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ABSTRACT

CLASS NUMBERS OF RAY CLASS FIELDS OF IMAGINARY

QUADRATIC FIELDS

MAY 2009

OMER KUCUKSAKALLI

B.S., MIDDLE EAST TECHNICAL UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Siman Wong

Let K be an imaginary quadratic field with class number one and let p ⊂ OK be a

degree one prime ideal of norm p not dividing 6dK . In this thesis we generalize an

algorithm of Schoof to compute the class number of ray class fields Kp heuristically.

We achieve this by using elliptic units analytically constructed by Stark and the

Galois action on them given by Shimura’s reciprocity law. We have discovered

a very interesting phenomena where p divides the class number of Kp. This is

a counterexample to the elliptic analogue of a well-known conjecture, namely the

Vandiver’s conjecture.
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C H A P T E R 1

INTRODUCTION

Computation of the class number of a number field is one of the most classical

problems in number theory. The class number is a powerful invariant which can be

used to investigate the integer solutions of polynomials. A well-known example is

Fermat’s Last Theorem which states that the equation xp + yp = zp does not have

any non-trivial solution for any odd prime p. In 1847, Kummer proved this famous

theorem for primes p not dividing the class number of Q(ζp), the pth cyclotomic

field.

A number field L is a finite field extension of rational numbers which has two

invariants measuring its complexity, the degree [L : Q] and the discriminant dL of

the extension. The class number hL can be computed for extensions with small

degree and discriminant; however the running time of general algorithms grows

rapidly with the degree and the discriminant of the number field. One of the

simplest and most important example of a number field is the pth cyclotomic field

Q(ζp), and its class number is not known for any prime p bigger than 113.

The number field Q(ζp) can be obtained by adjoining to Q, the coordinates of

p-division points on the unit circle. Similarly, the ray class fields Kp of imaginary

quadratic fields K can be constructed from the coordinates of p-division points

on an elliptic curve (see Theorem 2.4). Using analytical properties of modular
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functions, Stark constructs elliptic units in Kp and shows that these units generate

a subgroup of the full unit group of index precisely the class number of Kp [8]. This

is an analogue of a well-known theorem for real cyclotomic fields Q(p) = Q(ζp)∩R

which was used by Schoof to heuristically compute their class numbers [7].

In our thesis, we extend Schoof’s algorithm to investigate the class number of

ray class fields Kp. We achieve this by using the elliptic units given by Stark and

the explicit Galois action on these elliptic units given by Shimura’s reciprocity law.

We work with imaginary quadratic fields K with class number one and with degree

one prime ideals p ⊂ K of norm p less than 700; their corresponding ray class fields

Kp have degree as big as p−1 over Q. The class number computation of such fields

using general-purpose algorithm is far beyond the capacity of any current computer

software.

1.1 Statement of the Main Results

Let K be an imaginary quadratic field with class number one and let p ⊂ OK

be a degree one prime ideal not dividing 6dK . In general it is difficult to determine

the full unit group of number fields. However, for ray class fields Kp it is possible

to give explicitly a group of units E , namely the elliptic units. It is a well-known

fact the quotient

BKp = O∗Kp
/E

is finite and its order is equal to the class number of Kp.

Let GKp be the Galois group of the extension Kp/K. Both groups Cl(Kp)

and BKp are finite Z[GKp ]-modules and hence admit Jordan-Hölder filtration with

simple factors. It turns out that their submodules with Jordan-Hölder factors of
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fixed order q have the same number of elements as well. This fact enables us to

work with BKp instead for the purpose of investigating the class number of Kp.

In our thesis, we have found all simple Jordan-Hölder factors of BKp with “small”

order. More precisely, we have the following result.

Theorem 1.1 For each K, we give a table involving all simple Jordan-Hölder fac-

tors of order q < 2000 of BKp for p ⊂ OK of norm p < 700. Our tables also

contain the number h̃Kp, the order of the largest submodule of BKp (and therefore

of Cl(Kp)) all of whose Jordan-Hölder factors have order less than 2000.

It easily follows that the numbers h̃Kp divide the class number of Kp since it is

the order of a subgroup. Moreover our computation implies that either

#Cl(Kp) = h̃Kp or #Cl(Kp) > 2000 · h̃Kp ,

but we do not know for sure the class number of Kp for any p of norm p > 40.

However, according to Cohen-Lenstra heuristics, the bigger the Jordan-Hölder fac-

tor, the lower its chance to appear in the filtration of Cl(Kp). This allows us to

show that (following Schoof) the number h̃Kp is actually the class number of Kp

heuristically.

We have discovered a very interesting phenomena where p divides the class

number of Kp. This is a counterexample to the elliptic analogue of a well-known

conjecture in the theory of cyclotomic number fields, namely the Vandiver’s con-

jecture.

Counterexample 1.2 Let K be the imaginary quadratic field Q(
√
−163). The

class number of Kp307 is divisible by 307 where p307 ⊂ OK is a degree one prime

ideal of norm 307.

3



We give a detailed explanation about the analogy between Q(p) and Kp in Section

2.2 and about the counterexample in Section 5.1.

1.2 Outline of the Thesis

In chapter 2, we provide the necessary background material for our thesis. We

first describe finite Galois modules and their duals for a cyclic group. We also give

a description of their Jordan-Hölder filtration. Secondly, we describe the ray class

fields Q(p) and Kp and the analogy between them. In the last section we define

modular functions φ(u, v, z) by infinite products and explain how to compute them

with high accuracy. We also state the Shimura’s reciprocity law which enables us

to construct Stark’s elliptic units.

In chapter 3, we give a summary of Schoof’s algorithm for real cyclotomic fields.

We reformulate Schoof’s original steps so that the elliptic analogue will be easier

to explain. The algorithm we give here is slower than the original since we do not

make use of a property of cyclotomic units which is not available for the elliptic

units.

In chapter 4, which is the key technical part of our thesis, we provide the elliptic

analogue of Schoof’s algorithm. In the first section, we construct elliptic units and

give the Galois action on them using Shimura’s reciprocity law. In the second

section we explain how to reformulate the results in the cyclotomic case so that

we obtain their elliptic analogues. In the third section we explain our algorithm

and give an example. In the last section we apply Cohen-Lenstra heuristics to our

case and argue that each table we give at the end is a table of class numbers with

probability at least 96%.

In chapter 5, we explain the results based on the data we collect from our
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algorithm. In the first section we give a counterexample to the elliptic analogue of

Vandiver’s conjecture. In the second section, we give a table for each K involving

the order of the largest submodule of BKp with Jordan-Hölder factors of order less

than 2000. We explain how to obtain structure of (BKp)ϕ for each Jordan-Hölder

factor listed in the tables. We also give an example showing that BKp and Cl(Kp)

are not isomorphic as Galois modules.

In the last chapter, we mention about two future projects which are natural

generalizations of our thesis.
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C H A P T E R 2

BACKGROUND MATERIAL

In this chapter, we provide the necessary background material for our thesis.

We first describe finite Galois modules and their duals for a cyclic group. We also

give a description of their Jordan-Hölder filtration. Secondly we describe the ray

class fields Q(p) and Kp and the analogy between them. In the last section we define

modular functions φ(u, v, z) by infinite products and explain how to compute them

with high accuracy. We also state the Shimura’s reciprocity law which enables us

to construct Stark’s elliptic units.

2.1 Galois Modules

Let R be a finite commutative ring. For any R-module A, the additive groups

A⊥ := HomR(A,R) Adual := HomZ(A,Q/Z)

are R-modules via (λf)(a) = λf(a) = f(λa) for λ ∈ R and a ∈ A. The ring R is

called Gorenstein if the R-module Rdual is free of rank 1 over R.

Proposition 2.1 Let R be a finite Gorenstein ring. Then

1. For every R-module A, the map

A⊥ −→ Adual
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defined by f 7→ χ ◦ f is an isomorphism of R-modules where χ : R −→ Q/Z

is a generator of Rdual.

2. The functor A 7→ A⊥ from the category of finite R-modules to itself is exact.

Moreover (A⊥)⊥ ∼= A.

Proof. See Schoof [7, Proposition 1.1]. �

Let G be a cyclic group then for any integer M > 1 the group ring R =

(Z/MZ)[G] is Gorenstein, . For such rings we can make the isomorphism in Propo-

sition 2.1 (1) more explicit by fixing a generator

χ :
∑
σ∈G

cσσ 7−→ c1

for the R-module Rdual. Here c1 is the coefficient of the identity element 1 ∈ G.

In order to apply Schoof’s algorithm, we need to work with duals. The following

proposition gives us the necessary connection between R-modules and their duals.

Proposition 2.2 Let R be a finite Gorenstein ring and I ⊂ R be an ideal. Then

we have the following:

1. Any finite R-module is Jordan-Hölder isomorphic to its dual.

2. The modules R/I and (R/I)⊥ are isomorphic R-modules if and only if AnnR(I)

is principal.

3. If R/I has a Jordan-Hölder filtration of length at most 2, then (R/I)⊥ ∼= R/I.

4. Suppose that there are an ideal J ⊂ R and a surjection g : R/J � I⊥ with

the property that AnnR(J) annihilates R/I. Then J = AnnR(I) and g is an

isomorphism.

7



Proof. See Schoof [7, Proposition 1.2]. �

Let G be a cyclic group of order n and let A be a finite Z[G]-module. Now we

give the Jordan-Hölder filtration of A using Schoof’s description [7, Section 3]. We

first decompose A as a product of its l-parts A⊗Zl where Zl is the l-adic integers

for prime l. Each l-part is a module over the ring Zl[G], which is isomorphic to

the polynomial ring Zl[X]/(Xn − 1). Let us write n = lam with the property

gcd(m, l) = 1 and decompose Xm − 1 in the polynomial ring Zl[X]. We have

Xm − 1 =
∏
ϕ

ϕ(X)

where ϕ(X) ∈ Zl[X] are irreducible polynomials. This gives rise to natural isomor-

phisms of Zl-algebras

Zl[G] ∼= Zl[X]/(X lam − 1)

∼=
∏
ϕ

Zl[X]/
(
ϕ(X la)

)
.

This decomposition of the ring Zl[G] enables us to make each l-part into smaller

pieces. We have A⊗ Zl =
∏

ϕAϕ where

Aϕ = (A⊗ Zl)⊗Zl[G]

(
Zl[X]/

(
ϕ(X la)

))
.

Therefore we have a filtration of the finite Z[G]-module A given by

A =
∏
l

∏
ϕ

Aϕ

where each Aϕ is a module over the corresponding Zl[G]-algebra Zl[X]/
(
ϕ(X la)

)
.

The submodule Aϕ admits a further filtration with simple subquotients, all of which

are isomorphic to the residue field Fq = Fl[X]/(ϕ(X)).

The residue fields of the ring Z[G] are precisely the residue fields of the various

local rings Zl[X]/(ϕ(X la)). Every finite Z[G]-module A admits a Jordan-Hölder
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filtration whose simple factors are one-dimensional vector spaces over these residue

fields. The order of such a simple Jordan-Hölder factor is the order q = lf of the

residue field and its degree d is the order of X modulo ϕ(X). This implies that d

divides n, the order of the cyclic group G. The order of l modulo d is equal to f .

Therefore d divides q − 1 as well. Combining these two facts we obtain

d| gcd(n, q − 1)

and this becomes useful in the first step of both Schoof’s algorithm and its elliptic

analogue (see Sections 3.3 and 4.3).

2.2 Ray Class Fields Q(p) and Kp

Given a number field K, a modulus in K is a formal product m =
∏

pnp over

all primes p, finite or infinite, of K. A modulus m can be written as m0m∞ where

m0 is an ideal of OK and m∞ is a product of distinct real infinite primes of K. If

K is an imaginary quadratic field, then there is no real infinite prime. Therefore it

is enough to consider a modulus of an imaginary quadratic field K to be an ideal

of OK .

Let IK(m) be the group of all fractional OK-ideals relatively prime to m and let

PK,1(m) be its subgroup generated by principal ideals (α) where α ∈ OK satisfies

α ≡ 1 mod m0 and ν(α) > 0 for every ν|m∞. A subgroup H ⊂ IK(m) is called a

congruence subgroup for m if it satisfies PK,1(m) ⊂ H ⊂ IK(m) and the quotient

IK(m)/H is called a generalized ideal class group for m.

Class field theory gives us a connection between generalized ideal class groups

and all Abelian extensions of K. The link between these two is provided by the

Artin map. Let m be a modulus divisible by all ramified primes of an Abelian
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extension L/K. Given a prime q not dividing m, we denote the Artin symbol by

σq which is the unique element in Gal(L/K) satisfying σq(α) ≡ αN(q) (mod q)

for all α ∈ OL. The Artin symbol can be extended by multiplication to give a

homomorphism which is called the Artin map of K ⊂ L of modulus m.

Theorem 2.3 (Existence Theorem) Let m be a modulus of K, and let H be a

congruence subgroup for m. Then there is a unique Abelian extension L of K, all

of whose ramifies primes divide m such that if

Φm : IK(m) −→ Gal(L/K)

is the Artin map of K ⊂ L, then H = Ker(Φm)

Proof. See Janusz [2, Chapter V, Theorem 9.16] �

Given any modulus m, the unique Abelian extensionKm ofK such that PK,1(m) =

Ker(Φm) is called the ray class field of conductor m. When m = (1) the ray class

field K(1) is the Hilbert class field, the maximal unramified Abelian extension of K.

Let us consider the ray class field Q(p) of conductor (p) ⊂ Z where p is an odd

prime. Since Q(p) is an Abelian extension of Q, there exists an integer n such that

L ⊂ Q(ζn), by the Kronecker-Weber Theorem [10, Theorem 14.1].

Let q be a rational prime different than p. The action of Artin symbol σq is

given by σq(ζn) = ζqn. We want the kernel of the Artin map to be PQ,1(p), which is

the set of principal ideals generated by elements α ≡ 1 (mod p). This implies that

n divides p and therefore Q(p) is a subfield of the p-th cyclotomic field Q(ζp).

Observe that any ideal class in the ray class group IQ(p)/PQ,1(p) can be repre-

sented by [mZ] where m is an integer relatively prime to p. Moreover two ideals

classes [mZ] and [m′Z] are identical if only if m ≡ ±m′ (mod p). This implies that

10



the ray class group, and therefore Gal(Q(p)/Q), has (p−1)/2 elements. Hence Q(p)

must be Q(ζp + ζ−1
p ), the p-th real cyclotomic field.

The main tool we use here to determine the ray class field Q(p) is the Kronecker-

Weber Theorem. This theorem enables us to analytically construct a generator for

all Abelian extensions of Q. In general it is not easy to do this for an arbitrary

ground field. However in the case of imaginary quadratic fields we have the following

theorem.

Theorem 2.4 Let K be an imaginary quadratic field and let m be a modulus in

K. Then Km = K(j(OK), h((C/OK)[m])) where j(OK) is the j-invariant and h is

the Weber function.

Proof. See Lang [4, Chapter 10, Theorem 2]. �

Given an imaginary quadratic field K, we can consider OK as a lattice embed-

ded in complex numbers C. The quotient C/OK is topologically a torus. The

Weierstrass ℘-function gives a connection between C/OK and an elliptic curve E.

We have

C/OK −→ E

z 7−→ [℘(z), ℘′(z)].

The curve E is given by the equation

y2 = 4x3 + g2x+ g3

where g2 and g3 are invariants of the lattice OK . The division points (C/OK)[m] =

{z ∈ C : zm ⊂ OK} can be mapped to E under this map. However these values

are not invariant enough. By a suitable normalization, one can define the Weber

function h(z) which is closely related to the x-coordinate projection. In the generic

case (i.e. when dK 6= −3,−4) it is given by

h(z) =
g2g3

∆
℘(z)

11



where the discriminant ∆ is equal to g3
2 − 27g2

3.

Suppose that K is an imaginary quadratic field with class number one. Then

the j-invariant of OK is rational. Let p ⊂ OK be a degree one prime ideal not

dividing 6dK . Theorem 2.4 implies that

Kp = K(h((C/OK)[p]))

and this reminds us the geometric construction of real cyclotomic fields. Similar to

the quotient C/OK , consider the quotient R/Z where Z is the ring of integers of

Q. It is topologically a circle and the cosine function, together with its derivative,

gives a connection between R/Z and the unit circle as follows.

R/Z −→ C

t 7−→ [cos(2πt),− sin(2πt)]

Here the cosine function is in the same role of Weierstrass ℘-function. Observe that

the real cyclotomic field Q(p) is obtained by adjoining

ζp + ζ−1
p = 2 cos(2π/p)

to the ground field Q. In other words Q(p) is obtained by adjoining the x-coordinate

of the image of a p-division point in (R/Z)[p].

The ray class field Kp is constructed from a CM elliptic curve in the same way

the real cyclotomic field is constructed from a circle. Therefore we refer Kp as the

elliptic analogue of real cyclotomic fields.
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2.3 Modular Functions

The computation of Stark’s elliptic units (see Section 4.1) relies on the family

of modular functions defined by

φ(u, v, z) := −ieπiz/6eπiuγ(eπiγ − e−πiγ)
∞∏
m=1

(1− e2πi(mz+γ))(1− e2πi(mz−γ)),

where γ = uz + v and z is an element in the upper half plane.

Proposition 2.5 The function φ(u, v, z) satisfies the following transformation prop-

erties.

1. φ(u, v + 1, z) = −eπiuφ(u, v, z)

2. φ(u+ 1, v, z) = −e−πivφ(u, v, z)

3. φ(u, v, z + 1) = eπi/6φ(u, u+ v, z)

4. φ(u, v,−1/z) = e−πi/2φ(v,−u, z)

Proof. These properties follow from Kronecker’s second limit formula. See Stark

[8, p. 205-208] for details. �

The group Γ = SL2(Z)/{±I} is called the modular group and it is generated

by matrices S =
(

0 −1
1 0

)
and T =

(
1 1
1 0

)
. If A =

(
a b
c d

)
is an element in Γ then it

acts on the upper half plane by

Az =
az + b

cz + d
.

Let n > 1 be a fixed integer and let r, s be integers such that gcd(r, s, n) = 1.

Observe that the function φ(r/n, s/n, z) is invariant under the action of A ∈ Γ if

A ≡ ±I (mod 12n2). By definition φ(r/n, s/n, z) is a modular function(in z) of

level N = 12n2.
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Let FN be the field of all modular functions of level N whose qz-expansions,

where qz = e2πiz/N , have coefficients in Q(ζN). The field FN is a Galois extension

of F1 = Q(j) with Galois group isomorphic to GL2(Z/NZ)/{±I}. Given

f(z) =
∞∑

m=m0

αmq
m
z ∈ FN ,

there are two basic rules for calculating f ◦ A. If A ∈ Γ, then

(f ◦ A)(z) = f(Az) =
∞∑

m=m0

αmq
m
Az

and if A =
(

1 0
0 d

)
, then

(f ◦ A)(z) = (f ◦ σd)(z) =
∞∑

m=m0

ασdm q
m
z .

where σd is the automorphism of Q(ζN)/Q given by ζσdN = ζdN . Now we give the

reciprocity law.

Theorem 2.6 (Shimura’s Reciprocity Law) Let K be an imaginary quadratic

field and let f(z) ∈ FN be a modular function of level N . Suppose q is a rational

prime not dividing NdK such that qOK = qq̄. Suppose that a = [µ, ν] is a fractional

ideal of K with θ = µ/ν in the upper half plane and let B
(
µ
ν

)
=
(
µ′

ν′

)
be a basis for

q̄a. Then f(θ) is in the ray class field K(N) and

f(θ)σq = [f ◦ (qB−1)](θ′)

where θ′ = µ′/ν ′.

Proof. See Stark [8, Theorem 3]. �

In order to compute Stark’s elliptic units (see Section 4.1), we need to compute

φ(u, v, z) with high precision for values z = θ given by Shimura’s reciprocity law.
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It turns out that it is possible to pick v = 0 in order to compute generators of the

group of elliptic units E (see lemma 4.3). We have

φ(u, 0, θ) = −iτ
6u2−6u+1

12 (1− τu)
∞∏
m=1

(1− τm+u)(1− τm−u)

where τ = e2πiθ. One can obtain an approximation of φ(u, 0, θ) by using the first

M terms of the infinite product above. We want to determine the value of M to

assure a certain level of accuracy.

Proposition 2.7 We have the following bounds

eB(M) >

∣∣∣∣∣
∞∏

m=M+1

(1− τm)

∣∣∣∣∣ > e−B(M)

where

B(M) =
|τ |M+1

(1− |τ |)(1− |τ |M+1)
.

Proof. We start by taking the logarithm

log

∣∣∣∣∣
∞∏

m=M+1

(1− τm)

∣∣∣∣∣ =
∞∑

m=M+1

log |1− τm| .

Then we use the inequality |1 − τm| > 1 − |τ |m and the Taylor series expansion

log(1− x) = −
∑

xn

n
to get

∞∑
m=M+1

log |1− τm| >
∞∑

m=M+1

log(1− |τ |m)

= −
∞∑

m=M+1

∞∑
n=1

|τ |mn

n
.

Rearranging the terms and applying the summation formula for geometric series

twice, we obtain

−
∞∑

m=M+1

∞∑
n=1

|τ |mn

n
= −

∞∑
n=1

1

n

∞∑
m=M+1

|τ |nm

= −
∞∑
n=1

1

n

|τ |n(M+1)

1− |τ |n

> −
∞∑
n=1

|τ |n(M+1)

1− |τ |
= −B(M).
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This finishes the proof of the bound on the right hand side. The proof for the other

side is similar. �

We should use θ with imaginary part as big as possible so that our approxi-

mation is better with the same number of terms. Let A ∈ Γ such that Aθ is in

the fundamental domain D = {z ∈ C : Im(z) > 0, |z| ≥ 1, |Re(z)| ≤ 1/2}. The

transformation properties (3) and (4) given in Proposition 2.5 implies that

φ(u, v, θ) = ω(A)φ((u, v)A−1, Aθ)

where ω(A) is a 12-th root of unity which can be obtained from the decomposition

of A in terms of the generators S =
(

0 −1
1 0

)
and T =

(
1 1
1 0

)
of Γ.

Without loss of generality, we assume that θ is in the fundamental domain D.

This implies that the imaginary part of θ is bigger than
√

3/2 and therefore

|τ | < e−π
√

3 ≈ 0.00433342.

The second property given in Proposition 2.5 implies that φ(u+2, 0, θ) = φ(u, 0, θ),

hence we pick u with the property 0 < u < 2. We use the first M terms in the

infinite product to approximate φ(u, 0, θ) and the corresponding error is

E(M) =

∣∣∣∣∣
∞∏

m=M+1

(1− τm+u)(1− τm−u)

∣∣∣∣∣ .
Proposition 2.7 implies that

e2B(M−2) > E(M) > e−2B(M−2).

In our computations, we want to work with values of φ(u, 0, θ) which are accurate

at least 500 decimal places. If we pick M = 220 then

E(M) ≈ 1

with error less than 10−500. Therefore it is enough to use the first 220 terms for the

required precision.
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C H A P T E R 3

SCHOOF’S ALGORITHM

In this chapter, we give a summary of the algorithm which was used by Schoof

to heuristically compute class numbers of real cyclotomic fields [7]. We state and

rewrite all necessary steps in Schoof’s paper in such a way that the elliptic curve

analogue will be easy to explain. The algorithm we give here is slower than the

original since we disregard a nice property of cyclotomic units which is not available

for the elliptic units.

3.1 Cyclotomic Units

Let p be an odd prime then the p-th real cyclotomic field is given by Q(ζp+ζ−1
p ).

As we have shown in Section 2.2, it is the ray class field of Q for the modulus

(p) = pZ. Therefore we have Q(p) = Q(ζp + ζ−1
p ) with Galois group

GQ(p)
∼= IQ(p)/PQ,1(p)

by the class field theory. Observe that any ideal class in this quotient can be

represented by [mZ] where m is an integer relatively prime to p. Moreover two

ideals classes [mZ] and [m′Z] are identical if only if m ≡ ±m′ (mod p). This

implies that

GQ(p)
∼= (Z/pZ)∗/{±1}
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which is cyclic of order (p − 1)/2. Let m be an element of (Z/pZ)∗/{±1}. The

action of the corresponding element in the Galois group is given by

ζp + ζ−1
p 7−→ ζmp + ζ−mp

due to Artin map. Let g be a primitive root modulo p. Then the corresponding

element σg in the Galois group generates the cyclic group GQ(p)
. Now we are ready

to define cyclotomic units. The group of cyclotomic units , denoted by C, is the

multiplicative Z[GQ(p)
]-module generated by the unit

ηg =
ζgp − ζ−gp
ζp − ζ−1

p

where g is a primitive root modulo p. Observe that the group C does not depend

on the choice g.

Lemma 3.1 The group of cylotomic units C contains µQ = {±1}, and we have an

isomorphism

Z[GQ(p)
]/(NGQ(p)

) ∼= C/µQ

where the GQ(p)
-norm map is defined by

NGQ(p)
:=

∑
σ∈GQ(p)

σ ∈ Z[GQ(p)
].

Proof. Let g be a primitive root modulo p. The Galois group GQ(p)
is cyclic of

order n = (p − 1)/2 and it is generated by the Artin symbol σg. The GQ(p)
-norm

of ηg is given by

NGQ(p)
(ηg) =

n−1∏
n=0

σig(ηg) =
n−1∏
n=0

ζg
(i+1)

p − ζ−g(i+1)

p

ζg
i

p − ζ−g
i

p

and we obtain

NGQ(p)
(ηg) =

ζg
n

p − ζ−g
n

p

ζp − ζ−1
p
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by cancelling the repeating terms. Since g is a primitive root modulo p, we have

gn ≡ −1 (mod p). It follows that NGQ(p)
(ηg) = −1 is a cyclotomic unit.

Now let us consider the GQ(p)
-homomorphism

Z[GQ(p)
] −→ C/µQ

given by ϕ 7→ ηϕg . The element ϕ is in the kernel of this map if only if it is a

multiple of NGQ(p)
. Therefore

Z[GQ(p)
]/(NGQ(p)

) ∼= C/µQ

as we have expected. �

Let us define the quotient group

BQ(p)
:= O∗Q(p)

/C (3.1)

which is a multiplicative Z[Q(p)]-module. It is a well-known fact that the order of

BQ(p)
is equal to the class number of Q(p). In fact we have something stronger.

Theorem 3.2 Let H be a subgroup of GQ(p)
. Then we have

#Cl(QH
(p)) = [(O∗Q(p)

)H : CH ].

Proof. A classical proof of this fact for H = {1} can be found in [10, Theorem

8.2]. The more general result will follow, if the real cyclotomic field in the theorem

is changed with QH
(p). However we follow Stark and give an alternative proof using

the class number formula for s = 0. Our purpose is to give a motivation for the

analogue of this theorem in the elliptic case.

For the field QH
(p), the class number formula [8, p. 200] reads

#Cl(QH
(p))Reg

(
(O∗Q(p)

)H
)

=
∏
χ 6=1

L′(0, χ)
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where the product runs over nontrivial characters of Gal(QH
(p)/Q). Let e be the

order of the subgroup H and suppose that #GQ(p)
= (p − 1)/2 = eẽ. The Galois

group Gal(QH
(p)/Q) is isomorphic to GQ(p)

/H and it has order ẽ. Indeed we have

Gal(QH
(p)/Q) = {σig|QH

(p)
: 0 ≤ i ≤ ẽ− 1}

which is obtained by restricting elements of GQ(p)
to the subfield QH

(p). Each non-

trivial character has conductor p and therefore is primitive. By [8, Theorem 2], we

have

L′(0, χ) = −1

2

ẽ−1∑
i=1

χ(σig) log |NH(ξ(i))|

where NH =
∑

τ∈H τ is the H-norm and

ξ(i) = (1− ζgip )(1− ζ−gip )

is an element in Q(p). Observe that log |ξ(i)| = 2 log |1− ζgip |. We want to use the

theory of group determinants. For this purpose, let us define

f : σig 7−→ log |NH(1− ζgip ))|

a function of Gal(QH
(p)/Q). Now we have

#Cl(QH
(p))Reg

(
(O∗Q(p)

)H
)

=
∏
χ 6=1

L′(0, χ)

= ±
∏
χ 6=1

ẽ−1∑
i=1

χ(σig)f(σi)

= ± det
[
f(σi−jg )− f(σig)

]
i,j 6=0

where the last equality follows from [10, Lemma 5.26]. It is easy to see that

f(σi−jg )− f(σig) = log

∣∣∣∣∣NH

(
1− ζgi−jp

1− ζgip

)∣∣∣∣∣
20



and therefore the above determinant is equal to Reg(CH), the regulator of cyclo-

tomic units in QH
(p). We have

#Cl(QH
(p))Reg

(
(O∗Q(p)

)H
)

= Reg(CH)

and it follows that CH is of finite index in the full unit group QH
(p) and this index

is exactly the class number of QH
(p). �

3.2 Galois Module BQ(p)

Both groups BQ(p)
and Cl(Q(p)) are finite Z[GQ(p)

]-modules and hence admit

Jordan-Hölder filtration with simple factors. Let B and C be the submodules of

BQ(p)
and Cl(Q(p)), respectively, all of whose simple Jordan-Hölder factors have

some fixed order q = lf . It turns out that they have the same number of elements

as well. I thank René Schoof for his useful remark for this fact. Before giving his

explanation, we need to state the following result.

Proposition 3.3 Let H be a subgroup of GQ(p)
. Then the sequence of H-invariants

0 −→ CH −→ O∗Q(p)

H −→ BH
Q(p)
−→ 0

is exact. In particular BG
Q(p)

= 0.

Proof. See Schoof [7, Proposition 5.1 (i)]. �

Each submodule B or C is the product of the Jordan-Hölder factors of degree

d, where d runs over the divisors of (p − 1)/2 for which q is the smallest power of

l that is congruent to 1 modulo d. Combining Theorem 3.2 with Proposition 3.3,

we obtain

#Cl(QH
(p)) = #BH

Q(p)
.
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The statement #B = #C now follows from the fact that the degree d part of

Cl(Q(p)) (or BQ(p)
) is precisely the part that appears in the subfield of degree

d = #Gal(QH
(p)/Q),

but not in any proper subfield. This enables us to work with BQ(p)
instead of

Cl(Q(p)) in order to investigate the class number of Q(p).

It is difficult in general to predict which simple Jordan-Hölder factors the module

BQ(p)
admit. However we have the following general result.

Proposition 3.4 Let p > 2 be a prime. The module BQ(p)
does not admit any

simple Jordan-Hölder factors of degree d = 1. In particular, it does not admit any

such factors of order q = 2.

Proof. By Proposition 3.3, the GQ(p)
-invariants of BQ(p)

and hence of its l-part

BQ(p)
⊗ Zl is zero. This implies that (BQ(p)

⊗ Zl)/(X − 1)(BQ(p)
⊗ Zl) is zero and

by Nakayama’s Lemma the module

(BQ(p)
⊗ Zl)/(X

la − 1)(BQ(p)
⊗ Zl)

is also zero. In other words Bϕ = 0 for ϕ = X − 1.

The degree d of a simple Jordan-Hölder factor divides q − 1. This implies that

if q is equal to 2 then d must be 1. Hence BQ(p)
does not admit any Jordan-Hölder

factor of order q = 2. �

The advantage of working with the module BQ(p)
instead of Cl(Q(p)) is that we

can understand Jordan-Hölder factors of BQ(p)
in an easier fashion. Before giving

the main tool to investigate these factors, we first prove a lemma.

Lemma 3.5 Let M be a power of a prime l and F = Q(p)(ζ2M). The kernel of the

map

O∗Q(p)
/(O∗Q(p)

)M −→ F ∗/(F ∗)M
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is trivial if l is odd. It has order 2 and is generated by −1 if l = 2

Proof. Let ∆ = Gal(F/Q(p)) and τ ∈ ∆ given by

τ : ζ2M −→ ζ−1
2M .

It is easy to see that τ corresponds to the complex conjugation. Suppose x is in

the kernel of the map in the lemma. Then x = yM for some y ∈ O∗F . Without loss

of generality we can assume that y is real. In other words, we have

τ(y) = y.

Let σ be an arbitrary element of ∆. Since σ fixes elements in Q(p), we have σ(x) = x

and therefore σ(y)M = yM . This implies that σ(y)/y is an M -th root of unity and

we have σ(y) = yζ iM for some integer i. Applying στ and τσ to the element y we

obtain

στ(y) = σ(y) = yζ iM

and

τσ(y) = τ(yζ iM) = yζ−iM

respectively. The Galois group ∆ is Abelian by class field theory so τ and σ

commute with each other and it follows that [στ(y)]2 = y2. Now we have

σ(y2) = y2

since στ(y) = σ(y). The unit y2 belongs to Q(p) since it is invariant under ∆. If M

is odd then using the facts that yM , y2 ∈ O∗Q(p)
, we get y ∈ O∗Q(p)

. Therefore the

kernel of the map in the lemma is trivial.

If M is even, then y generates a quadratic extension of Q(p) lying in F =

Q(p)(ζ2M). Such an extension correspond to a quadratic extensions of Q lying in
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Q(ζ2M). There are three such fields, namely Q(
√

2),Q(
√
i) and Q(

√
−2). This

implies that

y2 ∈ 〈−1, 2〉Q∗(p)
2

by Kummer theory. Since y is a unit, this implies that y2 = ±u2 for some u ∈ O∗Q(p)
.

We have x = yM = uM unless x = −1. On the other hand −1 is the M -th power

of ζ2M but it is not even a square in the real cyclotomic field Q(p). Therefore it is

the only non-trivial element in the kernel of the map in the lemma. This finishes

the proof. �

This lemma enables us to identify the group O∗Q(p)
/µQ(O∗Q(p)

)M with a subgroup

of F ∗/(F ∗)M . The field F = Q(p)(ζ2M) contains the M -th roots of unity. Therefore

we have

Gal
(
F
(

M

√
O∗Q(p)

)
/F
)
∼= HomZ

(
O∗Q(p)

µQ

, µM

)
(3.2)

by Kummer theory. Given an Artin symbol τR in this Galois group for a degree

one prime ideal R of F , let us denote the corresponding Z-homomorphism by fR.

Let u be an element of O∗Q(p)
. Then we have

fR(u) =
τR( M
√
u)

M
√
u
∈ µM

by Kummer theory.

Now we are ready to give the main tool to investigate the Jordan-Hölder factors

of BQ(p)
. Let R be the group ring (Z/MZ)[GQ(p)

]. By definition BQ(p)
= O∗Q(p)

/C

where the group of cyclotomic units C is generated by the unit ηg = (ζp − ζ−1
p )σg−1

as a multiplicative (Z/MZ)[GQ(p)
]-module.

Theorem 3.6 Let M > 1 be a power of a prime l and let I denote the augmen-

tation ideal of the ring R = (Z/MZ)[GQ(p)
]. There is a natural isomorphism of
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GKp-modules

BQ(p)
[M ]⊥ = I/{fR(ηg) : R ∈ S}

where S denotes the set of unramified prime ideals R of F = Q(p)(ζ2M) of degree

one.

Proof. In order to understand the structure of BQ(p)
[M ]⊥ we start with the exact

sequence

0 −→ C/µQ −→ O∗Q(p)
/µQ −→ BQ(p)

−→ 0

which is obtained by the definition of BQ(p)
together with the fact that C contains

µQ = {±1}. Let us consider two copies of this sequence

0 −−−→ C/µQ −−−→ O∗Q(p)
/µQ −−−→ BQ(p)

−−−→ 0yM yM yM
0 −−−→ C/µQ −−−→ O∗Q(p)

/µQ −−−→ BQ(p)
−−−→ 0

where the vertical maps are given by M -power map. Applying the snake lemma

gives us the exact sequence

0 −→ BQ(p)
[M ] −→ C

µQCM
−→

O∗Q(p)

µQ(O∗Q(p)
)M

.

Let A be a fintie R-module. The dual A⊥ is equal to HomR(A,R) by definition and

the functor ⊥ is exact by Proposition 2.1 (2). Applying this functor to the above

sequence we obtain(
O∗Q(p)

µQ(O∗Q(p)
)M

)⊥
−→

(
C

µQCM

)⊥
−→

(
BQ(p)

[M ]
)⊥
−→ 0. (3.3)

Consider the R-homomorphism from
(
C/µQCM

)⊥
to R given by f 7→ f(ηg). The

image of this map lies in the augmentation ideal I of R since f(ηg) is annihilated

by the NGQ(p)
. The unit ηg generates C and f(ηg) = 0 only if f is trivial. This

implies that the above map is injective. It follows that(
C

µQCM

)⊥
∼= I
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since the orders of these two groups are equal. Therefore the exact sequence (3.3)

gives us

BQ(p)
[M ]⊥ = I/

{
f(ηg) : f ∈ D⊥

}
where D =

O∗Q(p)

µQ(O∗Q(p)
)M

.

Now we explain the correspondence between D⊥ and the Galois group of the

Kummer extension given by (3.2). It is by definition Ddual = HomZ(D,Q/Z) and

Proposition 2.1 (1) gives us an explicit isomorphism between D⊥ and Ddual. We

have further isomorphisms as follows:

Ddual = HomZ

(
O∗Q(p)

µQ(O∗Q(p)
)M

,Q/Z

)
∼= HomZ

(
O∗Q(p)

µQ

,Z/MZ

)

∼= HomZ

(
O∗Q(p)

µQ

, µM

)
∼= Gal

(
F
(

M

√
O∗Q(p)

)
/F
)

Here the first isomorphism is natural and the second one depends on a choice of

M -th root of unity. The last isomorphism is given by (3.2). Every element in

the Galois group of this Kummer extension is equal to τR, the Artin symbol of

an unramified prime ideal R ⊂ F of degree one. Let us denote the corresponding

element in D⊥ by fR. Therefore we have

BQ(p)
[M ]⊥ = I/{fR(ηg) : R ∈ S}

as we have stated in the theorem. �

Now we give the construction of elements

fR(ηg) =
∑

σ∈GQ(p)

cσσ ∈ I

explicitly. In order to do this we need to determine the coefficients cσ ∈ Z/MZ.

Suppose that fR and τR correspond to each other under the identification of The-
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orem 3.6. We have (
M

√
σ(ηg)

)τR
≡
(

M

√
σ(ηg)

)r
(mod R)

by definition of the Artin symbol. On the other hand, Kummer theory implies that

fR

(
M

√
σ(ηg)

)
=

(
M

√
σ(ηg)

)τR−1

and it is an M -th root of unity in F = Kp(ζ2M). Combining these two fact, we see

that (
M

√
σ(ηg)

)τR−1

≡
(

M

√
σ(ηg)

)(r−1)

≡ σ(ηg)
(r−1)/M (mod R)

and it is an M -th root of unity in Z/rZ. Let us fix a primitive M -th root of unity

ζM in F = Kp(ζ2M). The coefficients cσ can be uniquely determined from the

equation

σ(ηg)
(r−1)/M ≡ ζcσM (mod R).

3.3 Schoof’s Algorithm

The elements fR(ηg) given in the previous section can be computed easily due

to two reasons. First we can easily obtain degree one prime ideals R of F by using

conditions from class field theory, namely r ≡ 1 (mod 2M) and r ≡ ±1 (mod p).

Secondly we have an algebraic expression for ηg which enables us to find

σ(ηg) (mod R)

easily for any σ ∈ GQ(p)
.

Let R be an unramified prime ideal of F = Q(p)(ζ2M) of degree one with un-

derlying primes r ⊂ Q(p) and r ⊂ Q. In order to compute fR(ηg) we need to make
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choices for elements ηg and ζM modulo R. Consider the following diagram:

F R

|

Q(p) r

|

Q r

If we change R lying above r, then it corresponds to a different choice of ζM .

Therefore the elements fR(ηg) differ from each other by a unit of Z/MZ for a

different choice of R over a fixed r. Changing r over r is equivalent to change ηg

with one of its conjugates. Such a change corresponds to multiplying fR(ηg) with

a power of σg, a unit in (Z/MZ)[GQ(p)
]. Therefore the ideal generated by elements

fR(ηg) only depend on the rational prime r. Now we formulate previous results in

terms of polynomials. We have an isomorphism

(Z/MZ)[GQ(p)
] ∼= (Z/MZ)[X]/(X(p−1)/2 − 1)

obtained by σg 7→ X. Let fr(X) denote the image of fR(ηg) under this isomorphism

which is well-defined up to a unit. We denote the augmentation ideal of both rings

by I.

Theorem 3.7 Using the notation above, we have that

BQ(p)
[M ]⊥ = I/〈fr(X) : r ∈ SM〉

where SM is the set of primes satisfying r ≡ ±1 (mod p) and r ≡ 1 (mod 2M).

Proof. This easily follows from Theorem 3.6. �

Now we are ready to determine if BQ(p)
admits a Jordan-Hölder factor of order

q = lf or not. Any finite R-module is Jordan-Hölder isomorphic to its dual and we
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have

B⊥Q(p)
=
∏
l

∏
ϕ

(B⊥Q(p)
)ϕ

by the Jordan-Hölder filtration given in Section 2.1. The irreducible polynomials ϕ

are obtained by factoring Xm− 1 in l-adic polynomial ring Zl[X] where m is given

by (p− 1)/2 = lam with gcd(m, l) = 1.

3.3.1 Step 1

In the first step we check if B⊥Q(p)
admits any Jordan-Hölder factors of order q

at all. Fix p and q = lf . The possible degree d of these factors all divide

δ = gcd ((p− 1)/2, q − 1) .

Proposition 3.4 implies that the first step is trivial if δ = 1. Otherwise we compute

fr(X) (mod Xδ − 1) (3.4)

for several primes r with M = l.

Computing the greatest common divisors of these elements recursively, we look

for a common divisor ϕ 6= X − 1 of degree exactly f . If we guarantee that there is

no such factor, we stop. Then using Theorem 3.7, we conclude that

BQ(p)
[l]⊥

ϕBQ(p)
[l]⊥

is zero for all ϕ 6= X − 1 of degree f . This follows that B⊥Q(p)
, and therefore BQ(p)

,

does not admit any Jordan-Hölder factors of order q.

If there is a repeating factor ϕ|Xδ−1
X−1

with deg(ϕ) = f (possibly more than one)

then we believe that BQ(p)
admits a non-trivial Jordan-Hölder factor of order q and

we proceed to the second step of the algorithm.
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3.3.2 Step 2

In this step we determine what the structure of (B⊥Q(p)
)ϕ could be for each ϕ

from Step 1. We first find a lift of ϕ, denoted by ϕM , to an irreducible divisor of

Xq−1 − 1 ∈ (Z/MZ)[X] for M ∈ {l, l2, l3, ...}. Theorem 3.7 gives us

(BQ(p)
[M ]⊥)ϕ ∼= R/〈ϕM(X la), fr(X) : r ∈ SM〉

since ϕ-part of the augmentation ideal I is isomorphic to the ϕ-part of the ring

R = (Z/MZ)[G] itself. We compute

fr(X) (mod ϕM(X la))

for several values of r ∈ SM . For each M , we heuristically find the ideal I(M) =

〈fr(X) : r ∈ SM〉 by adding more generators until it stabilizes. Observe that

Chebotarev’s density theorem implies that the ideal I(M) is obtained after finitely

many steps. For M big enough the orders of the quotients R/I(M) must stabilize

since (B⊥Q(p)
)ϕ is finite. Suppose M0 is such a number, i.e.

∣∣R/I(M0)
∣∣ =

∣∣R/I(lM0)
∣∣ .

Then M0 annihilates (
BQ(p)

[lM0]⊥
)
ϕ

=
(Z/lM0Z)[X]

((ϕ(X la) + I(lM0))

and by Nakayama’s Lemma, M0 annihilates (B⊥Q(p)
)ϕ. We have an explicit ideal

I(M0) ⊂ R and a surjective homomorphism

R/I(M0) � (B⊥Q(p)
)ϕ

and in the last step we attempt to prove that this map is an isomorphism.

3.3.3 Step 3

Let ϕ be as in Step 2. Let M = M0 be the power of l that annihilates (B⊥Q(p)
)ϕ

from Step 2. Proposition 2.2 (1) implies that (BQ(p)
)ϕ is Jordan-Hölder isomorphic
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to its dual and therefore it is annihilated by M as well. Observe that ϕ part of the

ring R = (Z/MZ)[G] is given by

Rϕ = (Z/MZ)[X]/(ϕM(X la)).

Consider the exact sequence

0 −→ BQ(p)
[M ] −→ C

µQCM
−→ C

µQ

(
O∗Q(p)

)M −→ 0

where the first homomorphism is given by u 7→ uM . Recall that the term in the

middle is isomorphic to the augmentation ideal I of R. The ϕ-part of I is equal to

the ϕ-part of the ring R itself since ϕ 6= X − 1. Since M annihilates (BQ(p)
)ϕ, we

obtain the exact sequence

0 −→ (BQ(p)
)ϕ −→ Rϕ −→ Cϕ −→ 0

of Rϕ-modules where C = C/µQ(O∗Q(p)
)M .

We use Proposition 2.2 (4) with J = I(M). By Step 2, the first condition is

already satisfied. Now we must show that AnnR(J) annihilates Cϕ. It is easy to

see that this happens if and only if

X(p−1)/2 − 1

ϕM(X la)
AnnR(J)

annihilates C. In order to check this, we first find a finite set of generators z(X)

of AnnR(J). For each z(X), we compute the cyclotomic unit

ηz := η

„
X(p−1)/2−1

ϕM (Xl
a

)
z(X)

«
g (3.5)

and show that it is an M -th power of a unit u ∈ O∗Q(p)
. Observe that the norm map

(X(p−1)/2 − 1)/(Xdla − 1) divides the power of ηg in equation (3.5). It follows that

the unit ηz is an element in the unique subextension L of Q(p) which has degree

dla over Q.
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Let us denote by ui the embedding of units σig(ηz) for 1 ≤ i ≤ dla into R with

high accuracy. Suppose that M is odd so that taking M -th root is well-defined in

R. Then we compute the polynomial

G(t) =
dla∏
i=1

(t− M
√
ui)

and check if its coefficients are very close to integers. For M even, there are sign

ambiguities since square root of an element is not well-defined in R. By switching

between ±ui, we find G(t) with almost integer coefficients. If the approximations

are sufficiently accurate, this proves that ηz is an M -th power in Q(p). Therefore

the surjection given at the end of Step 2 is actually an isomorphism. The struc-

ture of (B⊥Q(p)
)ϕ, and therefore its order, can be obtained explicitly by using this

isomorphism.

3.3.4 A Note on Schoof’s Original Algorithm

The algorithm we give here is slower than the original one since we disregard a

nice property of cyclotomic units. The most time consuming part of the algorithm

is to find polynomials fr(X) (mod Xδ − 1) in Step 1. In the original algorithm,

Schoof computes such polynomials by using the expression

δ−1∑
i=0

logr

 ∏
k≡j (mod δ)

(ζg
k − ζ−gk)

 ·Xj

where logr(x) denotes the element i ∈ Z/MZ for which ζ iM ≡ x(r−1)/M (mod R).

The advantage of doing this is that we can first compute the products inside

and their logarithms afterwards. This is much faster than computing

fr(X) =
∑

σ∈GQ(p)

cσσ
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by finding each coefficient cσ ∈ GQ(p)
separately and then reducing the polynomial

modulo Xδ − 1. We disregard this property in our summary of Schoof’s algorithm

since we can not generalize it to the elliptic case, due to the lack of algebraic

expressions for elliptic units.

3.4 Heuristics for the Cyclotomic Case

In this section, we estimate the behavior of Jordan-Hölder factors of the ideal

class group Cl(Q(p)) that have very large order. A simple Jordan-Hölder factor of

the group ring Z[GQ(p)
] of order q = lf and degree d > 1 is a residue field of the

unique quotient ring of Z[GQ(p)
] that is isomorphic to Z[X]/(Xd − 1). The ring

Z[X]/(Xd − 1) admits φ(d)/f residue fields of order q. Here φ is the Euler’s phi-

function. The number of residue fields of order q of the ring Z[GQ(p)
] is obtained

by

np,q =
∑
d

φ(d)

f

where d 6= 1 runs through divisors of δ = gcd((p− 1)/2, q − 1) for which the order

of p modulo d is f . According to Cohen-Lenstra Heuristics, the probability that

the class group of Q(p) does not admit any simple Jordan-Hölder factor of order q

at all is at least

HQ(p)
(p, q) =

(∏
k≥2

1− q−k
)np,q

.

Schoof’s main table contains the numbers h̃Q(p)
, the order of the subgroup of

Cl(Q(p)) that admit only Jordan-Hölder factors of order q < Q = 80, 000, for

p < P = 10, 000. The numbers h̃Q(p)
are all equal to the class numbers of the
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corresponding fields with probability at least

PQ =
∏
p<P

∏
q>Q

HQ(p)
(p, q).

The calculations of Schoof show that − log(PQ(p)
) < cπ(P )

Q
where c = 1.295730... is

a constant and π(P ) = 1228 is the number of odd primes less than P [7, Section

6]. Therefore

PQ > 0.980307...

which implies that the table of h̃Q(p)
is a table of class numbers with probability at

least 98%.

3.5 Results

In this section we give a summary of Schoof’s results [7]. Recall that we denote

by h̃Q(p)
, the order of the largest submodule of BQ(p)

that admits a Jordan-Hölder

factor filtration with simple factors of order q < 80, 000. There are 1228 odd primes

p less than 10, 000. For 925 of these, Schoof shows that h̃Q(p)
= 1. The remaining

303 primes p are listed in the main table, at the end of Schoof’s paper. This table

gives h̃Q(p)
as a product of orders q of the contributing simple Jordan-Hölder factors

together with the degree d of each factor.

It is not difficult to derive the Galois module structure of BQ(p)
from the tables.

Most of the simple Jordan-Hölder factors of BQ(p)
occur with multiplicity 1 in which

case the structure of (BQ(p)
)ϕ is obvious. There are extra tables for the exceptional

cases where the multiplicity is non-trivial. By Proposition 2.2 (3), the module

(BQ(p)
)ϕ is isomorphic to (B⊥Q(p)

)ϕ if the length of (B⊥Q(p)
)ϕ is at most two. For

those factors with the length bigger than 2, there are 6 such cases, Schoof gives the

structure of (BQ(p)
)ϕ separately.
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Even though Cl(Q(p)) and BQ(p)
have the same number of elements, it is not

true in general that they are isomorphic as Galois modules. Indeed for p = 7687

and ϕ = X2 + X + 1 ∈ Z2[X], the ϕ-part of the Cl(Q(p)) is annihilated by 2,

whereas ϕ-part of BQ(p)
is not. However, cohomology groups of Cl(Q(p)) and BQ(p)

are isomorphic.

Proposition 3.8 Let H be a subgroup of GQ(p)
. Then there are canonical iso-

morphisms Ĥ i(H,Cl(Q(p))) ∼= Ĥ i+2(H,BQ(p)
) for each i ∈ Z. In particular, for

each choice of a generator of H there are natural isomorphisms Ĥ i(H,Cl(Q(p))) ∼=

Ĥ i(H,BQ(p)
) for each i ∈ Z.

Proof. See Schoof [7, Proposition 5.1 (ii)]. �
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C H A P T E R 4

ELLIPTIC ANALOGUE OF SCHOOF’S ALGORITHM

In this chapter, we describe the analogue of Schoof’s algorithm for ray class

fields Kp of imaginary quadratic fields. We call it elliptic analogue since Kp is

related to a CM elliptic curve, in the same way Q(p) is related to a circle. This

relation is explained in Section 2.2.

In the first section, we construct elliptic units, and give the Galois action on

them using Shimura’s reciprocity law. In the second section we explain how to

reformulate the results in the cyclotomic case so that we obtain their elliptic ana-

logues. In the third section we explain our algorithm and give an example. In

the last section we apply Cohen-Lenstra heuristics to our case and argue that each

table we give in Chapter 5 is a table of class numbers with probability at least 96%.

4.1 Elliptic Units

Let K be an imaginary quadratic field with class number one and p ⊂ OK be a

degree one prime ideal of norm p not dividing 6dK . In this section, we first give the

structure of the Galois group GKp = Gal(Kp/K). In the second part, we explain

how to compute Stark’s elliptic units by extracting the 12p-th root of unity. At the
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end, we define the group of elliptic units E and show that its index in the full unit

group of Kp is equal to the class number of Kp.

We start with the complete list of imaginary quadratic fields with class number

one.

Theorem 4.1 There are only 9 imaginary quadratic fields with class number one.

The discriminant dK of these fields are given by

{−3,−4,−7,−8,−11,−19,−43,−67,−163}.

Proof. See Stark [9]. �

We fix some notation first. Define

w :=


√
dK/2 if dK = −4,−8

(
√
dK + 1)/2 otherwise

so that OK = Z[w] for each K. Also define wp to be the smallest non-negative

integer which satisfies the congruence

w ≡ wp (mod p).

It is easy to see that 0 ≤ wp ≤ p − 1. We fix a basis [p, wp − w] for p where p is

the rational prime lying under p. Observe that the imaginary part of the quotient

p/(wp − w) is positive. This fact will be useful later when we apply Shimura’s

reciprocity law.

4.1.1 The Galois Group of Kp/K

The ray class field Kp is an Abelian extension of K with Galois group isomorphic

to IK(p)/PK,1(p) by class field theory. Set GKp = Gal(Kp/K). The map

ψ : xw + y 7−→ xwp + y
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gives a surjective homomorphism from OK onto Fp with Ker(ψ) = p. The unit

group of OK is finite and consists of roots of unity µK . The number of elements in

each µK is given by

WK :=


6 if dK = −3

4 if dK = −4

2 otherwise.

Since any ideal in OK is principal, the group IK(p) of all fractional OK-ideals

relatively prime to p is

IK(p) = {(α) : α ∈ K,α 6≡ 0 (mod p)}.

Observe that two elements generate the same ideal only if they differ by a unit.

Let ζ be a root of unity in OK generating µK . We have ζ(WK/2) = −1. It follows

that

ψ : µK −→ F∗p

is an injection and we can construct a well-defined map

ψ̂ : IK(p) −→ F∗p/ψ(µK)

(xw + y) 7−→ xwp + y

It is easy to show that ψ̂ is a homomorphism and we have

Ker
(
ψ̂
)

= {(α) : α ≡ ζ (mod p), ζ ∈ µK}

= {(α) : α ≡ 1 (mod p)}

= PK,1(p).

Therefore the Galois group of Kp/K is given by

GKp
∼= F∗p/ψ(µK)
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which is cyclic and has order (p − 1)/WK . The degree of the extension Kp/K is

equal to (p− 1)/WK as well, since it is equal to the order of the Galois group GKp .

Let m be an integer relatively prime to p. Consider the class in IK(p)/PK,1(p)

involving the ideal mOK . We denote the corresponding element in GKp by σm.

Suppose that the ideal q is generated by α ∈ OK and α ≡ m (mod p). Then we

have σq = σm where σq is the Artin symbol.

4.1.2 Extracting 12p-th Root of Unity

The ray class field Kp/K is totally ramified above p and there is a unique prime

P ⊂ OKp lying above p. We use the basis [p, wp−w] for p as in the previous section.

Define

θ :=
p

wp − p

which is an element in the upper half plane. The modular function φ(u, v, z) is

defined in Section 2.3.

Theorem 4.2 Let a be an integer relatively prime to p. There exists π(a) ∈ OKp

of norm p such that [
φ

(
a

p
, 0, θ

)WK

]12p

= π(a)12p.

The element π(m) generates the unique prime ideal P ⊂ OKp lying above p. The

quotient π(a)
π(1)

is the WK-th power of a unit in OKp and

σm

(
π(a)

π(1)

)
=
π(ma)

π(m)

for all σm ∈ GKp.

Proof. See Stark [8, p. 226 and p. 229] �

In order to compute the units mentioned in this theorem, we start by applying

Shimura’s reciprocity law (Theorem 2.6) to the element φ(a/p, 0, θ).
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Let q = (xqw + yq) be a degree one prime ideal in OK of norm q not dividing

pdK . We denote conjugate of this prime by q̄ = (xq̄w + yq̄) where we can take

xq̄ = xq. This implies that

yq̄ =

 −yq if dK = −4,−8

−(xq + yq) otherwise.

We take (xq̄w + yq̄)[p, wp − w] as a basis for q̄p and so B is defined by

B

(
p

wp − w

)
= (xq̄w + yq̄)

(
p

wp − w

)
.

Comparing the coefficients of w, one can obtain

B =

 xqωp + yq̄ −pxq

∗ −(xqwp + yq)

 ,
a matrix of determinant q, and then

qB−1 =

 −(xqwp + yq) pxq

∗ xqwp + yq̄

 .
We denote by σq, the Artin symbol of q in the Galois group Gal(K(12p2)/K). The

function φ(a/p, 0, z) is a modular function of level 12p2. Shimura’s reciprocity law

(Theorem 2.6) implies that φ (a/p, 0, θ) is an element of the ray class field K(12p2)

and

φ

(
a

p
, 0, θ

)σq

= φ

((
a

p
, 0

)
qB−1, θ

)
= φ

(
−a(xqwp + yq)

p
, axq, θ

)
= φ

(
−a(xqwp + yq)

p
, 0, θ

)(
−eπi

“
−a(xqwp+yq)

p

”)axq

= φ

(
−a(xqwp + yq)

p
, 0, θ

)(
ζp
−xq(xqwp+yq)

2

)a2

(−1)axq . (4.1)
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The action of σq on the roots of unity is given by ζσq = ζq. Theorem 4.2 implies

that φ (a/p, 0, θ)WK is in Kp up to a 12p-th root of unity. Suppose that

q ≡ 1 (mod 12p).

This implies that σq acts trivially on the 12p-th root of unity part and[
φ
(
a
p
, 0, θ

)WK

]σq

φ
(
a
p
, 0, θ

)WK
=

φ
(
a
p
, 0, θ

)σq

φ
(
a
p
, 0, θ

)
WK

is in Kp. Moreover this element is the WK-th power of a unit in the same field by

Theorem 4.2. The field K contains the WK-th roots of unity. This allows us to

take WK-th root of elements within the field Kp ⊃ K. Therefore

φ
(
a
p
, 0, θ

)σq

φ
(
a
p
, 0, θ

) = φ

(
a

p
, 0, θ

)σq−1

is in O∗Kp
.

Let m be an integer relatively prime to p. We can pick a prime ideal q =

(xqw + yq) ⊂ OK of norm q ≡ 1 (mod 12p) so that −(xqw + yq) ≡ m (mod p) by

the Chebotarev’s density theorem. The Artin symbol σq of the prime ideal q is an

element in Gal(K(12p2)/K) such that σq|K(ζ12p) is the identity and σq|Kp
= σm. The

last equality means that the ideals q and mOK are in the same class in the ray

class group IK(p)/PK,1(p). Using the equation (4.1) with the fact φ (a/p, 0, θ)σq−1

is in O∗Kp
, we find that

φ

(
a

p
, 0, θ

)σq−1

=
φ
(
am
p
, 0, θ

)
φ
(
a
p
, 0, θ

) (ζpk(m)
)a2

(−1)axq (4.2)

is in O∗Kp
where

k(m) := xqm/2 (mod p).
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The integer k(m) modulo p is unique since Kp does not contain p-th roots of unity.

We define the elliptic unit

εm :=
φ
(

1
p
, 0, θ

)σq−1

(−1)xq
=
φ
(
m
p
, 0, θ

)
φ
(

1
p
, 0, θ

) ζpk(m) ∈ O∗Kp

by choosing a = 1 and dropping (−1)xq in the equation (4.2).

Now we want to find the Galois conjugates of εm. Let g be a primitive root

modulo p. Then the Galois group GKp = Gal(Kp/K) is generated by σg. The

conjugate σig(εm) is equal to

φ
(
gim
p
, 0, θ

)
φ
(
gi

p
, 0, θ

)
up to a root of unity by Theorem 4.2. Consider the elements φ (a/p, 0, θ) in the

ray class field K(12p2) which are conjugates of each other. Let τi be an element in

Gal(K(12p2)/K) such that

τi : φ

(
1

p
, 0, θ

)
7−→ φ

(
gi

p
, 0, θ

)
.

The automorphisms τi and σq commute with each other and we have

τi(εm) =
φ
(
gi

p
, 0, θ

)σq−1

(−1)xq
=
φ
(
gim
p
, 0, θ

)
φ
(
gi

p
, 0, θ

) (ζpk(m)
)g2i

(−1)(gi−1)xq .

where the second equality follows from the equation (4.2). This shows that τi|Kp =

σig and

σig(εm) =
φ
(
gim
p
, 0, θ

)
φ
(
gi

p
, 0, θ

) (ζpk(m)
)g2i

(−1)(gi−1)xq .

Observe that if we use an odd primitive root g modulo p, we can neglect the power

of −1 since it becomes trivial for all values of i.
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Lemma 4.3 Let g be an odd primitive root modulo p. Let m be an integer relatively

prime to p. Then

σig(εm) =
φ
(
gim
p
, 0, θ

)
φ
(
gi

p
, 0, θ

) ζp
k(m)g2i

for all i.

Now we give some nice properties of the function k(m) which simplifies the

computation of elliptic units.

Lemma 4.4 Let g be an odd primitive root modulo p. Then

k(ga) = k(g)
(
1 + g2 + ...+ g2(a−1)

)
(mod p).

Proof. Observe that εg2 = εgσg(εg) by Lemma 4.3. Comparing the powers of the

p-th root of unity, one gets k(g2) = k(g)(1 + g2). The general result follows from

the fact

εga = εgσg(εg) · · ·σa−1
g (εg).

�

The following lemma gives us more freedom to compute k(g) by relaxing the

condition on the prime ideal q ⊂ OK .

Lemma 4.5 Let g be an odd primitive root modulo p. Let q = (xqw + yq) ⊂ OK

be a degree one prime ideal of norm q ≡ 1 (mod 12p) such that σq|Kp is not trivial.

Set m ≡ −(xqw + yq) (mod p). Then

k(g) =
g2 − 1

m2 − 1
k(m) (mod p)

where k(m) = (xqm)/2 (mod p).
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Proof. Since g is a primitive root modulo p, there exists an integer a such that

m = ga (mod p). By Lemma 4.4, we have

k(g) =
k(m)

(1 + g2 + ...+ g2(a−1))
(mod p).

Multiplying both numerator and denominator with g2 − 1, we get

k(g) =
g2 − 1

m2 − 1
k(m) (mod p).

�

4.1.3 Stark’s Elliptic Units

The group of elliptic units , denoted by E , is the multiplicative Z[GKp ]-module

generated by the unit

εg =
φ
(
g
p
, 0, θ

)
φ
(

1
p
, 0, θ

)ζpk(g) (4.3)

where g is a primitive root modulo p. Observe that the group E does not depend

on the choice of g.

Lemma 4.6 The group of elliptic units E contains µK, the unit group of OK, and

we have an isomorphism

Z[GKp ]/(NGKp
) ∼= E/µK

where the GKp-norm map is defined by

NGKp
:=

∑
σ∈GKp

σ ∈ Z[GKp ].

Proof. Let g be a primitive root modulo p. Without loss of generality let us assume

that g is odd. Consider the product

(p−1)/2∏
i=1

σig(εg) =

(p−1)/2∏
i=1

φ
(
gi+1

p
, 0, θ

)
φ
(
gi

p
, 0, θ

) ζp
k(g)(i+1)2 .
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It is easy to see that this product involves WK/2 copies of NGKp
(εg), the norm of

εg. The sum of the powers of ζp appearing in the above product is given by

(p−1)/2∑
i=0

k(g)(i+ 1)2 = k(g)
gp−1 − 1

g2 − 1

and it is congruent to zero modulo p. Therefore the power of the p-th root of unity

in the product is zero. Cancelling the repeating terms we obtain

(p−1)/2∏
i=0

σig(εg) =
φ
(
g(p−1)/2

p
, 0, θ

)
φ
(

1
p
, 0, θ

) .

Since g is odd, it is a primitive root not only modulo p but also modulo 2p. Therefore

we have g(p−1)/2 ≡ −1 (mod 2p). Finally we obtain

p−1∏
i=0

σig(εg) =
φ
(
−1
p
, 0, θ

)
φ
(

1
p
, 0, θ

) = −1,

using the fact that ϕ(u+1, 0, θ) = −ϕ(u, 0, θ). It follows that NGKp
(εg)

(WK/2) = −1

and µK is generated by the GKp-norm of εg, an elliptic unit. This shows that

µK ⊂ E .

Let us consider GKp-homomorphism

Z[GKp ] −→ E/µK

given by ϕ 7→ εϕg . The element ϕ is in the kernel if only if it is a multiple of NGKp
.

Therefore

Z[GKp ]/(NGKp
) ∼= E/µK .

�

Following the cyclotomic setup, see the equation (3.1), define

BKp := O∗Kp
/E

which is a multiplicative Z[GKp ]-module. It is a well-known fact that BKp is finite

and its order is equal to the class number of Kp. In fact we have something stronger.
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Theorem 4.7 Let H be a subgroup of GKp. Then we have

#Cl(KH
p ) = [(O∗Kp

)H : EH ].

Proof. This is a generalization of the Stark’s proof [8, p.229] for H = {1}. We

start with the class number formula which gives us

#Cl(KH
p )Reg

(
(O∗Kp

)H
)

=
∏
χ 6=1

L′(0, χ)

where the product runs over nontrivial characters of Gal(KH
p /K). Let e be the

order of the subgroup H and suppose that #GKp = (p− 1)/WK = eẽ. The Galois

group Gal(KH
p /K) is isomorphic to GKp/H. In fact we have

Gal(KH
p /K) = {σig|KH

p
: 0 ≤ i ≤ ẽ− 1}

where σg is a generator of GKp for some primitive root g modulo p. Each non-

trivial character χ has conductor p in the ray class group IK(p)/PK,1(p), which is

isomorphic to (Z/pZ)∗/ψ(µK), and therefore primitive. By [8, Theorem 2], we have

L′(0, χ) = − 1

WK

ẽ−1∑
i=1

χ(σig) log
(
|NH(π(gi))|2

)
where NH =

∑
τ∈H τ is the H-norm and π(gi) is given by Theorem 4.2. In order

to use the theory of group determinants, let us define

f : σig 7−→ log
(
|NH(π(gi))|2

)
a function of Gal(KH

p /K). Now we have

#Cl(KH
p )Reg

(
(O∗Kp

)H
)

=
∏
χ 6=1

L′(0, χ)

= ± 1

(WK)ẽ

∏
χ 6=1

ẽ−1∑
i=1

χ(σig)f(σig)

= ± 1

(WK)ẽ
det
[
f(σi−jg )− f(σig)

]
i,j 6=0
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by [10, Lemma 5.26]. It easy to see that

f(σi−jg )− f(σig) = log

(∣∣∣∣NH

(
π(gi−j)

π(gi)

)∣∣∣∣2
)
.

Both elements π(gi−j), π(gi) are of norm p and their quotient is an elliptic unit. In

fact we have

π(gi−j)

π(gi)
=
[
σig(ε−j)

]WK

by definition. Finally we obtain

#Cl(KH
p )Reg

(
(O∗Kp

)H
)

= ± det
[
2 log

∣∣NH

(
σi(ε−j)

)∣∣]
i,j 6=0

= Reg
(
EH
)

and it follows that the index of EH in the full unit group of KH
p is exactly the class

number of KH
p . �

4.2 Galois Module BKp

Similar to the real cyclotomic case, we want to work with BKp in order to

investigate the class number of Kp. We first give the analogue of Proposition 3.3

in the elliptic case.

Proposition 4.8 Let H be a subgroup of GKp. Then the sequence of H-invariants

0 −→ EH −→ O∗Kp

H −→ BH
Kp
−→ 0

is exact. In particular BG
Q(p)

= 0.

Proof. The proof is identical with Schoof’s proof for real cyclotomic fields except

one step. We need to show that εg, the generator of elliptic units, is congruent to

a primitive root modulo P ⊂ Kp, the unique prime ideal lying above p. We have
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already shown that NGKp
(εg) generates the roots of unity µK within the proof of

Lemma 4.6. This gives us that[
NGKp

(εg)
]WK/2

≡ −1 (mod P)

and since we have σ(P) = P, it is easy to see that σ(εg) ≡ εg (mod P) for all

σ ∈ GQ(p)
. This implies that

ε(p−1)/2
g ≡ −1 (mod P).

and finishes the proof. �

Let B and C be the submodules of BKp and Cl(Kp), respectively, all of whose

simple Jordan-Hölder factors have some fixed order q = lf . Each submodule B or

C is the product of the Jordan-Hölder factors of degree d, where d runs over the

divisors of (p − 1)/WK for which q is the smallest power of l that is congruent to

1 modulo d. Combining Theorem 4.7 with Proposition 4.8, we obtain

#Cl(KH
p ) = #BH

Kp
.

It follows #B = #C by the fact that the degree d part of Cl(Kp) (or BKp) is

precisely the part that appears in the subfield of degree

d = #Gal(KH
p /K),

but not in any proper subfield.

The following fact is another consequence of Proposition 4.8 and it is used in

the first step of our algorithm.

Proposition 4.9 Let p > 2 be a prime. The module BKp does not admit any

simple Jordan-Hölder factors of degree d = 1. In particular, it does not admit any

such factors of order q = 2.
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Proof. Change the field Q(p) with its analogue Kp in the proof of Proposition 3.4.

The result follows easily. �

Let F be the number field given by Kp(ζ2M) where M > 1 is a power of a prime

l. We use a different notation for prime ideals in F for the elliptic case since we

have one more level of field extensions. Given an unramified prime ideal R ⊂ F of

degree one, we have the following diagram:

F R

|

Kp R

|

K r

|

Q r

In order to obtain the main tool for our algorithm, we need to construct a

special Kummer extension of F , similar to the real cyclotomic case. We start with

the following lemma.

Lemma 4.10 Let M be a power of a prime l and F = Kp(ζ2M). The kernel of the

map

ψ : O∗Kp
/(O∗Kp

)M −→ O∗F/(O∗F )M

is trivial if l is odd. It has order 2 and is generated by −1 if l = 2

Proof. Change Q(p) with Kp in the proof of Lemma 3.5. The automorphism

τ ∈ ∆ = Gal(F/Kp), sending ζ2M to its inverse, does not correspond to the complex

conjugation anymore since the ground field Kp is imaginary.
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Suppose x is in the kernel of ψ. Then x = yM for some y ∈ O∗F . It is easy to

see that τ(y) = yζ iM for some i ∈ Z. Pick ỹ = yζ i2M . It follows that

τ(ỹ) = τ(y)ζ−i2M = yζ i2M = ỹ

and without loss of generality we can assume τ(y) = y.

Observe that the field F = Kp(ζ2M) lies in the ray class field K(2Mp) and there-

fore it is an abelian extension of K. The rest of the proof follows easily from the

proof of Lemma 3.5. �

This lemma enables us to identify the group O∗Kp
/µK(O∗Kp

)M with a subgroup

of F ∗/(F ∗)M . The field F = Kp(ζ2M) contains the M -th roots of unity. Therefore

we have

Gal
(
F
(

M

√
O∗Kp

)
/F
)
∼= HomZ

(O∗Kp

µK
, µM

)
. (4.4)

by Kummer theory. Now we are ready to give the main tool for our algorithm, the

analogue of Theorem 3.6 in the elliptic case, and give the construction of elements

fR(εg).

Theorem 4.11 Let M > 1 be a power of a prime l and let I denote the augmen-

tation ideal of the group ring R = (Z/MZ)[GKp ]. There is a natural isomorphism

of GKp-modules

BKp [M ]⊥ ∼= I/〈fR(εg) : R ∈ S〉

where S denotes the set of unramified prime ideals R of F = Kp(ζ2M) of degree

one.

Proof. Change Q, (p), C, ηg, fR(ηg) with K, p, E , εg, fR(εg) respectively in the proof

of Theorem 3.6. The result follows easily. �
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The construction of elements

fR(εg) =
∑

σ∈GKp

cσσ

is identical to the construction of fR(ηg) in the real cyclotomic case. In order to

determine the coefficients cσ ∈ Z/MZ, we use the relation

σ(εg)
(r−1)/M ≡ ζcσM (mod R)

where ζM is a primitive M -th root of unity in F = Kp(ζ2M).

4.3 The Algorithm

In order to construct elements fR(εg) given in the previous section, we need to

determine several unramified degree one prime ideals R of F = Kp(ζ2M) and the

integer values σ(εg) (mod R) for any σ ∈ GKp .

Construction of the prime ideals R can be done using class field theory. We

start with a degree one prime ideal r ⊂ OK with norm r ≡ 1 (mod 2M) and check

if its generator πr satisfies (πr)
WK ≡ 1 (mod p). This implies that r totally splits

in F .

Even tough we can easily obtain the prime ideals R, it is not easy to find σ(εg)

(mod R) for any σ ∈ GQ(p)
. The main reason is that, unlike the cyclotomic case,

we do not have an algebraic expression for εg.

Now we describe how to find σ(εg) (mod R) for any σ ∈ GQ(p)
by using r-adic

numbers Qr. Let g be a primitive root modulo p, and let σg be the corresponding

element generating the Galois group GKp . Given α ∈ OKp , define the polynomial

Pα(x) :=
n−1∏
i=0

(x− σig(α)) ∈ OK [x]
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where n = (p− 1)/WK is the degree of the extension Kp/K. Since the prime ideal

r ⊂ OK splits totally in the extension Kp/K, we have an injection

Kp ↪→ Qr

which is uniquely determined by the image of ε. Consider the factorization of the

polynomial

Pεg(x) =
n−1∏
i=0

(x− ei)

in the ring Qr[x]. Let us fix an injection of Kp into Qr which maps εg to e0. For a

given element α ∈ Kp, we denote the corresponding element in Qr by α̃. For each

0 ≤ i ≤ n− 1, there exists ji such that

σig(ε̃g) = eji .

We already have j0 = 0. In order to determine j1, let us consider the factorization

of the polynomial

Pεgσg(εg)(x) =
n−1∏
k=0

(x− hk)

in the ring Qr[x]. We determine those 1 ≤ i ≤ n− 1 for which the product e0ei is

equal to hk for some 0 ≤ k ≤ n− 1. There are only two such values; one of them is

for ε̃gσg(ε̃g) and the other one is for σ−1
g (ε̃gσg(ε̃g)). We apply this algorithm until

we obtain a cycle

e∗ − e∗ − · · · − e∗

� �

e0 e∗

� �

e∗ − e∗ − · · · − e∗

connecting each ei to those two values. Finally we need to determine if σi(ε̃g) is

obtained by going clockwise or counterclockwise. We use the factorization of the
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polynomial Pεgσg(εg)σ3
g(εg)(x) in the ring Qr[x] to check which direction is correct.

Finally we obtain the cycle

ej1 − ej2 − · · · − ejk−1

� �

e0 = ej0 � ejk

� �

ejn−1 − ejn−2 − · · · − ejk+1

with the property σig(ε̃g) = eji .

The choice ε̃g = e0 corresponds to a unique prime ideal R ⊂ Kp so that εg

(mod Rn) is given by eji (mod rn) for all n ≥ 1. Now it is easy to see that the

integer value σig(εg) (mod R) is given by eji (mod r) for all 0 ≤ i ≤ n− 1.

This is all we need, for the construction of fR(εg). Since we need to go through

this process every time, our analogue of Schoof’s algorithm is slower than the

original. That’s why our ranges for the norm of conductors and the size of Jordan-

Hölder factors are rather small with respect to the ranges Schoof has used.

Let R be an unramified prime ideal of F = Kp(ζ2M) of degree one with under-

lying primes R ⊂ Kp and r ⊂ K. In order to compute fR(εg) we need to make

choices for elements εg and ζM modulo R. Consider the following diagram:

F R

|

Kp R

|

K r

If we change R lying above R, then it corresponds to a different choice of ζM .

Therefore the elements fR(εg) differ from each other by a unit of Z/MZ for a
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different choice of R over a fixed R. Changing R over r is equivalent to change εg

with one of its conjugates. Such a change corresponds to multiplying fR(εg) with

a power of σg, a unit in (Z/MZ)[GQ(p)
]. Therefore the ideal generated by elements

fR(εg) only depend on the prime ideals r in the ground field K.

Now we reformulate our previous results in terms of polynomials. It is easy to

see that we have an isomorphism

(Z/MZ)[GKp ] ∼= (Z/MZ)[X]/(X(p−1)/WK − 1)

obtained by σg 7→ X. Let fr(X) denote the image of fR(εg) under this isomorphism

which is well-defined up to a unit. We denote the augmentation ideal of both rings

by I.

Theorem 4.12 Using the notation above, we have that

BKp [M ]⊥ = I/〈fr(X) : r ∈ SM〉

where SM is the set of prime ideals r = (πr) in OK of norm r satisfying (πr)
WK ≡ 1

(mod p) and r ≡ 1 (mod 2M).

Proof. This easily follows from Theorem 4.11. �

Now we are ready to determine if BKp admits a Jordan-Hölder factor of order

q = lf or not. Any finite R-module is Jordan-Hölder isomorphic to its dual and we

have

B⊥Kp
=
∏
l

∏
ϕ

(B⊥Kp
)ϕ

by the Jordan-Hölder filtration given in Section 2.1. The irreducible polynomials ϕ

are obtained by factoring Xm− 1 in l-adic polynomial ring Zl[X] where m is given

by (p− 1)/WK = lam with gcd(m, l) = 1.
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4.3.1 Step 1

This step is very similar to the Step 1 of Schoof’s algorithm and we check if

B⊥Kp
admits any Jordan-Hölder factors of order q at all. Fix p and q = lf . The

possible degree d of these factors all divide

δ = gcd ((p− 1)/WK , q − 1) .

Proposition 4.9 implies that the first step is trivial if δ = 1. Otherwise we compute

fr(X) (mod Xδ − 1)

for several prime ideals r ∈ SM with M = l.

Computing the greatest common divisors of these elements recursively, we look

for a common divisor ϕ 6= X − 1 of degree exactly f . If we guarantee that there is

no such factor, we stop. Then using Theorem 4.12, we conclude that

BKp [l]⊥

ϕBKp [l]⊥

is zero for all ϕ 6= X − 1 of degree f . This follows that B⊥Kp
, and therefore BKp ,

does not admit any Jordan-Hölder factors of order q.

If there is a repeating factor ϕ|Xδ−1
X−1

with deg(ϕ) = f (possibly more than one)

then we believe that BKp admits a non-trivial Jordan-Hölder factor of order q and

we proceed to the second step of the algorithm.

4.3.2 Step 2

This step is identical to the Step 2 of Schoof’s algorithm. At the end, we obtain

an explicit ideal I(M) ⊂ R and a surjective homomorphism

R/I(M) � (B⊥Kp
)ϕ

which is likely to be an isomorphism.
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4.3.3 Step 3

Except one essential point, this step is also identical to the corresponding step

of Schoof’s algorithm. Let M be the power of a prime l from Step 2. In his

algorithm, Schoof relies on computing Mth roots of real numbers which can be

easily done for real cyclotomic fields. In our case we have to work with imaginary

fields Kp in which the correct Mth root of an element is not obvious. Instead of

complex numbers, we embed our number field Kp into Qr, r-adic rational numbers,

for some special prime r ∈ Z. The rational prime r must split totally in Kp so that

embedding is possible. We also require that r 6≡ 1 (mod l) which makes taking

Mth root unique in Qr.

4.3.4 Example

Let K = Q(w) be the imaginary quadratic field with w = (
√
−67 + 1)/2. Let

p421 ⊂ OK be the degree one prime ideal of norm p = 421 with wp = 85. We fix

a basis [421, 85 − w] for p so that the number θ = 421/(85 − w) is in the upper

half plane. The Galois group Gal(Kp421/K) is isomorphic to (Z/421Z)∗/{±1}. Let

g = 23 be an odd primitive root modulo 421. By definition

εg =
φ
(
g
p
, 0, θ

)
φ
(

1
p
, 0, θ

)ζpk(g)

and we will use Lemma 4.5 to find k(g). It is easy to find a split prime q = (8w−175)

of norm q = 30313 with the properties q ≡ 1 (mod 12p) and the Artin symbol σq

is non-trivial in Gal(Kp/K). Here xq = 8 and yq = −175. Set m = 337 since

−(xqw + yq) ≡ 337 (mod p). Finally we obtain

k(g) =
g2 − 1

m2 − 1
k(m) (mod p)
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where k(m) = xqm/2 (mod p) by Lemma 4.5. Moreover we can compute all Galois

conjugates σig(εg) using Lemma 4.3.

Applying Step 1 with δ = 2 = gcd((421−1)/2, 3−1) for several primes r ⊂ OK

we see that the non-trivial factor ϕ = X+1 appears every time. We start to believe

that (BKp421
)ϕ is non-trivial. We write the degree of the extension 210 as a product

lam where m is coprime to l = 3. This gives us a = 1 and (BKp421
)ϕ is a module

over the ring Z3[X]/(ϕ(X3)) ∼= Z3[X]/(X3 + 1).

Following Schoof, we introduce a new variable for simpler computations. Ob-

serve that X has order 6 in the local ring Z3[X]/(X3 + 1). We pick 1 + T = X2 as

in Iwasawa theory so that the maximal ideal of the local ring

Z3[T ]/((1 + T )3 − 1) ∼= Z3[X]/(X3 + 1)

is of the form (T, 3). Now we perform Step 2 for M ∈ {3, 9, 27, ...} and compute

elements in (Z/MZ)[T ]/((1 + T )3 − 1).

r = (r, w − wr) M = 3 M = 9 M = 27

(248509, w − 14797) T 2 T 2 + 6T 10T 2 + 24T

(297757, w − 78203) 0 6T 2 + 6 15T 2 + 18T + 15

(306991, w − 59125) 0 3T 2 3T 2

(317197, w − 24608) T 2 T 2 + 6T + 3 T 2 + 24T + 3

(354727, w − 104164) 0 3T 2 + 3T + 3 12T 2 + 3T + 12

(458569, w − 272363) 2T 2 2T 2 + 3T + 6 20T 2 + 12T + 15

For M = 3, we compute I(3) generated by fr in the corresponding column.

After several tries, we believe that I(3) is generated by T 2. We have a surjective

map

(Z/3Z)[T ]/(T 2) �
(
(BKp421

)ϕ[3]
)⊥

(4.5)
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which we believe to be an isomorphism.

ForM = 9, the ideal I(9) is generated by T 2 and 3. The module (Z/9Z)[T ]/(T 2, 3)

is isomorphic to the previous one and this concludes Step 2.

We suspect that (BKp421
)ϕ is isomorphic to Z3[T ]/(T 2, 3). In order to verify this

we apply step 3. We use the surjective map above with Proposition 2.2 (4). We

have R = (Z/3Z)[T ]/((1 + T )3 − 1) and J = (T 2) so that AnnR(J) = (T ). Since

1 + T = X2, we have T = X2 − 1. Let

hϕ(X) =
X210 − 1

X3 + 1
(X2 − 1)

in (Z/3Z)[X]/(X210 − 1). We define an elliptic unit εϕ := ε
hϕ(σ)
g and we want to

show that it is a third power of another unit in Kp. Let K6 be the unique subfield

of Kp such that [K6 : K] = 6. Observe that X3 + 1 divides X6 − 1. This implies

that the norm map from Kp to K6, divides hϕ(X) and therefore εϕ ∈ K6. In fact

the minimal polynomial of εϕ is given by

F (t) = t6 +(25552848w + 62631721)t5

+(63659755470266w − 10490555538824)t4

+(825954922943743w − 12797162812861606)t3

+(−4136459180619w − 1293163421150)t2

+(23197957w − 46562185)t+ 1.

Now we compute G(t) =
∏6

i=1
3

√
t− σig(εϕ). We obtain the correct third roots of

εϕ using r-adic integers Qr with r totally split in the extension Kp/Q and r 6≡ 1

(mod 3). We have

G(t) = t6 +(−96w − 140)t5 + (7630w + 53784)t4

+(6920w − 233277)t3 + (−3819w − 23252)t2

+(−127w + 144)t+ 1.
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This shows that εϕ = u3 for some u ∈ K6 ⊂ Kp. We conclude that the module

(B⊥Kp421
)ϕ is actually isomorphic to Z3[T ]/(T 2, 3).

4.4 Heuristics for the Elliptic Case

In this section, we estimate the behavior of Jordan-Hölder factors of the ideal

class group Cl(Kp) that have very large order by using the ideas given in Section 3.4.

We can use Schoof’s results since we work with cyclic extensions of number fields

in the elliptic case as well. According to Cohen-Lenstra heuristics, the probability

that the class group of Kp does not admit any simple Jordan-Hölder factor of order

q at all is at least

HKp(p, q) =

(∏
k≥2

1− q−k
)np,q

.

Observe that not all the primes p leads to extensions Kp/K. If the rational prime

p is inert in the extension K/Q then we define HKp(p, q) to be 1. Now it is easy to

see that

HKp(p, q) ≥ HQ(p)
(p, q).

for all values of p and q. The tables in Section 5.2 contain the numbers h̃Kp , the

order of the subgroup of Cl(Kp) that admit only Jordan-Hölder factors of order

q < Q = 2000, for p of norm p < P = 700. The numbers h̃Kp are all equal to the

class numbers of the corresponding fields with probability at least

PK =
∏
p<P

∏
q>Q

HKp(p, q).

The calculations given in [7, p. 933-934] is suitable for our purpose and we have

− log(PK) < c
πK(700)

2000
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where c = 1.29573095... and π(n) is the number of odd primes which split in K

less than n. The number π(n) corresponds to the number of extension Kp for each

K. The largest set of Kp appears for dK = −67 and there are 63 ray class fields

Kp with conductor p of norm less than 700. Therefore we have

PK > 0.96000621...

for each ground field K.
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C H A P T E R 5

RESULTS

In this chapter we explain the results based on the data we collect from our

algorithm. In the first section we give a counterexample to the elliptic analogue of

Vandiver’s conjecture. In the second section, we give a table for each K involving

the order of the largest submodule of BKp with Jordan-Hölder factors of order less

than 2000. We explain how to obtain the structure of (BKp)ϕ for each Jordan-

Hölder factor listed in the tables. We also give an example showing that BKp and

Cl(Kp) are not isomorphic as Galois modules.

5.1 Counterexample

Let K be the imaginary quadratic field Q(
√
−163) and let p307 be a degree one

prime ideal in OK of norm 307. Computing fR(εg) for several primes, we observe

that the factor ϕ = X + 92 appears every time. As it is described in the third

step of the algorithm, we first find the generators for Ann(ϕ), the annihilator of

the ideal generated by ϕ. It is easy to see that the ideal Ann(ϕ) is principal since

(Z/307Z)[X]/(X153 − 1) is a principal ideal domain. A generator for Ann(ϕ) is

given by

ψ =
X153 − 1

X + 92
∈ (Z/307Z)[X]/(X153 − 1).
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and we define

εϕ := εψg

which is an elliptic unit in Kp. In order to show that the class number of Kp is

divisible by 307, we need to verify that εϕ is a 307th power of a unit u in the same

field. The unit u will be automatically non-elliptic since there is no polynomial

f ∈ Z[X] such that ψ = 307f .

We can obtain εϕ with accuracy as high as we want as an imaginary number.

However the correct 307-th root of εϕ in C is not obvious. Therefore we work with

Qr, r-adic rational numbers, for some special prime r ∈ Z. The rational prime r

must split totally in Kp so that embedding is possible. We also require that r 6≡ 1

(mod 307) which makes taking 307th root in Qr unique. For example, r = 25801

is such a prime for p = [307, 148− w] where w = (
√
−163 + 1)/2.

Factorizing the minimal polynomial of εg ∈ Kp in the polynomial ring Zr[x] with

1000 digit r-adic precision, we obtain εg and all its conjugates r-adically. Then we

compute

G(x) =
153∏
i=1

(
x− 307

√
σig(εϕ)

)
which has r-adic coefficients. It turns out that each coefficient is an element of OK

which was verified with the help of the command algdep in PARI. We have also

verified that the resulting polynomial G(x) ∈ OK [x] generates the extension Kp

using Chebotarev’s density theorem with 5000 primes. We conclude that εϕ = u307

for some non-elliptic unit u in O∗Kp307
.

Recall that BKp = O∗Kp
/E for all Kp. The unit u is a non-trivial element of this

quotient group and order of u is equal to 307, a prime number. This implies that

307 divides the order of BKp and finally we obtain

307|#Cl(Kp307)
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using the fact that BKp and Cl(Kp) have the same number of elements.

There are interesting family of numbers, namely Bernoulli and Hurwitz num-

bers, for fields Q(p) and Kp respectively. These numbers are related to the p-

divisibility of the class number of the corresponding field. The Herbrand’s Theo-

rem states that if p divides the class number of p-th cyclotomic field Q(ζp) then it

divides the numerator of a Bernoulli number with even index less than p− 1. It is

a well-known fact the class group of the real cyclotomic field Q(p) injects into the

class group of Q(ζp). Therefore we easily obtain the following result.

Corollary 5.1 Let p be a prime dividing the class number of Q(p) then p divides

the numerator of a Bernoulli number with even index less than p− 1.

In order to illustrate the situation in the elliptic case, we first give the definition

of Hurwitz numbers following Robert [5]. Let K be an imaginary quadratic field

and let OK be its ring of integers considered as a lattice in complex numbers. The

Hurwitz numbers attached to OK are the numbers

Gk(OK) =
∑
λ∈OK
λ 6=0

1

λk

given by the Eisenstein series of OK of weight k > 2. It can be shown that these

numbers are closely related to the coefficients of the Laurent series expansion of

the Weierstrass ℘-function. In fact we have

℘(z;OK) =
1

z2
+
∞∑
k=1

(2k + 1)G2k+2(OK)z2k.

Observe that the odd terms do not appear since the Weierstrass ℘-function is even.

Now we give the analogue of Corollary 5.1 in the elliptic case.

Theorem 5.2 Let K be an imaginary quadratic field and let p ⊂ OK be a degree

one prime ideal of norm p not dividing 6dK. If p divides the class number of Kp then

p divides the numerator of Gk(OK) for some k divisible by WK with 0 < k < p− 1.
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Proof. This is a result of Robert’s work [5]. A proof, specialized to the case where

K has class number one, can be found in [3]. �

Now we focus on our counterexample. Let K be the imaginary quadratic field

Q(
√
−163) and let p ⊂ OK be a degree one prime ideal of norm 307. The minimal

Weierstrass equation of the elliptic curve E ∼= C/OK over Q is given by

E : y2 + y = x3 − 2174420x+ 1234136692.

We have used the PARI command ellwp(E,z) in order to obtain the Laurent series

℘(z;OK) = z−2 + 434884z2 − 705220967

4
z4 + · · ·

and therefore the Hurwitz numbers Gk(OK). We have shown that 307 divides the

class number of Kp. Theorem 5.2 implies that 307 divides the numerator of Gk(OK)

for some even k between 0 and 306. It turns out that 307 divides the numerator

G94(OK).

5.2 Tables

Our analogue of Schoof’s algorithm gives us the largest submodule of BKp with

Jordan-Hölder factors of order less than 2000. We denote the order of this sub-

module by h̃Kp . The observation we make after Proposition 4.8 implies that the

number h̃Kp is equal to the largest submodule Cl(Kp) with Jordan-Hölder factors

of order less than 2000.

There are 9 imaginary quadratic fields with class number one. The discriminant

dK of these fields are given by

{−3,−4,−7,−8,−11,−19,−43,−67,−163}.
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For each ground field K, we have worked with degree one prime ideals p ⊂ K of

norm p less than 700 and not dividing 6dK . In total there are 535 ray class fields

Kp. For 455 of these, we have found that h̃Kp = 1. The remaining 80 are given in

the tables at the end of this chapter.

In our tables, we use the same format of the main table in Schoof’s paper. The

numbers h̃Kp are given as a product of the orders of their simple Jordan-Hölder

factors. The degree d of each factor is indicated in the third column respectively.

If a simple Jordan-Hölder factor Fp[X]/(ϕ(X)) of order q occurs with multiplicity

greater than 1, we write h̃Kp as a product qs0qs1 · · · qsn with respective degrees

d, dl, ..., dln to indicate the orders of (B⊥Kp
)ϕ modulo ϕ(X li) are qs0+...+si for 0 ≤

i ≤ n.

If (BKp)ϕ has a Jordan-Hölder filtration of length 1, then it is isomorphic to

(Z/lZ)[X]/(ϕ(X)) as a Galois module. In such a case, (BKp)ϕ has f copies of Z/lZ

as an abelian group where f is the degree of the irreducible polynomial ϕ ∈ Zl[X].

There are 6 cases in which (BKp)ϕ has a Jordan-Hölder filtration of length bigger

than 1. We list them in the table below together with the structure of (B⊥Kp
)ϕ. The

use of parameter T is explained on page 57.

dK p q d length (B⊥Kp
)ϕ

19 271 4 3 2 Z2[ζ3]/4Z2[ζ3]

43 397 3 2 2 Z3[T ]/(T + 3, 9)

67 421 3 2 2 Z3[T ]/(T 2, 3)

67 457 3 2 2 Z3[T ]/(T − 3, 9)

67 461 4 2 2 Z/9Z

163 641 5 4 3 Z/125Z

In order to obtain the structure of (BKp)ϕ for these cases, one can use Propo-
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sition 2.2 (3) which implies that (BKp)ϕ ∼= (B⊥Kp
)ϕ whenever the length of (B⊥Kp

)ϕ

is at most 2. There is only one case with Jordan-Hölder filtration of length bigger

than 2, namely dK = 163, p = 641, l = 5. In this case, the annihilator of the module

(B⊥Kp
)ϕ is principal and we still have (BKp)ϕ ∼= (B⊥Kp

)ϕ by Proposition 2.2 (2).

It is not true in general that BKp and Cl(Kp) are isomorphic as Galois modules.

A counterexample for real cyclotomic fields is given by a degree 3 extension of Q

lying in Q(p). We have looked for a similar example in the elliptic case and in fact we

have found one. Let K = Q(
√
−163) and let p2659 ⊂ OK be a prime ideal of norm

2659. The ray class field Kp2659 has a unique subfield K3 such that [K3 : K] = 3.

Starting with a generator of elliptic units and then taking its trace from Kp2659 to

K3, we obtain the minimal polynomial of this extension K3/Q as follows.

fK3/Q = x6 +389x5 + 18196x4 − 7076416x3

−488496804x2 + 48339551084x+ 3971404926677.

The software PARI gives us

Cl(K3) ∼= (Z/2Z)× (Z/2Z)× (Z/2Z)× (Z/2Z).

as an Abelian group. Let ϕ = X2 +X + 1 ∈ Z2[X]. Since ϕ is the only irreducible

polynomial dividing X3−1
X−1

, the Galois module (Cl(Kp2659))ϕ is isomorphic to Cl(K3)

and it is annihilated by 2. On the other hand (BKp2659
)ϕ has 16 elements and is a

subset of (Z/16Z)[X]/(X2 + X + 1). It is clear that (BKp2659
)ϕ is not annihilated

by 2. Therefore BKp and Cl(Kp) are not isomorphic as Galois modules in general.

However, they have isomorphic Galois cohomology groups.

Proposition 5.3 There are canonical isomorphisms

Ĥ i(H,Cl(Kp))
∼=−→ Ĥ i+2(H,BKp)

for each i ∈ Z. In particular, for each choice of a generator of H there are natural

isomorphisms Ĥ i(H,Cl(Kp)) ∼= Ĥ i(H,BKp) for each i ∈ Z.
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Proof. The prime ideal p ⊂ OK is totally and tamely ramified in the extension

Kp/K. The proof of this proposition can be adapted from its cyclotomic analogue

[7, Proposition 5.1 (ii)]. �

dK = −3

p h̃Kp d p h̃Kp d

337 5 4 601 5 4

433 3 2 613 3 2

dK = −4

p h̃Kp d p h̃Kp d

281 11 10 521 11 5

353 3 2 541 4 3

421 4 3 577 17 · 37 16, 36

dK = −7

p h̃Kp d p h̃Kp d

317 3 2 487 4 3

379 4 3 613 4 3

463 4 3 631 43 21

dK = −8

p h̃Kp d p h̃Kp d

281 3 2 601 5 4

577 5 · 19 4, 9 643 4 3

593 5 2 673 5 2

dK = −11

p h̃Kp d p h̃Kp d

257 5 4 421 7 · 211 3, 35

317 3 2 449 5 · 9 4, 8

353 67 22 521 11 5
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dK = −19

p h̃Kp d p h̃Kp d

61 7 6 389 3 2

131 16 5 577 4 · 97 3, 96

137 5 4 593 5 4

163 4 3 617 3 · 5 2, 4

229 4 3 619 7 3

271 42 · 11 3, 5 691 4 3

dK = −43

p h̃Kp d p h̃Kp d

41 5 · 11 4, 5 397 3 · 3 2, 6

53 3 2 401 5 · 9 4, 4

229 13 6 431 31 5

269 3 2 557 5 2

307 4 3 613 307 102

337 3 · 5 2, 4 661 3 · 67 2, 11

353 5 · 49 4, 8

dK = −67

p h̃Kp d p h̃Kp d

17 5 4 421 3 · 3 2, 6

37 4 3 449 61 4

151 11 5 457 3 · 3 2, 6

173 5 2 461 32 2

193 49 48 613 19 3

389 3 2 617 67 11
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dK = −163

p h̃Kp d p h̃Kp d

97 7 3 373 7 3

113 3 2 409 7 6

151 61 5 421 4 · 7 3, 6

173 3 2 439 13 3

223 7 3 457 5 · 419 2, 19

281 5 4 641 53 4

307 307 153 661 7 3

367 37 3
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C H A P T E R 6

FUTURE WORK

A primary objective of our future work is to continue the investigation of class

numbers which is one of the most classical problems in number theory. Another

classical problem of great interest is the determination of explicit subgroups of the

full unit group of number fields. It is also possible to consider the function field

analogue of a problem in number fields. This perspective not only results in an

interesting results but also gives insight about the original problem.

In this chapter, we give several projects that could be investigated after our

thesis problem. We explain why these problems are interesting and how we are

planning to solve them.

6.1 General Imaginary Quadratic Ground Field

In this thesis we focus on imaginary quadratic fields with class number one for

which there are nine of them. A natural generalization of our thesis problem would

be working with an arbitrary imaginary quadratic field. We can still use Stark’s

results on the ray class fields Kp and explicit Galois action given by Shimura’s

reciprocity.
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The main idea in constructing the cyclotomic or elliptic units is to compare the

different generators of the unique prime ideals P and P in the ray class fields Q(p)

and Kp respectively. Let L be the Hilbert class field of K, the maximal unramified

Abelian extension. The degree [L : K] is equal to hK , the class number of K. If we

work with an imaginary quadratic field K with non-trivial class number, then the

extension L/K will be non-trivial as well. This implies that there could be several

primes Pi ⊂ OKp lying above p ⊂ OK .

Kp P1 · · · Pr

| | |

L P1 · · · Pr

| � �

K p

In order to resolve this we can compare the generators of primes Pi for each

i separately. In order to generate elements similar to fR(εg), we can work with

principal primes ideals r ⊂ OK of degree one which totally splits in the extension

Kp/K. Such primes can be found by class field theory and there are infinitely many

with norm r ≡ 1 (mod 2M) by Chebotarev’s Density Theorem.

6.2 Cyclotomic Function Fields

Algebraic number theory arises from algebraic extensions of the rational num-

bers Q. Similarly we can consider finite algebraic extensions of rational functions

and such extensions are called algebraic function fields. It would be interesting

to generalize Schoof’s algorithm to its function field analogue, namely cyclotomic

function fields. They are finite algebraic extensions of k = Fq(T ) satisfying prop-

erties very similar to the cyclotomic number fields.
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In order to construct the p-th cyclotomic number field Q(p), we start with a

prime ideal (p) in the ground field and use class field theory to generate the maximal

Abelian extension which ramify only above (p) and the prime at infinity. In the

function field case, similarly we start with a place P , corresponding to a monic

irreducible polynomial, and construct an extension kP which ramifies only P and

the place at infinity. Let k+
P be the maximal real subextension of the cyclotomic

function field kP . In other words the extension k+
P /k is ramified only above P .

It turns out that the fields Q(p) and k+
P have many properties in common. For

example, we have

hk+
P

=
[
O∗
k+
P

: EP
]

where hkP is the class number of the real cyclotomic function field k+
P and EP is the

group of cyclotomic units [6, p. 295].

In order to generalize Schoof’s algorithm to compute the class number of cyclo-

tomic function fields, we need to construct analogues of the elements

fR(ηg) =
∑
σ∈G

cσσ

that we used for investigating class number of Q(p). A nice property of the Ga-

lois group Gal(k(P )/k) ∼= (Fq[T ]/(P ))∗ is that it is cyclic and its action is well-

understood. However we still need to construct special extensions of kP similar to

the extension Q(p)(ζ2M) in the cyclotomic number field case. We hope to achieve

this by using the explicit class theory for rational function fields [1].
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A P P E N D I X

FREQUENTLY USED NOTATION

Given a number field L, we use the following notation:

dL discriminant of L

OL ring of integers of L

O∗L group of units in the ring OL

µL roots of unity in L

Cl(L) class group of L

hL class number of L

Reg(U) regulator of U ⊂ O∗L

m a modulus in L

IL(m) fractional OL-ideals coprime to m

PL,1(m) principal OL-ideals generated by α ≡ 1 (mod m)

Lm ray class field of conductor m

GLm Galois group Gal(Lm/L)

σp Artin symbol of the ideal p ⊂ OL
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Let G be a cylic group and let H ⊂ G be a subgroup. Given a finite Z[G]-module

A, we use the following notation:

A⊥ HomR(A,R)

Adual HomZ(A,Q/Z)

Aϕ ϕ-part of A (page 8)

A[M ] {a ∈ A : Ma = 0}

AH {a ∈ A : aσ = a for all σ ∈ H}

NH

∑
σ∈H σ

The ray class field Q(p) is the p-th real cyclotomic field Q(ζp+ ζ−1
p ). We use the

following notation:

C group of cyclotomic units in O∗Q(p)
(page 18)

ηg a generator of cyclotomic units C (page 18)

BQ(p)
the quotient group O∗Q(p)

/C (page 19)

h̃Q(p)
a special integer dividing hQ(p)

(page 33)

Let K be an imaginary quadratic field. Let p ⊂ OK be a degree one prime ideal

of norm p. We use the following notation:

w a special element such that OK = Z[w] (page 37)

wp smallest non-negative integer satisfying w ≡ wp (mod p) (page 37)

WK number of roots of unity in K (page 38)

E group of elliptic units in O∗Kp
(page 44)

εg a generator of elliptic units E (page 44)

BKp the quotient group O∗Kp
/E (page 45)

h̃Kp a special integer dividing hKp (page 3)
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