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ABSTRACT

THE ROLE OF STELLAR FEEDBACK IN GALAXY

EVOLUTION

FEBRUARY 2009

ZHIYUAN LI

B.Sc., NANJING UNIVERSITY

M.Sc., NANJING UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Q. Daniel Wang

Aiming at understanding the role of stellar feedback in galaxy evolution, I present

a study of the hot interstellar medium in several representative galaxies, based pri-

marily on X-ray observations as well as theoretical modelling.

I find that, in the massive disk galaxies NGC2613 and M104, the observed amount

of hot gas is much less than that predicted by current galaxy formation models. Such

a discrepancy suggests a lack of appropriate treatments of stellar/AGN feedback in

these models.

I also find that stellar feedback, primarily in the form of mass loss from evolved

stars and energy released from supernovae, and presumably consumed by the hot gas,

is largely absent from the inner regions of M104, a galaxy of a substantial content

of evolved stars but little current star formation. A natural understanding of this

phenomenon is that the hot gas is in the form of a galactic-scale outflow, by which
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the bulk of the stellar feedback is transported to the outer regions and perhaps into the

intergalactic space. A comparison between the observed sub-galactic gas structures

and model predictions indicate that this outflow is probably subsonic rather than

being a classical supersonic galactic wind. Such outflows are likely prevalent in most

early-type galaxies of intermediate masses in the present-day universe and thus play

a crucial role in the evolution of such galaxies.

For the first time I identify the presence of diffuse hot gas in and around the bulge

of the Andromeda Galaxy (M31), our well-known neighbor. Both the morphology and

energetics of the hot gas suggest that it is also in the form of a large-scale outflow.

Assisted with multiwavelength observations toward the circumnuclear regions of

M31, I further reveal the relation between the hot gas and other cooler phases of

the interstellar medium. I suggest that thermal evaporation, mostly likely energized

by Type Ia supernovae, acts to continuously turn cold gas into hot, a process that

naturally leads to the inactivity of the central supermassive blackhole as well as

the launch of the hot gas outflow. Such a mechanism plays an important role in

regulating the multi-phase interstellar medium in the circumnuclear environment and

transporting stellar feedback to the outer galactic regions.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The hot interstellar medium and stellar feedback . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 X-ray observatories and X-ray data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. AN XMM-NEWTON OBSERVATION OF NGC 2613: HOT GAS

IN MASSIVE DISK GALAXIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Observations and Data Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Discrete X-ray Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Unresolved X-ray emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2.1 Spatial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2.2 Spectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 The nature of the nuclear X-ray emission . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 The collective X-ray emission of discrete sources . . . . . . . . . . . . . . . 26
2.4.3 The origin of extraplanar gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3.1 An accreted gaseous halo? . . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



2.4.3.2 Multiwavelength extraplanar features . . . . . . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. CHANDRA AND XMM-NEWTON DETECTION OF

LARGE-SCALE DIFFUSE X-RAY EMISSION FROM THE

SOMBRERO GALAXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Observations and Data Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Chandra observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 XMM-Newton observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Discrete X-ray sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 The unresolved X-ray emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Spatial properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1.1 Surface intensity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1.2 Inner region and substructures . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Spectral properties of the diffuse X-ray emission . . . . . . . . . . . . . . . 50

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 The thermal structure of hot gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 Accretion from the intergalactic medium? . . . . . . . . . . . . . . . . . . . . 59
3.5.3 Stellar feedback from M104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.4 Feedback from the central AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. CHANDRA DETECTION OF DIFFUSE HOT GAS IN AND

AROUND THE M31 BULGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 The collective stellar emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 The diffuse X-ray emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. M31∗ AND ITS CIRCUMNUCLEAR ENVIRONMENT . . . . . . . . . . 73

ix



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Observational knowledge on M31∗ and its environment . . . . . . . . . . . . . . . 74
5.3 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 X-rays from M31∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Diffuse hot gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 The circumnuclear regions in multiwavelength . . . . . . . . . . . . . . . . . 88

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Accretion and feedback of the nucleus . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.2 The origin, role, and fate of the hot gas . . . . . . . . . . . . . . . . . . . . . 101
5.5.3 Ionizing and heating sources of the nuclear spiral . . . . . . . . . . . . . 105

5.6 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6. SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

APPENDIX: A GALACTIC WIND MODEL . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 Physical assumptions and formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 Galaxy modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.4 Application to X-ray observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

x



LIST OF TABLES

Table Page

2.1 Basic information of NGC 2613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Spectral fit to the nuclear emissiona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Fit to 0.5-2 keV surface intensity distributions . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Spectral fit to the unresolved emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Basic Information of M 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Fits to the radial surface brightness profilesa . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Fits to the vertical surface intensity profilesa . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 2-D Fits to the spectra of unresolved emissiona . . . . . . . . . . . . . . . . . . . . . . 53

3.5 3-D Fits to the spectra of unresolved emissiona . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Fits to the spectrum of diffuse X-ray emission from the central
arcmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Multiwavelength properties of the nuclear spiral in selected regions . . . . . 90

xi



LIST OF FIGURES

Figure Page

2.1 EPIC-PN intensity image in the 0.5-7.5 keV band after flat-fielding.
An adaptively smoothed background has been subtracted from
the image to highlight the discrete sources, which are marked by
circles with radii of twice the 50% EER. The ellipse illustrates the
optical IB = 25 mag arcsec−2 isophote (7.′2 × 1.′8) of NGC 2613.
The dashed circle outlines the region where the local background
spectrum is extracted for spectral analysis. . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 EPIC-PN intensity images around the galactic center in the 2-7.5 (a)
and 0.5-2 (b) keV bands. The nucleus is prominent only in the
hard band. The plus sign marks the optical center of NGC 2613.
The dashed circle with a 16′′ radius illustrates the region for the
spectrum extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 EPIC spectra (Black: PN spectrum; Red: MOS1 spectrum; Green:
MOS2 spectrum) of the nucleus of NGC 2613 extracted from a
16′′ circle. The best-fit model (solid curve) consisting of two
absorbed power-law components (dashed and dash-dot curves,
respectively) is also plotted. The lower panel shows the
data-to-model ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 EPIC-PN 0.5-2 keV intensity contours overlaid on the digitized
sky-survey (first generation) image of NGC 2613. The X-ray
intensity is adaptively smoothed with CIAO csmooth to achieve a
signal-to-noise ratio of ∼3. The contour levels are at 4.1, 5.0, 7.0,
8.8, 13, 16, 22 and 32 ×10−3 cts s−1 arcmin−2. The dotted ellipse
represents the optical IB = 25 mag arcsec−2 isophote of the
galaxy. The dashed ellipse (5′ × 3′) illustrates the region where
spectra of unresolved X-ray emission are extracted. . . . . . . . . . . . . . . . 19

xii



2.5 EPIC-PN 0.5-2 keV intensity profile (black crosses) along the
direction perpendicular to the disk of NGC 2613. A “blank-sky”
background has been subtracted and discrete sources have been
removed, except for the nucleus. The full width used for averaging
the intensity is 5′. Spatial binning is adaptively adjusted to
achieve a count-to-noise ratio greater than 12, with a minimum
step size of 12′′. The black dashed curve is a fit to the profile
using an exponential law plus a constant local background. The
red solid curve shows the 2MASS K-band profile convolved with
the PN PSF and normalized by a factor of
3.0×10−3 cts s−1 arcmin−2/(MJy sr−1) (see text). A constant of
10−3 cts s−1 arcmin−2 has been added to all data points to avoid
negative values improper for a logarithmic plot. . . . . . . . . . . . . . . . . . . . 21

2.6 Similar to Fig. 2.5 but for the radial profile, generated with the
elliptical photometry (see text). A constant of
10−3 cts s−1 arcmin−2 has been added to all data points to avoid
negative values improper for a logarithmic plot. . . . . . . . . . . . . . . . . . . . 22

2.7 EPIC spectra of unresolved X-ray emission (Black: PN spectrum;
Red: MOS1 spectrum; Green: MOS2 spectrum) of NGC 2613 and
the best-fit wabs(PL+2APEC) model. The spectra are binned to
achieve a background-subtracted signal-to-noise ratio better than
2. The lower panel shows the data-to-model ratios. . . . . . . . . . . . . . . . . 25

2.8 (a) VLA C+D configuration continuum contours overlaid on the same
X-ray intensity image (grey scale) as contoured in Fig. 2.4 and in
(b) of this figure. The contour levels are 0.18, 0.27, 0.56, 0.84, 1.1,
1.7, 2.3, 3.2 mJy beam−1 and the beam is 22′′×15′′ at a position
angle of −8.◦2. A few X-ray extraplanar features are labelled (see
text). (b) The same X-ray intensity contours as in Fig. 2.4
overlaid on a greyscale image of the total intensity VLA C+D
configuration HI map. The grey scale range (shown with a square
root transfer function) is in units of 103 Jy beam−1 m s−1 and the
beam is 47′′×32′′ at a position angle of −8.◦2. F1 and F2 refer to
two HI extensions identified by Chaves & Irwin (2001). . . . . . . . . . . . 30

2.9 The X-ray-emitting bubble to the north of the nucleus. The same
X-ray intensity image as in Fig. 2.4 is used. Contour levels are at
5, 5.2, 5.4, 5.6, 5.9, and 6.2 ×10−3 cts s−1 arcmin−2. . . . . . . . . . . . . . . 32

xiii



3.1 EPIC-PN intensity image of the M 104 field in the 0.5-7.5 keV band
after a flat-fielding. An adaptively smoothed background has been
subtracted from the image to highlight discrete sources which are
outlined with circles for source-removal (see § 3.4.1). The ellipse
(8.′7×3.′5) illustrates the optical IB = 25 mag arcsec−2 isophote of
the galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 ACIS-S 0.3-7 keV band intensity images: (a) the whole source
detection field, over which the image is smoothed with a Gaussian
of FWHM equal to 3.′′9; (b) the inner ∼ 4′×4′ region around the
center of M 104; (c) the very central ∼ 2′×2′ region around the
galactic center. Detected X-ray sources are outlined with circles
for source-removal (see § 3.4.1). Positions of sources detected by
the EPIC-PN are marked with crosses. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 EPIC-PN 0.5-2 keV intensity contours overlaid on the digitized
sky-survey blue image of M 104. The X-ray intensity is adaptively
smoothed with the CIAO csmooth routine with a signal-to-noise
ratio of ∼ 3. The contours are at (1.4, 1.8, 2.6, 4.2, 7.4, 13.8, 27,
52, 103, 206, 411, 820, and 1640)×10−3 cts s−1 arcmin−2 above a
local background level of 2.0×10−3 cts s−1 arcmin−2. . . . . . . . . . . . . . 39

3.4 Radial surface intensity profiles of the instrumental background- and
detected source-subtracted emission from M 104. Top: ACIS-S
profiles in the 0.3-0.7 keV (left), 0.7-1.5 keV (middle) and 1.5-7
keV (right) bands. Bottom: PN profiles in the 0.5-1 keV (left), 1-2
keV (middle) and 2-7.5 (right) bands. The solid curves present
model characterizations: a normalized K-band radial profile for
emission from discrete sources (dotted curves), a de Vaucouleur’s
law (dashed curves) for emission from diffuse hot gas, and a local
constant cosmic background. See text for details. . . . . . . . . . . . . . . . . 44

3.5 ACIS-S intensity distribution along the direction perpendicular to the
disk of M 104, in the 0.3-0.7 keV (black crosses), 0.7-1.5 keV (red
diamonds), and 1.5-7 keV (green triangles) bands. The full width
along the direction parallel to the major axis used for averaging
the intensity is 4′ (∼10 kpc). The adaptive steps along the minor
axis achieve a signal-to-noise ratio greater than 3, with a minimum
of stepsize of 6′′. The vertical line represents the position of the
major axis of the disk, whereas the horizontal axis marks the
vertical distance along the minor axis (south as negative). . . . . . . . . . 46

xiv



3.6 ACIS-S 0.3-1.5 keV intensity contours overlaid on the
continuum-subtracted Hα image of M 104. The X-ray intensity is
smoothed adaptively with a count-to-noise ratio of 4 after
source-subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Azimuthal diffuse intensity distributions in the ACIS-S 0.3-1.5 keV
band, averaged within annuli with inner-to-outer radii of 30′′-1′

(black triangles) and 1′-2′ (black squares). As comparison are
similar distributions (red triangles and squares) within elliptical
annuli of an axis ratio of 2/3. The angle is counterclockwise from
the minor axis (north). Contribution from unresolved sources is
subtracted according to the underlying K-band light (§ 3.4.1;
Table 3.2). Adaptive binning is taken to have a minimum step of
15◦ and to achieve a signal-to-noise ratio better than 3. . . . . . . . . . . . 50

3.8 The PN background spectrum with the best-fit model. Note for a
strong instrumental line at the energy of ∼ 1.5 keV. See text for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Spectra of the source-subtracted emission of M 104, extracted from
concentric annuli of 30′′-1′ (black) and 1′-2′ (red) from the
ACIS-S, and 2′-4′ (green) and 4′-6′ (Blue) from the PN. The two
ACIS-S spectra are “stowed background”-subtracted. The best-fit
3-D model (see text) is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Crosses: the measured density of hot gas versus radius; Curves: the
best-fit density profile to the radial surface intensity distribution
(solid), the predicted density profiles of an adiabatic (dotted) or
isothermal (dashed) gaseous corona in hydrostatic equilibrium
and an 1-D steady galactic wind (dot-dashed). The profiles are
assumed to be equal to the measurement at the first bin. See § 3.5
for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 (a) Background-subtracted, exposure-corrected and smoothed
intensity contours of the Chandra ACIS-I 0.5-2 keV unresolved
emission overlaid on the 2MASS K-band image of M31. The
contours are at 3, 6, 10, 16, 32, 64, 128, 196, 256 and 512
×10−4 cts s−1 arcmin−2. The galactic center is marked by a plus
sign. (b) Contours of the diffuse (stellar contribution-subtracted)
X-ray intensity (solid) and K-band light (dotted) overlaid on the
Spitzer MIPS 24 µm image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



4.2 (a) 0.5-2 (diamonds) and 2-8 keV (triangles) keV intensity profiles of
the unresolved X-ray emission along the major-axis. A position
angle of 45◦ is adopted. The positive side is toward the southwest.
The full width for averaging the intensity is 8′. Spatial binning is
adaptively ajusted to achieve a signal-to-noise ratio better than 4,
with a minimum step of 6′′. The X-ray profiles are characterized
by a normalized K-band intensity profile (dashed curves), and an
additional exponential law for the soft band (solid curve). (b)
0.5-1 (crosses) and 1-2 keV (diamonds) intensity profiles of the
diffuse emission along the minor-axis; the stellar contribution has
been subtracted. The positive side is toward the northwest. The
full width for averaging the intensity is 16′. The adaptive steps
achieve a signal-to-noise ratio better than 3. The solid curves
represent a fit with an exponential law. The corresponding 24 µm
intensity profile is shown by the dashed curve. The arrows mark
the positions of the shadows casted by a spiral arm and the
star-forming ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 (a) Tri-color image of the central 30′ by 30′ (6.8 kpc by 6.8 kpc) of
M31. Red: Spitzer/MIPS 24 µm emission; Green: 2MASS K-band
emission; Blue: Chandra/ACIS 0.5-2 keV emission of diffuse hot
gas (LW07). The dashed box outlines the central 6′ by 6′, a region
further shown in (b) and Fig 5.5. (b) Smoothed intensity contours
of the 0.5-2 keV diffuse emission overlaid on the Hα emission. The
contours are at 5, 10, 19, 27, 35, 45, and 55
×10−3 cts s−1 arcmin−2. The plus sign marks the M31 center. . . . . . 81

5.2 A super-resolution 0.5-8 keV ACIS counts image (§ 5.3) of 0.′′125
pixels, with the HST/ACS F330W intensity contours showing the
double nuclei P1 and P2. The greyscale linearly ranges from 0 to
40 cts/pixel. The ‘+’ signs mark the fitted centroids of P1 and
P2. The displacement between P1 and P2 in X-ray is assumed to
be same as in optical. Part of the SSS is also shown at the bottom
of the field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 0.5-2 keV diffuse X-ray intensity profiles along the minor-axis (a), the
major-axis (b) and the radius (c). The vertical profiles are
averaged within slices of 2′ in width. A position angle of 40◦ is
adopted. In each pannel, the dash curve shows the corresponding
K-band intensity profile with a normalization representing the
already subtracted contribution of unresolved X-ray sources,
whereas the solid curve is the corresponding Hα intensity profile
with an arbitrary normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xvi



5.4 Spectrum of the central 1′, fitted by a three-component model:
VMEKAL (gas; red curve) + MEKAL (ABs; green curve) +
MEKAL (CVs; blue curve). See text for details. . . . . . . . . . . . . . . . . . . 86

5.5 Contours of (a) 8 µm, (b) 24 µm, (c) 70 µm and (d) 160 µm emission
overlaid on the Hα image of the central 6′ by 6′ region, in
arbitrary units. The dashed rectangles marked in (c) outline the
selected regions for examination of multiwavelength correlations.
See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 (a) Intensity ratios as a function of the FIR intensity for selected
circumnuclear regions. (b) The MIPS 24, 70 and 160 µm
intensities characterized by a two-component dust emission model
(solid curves). The low- and high- temperature components are
represented by the dotted and dash curves, respectively. See text
for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 A multiwavelength view of the central 3′ by 3′ region. (a) Contours of
24 µm emission overlaid on the Hα image. (b) Contours of 0.5-2
keV diffuse X-ray emission overlaid on the Hα image. (c)
Contours of 0.5-2 keV diffuse X-ray emission overlaid on the
X-ray hardness ratio map. (d) Contours of Hα emission overlaid
on the (NUV − FUV ) color map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 FUSE spectrum of the central 30′′ of M31 (histogram) and a fit to the
continuum (continuous line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Temperature-dependent volume emissivities of selected lines and
bands, for a gas of solar abundance in CIE. . . . . . . . . . . . . . . . . . . . . . 107

A.1 Representative radial distributions of gas density and temperature
within 10 kpc from the center of M104, calculated from the
galactic wind model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xvii



CHAPTER 1

INTRODUCTION

In this general introduction I aim to outline the scientific background, method-

ology and content of my dissertation, a work consisting of several closely related

projects. More specific introductions will be given in the following chapters for indi-

vidual projects.

1.1 The hot interstellar medium and stellar feedback

A central issue in the study of galaxy evolution is the understanding of physi-

cal processes in the interstellar medium (ISM). In particular, the hot phase of this

medium, with temperatures of 106-107 Kelvin, has long been theorized and thought

to play an essential role in consuming and distributing the energy and metals pro-

duced by evolved stars, shaping the cooler phases of the ISM, and feeding back to the

intergalactic medium (IGM). Thanks to the advances of modern X-ray observations,

with a history back to the 1980s signalled by the launch of the Einstein Observatory,

the general presence of such a hot interstellar medium (HISM) in normal galaxies is

now established.

It is generally believed that the HISM, when it exists, originates either externally

from gravitational accretion of the IGM or internally from heated stellar ejecta. The

former case, for instance, is prevalent in very massive elliptical galaxies typically

found in the centers of groups and clusters of galaxies (e.g., Ellis & O’Sullivan 2006),

a phenomenon conventionally referred to as a cooling flow (e.g., a review by Mathews

& Brighenti 2003). Existing galaxy formation models also hold the standard view that
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disk galaxies are formed from the mist of accreted IGM owing to radiative cooling,

and hence the presence of a hot gaseous halo is a generic feature in such models.

The model-predicted amount of hot gas in the halo, and thus its X-ray emission,

is a strong function of the host galaxy’s mass (e.g., Toft et al. 2002). However,

observational searches for such X-ray-emitting halos around massive disk galaxies

remain unsuccessful. While continuing effort need to be made in searching for the X-

ray signals, modifications of the current galaxy formation models are probably needed

to reconcile the observational results.

A more promising origin of the HISM is stellar feedback, primarily in the form of

stellar winds and supernovae (SNe). In galaxies with active star formation typically

concentrated in a disk of cold gas, stellar feedback manifests itself mainly in terms

of Type II SNe, heating the surrounding ISM and driving it into the halo. Such phe-

nomena, sometimes called superwinds, are readily observed in archetype starburst

galaxies such as M82 (Lehnert, Heckman & Weaver 1999) and NGC253 (Strickland

et al. 2000, 2002). It is naturally expected that such superwinds may even reach

into intergalactic space, depositing energy, mass and metals there, a process that has

been conceived in the above mentioneda galaxy formation models. However, starburst

galaxies are infrequent in the local universe and have typically short timescales. When

the strength of star formation decreases the importance of such feedback decreases,

too. On the other hand, a relatively modest but long-lasting form of feedback could

arise from old stellar populations, characterized by energy supplied by Type Ia SNe,

mass supplied by stellar ejecta, in particular in terms of red giant winds and plane-

tary nebulae, and metal-enrichment by both the SNe and stellar ejecta. Such stellar

feedback is expected to play a crucial role in regulating the evolution of galaxies,

particularly early-type galaxies in which star formation has faded out.

Similar to the studies of starburst galaxies and superwinds, it is conceivable to

relate the physical properties of the HISM in early-type galaxies, as inferred from
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X-ray observations, to the feedback from old stellar populations. Studies of this kind

would shed light on key open questions such as how effeciently is the ISM heated near

sites of feedback, how are the thermal, dynamical and chemical states of the HISM

regulated by the feedback, and how does the feedback ultimately interacts with the

IGM?

1.2 Outline of the projects

The central effort of my dissertation has been to seek clues and answers to the

above questions, by carrying out several elaborate case studies of well-suited nearby

galaxies that have been extensively observed in X-ray. The understanding of the

observational results, aided with tentative theoretical modelling of the stellar feeback,

are presented in the following chapters. Each chapter is based on an indepedent paper

published in or submitted to peer-reviewed journals. Those are,

Paper I: An XMM-Newton Observation of the Massive Edge-on Sb Galaxy NGC 2613

(Li Z., Wang Q.D., Irwin J.A., Chaves T., 2006, MNRAS, 371, 147);

Paper II: Chandra and XMM-Newton Detection of Large-scale Diffuse X-ray Emis-

sion from the Sombrero Galaxy (Li Z., Wang Q.D., Hameed, S. 2007, MNRAS, 376,

960);

Paper III: Chandra detection of diffuse hot gas in and around the M 31 bulge (Li

Z., & Wang Q.D. 2007, ApJ, 688, L39)

Paper IV: M31∗ and its circumnuclear environment (Li Z., Wang Q.D., Wakker,

B.P. 2008, submitted to MNRAS).

Here I outline the motivations and major results of the individual projects. Here-

after the conventional term “hot gas” is used to represent “HISM” introduced so far.

Also “we” instead of “I” will be used to reflect the contribution of various collabora-

tors in these studies. I beg readers’ pardon for any confusion caused.
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• Testing disk galaxy formation theories

Hot gas in the halos of disk galaxies could arise from accretion of cooled IGM.

While remaining an open issue, current models of galaxy formation predict a

substantial amount of hot gas cooling around present-day massive disk galaxies,

the X-ray emission from which is within the detectable range of modern X-ray

observations. With an extensive effort in searching for the predicted X-ray

signals, we have analyzed XMM-Newton and Chandra data of several nearby

massive disk galaxies, including NGC2613 (§ 2) and M104 (§ 3), which have

circular rotation speeds over 300 km s−1. While significant extraplanar diffuse

X-ray emission is detected in these galaxies, the observed luminosities of a few

1039 ergs s−1 are at least 10 times lower than that predicted by numerical models

for such massive galaxies. Hence the X-ray signature of accreted hot gas around

disk galaxies remains to be seen. On the other hand, the over-prediction is likely

a generic problem of current galaxy formation models, reflecting the lack of an

appropriate treatment of stellar/AGN feedback that should substantially reduce

or even cease the IGM accretion.

• Diffuse hot gas in early-type galaxies

In early-type galaxies without much current star-forming and/or nuclear activi-

ties, feedback from old stellar populations could compete against IGM accretion

to build up an extended halo of hot gas. Had most of the stellar feedback been

retained within the halo, the observed amount of hot gas should be proportional

to the total stellar mass. Our joint Chandra and XMM-Newton analysis of the

bulge-dominated Sa galaxy M104 (§ 3) indicates that this is not the case. The

observed diffuse X-ray luminosity of M104 accounts for only a few percent of

the expected energy input from SNe Ia; the inferred mass and metal content

of the gas are also substantially less than those expected from stellar ejecta.

A “missing stellar feedback” problem seems to prevail in early-type galaxies,
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perhaps except for very massive, X-ray-bright elliptical galaxies. We argue that

this indicates an outflow of hot gas, in which the bulk of the stellar feedback

is transported into a large-scale halo or beyond, leaving only a small fraction

detected in the visible regions of the host galaxy.

A quantitative test for the galactic outflow scenario with current X-ray observa-

tions, an important step toward understanding the thermodynamical structures

of hot gas, has surprisingly not yet been made. To facilitate a direct test, we

have constructed a spherically symmetric galactic wind model (see Appendix),

accounting for mass input from evolved stars and energy input from SNe Ia as

well as the gravitational potential of stars and dark matter in determining the

gas dynamics. Thermal emission of the modeled gas is calculated under the

assumption of collisional ionization equilibrium and tabulated for use in fitting

the observed X-ray data. Our results indicate that in M104 the inferred out-

flow of hot gas is likely subsonic, dynamically distinguished from the classical

supersonic galactic wind.

• A Chandra survey of hot gas in the M31 bulge

M31, being the nearest spiral galaxy that is similar to our own Galaxy, provides

an ideal testbed for studying various X-ray-emitters, in particular diffuse hot

gas in a galactic bulge. We have carried out a Chandra survey of the M31

bulge by utilizing 31 archival observations (§ 4). The superb spatial resolution

and sensitivity afforded by these observations allow for detection and isolation of

relatively bright X-ray sources with luminosities above 1035 ergs s−1, opening up

the possibility of studying the nature of fainter X-ray sources and diffuse hot gas.

In particular, we have for the first time identified the truly diffuse X-ray emission

of hot gas in and around the M31 bulge, after isolating the X-ray emission of

stellar objects, both resolved and unresolved. The diffuse emission appears

to be concentrated within a galactocentric radius of ∼2 kpc and elongated
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approximately along the minor-axis at large radii, morphologically reminiscent

of a bi-polar outflow from the inner bulge. The observed diffuse X-ray luminosity

is only 1% of the expected energy release from SNe Ia, further suggesting an

outflow of hot gas that removes the bulk of the stellar feedback from the bulge.

• The role of stellar feedback in the circumnuclear environment of M31

Our successful isolation of the truly diffuse X-ray emission in the M31 bulge

in turn allows us to advance the high-resolution study of hot gas in the cir-

cumnuclear regions (the central ∼500 pc), where different phases of the ISM as

well as stars are present in a dense state and likely interacting with each other.

Such interactions play a crucial role in regulating the activity of the central

super-massive black hole (SMBH) as well as the evolution of the host galaxy

on large scales. We have carried out a multiwavelength investigation for this

circumnuclear environment of M31 (§ 5), utilizing data obtained by Chandra,

FUSE, GALEX, HST, Spitzer and ground-based observations. In particular,

the presence of hot gas, traced by diffuse X-ray emission, and its interaction

with cooler gas residing in the nuclear spiral, traced by optical line emission

and infrared emission, are revealed. We discuss how thermal evaporation, most

likely energized by Type Ia SNe, could effectively turn cold gas into hot, leading

to the inactivity of the SMBH as well as the outflow of hot gas from the inner

bulge. Such a previously overlooked mechanism might be prevalent in similar

circumnuclear environments and thus play an important role in the evolution

of the host galaxies. Based on significantly improved statistics, X-ray emission

of the SMBH, i.e., M31∗, is also quantified.

1.3 X-ray observatories and X-ray data analysis

X-ray emission is the best tracer for hot gas at a characteristic temperature of

a few millions of Kelvin. In a general sense, the X-ray bandpass covers an energy
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range of 0.1-100 keV (1 keV ≃ 1.16 × 107 K), or a wavelength range of 0.12-120 Å.

The Earth’s atmosphere is opaque to X-ray emission, a fact that is crucial to the

biology but also demands an extra effort in X-ray astronomy. Consequently, all X-ray

observatories are space-based, functioning on-board rockets, ballons and satellites.

The two current major X-ray observatories are the Chandra X-ray Observatory and

X-ray Multi-Mirror Mission, both launched in 1999.

Chandra is one of ths NASA’s great observatories1, which is remarkable for its

sub-arcsec resolution, good sensitivity from 0.1 to 10 keV, and the capability for mod-

erate spectral resolution observations over most of this energy range. There are two

major instruments on-board Chandra. One is the High Resolution Camera (HRC),

capable of high resolution imaging, fast timing measurements, and observations re-

quiring a combination of both. The second instrument, the Advanced CCD Imaging

Spectrometer (ACIS), is made of two-dimentional arrays of charged coupled devices

(CCD). ACIS does simultaneous imaging and spectroscopy, a favorable tool for the

study of extended objects. All Chandra data utilized in this dissertation are obtained

by ACIS. ACIS is comprised of two CCD arrays, a square 4-chip array called ACIS-I,

and a linear 6-chip array called ACIS-S. There are two types of CCD chips: front-

illuminated (FI) CCDs and back-illuminated (BI) CCDs. The FI CCD response is

more efficient at higher energies but the energy resolution varies with position. The

BI CCDs response extends to lower energies than the FI CCDs and the energy res-

olution is mostly independent of position. Each CCD chip provides a field of view

(FOV) of ∼8′ by 8′. ACIS-I is comprised of front-illuminated (FI) CCDs. ACIS-S is

comprised of 4 FI and 2 BI CCDs, one of which (S3) is at the best focus position.

XMM-Newton2 is an X-ray observatory launched by the European Space Agency

(ESA), which offers so far the largest collecting area for X-rays in the 0.1 to 10 keV

1http://cxc.harvard.edu/

2http://xmm.vilspa.esa.es/
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range. XMM-Newton’s main instrument is the European Photon Imaging Camera

(EPIC). Like the Chandra ACIS, EPIC performs both imaging and spectroscopy. It

is actually three CCD cameras in one, employing three different detectors to receive

X-rays. Two of the detectors are called Metal Oxide Semiconductor (MOS) CCDs,

and the other is called a p-n (PN) CCD. Each of the MOS detectors consists of seven

CCD chips with one in the center surrounded by the other six, altogether providing a

circular FOV of ∼30′ in diameter. The MOS detectors have a time resolution of 1.5

milliseconds and a spatial resolution of one arcsec. The PN consists of two rows of 6

CCD chips, offering a square FOV with a size similar to that of the MOS. The PN has

a superb time resolution of 0.03 milliseconds. As a trade-off, its angular resolution is

four times lower than that of the MOS (the actual spatial resolution of the EPIC, ∼6

arcsec, is limited by the performance of the mirrors of XMM-Newton). The PN also

has larger collecting area than the MOS. Overall, the XMM-Newton EPIC has larger

collecting area, larger FOV, higher time resolution, but lower spatial resolution, as

compared to the Chandra ACIS.

X-ray detectors are photon-counting in contrast to detectors for most other wave-

bands that measure incoming flux. Consequently X-ray data consist of lists of events,

i.e., incoming photons, tagged with basically four-dimension information: time of

arrival, position (2-D) and energy. When filtered according to certain tag(s), the

events can be projected onto 2-D or 1-D subspaces to give images, energy spectra,

or lightcurves (time series). Depending on the way the data are projected, different

calibrations need to be applied. In imaging (spatial) analysis, these are exposure

maps, i.e., corrections for the mirror and detector sensitivity across the FOV, and

point spread function (PSF), i.e., the probability that an incident photon of given

energy and position is registered in a given CCD pixel. In spectral analysis, these

are response matrices, i.e., the probability that a photon of given intrinsic energy is
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registered in a given detector energy channel, and the auxiliary response files (ARF)

which are similar to the exposure maps.

Standard softwares and calibration files for data processing and analysis are usu-

ally provided by specific X-ray facilities. For Chandra, this is the Chandra Interactive

Analysis of Observations (CIAO); For XMM-Newton, this is the Science Analysis Soft-

ware (SAS). A few general tools are also widely used in the X-ray community, e.g.,

the X-Ray Spectral Fitting Package (XSPEC) for spectral analysis.
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CHAPTER 2

AN XMM-NEWTON OBSERVATION OF NGC 2613: HOT

GAS IN MASSIVE DISK GALAXIES

2.1 Introduction

X-ray observations of extraplanar hot gas (T ∼> 106 K) around nearby edge-on

disk galaxies are essential in the study of the galactic ecosystem in many aspects,

particularly the disk-halo interaction. Such observations have helped establish the

prevalence of galactic superwinds in starburst galaxies, e.g., NGC 253 (Strickland et

al. 2000, 2002) and NGC 4666 (Dahlem, Weaver & Heckman 1998), among others.

Extraplanar X-ray-emitting gas has also been detected unambiguously around sev-

eral “normal” late-type galaxies with little evidence for nuclear starbursts: NGC 891

(Sb; Bregman & Houck 1997), NGC 4631 (Scd; Wang et al. 2001), NGC 3556 (Sc;

Wang, Chaves & Irwin 2003) and NGC 4634 (Scd; Tüllmann et al. 2006). In these

galaxies (except for NGC 4634 which currently lacks direct evidence), extraplanar hot

gas is clearly linked to outflows from recent massive star-forming regions in galactic

disks. The global X-ray properties of extraplanar gas in these “normal” star-forming

galaxies, when scaled with the star formation rate of the host galaxies, appear similar

to those found in starburst galaxies (Strickland et al. 2004a, b; Wang 2005). Nev-

ertheless, this needs to be confirmed by extended X-ray observations of “normal”

star-forming galaxies.

On the other hand, current galaxy formation models also predict the existence

of hot gaseous halos surrounding present-day disk galaxies, which arise from grav-

itational infall from the IGM (e.g., Toft et al. 2002 and references therein). The
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Table 2.1. Basic information of NGC 2613

Parameter NGC 2613

Morphologya . . . . . . . . . . . . . . . . . . . . . . . . SA(s)b
Optical sizea . . . . . . . . . . . . . . . . . . . . . . . . . 7.′2 × 1.′8
Inclination angleb . . . . . . . . . . . . . . . . . . . . 79◦

Position anglec . . . . . . . . . . . . . . . . . . . . . . 113◦

Center positiona . . . . . . . . . . . . . . . . . . . . . R.A. 08h33m22.s84
(J2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dec. −22◦58′25.′′2

B-band magnitude a . . . . . . . . . . . . . . . . . 11.16
V-band magnitude a . . . . . . . . . . . . . . . . . 10.25
K-band magnitude c . . . . . . . . . . . . . . . . . 6.82
60 µm flux (Jy)d . . . . . . . . . . . . . . . . . . . . 7.48
100 µm flux (Jy)d . . . . . . . . . . . . . . . . . . . 25.86
Circular speed (km s−1)b . . . . . . . . . . . . . 304
Distance (Mpc)b . . . . . . . . . . . . . . . . . . . . . 25.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1′ =̂ 7.53kpc)
Redshifta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.00559
Galactic foreground NHI (1020 cm−2)e 6.8

References. — a. NED; b. Chaves & Irwin (2001); c. Jarrett
et al. (2003); d. Sanders et al. (2003); e. Dickey & Lockman
(1990).

predicted extraplanar X-ray luminosity strongly depends on the mass of the host

galaxy. X-ray observations thus have long been expected to detect such gaseous ha-

los around nearby massive, typically earlier-type disk galaxies. However, there is so

far little direct observational evidence for the presence of this kind of X-ray-emitting

halo. Benson et al. (2000) analyzed X-ray emission from the outer halos (∼> 5′) of

primarily two early-type spirals NGC 2841 (Sb) and NGC 4594 (Sa), using ROSAT

PSPC observations. No significant diffuse emission was detected, although the upper

limits to the diffuse X-ray luminosities are consistent with the current predictions

(Toft et al. 2002). Therefore, more dedicated searches for the X-ray signals of IGM

accretion around disk galaxies are needed.
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Here we present a study of an XMM-Newton observation toward NGC 2613, an

edge-on Sb galaxy with “normal” star formation. We focus on probing the spatial and

spectral properties of its large-scale X-ray emission. This galaxy (Table 2.1) is a good

candidate to probe the presence of hot gas, in the sense that: 1) it is very massive

and thus expected to contain a large amount of hot gas; 2) its high inclination (∼79◦)

allows the possibility of detecting extraplanar emission, either from a halo of accreted

gas or a large-scale outflow; 3) its moderately large distance (25.9 Mpc) places the

galaxy and its ∼50 kpc vicinity in the FOV of a typical XMM-Newton observation,

offering a good opportunity of studying the large-scale distribution of gas, and 4)

it is known to show extraplanar features at other wavebands, specifically the radio

continuum and HI (Chaves & Irwin 2001; Irwin & Chaves 2003) as well as earlier HI

observations (Bottema 1989).

2.2 Observations and Data Reduction

We obtained two XMM-Newton observations on NGC 2613. The first obser-

vation (Obs. ID 0149160101), taken on April 23/24, 2003 with a 40 ks exposure,

suffered heavily from background flares. Consequently, another observation (Obs. ID

0149160201) with a 33 ks exposure was taken on May 20/21, 2003. In our analysis,

we only used data obtained from the second observation.

We used SAS, version 6.1.0, together with the latest calibration files for data

reduction. For the MOS data, we selected only events with patterns 0 through 12

and applied flag filters XMMEA EM, XMMEA 2, XMMEA 3 and XMMEA 11. For

the PN data, we selected only events with patterns 0 through 4 and applied flag filters

XMMEA EP, XMMEA 2, XMMEA 3 and XMMEA 11. According to light curves of

the MOS and the PN, we further excluded time intervals with high background rates

by setting good time interval thresolds of 2.0 cts/s for the MOS in the 0.3-12 keV

range and 6.0 cts/s for the PN in the 0.3-15 keV range, respectively. The resulting
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net exposure time is 23.5 ks for the MOS and 18.7 ks for the PN. We used the skycast

program to generate the “blank-sky” background for our observation. Same event

filters were applied to the“blank-sky” event files, resulting in exposures of 791, 759

and 294 ks for the MOS1, MOS2 and PN, respectively. We then constructed images

and exposure maps at the 0.2-0.5, 0.5-1, 1-2, 2-4.5 and 4.5-7.5 keV bands for each

detector. For spectral analysis, we selected only events with FLAG = 0.

2.3 Analysis and Results

2.3.1 Discrete X-ray Sources

We perform source detection on the PN images of the soft (S, 0.5-2 keV), hard

(H, 2-7.5 keV) and broad (B=S+H) bands. As detailed in Wang (2004), the source

detection procedure, optimized to detect point-like sources, uses a combination of

detection algorithms: wavelet, sliding-box and maximum likelihood centroid fitting.

The source detection uses a detection aperture of the 50% PSF encircled energy radius

(EER). Multiple detections with overlapping 2σ centroid error circles are considered

to be the same source, and the centroid position with the smallest error is adopted.

The accepted sources all have a local false detection probability P ≤ 10−7. We detect

a total of 67 discrete sources on the PN images (Fig. 2.1), 5 of which are located

within the IB = 25 mag arcsec−2 isophote of the galaxy.

The prominent nucleus of NGC 2613 is readily seen in Fig. 2.2a. The nucleus is

the only source detected within the central 30′′, suggesting that this emission may

represent an active galatic nucleus (AGN). To investigate this further, we perform a

spectral analysis on the nuclear emission. Due to the relatively low spatial resolution

and short exposure time of the observation as well as the relatively large distance to

NGC 2613, the spectrum extraction of the nucleus is a compromise between having

better counting statistics and suffering less contamination from non-nuclear emission

around the nucleus. To assess the contribution from non-nuclear emission, we extract
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Figure 2.1 EPIC-PN intensity image in the 0.5-7.5 keV band after flat-fielding. An
adaptively smoothed background has been subtracted from the image to highlight the
discrete sources, which are marked by circles with radii of twice the 50% EER. The
ellipse illustrates the optical IB = 25 mag arcsec−2 isophote (7.′2×1.′8) of NGC 2613.
The dashed circle outlines the region where the local background spectrum is ex-
tracted for spectral analysis.

two spectra from circles with radii of 10′′ and 16′′ around the galactic center, for each

detector. The 10′′ (16′′) radius corresponds to a physical scale of ∼1.2 (2.0) kpc at

the distance of NGC 2613 and represents an enclosed energy fraction (EEF) of ∼0.50

(0.65) in the PN and ∼0.55 (0.70) in the MOS. We extract a background spectrum for

each detector from a circle with a 2.′5 radius at ∼ 6′ to the south of the galactic disk

(Fig. 2.1). This background region is chosen because it shows a low X-ray intensity

and is at an off-axis angular distance comparable to that of the disk. We then bin

the source spectra to achieve a background-subtracted signal-to-noise ratio ≥2.
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Figure 2.2 EPIC-PN intensity images around the galactic center in the 2-7.5 (a) and
0.5-2 (b) keV bands. The nucleus is prominent only in the hard band. The plus sign
marks the optical center of NGC 2613. The dashed circle with a 16′′ radius illustrates
the region for the spectrum extraction.

The spectra from the 16′′ circle show a prominent broad bump at energies ∼ 4-5

keV (Fig. 2.3), which can also be seen in the spectra from the 10′′ circle. This is further

evidence that the nuclear region contains an AGN since the spectra can naturally be

explained by a combination of a heavily absorbed power-law from an AGN and a softer

contribution from non-nuclear emission. We jointly fit the PN, MOS1 and MOS2

spectra in the 0.3-12 keV range with XSPEC. Owing to the lack of obvious features

below 3 keV in the spectra, a composite model of wabs[zwabs(PL)+PL] is applied,

where the first power-law component (PL1) with intrinsic absorption characterizes

the nuclear emission and the second power-law component (PL2) represents the non-

nuclear emission. In the fit, we require that the amount of foreground absorption

be at least that supplied by the Galactic foreground (as specified in wabs: NHI ≥

6.8×1020 cm−2). Fit results for the 10′′ and 16′′ spectra are consistent with each

other within the uncertainty ranges. We list in Table 2.2 the fit results to the 16′′

spectra, the implications of which will be discussed in § 2.4.1. All quoted errors in the
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Table 2.2. Spectral fit to the nuclear emissiona

Parameter Value

χ2/d.o.f. . . . . . . . . . . . 64.6/65
bNHI (1020 cm−2) . . 6.8 (<11.4)
cNHI (1022 cm−2) . . 12.3+12.3

−5.7

Photon index (PL1) 2.1+1.8
−0.3

Photon index (PL2) 1.7+0.5
−0.3

df0.3−10 (PL1) . . . . . 41
df0.3−10 (PL2) . . . . . 4.2

Note. — a. See text for model
description; b. Foreground column
density; c. Intrinsic column density;
d. Intrinsic 0.3-10 keV flux in units
of 10−14 ergs cm−2 s−1.

tables are at the 90% confidence level. The best-fit two-component model is shown

in Fig. 2.3.

We note that in the PN spectrum there is some hint of excess over the best-fit

two-component model at ∼0.9 keV, which might be physically due to the presence

of diffuse hot gas around the nucleus. We thus try to include a thermal plasma

component (APEC in XSPEC) in the fit to probe the existence of an additional

thermal component. While the best-fit temperature of this component is, as expected,

∼0.9 keV, the fit is not significantly improved according to an F-test, and the range

of the fitted temperature could not be well constrained. Therefore we consider this

potential thermal component insignificant in the spectra.

Given the relatively high source detection limit (∼ 2×1038 ergs s−1) and the rela-

tively low spatial resolution, the bulk of expected galactic X-ray sources of NGC 2613

are still embedded in unresolved emission. Indeed, only four sources (in addition to

the nucleus) are detected within the D25 ellipse of the galaxy. We jointly fit the ac-
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Figure 2.3 EPIC spectra (Black: PN spectrum; Red: MOS1 spectrum; Green: MOS2
spectrum) of the nucleus of NGC 2613 extracted from a 16′′ circle. The best-fit model
(solid curve) consisting of two absorbed power-law components (dashed and dash-dot
curves, respectively) is also plotted. The lower panel shows the data-to-model ratios.

cumulated spectra of these four sources extracted from individual detectors. Circles

with radii of twice the 50% EER around individual sources are used to accumulate the

spectra. Corresponding background spectra are extracted from the source-removed

D25 ellipse. We find that an absorbed power-low model fits the spectra well, giv-

ing a best-fit photon index of 1.80+0.30
−0.27 and an intrinsic 0.3-10 keV luminosity of

4.3 × 1039 ergs s−1. The slope of the power-law is typical for X-ray binaries. Given

their high luminosities (∼> 1039 ergs s−1), on average, these sources are likely ultra-

luminous X-ray binaries.
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2.3.2 Unresolved X-ray emission

2.3.2.1 Spatial distribution

As an overview, Fig. 2.4 shows the large scale 0.5-2 keV X-ray emission around

NGC 2613 and its similarity with the optical disk. Along the major axis of the disk,

the emission appears rather smooth and is confined within ∼2.′5 from the galactic

center. Whereas along the direction perpendicular to the disk, some extended features

are present, forming well-defined structures. To the north of the disk (Fig. 2.4) is a

“bubble-like” feature, which is referred to as the ‘north bubble’ in the following. This

feature follows the minor axis fairly well and has a maximum extent of ∼ 100′′ (13

kpc) from the nucleus. Immediately on the opposite side of the nucleus is another

extension that is somewhat smaller, reaching ∼ 1′. This feature will be called the

‘south extension’. A third feature protrudes from the south side of the major axis but

west of the minor axis. This feature will be called the ‘south-west feature’. Finally

two very large extensions are seen to the east of the major axis with emission peaks

located at RA= 08h33m37s, DEC= −22◦59′19′′ (north arc), and RA= 08h33m33s,

DEC= −23◦0′51′′ (south arc). These have the appearance of arising from the eastern

tip of the X-ray disk and will be called the ‘eastern extensions’ consisting of northern

and southern arcs. The above features are labelled in Fig. 2.4 for ease of reference.

Most of these features extend significantly beyond the optical disk. Given the extent of

the X-ray emission along the major axis and the inclination of the disk, the projected

in-disk emission along the minor axis should be within 45′′, whereas most of the

extended features show an extent larger than 1′. Therefore, we suggest that these

features are truly extraplanar. Their origin will be further discussed in § 2.4.

We remove the detected discrete sources, except for the nucleus, to study the

spatial properties of the unresolved soft X-ray emission. The nucleus is kept because

it is heavily obscured (§ 2.3.1) and contributes few photons to the emission below

2 keV. For each faint source with a count rate (CR) ≤ 0.01 cts s−1, we exclude a
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Figure 2.4 EPIC-PN 0.5-2 keV intensity contours overlaid on the digitized sky-survey
(first generation) image of NGC 2613. The X-ray intensity is adaptively smoothed
with CIAO csmooth to achieve a signal-to-noise ratio of ∼3. The contour levels are
at 4.1, 5.0, 7.0, 8.8, 13, 16, 22 and 32 ×10−3 cts s−1 arcmin−2. The dotted ellipse
represents the optical IB = 25 mag arcsec−2 isophote of the galaxy. The dashed
ellipse (5′ × 3′) illustrates the region where spectra of unresolved X-ray emission are
extracted.

circular region with a radius of twice the 50% enclosed energy radius (EER). For

sources with CR > 0.01 cts s−1, the radius is multiplied by an additional factor of

1+log(CR/0.01). The choice of the adopted radii is a compromise between removing

the bulk of the source contribution and preserving a sufficient field for the study of

unresolved emission. Thus 75-80% of photons from each detected source is removed

according to our criteria.

We construct the “blank-sky” background-subtracted, exposure-corrected 0.5-2

keV intensity profile from the source-removed PN image, as a function of off-center
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distance along the minor axis. The full width along the direction parallel to the major

axis used for averaging the intensity is 5′ (∼0.7D25), approximately the maximal ex-

tent of the unresolved emission along the major axis (Fig. 2.4). The profile is shown in

Fig. 2.5. We characterize the profile by an exponential law: I(R) = I0 e−|z|/z0, where

|z| is the vertical distance from the center, z0 is the scale height and I0 is the central

intensity. A constant intensity Ib is included in the fit to account for the discrepancy

between the local background and the subtracted “blank-sky” background, and it

turns out to be negligible. The results are listed in Table 2.3. The best-fit model

is also plotted in Fig. 2.5 (black dashed curve). There is an excess over the best-fit

model at a vertical distance of ∼1′-1.′5, which can be attributed to the extraplanar

features apparent in Fig. 2.4. The total count rate produced by this extraplanar

excess is ∼ 5.2 × 10−3 cts s−1.

The unresolved emission should consist of two components: 1) emission from truly

diffuse gas, and 2) collective discrete contributions from sources below our detection

limit plus some residual counts spilled outside our source removal regions. To con-

strain the source component, we assume that it follows the distribution of the NIR

K-band light of the galaxy, which can be determined from the 2MASS K-band map

(Jarrett et al. 2003). We remove from the map bright foreground stars and convolve it

with the PSF of the PN. Circular regions used for removing the discrete X-ray sources

are also excluded from the map. The K-band vertical profile is then produced in the

same manner as for the X-ray profile. To compare the two profiles, we normalize the

K-band profile to match the X-ray intensity at the center (Fig. 2.5). This requires a

normalization factor of 3.0×10−3 cts s−1 arcmin−2/(MJy sr−1). Within a vertical dis-

tance of 1′, the K-band profile traces the X-ray profile quite well. An excess over the

K-band profile, however, remains at a vertical distance of ∼1′-1.′5. This is evidence

for the presence of extraplanar X-ray-emitting gas.
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Figure 2.5 EPIC-PN 0.5-2 keV intensity profile (black crosses) along the direction
perpendicular to the disk of NGC 2613. A “blank-sky” background has been sub-
tracted and discrete sources have been removed, except for the nucleus. The full
width used for averaging the intensity is 5′. Spatial binning is adaptively adjusted to
achieve a count-to-noise ratio greater than 12, with a minimum step size of 12′′. The
black dashed curve is a fit to the profile using an exponential law plus a constant local
background. The red solid curve shows the 2MASS K-band profile convolved with the
PN PSF and normalized by a factor of 3.0×10−3 cts s−1 arcmin−2/(MJy sr−1) (see
text). A constant of 10−3 cts s−1 arcmin−2 has been added to all data points to avoid
negative values improper for a logarithmic plot.

We also construct a 0.5-2 keV radial intensity profile for the unresolved emis-

sion. Elliptical photometry is applied, with a minor-to-major axis ratio of 0.29 and

a position angle of 113◦ (Jarrett et al. 2003). We again fit the radial profile with an

exponential law and list the results in Table 2.3. The X-ray profile together with the

best-fit model is plotted in Fig. 2.6. Also plotted is the normalized 2MASS K-band
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radial profile produced in the same way as is done for the X-ray profile. The K-band

and X-ray profiles closely trace with each other within a semi-major radius of ∼ 3′. At

semi-major radii ∼4′-6′, corresonding to semi-minor radii ∼1.′1-1.′7, a bump is present,

again most likely due to the extraplanar features. The total count rate of this bump

is consistent with the extraplanar excess seen in the vertical intensity profile.

Figure 2.6 Similar to Fig. 2.5 but for the radial profile, generated with the elliptical
photometry (see text). A constant of 10−3 cts s−1 arcmin−2 has been added to all
data points to avoid negative values improper for a logarithmic plot.

2.3.2.2 Spectral properties

Guided by the X-ray morphology (Fig. 2.4), a galactocentric 5′ × 3′ ellipse with

a position angle of 113◦ is adopted to extract the spectra of unresolved emission

for individual detectors. The limited number of counts prevents us from further
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Table 2.3. Fit to 0.5-2 keV surface intensity distributions

Parameter Vertical distribution Radial distribution

χ2/d.o.f. . . . . . . . . . . . . . . . . . . 42.4/24 65.2/23
aI0 (10−3 cts s−1 arcmin−2) 15.3+1.8

−1.8 57.0+8.4
−9.1

bz0 (r0) (arcmin) . . . . . . . . . . 0.32+0.04
−0.04 0.65+0.06

−0.06
cIb (10−3 cts s−1 arcmin−2) 0.0+1.0

−1.0
d0.0

Note. — a. Central intensity; b. Scale height (length) of the exponential
law; c. Local background intensity above the already subtracted “blank-sky”
background; d. Fixed at the value obtained from the vertical fit.

dividing the spectra according to different regions of interest, e.g., the disk and the

halo. Discrete sources are removed in the way as described above, except for the

nucleus, for which we exclude a circular region with a radius of 40′′ (∼87% EER) to

further reduce the contamination from the hard nuclear emission. We use the same

background spectra as applied in § 2.3.1.

We jointly fit the PN, MOS1 and MOS2 spectra in the 0.3-8 keV range (Fig. 2.7).

Overall, the spectra are much softer than those from the nuclear region, showing clear

features at ∼ 0.9 keV, corresponding to the Fe L-shell complex, and at ∼ 0.5 keV.

These features further indicate the presence of diffuse hot gas. At energies above 2

keV the spectra are dominated by a collective contribution from unresolved discrete

sources, most likely LMXBs (see § 2.4.2). We account for this contribution with

a power-law (PL) with a photon index fixed at 1.56, as found by Irwin, Athey &

Bregman (2003) for the accumulated spectra of galactic LMXBs. This PL, combined

with a thermal plasma component (APEC) is then used to fit the spectra. Foreground

absorption is again required to be at least the Galactic value. The fit is initialized

by fixing the plasma metal abundance at solar. The model, however, yields a poor

fit to the spectra, in particular failing to simultaneously account for the features at
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Table 2.4. Spectral fit to the unresolved emission

Model NHI
a αb Temperaturec Abundance Fluxd χ2/d.o.f.

PL+APEC 6.8 (<7.9) 1.56 0.78+0.18
−0.14 1.0e 7.5 (PL), 1.3 81.1/66

PL+APEC 6.8 (<17.9) 1.56 0.84+0.25
−0.49 0.02 (<0.05) 3.2 (PL), 4.4 57.9/65

PL+2APEC 6.8 (<21.9) 1.56 0.08+0.12
−0.03, 0.81+0.19

−0.11 1.0e 6.5 (PL), 3.2, 1.4 62.5/64

Note. — a. Column density in units of 1020 cm−2, minimum sets at the Galactic foreground value of 6.8;
b. Power-law photon index, fixed at the uniform value for LMXBs found by Irwin et al. (2003). c. In units of
keV; d. Intrinsic 0.3-10 keV fluxes in units of 10−14 ergs cm−2 s−1; e. In units of solar, fixed.

∼0.9 keV and ∼0.5 keV. By allowing the metal abundance to be fitted, we obtain

a statistically better fit but the resulting abundance is low (∼< 0.05 solar). Such

an extremely sub-solar abundance is unphysical and practically often encountered

in the X-ray spectral analysis for galaxies (e.g., NGC 253, Strickland et al. 2002;

NGC 4631, Wang et al. 2001). We thus add to the model a second APEC component.

A two-temperature plasma is effective in characterizing the diffuse spectra of some

star-forming disk galaxies (e.g., Strickland et al. 2004a; Tüllmann et al. 2006). The

abundances for both thermal components are fixed at solar. The fit is acceptable,

resulting in a cool component with kT ∼0.08 keV and a hot component with kT

∼0.8 keV. The 0.3-10 keV X-ray luminosities are 5.2, 2.6 and 1.1×1039 ergs s−1 for

the three components, namely the discrete sources, the low temperature gas and the

high temperature gas, respectively. The above results are summarized in Table 2.4.

We adopt the two-temperature fit as the best-fit model in the following and plot it

in Fig. 2.7.

2.4 Discussion

2.4.1 The nature of the nuclear X-ray emission

Our two-component spectral fit for the nucleus (§ 2.3.1; Table 2.2) indicates that

the intrinsic neutral hydrogen column density is ∼1.2×1023 cm−2. This is much higher

than the beam-averaged HI column density of ∼2 × 1021 cm−2 found by Chaves &
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Figure 2.7 EPIC spectra of unresolved X-ray emission (Black: PN spectrum;
Red: MOS1 spectrum; Green: MOS2 spectrum) of NGC 2613 and the best-
fit wabs(PL+2APEC) model. The spectra are binned to achieve a background-
subtracted signal-to-noise ratio better than 2. The lower panel shows the data-to-
model ratios.

Irwin (2001), but it is typical of values found for molecular circumnuclear disks. Ott

et al. (2001), for example, find a molecular column density of order 1023 cm−2 for

NGC 4945. Molecular data are not yet available for NGC 2613, but our results suggest

that a substantial molecular component should be present in this galaxy.

For the nuclear component, the modelled intrinsic flux given in Table 2.2 leads

to an intrinsic X-ray luminosity of ∼3.3×1040 ergs s−1 in the 0.3-10 keV range. The

photon index of this component is ∼2, a typical value found in the X-ray spectra

of AGNs (e.g. Pellegrini, Fabbiano & Kim 2003). No radio core was detected by

Irwin, Saikia & English (2000), putting a 3σ upper limit of 4.5 × 1027 ergs s−1 Hz−1

on the radio spectral power at 1.425 GHz within the same 16′′ region. Using the

above luminosity over the 0.3-10 keV range, we derive an upper limit of α = 0.62 on

the energy spectral index (Sν ∝ ν−α) between the radio and X-ray bands. Although

the X-ray nucleus is heavily obscured, these values nevertheless suggest that the
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energy spectral index is likely flat or possibly rising at the low frequencies, a fact

again consistent with the interpretation of the nuclear source as an AGN. Thus, we

conclude that the nuclear X-ray source represents an AGN in this galaxy, the first

evidence that this is the case.

The non-nuclear component, characterized by the second power-law (PL2), shows

a photon index of ∼ 1.7 and an intrinsic 0.3-10 keV luminosity of 3.4×1039 ergs s−1.

Irwin et al. (2003) showed that the accumulated spectra of LMXBs in early-type

galaxies can be uniformly described by a power-law model with a best-fit photon

index of 1.56 ± 0.02. By using a sample of nearby galaxies of various morphologi-

cal types, Gilfanov (2004) studied the relation between the collective luminosity of

LMXBs and the K-band luminosity, LK , of the underlying stellar content. He found

that, for LMXBs with luminosity higher than 1037 ergs s−1, their collective luminosity

LX = (3.3 − 7.5)×1039 ergs s−1LK/1011L⊙,K . Assuming that the spatial distribution

of LMXBs follows that of the K-band star light (Jarrett et al. 2003), we estimate that

the collective luminosity of LMXBs within the 16′′ circle is ∼(1.8 − 4.2)×1039 ergs s−1.

Thus the non-nuclear component is consistent with the collective emission of unre-

solved LMXBs. We note that high-mass X-ray binaries (HMXBs) are expected to

be present in star-forming disk galaxies and their composite spectral properties are

somewhat similar to that of the LMXBs, thus the collective contribution of HMXBs

may also be partly responsible for the non-nuclear component. We show below that

in NGC 2613 the relative contribution of HMXBs is small as compared to that of

LMXBs.

2.4.2 The collective X-ray emission of discrete sources

It is known that X-ray binaries, including LMXBs and HMXBs, dominate the

X-ray source populations with luminosities ∼> 1035 ergs s−1 in galaxies. Owing to

their distinct evolution time-scales, the numbers and thus the collective contributions

26



of long-lived LMXBs and short-lived HMXBs to the X-ray emission of a galaxy are

expected to be proportional to its stellar mass and star formation rate (SFR), re-

spectively. Colbert et al. (2004) analyzed Chandra observations of X-ray sources in

a sample of nearby galaxies of various morphological types and SFRs. They found

that the collective X-ray luminosity of point sources LXP is linearly correlated with

the total stellar mass M⋆ and the SFR of the host galaxy as

LXP (ergs s−1) = (1.3 ± 0.2) × 1029 M⋆ (M⊙)

+(0.7 ± 0.2) × 1039 SFR (M⊙ yr−1). (2.1)

We use this relation to assess the relative importance of LMXBs and HMXBs

in contributing to the X-ray emission of NGC 2613. The total stellar mass can be

estimated from the K-band luminosity LK and the B − V color index via (Bell & de

Jong 2001)

log(M⋆/LK) = −0.692 + 0.652(B − V ), (2.2)

where LK is in units of the K-band Solar luminosity. The SFR can be estimated from

the far-infrared (FIR) luminosity LFIR via (Kennicutt 1998)

SFR = 4.5 × 10−44 LFIR (ergs s−1). (2.3)

LFIR is measured according to (Lonsdale, Helou & Good 1989)

LFIR = 3.1 × 1039 D2 (2.58 S60 + S100), (2.4)

where D is the distance of the galaxy in units of Mpc, S60 and S100 are the flux

densities in units of Jy at 60 µm and 100 µm, respectively. With the available

photometric data for NGC 2613 (Table 2.1), we estimate that the total stellar mass
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is 2.1 × 1011 M⊙ and the SFR is 4.2 M⊙ yr−1. Based on Eq. (2.1), the contributions

of LMXBs and HMXBs to the collective X-ray emission of discrete sources is ∼

2.7×1040 ergs s−1 and ∼ 2.9×1039 ergs s−1, respectively, with the latter being about

10% of the former.

In the disk of NGC 2613, we find that the 0.5-2 keV unresolved emission is spa-

tially correlated with the K-band star light. Therefore, the normalization factor

for the K-band profile (§ 2.3.2.1) should represent the collective X-ray emissivity of

the underlying old stellar population. Using the power-law model given by Irwin et

al. (2003) for the accumulated spectrum of LMXBs, we convert the observed 0.5-2

keV count rate into the intrinsic luminosity in the 0.3-10 keV band). The K-band

flux density is also converted into intrinsic luminosity according to the 2MASS K-

band photometry. The normalization factor, 3.0×10−4 cts s−1 arcmin−2/(MJy sr−1),

is then equivalent to an X-ray emissivity of LX = 4.2×1039 ergs s−1LK/(1011L⊙,K), or

a luminosity ratio of LX/LK ∼ 7.5×10−4. Gilfanova (2004) found that the collective

X-ray luminosity of galactic LMXBs is related to the underlying K-band luminosity

following LX = (3.3 − 7.5)×1039 ergs s−1LK/(1011L⊙,K), i.e., a luminosity ratio of

LX/LK ∼ (5.8−13.2)×10−4. Therefore the collective X-ray emissivity of unresolved

discrete sources inferred for NGC 2613 is consistent with that of the galactic LMXBs,

and we conclude that the collective X-ray emission of LMXBs dominates the soft

emission of NGC 2613 in its disk region.

2.4.3 The origin of extraplanar gas

Presence of diffuse gas in NGC 2613 is evident by the soft X-ray excess over the

K-band light. We consider two possible origins of the diffuse gas: 1) the continuously

accreted IGM (Toft et al. 2002) and 2) the outflow from the galactic disk (Irwin &

Chaves 2003).
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2.4.3.1 An accreted gaseous halo?

Toft et al. (2002) calculated global X-ray properties (e.g., luminosity, effective

temperature and intensity distribution) of hot gaseous halos, based on their simulated

galaxies. The predicted luminosity strongly depends on the circular speed of the

host galaxy. The most massive galaxies in their simulations have circular speeds

similar to that of NGC 2613 (∼ 300 km s−1). The predicted 0.2-2 keV luminosity

for such a galaxy is ∼ 8 × 1040 ergs s−1 (Fig. 3 in Toft et al. 2002). From our

best-fit spectral models of the spectra of unresolved emission, we derive an intrinsic

0.2-2 keV luminosity of ∼8×1039 ergs s−1 for the sum of the thermal and power-law

components, and ∼6×1039 ergs s−1 for the thermal components only. We note that

the unresolved emission outside our spectral extraction region contributes little to

the total luminosity. The simulated luminosity of gas emission by Toft et al. (2002)

is at least an order of magnitude higher than the observed value for NGC 2613. We

therefore conclude that the simulations as presented by Toft et al. (2002) substantially

over-predict the X-ray emission from the cooling inflow of the IGM, if this is what is

occurring in NGC 2613.

This over-prediction is related to the so-called over-cooling problem in current

theories of galaxy formation. We speculate that the over-cooling problem is a result

of an inappropriate treatment of stellar and/or AGN feedback. For example, the

mechanical energy input from Type Ia supernovae (SNe) is typically not included in

galaxy formation simulations, partly due to the difficulty in treating the astrophysics

related to gaseous flows. Qualitatively, Type Ia SNe, which tend to occur in low-

density hot environments, provide an especially effective mechanism for large-scale

distributed heating, required to reduce the cooling of gas in galactic bulges and halos

(Tang & Wang 2005). Massive stars in galactic disks may also serve as sources

of mechanical energy that could produce outflows into halos and help slow down the

cooling of the accrected gas. For example, with a star formation rate of ∼ 4.2 M⊙ yr−1
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for stars between 0.1 and 100 M⊙, and assuming a Salpeter IMF and that stars with

mass > 8 M⊙ become core-collapse SNe, the rate of total energy release from the star-

forming regions of NGC 2613 is LSNII ∼ 1.0×1042 ergs s−1. Our spatial and spectral

analyses suggest that the extraplanar gas is responsible for the thermal emission

(§ 2.3.2) and has a total 0.3-10 keV luminosity of ∼< 5 × 1039 ergs s−1. Thus, SNe

can provide enough energy to explain the X-ray emission of the extraplanar gas in

NGC 2613.
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Figure 2.8 (a) VLA C+D configuration continuum contours overlaid on the same
X-ray intensity image (grey scale) as contoured in Fig. 2.4 and in (b) of this figure.
The contour levels are 0.18, 0.27, 0.56, 0.84, 1.1, 1.7, 2.3, 3.2 mJy beam−1 and the
beam is 22′′×15′′ at a position angle of −8.◦2. A few X-ray extraplanar features are
labelled (see text). (b) The same X-ray intensity contours as in Fig. 2.4 overlaid on
a greyscale image of the total intensity VLA C+D configuration HI map. The grey
scale range (shown with a square root transfer function) is in units of 103 Jy beam−1

m s−1 and the beam is 47′′×32′′ at a position angle of −8.◦2. F1 and F2 refer to two
HI extensions identified by Chaves & Irwin (2001).

2.4.3.2 Multiwavelength extraplanar features

In Fig. 2.8a and b, we compare the X-ray emission with the radio continuum

emission and HI total intensity emission, respectively. Of the two radio images, the
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radio continuum morphology more closely resembles the X-ray morphology in the

sense that: a) the north bubble has a radio continuum counterpart; b) the south

extension also has a radio continuum counterpart; c) the south-west feature shows a

small radio continuum protrusion; and d) the peaks of the large eastern extensions

(north and south) also show radio emission.

The HI total intensity map shown here does not show all of the extended features

identified by Chaves & Irwin (2001), but two of their features, F1 and F2 clearly

extend above and below the galactic plane and are labelled in Fig. 2.8b. These two

features might be related with the northern and southern arc of the eastern extensions

seen in the X-ray.

It is not wise to read too much into these correlations, given the limited S/N of the

maps. However, the relationship with the radio continuum is sufficiently strong that

the X-ray emission in the extraplanar features, representing hot diffuse gas, is very

likely associated with the radio continuum emission which represents predominantly

the non-thermal component.

We further consider the energetics of a specific feature, namely the “north bubble”,

which is the only extraplanar feature that can be cleanly isolated from the ambient

emission. Guided by Fig. 2.9, we approximate the volume occupation of the bubble

by a cylinder with 1′ in diameter and 0.′8 in height, the center of which is 1.′2 above the

galactic center. Hence the volume of the bubble is ∼ 2.7 × 102 kpc3. We find a total

0.5-2 keV count rate of 2.4×10−3 cts s−1 within the bubble. In the best-fit model

to the spectra of unresolved emission, the high and low temperature components

predict a 0.5-2 keV count rate of 7.5×10−3 cts s−1 and 2.0×10−3 cts s−1, respectively.

Therefore the north bubble is unlikely to be due to the low temperature component

alone. Instead, it could be dominated by the high temperature component. Taking an

effective temperature of ∼ 0.8 keV, we estimate the mean density of the bubble to be

∼ η−1/2×10−3 cm−3, where η is the filling factor of the hot gas inside the bubble. The
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Figure 2.9 The X-ray-emitting bubble to the north of the nucleus. The same X-ray
intensity image as in Fig. 2.4 is used. Contour levels are at 5, 5.2, 5.4, 5.6, 5.9, and
6.2 ×10−3 cts s−1 arcmin−2.

total thermal energy of the bubble is Eth ≃ 3.6η−1/2×1055 ergs s−1, and the work done

to steadily lift up the bubble against gravity is Eg ≃ 1.7η−1/2 × 1055 ergs s−1, given

the gravitational potential introduced by the exponential disk of the galaxy (Irwin &

Chaves 2003). Given the morphology and the position of the bubble, we speculate

that it was produced near the nuclear region, either by a nuclear starburst or the

AGN. If the bubble’s total amount of thermal and gravitational energy is obtained

from a starburst, it takes a time of τ ≃ (Eth + Eg)/(fLSNII) ≃ 1.7η−1/2 × 107 yr to

form the present structure, where f is a geometrical factor taken to be 0.1 to reflect a

fractional star formation rate of the central 1 kpc in the disk. This timescale is typical

for massive stars to become SN explosions. On the other hand, assuming the flux
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density of the AGN follows Sν ∝ ν−α between the radio and X-ray bands, the total

bolometric luminosity over this frequency range is ∼ 4.5×1040 ergs s−1 with α = 0.62

adopted (§ 2.4.1). It is uncertain what fraction of the AGN energy can be taken to

energize the ambient gas, but we consider that the AGN might also be capable of

producing this feature. For example, the locations of the north bubble and south

extension immediately on either side of the nucleus are reminiscent of extraplanar

loops or lobes seen in nuclear outflow galaxies like NGC 3079 (e.g. Cecil et al. 2002)

which is known to have an AGN.

2.5 Summary

We have analyzed an XMM-Newton observation of the massive edge-on Sb galaxy

NGC 2613. We find a deeply embedded AGN in this galaxy. The X-ray spectrum

of this AGN can be characterized by a power-law model with a photon-index of ∼2

and a 0.3-10 keV intrinsic luminosity of 3.3×1040 ergs s−1. Linking the X-ray spectral

properties of the AGN with the current upper limit at radio frequencies indicates a

spectral flattening of the AGN at low frequencies.

The 0.5-2 keV unresolved X-ray emission is found to closely trace the near-IR

emission in the disk region, and the X-ray to near-IR luminosity ratio is consistent

with that inferred from galactic LMXBs. These two facts together indicate that the

bulk of the unresolved emission is produced by the old stellar population of the galaxy,

predominantly LMXBs.

A few extraplanar diffuse X-ray features are present in addition to the collective

emission from discrete sources traced by the near-IR light. These features can be

explained by the presence of hot gas, which can be spectrally characterized by a two-

temperature plasma with kT ∼0.08 keV and ∼0.8 keV. The total X-ray luminosity

of hot gas is at least an order of magnitude lower than that predicted by current
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simulations of IGM accretion based on disk galaxy formation models. Thus the

extraplanar features are very unlikely to result from IGM accretion.

Instead, morphologically most of these extraplanar features have extended radio

counterparts, which are believed to arise from disk-related events. Also, energetically

the extraplanar features can be generated by either supernova explosions or the AGN,

the latter possibly related to the bubbles above and below the nucleus. Therefore,

we conclude that the extraplanar features are most likely formed from outflows from

the galactic disk.

Our observation suggests that a proper inclusion of galactic feedback is essen-

tial, not only to understanding galaxy formation, but also to its continued evolution.

NGC 2613 and galaxies like it provide nearby laboratories that may help to under-

stand the over-cooling problem existing in current galaxy formation simulations.
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CHAPTER 3

CHANDRA AND XMM-NEWTON DETECTION OF

LARGE-SCALE DIFFUSE X-RAY EMISSION FROM THE

SOMBRERO GALAXY

3.1 Introduction

Galactic bulges are an important component of early-type spiral galaxies. X-ray

studies of the high-energy phenomena and processes in galactic bulges provide a vital

insight into our understanding of galaxy formation and evolution. Several facts make

the Sombrero Galaxy (M104; NGC4594; Table 3.1) an ideal target for such a study:

1) This nearby Sa galaxy is massive (circular rotation speed of ∼ 370 km s−1) and

bulge-dominated, and hence a potential site for probing a large amount of hot gas

from intergalactic accretion (e.g., Toft et al. 2002) and/or internal stellar feedback

(e.g., Sato & Tawara 1999); 2) The high inclination of the galaxy (84◦) allows for a

clean separation between the disk and bulge/halo components; 3) A well-determined

distance (8.9±0.6 Mpc) of the galaxy minimizes the uncertainty in the measurement

of X-ray luminosities; 4) As indicated by its very low specific far-infrared and diffuse

radio fluxes (Bajaja et al. 1988), the galaxy shows little indication for recent star

formation, minimizing the possibility of heating and/or gas ejection from the galactic

disk; 5) The galaxy is isolated and thus uncertainties resulting from galaxy interaction

are miminal. Therefore, M104 is particularly well-suited for an X-ray study of high-

energy stellar and interstellar products in a galactic bulge and their relationship to

the galactic disk and to the intergalactic environment.

Existing X-ray studies of M104 have focused on its discrete X-ray sources. Di

Stefano et al. (2003) reported the detection of 122 X-ray sources, based on a Chandra
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Table 3.1. Basic Information of M 104

Parameter M 104

Morphologya . . . . . . . . . . . . . . . . . . . . . . . . . SA(s)a
Center positiona . . . . . . . . . . . . . . . . . . . . . R.A. 12h39m59.s43

(J2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dec. −11◦37′23.′′0
Optical sizea . . . . . . . . . . . . . . . . . . . . . . . . . . 8.′7 × 3.′5
Inclination angleb . . . . . . . . . . . . . . . . . . . . 84◦

B-band magnitude a . . . . . . . . . . . . . . . . . 8.98
V-band magnitude a . . . . . . . . . . . . . . . . . 8.00
K-band magnitude a . . . . . . . . . . . . . . . . . 4.96
Circular speed (km s−1)c . . . . . . . . . . . . . 370
Distance (Mpc)d . . . . . . . . . . . . . . . . . . . . . 8.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1′ =̂ 2.59kpc)
Redshifta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.00342
Galactic foreground NHI (1020 cm−2)e 3.7

References. — a. NED; b. Rubin et al. (1985); c. Wagner,
Dettmar & Bender (1989); d. Ford et al. (1996); e. Dickey &
Lockman (1990).

ACIS-S observation of the galaxy. In particular, they classified a population of very

soft X-ray sources, which tend to concentrate in the core region of the galactic bulge.

Wang (2004) conducted a careful analysis of the luminosity function of the discrete

X-ray sources detected from the same observation by correcting for incompleteness

and Eddington bias in the source detection and by removing statistical interlopers in

the field. The X-ray behavior of the central AGN has been studied by Pellegrini et

al. (2003), based on an XMM-Newton observation as well as the Chandra data.

We here report a systematic analysis of the XMM-Newton and Chandra obser-

vations (Figs. 3.1 and 3.2), focusing on the study of diffuse X-ray emission in M104.

The Chandra data, with superb spatial resolution, are well-suited for the study of

the galaxy’s inner region where the X-ray source density is high. However, the FOV

of the Chandra ACIS-S, especially that of the S3 chip (∼ 8′ × 8′), does not provide

a full coverage of the large-scale X-ray emission of the galaxy (cf. Fig. 3.3). The

XMM-Newton EPIC observation, on the other hand, has a substantially larger FoV,
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allowing us to probe the extent of the global diffuse X-ray emission. The combination

of the two observations thus provides us with the most comprehensive X-ray view of

the galaxy.

Figure 3.1 EPIC-PN intensity image of the M 104 field in the 0.5-7.5 keV band after a
flat-fielding. An adaptively smoothed background has been subtracted from the image
to highlight discrete sources which are outlined with circles for source-removal (see
§ 3.4.1). The ellipse (8.′7×3.′5) illustrates the optical IB = 25 mag arcsec−2 isophote
of the galaxy.

3.2 Observations and Data Reduction

3.2.1 Chandra observations

The Chandra ACIS-S observation of M104 (Obs. ID. 1586) was taken on May

31, 2001, with an exposure of 18.8 ks. Our work uses the data primarily from the

on-axis S3 chip, although part of the adjacent FI chips (S2 and S4) are also included
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(b) (c)

(a)

Figure 3.2 ACIS-S 0.3-7 keV band intensity images: (a) the whole source detection
field, over which the image is smoothed with a Gaussian of FWHM equal to 3.′′9; (b)
the inner ∼ 4′×4′ region around the center of M 104; (c) the very central ∼ 2′×2′

region around the galactic center. Detected X-ray sources are outlined with circles
for source-removal (see § 3.4.1). Positions of sources detected by the EPIC-PN are
marked with crosses.
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Figure 3.3 EPIC-PN 0.5-2 keV intensity contours overlaid on the digitized sky-survey
blue image of M 104. The X-ray intensity is adaptively smoothed with the CIAO
csmooth routine with a signal-to-noise ratio of ∼ 3. The contours are at (1.4, 1.8,
2.6, 4.2, 7.4, 13.8, 27, 52, 103, 206, 411, 820, and 1640)×10−3 cts s−1 arcmin−2 above
a local background level of 2.0×10−3 cts s−1 arcmin−2.

in the source detection. We reprocessed the Chandra data, using CIAO, version

3.2.1 and the latest calibration files. We also removed time intervals with significant

background flares, i.e., those with count rates ∼> 3σ and/or a factor of ∼> 1.2 off

the mean background level of the observation. This cleaning resulted in an effective

exposure of 16.4 ks for subsequent analysis. We created count and exposure maps in

the 0.3-0.7, 0.7-1.5, 1.5-3, and 3-7 keV bands. Corresponding background maps were

created from the “stowed background” data, which contain only events induced by

the instrumental background. A normalization factor of ∼ 1.05 was applied to the
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exposure of this “stowed background” data in order to match its 10-12 keV count

rate with that of Obs. 1586.

3.2.2 XMM-Newton observations

The XMM-Newton EPIC observation of M104 (Obs. ID 0084030101) was taken

on December 28, 2001, with the thin filter and with a total exposure of 43 ks. We

calibrated the data using SAS, version 6.1.0, together with the latest calibration files.

In this work, we only use the EPIC-PN data. We found that a large fraction of

the observation was strongly contaminated by cosmic-ray-induced flares. To exclude

these flares, we removed time intervals with count rates greater than 11 cts s−1 in

the 0.2-15 keV band, about a factor of 1.2 above the quiescent background level,

and some additional intervals with residual flares found in sub-bands. The remaining

exposure is only 10.8 ks for the PN. We then constructed count and exposure maps

in the 0.5-1, 1-2, 2-4.5, and 4.5-7.5 keV bands for flat-fielding. We also created

corresponding background maps from the “filter wheel closed” (FWC) data , chiefly

for instrumental X-ray background subtraction. However, we found that at energies

above 5 keV the spectral shape of the instrumental background of Obs. 0084030101

is apparently different from that of the FWC data, making a simple normalization

inapplicable. Therefore, the FWC data are only used in producing large-scale images.

Background adoption for spectral analysis will be further discussed in § 3.4.2.

3.3 Discrete X-ray sources

Fig. 3.3 shows the overall 0.5-2 keV X-ray intensity image of M104 obtained from

the PN. The morphology appears more-or-less symmetric, reminiscent of the optical

light distribution of the galaxy. The X-ray emission likely represents a combined

contribution from discrete sources and truly diffuse hot gas. We first detect individual
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sources and characterize their properties. Then we try to isolate and study the diffuse

X-ray component in § 3.4.

We detect 62 XMM-Newton and 175 Chandra discrete X-ray sources. The source

detection is carried out for each observation in the broad (B), soft (S), and hard

(H) bands, defined differently for the ACIS-S and PN data, as noted in the tables.

Following the procedure detailed in Wang (2004), we use a combination of source

detection algorithms: wavelet, sliding-box, and maximum likelihood centroid fitting.

The map detection and the maximum likelihood analysis are based on data within

the 50% PSF energy-encircled radius (EER) for the PN and the 90% EER for the

ACIS-S. The accepted sources all have a local false detection probability P ≤ 10−6.

The source locations are marked in Figs. 3.1 and 3.2. Essentially all PN sources

within the field of Fig. 3.2a are also detected in the ACIS-S data. All relatively

bright ACIS-S sources, except for those in the nuclear region, are detected in the PN

data. These consistencies indicate no strong variability of the sources between the

two observations. Source confusion is serious for the PN data, because of the limited

spatial resolution. Some of the PN detections represent combinations of multiple

discrete sources, This is particular the case in the nuclear region (Fig. 3.2c).

We note that the source detection limit is significantly higher in the PN data than

in the ACIS-S data. The majority of detected sources are of two populations: sources

associated with the galaxy and extragalactic sources mostly being background AGNs.

Applying the luminosity function (LF) of the AGNs obtained by Moretti et al. (2003),

we estimate the number of detected AGNs to be 15.5 (2.3) in the ACIS-S (PN) FoV.

We further obtain an accumulated ACIS-S spectrum of the sources to characterize

their average spectral property. The spectrum is extracted from sources within the

IB = 25 mag arcsec−2 isophote (D25 ellipse; 8.′7×3.′5), except for the nuclear source

and the three bright sources discussed above. The total number of included sources

is ∼110. For each source, a circular region of twice the 90% EER is adopted for
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accumulating the spectrum. A background spectrum is extracted from the rest region

of the ellipse. In the PN data, only ten sources are detected within the D25 ellipse

and four of them are located within 1.′5 from the galactic center, where the emission

of the nucleus largely affects. Therefore, we do not analyze an accumulated source

spectrum from the PN.

We use an absorbed power-law model to fit the accumulated spectrum, with the

absorption being at least that supplied by the Galactic foreground. The model offers

an acceptable fit to the spectrum (χ2/d.o.f. = 115.2/144), giving a best-fit photon

index of 1.51+0.10
−0.09 and a 0.3-7 keV intrinsic luminosity of ∼ 2.6×1040 ergs s−1. All

quoted errors in this paper are at the 90% confidence level. The slope of the power-

law is typical for composite X-ray spectra of LMXBs observed in nearby galaxies

(e.g., Irwin, Athey & Bregman 2003). We note that none of the included sources con-

tributes more than 5% of the total counts to the accummulated spectrum. Therefore,

the spectrum, along with the fitting model, can be used to characterize the average

spectral property of sources.

3.4 The unresolved X-ray emission

Our main interest here is in the diffuse X-ray emission from M104 A first step

towards isolating the diffuse emission is to subtract the detected discrete sources

from the images. To do so, we exclude regions enclosing twice the 50% (90%) EER

around each PN (ACIS-S) source with a count rate (CR) ∼< 0.01 cts s−1. For brighter

sources, a factor of 1 + log(CR/0.01) is further multiplied to the source-subtraction

radius. Our choice of the regions is a compromise between excluding a bulk of the

source contribution and preserving a sufficient field for the study of the unresolved

emission. With the above criteria about 80% (95%) of photons from individual sources

are removed from the PN (ACIS-S) image.
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The unresolved emission presumably consists of two components: the emission of

truly diffuse gas and the collective discrete contributions from the residual emission

of detected sources and the emission of undetected sources below our detection limit.

In practice, the discrete component can be constrained from its distinct spatial distri-

bution and spectral property. Below we isolate the two components and characterize

the properties of the diffuse emission.

3.4.1 Spatial properties

3.4.1.1 Surface intensity profiles

We construct instrumental background-subtracted and exposure-corrected galac-

tocentric radial surface intensity profiles for the source-subtracted emission, in the

soft (0.5-1 keV for the PN; 0.3-0.7 keV for the ACIS-S), intermediate (1-2 keV for the

PN; 0.7-1.5 keV for the ACIS-S) and hard (2-7.5 keV for the PN; 1.5-7.0 keV for the

ACIS-S) bands (Fig. 3.4). While the ACIS-S instrumental background is determined

from the “stowed background” data, the instrumental background rates in the PN

bands are predicted from the spectral fit to a local PN background spectrum (see

§ 3.4.2). Spatial binning of annuli is adaptively adjusted to achieve a signal-to-noise

ratio better than 3, with a minimum step size of 6′′ for the PN and 3′′ for the ACIS-S.

For the PN profiles, the central 1.′5 is heavily contaminated by the emission from the

nucleus. Thus our analysis for the PN data is restricted to radii beyond 1.′5. The

ACIS-S data, while being capable to probe the central region, are limited by its FoV.

Therefore we restrict our analysis of the ACIS-S profiles within 3.′5, a maximal radius

where complete annuli can be extracted.

It is known that M104 has a prominent dust lane (e.g., Knapen et al. 1991;

cf. Fig. 3.3), which may significantly absorb soft X-rays from the galaxy and hence

introduce a bias to the bin-averaged intensity. Therefore when constructing the in-

tensity profiles we exclude a region encompassing the dust lane. We use the digitized
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Figure 3.4 Radial surface intensity profiles of the instrumental background- and de-
tected source-subtracted emission from M 104. Top: ACIS-S profiles in the 0.3-0.7
keV (left), 0.7-1.5 keV (middle) and 1.5-7 keV (right) bands. Bottom: PN profiles
in the 0.5-1 keV (left), 1-2 keV (middle) and 2-7.5 (right) bands. The solid curves
present model characterizations: a normalized K-band radial profile for emission from
discrete sources (dotted curves), a de Vaucouleur’s law (dashed curves) for emission
from diffuse hot gas, and a local constant cosmic background. See text for details.

sky-survey blue image of the galaxy to map such a region of extinction, in which a

pixel is adopted as the region bounary if it is dimmed by a factor ≥1.5 compared to

the adjacent bright pixel. Visual inspection on the ACIS-S image indicates that our

adopted region is coincident with a region of few registered soft X-ray photons.

To constrain the discrete component, we assume that its spatial distribution fol-

lows the near-IR light of the galaxy, which can be determined from the 2MASS K-band

map (Jarrett et al. 2003). We first exclude from the map bright foreground stars and

circular regions used for subtracting the discrete X-ray sources. The K-band radial

intensity profile is then produced in the same manner as for the X-ray profiles. It is

reasonable to assume that the discrete component dominates the X-ray emission in
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Table 3.2. Fits to the radial surface brightness profilesa

Parameter PN PN PN ACIS-S ACIS-S ACIS-S
0.5-1 keV 1-2 keV 2-7.5 keV 0.3-0.7 keV 0.7-1.5 keV 1.5-7 keV

χ2/d.o.f. . . . . . . . . . . . . . . . . . . 108.0/93 46.7/69 12.5/22 32.2/43 56.1/62 6.2/9

Ig ( cts s−1 arcmin−2) . . . . 4.9+3.3
−2.6 1.1+0.7

−0.5 - 1.3+0.8
−0.5 2.0+1.3

−0.9 -

re (arcmin). . . . . . . . . . . . . . . . 2.6+1.4
−0.9 same - same same -

bIs . . . . . . . . . . . . . . . . . . . . . . . . 13.2 20.1 18.7+4.7
−4.7 1.0 2.9 2.8+0.5

−0.5

Ib (10−4 cts s−1 arcmin−2) 25.6+1.0
−0.7 7.8+0.9

−0.9 7.5+1.5
−1.5 11.8+2.3

−2.3 6.7+1.9
−1.8 2.8+1.3

−1.2

Note. — a The profiles are fitted by a normalized K-band profile plus a local constant background, IX(R)=
IsIK(R) + Ib, for the PN 2-7.5 keV and ACIS-S 1.5-7 keV bands, or with an additional de Vaucouleur’s law,

IX(R)= IsIK(R) + Ig e−7.67(R/re)1/4

+ Ib, for the softer bands. b The normalization factors for different bands,
in units of 10−4 cts s−1 arcmin−2/(MJy sr−1), are related via the best-fit spectral model to the accumulated
source spectrum (§ 3.3).

the hard band. Thus we use the K-band profile to fit the X-ray hard band profiles,

constructed from the PN and ACIS-S data. The fitting parameters are the X-ray-to-

K-band intensity ratio of the underlying stellar content (Is) and a constant intensity

(Ib) to account for the local cosmic X-ray background. We find that the X-ray hard

band profiles can be well characterized by the K-band profile (Fig. 3.4; Table 3.2).

We further assume that the discrete component has a collective spectral property

same as that modeled for the detected sources (§ 3.3). This allows us to use the hard

band intensity to constrain the discrete component in the soft and intermediate bands.

The diffuse component is then determined for these two bands by subtracting the

discrete component from the total intensity profile. We then fit the radial distribution

of the diffuse component with a de Vaucouleur’s law:

I(R) = Ig e−7.67(R/re)1/4

, (3.1)

where R is the projected galactocentric radius, re the half-light radius and Ig the

central surface intensity. A paramter Ib is also included to account for the local

cosmic X-ray background. Due to the partial coverage of the overall distribution by

each profile, we require in the fit that the half-light radii be identical for all profiles.
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We find that this characterization offers good fits to the profiles (Fig. 3.4; Table 3.2).

The best-fit half-light radius is 2.′6+1.′4
−0.′9

. In comparison, the K-band half-light radius

is ∼ 1′ (∼ 2.6 kpc; Jarrett et al. 2003). This suggests that the distribution of hot gas

is substantially more extented than that of the stellar content.

Figure 3.5 ACIS-S intensity distribution along the direction perpendicular to the disk
of M 104, in the 0.3-0.7 keV (black crosses), 0.7-1.5 keV (red diamonds), and 1.5-7 keV
(green triangles) bands. The full width along the direction parallel to the major axis
used for averaging the intensity is 4′ (∼10 kpc). The adaptive steps along the minor
axis achieve a signal-to-noise ratio greater than 3, with a minimum of stepsize of 6′′.
The vertical line represents the position of the major axis of the disk, whereas the
horizontal axis marks the vertical distance along the minor axis (south as negative).

We also construct vertical intensity profiles of the source-subtracted emission along

the galaxy’s minor axis for the ACIS-S 0.3-0.7, 0.7-1.5 and 1.5-7 keV bands (Fig.3.5).

In general, the intensity decreases rapidly with the off-disk distance. We follow the

above procedure to decompose the diffuse and discrete components of the vertical
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Table 3.3. Fits to the vertical surface intensity profilesa

Parameter ACIS-S ACIS-S ACIS-S
0.3-0.7 keV 0.7-1.5 keV 1.5-7 keV

χ2/d.o.f. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47.2/28 70.4/45 10.5/8
Ig (10−4 cts s−1 arcmin−2) . . . . . . . . . . . . 160+30

−30 110+14
−14 -

bz0 (arcmin) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.22+0.05
−0.05, 0.31+0.06

−0.06 0.64+0.08
−0.08, 0.72+0.09

−0.09 -
cIs (10−4 cts s−1 arcmin−2/[MJy sr−1]) 1.0 2.9 2.8
cIb (10−4 cts s−1 arcmin−2) . . . . . . . . . . . 11.8 6.7 2.8

Note. — aThe 1.5-7 keV profile is fitted by a normalized K-band profile plus a local constant
background: IX(z)= IsIK(z) + Ib. For the softer bands, an additional exponential law is applied:
IX(z)= IsIK(z) + Ig e−|z|/z0 + Ib.

bThe first and the second values are for the south and north
sides, respectively. c Same normalization factors and local background rates are applied as for the
radial profiles (Table 3.2).

profiles. An exponential law, i.e., I(z) = Ig e−|z|/z0, is used to fit to the vertical

distribution of the diffuse component. The scale height z0 is allowed to be different

between the south and north sides of the midplane. The fit is marginally acceptable,

with excess existing at ∼ 2′ from the midplane on both sides. Fit results (Table 3.3)

show that in each band there is no significant asymmetry in the intensity distribution

with respect to the midplane. The best-fit scale height in the soft band (∼ 1/4 arcmin)

is less than that in the intermediate band (∼ 1/3 arcmin), indicating that emission

is softer in the central region than in the extraplanar region. When the above fit

is restricted to a vertical distance ≥ 0.′5, the best-fit scale heights for the soft and

intermediate bands are nearly identical (∼ 1′). This is evident that the temperature

of hot gas around the disk plane is lower than that in the bulge.

3.4.1.2 Inner region and substructures

We use the ACIS data to probe the diffuse X-ray properties in the inner region

of the galaxy. We fill the holes from the source removal with the values interpolated

from surrounding bins. Fig. 3.6 shows “diffuse” X-ray intensity contours, which are

substantially less smoothed than presented in Fig. 3.3. There are considerable sub-
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structures in the inner region. Inner contours are extended more to the north than to

the south (where strong intensity gradients are found), indicating a heavier absorp-

tion of X-ray emission to the south. This is clearly due to the prominent dust lane

that lies at the 10′′ -25′′ range to the south of the major axis (Knapen et al. 1991).

The intensity contours also become strongly elongated along the galactic disk.

Fig. 3.6 also presents in grey scale a continuum-subtracted Hα image of M104,

obtained with the 0.9 meter telescope at Kitt Peak National Observatory in 1999.

The details of observations are presented elsewhere (Hameed & Devereux 2005). Hα

emission is distributed, primarily, in an annulus, and individual HII regions can be

identified on the ring. There is some Hα emission within the ring, but it is difficult to

tell from the image if the emission is diffuse or if it contains HII regions. The Hα ring

follows the optical dust lane but is located on its inner side. High extinction possibly

obscures ionized emission from the dust lane itself.

Total Hα flux for M104, uncorrected for internal or external extinction, is calcu-

lated to be ∼ 0.8 × 10−12 ergs s−1 cm−2, which translates to a luminosity of ∼ 7.6×

1039 ergs s−1. Using Kennicutt’s (1998) formula, we derive a star formation rate of

∼ 0.1 M⊙ yr−1, which is lower than the average star formation rate (0.9 M⊙ yr−1)

for early-type spirals (Hameed & Devereux 2005).

Fig. 3.6 shows that X-ray intensity drops abruptly in the field covered by the

front side of the Hα disk, corresponding to the inner region of the cold gas disk of

the galaxy. This means that the Hα-emitting region does not contribute appreciable

amounts to X-ray radiation. In contrast, good Hα/X-ray correlation is typically seen

in late-type spirals (e.g., Strickland et al. 2004; Wang et al. 2003). In fact, the diffuse

X-ray intensity in M104 is so low in the field covered by the front side of the cool

gas disk that the disk must be absorbinga large fraction of X-ray emission from the

region beyond.
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Figure 3.6 ACIS-S 0.3-1.5 keV intensity contours overlaid on the continuum-
subtracted Hα image of M 104. The X-ray intensity is smoothed adaptively with
a count-to-noise ratio of 4 after source-subtraction.

We probe the azimuthal variation of diffuse emission in the inner region. Fig. 3.7

shows the azimuthal ACIS-S 0.3-1.5 keV intensity distributions. The distributions

deviate from axisymmetry significantly. But the deviations are largely coupled with

the orientation of the bulge (0◦ aligns with the minor axis). When the azimuthal

intensity distributions are measured within elliptical annuli with an axis ratio similar

to that of the bulge (Fig. 3.7), the deviations are significantly reduced, with smaller

scale fluctuations remaining in certain azimuthal ranges, especially in the inner region.

For example, dips present at ∼ 200◦−250◦ and ∼ 330◦−350◦ find their counterparts

in Fig. 3.6. At larger radii, only moderate deviations from axisymmetry can be seen

from the azimuthal intensity distributions for the PN data. When an axis ratio of 0.8

is adopted to reflect the geomoetry of the bulge, most of the deviations vanish and

no substantial fluctuations are present. This is evidence that the diffuse emission is

nearly axisymmetric at large scale.

49



Figure 3.7 Azimuthal diffuse intensity distributions in the ACIS-S 0.3-1.5 keV band,
averaged within annuli with inner-to-outer radii of 30′′-1′ (black triangles) and 1′-2′

(black squares). As comparison are similar distributions (red triangles and squares)
within elliptical annuli of an axis ratio of 2/3. The angle is counterclockwise from the
minor axis (north). Contribution from unresolved sources is subtracted according to
the underlying K-band light (§ 3.4.1; Table 3.2). Adaptive binning is taken to have
a minimum step of 15◦ and to achieve a signal-to-noise ratio better than 3.

3.4.2 Spectral properties of the diffuse X-ray emission

With the above spatial properties in mind, we perform spectral analysis of source-

subtracted emission from a series of concentric annuli around the galactic center.

Specifically, spectra are extracted from two annuli with inner-to-outer radii of 30′′-1′

and 1′-2′ for the ACIS-S data and two annuli of 2′-4′ and 4′-6′ for the PN data. The

dust lane region (§ 3.4.1.1) is excluded from the spectral extraction.
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Two factors complicate the background determination in our spectral analysis.

First, the sky location of M104 is on the edge of the North Polar Spur (NPS), a

Galactic soft X-ray-emitting feature (Snowden et al. 1995). The NPS introduces

an enhancement to the local background, particularly at low energies. Secondly, the

X-ray emission from M104 extends to at least 6′ from the galactic center (§ 3.4.1.1).

Thus a local background cannot be extracted for the ACIS-S data. While the PN

FoV still allows for a local background, the vignetting effect at large off-axis angles

needs to be properly corrected for in the background subtraction. Generally, this can

be achieved with the “double-subtraction” procedure: a first subtraction of the non-

vignetted instrumental background followed by a second subtraction of the vignetted

local cosmic background. Such a procedure relies on the assumption that the template

instrumental background can effectively mimic that of a particular observation.

We intend to perform the “double-subtraction” procedure to determine the back-

ground. First we extract the PN background spectrum from a source-subtracted

annulus with inner-to-outer galactocentric radii of 8′-11′, a region containing little

emission from the galaxy (Fig. 3.4). However, at energies ≥ 5 keV, where the in-

strumental background is predominant, the local background spectrum is found to

be significantly harder than the spectrum extracted from the FWC data. Therefore,

we decide to characterize the local background spectrum of PN, both instrumental

and cosmic, by a combination of plausible components. To model the instrumental

background, a broken power-law plus several Gaussian lines is applied (Nevalainene,

Markevitch & Lumb 2005). The modeling of the cosmic background consists of three

components. Two of them are thermal (the APEC model in XSPEC), representing

the emission from the Galactic halo (temperature ∼ 0.1 keV) and the NPS (temper-

ature ∼ 0.25 keV; Willingale et al. 2003), respectively. The third component is a

power-law with the photon index fixed at 1.4, representing the unresolved extragalac-

tic X-ray emission (Moretti et al. 2003). Our combined model results in a good fit to
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the local background spectrum. We note that the decomposition of the local back-

ground is not unique, especially at lower energies (∼< 1 kev). We verify our modeling

by the fact that the fitted parameters of these commonly used cosmic components

are in good agreement with independent measurements (e.g., Willingale et al. 2003;

Moretti et al. 2003). The background spectrum in the 0.5-7 keV range, grouped to

have a minimum number of 30 counts in each bin, is shown in Fig.3.8. The model,

scaled according to the corresponding sky areas, is included in the following fit to the

PN spectra of the unresolved emission.

Figure 3.8 The PN background spectrum with the best-fit model. Note for a strong
instrumental line at the energy of ∼ 1.5 keV. See text for details.

The spectral shape of the ACIS-S instrumental background is rather stable at

energies ≥ 0.5 keV1. Also, as the ACIS-S spectra of source-subtracted emission are

extracted within the central 2′ where the surface intensity is peaked, a small uncer-

tainty in the instrumental background subtraction would only cause a minor effect in

the analysis. Therefore, we directly subtract a “stowed backgroud” spectrum from

1http://cxc.harvard.edu/contrib/maxim/stowed/
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Table 3.4. 2-D Fits to the spectra of unresolved emissiona

Parameter 30′′ − 1′ 1′ − 2′ 2′ − 4′ 4′ − 6′

Temperature (keV) . . . . . . . . . . . . . . . . . . . . . 0.62+0.09
−0.09 0.59+0.07

−0.10 0.63+0.07
−0.06 0.78+0.13

−0.11

Abundance (solar) . . . . . . . . . . . . . . . . . . . . . . 1.4 (> 0.4) same same same
Photon index . . . . . . . . . . . . . . . . . . . . . . . . . . 1.51b same same same
Normalization (APEC; 10−5) . . . . . . . . . . . 2.3+0.5

−0.5 3.6+0.7
−0.7 3.8+0.6

−0.6 2.7+0.7
−0.8

Normalization (PL; 10−5) . . . . . . . . . . . . . . 1.1+0.8
−0.8 1.2+1.0

−0.9 4.0+0.8
−0.8 2.1+1.2

−1.1

f0.2−2 keV (APEC; 10−14 ergs cm−2 s−1) 6.2 9.3 9.9 7.2
f0.3−7 keV (PL; 10−14 ergs cm−2 s−1) 7.2 8.0 26.5 14.1

Note. — The spectra extracted from four consecutive annuli are fitted by a combined
model of APEC+power-law (PL) with the Galactic foreground absorption.

the ACIS-S spectra of source-subtracted emission and group them to achieve a signal-

to-noise ratio better than 3. The remaining cosmic X-ray background are modeled

with the same components as for the PN spectra. We note that an additional factor

of 0.43, estimated from the LF obtained by Moretti et al. (2003), is multiplied to

the scaling of the extragalactic component in order to account for the lower source

detection limit in the ACIS-S data (Wang 2004).

The spectra show a clear line feature at ∼0.9 keV (Fig. 3.9), presumably due to

the Fe L-shell complex contributed by the hot gas, while at energies above 1.5 keV

the spectra are dominated by the residual emission of discrete sources. We account

for the discrete contribution with a power-law model (PL) with a fixed photon index

of 1.51 (§ 3.3), again assuming that its collective spectral shape is same as that of

the detected sources. This PL, combined with a thermal plasma emission model

(APEC) characterizing the emission of hot gas, is used to simultaneously fit the four

spectra. Both components are subject to the Galactic foreground absorption. The

temperature of the hot gas is allowed to vary, but the abundance is linked among

the four spectra. We adopt the abundance standard of Grevesse and Sauval (1998)

and set a physically meaningful upper limit of 10 times solar for the abundance. The
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Table 3.5. 3-D Fits to the spectra of unresolved emissiona

Parameter 30′′ − 1′ 1′ − 2′ 2′ − 4′ 4′ − 6′

Temperature (keV) . . . . . . . . . . . . . . . . . . . . . 0.64+0.14
−0.20 0.57+0.14

−0.16 0.58+0.10
−0.25 0.75+0.10

−0.11

Abundance (solar) . . . . . . . . . . . . . . . . . . . . . . 1.7 (> 0.4) same same same
Photon index . . . . . . . . . . . . . . . . . . . . . . . . . . 1.51b same same same
Normalization (APEC; 10−5) . . . . . . . . . . . 2.0+0.7

−0.7 2.7+0.8
−0.8 4.6+1.1

−1.1 4.9+1.5
−1.5

Normalization (PL; 10−5) . . . . . . . . . . . . . . 1.1+0.8
−0.8 1.2+1.0

−0.9 4.0+0.8
−0.9 2.2+1.2

−1.1

f0.2−2 keV (APEC; 10−14 ergs cm−2 s−1) 6.1 9.3 10.0 7.0
f0.3−7 keV (PL; 10−14 ergs cm−2 s−1) 7.2 8.0 26.2 14.6

Note. — The spectra extracted from four consecutive annuli are fitted by a combined
model of PROJCT(APEC)+power-law (PL) with the Galactic foreground absorption, where
the emission is deprojected and the parameters are measured for consecutive shells.

model gives a statistically acceptable fit to all four spectra, with the overall χ2/d.o.f.

= 481.9/511. Fit results (Table 3.4) suggest that the gas temperature vary little

with radius. Interestingly, the metal abundance (> 0.4 solar) is well distinguished

from very sub-solar values that were often reported in galactic X-ray studies (e.g.,

NGC 253, Strickland et al. 2002; NGC 4631, Wang et al. 2001). We suggest that this

owes to the proper modeling of the local background, especially at energies below

0.7 keV, where the thermal continuum from the galaxy is highly entangled with

the background components. An example of this kind has also been presented by

Humphrey & Buote (2006), who find near-solar iron abundances for the hot gas in

most of their sample early-type galaxies.

We further use the PROJCT model in XSPEC to fit the spectra for a 2-D to 3-D

deprojection, i.e., the fitting parameters are measured for consecutive spherical shells.

The fit is of similar significance, with a χ2/d.o.f. = 483.2/511. Fit results are listed

in Table 3.5, again indicating a quasi-isothemal hot gas with marginally super-solar

abundance in the bulge of M104.

The fitted amount of the PL component in individual spectrum is verified by

estimating the contribution of unresolved galactic sources. Wang (2004) obtained
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Figure 3.9 Spectra of the source-subtracted emission of M 104, extracted from concen-
tric annuli of 30′′-1′ (black) and 1′-2′ (red) from the ACIS-S, and 2′-4′ (green) and 4′-6′

(Blue) from the PN. The two ACIS-S spectra are “stowed background”-subtracted.
The best-fit 3-D model (see text) is also shown.

the LF for the detected galactic sources, mostly LMXBs. Assuming that this LF is

also valid for sources below the source detection limit and varies little among the

regions of our spectral interest, the contribution of unresolved sources can be taken

as the integrated flux from the LF, weighted by the amount of K-band light within

individual annulus. We note that the integrated flux of unresolved sources in the PN

is ∼4 times higher than that in the ACIS-S, due to the higher source detection limit

in the PN. The fitted PL fluxes (Table 3.5) are consistent with the above estimation

to within 10% (25%) for the ACIS-S (PN) spectra. The fluxes are also consistent with

the X-ray-to-K-band intensity ratio obtained from the spatial analysis (Table 3.2),

given a count rate to flux conversion factor predicted by the PL.

Assuming a filling factor of unity, the mean densities of hot gas are ∼6.6, 2.8, 1.2

and 0.79 ×10−3 cm−3 in the four consecutive shells with increasing radii, derived from

the 3-D spectral analysis (Table 3.5). These are shown versus radius in Fig. 3.10.
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Also shown is the density profile inferred from the best-fit deVaucouleur’s law to

the radial intensity distributions (§ 3.4.1.1; Young 1976), with the assumption that

the temperature of gas is constant along with radius. This profile fairly matches

the spectral measurement, indicating consistency between our spatial and spectral

analyses.

As shown in § 3.4.1.2, deviations from the assumed axisymmetry are present in the

diffuse emission, especially in the inner region. Nevertheless, even in the innermost

annulus, the deviations would only introduce an uncertainty of 30% in the average

intensity, or ∼15% in the measured density. Therefore, the presence of the moderate

deviations does not qualitatively affect the determination of the radial structure of

hot gas and its implications as we discuss below.

The total mass of hot gas contained in the shells is ∼4.6 ×108 M⊙ yr−1, and

the intrinsic 0.2-2 keV luminosity from our spectral extraction region is ∼ 3.1 ×

1039 ergs s−1. We note that these values can be approximated as the total mass

and luminosity of hot gas in M104, given the steep density distribution (§ 3.4.1.1).

For example, the luminosity within the central 6′ is about 75% of the total for a de

Vaucouleur’s distribution with a half-light radius of 2.′5.

3.5 Discussion

3.5.1 The thermal structure of hot gas

We further compare the measured density profile with that predicted from variant

thermal structures that may be assumed for the hot gas. One commonly assumed

case is that the gas is in hydrostatic equilibrium, i.e., the density profile is simply

determined by the gravitational potential and the equation of state for the gas. A

second case is that the gas is in the form of a large-scale outflow, i.e., a galactic wind

(e.g., Mathews & Baker 1971; Bregman 1980; White & Chevalier 1983), in which
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Figure 3.10 Crosses: the measured density of hot gas versus radius; Curves: the best-
fit density profile to the radial surface intensity distribution (solid), the predicted
density profiles of an adiabatic (dotted) or isothermal (dashed) gaseous corona in
hydrostatic equilibrium and an 1-D steady galactic wind (dot-dashed). The profiles
are assumed to be equal to the measurement at the first bin. See § 3.5 for details.

the physical structure of the gas is regulated by the energy and mass input from the

stellar content.

We first characterize the 1-D distribution of the gravitational mass for the galactic

bulge and halo. The stellar distribution in projection is assumed to follow the de

Vaucouleur’s law with a half-light radius of 1′ (∼ 2.6 kpc; Jarrett et al. 2003). Given

the K-band magnitude of M104, the total stellar mass is estimated to be 1.6×1011 M⊙,

according to the K-band mass-to-light relation of Bell & de Jong (2001). However,

Bridges et al. (1997) found a kinematic mass about three times of this value within
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a projected radius of ∼ 15 kpc. Therefore, a second gravitational component, i.e.,

dark matter, is considered. We assume that the distribution of dark matter follows

the NFW profile (Navarro, Frenk & White 1996) with a scale radius of 20 kpc. This

chosen scale radius is rather arbitrary but typical for a galactic dark matter halo. The

mass density of the dark matter is such that the total mass (stars and dark matter)

within a projected radius of 15 kpc be 5×1011 M⊙.

For the hydrostatic equilibrium case, the density profile is calculated for two plau-

sible states of the gas: adiabatic and an isothermal. For the galactic wind case, we

have developed a simple 1-D steady dynamical model (see Appendix). Given the

above distributions of stars and dark matter, the density profile of a galactic wind

is determined by the rates of total energy and mass inputs to the gas which can be

estimated from empirical measurements (see § 3.5.3). The measured and modeled

density profiles are together shown in Fig. 3.10, in which the modeled ones are as-

sumed to match the measurement at the first bin. We note that there is a remarkable

degeneracy between the measured density and metal abundance. Since we have as-

sumed a single abundance independent of the radius, the overall shape of the density

profile is not affected by this density-abundance degeneracy.

Fig. 3.10 shows that an adiabatic gas in hydrostatic equilibrium (dotted curve) is

inconsistent with the measurement, whereas neither an isothermal gas in hydrostatic

equilibrium (dashed curve) nor a galactic wind (dot-dashed curve) can be completely

ruled out given the relatively large uncertainties in the measurement. The isothermal

case is favored by the measured temperature profile with little variation, but is subject

to further considerations in which stellar feedback to the hot gas is involved (see

below). A galactic wind predicts a decreasing temperature with increasing radius

(e.g., Chevalier & Clegg 1985) and is apparently in contradiction with the temperature

measurement. However, in the galactic wind case, gas moves rapidly outward. Beyond

certain radius, the recombination timescales of some species of ions may become longer
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than the local dynamical timescale. Recombinations of such ions occur at larger

radii than the collisional ionization equilibrium (CIE) would predict. This process is

called a “delayed reconbination” (e.g, Ji, Wang & Kwan 2006). Thermal processes

from regions involving delayed reconbinations are of non-equilibrium ionization (NEI).

Usually, when using a CIE plasma emission model (e.g., APEC) to fit an X-ray

spectrum of hot gas, temperature is effectively determined by the position of line

features that are prominent in the spectrum. Therefore, had the NEI emission from

a galactic wind been observed, the measured temperature with a CIE model would

be higher than the local gas temperature of the region being observed. Also, the

emission measure would be higher than what the density distribution of the wind

predicts. Such a possibility in M104 deserves further investigation.

3.5.2 Accretion from the intergalactic medium?

We now turn to discuss the origin of the hot gas in specific scenarios. Given the

high circular rotation speed of M104 (∼ 370 km s−1), it is a good candidate to look

for X-ray signals from an accreted gaseous halo around it. Toft et al. (2002, therein

Fig. 3) predict a 0.2-2 keV X-ray luminosity of ∼ 1041 ergs s−1 for galaxies with

circular rotation speeds similar to that of M104, about 95% of which coming from

within 20 kpc of the disk. However, the observed 0.2-2 keV diffuse X-ray luminosity

from M104 is only ∼ 3 × 1039 ergs s−1 within the central ∼ 15 kpc. Therefore, there

is a remarkable discrepancy between the amount of observed extraplanar hot gas and

that predicted by numerical simulations, similar to the case of NGC 2613 (§ 2). We

emphasize that such a discrepancy might be due to an inadequate treatment of the

stellar/AGN feedback in the simulations.

3.5.3 Stellar feedback from M104

Empirically, stars in a galactic bulge continuously deposit energy and mass to

the interstellar medium (ISM) at rates of ∼1.1 × 1040[LK/(1010L⊙,K)] ergs s−1 and
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∼0.02[LK/(1010L⊙,K)] M⊙ yr−1 (e.g., Mannucci et al. 2005, Knapp, Gunn & Wynn-

Williams 1992), respetively, where LB is the blue luminosity of the bulge. Both the

stellar mass loss and the Type Ia SN rates are believed to be substantially greater at

high redshifts when the bulges are young (e.g., Ciotti et al. 1991). Meanwhile, if the

metals contained in the stellar ejecta are uniformly mixed with the ISM, the mean

iron abundance of the ISM is expected to be ZFe = Z∗,F e + 9.7(MFe/0.7M⊙), where

MFe is the iron mass yield per Type Ia SN (e.g., Nomoto, Thielemann & Yokoi 1984)

and a solar iron-to-hydrogen ratio in number of 3.16×10−5 is adopted (Grevesse and

Sauval 1998).

Had most of the stellar feeback been retained by the ISM in the galaxy since the

onset of Type Ia SNe, it is expected that the observed X-ray luminosity and mass

of hot gas be the amount inferred from the above energy and mass input rates. In

the case of M104, LK = 18 × 1010L⊙,K , corresponding to an energy input rate of

∼2.0×1041 ergs s−1 and a mass input rate of ∼0.4 M⊙ yr−1, or a total mass input

of 4×109 M⊙ over a period of 10 Gyr. However, our measurement (§ 3.5.1) shows

that the rate of energy released from and the mass contained in the hot gas of M104

are nearly two orders of magnitude lower than the empirical expectations. Given the

prominent Fe L-shell features in the spectra, the fitted metal abundance should be

largely weighted by the abundance of iron. Hence the fitted value is also lower than

the empirical expectation, if the iron ejected by the SNe is uniformly distributed into

the ISM. It is worth noting that metal abundance can easily be under-estimated in

the spectral analysis of X-ray CCD data, especially with over-simplified models (e.g.,

in the case of NGC 1316 as demonstrated by Kim & Fabbiano 2003). Nevertheless,

the lack of metals in M104 is evident and mostly tied to the small amount of X-ray

emitting gas. Overall, there is a “missing stellar feedback” problem in M104.

In fact, this “missing stellar feedback” problem is often met in the so-called low

LX/LB early-type galaxies (typically Sa spirals, S0, and low mass ellipticals), where
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the X-ray luminosity, mass and metal content of the hot gas inferred from observa-

tions represent only a small fraction of what is expected from the stellar feedback

(Irwin, Sarazin & Bregman 2002; O’Sullivan, Ponman & Collins 2003). These dis-

crepancies are a clear indication for Type Ia SN-driven galactic winds (e.g., Irwin et

al. 2002; Wang 2005). Globally, winds can continuously transport the bulk of stellar

depositions into the IGM, leaving only a small fraction to be revealed within the op-

tical extent of the host galaxy. Locally, our analysis (§ 3.5.1) for M104 indeed shows

that the thermal structure of a wind is reasonably consistent with the observation,

although more detailed considerations involving NEI processes in the gas are likely

needed.

3.5.4 Feedback from the central AGN

Feedback from AGNs is a potential and sometimes favorable mechanism to affect

the accretion of the IGM and the structure of hot gas. This is suggested to be the case

in M104 (Pellegrini et al. 2003), even though its AGN has only a very sub-Eddington

luminosity. AGN feedback, if present, would disturb the gas distribution in the cir-

cumnuclear region. For example, dips seen in the X-ray intensity distributions at

certain azimuthal ranges (Figs. 3.6 and 3.7) might be the result of hot gas removal by

the collimated ejecta from the AGN. However, no strong evidence of such collimated

ejecta is seen in the radio continumm map of M104 (Bajaja et al. 1988). Furthermore,

the inclusion of the AGN feedback would only increase the energy discrepancy dis-

cussed above. Therefore, although the possibility of AGN feedback can not be ruled

out, we suggest that it plays little role in regulating the large-scale structure of hot

gas in M104.
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3.6 Summary

We have conducted a systematic analysis of the XMM-Newton and Chandra X-

ray observations of the nearby massive Sa galaxy M104. The main results of our

analysis are as follows:

• We have detected large-scale diffuse X-ray emission around M104 to an extent

of ∼ 20 kpc from the galactic center, which is substantially more extended than

the stellar content;

• While at large scale the distribution of the diffuse X-ray emission tends to be

smooth, intensity fluctuations are present in the inner region;

• Our spectral analysis of the diffuse emission reveals a gas temperature of ∼

0.6-0.7 keV, with little spatial variation, while the measured gas density drops

with increasing radius, in a way apparently different from the expected density

distribution of either an isothermal gas in hydrostatic equilibrium or a galactic

wind, assuming CIE emission;

• We have compared our measurements with the predictions of numerical sim-

ulations of galaxy formation and find that the observed 0.2-2 keV luminosity

(∼ 3.3 × 1039 erg s−1) is substantially lower than the predicted value;

• We have further compared the mass, energy, and metal contents of the hot

gas with the expected inputs from the stellar feedback in M104. Much of the

feedback is found to be missing, as is the case in some other X-ray faint early-

type galaxies. A logical solution for this missing stellar feedback problem is the

presence of a galactic wind, driven primarily by Type Ia SNe.
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CHAPTER 4

CHANDRA DETECTION OF DIFFUSE HOT GAS IN AND

AROUND THE M31 BULGE

4.1 Introduction

The bulge of a galaxy, though consisting of mainly old stars, is a mecca of high-

energy activities. LMXBs, in the luminosity range of ∼ 1035 − 1038 ergs s−1, are

among the brightest X-ray sources observed in a galaxy like our own. At lower lumi-

nosities, typically ∼ 1030 − 1033 ergs s−1, are numorous cataclysmic variables (CVs)

and coronally active binaries (ABs) that can be individually detected normally only

in the Solar neighborhood. Such stars are most likely responsible for the bulk of the

unresolved 2-10 keV emission observed in the Galactic bulge/ridge (Revnivtsev et

al. 2006), whereas lower energy X-rays from the same regions are subject to heavy

interstellar absorption and hence difficult to detect. One thus needs external per-

spectives of nearby galaxies. Indeed, Revnivtsev et al. (2007) have shown that the

unresolved emission from the low-mass bulge-dominated galaxy M32 over the entire

0.5-7 keV range is primarily stellar in origin.

The ISM in a galactic bulge is also expected to be extremely energetic, chiefly due

to a concentration of Type Ia supernovae (SNe). The bulk of the mechanical energy

release from such SNe is expected to be in shock-heated gas which can be naturally

traced by its X-ray emission. However, the observed luminosity of the unresolved

(source-removed) X-ray emission from a galactic bulge typically accounts for only a

small fraction (a few %) of the expected SNe energy release. How the remaining

energy is dissipated remains unknown. It may be propagated into the large-scale
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halo of the host galaxy in a mechanical outflow or sound waves, for example. In any

case, determining the fate of this “missing” stellar feedback energy is fundamentally

important in our understanding of its role in galaxy evolution (e.g., Wang 2007). Here

we present the first step of such a study.

We detect the truly diffuse soft X-ray emission from the bulge of M31 — the

nearest spiral galaxy (d ∼780 kpc; 1′=̂0.23 kpc) that is similar to our own Galaxy.

The galaxy contains no AGN, so the non-nuclear X-ray emission can be studied even in

the very central region. The M31 bulge has little cool gas and star formation, so the X-

ray contribution from young stellar populations is minimal. The moderate inclination

(∼ 78◦) of the M31 disk and the relatively low Galactic foreground absorption (NH ∼

6.7×1020 cm−2) also allow us to detect extraplanar X-ray emission in the 0.5-2 keV

range. Indeed, detections of diffuse soft X-ray emission have been claimed, based on

spectral decompositions (Shirey et al. 2001; Takahashi et al. 2004). However, such

a decomposition depends sensitively on rather arbitrary choices of spectral models

for various components contributing to the spectrum, both diffuse and discrete. Our

approach here is to spatially map out the diffuse X-ray emission (in addition to its

energy dependence) and to study its relationship to other stellar and interstellar

components of the M31 bulge.

4.2 Data preparation

Our X-ray study was based on 31 Chandra ACIS archival observations of M31

taken by 2005. The majority (21 out of 31) of these observations were taken with the

ACIS-I array and aimed toward the M31 bulge with the aim-points located within 1′

from the galactic center. To maximize the coverage and uniformity of the combined

field, we utilized data only from the front-illuminated CCDs (the ACIS-I array and

the S2 chips) of the 21 observations. For same reason, we also included I-chip data

from four ACIS-S observations. These data together cover a field of r ∼18′ around
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the center of M31. Furthermore, for local sky background determination, we used six

additional ACIS-I observations which were aimed toward an “off-field” ∼20′ southwest

to the center.

We reprocessed the data using CIAO (version 3.3), following the Chandra ACIS

data analysis guide. We generated count and exposure maps for each observation in

the 0.5-1, 1-2, 2-4 and 4-8 keV bands. Corresponding instrumental background maps

were generated from the “stowed” data, after calibrating the 10-12 keV count rate

with individual observations. The total effective exposure is ∼95 ks in the central

region and gradually drops to ∼< 20 ks at radii r ∼> 10′.

Following a procedure detailed in Wang (2004), we performed source detection

in the soft (0.5-2 keV), hard (2-8 keV) and broad (0.5-8 keV) bands. With a local

false detection probability P ≤ 10−6, a total of 305 sources are detected in the field.

To study the unresolved X-ray emission, we excluded each of the sources from maps

of individual observations with circular regions enclosing ∼97% of the source counts.

The residual of this source removal contributes about 10% of the remaining unre-

solved X-ray emission in the field. The source-removed maps were then reprojected

to generate combined images in the four bands. We further statistically corrected for

the variation of the detection incompleteness across the field, to a common detection

limit of 8×1034 ergs s−1 (0.5-8 keV). Because of the relatively flat luminosity function

of the sources (mostly LMXBs; Voss & Gilfanov 2007), the correction (normalized

according to the 2MASS K-band intensity; Fig. 4.1a; Jarrett et al. 2003) typically

amounts to less than 6% of the unresolved emission. For the same reason, the residual

contribution from LMXBs at lower luminosities is found to be negligible.

4.3 Analysis and results

Fig. 4.1a shows the 0.5-2 keV unresolved X-ray emission from a 30′ by 30′ region

around the center of M31, compared with the near-IR K-band image. In the inner
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bulge and along the major-axis of the disk, the X-ray emission shows morphological

similarities with the K-band light, whereas at large radii the X-ray morphology ap-

pears substantially rounder and is elongated approximately along the minor-axis, in

particular at the southeast side, indicating the presence of diffuse hot gas.

4.3.1 The collective stellar emission

To quantify the diffuse hot gas, we need to isolate the collective stellar contribu-

tion, which presumably spatially follows the K-band light distribution. Optimal for

this purpose is to inspect regions along the major-axis, where the soft X-ray emission

morphologically mimics the K-band light better than in regions further away from the

major-axis (Fig. 4.1a). Fig. 4.2a shows the unresolved X-ray intensity profiles along

the major-axis, together with the corresponding K-band intensity profile. Indeed,

the K-band profile as a “model” fits the hard band profile (triangles in Fig. 4.2a)

well with a normalization factor NK = 4.3 ± 0.2×10−5 cts s−1 arcmin−2/(MJy sr−1).

Therefore, the hard band X-ray emission is fully consistent with an origin in the old

stellar population.

The collective stellar emission should also contribute at lower energies. However,

while the soft X-ray profile (diamonds in Fig. 4.2a) can match that of the K-band

light reasonably well at major-axis radii ∼> 8′, there is a clear excess above the col-

lective stellar contribution in the inner region. This soft excess in the bulge is an-

other indication for the presence of hot gas, although its exact spatial distribution is

yet to be determined. We include an exponential law to approximately account for

the excess. The resultant fit is satisfactory (solid curve in Fig. 4.2a), with a fitted

NK = (25.0± 2.4)×10−5 cts s−1 arcmin−2/(MJy sr−1). The fit predicts that the stel-

lar component contributes about 60% to the soft emission within a major-axis raidus

of ∼8′ and becomes dominant further beyond. The fit also reveals an interesting drop

of the X-ray to K-band intensity ratio within the central 0.′5 (more clearly indicated
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in a radial intensity profile which is not shown here), with values still comparable to

or greater than that at the large major-axis radii. The nature of this ratio drop is

currrently being investigated, and we note that it has little effect on the result of the

above procedure.

( b )( a )

Figure 4.1 (a) Background-subtracted, exposure-corrected and smoothed intensity
contours of the Chandra ACIS-I 0.5-2 keV unresolved emission overlaid on the 2MASS
K-band image of M31. The contours are at 3, 6, 10, 16, 32, 64, 128, 196, 256 and 512
×10−4 cts s−1 arcmin−2. The galactic center is marked by a plus sign. (b) Contours of
the diffuse (stellar contribution-subtracted) X-ray intensity (solid) and K-band light
(dotted) overlaid on the Spitzer MIPS 24 µm image.

4.3.2 The diffuse X-ray emission

Fig. 4.1b shows an image of the truly diffuse emission after subtraction of the

collective stellar contribution from the total unresolved X-ray emission of M31. The

emission along the major-axis is confined within a projected distance of ∼8′ (∼1.8

kpc) from the galactic center to the southwest and is slightly more extended to the

northeast. The overall morphology is elongated approximately along the minor-axis,

with an extent of more than 15′ (∼3.5 kpc) on both sides with respect to the center;

but the emission appears considerably fainter on the northwest side and somewhat

interrupted by the presence of spiral arms. This asymmetry is further illustrated
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in Fig. 4.2b, where diffuse X-ray intensity profiles along the minor-axis are shown

separately in the 0.5-1 keV and 1-2 keV bands. The asymmetry can be naturally

explained by the soft X-ray absorption of the galactic disk, as its near side is to the

northwest. In particular, a major spiral arm and the star-forming ring, as traced by

the peaks of the Spitzer MIPS 24 µm emission (Gordan et al. 2006), apparently cast

deep X-ray shadows on the northwestern side. Estimated from the relative depth of

these shadows, the equivalent X-ray-absorbing column densities are ∼1.2×1021 cm−2

and ∼3.6×1021 cm−2, consistent with the hydrogen column densities of the spiral arm

and the star-forming ring (Nieten et al. 2006). No similar shadow is apparent on the

southeastern side, indicating that the emission on this side is mostly from the bulge

region in front of the disk. Therefore, the diffuse emission seems to have an intrinsic

(absorption-corrected) overall coherent morphology reminiscent of a bi-polar outflow

from the bulge. The soft X-ray absorption by the disk suggests that the vertical

extent of the X-ray-emitting gas from the galactic plane is at least 2.5 kpc.

We characterize the profiles (Fig. 4.2b) at distances of −7′ < z < 0′ off the

major-axis with an exponential law: I(z) = Ige
−|z|/z0, where Ig is the central in-

tensity and z0 is the projected scale-height. The best-fit z0, being 2.′5±0.′1 (∼0.6

kpc), shows no statistically significant difference between the two bands, indicating

that the hot gas in the bulge has little temperature variation. The hardness ratio,

Ig,1−2keV /Ig,0.5−1keV ∼0.25, is consistent with a spectrum from an isothermal gas with

a temperature of ∼0.4 keV, subject to the Galactic foreground absorption. For com-

parison, the hardness ratio of the stellar emission is ∼0.72; the scale-heigh of the

K-band light is ∼2.′1, if characterized by an exponential law as well. Therefore, the

diffuse X-ray emission is both softer and more extended than the stellar contribution.

At |z| ∼> 7′, however, the soft X-ray intensity distribution levels off (Fig. 4.2b). Part

of this leveling may be related to emission associated with the galactic disk, partially

compensating its X-ray absorption. The exact intensity level at such large distances,
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( b )( a )

Figure 4.2 (a) 0.5-2 (diamonds) and 2-8 keV (triangles) keV intensity profiles of the
unresolved X-ray emission along the major-axis. A position angle of 45◦ is adopted.
The positive side is toward the southwest. The full width for averaging the intensity is
8′. Spatial binning is adaptively ajusted to achieve a signal-to-noise ratio better than
4, with a minimum step of 6′′. The X-ray profiles are characterized by a normalized K-
band intensity profile (dashed curves), and an additional exponential law for the soft
band (solid curve). (b) 0.5-1 (crosses) and 1-2 keV (diamonds) intensity profiles of the
diffuse emission along the minor-axis; the stellar contribution has been subtracted.
The positive side is toward the northwest. The full width for averaging the intensity
is 16′. The adaptive steps achieve a signal-to-noise ratio better than 3. The solid
curves represent a fit with an exponential law. The corresponding 24 µm intensity
profile is shown by the dashed curve. The arrows mark the positions of the shadows
casted by a spiral arm and the star-forming ring.

however, depends on an accurate subtraction of the local sky background which has

been estimated in the off-field and may be biased (§ 2). The sky coverage of the

present ACIS observations is still too limited to accurately determine both the back-

ground and the large-scale distribution of the diffuse emission associated with the

bulge. Assuming the above exponential fit and temperature estimate as well as an

intrinsic symmetry with respect to the galactic plane, we infer a 0.5-2 keV luminosity

of the diffuse emission as ∼2.2×1038 ergs s−1. The flat tail parts of the profiles give

an additional ∼3×1037 ergs s−1.
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4.4 Discussion

In § 3.4.1 we have estimated the stellar contribution to the total unresolved X-ray

emission, which is a key step in isolating the truly diffuse emission. It is thus instruc-

tive to compare our result with independent measurements. Sazonov et al. (2006)

measured the collective X-ray emissivity (per unit stellar mass) of the old stellar pop-

ulations in the Solar neighborhood to be 9±3 × 1027 ergs s−1 M−1
⊙ in the 0.5-2 keV

band and 3.1±0.8×1027 ergs s−1 M−1
⊙ in the 2-10 keV band. Revnivtsev et al. (2006)

showed that the Galactic ridge X-ray emission closely follows the near-IR light that

traces the Galactic stellar mass distribution, and that the X-ray to near-IR intensity

ratio is consistent with the collective X-ray emissivity of old stellar populations in-

ferred from the Solar neighborhood. Revnivtsev et al. (2007) further found that the

0.5-7 keV unresolved X-ray emission and K-band stellar light in M32 have consistent

spatial distributions, but they did not explicitly give fitted parameters of the spectral

model, which would allow for an immediate comparison with the M31 values.

We have thus re-extracted the unresolved X-ray spectrum of M32 from two Chan-

dra ACIS-S observations (Obs.ID. 2017 and 5690) with a total exposure of 160 ks.

The spectrum can be adequately fitted by a model consisting of a power-law com-

ponent (with a photon index of 1.86+0.26
−0.21) and a thermal plasma component (tem-

perature of 0.45+0.15
−0.10 keV), with the Galactic foreground absorption. The collective

emissivity is 5.8±1.1(5.6±1.0)×1027 ergs s−1 M−1
⊙ in the 0.5-2 (2-10) keV band, con-

sistent with the values reported by Revnivtsev et al. (2007). The spectral model-

predicted ACIS-I count rate is ∼17.1 (3.9) ×10−5 cts s−1 arcmin−2/(MJy sr−1) in

the 0.5-2 (2-8) keV band. The hard band value agrees well with the measurement for

M31 (4.3±0.2×10−5), accounting for the residual photons spilling outside the source-

removal regions (∼ 10%; § 4.2). The soft band stellar emissivity of M31 (residual

LMXB contribution excluded) is a factor of 1.4± 0.3 higher than the M32 value, but

is consistent with that inferred from the Solar neighborhood. This discrepancy is not
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totally unexpected, considering various statistical errors and hiden systematic uncer-

tainties (e.g., in the mass-to-light ratio and in the spatial and spectral modeling).

We note that adopting the M32 stellar emissivity to remove the stellar contribution

in M31 would enhance the hot gas contribution in and around the M31 bulge, but

would not qualitatively alter the picture of the diffuse emission presented in § 4.3.2

and below.

The characterization of the diffuse hot gas sheds important insights into the energy

balance in the M31 bulge. The estimated luminosity of the hot gas (2.5×1038 ergs s−1)

is only about 0.6% of the expected SNe mechanical energy input, ∼4× 1040 ergs s−1.

As mentioned in § 4.1, this indicates that the input energy may be removed primarily

in an outflow. Dynamically, such an outflow tends to find its way along steeper

pressure gradient against the gravity of the galaxy, consistent with the observed bi-

polar morphology of the diffuse X-ray emission. If the gas were quasi-static, one

would expect its distribution to follow that of the gravitational potential, i.e., more

extended along the major-axis. However, the gas may not be hot enough to ultimately

escape from the deep gravitational potential of M31; it is also not clear how the outflow

interacts with the large-scale halo of M31 and how the mechanical energy is dissipated.

Similar considerations also challenge the studies of X-ray-faint elliptical galaxies (e.g.,

David et al. 2006). Ongoing numerical simulations would help to understand the

nature of the hot gas and its role in the evolution of these systems.

Our unambiguous detection of the diffuse hot gas in and around the M31 bulge

also helps to understand the soft X-ray enhancement observed toward the inner re-

gion of our Galaxy. The temperature of the hot gas associated with the M31 bulge,

0.4 keV, is similar to that with the Galactic bulge, as estimated from the ROSAT

all-sky survey (Snowden et al. 1997). Based on a hydrostatic model of the Galac-

tic bulge X-ray emission developed by Wang (1997), Almy et al. (2000) further in-

ferred a total 0.5-2 keV luminosity of ∼ 8 × 1038 ergs s−1, about four times greater

71



than our estimated M31 bulge luminosity. The relatively high luminosity of the

Galactic bulge manifests in the large extent of the soft X-ray enhancement from

the Galactic bulge. At Galactic latitudes b ∼ −15◦ (∼2 kpc from the plane), for

example, where both the confusion with the foreground emission features and the

interstellar absorption are relatively small, the intensity has an averaged value of

∼6(4)×10−4 ROSAT PSPC cts s−1 arcmin−2 in the 0.75 (1.5) keV band (Snowden

et al. 1997). Had this emission been detected from M31 by the Chandra ACIS-I, it

would be measured with an intensity of ∼10(3)×10−4 cts s−1 arcmin−2 in the 0.5-1

(1-2) keV band, about 2-4 times higher than the observed M31 values represented by

the tails (Fig. 4.2b). The intensity drops slowly and even shows local enhancements

at high latitudes (b ∼> −30◦; Snowden et al. 1997). Within |b| ∼< 10◦, the interstellar

absorption is severe, little can be inferred reliably about the properties of the hot

gas. It is in this corresponding region in the M31 bulge (|z| ∼< 6′) that the diffuse soft

X-ray intensity shows the steepest increase (by about one order of magnitute) toward

the galactic center. Such a mid-plane concentration of diffuse soft X-ray emission may

also be present instrinsically in our Galactic bulge. Clearly, a more careful comparison

and modeling of the X-ray data sets are needed in order to understand the similarity

and difference in the hot gas characteristics and their relationship to other galactic

properties (e.g., the effect of recent active star formation in the Galactic center).
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CHAPTER 5

M31∗ AND ITS CIRCUMNUCLEAR ENVIRONMENT

5.1 Introduction

Galactic circumnuclear environments, in which stars and interstellar medium

(ISM) are present in a dense state, are of vast astrophysical interest. The circumnu-

clear ISM, generally thought to be composed of externally acquired material and local

stellar ejecta, is the neccesary fuel for the SMBH to become an active galactic nucleus

(AGN). Theoretically, how the fuel is transported to the SMBH is not fully under-

stood (e.g., a recent review by Wada 2004). Observationally, direct links between

nuclear activities and the ISM properties remain to be uncovered. Timescales of both

dynamical and thermal processes are relatively short in the circumnuclear regions;

thus a passive accumulation of the multi-phase (e.g., neutral and ionized) ISM there

would inevitably lead to an interaction among its various components, and possibly

to enhanced nuclear and/or star-forming activities (e.g., Ho, Filippenko & Sargent

1997; Sarzi et al. 2007). That different phases of the ISM often co-exist in galactic

circumnuclear regions, some showing organized morphologies (e.g., van Dokkum &

Franx 1995; Macchetto et al. 1996; Knapen et al. 2005), is an indication of certain

mechanisms regulating the dynamics and energetics of the ISM, which remains to be

understood. Furthermore, the global ISM evolution, one of the fundamental issues

in galaxy evolution, can not be fully assessed without understanding its role in the

circumnuclear regions.

Owing to its proximity (d ∼780 kpc; 1′=̂0.23 kpc), the Andromeda Galaxy (M31)

provides an ideal testbed for studing a galactic circumnuclear environment. Indeed,
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the inner few hundred parsecs of M31 have received vast observational attention, from

radio to X-ray, tracing all phases of the ISM and various types of stars in the region.

As we will further discuss in the later sections, it is clear that the SMBH of M31 (i.e.,

M31∗) is currently inactive and thus brings minimal disturbance to its environment,

in which there is also little indication for recent star formation. Without the confusion

from such activities, this environment offers a unique “quiescent” close-up of possible

relationships among the various interstellar and stellar components as well as the

nucleus. In this work we aim to probe and to understand such relationships.

Studing the ISM against a high stellar radiation background is by no means

straightforward at any wavelength. In particular, it is practically difficult to isolate

the X-ray emission of truly diffuse hot gas from the collective emission of individu-

ally unresolved stars. In a recent study of the M31 bulge with Chandra observations

(Li & Wang 2007; hereafter LW07), we have successfully accounted for the collective

X-ray emissivity of faint, unresolved stars (see also Revnivtsev et al. 2007; Bogdán &

Gilfanov 2008) according to the near-infrared (NIR) K-band light distribution, and

thus revealed the presence of diffuse hot gas on kpc-scales (LW07; Fig. 5.1a). This

procedure in turn allows us to advance the high-resolution study of hot gas in the

circumnuclear regions.

The rich observational knowledge in the literature on M31∗ and its surrounding

matter (except for the hot gas yet to be studied) deserves a selected summary in § 5.2,

which in turn serves as a necessary guide for subsequent analyses. The preparation

of multiwavelength data used in this work is brifely described in § 5.3. We present

our analyses in § 5.4 and discuss the results in § 5.5. Important implications of the

study are summarized in § 5.6.

5.2 Observational knowledge on M31∗ and its environment

• Nucleus
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At optical wavelenths M31 hosts the well known double nuclei (so-called P1 and

P2; Lauer et al. 1993) peaking at an angular separation of about half-arcsec from

each other, which are interpreted to be an eccentric disk of typically K-type stars

with a total mass of ∼2× 107 M⊙ (Tremaine 1995). P2 is fainter than P1 in V-

and B-bands but brighter in U-band and in UV, consistent with an addition of

a 200 Myr old starburst embedded in P2 (called a third nucleus, P3; Bender et

al. 2005). The SMBH is embedded in P2/P3, with an inferred dynamical mass

of ∼1.4 × 108 M⊙ (Bender et al. 2005).

Crane, Dickel & Cowan (1992) reported detection of M31∗ from VLA 3.6 cm

observations, giving a flux density of 28 µJy. Basing on a 50 ks Chandra/HRC

observation, Garcia et al. (2005; hereafter G05) claimed a 2.5 σ detection of

M31∗ with a 0.3-7 keV intrinsic luminosity of ∼ 9 × 1035 ergs s−1.

• Stars

The photometry in NIR (Beaton et al. 2007) and optical (Walterbos & Ken-

nicutt 1998) bands shows little color gradient in the inner bulge. The colors

are typical of an old, metal-rich stellar population, equivalent to type G5 III

or K0 V. The Mg2 index of 0.324 measured from the central ∼30′′ (Burstein

et al. 1988) indicates a metallicity of [Fe/H]∼0.3 (Buzzoni, Gariboldi & Man-

tegazza 1992). For reference, the K-band luminosity within the central 1′ (2′) is

4.7 (11)×109 L⊙,K, which, according to the color-dependent (here a B−V color

of 0.95 is adopted) mass-to-light ratio of Bell & de Jong (2001), corresponds to

a stellar mass of 4.0 (9.3)×109 M⊙.

Using N-body simulations, Athanassoula & Beaton (2006) showed that a clas-

sical bulge plus a bar-like structure is able to reproduce the observed NIR light

distribution. This strongly argues the presence of a stellar bar in M31, which

is otherwise difficult to be recognized due to its high inclination.
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There is little evidence for any recent massive star formation in the circumnu-

clear regions. No massive (i.e., O and B-types) stars have been detected (King

et al. 1992; Brown et al. 1998); the far- to near-ultraviolet (FUV −NUV ) color

in the inner bulge suggests a stellar age over 300 Myr (Thilker et al. 2005); while

a small amount of ionized gas is indeed present, it shows optical line intensity

ratios atypical of conventional HII regions (Rubin & Ford; del Burgo, Mediavilla

& Arribas 2000; see below).

• Atomic gas

So far there is no reported detection of atomic hydrogen in the central 500 pc;

an upper lmit of HI mass is set to be 106 M⊙ (Brinks 1984).

• Warm ionized gas

The existence of ionized gas has long been known through detection of [O II],

[O III], Hα, [N II] and [S II] emission lines in the spectra of the inner bulge

(Munch 1960; Rubin & Ford 1971). Later narrow-band imaging observations

(Jacoby, Ford & Ciardullo 1985; Ciardullo et al. 1988; Devereux et al. 1994)

further revealed that the gas is apparently located in a thin plane, showing

filamental and spiral-like patterns, across the central few arcmins (so-called a

nuclear spiral; Fig. 5.1b). The electron density of the ionized gas, inferred

from the intensity ratio of [S II] lines, is ∼102-104 cm−3 within the central

arcmin, generally decreasing outward from the center (Ciardullo et al. 1988).

The gas is estimated to have a mass of ∼103 M⊙, an Hα+[N II] luminosity

of a few 1039 ergs s−1, and a very low volume filling factor consistent with its

filamental morphology (Jacoby et al. 1985). The relatively high intensity ratio

of [N II]/Hα, ranging from ∼1.3-3 in different regions (Rubin & Ford 1971;

Ciardullo et al. 1988), is typical of values found in the bulge/halo of early-type

galaxies (e.g., Macchetto et al. 1996) rather than in conventional HII regions
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(with typically [N II]/Hα ∼0.5). Kinematics of the gas is rather complex. A

major component of the velocity field apparently comes from circular rotation,

whereas the residuals indicate both radial and vertical motions (Rubin & Ford

1971).

That the stellar disk of M31 is probably barred offers a natural formation mech-

anism for the nuclear spiral: an inflow of gas from the outer disk driven by bar-

induced gravitational purterbations to form organized patterns (e.g., Englmaier

& Shlosman 2000; Maciejewski 2004). Indeed, by modelling the gas dynamics

in a bar-induced potential Stark & Binney (1994) obtained a satisfactory fit

to the observed position-velocity diagram of the ionized and neutral gas in the

central ∼2′. Another possible driver of gas is a recent head-on collision between

M31 and its companion galaxy, favorably M32 (Block et al. 2006). Although

details remain to be studied, it seems certain that an asymmetric gravitational

potential is responsible for the formation and maintenance of the nuclear spi-

ral in M31 and similar gaseous structures found in the inner regions of disk

galaxies (e.g., Regan & Mulchaey 1999). The ionizing source responsible for

the observed optical lines, however, is rather uncertain, especially in view of the

lack of massive stars in the region. We discuss possible ionizing sources in § 5.5.

• Molecular gas and dust

Detection of CO closest to the galactic center (∼1.′3 away) points to a promi-

nent dust complex, D395A/393/384, with an estimated molecular gas mass of

1.5×104 M⊙ (Melchior et al. 2000). This ∼100 pc-wide feature is also seen in

mid- and far-infrared (MIR/FIR) emission (see § 5.4.3).

Spitzer observations now provide the highest-resolution MIR/FIR view toward

the circumnuclear regions. We show below (§ 5.4.3) that these observations
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reveal the presence of interstellar dust and its remarkable association with the

nuclear spiral.

• Magnetic field and high energy particles

Under 10′′-30′′ resolution the radio continuum emission shows filamental pat-

terns apparently associated with the Hα emission, i.e., the nuclear spiral (Wal-

terbos & Grave 1985; Hoernes, Beck & Berkhuijsen 1998). The average power-

law spectral index (Sν ∝ να) of ∼-0.75 throughout the 2.8-73.5 cm range indi-

cates that the bulk emission is non-thermal (Walterbos & Grave 1985). Hoernes

et al. (1998) reported that the polarized emission is concentrated on the fila-

ments, and that the regular magnetic field appears to be oriented along the

filaments. Assuming energy equipartition and a volume filling factor f ∼ 1,

Hjellming & Smarr (1982) estimated an energy density of ∼0.5 eV cm−3 for the

energetic particles within the central 30′′. In regard to the likelihood that a

substantial fraction of the radio emission arises from the nuclear spiral, how-

ever, the assumption of f ∼ 1 is questionable, let alone that for the energy

equipartition.

5.3 Data preparation

This work involves a variety of high-resolution data from IR to X-ray. Procedures

of combining the archival Chandra/ACIS-I observations and spatially isolating the

diffuse X-ray emission in the M31 bulge have been described in LW07. The same X-

ray data set is used in this work to study the circumnuclear regions, for which a total

effective exposure of ∼90 ks is achieved. In order to maximize the counting statistics

to constrain the X-ray emission of M31∗, we added to the data set a 38 ks ACIS-S

observation (Obs.ID 1575; PI: S. Murray). This observation unfortunately appears

to be contaminated by a low-level, long-duration flare of cosmic-rays, hence we do

not include it for the analysis of the diffuse emission, which requires a more stringent

78



filtering of flares. In spectral analysis (§ 5.4.2), spectra extracted from individual

observations were combined into a single spectrum. The considered energy range

is restricted to 0.5-4 keV to miminize contamination by residual flares. A “stowed

background” was subtracted to remove the quiescent instrumental signals. Although

we do not have a precise knowledge of the sky background (LW07), it has a negligible

contribution in the analyzed spectra.

It is known that a bright X-ray source is located at ∼0.′′5 from the position of

M31∗ (G05; see § 5.4.1). Thus it is a challenge for the ACIS image, with its 0.′′49 pixel

size and typical PSF FWHM of 0.′′6-0.′′7 near the optical axis, to isolate the emission

from M31∗. Therefore we have followed the “sub-pixel event repositioning” technique

(Tsunemi et al. 2001; Li et al. 2003) to take advantage of sub-pixel information from

the dithering of the ACIS observations. The resultant “super-resolution” ACIS image

has a PSF FWHM of ∼0.′′5.

To trace the warm ionized gas we rely on the Hα+[N II] image of Devereux et

al. (1994) with a ∼2′′ resolution. For simplicity, in the following we refer to this

image as the Hα emission unless otherwise the [N II] component is specified. We also

obtained the Spitzer/IRAC (Program ID 99; PI: M. Rich), Spitzer/MIPS (Program

ID 3400; PI: G. Rieke), 2MASS K-band (Jarrett et al. 2003), HST/ACS F330W (Pro-

pos.ID 10571; PI: T. Lauer) and GALEX NUV/FUV (Gil de Paz et al. 2007) images

of M31 from public archives, in order to provide a multiwavelength, co-spatial view of

the various stellar and interstellar components. In particular, the Spitzer MIR/FIR

images offer unprecedented information on how the interstellar dust, and thus the

cold neutral gas to some extent, is distributed across the circumnuclear regions. We

note that, while the bulk of the FIR emission presumably arises from interstellar dust,

a substantial fraction of the MIR emission from the inner bulge comes from stellar

objects, i.e., emission of the circumstellar envelopes around asymptotic giant branch

(AGB) stars (e.g., Bressan, Granato & Silva 1998), the spatial distribution of which
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closely follows the bulge starlight (e.g., Barmby et al. 2006; Gordon et al. 2006).

Therefore we have subtracted a normalized K-band image from the IRAC 8 µm and

MIPS 24 µm images respectively to remove the stellar contribution. To do so, we first

constructed the radial (8 µm − K) and (24 µm − K) color profiles from consecutive

annuli. Within each annulus the intensity of each band was chosen to be the median

(instead of azimuthally-averaged) value to minimize fluctuation introduced by the

interstellar component. Both profiles show little (∼<10%) radial variation within the

central ∼3′ and thus represent the (8 µm − K) and (24 µm − K) flux ratios of the

stellar component, which were then adopted as normalization factors for the K-band

image. The ∼<10% uncertainty indroduced by the subtraction is expected to have

little effect on the interpretation of subsequent analysis. Hereafter the 8 and 24 µm

emission refer to the interstellar component only.

To further extend our multiwavelength view and to probe the conceiveable pres-

ence of gas with temperatures of 105-106 K, we utilized FUSE spectroscopic observa-

tions toward the center of M31, which is part of a program (Program ID C128; PI

T. Brown) aimed at understanding the stellar populations in the cores of elliptical

galaxies. Four exposures were taken covering the central 30′′ by 30′′ and a total use-

ful exposure time of 49 ks. The reduction and calibration of the FUSE spectra were

described in detail by Wakker et al. (2003) and Wakker (2006).

5.4 Analysis and results

Our mining of the multiwavelength data is presented in this section. First we

attempt to constrain the amount of X-ray emission from M31∗, with a much improved

counting statistics compared to that achieved by G05. Next we study the physical

properties of the diffuse hot gas, as we shall show below, filling the bulk of the

circumnuclear volume. This volume-filling gas may naturally play a crucial role in

80



Figure 5.1 (a) Tri-color image of the central 30′ by 30′ (6.8 kpc by 6.8 kpc) of M31.
Red: Spitzer/MIPS 24 µm emission; Green: 2MASS K-band emission; Blue: Chan-
dra/ACIS 0.5-2 keV emission of diffuse hot gas (LW07). The dashed box outlines the
central 6′ by 6′, a region further shown in (b) and Fig 5.5. (b) Smoothed intensity
contours of the 0.5-2 keV diffuse emission overlaid on the Hα emission. The contours
are at 5, 10, 19, 27, 35, 45, and 55 ×10−3 cts s−1 arcmin−2. The plus sign marks the
M31 center.

regulating the mass and energy flows in the region. From the multiwavelength view

we then seek clues about physical relations among the various ISM components.

5.4.1 X-rays from M31∗

Fig. 5.2 shows the distribution of 0.5-8 keV ACIS counts detected from the central

3′′ × 3′′ region, along with an HST/ACS F330W image showing the double nuclei P1

and P2. Dominating the X-ray emission are the two known bright sources with

luminosities of ∼1037 ergs s−1: a super-soft source (SSS; partly shown in Fig. 5.2) is

located at ∼ 2′′ south to the nuclei; the other source (named N1 by G05) is positionally

coincident with P1, the presence of which severely hampers the isolation of X-ray

emission from M31∗.

We assume that the X-ray source N1 is indeed embedded in P1. By fixing the

angular displacement between N1 and the yet unresolved M31∗ as that between the
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two optical nuclei, i.e., 0.′′5 (Lauer et al. 1998, Fig. 8 therein), we perform a 2-d fit

to the ACIS image by adopting a model consisting of three delta functions convolved

with the local PSF, respectively respresenting SSS, N1 and M31∗, and a constant

representing the background “diffuse” emission. The local PSF is mimiced by stack-

ing seven bright sources detected within 30′′. The centroids of SSS and N1, the

normalization of all three sources and the background constant are determined by

the fit, while the relative location of N1 and M31∗ is fixed as assumed. The best-

fit is achieved with a normalization of 210±50 (1 σ) cts for M31∗. Corrected for

the difference of effective area between ACIS-S3 and ACIS-I, the best-fit infers a

0.5-8 keV ACIS-I count rate of 1.4×10−3 cts s−1, corresponding to a 0.3-7 keV intrin-

sic luminosity of 1.2×1036 ergs s−1 (assuming an absorbed power-law spectrum with

NH∼7 × 1020 cm−2, the Galactic foreground absorption column, and a photon-index

of 1.7), which is consistent with the 2.5 σ detection of 9×1035 ergs s−1 for M31∗ re-

ported by G05 (based on ∼10 Chandra/HRC counts). We have also tried to probe

flux variation by examing the detected count rate of the 0.′′25 by 0.′′25 square enclos-

ing M31∗ from individual observations of typically 5 ks long. We find no statistically

significant variation over a factor of 2 from observation to observation as well as from

within the 38 ks ACIS-S observation.

Our constraint for the X-ray emission of M31∗ relys on the assumption that the

bright X-ray source N1 is embedded in P1 instead of being an interloper. In galac-

tic bulges the most likely interlopers are low-mass X-ray binaries (LMXBs). Gil-

fanov (2004) derived an empirical relation between the number of LMXBs with lumi-

nosites over 1037 ergs s−1 and the stellar mass of the host galaxies, being NLMXB ≈

14 sources per 1010 M⊙. Along the line of sight through the central arcsec, the ob-

served K-band light infers a stellar mass of few 107 M⊙. Accordingly, the expected

number of LMXBs along this line is ∼<0.05. Hence the chance that we have detected

N1 as an interloper is small. Moreover, stellar mass BH and neutron stars (NS)
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Figure 5.2 A super-resolution 0.5-8 keV ACIS counts image (§ 5.3) of 0.′′125 pixels,
with the HST/ACS F330W intensity contours showing the double nuclei P1 and P2.
The greyscale linearly ranges from 0 to 40 cts/pixel. The ‘+’ signs mark the fitted
centroids of P1 and P2. The displacement between P1 and P2 in X-ray is assumed
to be same as in optical. Part of the SSS is also shown at the bottom of the field.

formed in the central cusp of the bulge are predicted to sink into the close vicin-

ity (few parsecs) of the SMBH, due to dynamical friction on less massive background

stars (Morris 1993). Such migrators thus have the chance to compete with the SMBH

on the consumption of surrounding gas to become bright X-ray sources. Nayakshin

& Sunyaev (2007) modeled such a process and found that the collective X-ray lumi-

nosity of the migrated compact objects can be higher than that of the SMBH up to

two orders of magnitude, dependent on the mass of the common accretion disk. This

scenario lends further support to the above procedure of pinning N1 on the position

of P1, in a sense that N1 is the appearance of one or more accreting stellar mass BHs,

being about ten times brighter than M31∗. In regard of the common origin of P1 and

P2 (i.e., an eccentric stellar disk), it is possible that the X-ray signals detected from

the position of P2, which we have considered as originated from M31∗, also arise from
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stellar mass BHs. The marginal flux variation detected does not offer much help in

distinguishing between a stellar mass BH origin and a SMBH origin. It is worth to

note that, at the position of P1, which is the apocenter of the eccentric orbits, BHs

(and stars) have small velocities and hence a greater chance to capture the surround-

ing gas at large accretion rates. The situation is likely opposite at the position of P2.

In conclusion, the assumed source positions are physically plausible.

5.4.2 Diffuse hot gas

Fig. 5.1a shows the large-scale 0.5-2 keV diffuse X-ray emission in the M31 bulge.

The emission, showing an elongated morphology along the minor-axis and shadows

cast by the outermost spiral arm and the prominent star-forming ring (e.g., Gordon

et al. 2006) on the the near (northwestern) side of the tilted disk, has led LW07 to

suggest that the hot gas is in a form of bi-polar outflow. Fig. 5.1b shows this emission

in the circumnuclear regions, along with the Hα emission tracing the nuclear spiral.

As is the case on large-scales, the X-ray emission appears i) elongated approximately

along the minor-axis, and ii) fainter at the northwestern side beyond the central

arcmin, presumably due to absorption by some cold ISM located in the foreground.

These suggest that the bi-polar outflow of hot gas is launched in the very inner bulge.

A more quantitative view of the diffuse X-ray emission is shown in Fig. 5.3 for

the 0.5-2 keV intensity profiles along the minor (NW) and major (SW) axes and the

radius. The intensity i) has a slightly steeper drop along the major-axis than along

the minor-axis, and ii) is lower at the northwestern side along the minor-axis; these

are fully consistent with the morphology shown in Fig. 5.1b. The major-axis profile

has a “cap” shape in the centeral arcmin, where the intensity is more than two times

higher than that of the regions immediately beyond. In accordance, the radial profile

exhibits a flattening towards the center (Fig. 5.3c). These apparently result from the

clumpy X-ray emission positionally coincident with the nuclear spiral in the central
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Figure 5.3 0.5-2 keV diffuse X-ray intensity profiles along the minor-axis (a), the
major-axis (b) and the radius (c). The vertical profiles are averaged within slices
of 2′ in width. A position angle of 40◦ is adopted. In each pannel, the dash curve
shows the corresponding K-band intensity profile with a normalization representing
the already subtracted contribution of unresolved X-ray sources, whereas the solid
curve is the corresponding Hα intensity profile with an arbitrary normalization.

arcmin (Fig. 5.1b), indicating a relation between the two ISM components, albeit

overall the X-ray intensity profile shows no clear correlation with the Hα intensity

profile (solid curve in Fig. 5.3b). Compared to the steep decline of the K-band light

(dashed curve in Fig. 5.3b), the “cap” also indicates a source of hot gas in addition to

the stellar ejecta. A more detailed comparison of the multiwavelength emission will

be given in § 5.4.3.

To quantify the hot gas properties, we extract a representative spectrum of the to-

tal unresolved X-ray emission (i.e., from both the gas and unresolved stellar objects)

from the central 1′ (Fig. 5.4). The unresolved stellar objects, with individual lumi-

nosities below 1035 ergs s−1, are predominantly cataclysmic variables and coronally

active binaries (CVs and ABs; Sazonov et al. 2006), the average spectrum of which

unfortunately can not be determined in the M31 bulge due to the presence of hot gas.

Instead, we rely on such a spectral information as derived from the drawf elliptical

galaxy, M32, which essentially lacks diffuse gas (Revnivtsev et al. 2007). We find

that, in agreement with Revnivtsev et al. (2007), the spectrum of the unresolved X-

ray emission from M32 can be characterized by a combination of two thermal plasma
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Figure 5.4 Spectrum of the central 1′, fitted by a three-component model: VMEKAL
(gas; red curve) + MEKAL (ABs; green curve) + MEKAL (CVs; blue curve). See
text for details.

emission components (MEKAL in XSPEC), with temperatures of ∼0.4 and ∼4.6 keV

and a solar abundance. The low- and high-temperature components are dominated

by the emission of ABs and CVs, respectively. We adopt these two components to

account for the stellar contribution in the M31 spectrum, fixing the temperatures

and abundance and having the normalizations scaled according to the underlying K-

band light. As shown in Fig. 5.4, the adopted model well accounts for the observed

spectrum at energies above ∼1.5 keV. At lower energies, there is indication that the

stellar emissivity inferred for the M31 bulge is ∼1.5 times higher than that for M32

(LW07). We note that neglecting this difference has little effect on the subsequent fit

results as the gas component dominates the 0.5-1.5 keV emission.

We then introduce a third thermal component (VMEKAL in XSPEC) to charac-

terize the emission of hot gas, allowing the abundance, if other than solar as required

by the fit, to be different among heavy elements. This component is subject to pos-

sible absorption by the cold ISM in the circumnuclear regions (see § 5.4.3). The fit

is initiated with the abundance of all elements fixed at solar, giving a fitted temper-
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ature of ∼0.3 keV. The fit is poor, however, in particular not able to account for a

prominent line feature present at ∼1.33 keV, most likely due to Mg XI Kα, given a

gas temperature of ∼0.3 keV. Therefore, we let the abundance of Mg to be deter-

mined in a fit. The abundance of Fe is also allowed to be free in the fit to account

for the Fe L-shell lines dominating energies of ∼0.8-1 keV. The resulant fit, with

ZMg ∼ 2 and ZFe ∼ 1, still shows considerable discrepancies at energies below 0.7

keV, where lines of O VII and O VIII dominate. Finally an acceptable fit is achieved

with a fitted ZO ∼ 0.4. The various fit results are summerized in Table 5.1. We infer

from the best-fit an electron density of 0.08 cm−3 and a 0.5-8 keV unabsorbed flux of

1.0 × 10−12 ergs cm−2 s−1 for the hot gas.

The clumpiness of the circumnuclear X-ray emission (Fig. 5.1b) implies that the

hot gas is inhomogeneous, in particular, the gas could have more than one temper-

ature. In this regard, we fit the spectrum with the CEVMAL model in XSPEC.

The model assumes a continuous distribution of emission measure (EM) such that

Sν =
∫ Tmax

Tmin
NΛν(T, Z)(T/Tmax)

αdT/T (Singh, White & Drake 1996), where Sν is the

intrinsic spectrum, Λν the volume emissivity provided by the MEKAL model, and N

the normalization. The maximum temperature Tmax is fixed at 3.6 keV, the reason of

which would become clear below (see § 5.5.2). Due to the degeneracy between Tmax

and α, the exact choice of Tmax is not crucial for the fit and its implications. The mini-

mum temperature Tmin is effectively 0.08 keV in the implement of MEKAL. While the

fit is not as satisfatory as the single-temperature fit, the resultant value of α, being

negative (∼-2.7), implies that high-temperature gas, if existed, has only a minor con-

tribution to the total emission. If we further assume that the density and fractional

volume of gas are power-law functions of temperature: n ∝ T αn , dV/dT ∝ T αV ,

from Sν ≡ ∫
Λν(T, Z)n2dV we have α = 2αn + αV + 1. In the case of thermal pres-

sure balance, αn = −1 and αV = −1.7, it can be shown that the volume-weighted

temperature is ∼0.4 keV. This value is close to the single temperature of 0.3 keV de-
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Table 5.1. Fits to the spectrum of diffuse X-ray emission from the central arcmin

Model NH
a T α ZO

b ZFe
b ZMg

b EM χ2/d.o.f.
1020 cm−2 keV cm−6 pc

VMEKAL 21+5
−8 0.28+0.03

−0.03 - 1 1 1 2.0+0.9
−0.8 112.5/85

VMEKAL 19+8
−9 0.28+0.04

−0.04 - 1 1.1+0.3
−0.2 1.7+0.5

−0.5 1.8+1.2
−0.7 107.1/83

VMEKAL 14+23
−14 0.25+0.06

−0.07 - 0.4+0.1
−0.2 0.9+1.0

−0.4 2.0+0.6
−0.5 2.8+3.0

−1.7 89.1/82
CEVMAL 15 3.3c −2.7+0.2

−0.2 0.2+0.2
−0.1 1.7+0.4

−0.3 2.2+0.7
−0.6 40+39

−23 106.0/83

Note. — The quoted errors are at the 90% confidence level. Values without errors are fixed in the
fits. See text for details. aIn addition to the Galactic foreground absorption. bAbundance standard of
Grevesse & Sauval (1998) is applied. cFor Tmax.

rived from the spectral fit, i.e., emission weighted, suggesting that the diffuse X-ray

emission arises from such a gas filling the bulk of the circumnuclear volume.

5.4.3 The circumnuclear regions in multiwavelength

Fig. 5.1a illustrates that structures of dusty gas are developed in the inner disk

regions. The distributions of circumnuclear MIR and FIR emission are further shown

in Fig. 5.5, along with the Hα emission. A morphological similarity among the MIR,

FIR and Hα emission is evident, indicating that the interstellar dust is associated

with the ionized gas, i.e., they are both concentrated in the nuclear spiral. Apart

from this overall similarity, region-to-region intensity contrasts among the MIR, FIR

and Hα emission are also apparent. This is not unexpected, as both the strength

of ionizing/heating sources and the density of the dusty gas could vary significantly

across the circumnuclear regions.

We examine the multi-band intensity contrasts for several representative regions

(Fig. 5.5c), named as follows according to their positions and appearances. The

“Outer Arm” is vertically present at ∼2.′5 east of the M31 center. Outward, it spirals

a winding angle of about π/2 and is rooted at the outermost spiral arm at northwest

(Fig. 5.1a); inward, it turns northwestward and peaks in all the bands where it ap-
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Figure 5.5 Contours of (a) 8 µm, (b) 24 µm, (c) 70 µm and (d) 160 µm emission over-
laid on the Hα image of the central 6′ by 6′ region, in arbitrary units. The dashed
rectangles marked in (c) outline the selected regions for examination of multiwave-
length correlations. See text for details.

proximately intersects the major-axis at southwest, and we refer to this region as the

“SW Arm”. The clump showing CO emission (§ 5.2) is prominent in all the bands

and is called the “CO Clump”. Finally, an arcmin-long filament appears coherent

at northwest to the center and is referred to as the “Inner Arm”. The multi-band

intensities, defined as νIν , of the four regions are measured from the images and sum-

marized in Table 5.2. We further show in Fig. 5.6a for the individual regions various

intensity ratios versus the FIR intensity, (νIν)FIR≡(νIν)70 + (νIν)160. Although lim-

ited in number, the selected regions well sample the FIR intensity at values above
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Table 5.2. Multiwavelength properties of the nuclear spiral in selected regions

Region Position Size (νIν)8 (νIν)24 (νIν)70 (νIν)160 (νIν)Hα Th Md

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Outer Arm (-136′′, -16′′) 80′′×192′′ 5.0±0.6 0.9±0.1 12±1.2 9.8±1.0 11±2.3 50 28
SW Arm (24′′, 80′′) 80′′×48′′ 3.6±0.8 0.6±0.2 18±1.8 8.3±0.8 25±5.0 45 3.9

CO Clump (16′′, 72′′) 32′′×32′′ 7.2±1.0 1.2±0.2 21±2.1 9.3±0.9 35±6.9 48 1.3
Inner Arm (-32′′, 32′′) 48′′×80′′ 4.7±1.4 1.4±0.4 26±2.6 9.2±0.9 46±9.2 48 3.7

Note. — (1)-(3): Rectangular regions as defined in § 5.4.3, their centroid positions with respect to the M31 center,
and sizes; (4)-(8): Multiwavelength intensities in units of 10−4 ergs cm−2 s−1 sr−1. The quoted errors account for
a 10% calibration uncertainty for the MIR/FIR intensities and a 20% for the Hα intensity. A 5-10% uncertainty
due to the removal of stellar contribution in the 8 and 24 µm emission is also propagated into the quoted errors; (9)
Temperature of the warm dust component, in units of K; (10) Dust mass, in units of 103 M⊙.

2.0 × 10−3 ergs cm−2 s−1 sr−1. The ratio of (νIν)70/(νIν)160 increases with (νIν)FIR,

implying that the stronger FIR emission is more weighted by warmer dust. Fur-

thermore, both (νIν)70/(νIν)160 and (νIν)FIR show the lowest (highest) value at the

Outer (Inner) Arm, i.e., generally increase with decreasing distances from the center.

Such a trend is consistent with the bulge stellar radiation field, which is presumably

responsible to heating the dust, being stronger at smaller galactocentric radii.

The ratio of (νIν)24/(νIν)FIR, on the other hand, varies little among the different

regions. It can be shown that in each region the MIPS intensity ratios are inconsistent

with a single dust temperature. A full accounting of the broadband IR spectral

energy distribution (SED) requires a physical model of interstellar dust (e.g., Li &

Draine 2001), which is beyond the scope of the present study. Instead, we simply

assume that the observed MIR/FIR emission can be reproduced by two distinct dust

components, each characterized by the color temperature of a diluted blackbody, i.e.,

a λ−1 emissivity law. Therefore in each region, the MIPS intensities can be expressed

by (e.g., Goudfrooij & de Jong 1995):

Iν = Klλ
−4
µ [e1.44×104/(λµTl) − 1]−1 + Khλ

−4
µ [e1.44×104/(λµTh) − 1]−1, (5.1)
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Figure 5.6 (a) Intensity ratios as a function of the FIR intensity for selected circum-
nuclear regions. (b) The MIPS 24, 70 and 160 µm intensities characterized by a
two-component dust emission model (solid curves). The low- and high- temperature
components are represented by the dotted and dash curves, respectively. See text for
details.

where λµ (= 24, 70, 160) and Iν are in units of µm and MJy sr−1, respectively.

The 8 µm emission, presumably arising from line emission of PAH particles, is not

considered here. Since the four unknowns in Eq. 5.1 can not be completely determined

with the three MIPS bands, we further assume Tl = 20 K for the cold dust component.

Presence of cooler dust is possible, but the emission of which would be largely beyond

the wavelength coverage of the MIPS. The remaining unknowns can then be solved

for individual regions. The results (Table 5.2) indicate that the temperature of the

warm dust component, Th, ranges between 45-50 K, and that the relative contribution

of this component to the 70 µm emission increases from 88% at the Outer Arm to

97% at the Inner Arm (Fig. 5.5b). We further estimate the dust mass according to

Md = 5.1×10−2d2(Kl + Kh) M⊙ (Goudfrooij & de Jong 1995), where d = 0.78 is the

distance of M31 in Mpc. In particular, a dust mass of 1.3 × 103 M⊙, or a gas mass

of 1.3 × 105 M⊙ (assuming a dust-to-gas mass ratio of 0.01), is inferred for the CO

Clump. Corrected for the considered area, this value is about four times higher than
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that derived from optical extinction (Melchior et al. 2000). Such a discrepancy, often

encountered in the determination of dust mass in elliptical galaxies (e.g., Goudfrooij

& de Jong 1995), does not necessarily cast serious doubt to our results, in view of the

disadvantage of extinction study to probe a diffusely distributed component of dust.

On the other hand, it is worth to note that the estimated mass is much weighted by

the low-temperature component and thus dependent on the less certain value of Tl.

An adoption of Tl = 25 K, for instance, would result in typically 50% less mass. The

equivalent hydrogen column density is inferred to be (1-2)×1021 cm−2 for the four

regions, consistent with the value inferred from the X-ray spectral fit (Table 5.1).

A zoom-in view of cross-correlations among the 24 µm, Hα, UV and X-ray emission

in the central 3′ by 3′ region is presented in Fig. 5.7. The FIR emission, limited in

spatial resolution in this region, is expected to be represented by the 24 µm emission.

Within the central ∼1′, both the Hα and 24 µm emission appear filamentary at the

resolution of few arcseconds (Fig. 5.7a). It is now clear that the CO Clump is part of

an arm-like filament. Inward, this filament joins the Inner Arm at ∼30′′ east to the

center, where the 24 µm emission peaks, and further extends southwestward across the

minor-axis. The association between the Hα and 24 µm emission along these features

is evident. There is no further trace of coherent feature of 24 µm emission, however,

on the southwestern side to the center, where the nuclear spiral is still prominent

in Hα emission. Except for its presence at a bright knot located ∼15′′ north to the

center, the 24 µm emission is also largely absent towards the very central regions,

where the Hα and diffuse X-ray emission also show a sign of flattening (Fig. 5.3c).

Interestingly, the Hα emission, wherever it is seen associated with the 24 µm emission,

appears limb-brightened at the side facing the galactic center.

Immediately close to the nuclear spiral, the diffuse X-ray emission appears clumpy

and enhanced with respect to the overall elongated morphology along the minor-axis

(Fig. 5.7b). As shown in Fig. 5.7c, there is no clear correlation between the X-ray in-
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Figure 5.7 A multiwavelength view of the central 3′ by 3′ region. (a) Contours of
24 µm emission overlaid on the Hα image. (b) Contours of 0.5-2 keV diffuse X-ray
emission overlaid on the Hα image. (c) Contours of 0.5-2 keV diffuse X-ray emission
overlaid on the X-ray hardness ratio map. (d) Contours of Hα emission overlaid on
the (NUV − FUV ) color map.

tensity and the hardness ratio, defined as (I1−2 keV−I0.5−1 keV)/(I1−2 keV +I0.5−1 keV),

indicating that the X-ray clumpiness is not merely a result of spatially varying ob-

scuration. Rather, the observed X-ray enhancement close to the nuclear spiral, albeit

a picture complicated by the projection effect, suggests a physical relation between

the hot and cooler gas. We shall further address this issue in § 5.5.
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Like the MIR emission, the NUV and FUV emission in the central few arcmins

show a bulge-like morphology and hence most likely arise from evolved stars (King et

al. 1992). It is evident from the radial intensity distributions that the FUV emission

enhances more steeply toward the center than the NUV emission does (Thilker et

al. 2005), suggesting a gradual change of the stellar UV SED. Such a trend is illus-

trated in Fig. 5.7d, where the 2-D distribution of (mNUV − mFUV) is shown along

with the Hα emission. For reference, the color, mNUV − mFUV, has a mean value of

∼−0.95 within the central 30′′, about 0.2 higher than that in the regions immediately

beyond. Most surprisingly, the overall morphology of the (NUV − FUV ) color is

similar to that of the nuclear spiral rather than that of the bulge, indicating that

the apparent rising of the FUV emission relative to the NUV emission is not sim-

ply due to a radial change of the stellar SED. In principle, the excess could be the

result of differential extinction introduced by the cold ISM residing in the nuclear

spiral. Quantitatively, adopting AFUV/E(B − V ) = 8.376, ANUV/E(B − V ) = 8.741

(Wyder et al. 2005; based on the extinction law of Cardelli, Clayton & Mathis 1989),

NH/E(B − V ) = 6 × 1021 atom cm−2 mag−1 and an equivalent hydrogen column of

1021 cm−2, the differential extinction is estimated to be ANUV − AFUV ≈ 0.06 and

not able to fully account for the observed color excess. That there is no color excess

seen at the position of the CO Clump also indicates that differential extinction has a

minor effect.

Alternatively, the color excess could be due to intrinsic FUV emission associated

with the nuclear spiral. We seek evidence for such a possibility from the FUSE spec-

trum of the central 30′′. At a glance the spectrum, in particular the prominent Lyβ

absorption feature, seems to be typical of hot subdwarf stars (Brown et al. 1996)

that are generally thought to be responsible for the unresolved FUV emission in the

inner bulge (Brown et al. 1998; see below). On the other hand, OVI absorption lines,

not characteristic of the SED of hot subdwarfs, are clearly present (the S/N near the

94



O VI-1031 line is 9.3), implying for an interstellar origin. We determine the continuum

across the O VI doublet by fitting a second-order polynomial through absorption-line-

free regions between 1028 and 1047 Å. We also measure the H2 column density, using

the method described by Wakker (2006). H2 is detected both in the Milky Way and in

M31. For the Milky Way we find logN(H2)=18.78, centered at a velocity of 1 km s−1,

while for M31 we find logN(H2)=15.19, centered at −300 km s−1. Fig. 5.8 shows

the resulting data (histogram) and continuum fit (continuous line). The Galactic

O VIλ1031.926 absorption is relatively weak, being logN(OVI)=13.76±0.17±0.04),

as is the case for other sightlines in this part of the sky (Wakker et al. 2003). Here

the first error is the statistical error associated with the noise in the data and the un-

certainty in the placement of the continuum, while the second error is the systematic

error associated with fixed-pattern noise and a 10 km s−1 uncertainty in the choice of

the velocity limits of the integration (see Wakker et al. 2003 for details).

The O VIλ1031.926 associated with M31, centered at −265 km s−1, is contam-

inated by Galactic H2 LP(3) 6-0 λ1031.191, while the O VIλ1037.617 line is con-

taminated by H2 LR(1) 5-0 λ1037.149 and LR(0) 5-0 λ1036.545. After correcting

for the H2 line, we find an equivalent width for the M31 O VIλ1031.926 line of

392±26±10 mÅ. The absorption profile can be converted into an apparent optical

depth profile: Na(v) = 2.76 × 1012 log(cont/flux). By comparing the apparent op-

tical depth profiles of the two O VI lines it is possible to assess whether the line

is saturated. We show the apparent optical depth profiles of the two lines in the

right two panels of Fig. 5.8, with the caveat that the O VI-1037 line can be trusted

only in a narrow range in velocities between −280 and −220 km s−1. In this velocity

range, the apparent column densities of the two O VI lines match, showing that the

O VIλ1031.926 line is not saturated. Then, integrating from −370 to −140 km s−1,

we find an O VI column density of logN(O VI)=14.75±0.06±0.03.
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Figure 5.8 FUSE spectrum of the central 30′′ of M31 (histogram) and a fit to the
continuum (continuous line).

It is not a priori clear that all of this O VI absorption is associated with the M31

core. In almost all sightlines in the region of sky within about 40◦ from M31 there are

two high-negative velocity O VI absorption components, centered at about −300 and

−150 km s−1. Sembach et al. (2003) associated the former with a possible extension

of the Magellanic Stream, while the latter may represent gas distributed through

Local Group, although this is a tentative interpretation. Braun & Thilker (2004)

later discovered that there is faint HI emission in this part of the sky, with velocities

that are continuous with those of the Magellanic Stream. The O VI column density in

the −300 km s−1 component is logN(O VI)=14.22±0.05 in a sightline about 1.◦9 from

the M31 center (toward the QSO RXJ0048.3+3941), which is at the high end of O VI

column densities found for this component. Therefore, it is likely that some fraction

of the O VI column density seen toward the M31 core originates in the Magellanic

Stream and between the Milky Way and M31. However, even if these contribute as

much as logN(O VI)=14.20 (1.6×1014 cm−2), the remainder (4×1014 cm−2) is likely

96



to originate in the M31 core, implying for the presence of gas with temperatures of

105-106 K. We further discuss this possibility below.

5.5 Discussion

Based on the above multiwavelength analyses, we now explore the physical nature

of various phenomena and processes in the M31 circumnuclear regions. In the central

few hundred parsecs, the ISM consists of two dynamically distinct components. One is

the nuclear spiral with a low volume filling factor, consisting of cold dusty gas, traced

by the MIR and FIR emission, and warm ionized gas, traced by optical recombina-

tion lines. The nuclear spiral is thought to be formed by bar-induced gravitational

perturbations with a possibly continuous supply of gas from the outer disk regions.

Connections between the nuclear spiral and the major spiral arms in the outer disk are

evident in Fig. 5.1a (see also Gordon et al. 2006). The other component is a corona

of volume-filling hot gas, traced by the diffuse X-ray emission. This hot corona has

a bi-polar extent of at least several kpc away from the midplane (LW07). While

young massive stars are essentially absent, embedded in the hot corona there is a

∼1010 M⊙ population of old stars, which is primarily responsible for the gravitational

potential and is likely so for the energetics of the ISM. Finally, there is the inactive

SMBH manifesting itself only in radio and X-ray to date. Both the circular speed

(vc ∼ 270 km s−1 at r ≈ 230 pc) and the sound speed of the hot gas (cs ∼ 280 km s−1

with a temperature of 0.3 keV) imply a relatively short dynamical timescale at the

order of 106 yr. Unless our multiwavelength view is a highly transient one, which is

unlikely, there ought to be certain physical processes regulating the behavior of the

multi-phase ISM as well as that of the SMBH. In the following discussion we aim

primarily to propose a self-consistent scenario for this regulation.

For ease of quantification, we adopt fiducial values of the hot and warm ionized

gas in the central 1′ (∼230 pc) as: nh = 0.1 cm−3, Th = 4 × 106 K, nw = 200 cm−3,

97



Tw = 104 K, respectively. nh and Th are inferred from the X-ray spectral fit (§ 5.4.2),

while nw is roughly the intensity-weighted average value inferred from [S II] line

ratios (Ciardullo et al. 1988), given the canonical value of Tw for ionized gas. For

both phases the notation of density is for hydrogen and, as assumed for simplicity,

equally for electron. The density and temperature of the cold gas are less certain, for

which we adopt nc = 104 cm−3 and Tc = 100 K so that ncTc ∼ 2nhTh, the case of

pressure balance. The apparently higher pressure of the warm gas can be understood

if this phase represents an interface between the hot and cold phases (see § 5.5.2).

Because of the high pressure environment, the bulk of hydrogen in the cold phase

is likely in a molecular form (Wolfire et al. 1995), which is also suggested by the

estimated mass (∼5 × 106 M⊙) of cold gas in the central 500 pc much exceeding the

upper limit of atomic hydrogen mass (∼106 M⊙) set by 21 cm observations (Brinks

1984). Now the mass of hot gas, Mh ≈ 1.2×105 M⊙, is a straightforward measurement

based on nh and the considered volume V ≈ 1.5 × 1063 cm3. The mass of warm gas,

Mw ≈ 3.2× 103 M⊙, is estimated from the Hα emission by assuming a standard case

B emissivity and a [N II]/Hα intensity ratio of 2. The mass of cold gas, Mc ≈ 106 M⊙,

is inferred from the MIR/FIR emission using the procedure described in § 5.4.3.

5.5.1 Accretion and feedback of the nucleus

M31∗, with a 0.3-7 keV luminosity of 1.2×1036 ergs s−1, ranks as the second

faintest galactic nucleus detected in X-ray, after Sgr A∗, but comparable to M32∗

(Ho, Terashima & Ulvestad 2003, who found a 2-10 keV luminosity of 1036 ergs s−1).

Assuming that the X-ray emission typically accounts for ∼10% of the bolometric lu-

minosity, we have Lbol ∼ 1037 ergs s−1, in comparison to the Eddington luminosity of

LEdd ≈ 1046(MBH/108 M⊙) ergs s−1, where MBH is the mass of the SMBH. Either the

hot gas or the cold gas in the circumnuclear environment is sufficiently massive to feed

M31∗ for a time up to 10 Gyr at its present accretion rate. For instance, assuming
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that M31∗ is powered by the Bondi accretion (1952) of the soft X-ray-emitting hot

gas, the accretion rate can be estimated as:

ṀBondi ≈ 4πλmHnh(GMBH)2c−3
s (5.2)

≈ 5.5 × 10−5(
nh

0.1 cm−3
)(

MBH

108 M⊙

)2(
cs

300 km s−1
)−3 M⊙ yr−1,

where λ is a numerical factor taken to be 0.25 and the rest symbols are of conventional

meanings if not yet defined above. The corresponding Bondi luminosity is LBondi ≡

ηṀBondic
2 ≈ 3.1 × 1041(η/0.1) ergs s−1, where η is the radiation efficiency. It follows

that Lbol/LBondi ∼ 10−5, indicating that the radiation of M31∗ is highly inefficient,

i.e., η ≪ 0.1. The estimated Bondi accretion rate could be somewhat biased, as

we do not have a precise knowledge on the physical properties of the accretion flow

on pc-scales. Regardless, the radiation efficiency of M31∗ is likely low, as predicted

by models of advection-dominated accretion flow with typically low accretion rates

(Ṁacc/ṀEdd ≪ 1; Narayan & Yi 1995).

On the other hand, it is not fully understood what mechanisms act to remove

the angular momentum of gas originating from the r∼100 pc regions and then to

transport the gas to the sub-pc vicinity of the SMBH (Wada 2004). In any case,

this theoretical difficulty does not seem to pertain to M31. We recall that there

is no clear evidence of gas gathering into the central few parsecs of M31 (§ 5.4.3);

any coherent entity of cold gas is apparently located at a distance ∼>50 pc. This is

contradicted with the presence of gas inflow, favorably induced by the bar potential

and forming the nuclear spiral. It is sometimes suggested by numerical models (e.g.,

Maciejewski 2004) that the inflowing gas ultimately settles in quasi-circular orbits,

where the orbital energy is minimum for a given angular momentum, forming a so-

called nuclear ring. Accumulation of gas on such orbits are expected to be subject

to gravitational instability that leads to star formation, by which the ring manifests

itself in observations (e.g., Sarzi et al. 2007), or to a further infall to the galactic
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center, activating the nucleus. Neither situation is observed in M31, whereas there

is no reason to argue that the global gas inflow has been stopped. In this regard,

the right question to ask for M31 seems to be: what mechanism prevents gas from

gathering into the r ∼< 50 pc region? We shall further address this issue below.

Alternatively, M31∗ can obtain fuel from its immediate surroundings, i.e., the

eccentric stellar disk consisting of a ∼2 × 107 M⊙ population of old stars (Tremaine

1995). It is expected that these stars lose mass via stellar winds at a rate of ∼10−4 M⊙ yr−1

(e.g., Ciotti et al. 1991), a value comparable to the above estimated Bondi accretion

rate. Chang et al. (2007) argued that the stellar winds are trapped by the stellar disk

and eventually collapse to form a thin gaseous disk orbiting around the SMBH on

pc-scales, and that star formation can be triggered from the gaseous disk every 0.1-1

Gyr, consistent with the 200 Myr starburst proposed for P3 (§ 5.2). These authors

noticed that, given the estimated mass of a few 103 M⊙ for P3, the star formation

efficiency is ∼10%-20%. The remaining gas could then be accreted by the SMBH,

although details of such a process remain unclear.

It is not trivial to quantify feedback from galactic nuclei, even for the inactive

ones such as M31∗. Much of the feedback is expected to be carried out by jets of

relativistic particles, especially for “faint” nuclei showing a low radiation efficiency.

Allen et al. (2006) found an empirical relation between accretion rate and jet power in

X-ray-bright elliptical galaxies, quantitatively as: log(LBondi/1043 ergs s−1) = 0.65 +

0.77log(Ljet/1043 ergs s−1). The Bondi accretion rate of their sample nuclei ranges

from 3.5 × 10−4 M⊙ yr−1 to 4.6 × 10−2 M⊙ yr−1. It is not known a priori how the

relation behaves at lower accretion rates. If it holds for M31∗, the jet power would

then be ∼ 1.6 × 1040 ergs s−1, or about 5% of the Bondi luminosity. In principle,

this powerful nuclear feedback can result in an X-ray cavity, as hinted by the central

flattening of the X-ray intensity (Fig. 5.3c and Fig. 5.7b). Another possible signature

of the feedback is the energetic particles inferred to be present along the nuclear
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spiral (§ 5.2), although it is also possible that they are originated from SN events.

High-resolution, high-sensitivity radio observations will help to clarify this issue.

5.5.2 The origin, role, and fate of the hot gas

The study of the circumnuclear diffuse X-ray emission (§ 5.4.2) reveals the unam-

biguous presence of hot gas in the core of M31. The next question to address is what

supplies the hot gas. Diffuse hot gas is commonly found in the cores of early-type

galaxies. Proposed origins of hot gas include accretion of the intergalactic medium

(IGM), typically prevalent in massive, high-LX elliptical galaxies, and the collective

ejecta of local evolved stars, likely predominant in low-LX early-type galaxies. In the

latter case, the most important heating source of the stellar ejecta is thought to be

Type Ia SNe (e.g., Ciotti et al. 1991; David et al. 2006). This should be the case

in the M31 bulge, where the SMBH is quiescent and there is no recent massive star

formation. In the present-day universe, a stellar spheroid empirically deposits en-

ergy and mass at rates of ∼1.1×1040[LK/(1010L⊙,K)] ergs s−1 (Mannucci et al. 2005)

and ∼2×10−2[LK/(1010L⊙,K)] M⊙ yr−1 (Knapp, Gunn & Wynn-Williams 1992), re-

spectively, given an energy release of 1051 ergs per SN Ia. Assuming an SN heating

efficiency ǫ ∼1 and that the stellar mass loss is wholly involved, an average energy

input of ∼3.6 keV per gas particle is inferred. The gravitational potential of a normal

galaxy is unlikely to confine the gas with such a high temperature. Therefore the

gas is expected to escape, at least from inner regions of the host galaxy. Indeed, for

many early-type galaxies the observed X-ray luminosity of hot gas, LX , is typically

no more than a few percent of the expected energy input rate from SNe Ia (e.g.,

David et al. 2006; Li, Wang & Hameed 2007; LW07); the inferred gas mass is also

much less than expected if the stellar ejecta has been accumulated for a substantial

fraction of the host galaxy’s lifetime. Such discrepancies can be naturally explained
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with the presence of an outflow of hot gas, in which the “missing” energy and mass

are transported outside the regions covered by the observations.

It can be shown that the stellar feedback is also largely missing in the core of

M31. For the central arcmin we have LX≈7×1037 ergs s−1 and Mh≈105 M⊙, whereas

the SN heating rate is ∼5×1039 ergs s−1 and the mass input rate is ∼0.01 M⊙ yr−1

(taking only ∼107 yr to accumulate the observed amount of hot gas). Clearly, these

suggest an outflow launched in the circumnuclear regions, as already hinted by the

X-ray morphology (§ 5.4.2). On the other hand, the fitted gas temperature in the

M31 core, ∼0.3 keV (§ 5.4.2), is much lower than the maximum allowed temperature

of ∼3.6 keV (ǫ ∼ 1),

That ǫ∼1 is often implicitly assumed in the context of early-type galaxies, in which

individual SNe occur in volume-filling hot gas. The SN blast wave does not dissipate

easily and can effectively convert mechanical energy into thermal energy (i.e., ǫ∼1;

Tang & Wang 2005). In the case of M31, dissipation of the blast wave could become

important when it encounters the cold, dense gas of the nuclear spiral. The amount

of energy loss in such a process, via mechanical and radiational dissipations, depends

on the geometry of the encounter and the local gas density (e.g., McKee & Cowie

1975), but is unlikely large enough to result in ǫ < 0.5, as the solid angle covered by

the nuclear spiral with respect to the wave front must be less than 2π.

Alternatively, a reduced gas temperature is expected given mass input additional

to the stellar deposition. In particular, this is conceivable via thermal conduction

between the hot gas and the nuclear spiral. Evaporation of the cold gas at an ap-

propriate rate would result in a “mass-loading” to the hot gas, a process we shall

now consider. We assume that the nuclear spiral is composed by discrete cloudlets.

The geometry of the cloudlets, which determines the evaporation rate, is rather un-

certain. Here as a first order approximation we consider spherical cloudlets having a

characteristic radius Rs = Rpc pc. Only those cloudlets that are smaller than a crit-
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ical radius, Rcrit ≈ 4.8 × 105T 2
hn−1

h cm ≈ 25 pc, would be evaporating; condensation

would be more likely to take place for larger ones upon radiative cooling (McKee &

Cowie 1977). While the large CO Clump may be in this latter case, most cloudlets

in the region, essentially unresolved under the few-arcsec resolution, appear to be

small enough to undergo evaporation. In regions where the Hα and MIR emission are

associated, the cold neutral gas most likely resides in the cores of the cloudlets with

evaporating, ionized outer layers; in regions where only the Hα emission is prominent,

the cloudlets are likely in the late stages of evaporation and fully ionized. The number

of cold cloudlets, Nc, satisfies (4π/3)R3
sNcncmH = Mc, or NcR

3
pc ≈ 960(Mc/106 M⊙).

Similarly, for the warm cloudlets we have (4π/3)R3
sNwnwmH = Mw, or NwR3

pc ≈

160. If Nc ∼ Nw, the size of the warm cloudlets is about half that of the cold

cloudlets, consistent with a reduced size due to early evaporation. The classical

thermal conductivity (Spitzer 1962) holds when the mean free path of conducting

electrons, λ ≈ 104T 2
hn−1

h cm ≈ 0.5 pc, is shorter than the scale-length of tempera-

ture variation, roughly being the cloudlet radius. Adopting Rpc = 0.5 and assuming

that classical evaporation applies, the total evaporation rate of the cold cloudlets is

Ṁevap ≈ 2.75×104T
5/2
h RpcNc g s−1 ≈ 0.05 M⊙ yr−1 (Cowie & McKee 1977), implying

a corresponding mass input rate about five times that of the stellar ejecta to the r ∼<

230 pc region. An additional evaporation of ∼0.01 M⊙ yr−1 may arise from the fully

ionized cloudlets. For cloudlets of smaller initial sizes, the conduction becomes satu-

rated and the evaporation rate from individual cloudlets drops significantly (Cowie &

McKee 1977), but the correspondingly number of cloudlets must increase to conserve

the total gas mass and hence could result in a comparable Ṁevap.

Several self-consistency checks are needed before concluding the likelihood of the

above scenario. First, the evaporation timescale is tevap ∼ 2×107 yr, not much longer

than the time needed for the cold gas to spiral an angle of 2π, tevap ≈ 2πr/vc ∼

5 × 106 yr. Thus the gas is likely to be evaporated before spiraling into the very
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central regions. This naturally explains the observed X-ray enhancement coincident

with the Inner Arm as well as the lack of cold gas observed in the r ∼< 50 pc re-

gions (§ 5.4.3; Fig. 5.7). Second, although difficult to measure, a gas inflow rate of

∼0.05 M⊙ yr−1 from the outer disk regions of M31 is entirely possible. Typical gas

inflow rates of 0.1-1 M⊙ yr−1 are suggested for barred spirals (e.g., Quillen et al. 1995;

Sakamoto et al. 1999), which often lead to an observed concentration of 108-109 M⊙

neutral gas in the central kpc. In contrast, the gas mass in the central kpc of M31

is merely ∼107 M⊙. Without consumption of gas by star formation, this lack of gas

concentration is most likely due to the evaporation process discussed above. In this

regard, the maximum evaporation rate afforded by a hot corona in barred spirals is

likely ∼0.1 M⊙ yr−1. Third, the implied mass-loading rate to the corona results in a

reduced heating per gas particle that is about right for the measured temperature of

the hot gas. The mass-loading also predicts a dilution of metallicity for the hot gas.

In particular, the iron abundance is expected to be ZFe ≈ 9.7(MFe/0.7M⊙) due to

SN Ia enrichment (Nomoto, Thielemann & Yokoi 1984) of the collective stellar ejecta

alone. The measured ZFe, ∼ 1-2 solar (Table 5.1), is consistent with the predicted

dilution. It is not immediately clear, however, how a supersolar abundance of Mg and

a subsolar abundance of O are simulteneously derived from the mass-loading. One

possibility is that the Mg abundance reflects the primary Type II SNe enrichment at

the outer disk regions before gas inflowing to the nuclear spiral. The O abundance,

on the other hand, might have been underestimated, in a sense that the resonance

scattering of the O VII and O VIII Kα line emission, being optically thick if the ve-

locity dispersion of the hot gas is not far from its thermal broadening, is not properly

accounted for in the spectral fit.
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5.5.3 Ionizing and heating sources of the nuclear spiral

With the above information, we shall now revisit the ionizing source of the nuclear

spiral in M31, a long-standing puzzle (Devereux et al. 1994). Assuming a [N II]/Hα

intensity ratio of 2 and that every recombination produces 0.45 Hα photon, the ob-

served Hα+[N II] flux of 1.1×10−11 ergs s−1 cm−2 within the central arcmin implies a

recombination rate R ≈ 2× 1050 s−1. In the absence of massive young stars, possible

sources for the ionizing photons include: i) UV radiation of old stellar populations; ii)

X-ray photons from the hot gas as well as stellar objects; iii) UV photons induced by

thermal conduction; iv) UV photons induced by shocks; and v) cosmic-rays produced

by the nucleus or SN events. Below we access the relative importance of these sources.

Extended recombination line emission, particularly Hα emission, is often observed

in elliptical galaxies. Binette et al. (1994) demonstrated that the ionizing photons

from post-AGB stars with effective temperatures of ∼105 K are typically sufficient

to account for the observed Hα emission. The Hα intensity is found to be corre-

lated with the optical luminosity within regions of the line emission (Macchetto et

al. 1996), further suggesting a stellar origin of the ionizing photons in elliptical galax-

ies. According to Binette et al. (1994), post-AGB stars provide ionizing photons (i.e.,

shortward of 912 Å) at a rate of 7.3 × 1040 s−1 M−1
⊙ . In the central arcmin of M31,

this gives a recombination rate of R ≈ 2.9g × 1050 s−1, where g ∼< 0.5 is a geometric

factor that determines the fraction of ionizing photons received by the nuclear spiral.

It is also possible that the ionizing photons are related to the so-called UV-upturn,

a rise in the SED shortward of ∼2500 Å observed in elliptical galaxies as well as the

M31 core (Burstein et al. 1988). In view of the lack of young stars, the UV-upturn

is generally attributed to the emission of hot horizontal branch (HB) stars (e.g.,

Brown et al. 1998), with an effective temperature of a few 104 K. Such stars could be

simultaneously responsible for the UV-upturn and the recombination line emission

observed in M31. According to the lastest model for the UV-upturn (Han et al. 2007;
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Han 2008, private communications), HB stars produce ionizing photons at a rate of

1.4× 1040 s−1 M−1
⊙ , responsible to a recombination rate of R ≈ 5.6g× 1049 s−1 in the

central arcmin of M31.

Ionization by X-rays could also be significant due to secondary ionization by pho-

toelectrons. Assuming that on average each incident X-ray photon from the hot

gas produces a 0.3 keV primary photoelectron, the number of secondary ioniza-

tions is ∼10 (Shull 1979). The recombination rate induced by X-ray photons is then

R ≈ 1.2g×1048 s−1, according to the photon luminosity of ∼1.2×1047 s−1 within the

central arcmin. While stellar objects dominate the overall X-ray luminosity of M31,

there are only 33 sources detected within the central arcmin (Voss & Gilfanov 2007),

the corresponding covering factor g of which must be small compared to that of the

volume-filling hot gas. Hence the X-ray ionization by stellar objects is ignored.

The above proposed thermal conduction is accompanied by ionizations. Ionizing

photons are generated at a rate of R ≈ 2 × 10−8n2
hT

−0.6
h RsS s−1 (McKee & Cowie

1977), where S = 4πR2
sNc is the effective area of the conduction front and the rest

notations are defined above. With NcR
3
pc = 960, R ≈ 8 × 1045 s−1.

Shocks are likely present in the nuclear spiral either due to orbital dissipation (e.g.,

Englmaier & Shlosman 2000) or propagation of SN blast wave into the cold gas. Such

shocks produce ionizing photons at a rate of R = κncvsS (Shull & McKee 1979), where

vs is the shock velocity, κ a tabulated numerical factor and S the rather uncentain

effective area of the shock front. Adopting vs = 40 km s−1 and S = (100 pc)2, we

have R ≈ 3 × 1048 s−1.

Finally, ionizations can be induced by cosmic-rays. The ionization rate per hy-

drogen atom is adopted to be 5.4f−4/7 × 10−15 s−1 (e.g., Goldsmith, Habing & Field

1969), according to 2 MeV protons with an energy density of 0.5f−4/7 eV cm−3 in-

ferred from the central regions of M31 (§ 5.2; the dependancy on the volume filling
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factor f is considered). With a hydrogen mass of 106 M⊙, the recombination rate is

inferred to be R ≈ 6.5f−4/7 × 1048 s−1.

Figure 5.9 Temperature-dependent volume emissivities of selected lines and bands,
for a gas of solar abundance in CIE.

From the above estimates, it is evident that the most likely ionizing source for

the nuclear spiral is the stellar UV radiation predominantly contributed by the post-

AGB stars, with an additional contribution from HB stars. This is consistent with the

observed limb-brightened Hα emission of the filaments on the sides facing the M31

center (§ 5.4.3), where the ionizing radiation intensity peaks. However, models for the

photoionization due to post-AGB stars predict an [N II]/Hα intensity ratio of ∼1.2

for gas with an abundance up to 3 solar (Binette et al. 1994), which is inconsistent

with the high ratios (generally ∼>1.3, as large as ∼2.7) observed in M31 (Ciardullo et

al. 1988). The relatively high intensities of low-ionization metal lines imply heating

in addition to the photoionization. This is illustrated in Fig. 5.9, in which volume

emissivities of Hα and [N II] lines are shown versus gas temperature in the case

collisional ionization equilibrium (CIE), a reasonable approximation given the high
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gas density. For instance, a temperature of ∼104.35 is needed to produce a [N II]/Hα

ratios of 2.

The existence of gas with temperatures between 104−106 K is naturally expected

at conductive interfaces between the nuclear spiral and the hot corona, which may

be enhanced by turbulent mixing (Slavin, Shull, & Begelman 1993) induced by the

SNe Ia shock waves. In particular, the observed FUV enhancement associated with

the nuclear spiral (§ 5.4.3) likely provides one such evidence, in a sense that gas

with temperatures ∼>105 K exhibits its peak FUV emissivity and an FUV to NUV

intensity ratio of ∼5 (Fig. 5.9). We note, however, that a reliable quantification

of the FUV emission intrinsic to the nuclear spiral is currently infeasible, due to

the large uncertainties in the stellar SED and differential extinction. Nevertheless,

the presence of ∼>105 K gas in the M31 core is probable in view of the detected

O VI absorption lines (§ 5.4.3). Assuming that the absorption arises from the con-

ductive interfaces, for each classically evaporating cloudlet the absorption column is

NOVI =
∫

2.5(T/Th)
1/2nhXOVIRsd(T/Th) = 2.6 × 1018nhXOVIRpc ∼ 1013 cm−2 (Mc-

Kee & Cowie 1977), given our fiducial values (§ 5.5.2) and an abundance of 4× 10−5

O VI ions per hydrogen atom. Within the FUSE aperture (30′′×30′′) there could

be a number of Nc/4π cloudlets, therefore the predicted total absorption column is

∼8 × 1013 cm−2, not too far away from the observed (4 × 1013 cm−2).

If a substantial fraction of the observed [N II] line (and FUV) emission is indeed

arising from gas heated to ∼>104.5 K, the total [N II] luminosity of ∼5× 1038 ergs s−1

then implies a heating rate at the order of 1040 ergs s−1, as the [N II] lines typically

account for only few percent of the total radiative cooling (Fig. 5.9). The energy

input from SNe Ia, while responsible for the heating of the hot gas, alone may not be

sufficient to account for this radiative loss. In this regard, energetic particles ejected

by the nucleus are likely an additional heating source, given the above estimated jet

power of 2 × 1040 ergs s−1.
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5.6 Summary and concluding remarks

Based on the multiwavelength data presented above we have studied M31∗ and

its circumnuclear environment.

• We have derived a tight constraint on the X-ray luminosity of M31∗, L0.3−7 keV ∼<

1.2 × 1036 ergs s−1. The estimated jet power from M31∗, 1.6 × 1040 ergs s−1,

might contribute to balancing the significant radiative cooling of the nuclear

spiral. Future high-sensitivity, long-duration and simulteneous X-ray/radio ob-

servations may lead to the detection of timing variabilities intrinsic to M31∗ and

help to establish its appearance in X-ray as suggested by the present study. Such

observations are also crucial for assessing the relative importance of feedback

from inactive nuclei.

• We have determined a temperature of 0.3 keV and a mass of ∼105 M⊙ for the

circumnuclear X-ray-emitting hot gas. We have also revealed the interaction

between the hot gas and the nuclear spiral, which we suggest to be due to

thermal evaporation.

• We have detected O VI absorption against the stellar UV radiation, a substantial

part of which is likely associated with the bulge.

• We have proposed a self-consistent scenario in understanding much of the mul-

tiwavelength phenomena, in which thermal conduction between the hot corona

and the nuclear spiral plays a crucial role. Further tests of the scenario include

high-resolution imaging-spectroscopic observations of optical and UV emission

lines arising from the conductive interfaces. The scenario, albeit crude in details

at the moment, should have important applications on similar circumnuclear en-

vironments of spiral galaxies, in particular our Galaxy. It is also reasonable to

invite its application on elliptical galaxies (e.g., Sparks, Macchetto & Golombek

1989), in which hot and cold gas are often observed to co-exist and sometimes
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show morphological correlations (e.g., Trinchieri, Noris & di Serego Alighieri

1997). In the absence of a large-scale disk, elliptical galaxies may obtain a

substantial supply of cold gas from galaxy mergers. In any case, thermal con-

duction is expected to be prevalent in the core of early-type galaxies containing

typically dense, multi-phase ISM, a process previously overlooked. Numerical

modeling of such a scenario will help to derive characteristics of the dynamical

and thermal properties of both the hot and cold gas.

• Understanding the ISM evolution in the circumnuclear regions also allows for a

better understanding of its evolution on large scales. In this regard, a detailed

modeling of the hot gas as well as the O VI-absorbing gas in the M31 bulge will

be our first goal.
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CHAPTER 6

SUMMARY AND OUTLOOK

In the above chapters I have presented several observational studies of the hot ISM

in nearby galaxies, which were carried over the past few years. In this concluding

chapter I would like to comment on recent progress as well as prospects that are

closely related to these studies.

In § 2 and § 3 we have seen that the observed amount of X-ray-emitting gas in the

halos of NGC2613 and M104, two massive disk galaxies, is at least ten times lower than

that predicted by the numerical simulations carried out in Toft et al. (2002). Shortly

after our results were presented, these authors (Pedersen et al. 2006; Rasmussen

2007) claimed the finding of an extended halo of hot gas around NGC5746, another

massive disk galaxy, the amount of which is consistent with the prediction of their

newly performed numerical simulations. Noticeably, for a given galaxy mass, the X-

ray luminosity calculated from these new simulations appear to be about ten times

lower than that given by Toft et al. (2002), which is presumably due to the much

enhanced spatial resolution. I note that the observed X-ray luminosity of NGC2613

is also consistent with the new calculations, while that of the more massive galaxy

M104 is still several times lower than the prediction. Finding an expected amount of

hot gas in the halo, however, does not guarantee the origin of the gas being external.

In NGC2613, for example, the hot gas is most likely related to star formation or the

active nucleus, as we have argued in § 2. It is worth noting that the hot gas in the

halos ofmassive disk galaxies show relatively high temperatures (e.g., ∼0.6-0.8 keV in

NGC2613, NGC5746 and M104), as compared to lower values found in less massive
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ones (e.g., ∼0.3 keV in M31), implying that gravity does play some role in regulating

the global properties of the gas.

Given its rich potentials in galactic studies, we have recently obtained deep Chan-

dra ACIS-I observations of M104 (PI: C. Jones; 180 ks), which would particularly

allow us to trace the X-ray-emitting gas to large radii and to probe substructures

with necessary signals.

Chandra repeatedly observes the M31 bulge every year, accumulating more than

300 ks exposures to date, the first half of which has been utilized in our studies. It

is valuable to maximize the use of archival data, which would particularly allow for

a deep view to the circumnuclear regions. It is also important to extend the field

of view along the minor-axis, in order to trace the outflow of hot gas outside the

M31 bulge. This could be achieved by future Chandra observations as well as existed

XMM-Newton observations.
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APPENDIX

A GALACTIC WIND MODEL

Theoretical models for galactic-scale gas flows have long been developed (e.g.,

White & Chevalier 1983, 1984; Loewenstein & Mathews 1987; Ciotti et al. 1991),

most of which are in the scope of elliptical galaxies for which spherical symmetry is

reasonable approximation. White & Chevalier (1983) studied the steady state galactic

wind, in which they have assumed constant supernova energy input and stellar mass

loss, the rates of which are estimated at the current epoch. Stimulated by the fact

that both the supernova rate and the stellar mass loss rate could be much higher at

early epochs, Ciotti et al. (1991) modeled the time-dependent evolution of galactic gas

flows. They proposed that the gas flow would evolve through up to three consecutive

stages: the wind, subsonic outflow and inflow phases, which can in principle account

for the large scatter in the observed X-ray luminosities of galaxies with similar optical

luminosities (e.g., Ellis & O’Sullivan 2006). While some of these models succeeded

in predicting the X-ray properties of gas in several aspects, such as the total X-ray

luminosity, direct comparison with observations has been so far restricted in the scope

of integrated properties of the gas. More suggestive comparison is to be carried out,

in terms of confronting the model-predicted spectral and spatial properties of gas with

current X-ray observations on sub-galactic scales. To do so, we construct a simple

one-dimention steady-state galactic wind model, as follows.
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A.1 Physical assumptions and formulation

Many of the exsited models (e.g., Loewenstein & Mathews 1987, Ciotti et al. 1991)

involve detailed characterizations of various properties of an ideal galaxy, e.g., how the

stars and dark matter spatially distribute, how mass and energy are loaded into the

gas flow (i.e., stellar feedback). Such properties, essentially determining the gas dy-

namics, are practically difficult to constrain from direct observations. Our approach

is to construct a model with simple but essential physical considerations, aiming to

constrain the stellar feedback by confronting the model with current X-ray observa-

tions.

Our first assumption is that the gas flow is in steady state and spherical symmetry.

The dynamical timescale of a wind is much shorter than the timescale of galaxy evo-

lution, hence it is reasonable to assume that the mass and energy input from evloved

stars, which together supply the gas flow, remain at a constant level. Spherical sym-

metry is not only a practical assumption as used in most theoretical models but also is

hinted in the typical large-scale X-ray morphologies of elliptical galaxies. All physical

parameters considered hereafter, e.g., gas density and temperature, are functions of

galactocentric radius. Secondly, we assume that the mass and energy input spatially

follow the distribution of stars. The mass input is essentially contributed by ejecta

of evolved stars; the energy input is primarily provided by mechanical energy from

Type Ia SNe, with an addition of orbital energy carried by the stellar ejecta.

In galaxies where outflows of gas are expected to exist, the X-ray luminosity is

typically as low as to account for only a few percent of the energy input. Thus

we neglect the effect of radiative cooling on the gas dynamics. We note that this

assumption is not valid in the case of X-ray bright elliptical galaxies, where gas inflow

is believed to be prevailing. In that case, the cooling timescale is comparable to or

even significantly shorter than the dynamic timescale, making the effect of cooling
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on the dynamics crucial. Other assmptions that have been made include neglecting

thermal conductivity, viscosity, and self-gravity of gas.

Now the physical properties of the gas can be described by the Euler equations:

1

r2

d

dr
(ρur2) = ṁ(r), (A.1)

ρu
du

dr
= −dP

dr
− ρ

dφ

dr
− ṁ(r)u, (A.2)

1

r2

d

dr
[ρur2(

1

2
u2 +

γ

γ − 1

P

ρ
)] = −ρu

dφ

dr
+ Ė(r), (A.3)

where u, ρ, and P are the velocity, density and pressure of gas, respectively. γ is the

ratio of specific heats taken to be 5/3. φ(r) is the gravitational potential given by

dφ

dr
=

G[Ms(r) + Md(r)]

r2
, (A.4)

Ms(r) =
∫ r

0
4πρs(r)r

2dr, (A.5)

Md(r) =
∫ r

0
4πρd(r)r

2dr, (A.6)

where ρs(r) and ρd(r) are the density distributions of stellar mass and dark matter,

respectively. ṁ(r) and Ė(r) are the mass and energy input rates per unit volume,

which are assumed to be proportional to the density of stellar mass ρs(r).

A.2 Galaxy modelling

A valid solution of the above Euler equations depends on the specific realization

of the host galaxy, i.e., spatial distributions of the stars and dark matter, mass and

energy input rates.
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While many early models have applied the isothermal r−2 density distribution for

the dark matter halo, we use the NFW profile (Navarro, Frenk and White 1996), in

which density decreases following r−3 at large radii,

ρd(r) =
ρd0

r
rd

(1 + r
rd

)2
. (A.7)

The boundary of galaxy is defined to be the virial radius Rv. We adpot Rv = 250 kpc,

qd ≡ Rv/rd = 15, and the mass of dark matter Md within Rv to be 90% of the total

mass, i.e.,Md + Ms. ρd0 can be replaced by an algebric combination of Md and rd.

The mass and concentration of such a dark matter halo is consistent with results of

numerical simulations (e.g., van den Bosch 2001). We note that the gas dynamics in

the inner galactic regions, i.e., those monitored by typical X-ray observations, is not

sensitive to the distribution of dark matter, since gravity in these regions is dominated

by the stars.

For the stellar distribution, we adopt the Hernquist profile (Hernquist 1990)

ρs(r) =
Ms

2π

rs

r(r + rs)3
, (A.8)

where rs is the scale radius and Ms is the total stellar mass. The Hernquist profile,

when projected, closely approximates the de Vaucouleurs’s law, which is empirically

used to describe the stellar surface brightness profile of elliptical galaxies and bulges

(Hernquist 1990). We note that this profile predicts a cusp at the galactic center.

Since the mass input follows the stellar distribution, the resultant central gas density

is infinite. In reality, the existence of discrete X-ray sources almost always prevent

us from directly probing the diffuse emission of gas near the very center of the host

galaxy, therefore for simplicity we save our effort in relaxing a central cusp in the

stellar distribution. In principle, by assuming a constant stellar mass-to-light ratio,
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rs can be related to Re, the effective radius, within which half of the total stellar light

lies, by the defining relation for Re

∫ Re

0
2πR

∫ Rv

R
2

ρs(r)r√
r2 − R2

drdR =
1

2

∫ Rv

0
2πR

∫ Rv

R
2

ρs(r)r√
r2 − R2

drdR. (A.9)

Re is an observable, thus we can derive rs by knowing Re. In practice, we fit the

2MASS K-band radial intensity profile of the target galaxy with the projected Hern-

quist profile and derive rs from the best-fit. Finally, Ms is determined from the

color-dependent mass-to-light ratio of Bell & de Jong (2001) based on the K-band

luminosity.

To complete the modelling, we also need to specify the colletive stellar mass loss

rate ṁ0 and the collective energy input rate Ė0 within the virial radius, so as to

determine ṁ(r) and Ė(r) (both assumed to be propotional to ρs) via relations

∫ Rv

0
4πr2ṁ(r)dr = ṁ0, (A.10)

∫ Rv

0
4πr2Ė(r)dr = Ė0. (A.11)

ṁ0 and Ė0 are the two key parameters in our model.

For a given galaxy, there are also empirical methods to estimate ṁ0 and Ė0.

Knapp, Gunn and Wynn-Williams (1992) suggested the following relation as a direct

measurement of the current mass loss rate from evolved stars in elliptical galaxies,

using the 2.2 µm flux density

ṁ = 8 × 10−4(
D

Mpc
)2(

S2.2

Jy
) M⊙ yr−1 = 2 × 10−2(

LK

1010L⊙,K

) M⊙ yr−1. (A.12)

The energy input consists of that from Type Ia SNe and that from stars, i.e.,

Ė0 = Ė0,SN + Ė0,star. By assuming a typical released energy of 1051 ergs for single SN
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explosion,

Ė0,SN = 1.1×1040(
RSN

0.035SNuK
)(

LK

1010L⊙,K
) ergs s−1, (A.13)

where RSN is the observed Type Ia SNe rate in units of SNuK (one per 1010L⊙,K per

100 yr) for early-type galaxies at low redshifts (Mannucci 2005).

The stellar ejecta also carry mechanical energy obtained from the orbital motion

of the progenitor star,

Ė0,star =
1

2
ṁ0σ

2 ≈ 0.3×1040(
ṁ0

0.1 M⊙ yr−1
)(

σ

300 km s−1
)2 ergs s−1, (A.14)

where σ is the stellar velocity dispersion. Clearly, Ė0,SN is the dominant form of

energy input.

Closely relevant is the metal-enrichment of gas predominantly by the SNe. Take

the iron enrichment as an example. Nomoto, Thielemann and Yokoi (1984) calculated

the Fe yield per Type Ia SN to be 0.7M⊙, about half of the total released mass.

Assuming a complete mixture of the iron atoms with the gas, the iron abundance can

be estimated as

ZFe = ZFe,star + 9.7(
3.16×10−5

[nFe/nH]⊙
)(

RSN

0.035SNuK
), (A.15)

which is independent to the total stellar content. According to Grevesse & Sauval

(1998), [nFe/nH]⊙ = 3.16×10−5, thus by assuming that ZFe,star equals solar, Eq.(A.15)

gives ZFe,gas = 10.7.

The above estimates of ṁ0 and Ė0, however, are averaged values obtained from

a large sample of galaxies. The actual values for individial galaxies, while cannot be

easily probed from direction observations, may deviate from the average significantly.

Our aim of confronting the model with X-ray observations provides an alternative

way to constrain the values of ṁ0 and Ė0, such that the resultant model best fits the

observed gas properties (see below).
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A.3 Solution

To solve Eqs.(A.1) - (A.3), three boundary conditions, or three equivalent con-

strains on the variables, are generally needed. Given a natural assumption that the

gas velocity is zero at the center, we have the first boundary condition,

u|r=0 = 0. (A.16)

With a further assumption that the derivatives of velocity and temperature are

finite at the center, Eq.(A.3) and (A.16) require that

kT0 ≡ kT |r=0 = µgmH
P

ρ
|r=0 = µgmH

γ − 1

γ

Ė0

ṁ0

, (A.17)

where µg is the mean molecular weight of gas taken to be 0.6, mH and k are of their

conventioanl usages.

Now it is convenient to introduce a dimensionless variable, the Mach number

M ≡ u/cs, where cs ≡ (γP/ρ)1/2 is the sound speed of gas. With Eq.(A.16) and

(A.17), one can show that the Euler equations reduce to a first order differential

equation of the Mach number

dM2

dr
=

M2

M2 − 1
(1 +

γ − 1

2
M2)g(r, M), (A.18)

g(r, M2) =
4

r
− γ + 1

γ − 1

dW
dr

L − W
− (1 + γM2)[

dF
dr

F
+

dL
dr

L − W
],

where

F (r) =
∫ r

0
4πṁ(r)r2dr, (A.19)

L(r) =
∫ r

0
4πĖ(r)r2dr, (A.20)

W (r) =
∫ r

0
F (r)

dφ

dr
dr. (A.21)

In general the right-hand side of Eq.(A.18) is singular when M = 1. Correspond-

ingly, the radius r = rc at which M = 1 is called sonic radius or critical radius. A
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wind solution requires that the gas flow smoothly passes through the sonic radius.

This provides a third boundary condition to the solution,

g(r, M)|rc = 0, (A.22)

so that the right-hand side of Eq.(A.18) remains regular when M = 1.

To derive the wind solution, the location of the sonic radius is first found by

solving Eq.(A.22), which is simply an algebric equation of r. Then L’Hospita’s rule

is applied to obtain the derivative of M at rc. Finally, a wind solution is found by

integrating Eq.(A.18) starting from rc inward to the center and from outard to the

virial radius. An adaptively stepping fifth order Runge-Kutta method is used when

porforming the numerical solution. Fig. A.1 shows a representative solution of the

wind model for M104.

Figure A.1 Representative radial distributions of gas density and temperature within
10 kpc from the center of M104, calculated from the galactic wind model.

A.4 Application to X-ray observations

In principle, giving the spatial distributions of gas density and temperature would

completely determine the thermal emission of the gas, provided that the emission

mechanism is known, e.g., emission from thermal plasma in collisional ionization
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equilibrium (CIE). Correspondingly, in case that our model is a good approximation

of the actual gas dynamics, we expect that the observed X-ray emission be well fitted

by the model predictions.

A practical methodology of studying the X-ray emission is to perform spatially-

resolved spectral analysis. Below we develop procedures to generate X-ray spectra

based on the spatial distributions of gas density and temperatur given by a certain

solution of the model.

According to spherical symmetry, the spectrum of the gas from within a projected

annular region with inner to outer galactocentric radii R1 − R2 is given by

Sν(R1, R2) =
1

4πD2

∫ R2

R1

2πR
∫ Rv

R
2
ne(r)nH(r)Λν[T (r), Z(r)]r√

r2 − R2
drdR, (A.23)

where Λν(T, Z) is the CIE emissivity of optically thin plasma with temperature T

and abundance Z. We shall neglect the possible dependency of Z on the radius.

Since the model spectra are to be used to fit the observed spectra, it is convenient

to make use of the XSPEC software to generate model spectra. There are two ways

to generate an XSPEC implementable spectrum model: one is in analytic format;

the other is in tabulated format1. While the tabulated format requires pre-calculated

model spectra according to grids of model paramters, we adopt the analytic format to

implement our spectrum model, by which on-the-fly spectrum calculation is performed

by summing up spectra of indivial volumes, i.e., Sν = Σsν,i = Σne,inH,iViΛν(Ti), where

ne,i, nH,i and Ti are constant within volume Vi and are to be supplied. Using the

analytic format, we can conveniently generate model spectra for arbitary projected

radii R1 and R2, with the price of more computational effort on-the-fly. We perform

the following steps to make the spectrum calculation effective. We first divide the

sphere with inner to outer radii R1 − Rv into a number of thin shells, with radius

1http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/node59.html
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ri and thickness ∆r. Within each shell, the volume Vi contributes to the projected

spectrum is the proportion of the shell overlaid by the projected annular region. Vi

as a function of R1, R2, ∆r and ri can be expressed analytically as,

Vi =
4π

3
(h

3/2
21 + h

3/2
12 − h

3/2
11 − h

3/2
22 ),

hjk = max{h2
j − R2

k, 0}, j, k = 1, 2 (A.24)

h1 = ri, h2 = ri + ∆r.

The gas density and temperature within each shell are constant, i.e., values provided

by the wind solution at r = ri. The MEKAL model in XSPEC is made used on the

fly to calculate the emissivity Λν(Ti). Individual spectrum sν,i is then calculated and

the total spectrum is obtained by summing up all sν,i.
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