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ABSTRACT

CORRECTION METHODS, APPROXIMATE BIASES, AND INFERENCE FOR
MISCLASSIFIED DATA
May 2009
Meng-Shiou Shieh, B.A., Fu Jen Catholic University
M.A.,Syracuse University
M.A., University of Massachusetts, Amherst
Ph.D., University of Massachusetts, Amherst

Directed by Professor John Staudenmayer

When categorical data are misplaced into the wrong category, we say the data is affected
by misclassification. This is common for data collection. It is well-known that naive
estimators of category probabilities and coefficients for regression that ignore misclas-
sification can be biased. In this dissertation, we develop methods to provide improved
estimators and confidence intervals for a proportion when only a misclassified proxy
is observed, and provide improved estimators and confidence intervals for regression
coefficients when only misclassified covariates are observed.

Following the introduction and literature review , we develop two estimators for a
proportion , one which reduces the bias, and one with smaller mean square error. Then
we will give two methods to find a confidence interval for a proportion, one using op-
timization techniques, and the other one using Fieller’s method. After that, we will
focus on developing methods to find corrected estimators for coefficients of regression

with misclassified covariates, with or without perfectly measured covariates, and with

vi



a known estimated misclassification/reclassification model. These correction methods
use the score function approach, regression calibration and a mixture model. We also
use Fieller’s method to find a confidence interval for the slope of simple regression with
with misclassified binary covariates. Finally, we use simulation to demonstrate the per-

formance of our proposed methods.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

We begin with a brief general introduction to the problems of interest and terminol-
ogy. A description of the contents of the thesis and a more complete literature review

follow.

1.1 Introduction

In studies involving categorical data, there is always the possibility that the data
may be affected by misclassification, which occurs when an observed category does not
match the true category. This is common for data collected from surveys, or error-prone
measurements. A specific example of misclassified data comes from a case control study
of prescription of antibiotics during pregnancy and subsequent occurrence of Sudden
Infant Death Syndrome (SIDS) (Greenland, 1988, 2008). This data includes a main study
data among women from whom only interview data were examined, and a seperate
data set from a validation study from medical records. The interview data is subject to
misclassification.

A second motivating example concerns the estimation of how physically active a per-
son is. A metabolic equivalent (MET) is a measure of a person’s physical activity level at
a given point in time. It is defined as the ratio of a person’s metabolic rate to her resting
metabolic rate, where the resting metabolic rate is defined as consuming 3.5 mL O?/

kg of body weight / minute. It is believed that the amount of time spent at > 3 METs



(moderate activity) has important health implications (Pate et al, 1995), but it is diffi-
cult to measure the fraction of time someone spends above 3 METs accurately, precisely,
and cheaply outside a lab or without burdensome equipment (Sirard and Pate, 2001).
One method to address the problem involves affixing an accelerometer that records evi-
dence of motion on a dense time scale to a person’s hip; other methods, such as surveys,
calorimetry, and doubly labeled water, are reviewed in Levine (2005), for instance. Ac-
celerometer data, known as counts, can then be processed in one of a number of ways
to estimate a person’s energy expenditure over time, and this is an ongoing area of re-
search (Pober et al, 2006). One simple and widely used processing method relates the
total accelerometer counts in a minute to the average METs in the minute with linear re-
gression (Freedson, Melanson, and Sirard, 1998). That relation then can define cutpoints
to classify each minute into two categories < 3 METs (sedentary or light activity) > 3
METs (at least moderately active). These binary data can be subject to misclassification.

It is well-known that naive estimators of category probabilities and coefficients for
regression that ignore misclassification can be biased. Suppose X;,i = 1,...,n are
iid. discrete random variables, each with K categories. Let 7; = P(X; = j), and
7w = (mg,...,T_1)". Instead of observing X;, we observe W;. Let \; = P(W; = )\;)
and A = (Ag,..., A K_l)T. The relationship between X; and W, can be defined in one
of two ways: through a misclassification model, P, or a reclassification model, Q. The
misclassification model is P = (6;,,)i=0,... k—1,m=o0,...k—1, Where 0;,,, = P(W; = [|X; =
m), and A = Pm. The reclassification model is Q = (Vi )i=o0,... K—1,m=o0,...K—1, Where

Yim = P(X; = l[|W; = m), and 7 = QA. Throughout, we use zero-based indexing for
apo ap(k—1)

matrices, so that a K x K matrix has elements o . o . This is so

. .. UK-1)0 - HK-1)(K-1)/
we can use notation like 6y to indicate the values of X, W etc. Reclassification models

are analogous to a Berkson model in general measurement error models (a general ref-

erence for measurement error terms is Carroll et al., 2006), and misclassification models



are analogous to a classical model. In either case, knoowledge of the misclassification
or reclassification model can help reduce the bias in estimators of  or regression coef-
ficients when W, is observed. Either of those models can be estimated from validation
data.

Most correction methods for misclassification in research require auxiliary data or
some knowledge about misclassification or reclassification matrices. One exception is
Li et al. (2004), who assume the surrogate has a Poisson distribution. In that case, the
mean and variance of a Poisson distribution are the same, and the true parameters are
recoverable without additional data or known misclassification/reclassification model.

There are four common types of auxiliary data to adjust for the bias due to misclassi-
fication. They are internal/external validation data (X is observable directly), replicated
values (replicates of W are available) and instrumental variables (another available S is
observable in addition to W). External validation data are independent observations
from the main study, but we have to make sure the external validation data are trans-
portable across different study populations. Internal validation data is also known as
two stage or doubling sampling (Tenenbein, 1970). Through repeated measures of the
surrogate we can recover the misclassification probabilities if there is no identifiability
problem (Harper, 1964, Hui and Walter, 1980, White et al., 2001). Quade et al. (1980),
Walter and Irwig (1988) present the expectation-maximization (EM) algorithm to recover
misclassification probabilities using replicated data. Walter and Irwig (1988) also review
how to use replicated data to recover misclassification probabilities in various designs.
Data collection practicalities sometimes determine whether a reclassification or misclas-
sification validation sample can be collected. Reclassification based models are often
more efficient.

Let Y be the response variable. The measurement error model of W given X is
non-differential if the distribution of Y given (X, W) is the same as the distribution of

Y given X, where W is the observed value for X. Otherwise, it is called differential



mismeasurement. Non-differential mismeasurement means the misclassification prob-
abilities do not depend on Y. For example, Greenland (1998) studies the association
of antibiotic use in mothers during pregnancy (X) and sudden infant death syndrome
(SIDS) which is Y. The observed data (W) is self-reported by the mother. If P(W|X,Y)
does not depend on Y/, the misclassification is non-differential. Otherwise, it is differen-
tial.

The odds ratio and relative risk are very important in epidemiology studies. If an
event F has probability P(E), the odds of the event is P(E)/(1 — P(E)). In general
if two events £ and E> have respective probabilities P(E;) and P(E,), the odds ratio
comparing F; with Ej is the ratio of the odds of E; to the odds of E». In case-control
studies, let Y (= 0, 1) denote disease status and X (= 0,1) denote exposure status. The

odds ratio is
PY=1X=1)1-PY =1X=0))
PY=1X=0)(1-PY =1Y =0))

The relative risk is defined as
PY=1X=1)
PY =1X=0)

If we observe W instead of X, then the naive estimators of odds ratio and relative risk
are biased, and we would need some information about misclassification probabilities

to do correction.

1.2 Purpose of Thesis Contents
The purposes of this dissertation are:

1. To provide improved estimators and confidence intervals for P(X; = j) when only

a misclassified proxy for X; is observed, and

2. to provide improved estimators and confidence intervals for regression coeffi-

cients when only misclassified covariates are observed.



The main focus of this dissertation is to account for the effects of an estimated mis-
classification model.

Following this introduction, we review literature on correcting for misclassification
when the observed data are misclassified and when misclassified data are used as co-
variates in regression models. Chapter 2 will consider the case when = is of interest. We
will discuss existing estimators of m and introduce some estimators which are not un-
biased but have smaller mean square errors. In Chapter 3, we will develop confidence
intervals for 7 in the case when K = 2. In Chapter 4, we will focus on regression mod-
els with misclassified covariates. We present a correction method when one of P or Q
is known, and explore the approximate bias of that method when P or Q is estimated
from external data. In Chapter 5, we use simulation to evaluate the performance of the

methods described above, and in Chapter 6 we will present our conclusions.

1.3 Literature Review: Misclassified Categorical Data

The problem of misclassified categorical data has been considered for over 50 years.
An early reference is Bross (1954) who discusses the biases caused by misclassification
in binary data. Bross (1954) shows that when misclassification is ignored, the estimated
difference between two proportions of interest of two different populations (e.g., case
and control) is biased toward the null of no difference, the significance level is correct
if both populations have the same misclassification probabilities (non-differential) and
power is reduced. Tests about the difference are discussed further by Rubin et al. (1956),
Katz (1979), and Zellen and Haitozsky (1991) for the binary case, and Mote and Ander-
son (1965) for the multinomial case. In these articles, it is shown that the power of the
x? test will decrease under misclassification (differential or non-differential), and the
false positive probabilities (P(W = 1|X = 0)), the false positive probability in a dif-

ferential misclassification model, for two populations plays an important role in how



much the power reduces when 7 is less than 0.5. Reducing the false positive probability
can improve the efficiency of the test if 7 is small. When 7 is big, the roles of false-
positive and false-negative will switch. Schwartz (1985) also states the bias of the naive
estimator and how the misclassification probabilities affect the coverage probability of
conventional confidence intervals for misclassified binary data.

Kuha et al. (1998) give a concise summary of the development of correction methods
for misclassified data in different epidemiological models. Quade et al. (1980) present
the bias of a naive estimator and the bias of the estimator that treats estimated misclas-
sification probabilities as known. Chen (1989) presents a review of methods for misclas-
sified categorical data in epidemiology, and also shows that the usual misclassification
models are a subclass of log-linear models. Tenenbein (1970) uses double sampling (i.e.
internal validation data) to get a maximum likelihood estimator for the true proportion
and the asymptotic variance for misclassified binomial data. Espeland and Hui (1987)
demonstrate how to model misclassified data with validation data as an incomplete
data problem using a log-linear model and estimate using the Fisher scoring algorithm.
Barron (1977) uses the misclassification model, also known as the matrix method (Mor-
rissey and Spiegelman, 1999) or indirect method (Marshall, 1990), to obtain unbiased
estimators from misclassified 2 x 2 table data, and he uses the results to correct rela-
tive risk estimates. This work assumes the misclassification model is known. Marshall
(1990) compares the relative efficiency of the direct method (also known as reclassifi-
cation or inverse matrix method) with the indirect method and shows that the direct
method is more efficient than the indirect method. Greenland (1988) derives the vari-
ance of corrected estimators when the misclassification model is estimated from external
or internal validation data. In van den Hout and van der Heijden (2002), it is shown that
under known misclassification probabilities, the maximum likelihood estimator (MLE)
and moment estimator are the same if the moment estimator is in the interior of the

parameter space.



Other articles related to misclassified data itself include Copeland et al. (1977) and
Hofler (2005), who discuss the bias of relative risk for misclassified data when misclassi-
fication is non-differential or differential. Gladen and Rogan (1979) show that the power
of statistical tests about relative risk is reduced when data are affected by misclassifica-
tion. Morrissey and Spiegelman (1999) compare the matrix method and inverse matrix
method to correct estimates of the odds-ratio of misclassified binary data. They con-
clude that the inverse method estimator performs better. Lyles (2002) points out that
the inverse matrix estimator used in Morrissey and Spiegelman (1999) is the MLE under
differential misclassification. Greenland (2008) shows that the matrix method estima-
tors in Barron (1997) and Greenland (1998) are MLEs under the assumptions given by
those authors. Selén (1986) uses a matrix method to correct estimates of group means

for misclassified data and derives the variance of the corrected estimator.

1.4 Literature Review: Misclassified Covariates in Regression

For the regression model, Fuller (1987) and Carroll et al. (2006) are book length
reviews of measurement error models, and Carroll (1998) has a summary for epidemi-
ologists. Most of the literature that provides correction methods for regression models
with mismeasured covariates focuses on continuous cases, and does not apply gener-
ally to categorical data. Cochran (1968) shows how to model binary misclassified data
from a measurement error model perspective. This work also shows that, in some sim-
ple situations, binomial misclassified data can be modeled with a non-standard type of
continuous measurement error.

It is well known that the coefficient estimators usually are inconsistent for regression
models when discrete covariates are misclassified. Christopher and Kupper (1995) study
the bias of the least squares estimator in multiple linear regression models with mis-

classified covariates, perfectly measured covariates and a known reclassification model.



They also explore the impact on certain test statistics and show that misclassification
will cause the power of such tests to be reduced. In the situation of continuous mismea-
sured coavariates, it is known that the naive coefficient estimates corresponding to the
perfectly measured covariates will be unbiased if the mismeasured covariates and the
perfectly measured covariates are uncorrelated (Carroll et al., 1985). Buonaccorsi et al.
(2005) prove this is also true for misclassified covariates. Davidov et al. (2003) study the
effect of misclassification on the parameters of a logistic regression with misclassified
binary covariates and Veiered and Laake (2001) derive the bias for Poisson regression
with misclassified and perfectly measured covariates.

Common correction methods for regression include the method of moments, like-
lihood methods, regression calibration, simulation extrapolation (SIMEX), estimating
equation approaches and Bayesian approaches. Reade-Christopher and Kupper (1991)
study logistic and log-linear regression with misclassified covariates. They use known
or estimated reclassification models and use maximum likelihood to get a naive esti-
mator, then follow the method of moments to perform the correction. Spiegelman et
al. (2000) present likelihood-based computational strategies for logistic regression with
both covariate measurement error and reclassification models on one or more covariates.
Linear regression with misclassified covariates and a known misclassification model is
considered by van den Hout and Kooiman (2006). They use the idea in Spiegelman et
al. (2000) and implement the EM algorithm to find corrected estimators.

When it is hard to find the maximum of a likelihood that involves many parameters,
a pseudo likelihood method can be used. Gong and Samanjego (1981) define pseudo
maximum likelihood estimation and get the asymptotic distribution of pseudo MLE.
A pseudo method estimates some parameters from validation data first, then treats
those parameters as known and finds the maximum likelihood estimators for the re-
maining parameters. Parke (1986) has a simpler expression for the asymptotic variance

of a pseudo MLE. Liu and Liang (1991) use quasi-likelihood scores and the pseudo ap-



proach for generalized linear models with only categorical covariates, misclassified or
not, and non-differential misclassification. They derive the variance for the corrected
estimator that accounts for the variation due to estimation of the parameters in the mis-
classification model. They estimate the misclassification parameters from replicate data
and discuss how many replicates are needed to reach a desired efficiency.

Rosner et al. (1989) apply regression calibration, data imputation and likelihood ap-
proximation methods to logistic regression with a mismeasured covariate. Frost and
Thompson (2000) compare moment-based and regression methods to correct the cor-
rection factor (the inverse of the correction factor is the attenuating factor or reliability
ratio (Carroll et al. 2006)) of a simple regression slope with a mismeasured covariate,
and the simulations show that the moment-based method performed better. White et al.
(2001) demonstrate how to use replicated data to correct using regression calibration in
the regression model with measurement error in binary and continuous covariates.

Nakamura (1990) proposes a corrected score approach. This work develops a score
function whose conditional expectation given the response and true covariates is the
usual log likelihood based on the response and the unknown true covariates. This ar-
ticle also includes a proof that the solution of a corrected score function is a consistent
estimator under some regularity conditions. An unbiased score function is a score func-
tion whose expectation is zero at the true parameter, and it is not necessarily based on
the likelihood function. We should note that an unbiased score function is not neces-
sarily a corrected score function. Akazawa et al. (1998), prove that a corrected score
function always exists for a regression model with misclassified covariates, but it does
not necessarily exist in the case of mismeasured continuous covariates. The existence
of a corrected score function assumes the misclassification matrix is known. Recently,
Zucker and Speigelman (2008) apply the idea of Akazawa et al. (1998) to a hazard model
with misclassified covariates. Stefanski and Carroll (1987) study conditional score esti-

mators for the generalized linear model, and they obtain an unbiased score function



by conditioning on sufficient statistics. Buonaccorsi (1996) uses a modified estimating
equation approach which can be applied when the measurement error variances and
covariances differ across units. The measurement error variances and covariances for
this approach can be known or estimated.

Cook and Stefanski (1994) propose the idea of the simulation-extrapolation (SIMEX)
correction method for the measurement error model. The method adds more measure-
ment error to the mismeasured variables (covariates or response), then gets regression
parameters corresponding to the extra error, studies the trend of the parameters, and
then extrapolates this trend back to get a SIMEX estimator of the parameter of inter-
est. Kiichenoff et al (2006) develops an innovative SIMEX approach for misclassified
data (MC-SIMEX). They assume that the misclassification matrix P is known or can
be estimated from validation data. The way they add extra errors to the misclassified
data is interesting: in each simulation step &, they construct a new misclassification ma-
trix P = EDSE~! where D is the diagonal matrix of eigenvalues of P, and E is the
corresponding matrix of eigenvectors. Note that P!*¢ = PP¢ and we can simulate
misclassified data using the observed as true data and P¢ as the misclassification rule.
Kiichenoff et al (2007) derives the asymptotic variance estimators for the MC-SIMEX es-
timator when the misclassification model is estimated from external data. MC-SIMEX
can also apply to prevalence estimation.

Gustafson (2004) has a general discussion about the Bayesian method for epidemio-
logical data with mismeasurement error and misclassification. Stamey et al. (2007) and
Perez et al. (2007) use a Bayesian approach to address misclassified multinomial /binomial
data. Stamey et al. (2007) compare Bayesian estimation of an intervention effect with the
maximum likelihood estimators in Lin et al. (2005), and they find the Bayesian estima-
tor’s coverage is better. Perez et al. (2007) provide a Bayesian method for multinomial
data with misclassification. Prescott and Garthwaite (2002) use a two-stage Bayesian

method for the odds-ratio of a case-control study, and compare their method with the
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methods of Morrissey and Spiegelman (1999).

In the Bayesian approach, the unobserved true value is latent. Kuha (1997) uses
data augmentation in generalized linear models with mismeasured covariates and mis-
classified covariates. Stephens and Dellaportas (1992) apply a Bayesian method to gen-
eralized linear models with mismeasured covariates. Miiller and Roeder (1997) use a
Dirichlet process prior on the joint distribution of covariates and the true unobserved
variable, and they use a Gibbs sampling scheme to estimate the parameters of a logistic
regression with a mismeasured covariate or a misclassified covariate and some valida-

tion data.
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CHAPTER 2

ESTIMATORS FOR 7

Let X1, Xo, ..., X,, beindependent and identically distributed binary (0 or 1) random
variables with 7 = P(X; = 1). Instead of observing X;, we observe W;. There are two
common ways to describe the relationship between W; and X;. One is a misclassification
model where P(W; = 1|X; = 1) = 63 (sensitivity), and P(W; = 0|X; = 0) = 6o
(specificity) which is similar to the classical model for additive measurement error. The
reclassification model approach is analogous to a Berkson model and specifies P(X; =
1|W; = 1) = 711 (positive predictive value) and P(X; = 0|IW; = 0) = 700 (negative

predictive value) .The bias of the naive estimator, Tpqive = » ;. Wi/n, can be shown to

be (0o +611 —2)—0po+1 or W(Z_ﬁﬁﬁ;rfm)f;’ 001 expressed in terms of the misclassification
and reclassification models respectively. One consequence of these bias expressions is
that a misclassification or reclassification parameter closer to one (the case of no error of
a particular type) can actually result in more bias. See Section 2.2 for more discussion
of bias. Recent reviews of this problem, including important extensions to two by two
tables and odds ratios, can be found in Greenland (2008), van den Hout and van der
Heijden (2002), Chen (1999), and Kuha et al. (1998). The Bayesian approach is discussed
in Gustafson (2004, Chapter 5) and Prescott and Garthwaite (2002). We take a relative
frequentist approach.

With either a known misclassification model or a known reclassification model, the

respective bias expressions can be used to develop unbiased method of moments esti-
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mators of . In the case of the misclassification model the estimator is:

7?naive + 900 -1
Ooo + 611 — 1

T corrected, M = >

and in the case of the reclassification model it is:

%corrected,R - (700 + 711 — 1)%naive — Yoo + 1.

The first correction method is the matrix method, and the second correction method
is the inverse matrix method (Morissey and Spiegelman, 1999). Zelen and Haitovsky
(1991) point out that the true and observed values have a positive correlation when
oo + 611 —1 > 0.

If T eorrected, v is modified by making it zero or one if Teorrected, s < 0 OF Teorrected, M >
1 respectively, then the resulting estimator is also a maximum likelihood estimator (van
den Hout and van der Heijden, 2002, Section 5). Teorrected, r is also a maximum likelihood
estimator (Lyles, 2002).

When the misclassification and reclassification parameters are known, the reclassi-
fication estimator generally has a smaller variance than the misclassification estimator
since |0go + 011 — 1| < 1and |yp0 + 711 — 1| < 1. On the other hand, the misclassifica-
tion model can be estimated from a validation sample that is designed to contain a fixed
number of X = 1 and X = 0 cases. That is the situation in which we are primarily
interested, but when a reclassification model is available, 7o rected, g Should be used.

In the typical case when the misclassification model is unknown, it needs to be esti-
mated. We consider the case of external validation data where W; is observed N when
X; = 0and N; times when X; = 1. With N;; denoting the number of times w; = x; =
J,7 = 0,1 in each sample, estimators of 6y, #1; are 500 = ]]\\7[—08 and 511 = %—111 Note that in
these data we do not require the relative frequencies of X = 0 or X; = 1 to have any con-
nection to Pr(X; = 0) or Pr(X; = 1). As a result, these validation data cannot be used to

estimate a reclassification model. Using the estimates of 6y and 6;; above, an estimator
%naive + 900 -1

50() +§11 —1

of 7is Tprugrn = . If estimates of 79 and ~;; are available, then the plug-
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in version of the reclassification estimator is 7 pjygrn, e = (Y00 +711 — 1) Tnaive — Yoo + 1. It
can be shown that these are maximum likelihood estimators from the n main study and
Ny and N ; validation study data points. Jensen’s inequality can be used to show that
T PlugIn is biased when N g and N ; are finite. We develop two novel alternatives to these
estimators next. One is a bias reduced version of 7 pj, 41, (Section 2.1), and the otheris a
“partially corrected” estimator in Section 2.2.

Section 2.1 will be devoted to the bias reduced estimator, and section 2.2 is the par-
tially corrected estimator, both for the binary case. In section 2.3, we will generalize

these results to the case of categorical data with k categories.

2.1 Bias Reduced Estimator

In this section, we will discuss the bias of 7pjuyr,. We begin with the following
theorem that approximates the bias of 7p;,4r, as a function of the validation sample

size.

Theorem 2.1.1 Assume oo + 611 — 1 # 0, and 65, + 07, — 1 # 0 for all 05,07, in the

rectangular box formed by O, 500 and 611, 511, then

(ﬂ'naive + 900 - 1)
(900 + 011 — 1)3

(Wnaive - 911)
(900 + 611 — 1)3

E (%Plugln) = 7T—|-VCL7’(§Q()) +VCL7’(§11)

Proof Let f(mhaive, P00, 011) = %fﬁoﬂ;l. Then from Taylor’s expansion, we will have:

~
Tnaive — Tnaive

F Fnaives 000,011) = (Tnaives 800, 611) + V. f (Tnaive, oo, 011) " B0 — oo
611 — 61
Tnaive — Tnaive Tnaive — Tnaive
+ fo0 — Boo sz(ﬂmw;’ B0, 611) foo — Boo
611 — 01 611 — O

+R3 (%naivey 9007 911 ) )

14
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where

_ ~ A 8 f (Fnaives 000, 611) , (7 i2 (7 i
R3(7Tnaive, 900, 911) = Z 3!871‘“ 606%89?1 (ﬂ'naive_ﬂ'naive) ! (900_900) 2(911_911) 3)

i1+ia+iz=3 naive

with 500 between 67 and 500, 511 between 617 and 511. Since —22f — 0, 511, goo are un-

aﬂ—iaive
83f(%naivea 5007 511)
oL 0072001

naive

correlated,

< M for some M since the third order partial deriva-

~ 5 205 —30% 46,

tives of f are continuous on a closed region, and E(6;; — 6;;) N2 ,i=0,1,
i

we will have
‘E{f(%naivea é\007 é\ll)} - {f(ﬂ'naive; 9007 911)+

82f(77naive oo 911) n a2.](.(000 011 7"'naive)
M M V 9 ) )
2002, ar(foo) + 2002,

Var(au)}‘ < 12Mmin(N4,N,) 2,
which yields

(Wnaive + 900 - 1)
(Boo + 011 — 1)3

(ﬂ-naive - 911 )

O + 011 — 1)3+ Var(611)

E (T ptugin) = m+ Var(foo) +O(min(N1, Ng) ).

As a consequence of the preceding result, we can create a first order bias corrected

estimator:

Bo0(1 = B00) (Fnaive — 011)  011(1 = 011) (Fnaive + Boo — 1)

Tcorrected,PI = TPlugln —

No(Boo + 011 —1)3 N (Boo + 611 —1)3
Also note that
= P %Pl ; Var(HOO)(l - %Plugln) Var(ell)%PlugIn
corrected, - ugln — ~ ~ - = ]
(900 + 6011 — 1)2 (900 + 6011 — 1)2
S Var (0oo) 7 prugin Var(6oo + 011 — 1)Tprugin
= T Plugln + —= = Y - = = 9 5
(Boo + 611 — 1) (Tnaive + 000 — 1) (Boo + 611 — 1)

and the estimator 7o rected, pr can be rewritten as

E(;f(é\oo + 511 — 1,7?mu've + 50() — 1) B \//a\r(é\oo + 511 — 1) }

%corrected,PI = %Plugln I+ =~ = — = = =
{ (Boo + 011 — 1) (Tnaive + oo — 1) (Boo + 611 — 1)?

This estimator has the same structure as Tin’s (1965) “modified ratio estimator”. Our
situation is more complicated than Tin’s, since our ratio is a function of 74ive, foo, and

611, each of which may have different sample sizes, and our estimator also is derived
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by a different method. We find the similarities between the estimators surprising. Tin’s
estimator has been studied theoretically and via simulation by a number of subsequent
authors, e.g. Hutchison (1971), Rao & Rao (1971), Dalabehera & Sahoo (1995), and they
found Tin’s estimator generally to be less biased and more efficient compared with other
proposed ratio estimators. We use simulation to investigate the bias of 7pjy41,, and the

performance of Teorrected, pr in Chapter 5.

2.2 Partially Corrected Estimator

Theorem 2.2.1 For any 0 < 7 < 1, if (6oo, 611) satisfy the relationship w(6pg + 011 — 2) —

6o + 1 = 0 for values inside the unit cube, then the bias of the naive estimator, Tpaive, IS

7(2—v00—711)+y00—1
Yoo+7y11—1

zero. Similarly, if (o0, v11) satisfy = 0 for values in the unit cube (and
Yoo + Y11 # 1), then the bias of the naive estimator, Tyqive, is zero. Figure 1 illustrates these

results.

As noted before, since |0pp+ 611 — 1| < 1, the corrected estimator has a larger variance
than the naive estimator, even if the misclassification model were known. The implica-
tion of that fact and the result above is that for certain combinations of 7, 6y, and 61,
the validation data should be ignored since the naive estimator is unbiased and has a
lower sample variance. Although we would need to know 7 in order to use that fact
directly (and if we knew 7, we would be done!), we can create a “partially corrected”
estimator that is an affine combination of the naive estimator and the plug in estimator:
Tpe = Tnaive + (1 — )T plugrm- The tuning parameter 0 < a < 1 needs to be estimated,
and we do that by finding one to minimize an estimate of M SE(7,.), subject to the
constraint that 0 < a < 1. Schafer (1986) used a similar idea in linear regression with
covariate measurement error. Gustafson (2004), section 5.1 demonstrates that the mean
squared error of naive estimator of a log odds ratio can be smaller than the corrected one

when the sample size is small. Finally, while it is tempting to use Tcorrected, pr instead of
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Lines show values of 659 and 0, that the naive estimator unbiased for different true 1.
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For each T, bias is positive above the line and negative below it.

Figure 1. When the naive Estimator is Unbiased: this figure shows combinations
of m, 6y, and 61, that result in zero bias for 7,,.; ..
T PlugIn, we found that a stable estimate of the variance of Tcorrected, pr (an involved ex-

pression derived via the the multivariate delta method) to be elusive.
The following two theorems give expressions for a, one for the case where the mis-

classification model is known, and the other for the case where the misclassification

model is estimated from external data. We discuss how to estimate a after the theorems.
Theorem 2.2.2 When 0y, 611 are known,
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(i) MSE(Tp) has a minimum at

S MSE(%PlugIn) - COU(%naivey %Plugln)
man MSE(%MM'U@) + MSE(?T\Plug[n) — 2COU(§T\naive7 7?Plugln)

(1) 0 < amin < 1 Zfﬂi’ld 07’lly ZfMSE(%PlugIn) > OOU(%naive,%Plug—’") and MSE(%TLC”‘U@) -
CO’U(%naivea %Plugln)'
(i) IfMSE(%PlugIn) < Cov(Thaive, %Plugln)a then we set apin = 0, and ifMSE(%”C”‘Ue) <

Cov(Thaive, T Plugin), then we set apy = 1.

Proof

MSE(Tpe) = Elafnaive + (1 — )R prugrn — [am + (1 — a)x]]®

= 612 MSE(%naive) + (1 - a)2 MSE(%Plugln) + 2(1(1 - G)E[(%naive - 7r)(%Plugfn - 77)]

= CL2 MSE(%MM'U@) + (1 — a)2 MSE(%plug[n) + 2(1(1 — a) COV(%nawe, %Plugln) (21)

Let f(a) refer to equation 2.1. Since f(a) is a quadratic function of ¢ with positive
leading coefficient MSE(Tyqive) + MSE(Tputin) — 2 Cov(Tnaives Triugin) » f(a) has a

minimum. The derivative of f is

/

f (a) = { MSE(%naive) + MSE(%Plugln) -2 COV(%naivm %\Plugln)} a

— { MSE(%Plugln) - COV(%naivey 7/I\'Plugln)} ) and

MSE(7 ) has a minimum when f'(a) = 0, that is when

P — MSE(%Plugln) — Cov(Tnaive, %\Plugln)
" MSE(%WM'UE) + MSE(%Plugln) —2 COV(%naivm %\Plugln)

So (i) follows.

By comparing a,,i, with 0 and 1, we obtain (ii).

If £'(0) = — { MSE(Rpiugin) — COV(Fnaives TPiugin)} > 0if MSE(Fppugrn) < Cov(Rnaives TPlugrn),
then we have f increasing on interval [0, 1]. So we set @y, = 0 when MSE(7pjygrn) <
CoV(Thaives TPlugin)- We use the same argument for MSE(T,,qive) < CoV(Tnaive, TPiugin),then

(iii) follows.

18



When the misclassification model is known, we have
~ ~ 1 ~ ~
COV(Wnaivm 7TPlugIn) < 5 { MSE(Wnaive) + MSE(ﬂ'Plugln)} .

If MSE(Tpiugrn) < CoV(Tnaive, 7 Plugrn), We must have MSE(7pjugrn) < MSE(Tpnaive)
and it is natural to think that 7 p;,41,, has the smallest mean square error among all par-
tial corrected estimators (i.e. a = 0). The same holds for the situation that MSE(7,,4ive) <
Cov(Tnaive, TPlugin)- Butif Cov(Tphaive, T Plugrn) is less than both MSE(7,4ive) and MSE(T prygim),

that means we can find a estimator with smaller mean square error.

Theorem 2.2.3 When 500, 511 are estimated from validation data,

(i) MSE(Tp) has a minimum at

Qi = MSE(%PlugIn) - [COU(%naivey%Plugln) + (/\ - 7T) {E(%Plugln) - 77}]
e MSE(%MM'U@) + MSE(%PlugIn) -2 [COU(%naivm %\Plugln) + ()‘ - 7T) {E(%Plugln) - 77}] .

(i1) 0 < amin, < lifand only if MSE(Tpiugrn) > Cov(Tnaive, T Plugin)+(A—7) { E(Tprugrn) — 7}
and M SE(Tpaive) > Cov(Tnaive, TPiugin) + (A — ) { E(R prugin) — 7} .

(iti) If MSE(T prugin) < Cov(Tnaive, 7 Plugin) (A=) { E(T prugrn) — 7} , then we set amin =

0, and if MSE(Tnaive) < Cov(Tnaives TPlugin) + (A — T) {E(Tpiugrn) — 7} , then we set

Amin = 1.

Proof The proof proceeds as in the case when the misclassification model is known, but

NOW T pyyg1n is NOt an unbiased estimator for 7 and we have

E {(%naive - 77) (%Plugln - 7T)}
= F [{(%naive - )\) + ()\ - ﬂ')} {(%Plugln - EﬁPlugln) + (EﬁPlugIn - 77)}]
= COV(%naivea %Plugln) + (/\ - 7T) {E(%Plugln) - 7T}
We notice the difference of these two theorems: (A —7) { E(7 pjugrn) — 7} will be zero

if the misclassification model is known. From the above theorems, we know the « is a

function of the unknown 7. To estimate a, we can use the following algorithm:
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1. To make notation simple, we will assume @Z = #;;,i = 0,1 when the misclassi-
fication model is known. Also we define § as an indicator, where § = 0 if the
misclassification model is known and § = 1 if the misclassification is estimated

from external data. Following these, we have

oo (1 — 900)’ @(511) _ 5911(1 — 911).
Ny

Var(yo) = 6 N

2. We use Theorem 2.1.1 to estimate the bias for 7pjyg7,, and define

B/i;s _ (\//a\r(é\OO)(%naive - 511) \//a\r(é\ll)(%naive + 500 - 1)
(Boo + 011 — 1)3 (Boo + 011 — 1)3

3. We estimate the mean square error of Tpeiye Which is the sum of variance and

square of the bias of 7T,40e. We treat 7py,q1,, as an estimator for m, we have

- Frame(l = Foaive)
MSE(ﬂ'naive) = nawe( n nawe) + (Wnaive - 7TPlugIn)2'

4. We use the delta method to estimate the variance of 7p;,4r,. The square of bias of
T Plugln Will be small compared with the variance estimate of 7 pjy,47, and we will

ignore it. That is :

A=A + V;I‘(é\()o) - 2a'f'\PlugIn @(500) + %2Plugln { @(500) + {/‘;1‘(511)}

MSE(TFPlugIn) = (500 + é\ll —1)?

5. Using the independence of validation and main study data, and the delta method,

we will have the covariance estimate of T4ive and 7 pjygrn:

~ ~ T (1 =7
Ea](ﬂ.na’ivea 7-‘.Plugln) = Trna/zz)e( _ ﬂﬂalve)
n(000 + 911 — 1)

6. Combining the above together, we have our estimator for a,,:

— ~ — ~ ~ ~ ~ /.\
MSE(WPlugIn) - COV(Wnaivm 7TPlugIn) - (ﬂ'naive - 7"'PlugIn)Blas

—~
Amin =

—

MSE(%naive) + MSE(%Plugln) -2 COV(%naivm %Plugln) + (ﬁnaive - %Plugln)Bias

We use simulation to investigate the performance of 7, in Chapter 5.
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2.3 K Category Misclassified Data with External Validation Data

In this section, we will consider categorical data with categories 0, ..., K — 1. All the
matrices are using zero-based indices.

As before, let X,...,X,, be independent and identically multinomial distributed
random variables, with 7; = P(X; = j),j = 0... K — 1. W, is the observed value of X;
with \; = P(W; = j). Define 7w = (m1,...,7x) ", A= (M,..., k) . Let Pbea K x K
matrix with m, Ith element 6,,;, = P(W; = m|X; = [). We assume P~ exist. Let Q be a

K x K matrix with m, [th element ~,,; = P(X; = m|W; = [). P is the misclassification

(70 7E-1T where

naive’ " * ° "natve

model and Q is the reclassification model. With T,,4i0e =
n

= % Z Liw,—ky and a known misclassification or reclassification model, we also
i=1
can develop unbiased method of moments estimators of w, and the misclassification

~k

naive

model requires some adjustment.

Unlike the binary case which only estimates one random variable, we are estimating
multivariate correlated random variables when & > 3. If one of the elements of 7 is
outside the parameter space, we no longer can just set that element to 0 or 1. We need
to have the sum of all elements equal to 1. The method of moments estimator can run
into that problem. In that case, we can use the maximum likelihood estimator (MLE). In
van den Hout and van der Heijden (2002), it is proven that when the moment estimator
is in the interior of the parameter space, the MLE is equal to the method of moments
estimator P~ %, 4ive- They also develop an EM algorithm for this situation.

Now we have a correction method with known misclassification model:
~ . P_lA )
T corrected, M — T naive-
and with known reclassification model,
Tcorrected,R — Q"rnaive-

T corrected, M » T corrected, R ar€ both MLEs. When the reclassification model is estimated

from independent external validation data, the correction estimator is still unbiased.
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When the misclassification model is estimated from external data, 7 pj,g7,, = f’_l?rnawe
is biased, due to the fact that EP 1 # (Ef’)_l. We will prove an unbiased estimator of
P~! does not exist in section 2.3.1. We will still focus on the misclassification model.
Section 2.3.2 contains a reduced bias estimator and section 2.3.3 discusses a partially

corrected estimator.

2.3.1 The Proof of No Unbiased Estimator for P!

In this section, we will prove that there does not exist an unbiased estimator for P-L
This generalizes a similar result for % for binary data with unknown probability p.

P is a misclassification matrix of dimension K if P is a K x K matrix with the value
of each entry between 0 and 1, and the sum of each column equal to 1. Let Px = {P|P

is a K x K misclassification matrix }.

Theorem 2.3.1 Let A = (ag,a,...,ax—1) bea K x K random matrix with a distribution
ap; 90@'
such that a; is multinomial (N ;,0;) where a; = : 0, = : ,and P =
(K1) G(K—l)i

(0o, ...0K_1) is an unknown misclassification matrix. Then there is no unbiased estimator of

P—l

Proof First we will prove that { det(P~!)|P € P} is unbounded. If we assume there
does exist an unbiased estimator for P~!, then we can have { det(P~!)|P € Pk} is
bounded, which leads to a contradiction.

Form € N, let

10 0 0 ]
01 0 0 Y
P,=[00 1 0 o)
00 0 o gEs
0 0 —

P,, € Pk and det(P,,) = 1, and therefore { det(P~1)|P € Pk} is unbounded.
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M5

Assume T is an unbiased estimator for P! with element T;; = Z Gﬁj(A),z‘ Jj =
1=0

0...K — 1 where G! ;(A) is a polynomial of elements in A with degree I. Let the sum of

the absolute value of coefficients of G! ;(A) be C'ilj. Then,
Ngj Mij
E[T;] =P = E[Z Gﬁj(A)] < Z ij from the property of multinomial distri-
1=0 1=0
K-1
bution, P([| {0 <a;; <1}) =L

1=0
j=1

So PZ-_j1 is bounded for all P € Pandall4,j = 0... K — 1 As a result, det(P~!) is
bounded above for all P € P which contradicts our earlier statement, therefore there is

no unbiased estimator for P~1.

2.3.2 Bias Reduced Estimator for £ > 3

In this section, we will discuss the bias for @ pj,q7, for misclassified data with K

categories.

Assume we have K categories with misclassification model

oo o1 e Bo(r—1)
610 011 . O1(r—1)
P=
=500 1= 00 0 1= 25 b ~

Assume P is an estimator for P from external data for P and det(P) # 0. Then

~

P '%,4i0e is @ simple estimator for 7. It is a biased estimator since EP! £ P L
Let £(0, Traive) = P~ T haie and let M;; be a K x K matrix with 0 everywhere except

in position 4, j which a1, and K — 1,7 which contains a —1,4,j = 0,... K — 1. Then
oP~ — _P_18_P

-1 .
T i P~ (Harville, 197,

using the delta method and any scalar variable z,

Section 15.8) we will have

K-1K-2
E%Plugln = @+ Z Z Val‘(@ij)P_lMijP_lMijP_l"rnaive
=0 i=0
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K-1K-2
J=0 i<

+P_1MijP_1Mi’jP_17rnaive} + O(mlnl(sz))

where N, is the sample of validation size in category k. This result gives a first order

bias corrected estimator:

K-1K-2 R
%corrected,PI = %Plugln - Z Z Var(eij)f)_lMijf)_lMijf)_l"Arnaive
j=0 =0
K-1K-2
_ Z Z COV(é\ij,é\i/j) {f)_lMi’jf)_lMijf)_lﬁnaive

J=0 <’

FPTIM PV P R |

Even though T corrected,pr can reduce the bias, we can’t guarantee that it is in the
parameter space. Unlike the binary case in which we know how to adjust if the estimator
is not in the parameter space, we do not know how to adjust in this situation if K > 3. If
T corrected, p1 18 Outside the parameter space, we should compare it with the pseudo MLE

estimator (i.e. treat P as known and use the EM algorithm to get MLE).

2.3.3 Partially Corrected Estimator

When the dimension K is greater than 2, we have more than one parameter to esti-
mate in 7. We will define the mean square error as the sum of mean square error of each

parameter.
Definition Assume 7 is an estimator for =, then
MSE(#) = E(7 — )" (7% — w) = trace(Var(%)) + (E7 — 7)) (E7 — 7).
As before, we define the partially corrected estimator 7. = aTpaive + (1 — @)W prugrn-

Lemma 2.3.2 When the misclassification model P is known,
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(i) MSE(Tp.) has a minimum at

P MSE(ﬁPlugIn) - trace( Cov(ﬁnaivey %Plugln))
e MSE("?naive) + MSE(%Plugln) - 2t7‘CLC€(CO’U(7fl\'naive, %Plugln)) '

(i) 0 < amin < Lifand only if MSE(T piugry) > trace(Cov(Tnaive, T Pugin)) and MSE(Tnaive) >
trace(Cov(T paive, T Plugin))-
(iii) IfMSE(’lATPlugIn) < t’r’ace(cov("/\rnaivea %Plugln))a then we set Amin = 07 and ifMSE(”Arn“i”e) <

trace(Cov(T naive, T Plugin)), then we set apn = 1.

Proof

MSE(7,.)
= FElaTpaive + (1 — @) pugrm — {am + (1 — a)'lr)}]T [aT naive + (1 — @)@ prugrn — {am + (1 — a)w}]
= CL2 MSE(%nawe) + (1 — CL)2 MSE(%plug[n) + 2(1(1 — a)E(v?mu-ve — W)T(%plug[n — 71')

= CL2 MSE(%nawe) + (1 — CL)2 MSE(%plug[n) + 2(1(1 — a) trace( COV(’I?mu'Ue, ’/I\I'plug[n))

is a quadratic function of a as before. The only difference is instead of Cov(Tyaive; T Plugin),
we have trace( Cov(Traive; T Plugin))- SO we can use the proof of Theorem 2.2.2 to prove

this lemma.

Lemma 2.3.3 When misclassification model P is estimated from validation data,

(i) MSE(Tp.) has a minimum at

p MSE(”ATPWHI”) - [C + (A - ﬂ-)T {E(ﬁplugln) - W}]
e MSE(ﬁnaive) + MSE("?PlugIn) -2 [C + (A - W)T {E(ﬁPlugln) - W}] '

where C' = trace(Cov(Tnaive, T PlugIn))-

(i) 0 < amin < 1if and only if MSE(T plugrn) > trace( Coo(Tpaive, T plugin)) + (A —

)V {E(T prugin) — 7} and MSE(T paive) > trace(Cov(Tnaive, T prugin))+(A—7) T {E(T prugrn) — 7} -
(iii) If MSE(T prugrn) < trace(Cov(T paive, T Plugin)) + (A — )T {E(T plugin) — ™} , then we

set apmin, = 0, and if MSE(Tnaive) < trace(Cov(Tnaive, T prugin))+(A—m) T {E(T prugin) — 7},

then we set am = 1.
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As in the binary case, to estimate a, we need to evaluate some estimators involving

the unknown parameters:

1. To make notation simple, we will assume P = P when the misclassification model
is known. Also we define § as an indicator, § = 0 if the misclassification model is
knownand § = 1if the misclassification is estimated from external data. Following

these, we have Var(7,4ive) = 0(Vij); =0, K15 where

~ _ﬂ-nawe nawe/n if 7& ]
Uij = » .
ﬂ-:uu've(l - ﬂ-naive)

/n if =7

2. We use section 2.3.2 to estimate the bias for @ pjy41, and define

K—1K-2
Bias = Y > Var(0;)P~'M;P ' MyP ™ Faine
7=0 =0
K K-2 R R R
+Z Z COV(QZ‘]',HZ-/]-) {P_lMi/jP_lMijP_lﬂnawe
J=0 i<

—l—f)_lMijf)_lMi/jf)_lﬁnaive} .

3. We estimate the mean square error of 7,4y . Treating @ PlugIn @S an estimator for

7, we have
K-1

MSE 7rnawe z /TL + (ﬂ-nawe %Plugln)T(ﬁnaiUe - %Plugln)'
1=0

4. We use the delta method to estimate the variance of 7pj,q7,. The inner product
part of the bias of 7pjy4r, Will be too small compared with the trace of variance

estimate of 7 pj,41, and we will ignore it. That is :

MSE (% prugrn) = trace<f>—1Var(ﬁme)(ﬁT)—l
K—-1K-2 R
+3° 3 Var(d;)P M PP 1M,-jP—1)T>
7=0 =0

5. Using the independence of validation and main study data, and the delta method,

we will have the covariance estimate of T,4ive and 7 pjugrn:

—

~ ~ ~ STyv—1 s = T~ ~
COV(”naive; WPlugIn) = Var("rnaive)(P ) s and C = trace( COV('”naive; '"'Plugln))'
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6. Combining the above together, we have our estimator for a,,:

MSE("?Plugln) - {6 + (%naive - %Plugln)Tlga\s}

~
Amin =

I\/Aﬁ("?naive) + 1\//[-S\E(%Plugln) -2 {a + (%naive - %Plugln)TB/i-z;S} '
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CHAPTER 3

CONFIDENCE INTERVALS FOR 7

In this chapter, we will focus on methods to find confidence intervals for the proba-
bility of interest of misclassified binary data with an estimated misclassification model.
As we noted earlier, Schwartz (1985) describes how misclassification will affect the cov-
erage probability of the traditional Wald 95% confidence interval. Without correction,

the Wald confidence interval is not reliable for misclassified data.

%naive + 900 —1
Ooo + 011 — 1

as an estimator for 7, the proportion of interest. We consider two novel ways to get a con-

From Chapter 2, with external validation data, we consider 7 pj g1, =

fidence interval for 7. One way is to get the confidence intervals for m,4ive, 600, and 611,
and then proceed to get the Bonferroni joint confidence interval for 7 (7pqive, G0, and 613
are parameters from independent binary distributions and there are a number of ways
to get confidence intervals for each of those parameters). This idea is also adapted from
Buonaccorsi (2010). It is known that Wald confidence intervals for a binomial proportion
perform poorly in terms of coverage probability when 7 is near 0 or 1. Vollset (1993),
Newcombe (1998), Brown et al. (2001) and many other authors compare different confi-
dence intervals for the population of proportion, using methods including Wald, Wilson,
Agresti, Jefferys, Clopper-Pearson and continuity correction. Brown et al. (2001) show
that due to the nature of discreteness and skewness in the binomial distribution, the ac-
tual coverage of the Wald interval can be significantly smaller than the nominal level for
moderate and even large sample sizes (such as 1876) and not just for 7 near 0 or 1.

A second way to get a confidence interval in our situation is Fieller’s method (de-
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rived by Fieller (1954); see Buonaccorsi (2001) for a detailed discussion). As von Luxburg
and Franz (2008) point out, the confidence interval constructed by Fieller’s theorem is in
fact a projected confidence region of bivariate normal data. Guiard (1989) and Milliken
(1982) contains related results.

In the following, we introduce two interval estimators for 7 when the misclassifi-
cation model is estimated from external validation data. Both intervals account for the
potentially substantial variability that is introduced by the validation data. Section 3.1
will be devoted to the confidence interval for 7 using projection and Bonferroni correc-
tion. We will use Fieller’s method in Section 3.2. Different methods to get confidence
intervals for Tpqive, foo and 01 are described in Appendix A. We assess the performance
of these methods and compare them to a SIMEX approach (Kuchenhoff et al, 2007), a
multivariate delta method approach, and an interval that does not include variability

from validation data in Chapter 5.

3.1 Optimization Based Projected Interval

Tnaive + 900 -1
oo + 011 — 1
to find confidence intervals for m,4ive, 600, and 611, each with 100(1 — a)l/ 3% confidence

Since ™ =

,one way to find a 100(1 — /)% confidence interval for 7 is

U

Tnaive

level. Denote these intervals as [L 1, [Loo, Uno], and [Li1, U] respectively

Tnaive?

(See Appendix A for different methods to find those intervals). Let

Tnaive + 000 — 1
Ooo + 011 — 1

R={nm = U

Tnaive

s Tnaive € [L 1,000 € [Loo, Uno), 611 € [L11, Unl}-

Tnaive?

3

Then P(R) > «, since Tpaive, é\oo and 511 are independent, and the mapping f : [0, 1]
[0, 1], (Thaive, B00, 011) +— %ﬁ“ﬂ;l is not one-to one. Therefore, R is a 100(1 — «)%
confidence set for 7. In the following, we would like to determine conditions under
which R is an interval, and determine its upper and lower bounds. This is a constrained

optimization problem. An interval is optimal if it contains R and is as short as pos-

sible while maintaining level 1 — . We find the interval by solving two optimization
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problems. First, we find the left endpoint by minimizing 7 subject to the constraints:

U.

Tnaive € [L Wname],@oo € [Loo, Uo(]] and 61 € [Ln, UH]. The right endpoint is

Tnaive?
found by maximizing 7 subject to the same constraints. The proof below uses compact-

ness to show that every 7 between the two endpoints is in the interval. It is tempting to

use L"'nai’ue +Loo—1 U"'nai’ue +Uoo—1
Uoo+U11—1 °  Loo+Li1—1

] , but this does not necessarily solve the optimization

problems above since the same 6y must be used in the numerators and denominators

in both end points. As a result, we use constrained optimization to find the interval.
The following example illustrates the problem with the tempting interval. Sup-

U

pose we have [L rraive) = 10.37,0.51], [Loo, Upo] = [0.871,0.975], and [L11,U11] =

Tnaive?

[0.662,0.838], then the tempting interval is [0.30,0.91] as a confidence interval for 7. But
if we use the optimization method, we will get R = [0.34,0.761] as a confidence interval

for .

Theorem 3.1.1 Define f(Tpnaive, 000, 011) = Tnaivetfoo—1 for Tpaive € [L

Ooo+011—1 U

Tnaive

1,000 €

Tnaive?

[Loo, Ugo), 011 € [L11, U] and assume (Loo+ L11 —1)(Ugo+Uy1 — 1) > 0. Then the maximum
and minimum values of f, M, and m respectively, occur at endpoints of these intervals. The

optimal interval of R is [m, M].

Proof Since (Lo + L11 — 1)(Ugo + U1 — 1) > 0, f is continuous on [L X

Tnaive? 71—'n,a,'L"ue:I

U.

Tnaive

[Loo, Uoo] x [L11,U11], a compact set, so f([L ] x [Loo, Uoo] x [L11,U11]) is

Tnaive?

compact too. That means f has maximum/minimum values on this region. Assume f

attains its minimum at (77, ;... 050, 071)-

f is defined on the region [Ly,, ..., U, ....] % [Loo, Uoo] % [L11, U11], and the region can
transfer to the constraints:
91 (Tnaive 000, 011) (Tnaive = Lrpgive) (Tnaive = Unpaive) 0
92(Tnaive, 000, 011) | = (600 — Loo) (000 — Uno) <10
93(Tnaive, 000, 011) (611 — L11)(011 — Un1) 0

According to Kuhn-Tucker conditions (Luenberger, 1973), there exist a; > 0,7 =
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1...3 such that:

(Vi+a1Vgi+aaVga+asVgs)|, -

03,00, = 0and a; 9i (T give> 000, 011) = 0fori=1...3.

naz’ue’ 00°

From a;g;(m 60, 071) = 0, we have :

*
naive’

Or Tpaive = U,

Tnaive?

eithera; =0or 7’ =L

naive Tnaive
either as = 0 or 980 = Lgg or 6o = Ugo,

either as = 0 or 9?1 = L11 or 911 = U11.

W + a [2 naive - (Lﬂ—naive + Uﬂ-nai'ue):l

0%, —
(Vf+a1Vg + a2Vgga3Vgg)| ox 0x. = 7911 o5z a2 (2650 — (Loo + Uoo)]
Taiver900:911 050+ 1)
T 0
% + a3[267, — (L11 + Un1)]
= 0,
Therefore, we have a; # 0 and 7} ;.. = L, 0ive OF Tnaive = Unpoine-

If ag = 0, then 0}, = 7, and f (7 ,;ves 000, 071) = 1 for all Oy € [Loo, Upo] and we

naive’

have 980 = LO() or 980 = U()O.

If a3 = 0, then 7* + 980 —1=0,and f(ﬂ—:mive’ 980,911) =0 forall 61, € [L117 Ull]

naive
and we have 07, = Ly; or 6], = Uy;.

So the minimum values of f occur at endpoints of these intervals.

Using the same argument for h = — £, if h has a minimum value, it is at an endpoint

of these intervals. So the maximum/minimum values of f occur at endpoints of these

intervals.

From the above theorem, we know all the a; are non-zero and positive with respect
to the endpoints of these intervals, that is, the relative minimum values of f . We can
find necessary conditions for an endpoint to have a minimum value by solving for a; in
the gradient equations and get

1
a1 = - * * * > 07
{(000 + 011 - 1)27Tnaive - (L7r7mi’ue + Uﬂnaive)}
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*
naive

*
07, —7

az = — >0,
i (80 + 071 — 1)? {203 — (Loo + Uno)}
T aive T 000 — 1
a — naive 00 > 0.
’ (050 + 071 — )2 {207, — (L1 + Un1)}
SO 271—;;(12"!)8 - (Lﬂ'naiue + Uﬂ-naiue) and QTI + 950 - 1 have dlfferent Slgns/ 9{1 - ﬂ-:;/aive and

205y — (Loo + Uno) have different signs, and 7, ,,. + 05y — 1 and 20}, — (L11 + Un1)
have the same sign. We can find some similar relationship for endpoints with relative
maximum values. By observing the relationships of the signs, we will summarize the

necessary conditions for an endpoint to have a relative minimum /maximum value in

the following lemma.

Lemma 3.1.2 This table summarizes the necessary conditions for an endpoint of confidence in-
tervals of Tpaive, 600, 011 to have a relative minimum/maximum value of f. The upper one is for

relative minimum, and the lower one is for relative maximum:

Endpoints Sign Pattern

Tnaive | oo | 611 | Boo + 011 — 1 | 611 — Tnaive | Tnaive + oo — 1

Tnaive | J00 | Ul S r SR
Lrppive | Uoo | Ui +/- -/+ +-
Urpaive | Loo | Uni A YA e
Lrppive | Loo | Ui +/- +/- +/-
Urpaive | Uoo | L1 -/+ -/+ -+
Lrpaive | Uoo | L1 +¥/* S YRS
Urpaive | Loo | L1 -/+ +/- -+
Lapaive | Loo | L11 ) +/- %k 0k

* indicates sign pattern is impossible

** indicates function value is negative, therefore is not a probability

The above are mathematical results, but the resulting interval is not necessarily con-
tained in [0, 1]. The algorithm to find the upper and lower bound for 7 is present in

Appendix B.
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3.2 Fieller’'s Method Based Interval

Fieller’s method provides a way to develop a confidence interval for the ratio of two

parameters, such as
_ Tnaive T oo — 1 L N

011 +600—1 =~ D

A recent paper by von Luxburg and Franz (2009) reviews the literature on Fieller’s
method comprehensively. That paper also provides the following geometric interpre-
tation of the method: an elliptical confidence region can be developed for NV and D such
that Fieller’s interval is equivalent to the set of all N/D that are in the ellipse. Simi-
lar results can be found in Guiard (1989) and Milliken (1982). We slightly modify that
procedure and use the interval that is the intersection of Fieller’s interval and [0,1], the
domain for our ratio.

In our situation, Fieller’s procedure can result in four types of confidence sets for the
ratio: a simple bounded interval that is contained in [0,1], an “unbounded interval” that
becomes [0,1] when intersected with the domain of the ratio, a disjoint interval, or an
empty interval. Figure 2 illustrates the first three of these cases. The first type (simple
bounded) of set can occur when the confidence ellipse for N and D is in quadrant 1
or quadrant 3 and does not intersect the y-axis. The second type of set (unbounded)
occurs when the origin is in the ellipse. The third type of set (disjoint) occurs when
the ellipse intersects the y-axis, but does not contain the origin. The fourth type of set
(empty) occurs when all of the ratios formed by the set of N's and Ds inside the ellipse
are outside of the [0,1] domain for the ratio. As the main study and validation sample
sizes become large, the intervals will be of the simple bounded type. In our case, from

the central limit theorem, we have

Tnaive + o0 — 1 D Tnaive + 000 — 1 011 012
— MV N ,
011 + 0o — 1 oo + 011 — 1 12 022
. ive(1— ; 6oo (1—6 611(1—60 6oo (1—6 6oo (1—6
with 011 = Tnaivel n Teuien] + 00(]\/11 00)7 022 = 11(]\711 = + OO(Nll 00)7 012 = w; and

Zq/2 the 1 — a/2 quantile of the standard normal distribution, the ellipse for a 1 — «
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interval is

N — 011 012 N — )
N,D: =R ~ a/2
D — D —

~

>
>

012 022

Note that the z, /, comes from the approximate normality of N—nD. An alternate region
could be defined using the approximate x3 distribution of the quadratic form.

Algebraically, Fieller’s interval is from

N — =D
(‘311 + 2099 — 271'812‘ < Za/2) (fo—2fim+ fam= < 0) o

since N—7xD 2, N (0,011 +m2099 —2m012), where fo = ]Vz—zi/ﬁn, fi = ﬁﬁ—zi/za—lg,
and fo = D? - z§/2322. Further, let C = f2 — fafo, 71 = (fi + VC)/f2, and 72 =
(fi—=VC)/f2.1fC > 0and fo > 0, then the confidence interval is [r2,71]N[0,1]. If C > 0
and fo < 0, then the confidence interval is [0, 71] U [r2,1]. If C' < 0, then the confidence
interval is [0, 1]. We evaluate the performance of this method in a simulation experiment

in Chapter 5.
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CHAPTER 4

REGRESSION MODELS WITH MISCLASSIFIED COVARIATES

In this chapter, we will focus on linear regression models with mismeasured discrete
covariates, that is, misclassified covariates. It is known that coefficient estimators of a
simple regression model with mismeasured covariates will always be biased unless the
slope is zero. Section 3.2 of Carroll et al. (2006) and Buonaccorsi et al. (2005), both give
a bias expression for a linear regression model with misclassified binary covariates and
a possibly perfectly measured univariate covariate.

Akazawa et al. (1998) prove that the corrected score function for a generalized linear
model with misclassified covariates exists if the misclassification model P is known (see
Section 2.3 for definition of P). In this case, we can use a corrected score function to ob-
tain asymptotically unbiased estimators for the true coefficients (Nakamura, 1990). We
should note that a corrected score function does not always exist for regression models
with mismeasured continuous covariates (Nakamura, 1990, Section 4.6).

The corrected score function for a regression model with misclassified covariates will
involve P~!. We have proven that P~ is not an unbiased estimator for P~ when P is
an unbiased estimator for P (except in trivial cases), and, in fact, an unbiased estimator
of P~! does not exist (see Section 2.3.1). If the misclassification model P is estimated
from validation data, a “corrected” score function that plugs in P! for P! without
modification, is not a corrected score function.

In this chapter, we will use the approach of Akazawa et al. (1998) and study the

impact of corrected estimators using the score function approach when the misclassifi-
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cation model is estimated from external data. We will provide improved methods for
estimating the regression coefficients and making inference if a reclassification model is
known or estimated. We also develop confidence intervals for the slope of simple linear
regression with misclassified binary covariates.

This chapter is organized as follows: first we will establish the notation, then in sec-
tion 4.1 we will study the bias of the naive least squares estimator for coefficients of
linear regression models with misclassified covrariates. We will use Fieller’s method to
find confidence intervals for the slope of a regression model with misclassified binary
data in section 4.2. In section 4.3 we will discuss a corrected score function approach,
and in section 4.4 we will explore using the reclassification model to correct the coeffi-
cients of regression models with misclassified covariates. Sections 4.1 through 4.4 deal
with linear regression models with only misclassified covariates. In section 4.5 we will
discuss linear regression with misclassified data and perfectly measured data.

In this chapter, we assume that the categorical data has K categories, from0, ... K —1.
We will use a K x 1 vector with 1 in the position of the category and 0 elsewhere to
represent a single categorical random variable. Throughout the chapter, all vectors will
be underlined, and all matrices will be bold.

We will use X for a true value, and W for an observation that is subject to misclassi-
fication.

For W = (wy,...,wx_1)", we will refer to W = m for W in the mth category, that is
wy, = 1and w; = 0 for j # m.

Also for X = (z¢,...,2x_1)", we will refer to X = m for X in the mth category, that
isxy, = land z; = 0 for j # m.

We will use the notation ¢, to denote a K x 1 vector with a 1 in kth position and 0
elsewhere, k = 0,... K —1. We also let M,,,; be a K x K matrix with 0 everywhere except

in position m, [ which is 1, and in position K, ! which containsa —1, m,l =0... K — 1.
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As we defined in Section 2.3, 6,,,; = P(W = m|X = 1),y = P(X =m|W =1),

oo o1 s bor—ny
P= : f : = (0y,04,-..,05_1), and
k-0 Ork—1n - Ok—1)(K-1)
700 7o1 e Yo(K—1)
Q= : S : = (Vg Yy Ve y)-
NE-1)0 V(E-1D1 -+ V(E-1)(K-1)

P and Q are the misclassification model and reclassification model respectively. Also we
define 7; = P(X = j),\; = PW. = j),x = (m0,...,7x—1)", and A = (Ao, ..., Ax—1)".
We know A = Pz and 7 = QA\.

From the definition of P and Q, 0,,, = P(W = m|X =),y = P(X = m|W = 1),
we do not have P = Q™. Let D, be a diagonal matrix with ) along the diagonal and

D, be a diagonal matrix with 7 along the diagonal. Using
Oy = PW = m|X =1) = P(IW = m)P(X = I[W =m)/P(X = 1) = AnYmi/m,
the relationship between P and Q is

o

P=D,Q'D;', orQ=D,P'D;".

In this chapter, we will assume P is invertible and 7, # 0,k =0... K — 1.

4.1 Naive Estimators

In this section, we derive the behavior of least squares estimators of linear regression
coefficients in the presence of misclassified covariates.

Consider the linear regressions E(Y|X) = X'8 and E(Y|W) = ETQW, where
B = (Bo,.-.- ,Br_1)T, and QW is the coefficient vector under the observed data. Lin-

ear regression with covariates that have K categories is like a one factor experimental

design model with K levels. As a result, the regression model that we consider can be
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written as a cell means model. Of course, we could write the regression model as a fac-
tor effect model (see Christopher and Kupper (1995) for that approach). Next, we will

derive the relationship between f and 3, when reclassification model Q is available.

Theorem 4.1.1 We consider the observed data y;, W,

i = 1...n where the dimension of W, is

K x 1, and W, is the observed for X ;. Let

wi X7 Y1
w3 X7 Y2
W = >X = >X =

We have the linear regression E(Y |X) = X Tﬁ and E(Y|W) = ETQW, then the least squares

naive estimator @W = (WTwW)"'wTy i Q'p.

Proof From the model assumption, £ (§W|W, X) = (WTW)'WTXg.

Also, E{(WTW)"'WTX|W} = (WTW)'"WTWQ' = QT, and we have
BB, =Q'p.

Therefore, EW is an unbiased estimator for Q3. Since EW is a least squares esti-
mator, it is, a consistent estimator for @W (see Shaw, 2003, Theorem 3.11 for additional

technical conditions), and EW i QTB.

Christopher and Kupper (1995) also have a result that is similar to Theorem 4.1.1,

but ours is proven differently.

Remark We note that W' W is a diagonal matrix with diagonal the number of observed
data in each category, that is E(WTW) = nD,. We also observe that

EW'X)y; = Y Blwyzy) =Y PW;=i,X;=j) =nP(W =i,X = j)
=1 =1

= Ny =n (DAQT)U , and we have E(W'Y) = nDAQT@.
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We could have used 8, = Var(W)~! Cov(W, Y )to derive the relationship between
By and 3. But Var(W) is singular, since W is multinomial distributed with parameter
A. We would need to use a factor effect model, that is, a regression model with intercept.

From Theorem 4.1.1, if Q is known and invertible, we can have a consistent corrected
estimator é\c =(QNH! é\w' If Q is estimated from external validation data and Q is con-
sistent for Q, (QT)_1 EW is not a consistent estimator for 3 unless the validation sample
size also goes to infinity.

If P is known, we can use the relationship between P and Q and get Q= DEPTDi L
Then we can have Ec = (QT)_1 EW as an estimator for 3. If P is estimated from external
data, and P is an unbiased estimator for P, we still can get Q = Dif’TDi 1 then use the
same formula above to get a correction estimator for g To use this method, we need an

estimate of & (see Chapter 2).

4.2 Confidence Interval for the Slope

In this section, we will do two things. We will derive the relationship between the
naive estimators and true coefficients in the simple linear regression model with misclas-
sified binary covariates and a misclassification model. After that, we will use Fieller’s
method to get a confidence interval for the slope. Note that this is another application
of the general method we described in the Section 4.1.

Now we consider K =2and 7 = P(X = 1).

Corollary 4.2.1 Consider the model y = By + 1w + €, where x = 0 or 1, and ¢ ~ N(0,0?).

Observe w; instead of x;, w; = 0 or 1. Given the observed data and letting sz’ be the naive least
(Ooo + 011 — )w(1 —m)

square estimator, then lim B = YY) Pr.
Proof
PN Cov(W,Y)
1 wl = Ty
nl_{%oﬁ ! Var(W)
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E(WY)— EWEY

YCIEY)
ABo + 01161 — A(Bo + Bimr)
NCIESY
B1(000 + 611 — D)m(1 — )

YCIEY !

where

E(WY) = E[E(WY|X)]
= E[E(W|X) (6o + 51X)]
= E[{(1—0o0) (1 - X)+ 01X} (Bo + /1 X)]
= Bo(l —000)(1 — ) + 011807 + 011 i
= Ao+ bupim,

from A = 0y + (1 — 900)(1 —m)and 617 — A= (1 —7)(0po + 011 — 1).

We should make a note that when A = 1 or A = 0, the slope of a naive estimator can

not be calculated since then there is a unique value for W. We also note that

/1 =E[Y|X =1]—-E[Y|X =0].

From Corollary 4.2.1, we can make the following remarks:

(foo + 611 — 1)m(1 —7)
A1 =X)
In simple linear regression with a continuous covariate that suffers from nondifferen-

Remark As a result, the coefficient causing bias in the slope is

tial additive error, the coefficient that causes bias is an attenuation factor that biases 31
toward zero. For the misclassification case, this is also true. We prove that in the follow-
ing corollary. After the corollary, we also investigate when the inequality in the result is

strict.

Corollary 4.2.2

(6o + 011 — )7(1 —7)
NI =1
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Proof Assume (600+9i21—_1/)\7)r(1—7r) > 1, and without loss of generality, we will assume

A+0p — 1
Ooo + 011 — 1

oo + 011 — 1 > 0. Using the fact that 7 = , we will have

(Boo+ 011 — Dm(l—m) > AN1—=N)
(A+6000—1)(011 —A) > (0o + 611 — A1 = N)
A% 4 (011 — Ooo + DA — 011(1 — o) > (1 — Bgp — 011) N> + (oo + 011 — 1)\
(2 — Boo — 611)A* = 2(1 — Bo) A + 611 (1 — o) < 0.
Let f(\) = (2— 000 — 011)A% —2(1 — o)A + 011 (1 — 0op). Then f(A) is a quadratic equation
with non-negative leading coefficients. If 2 — 6pg — 611 = 0, we have 6yp = 611 = 1, and
we will have the result. If 2 — 69 — 011 > 0, f(\) will achieve a negative value if
(1= 600)* = (2 = foo — 611)611(1 — fo0) > O

(1 —0600) = (2 — 000 — 011)611 > Oorfp =1

0% — 011(1 — 0go) + (1 — 6pp — 611) > 0Oorfg =1

(1 =000 —011)(1 —011) > 0orby = 1.
Since g9 + 611 — 1 > 0, we should have 11 = 1orfy = 1. If #1; = 1, we have A\ =

Opom + (1 — 900), and1— )\ = 900(1 — 7T). Then

(B0 + 011 — D)m(1 —m) _ Ooo(1 — ) _ s o1
)\(1 —-A) {9007T +(1- 900)}900(1 — ) Ooom + (1 —6uo)

and we will have 7 > 1 which is impossible. We will do the same argument for 6y = 1.

So we have

(Boo + 011 — 1)7(1 —7) <1
M=) =5

Remark Bwl is an unbiased estimator for (3 if either 31 = 0 or 6yg + 611 — 1 = 1 (trivial
(oo + 011 — D7(1 —7)
A1 —=X)
case is impossible in the following corollary.

Corollary 4.2.3

case and no misclassification) or = 1. We will prove the latter

(Boo + 011 — D)7(1 —m)
NS

#1#9004—911—1#1.
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(Boo + 011 — 1)7(1 —7)

Proof Assume Y

=1, and gy + 011 — 1 # 1. From the assumption,

we will have:

Ooo +611 —1>0,m#0,7m#1and

(B0 + 611 — (1 — 1) = A(1 — \).

. A+6p—1
Since m = —— we have:
Ooo + 011 — 1
(A 4000 —1)(611 —A) = (Boo + 611 — DAL = A)
(2 — 0o — 911))\2 + 2(900 — 1))\ + (1 — 900)911 = 0. (41)

In order to have a solution for A in Equation 4.1, we should have
(1= 000)* — 611 (1 — 000) (2 — B0 — 011) = (1 — 000) (1 — 611)(1 — Opo — 611) > 0.

Since Opg + 611 — 1 > 0, we will have g = 1 or 61 = 1. If pg = 1, then A = 0 and 7 = 0.

If 611 = 1, then A = 1 and 7 = 1. This proves that we cannot have the attenuation factor
(Ooo + 011 — 1)7(1 — )

M= N = 1 for the nontrivial case.

As a result, Ewl is a always biased estimator for 31, unless 3; = 0 or there is no misclas-

sification in the data.

Remark If the conditional variance of Y given X is constant, the conditional variance
of Y given W is not necessarily constant. It is constant if P(X = 1|W = 1) = P(X =
1/W =0) or P(X = 1|{IW = 1) = P(X = 0|W = 0) (assuming the misclassification is
non-differential, i.e., the conditional distribution of W|X,Y is the same as W|X). This

result can be seen from:
Var(Y|W)
= E[Var(Y[W,X)[W]+ Var[E(Y|W, X)|W]
= E[Var(Y|X)|W] + Var[E(Y|X)|W]
= B {PX=1UW=1PX =0W=1W +P(X =1|W =0)P(X =0|W =0)(1 — W)}

= o243 {911%91221 “ Ty 9017(7503%; ™1 - W)} .
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We canuse Var(Y) = E[ Var(Y|W)]+ Var[E(Y |W)] and the above expression of Var[Y |W]

to estimate o2.

Also from Corollary 4.2.1, we can define a corrected estimator for the slope

-~ 1= A o
ﬁcl = = — (A )A ﬁwl-
7T(1 — 7T)(911 + 0o — 1)

See sections 2.1, 2.2 for methods of estimating 7.

We will use Fieller’s method to get a confidence interval for the corrected slope

B, = AL = A)Bu1 _ A =Moo + 011 — 1) Bun
YT R =) (600 + 011 — 1) A +600—1)(011 —\)

See Section 3.2 for a more general discussion of Fieller’s method. Let the numerator
be N = X(l - /)\\)(900 + 6011 — 1)§w1 when the misclassification is known, (and N =
X(l - X)(@H + 500 -1) Bwl when misclassification is estimated from external data). Let
the denominator be D = (X + 6o — 1)(011 — X) when the misclassification is known,
(and D = (X + oo — 1)(511 - X) when the misclassification is estimated from external
data). Let 017 = Var(ﬁ), 099 = Var(ﬁ) and o9 = Cov(]/\7, 13) As before, we compute

fo = N? - Zi/ﬁn,fl = DN — Zi/ﬁm,fz = D* - 23/232270 = ff — fofoand rl =
fi+C? fi—=C?
NTZ pp="=
P fo
interval for 3. If C' > 0 and f; < 0,then (—o0,r2] U [rl,c0) is a 100(1 — )% confidence

.If D >0and f; > 0, then [r1,r2] is a 100(1 — a)% confidence

interval for ;. If C' < 0, then the confidence interval is (—o0, 00).

When the misclassification is estimated from external data. We can rewrite

N = (611 + 00 — 1) > Yi(W; — ) _ Z1(011,000) Za (Y, W)
n n ’
D = Z3(\) + Z4(\, 011, 000) + Z5(611,000),

where

Z1(611,000) = Oy + 600 — 1,

Z3(Y, W) = ZYz‘(Wz’—X)
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Z3(§11,§00) = 511(500—1),
Z4(/)‘\7§117§00) = (511—500)Xand

~ ~

Zs(A) = A(1=2N).

The following lemmas develop the computations we need for oy, = Var(N),o9 =

Var(D) and 015 = Cov(N, D).

Lemma 4.2.4 Var(hihe) = Var(hy)Var(he) + Var(hi)[E(h2)]? + [E(h1)]? Var(hse) where

hi, and hy are independent random variables.

Proof

Var(hlhg) = E[ Var(h1h2|h1)] + Var[E (h1h2|h1)] = E(h%) Val‘(hg) + Var[hlE (hg)]

= [Var(hy) + (Ehy)?] Var(hy) + Var(h;)(Ehs)>.
Lemma 4.2.5 If (hy, ho) and (g1, g2) are independent, then
Cov(h1g1, hagz) = Cov(hi, h2)Cov(gy, g2)+E(h1)E(h2)Cov(gi, g2)+Cov(hy, ha) E(g1) E(g2)-
Proof

Cov(higi,haga) = E[Cov (higi,haga|hi,h2)]+ Cov[E (hi1gi|hi,h2), E (haga|hi, ho)]
= E(h1hz2) Cov(g1,92) + Cov(hi, ha)E(g1)E(g2)

= COV(hl, hg) Cov(gl, 92) + E(hl)E(hg) Cov(gl, 92) + COV(hl, hg)E(gl)E(gg).
Lemma 4.2.6

E(Zy) = (n—1A1 = X)Bur,
Var(Zy) = B2, Var[nA(1 —N)] + {02 + 5%9059_00;)12_ ™) (n— DAL — )\)}
+nB? {911%91221 - _ 9017519 Ojﬂ); ) } EO =232 4+ 33)
Cov(Z2,N) = nBuiCov[A(1 = N), Al

Cov[Zo, N1 =N)] = nBuwiVar]A(1—N)]
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E(Zy) = {ZY P =) \W}]
= F Z(Wi_x)(ﬁw0+ﬁwlwi)]
= nBunEN1 =)
= =n—-1)BuA1-2)
Var(Z,) = E Var{ZY =) |W} + Var E{Z Yi(W; —X)|W]]

= 5| v - {o + AT Tl D Wi”}]
+ Var Z(ﬁwo + But Wi)(W; — X)]

= (2, Var [ni(l - X)] + {02 + %90{;9_00;)12— ) } (n—1A1-=X)

011m010(1 — ) Bormhoo(1l — 7)
2 117tY10 0171Y00
i { X (1-A?

"}
Z(ﬂwo + 6w1Wz)(Wz - /)\\)7 /)\\

i

= 1B Cov[A(1 — A), A

} E\—2X2 4+ %)

Cov(Zs,\) = E + Cov E{ZH(WZ-—X)|W},E{X|W}]

Cov {Z Yi(W; — X),X

= Cov

Lemma 4.2.7
~5 (=DM =N +3(n—1)A2+ )\
EXN = -
N (n—1(n—2)n—-3)AX+6(n—1)(n—2)A3+T7(n —1)A2 + X
— —
Coopp(1 -3, 3] = 2ZNAFN s pss
n
N N _ 201 _ N N _ 2
Var]A(1 = X)] = A=A +2{)\3+¥_E)\3}+E}\4_{)\2+>\(1n /\)}

From those lemmas, when the misclassification model is estimated, we will have

{911(116911) + 9°°(zlv}6°°)} { Var(Zy) + (EZ2)*} + (000 + 011 — 1)? Var(Zs)

o11
n2
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COV(leQ, Zg) + COV(leQ, Z4) + COV(leQ, Z5)

n
_ % [B(22) Cov(21. Z3) + E(2)) Cov(Zs, Z5) + Cov(Z1,011 — Bun) Cov(Za, 3)
FE(Z1)(011 — Oo0) Cov(Za, N) + Cov(Zy, 011 — §OO)E(Z2)>\}
_ % [5(22) { Var(@) (600 — 1) + 011 Var(@in) } + (60 + 611 — 1) Cov(Zs. Z)
+ { Var(fy;) — Var(goo)} { Cov(Za, ) + )\E(Zg)}
(B0 + 011 — 1) (611 — boo) Cov(Z2,X)]
092 = Var(Zs)+ Var(Zy)+ Var(Zs) +2{ Cov(Zs, Zs) + Cov(Zs, Z5) + Cov(Zs,Z5)}

= Var(f1) { Var(fyo) + (1 — 900)2} + 62, Var(fy)
+ { Var(6y,) + Var(@oo)} { Var(\) + )\2} + (611 — 00)? Var(A) + Var[A(1 — A)]

+2 {(900 — 1) Val‘(é\n) — 911 Var(é\o())} A + 2(911 — 900) COV(X, 1-— /)\\)
011(1 — 011)0p0(1 — 0 Ooo(1 — 06 A1 =M\
_ 11( 11)000( 00) n 00 ( 00) { ( ) . 911)2}

N1Ny Ny n

N,
+(611 — Opo)? Var(/)\\) + Var[X(l — /)\\)]

—I—2(911 — 900) COV[/)\\,:\\(l — //{)] + 011(1 — 911) {/\(171_ A) + (1 — A= 900)2}

When the misclassification matrix is known, using the above lemmas, we will have :

(900 + 011 — 1)2 Var(Z2)
Jg11 = )

2
n
- (900 +601;—1) COV[ZQ,X(l — /)\\)] + (900 + 6011 — 1)(911 —6o) COV(ZQ,}\\)
g12 = o s and
J92 = Var[X(l — /)\\)] + (911 — 900)2 Var(X) + 2(911 — 900) COV[/)\\(l — /)\\), 3\\]

4.3 Score Function Approach

In this section, we will first use the result from Akazawa et al. (1998) to get the
corrected score for linear regression model with misclassified covariates when the mis-
classification model P is known, and show how it can be used to estimate g Then

we extend the approach to the case when the misclassification model is estimated from
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external data.

K-1
Assume the linear regression model Y = XTQ+ €= Z 21,5 + e where e ~ N(0,0?)
k=0
with unknown o2. Instead of observing X, we observe W = (wy, ..., w K1)
Assume we have data (y1, W;), (y2, Ws), ..., (yn, W,,). Let
wi
Y1
W,
X = 7WT =
Yn W
Then {(3,Y, W) = —Zlog(2ro?) — Z WTB is the log-likelihood function,

S(B,Y, W) = 66 is the score function, and I(ﬁ, W) = Egg is the Fisher information. We
should note that the solution of S(3,Y, W) = 0 is an estimator of QW, and it is often
biased for (3.

We note that g(3,Y, W) is called a corrected log likelihood function if
Elg(8,Y, W)Y, X] = {(5,Y,X),

for 3 in an open convex subset of the parameter space and where X = (X, X, ..., X))
d9(8, Y, W)
op

are the true (unobserved) values of W. In this case, is called a corrected

score function (Nakamura, 1990).

Let
K—1

> {(P_lwi)—rﬁk} gkglé} ,

n _ - _
(e(3,Y. W) = ~Hog(2mo”)~(20%) " 3 [y -2u "B W 5
i=1 k=0

n K-1
where P is the known misclassification model. We note that Z Z { Pw,)Te k} erey

i=1 k=0
is the diagonal matrix with estimated true category frequencies on the diagonal, that is

n

K-1
Z Z {(P_lﬁi)Tﬁk} §k§z =nDz with7 = P_lg-
i=1 k=0

90m

Using that fact that E[W,| X, = m] = : =0, and P 'P =1=P1(0,,0,,...,0,_1),

Ok —1)m
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we have P19, =¢,, and E[P~'W,|X, =m] =P~ 10,, =¢,,. So,

Elte (8, Y, W)|Y, X]

K—-1
= —Dlog(2mo?) — 202) 1S E|y? — 248" P W, + 87 P, e, berer Blui, X,
B g i P P kM
3 k=0

n K-—1
= ——log(2mo?) — (20%)7* Z E |:y7,2 - 2yiﬁTP‘1m
i=1 m=0
K—1
+67 > {(P‘lm)Tgk} exer Blyis X; = m} Ix;=m
k=0
n n K-1
= —Elog(%’a Z Z [yz — 2yife,, + 5T Z {(em 6k}§k§gé 1X;=m
i=1 m=0
n n K-1
_ 2 2y—1 2 , 2
= —jlog(2mo?) - (20%) ; mgo(y,. — 2yiBm + B2)1X.=m (4.2)
— ~Dlog(2ra?) - (20271 Y (s — X7 9)?
i=1
= {(B,0°Y,X)

Therefore /p(3,Y, W, P) is a corrected log likelihood function and

SP(@)X?“/.)P) = aal%
a n n K-1
= o2 [Zy’ - Z { ek}gkg{g}
=1 =1 k=0

= o ?(PT'WTY —nDzp)

is a corrected score function for 3. The solution of Sp(3,Y, W,P) = 0is

EP = [ZH:KZ_:I{(P_Imi)Tﬁ }ekek] Zyz (4.3)

i=1 k=0

= D'P'W'Y/n.
This gives an asymptotically unbiased estimator for 3. Actually EP is an unbiased esti-
mator for 3 (further explanation follows in the remark at the end of this section). Naka-
mura (1990) proves that under certain regularity conditions, the solution of a corrected

score function is asymptotically normal with mean 3, the true parameter, and covariance
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matrix I(3, W)~1C(3, W)I(3, W)~ ! where C(3, W) is the unconditional covariance ma-

trix of Sp.
Next, we will find the estimator for o2, then use Nakamura (1990) to find the covari-
ance matrix of EP. To make notation simpler, we will let X ;= P71, then

K-1

3 {(P—lm)Tgk} exel =Dy Letting
k=0
X7
X=|..|l=wEe"HT,
XT

by differentiating corrected loglikelihood function /p, an estimate for o is

—~ <& T~ AT ~
0% =Y (7 — 2uiBpX, + BpDx Bp)/n.
=1

The corrected observed information Ip is

n K-1

Ip(3,Y, W) =35> ) {(P‘IEZ-)T@} exer = nDz/0p.

i=1 k=0
According to Nakamura (1990), there are two ways to estimate the covariance matrix

of EP. We will first use the simple one. Let

n T

B i=1
then the asymptotic covariance matrix of EP is
S5, = P@p Y. W) V(B Y, Wile (B, X, W) !
n T
= D' Z |:yZXz - D)?ﬂ] [Z/zXz - D)?ﬂ] D-'/n?,
i—1 o .
which is equation (4) of Nakamura (1990).

Nakamura (1990) points out that if there is w(3, y, W) such that

Elw(B,y, W)y, X] = S(8,4,X)S(3,y. X)"
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where S(8,y, X) = az(%,g,g) and /(f3,y, X) is the log-likelihood function of 3 given data

y, X, then we can use

n

22(§p) = IP(§P7X7W)_1 {V(§P7X7W) - z_;w(gl:nylawz)} IP(§P7X7W)_1

+IP(§P717 W)_l

as an asymptotic covariance matrix for EP. Nakamura (1990) also uses simulation to
demonstrate that the covariance matrix involving w(f, y, W) is more efficient than using
the other one.

We should note that such w(3, y, W) is not always available. Also in our case

SBy,X) = (y—-XT"B)X/o%,

SB,y, X)S(B,y. X)T = (y- XXX /o™
In the following lemma, we will prove w(3, y, W) exists for our case.

Lemma 4.3.1 Let

K—

w(B,y, W [{yQ —2yBle, + ﬁTgkdﬁ} (P‘lngk] eper o,

=0

,_.

=

Then

Elw(B,y, W)ly, X] = (y - X"5)*XXT /o.

Proof Following the lines in equations 4.2, we should have

K-1
E|Y {P—lng@}ngZlyé] = XXT
k=0
and f3Tey, = By, so we have Bl (8, y, W)ly, X] = (y* = 2y8X + BXSX) XX /",
We should note that
K—1 K— T
w(B,y, W) # {(P_IE)TQ }ekek Z { }Q;&Z] ot
k=0 k=0
and E[SP(@,]J,E,P)SP(Q,Z], ) |y7 ] 75 S(ﬁ)@/) ) (ﬁvyvi)—r‘
We will use simulation to to compare the efficiency of El () and 21 (3. In Chapter 5.
P —P
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Remark We could regress y; on X, and estimate regression coefficients. This is a regres-
sion calibration method. The least squares estimator for regression calibration is EP =
(XTX)"'XTY. By comparing the structure of @P and EP - "Dz is a diagonal matrix but
XTX is not necessarily diagonal. We should note again that XX is a diagonal matrix
due to the nature of categorical data. Also EEP =D;'P'D)\Q"3=(Q HTQ"3 =3,
using E(W'Y) = nD,Q § from the remark after Theorem 4.1.1, so EP is an unbiased
estimator for é\, even for small sample size.

EEPR = {n(P‘l)DA(P_l)T}_1 P~'nD,Q" 3 = PTQp is not an unbiased estimator

for funless P = Q.

Remark In the above we assume normality, but it is not really necessary. Using the least

squares approach, we get the estimating equation
WT(Y - Wp)=0.

EWT(Y -Wp)[X,Y] = PXTY —nD;f assuming the misclassification in W is non-
differential with y. Then E[WT (Y — W3)] = nPD[3 — n.D5 3. We can use the modified

estimation equation approach (Buonaccorsi,1996), and solve for 3 in
WT(Y - Wg3) — (nPD,j — nD,3) = 0.

This gives § = DZ'P~'WTY /n. So we do not really need the normality assumption if

we just want to get an estimator for the coefficient.

4.3.1 Inference for 3 When P is Estimated

Sometimes the misclassification model P is not known, and it is often estimated
from some validation data. In this section, we will assume P is estimated from external
validation data, and we will derive sampling covariance of Elg that includes variability

from the validation data.
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~

When P is estimated from external data, (P)~!

is not an unbiased estimator for P!,
and /5 (3,Y, W) from previous section is not a corrected log likelihood function. Simi-

ls . . o .
larly, S5 (3) = aa—ﬁp is not a corrected score function, and any corrected function involving

~

P! is not a corrected score function. In section 2.3.1 we prove that an unbiased estima-
tor for P~! does not exist.

Let (Y,,, W,, P N, ) be a sequence of data where (Y,,, W,,) is the observed data with
sample size n, and P N, is an unbiased estimator for P with V,, the minimum of valida-
tion size over all categories. Then we have 13;,711 as a sequence of consistent estimators
for P~! as N,, — co. We know EP 2, B when the main study size n goes to infinity.
Then we have EﬁNn 2, B as Ny,n — oo according to the generalized Slutsky theorem
(Demidenko, 2004).

We should use the sandwich method or pseudo likelihood approach to get the vari-

ance for Eﬁ' We know the misclassification model

oo o1 . Oo(r—1)
10 011 . O1(r—1)
P=
L= 00 1= 00 o 1= 205" ik

is a function of

(0007 cee 79([(—2)079017 LR 70(K—2)17 v 700([{—1)7 v 79(K—2)(K—1))T = Q

Hyy Hio
The corrected observed information matrix for ( QT, p)is where
, , , Hy  Hy
ol T ol o
H = T H = = —, H = .
11 agaé'r 12 21 8@8@1— 22 8Q8QT
Also the covariance estimate for @ is
o 0 ... 0
0 X ... 0
Yy = ,where
o o -~ 0
0O O YK
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Oop(1 —O)  —Oorbur .. ~00k0 121
1 ~Oubor O —0) ... ~0160 521

o~

_Zg\(K—Z)ké\Ok _H(K—2)k§1k a(K 2)k 1—9(1{ 2)k

Assume Y is the asymptotic covariance matrix of §, if P is known usmg 13,) ©

3\12(3 ) Then, from Parke (1986), we can estimate the covariance of ﬁlg by:
) o

E(Eﬁ) = EK + H1_11H122QH;—2(H1—11)T’ where Hw are
Hy = 3§2nDi, and
Hyy = (hyos Ry, - - - P20 Rots - B —2)1s - o —1ys - - 7@(}{_2)(1{_1)[{) where
hyy = 057 |P7" My P 'WTY — nDz 35| with
ﬁ* = i:\)_leli'

4.4 Reclassification Model

In this section, we will focus on a reclassification model, where the relationship be-
tween X and W is specified by v;; = P(X = i|W = j). From Section 4.1, we know
EQW =Q' 3 where QW is the least squares naive estimator and Q is the reclassification
model. If Q is known, (QT)™! EW is a method of moments correction estimator . If Q is
estimated from external data and Q is an unbiased estimator for Q, (QT)~! EW is not an
unbiased estimator for (3.

In Section 4.4.1, we will make a connection between regression with misclassified
covariates and mixture models. In section 4.4.2, we will use a regression calibration

approach to get an unbiased corrected estimator for the regression coefficients.
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4.4.1 Likelihood Function Approach: Mixture

We will use the likelihood approach to find a corrected estimator that is appropriate
when a reclassification model is available. We reindex the observed data y;, W, such
that Y1), - - Yn(ny) With Wiy =kfork=0... K =1, =1...n4

We assume Q is known. If we assume non-differential measurement error, then the

conditional density function for y given W = j is

K-1
fyWw=j) = fyW =5, X = k)P(X = kW = j)

k=
Ko

= fylX =k)P(X = kW = j)
k=0
=, 1 . — B)?

- (g b ep(- U Ol
=0

The log likelihood function of 3 given Y, W is
K—1 nm, K-1 2
1 (Ym(j) — Bk)
W= 3 S 3 e { -
Note that the data W appears in the index of y,,,(;)-
This can be shown to be a mixture problem. Let X, ;y = (TmG)o -+ Tm@)(K-1) )T

be the unobserved value of W, ;) form =0... K —1,j = 1...n,,. Then the log density

of Yp(j) given X,y is

K—1 2
1 1 (Ym(j) — Or)

Z Tm(j)k {ilog(27m2) - ]20.2

k=0

and the log likelihood for the complete data is

K—-1ny K-1 1 (ym(j) _ ﬁk)2
€(§!X7X,W7 Q)= Z Z Lm(j)k {log (Vem) + log( 27‘r02) B 202 } )
m=0 j=1 k=0

First, we want to find the density of X = [ given W = m, y:
fX=1LW =m,y)

FX =W =my) = =5
Y X =kW=my)
k=0
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X =LW=myfX=1LW=m)
fX=LW=m)

S X =k W =my) f(X = kW =m)

— JX=kW=m)
X =DfX =W =m)

K—-1

WX =k)f(X =k W =m)

k=0
__fWX = Dym

K—-1 :

> FWIX =E)em

k=0

The EM algorithm can be applied to fit mixture models (McLachlan and Basford,
1988). Let

7 .

1
> F W)X = Dim
=0

Tm)k = P@myre = W = m, Yo ) = E(@pm)el W = m, ym(;)) =

We should note that 7,,(;) is not necessary equal to vk, = P(X = k|W = m). For the

EM algorithm, we need to have initial value of Tr(r?()j) i and after pth iteration, we have
(ngj)k,ﬁ,gp)) form=0...K—-1,j=1...np,k=0... K — 1. For the (p + 1)th iteration,

the E-step is

K—-1nm K-1 ®) 1 1 (y (j)_ﬂk)2
_ p - _ m
m=0 j=1 k=0
and in the M-step, we will solve 3 in
OE[L(BY, X, W,Q)[Y, W] % () (Unj) — B
a3 - TmGk™ 52 =0
k m=0 j=1
Solving it, we have
K—1nm ®)
Tnf(j)kymj
(p+1) _ m=0j=1
k o K—-1nm ( ) ’
P
Tm(j)k
m=0 j=1




and

(p+1)
w+1) S Um@)s em .
Tnf(j)k = with
F @iy B 0m
1=0
(p+1)
(r ) g2ty 1 Wy =BT
T ms); o) = exp{ 2 2(+1) '
Let g%’])w = (6(()” ) 5%))_1 )" . The EM algorithm ensures the log likelihood val-

ues increase monotonically: K(ﬁ(pﬂ Y, W,Q) > ¢ ( ]Y W, Q). The convergence of
g é’ Mis consistent for the MLE of 3 (McLachlan and Peel, 2000), and we will denote it by

Bou

The observed information matrix is:

*(BY, W, Q)
apapT B=Bum

We could use the observed information to get an asymptotic covariance estimator for
E B but the computation is hard. Louis (1982) shows that the observed information
can be expressed in terms of complete-data gradeint vector or second derivative ma-
trix. Since we have independent data, the observed information matrix can be approxi-

mated in terms of the gradient of the complete-data log likelihood, where the unobserv-

able variables are replaced by their fitted conditional expectations (McLachlan and Peel,

2000):
. K—-1 nm -1
2 EM Z Z hm(] —m(] ?
m=0 j=1
where ) = (Fu(oWm() — Bean) -+ Fa(gye—1) Wm() — Beatie_) )

Remark In the above, we assume the reclassification model Q is known, and we can
use the probabilities vy, to get 7,,(j)x- It would be interesting to know when the reclas-
sification model Q is not available, whether or not we can recover ~j,, from the EM

algorithm. We will leave this a topic for future research.
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Remark We could use the likelihood approach when a misclassification model P is
available. From the non-differential assumption, we have the density function f(y, X, W) =

fX)P(X,W). Let ny, = P(W =m, X = k). So the complete-data log likelihood is:

K—-1ng,m K-1

UBLY X, W) = 37373 @i {1080mnn) + 108(f (Wm(y) | Xoy = K } -

m=0 j=1 k=0

m() | Xm) = k)m
We could have 7,,(jjx = P(Zme = W = m, ypmj)) = T W) | Ky i k, and we

K1
D F W) X = Dt
=1

could estimate 7,,; by 1 = 0, 7).

4.4.2 Imputed Data and Regression Calibration

In this section, we develop a regression calibration approach to get a corrected es-
timator when a reclassification model is available. First, we assume the reclassification

model Q is known.

=T
X
We impute X ;, = QW,, and set X = : = WQT, the least squares estimator
B Rq from regressing y; on X is
2 T\ 1T
ﬁRQ - (X X) X Z

= (QW'WQ")'QW'Y
= QN T(W'W)"'WTY
- (@73,
where . is the least squares naive estimator. Now, since
E{B,} = E{@) ' WTW)'wTy}
= (QN)'(nDy)'nDyQTf
= B,

16} R is an unbiased estimator for 3.
PRrq fud

58



The asymptotic covariance matrix of 3 Rq is

where

and 7, = (Y — W, )T(Y = W}, ) /n.

We should note that o3, is not an estimator of 2. Since

Var(y) = E{ Var(y|X)}+ Var{E(y|X)}
= o2+ Var(gTi)
= o+ 4" Var(X)g,

we could get an estimator for o2 :

o T
62 = Var(y) — QRQ Var(X)s

== —RQ’
K—1 n; K—-1 n;
D2 i —5)t DD wi
— =0 j=1 =0 j=1
where Var(y) = T Y. = ,and
n; n;
=0 =0
mo(l — 7o)  —ToT1 TOT K1
. —mime w1l —7) —MTK-1
Var(X) =
—TKk-17"0 —TKx-170 ... Tr-1(1—TKx_1)

4.4.3 Inferences When Q is Estimated

In this section, we want to discuss the situation when the reclassification model is
estimated from external data. We will use the sandwich method to get an asymptotic
covariance matrix to account the variability that comes from an estimated Q.

We will only develop the asymptotic covariance matrix for the regression calibration

estimator. The asymptotic covariance of the EM estimator uses the same technique.
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Suppose Q is estimated from external data and Q is an unbiased estimator for Q. We

know the reclassification model

7Yoo o1 e Yo(K-1)
Y10 Y11 e YK -1)
Q=
P P o
1=> 0 1= ko 1= Y-
. . k:(] k:(] k:o
is a function of
(700, - - - y V(K —2)05 Y01y -« - 5 V(K —2)15 -+ 5 YO(K—1)5 - - a’Y(K—z)(K—l))T =7

As a result, the regression calibration estimator B R = (QT)_1 BW is still a consistent
Erg L
estimator for 3 if the validation sample size and main study size go to infinity, and the

estimating equation is

SBY,W,Q) = QW'Y - QW'WQ'3.

Let
o5(BlY, W,
Hy = G, W, Q) = - QW'WQ',
05
95(BlY, W, Q)
Hyy = p) R
i EZERQ
= (h007ﬁ107 s 7h(K—2)07h017 s 7ﬁ(K—2)17 s 7h0(K—1)7 s 7ﬁ(K—2)(K—1))7
with b, = My WY — My WIWQT3 - QWTWM] 3.

Then the asymptotic covariance matrix of 3 R 18
—'q
Z‘,BR =Sk + Hy HipS Hiy(Hp')T, where
Prg,

5 K is the asymptotic covariance matrix of B\ R treating Q as known, and
—Q

o 0 ... 0
0 ¥ ...0

S, =55 = oo . with
0 0 Sko1



Yor (L —Aok)  —YokVk - —okV(K—2)k

1 “Awor el =) - —VIEV(K -2)k

_ N where

Yk

“AK=2kT0k  —VK-2kT1k - VE—-2k(1 = Vr—2)k)
N i, is the validation size for category k.

4.5 Linear Regression with Categorical Covariates and Perfectly Measured

Covariates

In this section, we will study regression with misclassified covariates and perfectly
measured covariates. In section 4.5.1, we will study the bias of the naive least squares
estimator. In 4.5.2, we use the score function approach to create a consistent estimator,
and in 4.5.3 we will demonstrate how to use the reclassification model to get a corrected

estimator.

4.5.1 Bias of Naive Estimator

AssumeY = X3+ Z'3 , + € where X is a categorical variable with K categories,
Z is a vector of variables with no measurement error, and € is random error with mean
0, and independent from X, and Z.

Lety;,W,, Z;,i = 1...n where the dimension of W, is k x 1 (These are the observed

values for X;), and the dimension of Z, is p x 1. Let

wi X7 VA y1

w3 X7 Z3 Yo
W = X = Z = Y =

w) X! z) Yn

It is easy to show that for linear regression models with mismeasured continuous co-
variates and perfectly measured covariates, the bias of the naive least squares estimator

p p
( :W for | | is a function of 3, and if X and Z are uncorrelated, the naive least
By By
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squares estimator E 2y 18 also an unbiased estimator for 3. Gustafson (2004) proves
the above statement is true for binary misclassified covariates and a perfectly measured
covariate with a nondifferential misclassification model. Christopher and Kupper (1995)
prove that if the reclassification model is nondifferential (or independent from Z), then
E Zu is an unbiased estimator for 3 ;- Buonaccorsi et al (2005) demonstrate that if a mis-
classification model is independent of the perfectly measured Z, and X is independent
of Z, then there will be no bias in the naive estimator of the coefficients associated with
the perfectly measured covariates. The following lemma restates the result of Christo-

pher and Kupper (1995) for misclassified data, with a different proof.

Lemma 4.5.1 Assume Y = XTQ + ZT@Z + € where X is a categorical variable with K cat-
egories, Z is a vector of variables with no measurement error, and e is random error with mean
0, and independent from X and Z. Suppose we observe y;, W, Z;,i = 1...n where W, is the
observed value of X;. Then the bias of the naive least squares estimator AQW for ( : ) is
a function of 8, not a function of B ,. If EIX|W, Z] = E[X|W], i.e. the reggggiﬁcation égdel is

nondifferential , then the naive least squares estimator E , is an unbiased estimator for 3 .

By wT -1 /wT
Proof Theleastsquaresnaive estimatoris | = (W Z) Y,

QZW ZT ZT

(5w

By

wT -1 /wT
ol o) (e

yAl yAl
wT -1 /wT 3
()o@} () o, )
yAl Al B,
wT LwT 3
( )<W z>} ( )HW Z)+(X-W o”(—)
yAl Al B,

B WIW WTz\ ' /WT(X-W)3
) i < ANV AY/ ) < ZT(X - W)3 )

and

So the bias of naive estimator is a function of 3 only, not 3 7
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| = QW where Q is the reclassification model, then
W'W WTz ) -1 (WTW(QT - I)g)

(e} = ()
ES| W,Z3 = +
By, 8, Z'W 77 ZTW(QT -1)3
Using the fact:
A B\! A"+ A'B(D-CA'B)"'CA~! —A"'B(D-CA'B)!
(c D) _< ~(D-CA'B)"'CA"! (D - CA~'B)~! )

(G )mag=() (%)
we have £ - |W,Z » = + . So,
B By 0
) (L)
B By
and E Zw is an unbiased for 3 5 if the reclassification is nondifferential.

4.5.2 Score Function Approach
In this section, we will assume a misclassification model is available, and we will use

a score function approach like in section 4.3 to get a corrected estimator. Since P(W|X)

might depend on the value of Z, we need to have a misclassification model for each

value of Z in the range of the perfectly measured variables.

We define

Let
o1z Oo(x—1)2

ooz
= (QOZ>Q1Z> s 7Q(K—1)Z)

PZ = .
o O-n-nz

Orc—1y0z  O(xc-1)12
be a misclassification model for each Z in the range of the perfectly measured covariates

We will have P;ng =€,
Y, = X;rﬁ + ZJ@Z + e where € ~ N(0,02%),i = 1...n, and 0?2 is unknown. From the

observed data y;, W, Z;, the log-likelihood function is
n 2 2y—1 - T Ta \2
_§log(2ﬂ'a ) — (207) ;(yl -W;B-2; QZ) . Let

f(ﬁ,ﬁTX,W’Z)
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(3,8, Y, W,Z) = —glog(Zwa) (202)71

MM:

[yf 24i(8"P,' W, + Z]8,)
1

+2Z] 870" P, W, + 57 {(P 2 Wa)T Qk} erer B+ (218,
k=0

As in section 4.3,

E[t*(B,0%Y,W,Z)|Y,X, Z]

_ n 2 2\—1 S 2 (ATp—1 T
= —Elog(27m ) — (207) ;E[yl — 25 Py W, +Z;5,) +

K-1

227 8,87PL W + 87 > { (P W) ey} eel B+ (27 8,)° yzz}
k=0
n n K-1
= —§log(27ro*2) — (20%)71 E [ylz - Qyi(ﬁTPéilﬂi + Z;rﬁz) +
i=1 m=0
K—1
22T B2 P W, + 0T S {(PZ W) ey ferel B+ (218, v X, = mz] 1x,~m
k=0
n n K-1
= —Elog(27r02) — (20%)71 [y? — 2yi(§T§m + ZiTéz) +
i=1 m=0
K-1
22108 e+ 87 Y {chien eucl 8+ (218, x,m
k=0
n n K-1
= —Zlog(2n0”) = (2677 Y [ P — 20i(Bm + Z1 B,) + 221 B2B, + B+ (Z] B, | 1x,=m
i=1 m=0
n
= —Elog(27m Z XZTQ - Zjﬁz)z

= 0(8,8,.Y.X,Z).

orr

or*

9
So ¢* is a corrected log likelihood function and < K > is a corrected score function for
93,

(QT ﬁ; )" . If we solve

oe*
o5
ov*
8§Z n K-1

3 [—QyiPZEi +2P, W, Z] 3, +2 > {(P
_ _(202)—1 i=1 k=0

ZW)Te ) Qkﬁgé}
> {—2%4 +2Z W] (P8 + 2&@_2]
= 0, i=1

64



{(PZEDT@}ME ZP Wz} (@) (Zn:y,-PZ}WZ)
== =1 .

ie i=1 k=0
N - _ 3 ZTY
2T ()T 277 8, v
Then we have =
n K-1 . n
—1y \T 1 TN —
>y {%W) } SR A S e
i=1 k= ) i
Z Z,WT (P AV z'Y
as a consistent estimator for ( | . Without knowing the correlation between X and
B, _
B, B,
Z, we cannot get £ N like in Section 4.3. Therefore, we do not know if
by, 8.
is an unbiased estimator or not for
By
The corrected estimator looks complicated, but if we use Pz, to impute X X, = =Py 1W
X 4
and X = : , then it can be rewritten as
X

n

B, nDy XTz\ ' /XTy
<§ZS> - (zTX ZTZ> <sz>
withz =37, PZm/n.

Notice nD5 in the corrected score estimator is an estimate of X' X.

If Pz = P for all values of Z, the above calculations will be much simpler, and W, Z
will be independent given X . We should note that if Pz = P, then it does not necessarily
follow that Qz = Q.

Differentiating the corrected log likelihood function ¢* with respect to o2, we will

have an estimator for o2,

R & AT~ - " AT~ AT~ -
ar=> {y? —2yi(X; B, +21B,) +223, X; B, +5,Dg B, + @T@Zf} /n.

i=1

. . . . . —S
Next, we want to find an estimated variance-covariance matrix for ( N ) .
By,
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2 Dy 2. XZ
)

z 1

The corrected observed information matrjx I* is
s T R
/ D: XZ\
(3,8, Y,W,Z) = /
Z Z; X Z Z, 2]

72X 7'Z

and let
V3,8, Y, W,Z)
i( yiX, + X, 218, +DX5> (
i=1 \ —YiZ; + Ziii B+2,2] Py
As in Section 4.3, we will first find w(g, 3 U W, Z ) such that
(8,8,4.X,2)S(8, 3,4, X, Z)

yiX, + X, 218, +Dg f
/84.
_ini + Zziz ﬁ + Zi—z Mz

[W(QQT%K,Z)\‘%K,K] =5

00(8,8,,.9.X.2)
. ap
with S(8,8,,.y, X, Z) = <8£(ﬁ,ﬁz,y,X,Z) >
For our case, Pz
X
SB.B,v,X.2) = (y-X'"p-2"5,) ; /o
xXxT x47
(8.8,9.X,2)58,8,v.X,2)" = (y-X'"5-2"5)) Jo!
zX' zz7
Let
K-1
((8:8,,4:W,Z,Pg) = Z{y —2(Bler+Z78,) +28Te, 2" B, + (B7ey)?
k=0
B {(Pélﬁ)Tgk}ekeI PZLWZT A
+(Z78,)?} fo,
Z(P, ' w)T 27"
XxT xz7
then [Ew(8,5,,,y, W, Z,Pz)|y, X, X] = (y— X3 - 273 /o, and
ZX" 7277
we can use
— E -~ ~ -~ -~
Var, [ ) = (3,8, y. W2 {V(3,3,.Y.W.2)
QZ — —4s —_— —4s

_Z Z 7y27_7,7Z17PZ)}I*(ﬁsaézsaz7waz)_
+I*(ﬁs’ﬁzs’z’w’ Z)™!

)

s

)

& =

as an asymptotic covariance matrix for (



4.5.2.1 When the Misclassification Model is Estimated

In this section, we will assume the misclassification model is estimated from external
data, like in section 4.3.1, and we investigate how the asymptotic covariance matrix of
B,
N changes.
By, ~
When Pz are estimated from external data, and Py is a consistent estimator for
P for every Z, then :S is a consistent estimator if the validation size for each Z
and main study sample size all go to infinity. Assume X is the asymptotic covariance

matrix of ( — ) if P z, are assumed to be known (see section 4.3.1). We can estimate

> [
\_/

the covariance of <

) =%+ ZHHZ Hipz Xz Hiyy (Hyyy )", where

/\
|Q> |Q> |

Sz, 0 ... 0
0 iz ... 0
Yz, = , and
0 0 0
0 AO e E(K—l)Zl a2 L
Oorz, (1 — Oorz,) —0Ookz, 91kz . —0Ookz,0 (22,
. 1 Oz, 00kz,  Ouz,(1—Ouz) ... ~01hz, 00k ok,
Kz, =
Z Nz,
—Ox—2kz,0kz, —Ok-2k2,0102z, - Ok-2kz,(1 —OK_2)82,)
5-1 T
~2\—1 DXZ PZZ EZZZ
Hyg, = (07) _
ZWI®y)™ ZlZ
Hiog, = (hoog, hioz, - Bk —2)0z,Borz,s - B2z, - Boge 1)z, - - Bk —2) (k- 1)2,) where
[ UP M P W, + Py MyDg B+ 2], Py M Py W,
himiz, = (02) T = 7 with
Wi (P MyPy )" B Z;
K-1
Dz = {(Péiwi)j—@k}ﬁk@Z'
k=0
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4.5.3 Reclassification Case
Now, we will consider how to use a reclassification model to get a corrected estima-

tor for regression with misclassified covariates and perfectly measured covariates. Just

like in section 4.5.2, if P(X|W) depends on Z.

Define
Yooz Y01z Yo(K-1)Z

P(X =ilW =j,Z) =vijzand Qz =
YNK-1)0z V(K-1)1Z NE-1)(K-1)Z

X,,)". From Section 4.4, we could

for each Z. Let X, = Qz, W, and X = (X,
regress y; on X,, Z;, then use the least squares method to get a corrected estimator:

B XTX X'z\' /Xy
(éZ):(szc ZTZ> (sz>'
If Qz = Q for all Z, then
() - (e wa) ()
@ZQ ZTWQT 777 vAbY
Q 0\ /WI'W WTZ\ /QT 0\) '/QWTY
1o ) Grw ) (6 ) o)

o 1 B, ’
B Qs
<_W )]:( _>.Asaresult,

-~

By

B (2)

Again, this method assumes Qz does depend on Z.
) is

and from the proof of Lemma 4.5.1, £/

E

o

The asymptotic covariance matrix of (
B,

(B Q o' __ /5 QT o0\ !
w0 =06 )
B4 0 I B, 0 I
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where -
(B WIW wizy ™
Var | =0y
B, Z'W 777
and 73, = (Y — Wg,, — ZQZW)T(X - Wy, — ZQZW)/n'

0%, is not an estimator for o2. From
Var(y) = E{Var(y|X,Z)} + Var{E(y|X,Z)}
= o2+ Var(&Tg—i- ZTQZ),

without knowing the correlation between X and Z, we can not estimate o2 If Xand Z

are uncorrelated, then we could get an estimator for o?

— ~ ~ ~

5* = Var(y) - Gy, Var(X)3,, - B, Var(2)3,,.

Sometimes the reclassification model is not available, and we need to estimate it from

external data. If Q is estimated from external data, and Q is a consistent estimator for

o~

T AT
Q, then (3 o B, )T is a consistent estimator for (57 ﬁ; )T if the validation sample
Pq Zzg vP

size and the main study sample size both go to infinity.

The estimating equation for :Q ) is
B2q
QWT> <QWTWQT QWTZ> ( g )
Y — .
/Al z'wQT Z'Z B,
Using the same notation as in Section 4.4 and applying Parke’s (1986) method, the

S(B.7) = (

o (5
asymptotic covariance matrix of 1s

o~

_ QZ@
—(5a\ —1 T p—1\T
Var [ =Yg+ Hyy Hi9X H5(H ;)" where
By, -
~ ~ Q ~
QW'WQ'T QW'zZ
Hy; = — .
ZTWQT YAV /
Hyiy = (hgos o, - - - 7h(K—2)07h017 s 7ﬁ(K—2)1a e Jho(K—1)7 s 7ﬁ(K—2)(K—1)) with
(MmlWTX ) (MmlWTWQT + QWTWM, MmlWTZ> < By )
hml = - : )
0 ZTWM], 0 8,
-~ —7Q

£Q ). .
R if we assume Q is known.

By

and Y g is the covariance estimate of <
Q
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CHAPTER 5

SIMULATION

In this chapter, we use computer simulation to generate data, compare and evaluate
the performance of some of the methods described in this dissertation. The order of sim-
ulations is not necessarily the same as the order in which the methods were presented.

We use equal validation size for each category in all the simulation.

5.1 Bias Reduced Estimator, Partially Corrected Estimator

The first simulation addresses the problem of estimating a single proportion. We
introduce the bias reduced estimator in Section 2.1, and reduced mean square error
estimator/partial correction estimator in Section 2.2 for proportion of interest. In this
section, we will use simulation to demonstrate the performance of these two estimators.
We should make a note that not all naive estimators are biased. From Section 2.2, we
know that the bias of a naive estimator is (6yo + 611 — 2)7 + (1 — 0p0). Also from Figure 1,
we can see that there is a linear equation of (6, #11), for every 7, such that the naive
estimator has bias 0. For this reason, we have chosen values for 6y, 61 to give different
levels of bias in naive estimators. Table 1 summarizes the levels of 0y and 617 we will
use in this section.

We will denote bias 0.2 as a high level of bias , an absolute bias of 0.075 as the medium
level of bias and bias 0 as the unbiased level. Along with the bias levels, the main

study sample sizes are n = 50,100, 1000, and validation sizes are either half, same, or
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‘ﬂ"bias‘eoo‘ 911 ‘
0 085 | 04

0.2 | 0.075 | 0.85 | 0.775
02 |075 1

0 0.75 | 0.75
05|-0075| 09 | 0.75
02 |055| 095

Table 1. Parameter Settings for the First Simulation Experiment that Compares
Estimators of Prevalence

double the main study size. We also include the case where the misclassification model
is known. For each combination of parameters settings, we repeat 2000 times.

Figure 3 compares the Monte Carlo estimate of the root of mean square error (RMSE)
of Tpaives T Plugins Teorrected, 1 and 7. Figure 4 contains the absolute values of the Monte
Carlo estimate of bias for Tpaive, T Plugin/Tcorrected,pr and Tp.. Table 2 and Table 3 contain
the same information in tabular form as Figures 3 and 4 respectively. From these figures,
we can see that the RMSE of Tcorrected, pr and 7. are smaller than or close to the RMSE
of T piugrn for the high and medium bias levels and when the validation sizes are half or
the same as the main study size. The 7. performed much better than 7 pj,47,, in terms
of both absolute bias and RMSE when the naive estimators is unbiased. The absolute
biases of Teoprected, pr are about the same as 7 pyy g1y, for the high and medium bias levels.
The performance of 7,4ise depends on the level of bias. By looking at the tables, for
T = 0.5, Tcorrected,pr has smaller RMSE than 7 pj47,, and has absolute bias smaller than
or almost equal to the absolute bias of 7 pjyugrn. For m = 0.2, = 50, Tcorrected, 1 has not
performed as expected for the unbiased parameter setting. We suspect this is because of

large remainder terms in the asymptotic expansion on which the estimator is based.

5.1.1 Overall Comparison with Different Misclassification Probabilities

In this section we compare Tpaive, T Plutins Teorrected,p1 and 7. for different ws. We

use two misclassification models: one is #1; = 0.90, 6y = 0.95, and the other is 6;; =
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Tnaive ‘ T Plugln ‘ TC,PI ‘ Tpe

Tnaive ‘ T Plugln ‘ TC,PI ‘ Tpe

Tnaive ‘ T Plugln ‘ TC,PI ‘ Tpe

™| N L n = 50 n = 100 n = 1000

02 05| H | 0211 | 0111 | 0.111 |0.117 | 0.205 | 0.090 | 0.089 | 0.090 | 0.201 | 0.029 | 0.029 | 0.029
02]05|M| 0097 | 0116 | 0.112 | 0.098 | 0.087 | 0.093 | 0.090 | 0.082 | 0.076 | 0.031 | 0.030 | 0.033
02]05|N | 005 | 0227 | 0316 | 0122 | 0.040 | 0.180 | 0.227 | 0.109 | 0.012 | 0.073 | 0.072 | 0.048
0210 |H| 0212 | 0103 | 0.103 | 0.107 | 0.205 | 0.078 | 0.078 | 0.078 | 0.201 | 0.025 | 0.025 | 0.025
02110 |M| 0100 | 0113 | 0.110 | 0.102 | 0.087 | 0.083 | 0.082 | 0.081 | 0.076 | 0.027 | 0.027 | 0.028
02 10| N | 005 | 0219 | 0245 | 0.130 | 0.039 | 0.161 | 0.156 | 0.101 | 0.013 | 0.062 | 0.061 | 0.042
0220 H| 0212 | 0098 | 0098|0100 | 0208 | 0.073 | 0.072 | 0.073 | 0.201 | 0.023 | 0.023 | 0.023
0220 |M| 009 | 0108 | 0.107 | 0.103 | 0.089 | 0.078 | 0.078 | 0.083 | 0.076 | 0.025 | 0.025 | 0.025
02 20| N[ 0058 | 0203 | 0198|0128 | 0.041 | 0.153 | 0.149 | 0.098 | 0.013 | 0.058 | 0.058 | 0.040
02 | Inf | H | 0209 | 0.087 | 0.087 | 0.09 | 0.206 | 0.067 | 0.067 | 0.068 | 0.201 | 0.021 | 0.021 | 0.021
02 | Inf [ M | 0.097 | 0.095 | 0.095 | 0.106 | 0.087 | 0.070 | 0.070 | 0.080 | 0.076 | 0.023 | 0.023 | 0.023
02 | Inf | N | 0.057 | 0.176 | 0.176 | 0.111 | 0.039 | 0.135 | 0.135 | 0.085 | 0.013 | 0.051 | 0.051 | 0.036
05]05|H| 0210 | 0165 | 0.154 | 0.155 | 0.205 | 0.124 | 0.118 | 0.122 | 0.200 | 0.040 | 0.039 | 0.040
05]05|M| 0101 | 0142 | 0.133 | 0.114 | 0.092 | 0.099 | 0.097 | 0.091 | 0.077 | 0.031 | 0.031 | 0.033
05]05|N | 007 | 0188 | 0.170 | 0.119 | 0.052 | 0.140 | 0.133 | 0.096 | 0.016 | 0.043 | 0.043 | 0.032
0510 H| 0211 | 0158 | 0152 | 0159 | 0.206 | 0.111 | 0.109 | 0.115 | 0.201 | 0.034 | 0.034 | 0.034
0510 |M| 0102 | 0127 | 0.125 | 0.114 | 0.089 | 0.088 | 0.087 | 0.087 | 0.077 | 0.028 | 0.028 | 0.029
0510 | N[ 0070 | 0173 | 0.166 | 0.119 | 0.050 | 0.119 | 0.117 | 0.085 | 0.016 | 0.038 | 0.038 | 0.028
05|20 H| 0210 | 0139 | 0137 | 0.147 | 0.207 | 0.101 | 0.101 | 0.107 | 0.200 | 0.032 | 0.032 | 0.032
0520 | M| 009 | 0115 | 0114 | 0.110 | 0.089 | 0.082 | 0.081 | 0.086 | 0.077 | 0.026 | 0.026 | 0.027
0520 | N | 0068 | 0152 | 0.149 | 0.105 | 0.050 | 0.111 | 0.110 | 0.080 | 0.016 | 0.035 | 0.035 | 0.025
05 | Inf | H | 0214 | 0130 | 0.130 | 0.142 | 0.205 | 0.089 | 0.089 | 0.094 | 0.201 | 0.029 | 0.029 | 0.030
05 | Inf [ M | 0.100 | 0.107 | 0.107 | 0.115 | 0.088 | 0.074 | 0.074 | 0.082 | 0.076 | 0.025 | 0.025 | 0.025
05 | Inf | N | 0.070 | 0.140 | 0.140 | 0.097 | 0.048 | 0.096 | 0.096 | 0.065 | 0.016 | 0.032 | 0.032 | 0.022
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Tpe

Tnaive ‘ %Plugln ‘ 7?C',PI ‘ 7?pc

Tnaive ‘ 7?Plugln ‘ 7?C',PI

Tpe

™| N L n = 50 n = 100 n = 1000

02 05| H | 0.19 | 0.020 | 0.032 [0.064 | 0.199 | 0.007 | 0.012 | 0.033 | 0.200 | 0.001 | 0.000 | 0.003
02105 |M| 0074 | 0017 | 0026 | 0.048 | 0.075 | 0.003 | 0.007 | 0.033 | 0.074 | 0.001 | 0.001 | 0.008
02105 |N | 0000 | 008 |o0.181 0038 | 0.001 | 0.058 | 0.119 | 0.032 | 0.000 | 0.000 | 0.002 | 0.001
0210 |H| 0200 | 0013 | 0019 |0.043 | 0200 | 0.000 | 0.002 | 0.017 | 0.200 | 0.000 | 0.000 | 0.002
0210 |M| 0077 | 0012 | 0015 |0.044 | 0.075 | 0.001 | 0.002 | 0.029 | 0.075 | 0.001 | 0.001 | 0.005
02 10| N|0003]| 0075 | 0126 |0.040 | 0.001 | 0.041 | 0.058 | 0.024 | 0.000 | 0.001 | 0.000 | 0.000
0220 |H | 0200 | 0005 | 0007|0026 | 0202 | 0002 | 0003|0013 | 0200 | 0.00