relatively local support. This 

together with the fact that sampling from the local prior at (i,j) involves only 12 

elements of x implies that the posterior distribution has a relatively local neighborhood 

structure, an important computational consideration. 

Implementation notes. In proposing changes based on the local prior, only the local mean 

changes from site to site; the local variance is homogeneous. The quadratic associated 

with the normal distribution is never evaluated, as would be the case with the standard 

Gibbs sampler or the Metropolis algorithm. The Gaussian random variate is generated 

using the inverse c.d.f. lookup table method. In updating a site, the time for the image

formation calculation for the current state can be reduced by storing the data-term 

computations carried out at the previous site visit (when either the current or proposed 

energy was the now-current energy). In this way the Metropolis acceptance scheme 

requires that only the data term for the proposed state need be evaluated at each site 

update, reducing to one the number of image formation operations. 

Multi-resolution Scheme 

In theory (Theorem 5.1), given an arbitrarily large amount of time to visit sites 

and carry out local computations, the extended Gibbs sampler generates samples from the 

global posterior distribution, which can be used in Monte Carlo estimation. In practice a 

limited amount of time is available. This is the motivation for the multi-resolution scheme 

adopted in sampling from the posterior distribution. The basic idea is prevalent in image 

processing (e.g., Gidas [2], Rosenfeld [3]). 

A multi-resolution hierarchy of surface estimations is carried out. At the top level 

the data and surface are defined with respect to the coarsest grids, and the grids are 
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successively finer at lower levels. The finest level is level O. At time i, level I of the 

hierarchy, let the surface be denoted by X(i,/) , with lattice size (ni/),ni1»). Let 

al = n?-l) / n?) , and hi = nil-I) / niP, assumed to be positive integers. At each level the 

posterior mean is approximated by first sweeping the image, applying the Gibbs sampler 

until equilibrium of the Markov chain is assumed. Then realizations are averaged for a 

series of sweeps. The highest level in the hierarchy, level 3 in the experiments presented 

later, uses the reference surface as a starting point, which corresponds to X(O,3) == O. In 

descending the hierarchy, the estimate at level I is ups amp led by replication and used as 

the starting point for the next lower level in the hierarchy; i.e., if x denotes the fmal 

outcome for the Markov chain at levell, then the starting point at level 1-1 is given by 

X (O,I-l) _ & (..) ((1-1) (1-1») 
i,j - X[i/a,],[j/b,] , lor l,} E nl ,112 • 

The multi-resolution scheme is, practically speaking, the key to the success of the 

procedure, which is supported by experimental observations presented later. The scheme 

can be viewed as simply providing a good starting point for sweeping at the finest level of 

the hierarchy. The advantages of a multi-resolution method are intuitively clear. 

Information travels slowly across large distances when single site updates are used. The 

situation is rectified by allowing large-scale properties to be established early at high 

levels. 

Model Consistency. A prominent difficulty in multi-resolution approaches is 

maintaining model consistency among resolution levels. Here this is accomplished in the 

following ways. 

Prior. The self-similarity result given in Corollary 4.1 provides the appropriate 

relationship among the stabilizing Gibbs distribution parameter values. At level I let the 

parameter be denoted (cr(l),p(l)). With p = 2, the parameter values satisfy 
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(l) _ -3f2 b lf2 (I-I) 
(j - al I (j 

p(l) = (bdal)P(l-I) 
(6.6) 

With parameters so defined, the self-similarity result states that at a higher level the 

stabilizing Gibbs distribution is approximately equivalent to the marginal distribution of 

the field on the corresponding subset of sites at a lower level, i.e., X~~Z1~j ::::: XE'i in 

distribution. 

To demonstrate the effectiveness of the multi-resolution procedure, it was applied 

to a hierarchy of second order Gibbs distributions in standard form, which corresponds to 

the energy based solely on the prior. The result of both multi-resolution sampling and 

direct Gibbs sampling can be compared to a sample generated based on the representation 

theorem of Chapter 3. Fig. 6.1 shows the evolution of the multi-resolution sample, where 

a 16 x 16 grid is used at the highest level, a 128 x 128 grid at the lowest level. At each 

level 1024 sweeps of the lattice were carried out, with the highest-level starting point an 

image of zeros. The result should be compared for similarity in characteristics with Fig. 

4.2, generated using the representation theorem. Demonstrating the advantage of the 

multi-resolution approach, Fig. 6.2 shows the result of applying the Gibbs sampler 

directly to a 128 x 128 lattice of zeros for 8192 sweeps. The result does not visually 

compare favorably with Fig. 4.2, even though more computation was required. This 

demonstrates that the starting point is crucial in using the Gibbs sampler, which motivates 

the multi-resolution scheme. 
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Fig. 6.1. Sample evolution. 
top-left: 16 x 16; top-right: 32 x 32; 

bottom-left: 64 x 64; bottom-right: 128 x 128. 
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Fig. 6.2. Result of direct application of Gibbs sampler. 

Data. The radar image data at levell are created from the data at levell -1 by 

smoothing with a product of Gaussian kernels (to prevent aliasing) and subsarnpling. That 

is, let U(l) denote the radar image at levell, where U(O) is the original data. Let U(I) have 

domain p(l), where the p(l) grow coarser with I, i.e., satisfy p(l) c p(l-l). Then 

U (I) - ( ) "" ( ') ( ')U(I-l) (r,y) - c r,Y L.. 11 r - r 11 Y - Y (r',y') 
(r',y')ES(I-l) 

for (r,y) E p(l), where 11 = N(O,t(l»), the mean-zero Gaussian probability density function 

with variance t(l), and c(r,y) = ( I l1(r - r')l1(y - y,)]-l is a normalizing constant. 
(r',y')ES(l-l) 

Thus the data hierarchy is created by ascending. The point spread function is smoothed 

and subsampled in the same way to maintain consistency with the data. 
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Experiments 

The results of application of the method to synthetic and Magellan data are shown 

in this section. The reference surface is depicted in Fig. 3.2, i.e., is flat. In grey-scale 

depictions of image and surface data light areas correspond to large values, dark to small. 

Synthetic Data. The first experiment presented is an application of the method to 

synthetic data, so that the effectiveness of the procedure can be evaluated in a situation 

with ground truth. A sample from the stabilizing Gibbs distribution of order two was 

obtained using the representation given in Chapter 4. From this image a subimage, shown 

in Fig. 6.3, was taken to avoid the effect of the periodic boundary conditions. The 

parameter p of the stabilizing Gibbs distribution was chosen so that the field is isotropic 

with respect to the surface grid. The scaling parameter a was chosen to be typical of a 

mountainous natural terrain, by drawing a sample x from the a = 1 distribution, and 

choosing the a necessary to make the range of values for ax typical. In other words, a is 

chosen to scale the sample so that the size of structures (mountains, valleys, etc.) is 

consistent with prior information in this regard. A noise-free radar image (Fig. 6.4) was 

then synthesized from the sample, to which 16-look speckle was added (Fig. 6.5). The 

sensor flight parameters used were taken to be the Magellan parameters (Table 6.1) of 

one of the later experiments. 

Fig. 6.3. Test surface. 
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Fig. 6.4. Noise-free radar image. 

Fig. 6.5. 16-100k radar image. 

Table 6.1. Flight parameters. 

incidence angle (80 ) 
0 

23 
least range 5300km 
greatest range 5309.6km 
range resolution 230m 
azimuth resolution 120m 

Table 6.2 shows the remaining parameters used in the reconstruction procedure at each 

resolution level. Note that the grid size (n!, n2) was chosen so that synthetic radar images 

were free of discretization artifacts; this required a non-square lattice at resolution level O. 
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Table 6.2. Reconstruction parameters. 

level nl n2 F CJ "- iterations 
0 128 256 96x64 0.14 16 32/32 
1 64 64 48x32 0.2 32 256/128 
2 32 32 24x16 0.4 64 256/128 
3 16 16 12x8 0.8 128 512/256 

An iteration is a complete update corresponding to the visitation of all sites. With 

respect to the iterations column in the table, the entries correspond to two cycles. As 

previously mentioned, during the fIrst cycle the state distribution is being driven toward 

the invariant distribution. Iterations are averaged during the second cycle, forming a 

Monte Carlo estimate of the expectation. The evolution of the reconstruction is shown in 

Fig. 6.6, which shows the final surface state at each level. Figure 6.7 shows the noise-free 

radar image of the reconstruction, which should be compared to Fig. 6.4. 
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Fig. 6.6. Reconstructions; top-left: level 3; top-right: level 2; 
bottom-left: level 1; bottom-right: level O. 

Fig. 6.7. N oise-free image of reconstruction. 

Figure 6.8 shows evolution of the maximum likelihood estimate of the scale parameter cr, 

and Fig. 6.9 is the evolution of update ratio, i.e., the ratio of accepted states to the total 

proposed during each iteration. 
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Fig. 6.8. Evolution of scale parameter estimate. 
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Fig. 6.9. Evolution of update ratio. 

To examine the effectiveness of the multi-resolution procedure, the reconstruction 

at level 1 was carried out with the reference surface, rather than the reconstruction at level 

2, as a starting point. The resulting surface, shown in Fig. 6.10, is significantly inferior to 

the multi-resolution result shown in Fig. 6.6. The evolution of the data term is shown in 

Fig. 6.11. Note that the energy decreases much more quickly for the multi-resolution 

case, because the starting point is closer to a low-energy state. (A low-energy state is a 

"representative" state, as it represents a "typical" sample under the posterior.) It is 

interesting however that during the later iterations both energies are small, even though 

the fixed-resolution result is clearly visually poor. 
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Fig. 6.10. Fixed-resolution reconstruction. 
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Fig. 6.11. Evolution of data energy. 
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Note that Fig. 6.5 is a sample from the data distribution. The model can be 

verified by confirming that the sample has the same visual characteristics as the Magellan 

data shown later. To allow comparison with the large Magellan images shown later, Fig. 

6.12 shows a larger sample displayed in the same scale. 
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Fig. 6.12. Sample from data distribution. 

Magellan Data, Freyja Montes C77°N,337°E). A 512 x 512 overview image in the 

area of Venus which is the first region chosen for experimentation is shown in Fig. 6.13. 

The image represents energy (in decibels) returned from the surface as a function of range 

and azimuth, where range increases in the downward direction on the page. 

As presented in detail earlier, the image formation mechanism for radar is 

different than for visible-band sensing, so a radar image cannot be interpreted as an 

"ordinary" visible-light image, to which the human visual system is adapted. Indeed, the 

main benefit of radarclinometry is the production of data products which are suitable for 

geologic interpretation. A basic problem is the phenomemon which gives rise to layover, 

described earlier in Chapter 2. In the words of Wildey [4]: 

The geologic interpretation of surficial expression of terrain 
through radar has been widely inhibited by the radar
peculiar distortion that foreshortens the extent of terrain 
sloped toward the radar and elongates terrain sloped away 
from the radar ... 
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The distortion can be seen in Fig. 6.13, where bright snake-like patterns correspond to the 

faces of hills. Ground range is different than range: the entire face of a hill oriented 

perpendicularly to the sensor is at the same range from the sensor. The distortion can be 

thought of as a coordinate transformation which depends on the surface shape. 

Fig. 6.13. Magellan radar image. 

Magellan also collects altimetry data through microwave soundings. However, the 

corresponding elevation data are lower in resolution by roughly a factor of 60. As a result, 
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as is evident in Fig. 6.14, which shows the elevation data corresponding to Fig. 6.13, the 

data convey only large-scale surface properties and none of the information about small

scale surface structure which is apparent in the radar image data. It is the role of 

radarc1inometry to reconstruct the small-scale surface features. One perspective is that the 

altimetry data and radar data both convey elevation information, but in different portions 

of the spatial frequency spectrum (see Frankot and Chellappa [1] for a discussion). 

Fig. 6.14. Magellan elevation data. 
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Figure 6.15 shows a 96 x 64 portion of Freyja Montes to which the 

radarc1inometry technique was applied. The flight and reconstruction parameters are 

shown in Tables 6.1 and 6.2. The image-formation scale parameter y was estimated by 
y = LUs/~s(O), which is the maximum likelihood estimate in the situation that the 

seS 

surface function is given by the reference surface. 

The reconstructed surface is shown in Fig. 6.16. The noise-free radar image of the 

reconstruction is shown in Fig. 6.17, which compares favorably to Fig. 6.15, as expected. 

Figure 6.18 is the height image based on the reconstruction, and Fig. 19 a mesh plot of 

the height image. Fig. 6.20 is a visible image, suitable for human interpretation, 

synthetically rendered from the height image, where the light source is to the top-right of 

the page. The scale parameter and update-ratio evolutions are shown in Figs. 6.21 and 

6.22. 

Fig. 6.15. Radar image. 
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Fig. 6.16. Reconstructions; top-left: level 3; top-right: level 2; 
bottom-left: level 1; bottom-right: level O. 

Fig. 6.17. Noise-free image of reconstruction. 
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Fig. 6.18. Height image. 

Fig. 6.19. Mesh plot of height image. 

Fig. 6.20. Synthetic visual image. 
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Fig. 6.21. Evolution of scale parameter estimate. 
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Fig. 6.22. Evolution of update ratio. 

The result of processing a large data set (256 x 192) from Freyj a Montes using the 

same parameters is shown in the following, where processing at the highest level of the 

resolution hierarchy was omitted, because of computational considerations. Figure 6.23 is 

the radar image, Fig. 6.24 the corresponding height image, and Fig. 6.25 the synthetic 

visual image. 
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Fig. 6.23. Radar image. 

Fig. 6.24. Height image. 
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Fig. 6.25. Synthetic visual image. 

Magellan Data, Alpha Regio C24°S,2°E). A (512 x 384) overview image of the 

second region of Venus chosen for experiments is shown in Fig. 6.26 along with a 

synthetic visual image, based on a reconstruction taken up to level 2, in Fig. 6.27. Figure 

6.28 represents a small 96 x 64 portion to which the complete radarc1inometry technique 

was applied. The flight parameters are shown in Table 6.3, the reconstruction parameters 

are as before, in Table 6.2. The reconstructed surface is shown in Fig. 6.29. The noise

free radar image of the reconstruction is shown in Fig. 6.30. Figure 6.31 is the height 

image based on the reconstruction, and Fig. 6.32 is the visible image. 
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Fig. 6.26. Magellan radar image. 
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Fig. 6.27. Synthetic visual image. 
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Table 6.3. Flight parameters. 

incidence angle (80 ) 36° 
least range 1300km 
~eatest range 1309.6km 
range resolution 150m 
azimuth resolution 120m 

Fig. 6.28. Radar image. 

Fig. 6.29. Reconstruction. 
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Fig. 6.30. Noise-free image of reconstruction. 

Fig. 6.31. Height image. 

Fig. 6.32. Synthetic visual image. 
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Discussion 

The experimental results based on uniform albedo (B == 1) and Lambert reflectance 

are favorable. It is worth considering what is involved in designing a procedure based on 

the general image formation model (2.41) presented in Chapter 2. The reflectance model 

is not necessarily Lambert, but also the image formation operator maps not only the 

surface shape function p but also the albedo function B to a noise-free radar image. Thus 

the inverse problem is more challenging, and indeed is clearly ill-posed without 

additional constraints. One possibility is to restrict the range of the albedo function to a 

small set of possibilities. In other words, the surface is assumed to be composed of only a 

few material types. This is a topic for further study. 
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