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ABSTRACT 

MUSCULAR PROPERTIES AND BALANCE CONTROL IN OLDER ADULTS 
 

SEPTEMBER 2009 
 

CHRISTOPHER J. HASSON, B.S., UNIVERSITY OF DELAWARE 
 

M.S., BALL STATE UNIVERSITY  
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Graham E. Caldwell 
 
 
 
 The goal of this dissertation was to understand the role of age-related changes in 

muscle mechanical properties in the control of upright posture in humans. First, a 

methodology for estimating subject-specific muscle properties in healthy young and older 

individuals was developed. Magnetic resonance and ultrasound imaging were used in 

conjunction with dynamometer experiments, musculoskeletal modeling, and numerical 

optimization to estimate the properties of the dorsiflexor and individual plantarflexor 

(gastrocnemius and soleus) muscles for 12 young and 12 older adults (balanced for 

gender). With aging there were declines in maximal isometric strength and increases in 

series-elastic stiffness in the male subjects, but no differences in the female subjects. 

Regardless of gender, there were age-related changes in the shape of the force-velocity 

relation, such that the older subjects produced less relative force during both concentric 

and eccentric muscle contractions. The second study tested the balance abilities of the 

same subjects under a variety of static (quiet stance, leaning forward/backward) and 

dynamic (swaying at preferred/imposed frequencies, maximal reaching, external 

perturbation) conditions. The older adults performed more poorly on most of the balance 
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tasks. While maximal isometric force made a smaller than expected contribution to 

predicting balancing ability, the force-length, force-velocity and force-extension 

properties of the muscles were all predictive of the age-related declines in balance 

control, explaining ~40% of the variance as independent predictors and ~50% when these 

factors were combined. Finally, a feedback-driven inverted pendulum model of postural 

control was developed, which incorporated realistic representations of young and old 

dorsiflexor and individual plantarflexor muscles using the previously estimated 

mechanical properties. A sensitivity analysis was performed by manipulating the 

properties of the plantarflexor muscles. The balancing ability of the model was most 

influenced by the optimal length of the contractile component and the slack length of the 

series elastic component of the plantarflexor muscle models. The quiet stance model 

highlighted the importance of the force-length relation of muscle to the stabilization of 

upright posture. This dissertation demonstrated that there are age-related changes in the 

dorsi- and plantarflexor mechanical properties, and these changes are associated with the 

declines in postural control that accompany aging. 
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CHAPTER 1 

INTRODUCTION 

 

Muscles produce force. This fact has intrigued scientists for centuries and has 

been the subject of hundreds of research studies. Muscles are engineering marvels, 

possessing an array of properties that allow a wide range of functions and tremendous 

adaptability. Muscles are capable of producing very small or very large levels of force. 

Muscles can produce force while shortening, lengthening, or at a constant length. 

Muscles can change the maximal amount of force that they are able to produce in 

response to repetitive loading. Muscles can even change their stiffness. There are no 

existing man-made materials that can accurately replicate the actions of human muscles, 

which is a testament to their complex design. 

Although muscle is remarkable even in isolation, it is when multiple muscles 

work together that the human body’s potential for movement truly becomes apparent. 

Humans can coordinate their muscles for extremely precise movements such as threading 

a needle, extremely fast movements such as throwing a baseball, or extremely forceful 

movements such as lifting a refrigerator. Having multiple muscles makes such a wide 

variety of movements possible. One important question that currently occupies the minds 

of movement scientists is “How is such a complex array of muscles controlled”? Answers 

to this question are of great value to a wide range of individuals, from clinicians 

rehabilitating patients to the design and control of artificial limbs.  

Much is known about the control of muscles at the neural level (Basmajian and 

De Luca 1985). Each muscle receives inputs in the form of one or more control signals 
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from the central and peripheral nervous systems. These control signals arise from 

voluntary and involuntary activations of alpha motor neurons in the spinal cord. The 

motor neurons transmit the control signals in the form of electrical impulses (action 

potentials), which are modulated in their amplitude and frequency by recruiting more 

motor neurons or by causing already active motor neurons to transmit impulses more 

rapidly. These control signals have a direct influence on the production of force by 

muscles. 

Thus, at the neural level the amount of “effort” required for a particular muscle is 

specified by only two parameters (recruitment and firing-frequency). If muscle were a 

simple input-output “actuator”, these control signals would be the sole determinant of 

muscle force. The same control signals would always produce the same force level, 

irrespective of the current state of the musculoskeletal system. Such a control scheme 

may impose limitations on the ability of the human body to coordinate complex 

movement. Another consideration is that the transmission of control signals is not 

instantaneous, and requires a finite period of time depending on the conduction velocity 

of the motor neurons, which has been shown to increase with aging (Merletti et al. 2002). 

Humans possess an additional “control system” based on the properties of the 

muscle-tendon units. Each muscle contains an array of geometrical and mechanical 

properties that alters the relationship between the input (neural control) and output (force) 

signals - often in beneficial ways. For example, if someone standing in line is 

accidentally and unexpectedly perturbed from behind, the stiffness of the postural 

muscles provides an instantaneous level of stabilization. Without this mechanism, delays 

in the transmission of the nervous signal may not reach the correct muscles in time for a 
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stabilizing response, as ankle tendon-tap reflex latencies have been shown to average 

about 35 ms in healthy individuals (Frijns et al. 1997). This is just one example of the 

many properties of muscle that influence how muscles are coordinated during movement. 

Muscular “properties” can be separated into three areas: architectural, 

geometrical, and mechanical. Architectural properties of muscle consist of features that 

define the number and orientation of muscle fibers within a muscle, including fiber length 

and pennation angle. Geometrical properties refer to how a muscle is positioned within 

the skeleton, including the number of joints crossed and the relation between muscle 

length, muscle moment arm, and the angular positions of the joints crossed by the 

muscle. The mechanical properties of muscle are defined as the mechanical 

characteristics of muscle influencing force production. The amount of force produced by 

a muscle in response to a neural input is dependent on a number of factors: the activation 

level of the muscle, the length and velocity of the muscle fibers, the prior history of the 

state of contraction, and muscle physiological cross-sectional area. Geometrical and 

architectural properties are largely fixed; alterations are only possible under unusual 

circumstances such as tendon transfer surgery (Delp et al. 1994). Mechanical properties 

on the other hand, have been shown to experience change with use, disuse, injury, and 

age (Blanpied and Smidt 1993, Doherty and Brown 1997, Frontera et al. 2000b, Larsson 

et al. 1997, Ochala et al. 2004a). 

1.1 Musculotendon Mechanical Properties, Aging, and Postural Control 

Muscular properties have been shown to change with aging, especially beyond 60 

years (Ochala et al. 2004a, Vandervoort 2002). In general, muscles become weaker 



 

4 

(reduction in cross-sectional area) (Narici et al. 2003), slower (lower maximal contraction 

velocity) (D'Antona et al. 2003), and less elastic (Ochala et al. 2004a). Changes in muscle 

properties seem to affect the lower limbs to a greater degree than the upper limbs 

(McDonagh et al. 1984). In most cases, these changes are detrimental to the functioning 

of the neuromuscular system, causing reductions in maximal force capability and delays 

in the rate of force development. These alterations may place older individuals at an 

increased risk for injury - especially in situations where rapid force development is 

needed, such as coping with a threat to postural stability. 

One of the most basic requirements for the execution of many activities of daily 

living is the successful maintenance of posture. In comparison to younger adults, older 

individuals have been shown to generally have a higher amplitude of postural sway, as 

well as higher sway velocities and either increased or decreased sway variability, 

depending on the population studied (Prieto et al. 1996, Prieto et al. 1993). Older adults 

are generally less stable than younger adults, and are more prone to experience a fall 

(Shumway-Cook et al. 1997, Tinetti et al. 1988), which can result in significant injury or 

even death. In light of the increasing proportion of older adults in our population, fall-

related injuries require the expenditure of a significant amount of time and money for 

rehabilitation (Titler et al. 2005). 

Despite the evidence for alterations in muscle properties and postural control that 

occur with aging, there have been no investigations into a possible association between 

these changes. Therefore, the purposes of this dissertation were to: 1) Measure and 

compare muscle mechanical properties in young and old individuals, 2) Explore the 

association between age-related changes in muscle mechanical properties and postural 
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control, and 3) Develop and evaluate a musculoskeletal model of postural control. By 

investigating the muscle mechanical properties and postural control of young and old 

individuals, specific changes in muscle properties that directly impact muscle 

coordination and postural stability can be identified.  

1.2 Specific Aims 

1.2.1 Chapter 2: Muscle Mechanical Properties and Aging 

The purpose of the first study was to describe and compare the mechanical 

properties of the primary muscles controlling the ankle joint in healthy young and older 

adults. For each participant, magnetic resonance imaging was used to determine muscle 

volume, physiological cross-sectional area, and moment arm length, while ultrasound 

imaging was used to measure series elasticity. Dynamometer experiments were 

performed to determine individualized relationships between joint torque, joint angle, and 

joint angular velocity for the ankle joint. The data from these experiments were 

incorporated into musculoskeletal models, where numerical optimization techniques were 

used to obtain subject-specific muscle mechanical properties. It was hypothesized that the 

optimized mechanical properties would differ with age, with the older subjects 

demonstrating lower maximal isometric force capabilities, stiffer elastic characteristics, 

and slower contractile properties. 

1.2.2 Chapter 3: Mechanical Properties and Postural Control 

The second study examined the relationship between age-related changes in 

muscle mechanical properties and postural control. The balancing abilities of the same 
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subjects that performed the experiments in Chapter 2 were evaluated with a series of 

postural tests. These included static (quiet stance, leaning) and dynamic conditions 

(swaying, reaching) and external perturbations. Variables related to center of pressure 

and center of mass motion were computed and used as measures of postural stability. It 

was hypothesized that the older adults would have poorer postural control than younger 

subjects, and these deficits would be associated with the age-related changes in muscle 

mechanical properties.  

1.2.3 Chapter 4: Musculoskeletal Model of Postural Control 

In the third study, a musculoskeletal model was developed and used to evaluate 

the role of muscle properties in the control of quiet stance. The model included a two-

segment inverted pendulum skeletal model, a foot-floor interaction allowing movement 

of the foot relative to the ground, and Hill two-component muscle models representing 

the major ankle muscles. The model was controlled by proportional-derivative neural 

controllers that used time-to-contact information to send excitation signals to the muscle 

models, which accounted for noise and delays within the nervous system. Numerical 

optimization was used to find the neural controller gains that would allow the model to 

perform quiet stance with minimal muscular intervention. Both “young” and “old” quiet 

stance models were created using the mechanical properties measured in Chapter 2, and 

their performance was compared. A sensitivity analysis was performed to assess effects 

of changes in individual muscle mechanical properties on the performance of the model 

during quiet stance. 
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1.3 Summary 

The central question of this dissertation is how age-related changes in muscle 

mechanical properties influence postural control. This question is important because 

muscle is responsible for transforming neural commands into muscular force, and 

therefore, it is crucial that we understand how this “transfer” may be altered with 

advancing age. This may explain why individuals become less stable with age. 
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CHAPTER 2  

MUSCLE MECHANICAL PROPERTIES AND AGING 

2.1 Introduction 

 Muscles possess an array of mechanical properties that influence the relationship 

between the neural command and the force produced. These include nonlinear dependence 

of active contractile force on length (force-length relation) (Gordon et al. 1966) and 

velocity (force-velocity relation) (Hill 1938), and a nonlinear relation between force and 

the elongation of series elastic structures within the muscle-tendon complex (force-

extension relation) (Bahler 1967). Because muscle mechanical properties dictate how 

nervous system input is translated into muscle force, age-related changes in these properties 

may have a large impact on muscle function and movement coordination (Hof 2003). 

Although much is known about neural and physiological changes with aging (Delbono 

2003, Doherty 2003, Porter et al. 1995b, Vandervoort 2002), less research has examined 

age-related changes in muscle mechanical properties. However, it has been shown that 

single muscle fibers (both type I and type IIA) have significantly lower maximal isometric 

force capabilities in older men compared to younger men (Frontera et al. 2000b). Other 

studies have demonstrated that single muscle fiber contraction velocity decreases in older 

adults (Hook et al. 2001, Korhonen et al. 2006, Larsson et al. 1997).   

As an alternative to the invasive nature of in vitro single muscle fiber studies, 

researchers have also examined the mechanical properties of muscle groups in vivo using 

dynamometers to elucidate torque-angle and torque-angular velocity relations. Older 

subjects exhibit shifts in the torque-angular velocity relationship towards slower velocities 
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(Lanza et al. 2003, Poulin et al. 1992), have generally slower muscle contractile properties 

(Gajdosik et al. 1999), and have increased resistance to fatigue (Lanza et al. 2004). Studies 

investigating muscle-tendon series elasticity using a quick-release technique have shown 

increases in stiffness with age (Blanpied and Smidt 1993, Ochala et al. 2005, Ochala et al. 

2004b), and these findings are supported by evidence from single muscle fibers (Ochala et 

al. 2007a). In contrast, Onambele et al. (2006) showed an age-related decrease in the 

stiffness of the external Achilles tendon using ultrasound. These differences may be due to 

measurement techniques; the quick-release technique measures the total series elasticity, 

including elasticity of the internal aponeurosis and elasticity within the muscle fibers 

(Bressler and Clinch 1975), while the ultrasound technique used by Onambele et al. 

measures the elasticity of the external tendon at the local measurement site (Hof 2003). 

Age-related increases in the series elasticity measured using the quick-release technique 

could be due to greater fiber stiffness per unit force (Galler and Hilber 1998, Higuchi et al. 

1995, Ochala et al. 2007a), while age-related decreases in external tendon stiffness 

measured using ultrasound may arise from increases in elastin and type V collagen and 

decreases in extracellular water and mucopolysacharide content (Kjaer 2004, Tuite et al. 

1997). 

Although it appears that muscle properties change with aging, knowledge of how 

the mechanical properties of individual muscle-tendon complexes are altered with aging is 

particularly sparse. This is partly because of the difficulty in determining the force in an 

individual muscle in vivo due to the over determined nature of the human muscular system 

(Bernstein 1967). It is even difficult to measure the contributions of isolated agonist muscle 

groups due to antagonistic co-activation, which is rarely accounted for in experimental 
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studies (Gajdosik et al. 1999, Lanza et al. 2003, Poulin et al. 1992). These challenges can 

be overcome through the use of musculoskeletal models that can model the behavior of 

individual muscles, without employing highly invasive techniques of direct muscle force 

measurement (Komi et al. 1987). 

Thelen (2003) performed simulated muscle contractions while altering muscular 

parameters to mimic age-related changes. The “aged” simulation model predicted reduced 

power output along with prolonged contraction and relaxation times. Of note, the parameter 

values used were based solely on literature sources, chosen from a range of studies and 

different subject populations. It is possible that the specified combination of model 

parameters would not exist in any single human. Nevertheless, the importance of 

accounting for age-related changes in muscle mechanical properties was evident, especially 

when considering dynamic task performance (e.g. walking) or responding to environmental 

influences (e.g. standing in a moving bus).  

Accurate knowledge of muscle mechanical properties is important for researchers 

who use muscle models to estimate the contribution of individual muscle forces to the net 

moment at a given joint. Many studies have demonstrated that muscle model output is 

sensitive to the parameters defining the mechanical properties (Buchanan et al. 2004, Heine 

et al. 2003, Herzog 1985, Out et al. 1996, Raikova and Prilutsky 2001). Therefore, 

inaccurate model parameters may lead to erroneous conclusions on force distribution.  

The aim of this study was to combine experimental, modeling, and optimization 

techniques to assess individual muscle mechanical properties in young and old adults. 

Magnetic resonance and ultrasound imaging were used in conjunction with isometric and 

isovelocity muscle contractions to obtain subject-specific estimates of the mechanical 



 

11 

properties of the major muscles contributing to sagittal-plane movement at the ankle joint 

(dorsiflexors [DF], gastrocnemius [GA], soleus [SO]). Hill-type musculotendon models 

were used to represent each muscle. In each model, the active contractile component (CC) 

produced force according to stimulation-activation, force-length, and force-velocity 

relations, and the passive series elastic component (SEC) responded according to its force-

extension relation. The parameters representing these mechanical properties of the 

individual muscle models were found through a numerical optimization process for each 

subject. It was hypothesized that the optimized muscle model parameters would differ with 

age, with the older subjects demonstrating lower maximal isometric force capabilities, 

stiffer elastic characteristics, and slower contractile properties. 

2.2 Methods 

2.2.1 Overall Experimental Design 

Twelve young and twelve older adults participated in the experiments. All subjects 

were healthy and were without musculoskeletal or neurological impairments. There were 

equal numbers of male and female subjects in each age group; subject characteristics are 

listed in Table 2-1. The older subjects were all independent community-dwellers. Subjects 

attended multiple experimental sessions including: 1) isometric contractions in conjunction 

with ultrasound measurements to determine musculotendon elasticity, 2) isometric 

contractions at varying ankle joint angles on a dynamometer to measure torque-angle 

properties, 3) isovelocity contractions at various ankle angular velocities on a dynamometer 

to measure torque-angular velocity properties, and 4) measurements of muscle volume, 

cross-sectional area, and moment arm using MRI. During the first visit each participant was 
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provided with an overview of the experimental procedures for the study. Participants read 

signed an informed consent document approved by the local University ethics committee. 

Physician’s clearance was obtained for all older subjects. 
 

Table 2-1. Subject characteristics. 

Subject Group N 
Age (yrs) Height (m) Mass (kg) 

Mean ± SD Range Mean ± SD Range Mean ± SD Range 
Young Male 6 27 ± 3 21-30 1.81 ± 0.06 1.70-1.85 76.9 ± 8.2 68.3-87.5 
Young Female 6 26 ± 3 21-31 1.65 ± 0.08 1.52-1.74 57.2 ± 6.6 49.9-65.8 
Old Male 6 73 ± 5 67-79 1.77  ± 0.08 1.68-1.88 91.7  ± 10.3 74.0-101.5 
Old Female 6 70 ± 5 66-78 1.66 ± 0.09 1.70-1.60 72.6  ± 17.0 77.4-59.3 

Note: N = number of subjects; SD = standard deviation 
 

2.2.2 Ultrasound Experiment  

2.2.2.1 Experimental Setup 

To estimate the series elasticity of the dorsi- and plantarflexor muscles, ankle torque 

was measured as subjects performed a series of ramped maximal effort isometric 

contractions at a fixed ankle angle. During the contractions, the movements of the DF, GA, 

and SO muscles were imaged using a real-time ultrasonic scanner (Acuson 128XP) with a 

linear-array probe (7.5 MHz, 50 mm scanning length, B-mode [brightness mode]). A 

transmission gel was used for acoustic coupling. The probe was orientated along the mid-

sagittal axis of each muscle. Ultrasound images were sampled at 30 Hz and saved to 

magnetic tape.  

The isometric contractions were performed on a dynamometer (Biodex System 3, 

Medical Systems, Shirley, NY); participants sat in a padded chair, with their left leg 

extended in front of them and their right foot resting on a support. The left knee was fully 
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extended, and the ankle was at an angle of 90° (between the tibia and the surface of the foot 

plate). This position has been reported to correspond to a minimal amount of passive 

resistance about the ankle joint (Siegler et al. 1984). The ankle joint center was visually 

aligned with the center of rotation of the footplate. The foot was secured to the foot plate 

using Velcro straps across the dorsal surface of the foot. The torque data were sampled at 

900 Hz using a personal computer. An analog pulse (0-5V step function) was used to 

synchronize the ultrasound video with the force data. 

2.2.2.2 Protocol 

 During the experimental session, subjects performed a block of 5 dorsiflexion trials 

which was preceded (followed) by a block of 5 plantarflexion trials, with the order of the 

blocks randomized. Within each block, two three-second maximal voluntary contractions 

(MVCs) were performed while torque measurements were taken; a two-minute rest was 

provided between the contractions. After the MVCs, subjects performed a set of five 

ramped contractions while force and ultrasound measurements were taken. Over a 30-

second trial, subjects were required to slowly ramp up their level of torque by following a 

predefined template, which was scaled as percentage of the highest force recorded during 

the two preliminary MVCs. The template included a green line representing the target force 

level, which exponentially increased from 0-30% MVC, and then increased linearly from 

30 – 100 % MVC (Figure 2-1C, solid line). Red lines bounded the target force level on 

each side (Figure 2-1C, broken lines), which were used as guides indicating the acceptable 

variability at each torque level. During each trial, a black line was drawn representing the 

subject’s applied force level (in real-time). The subjects were instructed to follow the green 
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line as closely as possible and, although some variation was expected, they should try to 

stay within the red boundary lines. 

2.2.2.3 Video Capture and Preprocessing 

The ultrasound video was parsed into individual trials and converted into digital 

format (AVI, 720 x 480 pixels) using a personal computer based video capture system 

(Studio MovieBox USB, Pinnacle Systems). The raw force video data were processed 

using custom software written in Matlab (Version 7, The MathWorks, Natick MA). The 

raw force data were downsampled to equal the sampling rate of the ultrasound video (30 

Hz). In each trial, the ultrasound video and force data records were searched for the rising 

edge of the synchronization pulse, and the two measurements were synchronized by 

shifting the data so that the synchronization pulse occurred in the same frame. 

2.2.2.4 Tracking of Aponeurosis 

To compute the elongation of the DF muscle two sets of eight points were 

identified: a set of superficial reference points evenly spaced near the skin, and a cluster of 

points along on the distal portion of the central aponeurosis of the DF (Figure 2-1A). Two 

similar sets of points were identified for the GA and SO. Each point was automatically 

tracked throughout the contraction using a two-dimensional cross-correlation tracking 

algorithm (Loram et al. 2004).  

2.2.2.5 Data Processing 

The horizontal and vertical displacements of the tracked points and torque data 

were imported into MATLAB
TM and smoothed using a Butterworth digital filter. Optimal 
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filter cut-off frequencies were determined by performing a residual analysis and power 

spectral analysis (Winter 1990). The horizontal and vertical displacements of the eight 

reference and eight aponeurosis points were averaged to give a single reference and 

aponeurosis displacement time-series (Figure 2-1B). The displacement of the reference 

point was subtracted from the movement of the aponeurosis point to adjust for movement 

of the ultrasound probe relative to the skin. The scalar magnitude of the adjusted 

displacement vector was computed and transformed into extension by making the 

displacement magnitude equal to zero at the start of the trial (at rest). A second-order 

polynomial was then fit to the torque vs. extension data (Figure 2-1D). This polynomial 

had the form: 

 
2

T L T LT x xα β∆ ∆= +
  

(3.1)
 

where T is the net ankle joint torque, T Lα ∆ is a coefficient that controls the rate of increase 

of torque with increasing extension (larger values represent a stiffer relationship), T Lβ ∆  is a 

coefficient that specifies the linearity of the torque-angle relation (larger values give a more 

linear relation), and x is the displacement of the aponeurosis. 

 



 

  

 
 

Figure 2-1. Methodology for measuring musculotendon series elasticity. A: Ultrasound stills from the start (left) and end (right, at 
MVC) of a dorsi- (top) and plantarflexion (bottom) ramped trial. The white dots indicate points of interest, including a set of reference 
points near the skin, and a set of points on the central aponeurosis of each muscle. The motion of the points was tracked using an 
automated cross-correlation algorithm. B: Example of the horizontal displacements of the set of reference points (top) and points on 
the central aponeurosis for a dorsiflexion trial (thick line = average). C: The visual torque-time template (left) and the actual 
dorsiflexion torque produced (right). D: The resulting torque vs. extension plot. A second order polynomial was fit to the torque up to 
60% MVC, and then extended up to MVC (dashed line). 
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2.2.3 Dynamometer Experiments 

2.2.3.1 Experimental Setup 

For the determination of joint torque-angle and torque-angular velocity relations, 

a series of isometric and isovelocity muscle contractions were performed on the same 

dynamometer used for the ultrasound measurements (the dynamometer setup was the 

same). The torque exerted on the dynamometer and the angular displacements of the 

lever arm were sampled at a rate of 1000 Hz with a personal computer using a 16-bit 

analog-to-digital converter and custom data acquisition software. 

The myoelectrical activity of the DF, GA, and SO were monitored during all 

isometric and isovelocity trials using bipolar pre-amplified (35x) Ag/AgCl circular 

surface electrodes with an interelectrode distance of 20 mm and an input impedance of > 

25 MΩ at DC and >15MΩ at 100 Hz (Theraputics Unlimited, Iowa City, IA). EMG 

signals were further amplified (model RMG-544 amplifier / processing module; 87 dB 

common mode rejection ratio at 60 Hz, frequency response 20 – 4000 Hz). The gains of 

the individual EMG amplifier channels were adjusted for each participant to obtain the 

best resolution without clipping the signal. EMG data were sampled at a rate of 1000 Hz. 

Skin preparation for impedance minimization included shaving the electrode site, 

abrading the skin with an abrasive paste, and cleaning with alcohol. Electrodes were 

affixed along the orientation of the underlying muscle fibers.  
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2.2.3.2 Protocol 

Maximal effort isometric and isovelocity dynamometer contractions were done on 

separate visits to the laboratory to minimize fatigue. For both sessions, two trials were 

performed at each joint angle and angular velocity. The order of the trials was 

randomized. A 30 s rest was provided between all trials. At the start of each session, 

subjects warmed up on the dynamometer by performing sub-maximal non-isovelocity 

contractions, and the range of motion of the ankle joint was determined and the 

dynamometer movement limits were set.  

In the isometric session, passive joint torque was measured by having the subject 

relax and the dynamometer slowly (15°/s) moved the ankle joint through its entire range 

of motion. Maximal effort dorsiflexion trials were performed with the knee fixed at 100° 

(full extension = 180°), and the ankle at 70 - 110° (neutral = 90°) in 10° increments. 

Maximal effort plantarflexion trials were performed with the knee at 180°, and the same 

range of ankle angles as in the dorsiflexion condition. 

In the isovelocity session, dorsiflexion and plantarflexion trials were performed 

with the knee fixed at 100° and 90°, respectively. Concentric trials, where the 

dynamometer moves at a fixed angular velocity in the same direction as the active joint 

torque, were performed at angular velocities of 15°/s and 30 - 240°/s in 30°/s increments. 

Eccentric trials, where subjects must resist against the dynamometer that is moving in the 

direction opposite to the active joint torque, were performed at angular velocities of -150, 

-60, and -30°/s.  
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2.2.3.3 Data Reduction and Analysis 

The maximal isometric joint torque at a given ankle angle was taken as the 

highest torque value of the two trials, and used to construct a torque-angle relationship. 

For the construction of torque-angular velocity relationships, the velocity of the 

contractile component (rather than muscle-tendon velocity) is of interest. During the 

isovelocity contraction, the velocity of the contractile component is not constant and is 

generally unknown except for the instant at which the peak torque is achieved (or more 

specifically, where the slope of the torque vs. time curve is zero), where the velocity of 

the series elastic component is zero, and thus the contractile component velocity must 

equal the total muscle velocity. Therefore, for each isovelocity trial the peak torque and 

the corresponding joint angular velocity were used to construct a torque-angular velocity 

relation. For both the isometric and isovelocity data, the passive and inertial torque 

contributions were subtracted from the measured torque data. 

2.2.3.4 Adjusting for Co-Activation and Torque-Angle Effects 

 Adjustments were made to the measured experimental torque-angle and torque-

angular velocity data to account for antagonistic co-activation. The relationships between 

agonist muscle torque and the percentage of antagonist muscle co-activation were based 

on the data of Simoneau et al. (2005), which showed similar linear relationships for 

young and older adults. Adjustments were also made to the measured experimental 

torque-angular velocity data to account for torque-angle effects and to ensure agreement 

between the torque-angle and torque-angular velocity data. See Appendix A for details on 

these adjustments. 
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2.2.4 Magnetic Resonance Imaging (MRI) 

2.2.4.1 Experimental Setup 

  Magnetic resonance images were taken of each subject’s left lower leg (G.E. Sigma 

EchoSpeed Plus; 1.5 Tesla). Axial images were taken using a spacing of 4 mm (T1 

weighted spin echo images; TR = 5000 ms, TE = 17 ms, pixel resolution 512x512, field 

of view 300 mm). Two sets of axial images were taken, one proximal, and one distal. A 

marker bead was placed on the surface of the leg so that the two image sets could be 

aligned. Sagittal-plane images were also taken for measurement of plantarflexor and 

dorsiflexor muscle moment arms. 

2.2.4.2 Data Reduction and Analysis 

Custom interactive software was written in MATLAB
TM to identify muscle cross-

sectional areas (CSAs) and to separate muscle tissue from other tissues. For each subject, 

the proximal and distal sets of lower-leg axial images were sorted according to the slice 

locations and joined together using the marker bead that was placed on the skin. This 

composite set of axial images was then loaded into the software for analysis. The 

perimeters of the anterior compartment (containing the dorsiflexors: tibialis anterior, 

extensor hallucis longus, extensor digitorum longus, peroneus tertius) (Gray 1973), the 

soleus (SO), and the medial (MG) and lateral (LG) heads of the gastrocnemius were 

outlined in every other slice (Figure 2-2, Left). The male data set from the online image 

repository for the Visible Human project was used as a primary reference 

(http://www.nlm.nih.gov/research/visible/visible_human.html).  
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The CSA of each muscle compartment in each analyzed slice (every other 

measured slice) was computed, multiplied by an 8 mm slice spacing (2 x 4 mm), and 

summed together to give muscle volumes. In pilot work, the muscles were also outlined 

in every slice for six young subjects. The mean absolute differences between using every 

slice and every other slice were 1.97, 2.61, and 1.18 cm3 for the total volume estimates of 

the DF, SO, and GA (heads combined) muscles. At worst, this represented a difference of 

about 2%, but resulted in a significant savings in analysis time. We therefore chose to use 

every other slice for the muscle volume computations. 

In each analyzed slice, a histogram representing the pixel intensities for the area 

within the leg boundary was created. The lower pixel intensities represent cortical bone 

and tendon; the high intensities represent trabecular bone and adipose tissue; muscle 

tissue lies between these intensity regions. The pixel intensity thresholds for separation of 

these regions were initially chosen by identifying the peak intensity (representing 

muscle), and then finding where the slope to either side reaches zero (Figure 2-2). The 

interactive MRI analysis program then colored the corresponding MRI slice, based on the 

chosen thresholds (bone/tendon = blue, muscle = red, adipose tissue = green). The 

thresholds were then manually adjusted until an optimal separation of the muscle tissue 

was reached. 
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Figure 2-2. A: Example of reconstructed muscle volumes of the dorsiflexors (DF), 
gastrocnemius (GA), and soleus (SO). B: An axial MRI image illustrating the 
identification of the muscles of interest (left). Inverted image (right) C: Pixel intensity 
histogram showing the separation of cortical bone/tendon (I), muscle (II), and trabecular 
bone/adipose tissue (III). 

 

2.2.4.3 Plantarflexor PCSA Calculations 

The ratio between the optimal fiber length (MFOPT) and muscle length (ML) was 

computed for the DF muscle (Spoor et al. 1991), and for the soleus (SO) and medial 

(GM) and lateral heads (GL) of the gastrocnemius (Out et al. 1996). The MFOPT/ML 

ratios were: DF = 0.209, SO = 0.150, GM = 0.101, GL = 0.135. For each subject in the 

present study, the muscle length was computed at the same joint angles as used by Out et 

al. for their muscle length estimation (Ankle at 95°; Knee at 135°), and then multiplied by 

the MFOPT/ML ratio, to give subject specific estimates of MFOPT The muscle lengths were 

computed using polynomials from the SIMM anatomical model (Delp et al. 1990).  
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Muscle fiber pennation angles (MFθ) were estimated by averaging the data for the 

three cadavers presented in Wickiewicz et al. (1983). Although MFθ could have been 

estimated for some muscles from the ultrasound data, we chose to use literature values 

due to our limited ultrasound measurements. Mainly, ultrasound images were not 

obtained for the other muscles in the anterior compartment (besides the tibialias anterior), 

the medial head of the GA, and for the SO. Therefore MFθ could not be measured for 

these muscles. The GM and GL MFOPT and MFθ values estimated from the literature were 

then averaged to give a combined estimate for the gastrocmenius (GA). Physiological 

cross-sectional areas (PCSAs) was computed for the DF, SO, and GA muscles as 

 

 cosVOL

OPT

M
PCSA MF

MF θ=
 

(3.2) 

where MVOL is the volume of the contractile tissue determined from the MRI data. The 

relative PCSA (PCSAREL), relating the SO and GA PCSAs, was computed as 
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PCSA
PCSA

PCSA
=

 
(3.3) 

2.2.4.4 Moment Arm Measurement 

The shapes of the muscle moment arm vs. ankle flexion-extension angle 

relationships for the DF, GA, and SO muscles were based on a SIMM (Delp et al. 1990) 

musculoskeletal model of the lower leg. The individual muscle moment arm relationships 

for the lateral and medial heads of GA and the SO were averaged together, giving an 

average moment arm vs. ankle flexion-extension relation for the Achilles tendon. This 



 

24 

average moment arm was used for both the GA and SO muscle models. The average 

percent difference between the “average” moment arm relation and the individual muscle 

relations was 1.96%. 

MRI was used to obtain a series of sagittal-plane images of the ankle joint. An 

interactive computer program was written for identification of muscle moment arms. The 

following were identified on the MRI image (Figure 2-3), based on the methods of Rugg 

et al. (1990): 1) the ankle joint center, 2) the lines of action of the DF and Achilles 

tendons (for PF muscles), and 3) shank and foot segments. The DF and GA/SO moment 

arms were measured as the perpendicular distance from the lines of action and the joint 

center. The ankle angle was computed between the shank and foot segments. This 

measurement process (loading the blank MRI image, and then identifying the joint center, 

lines of action, segments, and moment arms) was repeated three times by the same 

investigator. The moment arms and corresponding joint angles were then averaged 

together. For each subject, the average moment arm and ankle angle values were used to 

scale the moment arm vs. ankle flexion-extension angle relationships from SIMM. 
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Figure 2-3. Example of the calculation of the dorsiflexor  (DF) and plantarflexor (PF) 
moment arms (MA) from a sagittal plane MRI image. The pixel intensities were inverted 
for clarity (right). 

 

2.2.4.5 Moment Arm Correction for Retinaculum Stretch 

It has been demonstrated that the moment arm of the DF muscles become greater 

with increases in muscular force, due to the stretching of retinaculum (Maganaris et al. 

1999). Using the data presented in Maganaris et al., we calculated the average moment 

arm increase across four different ankle angles from rest to MVC (as a percentage of the 

subjects’ resting moment arm lengths) as 35.6 ± 4.3%. To account for these changes in 

the DF moment arm for the subjects in our study, we assumed that our subjects would 

show similar changes, in terms of the percentage change in the moment arms as a 

function for the force expressed across the tendon. We assumed a linear relation between 
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the increase in moment arm and the force expressed across the tendon. The amount of DF 

moment arm increase at MVC was ( )MVCMA↑ computed as 
 

 0*MVC REFMA MA MA↑ =↑  (3.4) 
 

where 0.356REFMA↑ =  (Maganaris et al. 1999) and 0MA  is the resting DF moment arm 

(measured from MRI data for each subject). The amount of moment arm increase at a 

given DF muscle force level ( )MA↑  was determined by 
 

 
0

MVC

P
MA MA

P

 
↑ =↑  

   
(3.5) 

 If , thenMVC MVCMA MA MA MA↑ > ↑ ↑ =  (3.6) 

where P  is the force generated by the DF muscle, and 0P  is the maximal isometric force 

of the DF (computed in the muscle model, see below).  

2.2.5 Modeling, Simulation, and Optimization 

From the experimental data analysis, the dorsi- and plantarflexor torque-angle, 

torque-extension, and torque-angular velocity relationships were obtained. The desired 

mechanical properties governing the force-length and force-velocity relations of 

individual muscles were found by optimizing the performance of a musculoskeletal 

model to match the experimental data. The values that are found for each subject through 

the optimization procedure were constrained by the subject’s experimentally measured 

muscle properties, allowing each set of muscle properties to be tailored to the individual 

subjects.  
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2.2.5.1 Model of Musculotendon Dynamics 

The dynamics of the DF, GA, and SO muscle-tendon units were represented by 

Hill-type models (Hill 1938). Each muscle model incorporated a contractile component 

and a series elastic component, and was similar in concept to that used by Soest and 

Bobbert (1993). The behavior of the contractile component was characterized by 

nonlinear stimulation-activation, force-length, and force-velocity relationships. The 

behavior of the series elastic component was represented by a nonlinear force-extension 

relationship. A detailed explanation of the muscle model can be found in Appendix B. 

2.2.5.2 Muscle Excitation and Activation 

We assumed that there were no age-related differences in the ability of subjects to 

maximally excite their muscles, in either the isometric or isovelocity trials (Klass et al. 

2005). Therefore, for the isometric simulations, muscle excitation and activation was 

assumed to always be maximal; for the isovelocity simulations, muscle excitation was 

assumed to start at zero and then instantaneously increase and remain at a maximum level 

(100%). The timing of this step increase in muscle excitation was determined by visual 

inspection of rectified EMG data recorded during the experimental isovelocity 

simulations. A threshold of 3 standard deviations above the baseline EMG level was used 

as a guide to identify excitation onsets. The muscle excitation time histories were 

converted to muscle activation (see Appendix B) using an exponential with a time 

constant of 15 ms for rising activation (Winters 1995).   
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2.2.5.3 Construction of Model Torque-Angle Curve 

For each subject, torque-angle relations were constructed as part of the 

optimization process (Figure 2-4A). Construction of a single model torque-angle curve 

entailed multiple simulations, with each simulation occurring at the same ankle angle as 

the experimental data for a given subject. Simulations were performed separately - one 

for the dorsiflexors (DF) and one for the plantarflexors (GA & SO). Based on the 

experimental isometric joint angles, the musculotendon lengths were calculated using a 

scaled SIMM model. In each simulation, the contractile component of each muscle model 

was initially at rest (zero force). The contractile component was then maximally 

stimulated for 3 s. The force that the contractile component produced at the end of this 

isometric simulation was multiplied by the muscle’s muscle moment arm, giving the 

ankle joint torque. In the two-muscle model case (plantarflexion) the two muscle torques 

were summed. This gave a single point on the torque-angle curve. This procedure was 

repeated at all joint angles tested, resulting in a model torque-angle curve. The model 

torque-angle curve did not have antagonistic muscle contributions, and was therefore 

compared to the co-activation-adjusted experimental data (which accounted for this). 

2.2.5.4 Construction of Model Torque-Extension Relation 

In conjunction with the dorsi- and plantarflexion model isometric simulations, 

calculations were performed to construct a model torque-extension relation (Figure 

2-4B). For each subject the aponeurosis extension data (∆����� from the block of 5 

experimental torque-extension ultrasound trials were averaged together and input to the 
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series elastic component force-extension equation (used in the muscle model), which was 

solved for the forces generated by the contractile component of each muscle ( )0P : 

 

 � 	 �
� �2� · ��������
 � 2� � ��� � �
���4�
��  (3.7)

where α  and β  are the coefficients defining the series elastic force-extension relation, 

SL is the series elastic component slack length, 0P  is the maximal isometric force, and 

SECl  is the length of the series elastic component, computed as SEC S SECl L l= +∆ . For 

dorsiflexion, the forces predicted in the DF muscle were multiplied by the estimated DF 

moment arm (corrected for retinaculum stretch), giving an estimate of the torque 

produced by the DF muscles, producing a model dorsiflexor torque-extension relation. 

For plantarflexion, the forces predicted for the GA and SO muscles were multiplied by 

the estimated Achilles tendon moment arm, giving estimates for the torque contributions 

from the GA and SO muscles. These plantarflexor torques were summed, giving a model 

plantarflexor torque-extension relation. 

2.2.5.5 Construction of Model Torque-Angular Velocity Curve 

The simulations used to construct the model torque-angular velocity relation 

(Figure 2-4C) was similar to that described for the torque-angle data; however, non-

isometric conditions were simulated and the experimental EMG data were used to specify 

the timing of the onset of muscle excitation. This was done because the subjects’ muscles 

may not be fully activated in the high-velocity trials (Bobbert and van Ingen Schenau 

1990). The peak joint torque throughout each simulation was taken, yielding a single 
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point on the torque-angular velocity curve. Multiple simulations were performed at 

different joint angular velocities (corresponding to the experimental velocities) to make 

up a complete curve based on the given set of muscular parameters.  

2.2.5.6 Optimization Procedure 

For each subject, a genetic algorithm (Storn and Price 1995) was used to find the 

combination of muscle model parameters that minimized the differences between 

predicted model and experimental data (torque-angle and torque-angular velocity). We 

chose to use a genetic algorithm because it has been shown that gradient-based 

optimization methods do not always converge due to the highly nonlinear characteristics 

of musculoskeletal models (Pandy et al. 1992, van Soest and Casius 2003).  At the start 

of each optimization an initial population was created; each population member 

possessed a set of “genes”, which in our case, consisted of the parameters defining the 

behavior of the muscle models (the genetic makeup of each member in the initial 

population was chosen randomly). The number of population members in each generation 

was equal to ten times the number of parameters (genes). The “fitness” of each member 

was determined by performing a set of isometric and isovelocity simulations, and 

computing the difference between the model and experimental data. Smaller differences 

corresponded to members with higher fitness levels, which had a greater chance to pass 

their genes (muscle properties) to the next generation. Random mutations in the genes 

allow the optimization to move “uphill”, preventing the procedure from getting “stuck” in 

local minima (a non-optimal solution). This process repeats, generation after generation, 

until all of the population members have similar genes (model parameters), no further 
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changes are observed, and a maximally fit population is obtained (when all population 

members differed by less than 0.001 Nm from each other and from the latest optimal 

solution value). 

Two optimizations were performed for each muscle group (dorsi- and 

plantarflexor). The optimization procedures are summarized in Figure 2-4. The first of 

optimizations (Phase 1) found an optimal set of isometric muscle model parameters, 

including: one parameter specifying the maximal isometric contractile component force 

(�
), two specifying the contractile component force-length relation (�
 , �), and three 

specifying the series elastic component force-extension relation (SL , α , β ). The second 

set of optimizations (Phase 2) used the previously optimized isometric parameters as 

inputs and found an optimal set of dynamic model parameters specifying the contractile 

component force-velocity relation ( 0a P , 0b L  ,ε ). 
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Figure 2-4. Schematic of isometric (Phase 1) and isovelocity (Phase 2) optimization 
flows. See text for details. 

 

2.2.5.7 Muscle Model Parameter Constraints 

For the dorsiflexion isometric optimizations (Phase 1), no restrictions were placed 

on the values for �
. For the plantarflexion isometric optimizations (Phase 1), the relative 

PCSAs of the GA and SO muscles were used to constrain �
 values. The PCSA ratio 

(SO/GA) was allowed to vary by ±15% of the value chosen for the GA. For example, if 

the SO PCSA was 140% greater than the GA PCSA, the SO �
 was constrained to be 140 

± 15% of the GA �
. The width of the force-length relationships (�) was allowed to vary 

between “wide” (0.6 to 1.4 �
) and  “narrow” (0.8 to 1.2 �
) widths, representing 

muscles with a uniformly parallel or highly pennate architecture, respectively (Woittiez et 
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al. 1983). Values for the force-velocity coefficient 0a P were constrained to be between 

0.1 and 0.6, based on the range of values reported in the literature (Bobbert and van Ingen 

Schenau 1990, Close 1972, Hof and Van den Berg 1981). Values for 0b L were 

constrained to be between 0.05 and 6 s-1 (Bobbert and van Ingen Schenau 1990).  Finally, 

the eccentric plateau (ε ) was limited to be between 1.01 and 2, which is a slightly larger 

range than the 1.1 to 1.8 range used by Epstein and Herzog (1998). 

2.2.5.8 Fitness Criteria (Minimizing the Cost) 

2.2.5.8.1 Phase 1 

A maximal fitness ( )f X
r

 was obtained by minimizing the costs associated with 

the differences between the model- and human-generated torque-angle (TC θ ) and torque-

extension data (T LC∆ ), respectively. For the plantarflexion optimizations, an additional 

cost was added (SOGAC ), which was related to the deviation of the model SO and GA 

maximal isometric force ratio ( )0 0
SO GAP P  from the ratio of experimental PCSAs 

( )SO GAPCSA PCSA
 
estimated from the MRI data: 

 ( ) T T L SO GAf X C C Cθ ∆  = + + 
r

 
(3.8) 

where X
r

is the vector of isometric model parameters (one vector for each muscle): 

 [ ]0 0, , , ,SX P L L α β=
r

 (3.9) 

A second order polynomial was fit to the model generated torque-angle ( )Tθ  data points, 

and the polynomial was evaluated at 1° ankle angle increments over the same range of 

joint angles as the experimental torque-angle data. Similarly, a second-order polynomial 

was fit to the model torque-extension ( )T L∆  data, and evaluated at 1% increments from 
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zero to 60% of the series elastic component slack length. The Phase 1 costs were equal to 

the root-mean-squared difference between the model and experimental evaluated data: 

 

 
��� 	 ������� ! � ����"#$�%

&'(  
(3.10)

 
��∆) 	 �����∆)�� ! � ��∆)��"#$�%

&'(  
(3.11)

where  ��� is the maximal isometric torque at joint angle *, ��∆)� is the torque produced at 

series elastic componenet extension *, and + is equal to the number of evaluated data 

points. The superscripts MOD and EXP represent data from the evaluated fits for the 

model and experimental data, respectively. For TC θ , N depended on each subject’s ankle 

range of motion, for T LC∆ , N was always 60. The additional cost for the plantarflexion 

optimizations was given by: 

 0

0

SO
SO

SO GA GA
GA

PCSA P
C

PCSA P
= −  (3.12) 

which penalized the model for choosing maximal isometric forces for the SO and GA that 

were different from the measured ratio between the SO and GA PCSAs. This cost 

discouraged the optimization from setting the maximal isometric force of one 

plantarflexor muscle very high, and setting the value for other plantarflexor very low 

(within the ±15% range). 
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2.2.5.8.2 Phase 2 

For the second optimization, a maximal fitness was obtained by minimizing two 

functions. The first was associated with the differences between equations fit to the 

model and experimental torque-angular velocity data (see next paragraph; 1
TC ω ),  and the 

second was associated with the deviation of the model data points from a fitted equation 

( )2
TC ω : 

 ( ) 1 2
T Tf X C Cω ω= +

r
 (3.13) 

where the parameters for each muscle model include: 

 [ ]0 0, ,X a P b L ε=
r

 (3.14) 

A rectangular hyperbola fit to the concentric (Hill 1938) and eccentric (FitzHugh 1977) 

portions of the model torque-angular velocity data over the interval -200°/s (eccentric) to 

300°/s (concentric). The Phase 2 cost was equal to the root-mean-squared difference 

between the model and experimental torque-angular velocity fits at 1°/s intervals: 
 

 ( )21

1
i i

N
MOD EXP

T
i

C T Tω ω ω
=

= −∑  (3.15) 

where �,�is the maximal torque produced during the constant angular velocity period for 

velocity *. For the isovelocity simulations + is equal to the number of evaluated data 

points (N = 500). The second cost was equal to the root-mean-squared difference between 

the fitted model data  ( )
i

MODTω  and the model data points( )ˆ
i

MODTω :  
 

 ( )2
2

1

ˆ
i i

n
MOD MOD

T
i

C T Tω ω ω
=

= −∑  (3.16) 

where n  is equal to the number of model-generated data points.  
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2.2.5.9 Comparison with Experimental Data 

For the purposes of this study, the most important type of validity is “predictive 

validity”. This relates to how well the model, once tailored to an individual subject, 

predicts the performance of the subject. For a given subject, the optimization procedure 

fit a series of discrete joint torque data points, which were based on events occurring 

during the isometric and isovelocity dynamometer trials. The model should give a 

reasonable prediction of the time-course of net joint torque changes - given experimental 

joint angle, joint angular velocity, and muscle excitation time histories. Ideally, these 

inputs should come from data that were not used in the optimization process. Lacking 

such independent data, the next best thing is to use the isovelocity dynamometer data, and 

compare the entire time-course of joint torque changes that the model predicts with the 

experimentally measured data. The latter procedure was used in the present study. 

 To compare the net joint torque time-series predicted from the optimized model 

with the experimental data, the model must be modified to include the effects of 

antagonistic co-contraction, since the original experimental data included these 

antagonistic contributions (which were accounted for in the original optimizations). To 

this end, isovelocity dorsiflexion and plantarflexion simulations were performed; 

however, each simulation included antagonist muscle models. The excitation levels of the 

antagonistic muscles was set to be a percentage of the agonist muscles, using the same 

linear equations as used to adjust the experimental torque-angle and torque-angular 

velocity data for co-activation in the original optimizations (Appendix A). 
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2.2.5.10 Statistics 

The main purpose of the statistical analysis was to test whether there were age-

related differences in the various experimental measures (ultrasound, MRI, dynamometer 

data) and the predicted muscle mechanical properties for the different muscles. Effects of 

gender were also considered.  

All statistical analyses were done with R (R Version 2.8.1, Foundation for 

Statistical Computing) (2008). Normality was assessed graphically using quantile-

quantile plots; data that were not normally distributed were transformed by rank-ordering. 

For the analysis of the experimental dynamometer data and the optimized muscle 

property data, MANOVAs were first performed to assess overall main effects and 

interactions. These were followed by separate three-way ANOVAs (age x gender x 

muscle) on each of the dependent variables, with two levels for the muscle factor (DF & 

PF) for the dynamometer data and three levels (DF, GA, & SO) for the muscle property 

data. The dependent variables for the dynamometer experiments included three variables 

describing the torque-angle relationship: the peak torque (T0), the ankle angle at which 

the peak torque occurred, and the width of the torque-angle relationship, and three 

variables describing the torque-angular velocity relationship: ATω and BTω shape 

coefficients, and the eccentric torque plateau (TECC). Note that this data analysis focused 

on the co-activation adjusted data for comparison to the optimized individual muscle 

mechanical properties; although results for the non-co-activation adjusted data will be 

presented graphically. The dependent variables for the mechanical properties predicted 

from the optimization included nine properties for each muscle: 

0 0 0 0, , , , , , , ,SP W L L a P b Lα β ε . 
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For assessment of the series elasticity data measured in the ultrasound 

experiments, separate three-way ANOVAs was performed with age, gender, and muscle 

(DF and PF) as factors and the maximum aponeurosis extension, maximum torque, and 

coefficients describing the shape of the torque-extension relation as the dependent 

variables ( T Lα ∆ , T Lβ ∆ ). For the analysis of data measured from the MRI experiments, 

separate three-way ANOVAs (age x gender x muscle [DF, GA, SO]) were performed 

with PCSA, total muscle volume, and muscle-only volume as dependent variables. Four-

way ANOVAs were performed to assess differences in the net optimization costs; the 

independent factors included age, gender, muscle (DF or PF) and contraction type 

(isometric or isovelocity).  

Effect sizes for the ANOVAs were determined using Cohen’s f statistic (Cohen 

1969). Although the effect sizes will not be discussed explicitly, they are listed in tables 

so that the reader can make informed interpretations of the results. Effect size measures 

the strength of the observed differences. For effect size a rough guide for interpreting 

Cohen’s f is that for a small effect f = .1, a medium effect f = .25,  and a large effect f = 

.4. Multiple comparisons were used for post-hoc analysis. A p-value of .05 was used as a 

guide for judging statistical significance for all tests. 

2.3 Results 

2.3.1 Ultrasound Experiment 

 The shapes of the experimental torque-extension relations are shown in Figure 

2-5; the corresponding shape coefficients, maximal extensions, and maximal torques are 

presented in Table 2-2. Although the statistical analysis revealed significant effects of age 
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and muscle (discussed below), there were no main effects of gender on the maximal 

extension (p = .111), maximal torque (p = .228), or the shape coefficients α  (p = .286) 

and β  (p = .279). 

Overall the older adults demonstrated smaller aponeurosis extensions, as there 

was a significant main effect of age (p < .001). There was also an interaction between age 

and muscle (p = .015). Here, the older subjects had significantly smaller extensions in the 

plantarflexors compared to the dorsiflexors (p = .017). On the other hand, there were no 

differences between the maximal extensions of the dorsi- and plantarflexors for the 

younger subjects (p = .388). 

In general, compared to the older subjects, the younger subjects were able to 

generate larger torques (an age main effect; p < .001), and the plantarflexor muscles 

produced larger torques in both age groups (a muscle main effect; p < .001). There was a 

significant interaction between age and muscle (p <  .015), such that the younger subjects 

had greater maximum torques in both dorsi- and plantarflexion, but the age-related 

difference was much larger for the plantarflexors (p = .003). 

The older subjects had stiffer muscles, as there was a significant main effect of 

age for the shape coefficient T Lα ∆  (p = .042), which defines the rate of increase in 

stiffness with extension. On the other hand, there was no main effect of age for T Lβ ∆  (p = 

.457), which mainly affects the linearity of the torque-extension relation. For both 

coefficients ( ),T L T Lα β∆ ∆  there were significant main effects for muscle group, such that 

the plantarflexors were stiffer (larger T Lα ∆ ; p = .022) and had a more linear relation 

(larger T Lβ ∆ ; p < .001). 
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Figure 2-5. Second-order polynomial fits to the young (solid black lines) and older 
(broken gray lines) torque-extension data from the ultrasound experiments. The mean ± 
SD extensions at the peak torque are shown (dot and cross).  

 
 

Table 2-2. Parameters describing fits to experimental torque-extension data. 

Group Mus. 
Max. Extension 

(cm) 
Max. Torque 

(Nm) 
T Lα ∆ ‡ T Lβ ∆ ‡ 

Young 
Male 

DF 8.4 ± 1.0 42.7 ± 5.3 4.91 x 105 ± 2.21 x 105 1096 ± 1409 
PF 11 ± 3.5 99.1 ± 58.6 8.35 x 105 ± 6.97 x 105 21983 ± 3554 

Young 
Female 

DF 8.0 ± 1.8 26.9 ± 3.4 3.86 x 105 ± 1.94 x 105 577 ± 550 
PF 7.8 ± 3.0 77.9 ± 30.9 8.09 x 105 ± 7.33 x 105 4641 ± 4172 

Older 
Male 

DF 8.5 ± 4.7 29.4 ± 14.6 5.78 x 105 ± 6.17 x 105 893 ± 815 
PF 3.5 ± 1.4 38.7 ± 18.2 4.64 x 106 ±5.58 x 106 1095 ± 1228 

Older 
Female 

DF 6.0 ± 1.8 22.4 ±3.4 8.09 x 105 ±6.78 x 105 197 ± 402 
PF 4.7 ± 2.0 43.6 ± 19.1 1.68 x 106 ±1.59 x 106 16298 ± 5192 

Cohen’s f  0.53 0.48 0.33 0.23 
Main Effects  A A, M A, M M 
Interactions  A x M A x M   

‡Coefficients describing the torque (Nm) vs. extension (m) relation: Torque = 2
T L T Lx xα β∆ ∆+  

Significant main effects and interactions are shown for age (A), and muscle (M) 
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2.3.2 Magnetic Resonance Imaging (MRI) 

The results of the MRI analyses are presented in Table 2-3. Male subjects had 

larger PCSAs, total muscle volumes, and muscle-only volumes compared with the female 

subjects. Significant main effects of age were found for PCSA and muscle-only volume 

(p = .002 and p = .011, respectively), such that the younger subjects had larger PCSAs 

and muscle-only volumes. Significant effects for gender and muscle were found for 

PCSA (gender: p = .017, muscle: p < .001), total volume (gender: p < .001, muscle, p < 

.001), and muscle-only volume (gender: p < .001, muscle, p < .001). Post-hoc analysis 

revealed significant differences between all three muscles in PCSA, total volume, and 

muscle-only volume (p < .01 for all comparisons), such that the SO had the largest 

values, followed by the GA, and DF.  
 
 

Table 2-3. Measured individual muscle volumes, estimated physiological cross-sectional 
areas (PCSAs), optimal fiber lengths, and pennation angles. Values are Mean ± SD. 

Group Mus. 
Total Vol. 

(cm3) 
Mus. Vol. 

(cm3) 
Opt. Fib. Lena 

(cm) 
Pen. Ang.b 

(°) 
PCSA 
(cm2) 

Young 
Male 

DF 276 ± 32 257 ± 28 6.3 ± 0.3 5 40.7 ± 3.7 
GA 414 ± 80 397 ± 75 5.0 ± 0.3 12.5 77.5 ± 12.6 
SO 443 ± 60 424 ± 53 4.2 ± 0.2 25 91.3 ± 11.0 

Young  
Female 

DF 209 ± 48 191 ± 44 5.8 ± 0.5 5 33.2 ± 7.9 
GA 342 ± 79 326 ± 79 4.6 ± 0.4 12.5 70.2 ± 18.9 
SO 410 ± 65 390 ± 66 3.9 ± 0.4 25 91.6 ± 17.6 

Older 
Male 

DF 306 ± 55 266 ± 44 6.3 ± 0.3 5 41.9 ± 6.0 
GA 372 ± 60 306 ± 73 5.0 ± 0.2 12.5 59.7 ± 14.7 
SO 540 ± 183 406 ± 164 4.3 ± 0.2 25 86.1 ± 33.4 

Older  
Female 

DF 203 ± 36 169 ± 35 6.0 ± 0.3 5 27.9 ± 5.9 
GA 267 ± 37 224 ± 35 4.8 ± 0.2 12.5 45.4 ± 6.5 
SO 400 ± 70 349 ± 51 4.1 ± 0.2 25 77.9 ± 11.2 

Cohen’s f  0.40 0.40 - - 0.28 

Main Effects  G, M A, G, M - - A, G, M 

Interactions  - - - - - 

Muscle Abbreviations: DF = dorsiflexors; SO = soleus; GA = gastrocnemius 
Significant main effects and interactions are shown for age (A), gender (G), and muscle (M) 
aOptimal fiber length estimated from literature (see text for details) 
bBased on literature (see text for details) 
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2.3.3 Dynamometer Experiments 

The average torque angle and torque-angular velocity relations for the young and 

older subjects are shown in Figure 2-6, which shows the measured and co-activation 

adjusted data, the latter of which was used as inputs for the musculoskeletal models. To 

fully appreciate the variability of the data between subjects, the individual co-activation 

adjusted torque-angle and torque-angular velocity curves are shown in Figure  2-7. 

Summary statistics for the parameters describing the co-activation adjusted relations are 

presented in Table 2-4. The MANOVA, which considers the different parameters 

defining the co-activation adjusted torque-angle and torque-angular velocity relations 

collectively ( )0, , , ,T T ECCT Width A B Tω ω , revealed a significant overall main effect for 

muscle group (dorsi- vs. plantarflexion; p < .001). No overall main effects were found for 

age (p = .126) or gender (p = .800). 
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Figure 2-6. Average young (solid lines) and older (dashed lines) torque-angle (left) and 
torque-angular velocity (right) curves. For each subject group, the measured (thicker 
lines) and co-activation adjusted (thinner lines) are shown. 
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Figure  2-7. Equations representing the best fit between the co-activation adjusted 
experimental data and second-order polynomials (isometric) and rectangular hyperbolas 
(isovelocity) for young (solid black lines) and older (dashed gray lines). The solid circles 
positioned on the isometric curves represent the peak isometric torque. For some subjects, 
the peak did not occur within the subject’s range of motion, in these cases the solid circle 
is position at the end of the range of motion. The isovelocity fits are scaled to the peak 
isometric torques (solid circles). 
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Table 2-4. Parameters describing fits to the experimental co-activation adjusted torque-
angle and torque-angular velocity data. 

Group Mus. 
Torque-Angle 

 
Torque-Angular Velocity 

0T  Anglea (°) Width (°) 
 

TA ω † 
TB ω  ECCT  

Young 
Male 

DF 61 ± 28 7 ± 9 96  ± 32  2.7 ± 6.7 117 ± 25 1.48 ± 0.31 
PF 128 ± 62 -8 ± 9 102 ± 26  14.8 ± 30.7 122 ± 61 1.33 ± 0.21 

Young 
Female  

DF 40 ± 8 11 ± 9 102 ± 13  9.9 ± 12.9 132 ± 23 1.53 ± 0.28 
PF 81 ± 26 -2 ± 15 118 ± 64  9.3 ± 15.9 91 ± 41 1.43 ± 0.27 

Older 
Male 

DF 42 ± 7 13 ± 7 111 ± 48  1.3 ± 2.0 75 ± 16 1.30 ± 0.12 
PF 74 ± 35 -12 ± 9 117 ± 33  5.2 ± 7.4 113 ± 59 1.41 ± 0.29 

Older 
Female 

DF 44 ± 14 7 ± 8 95 ± 9  0.5 ± 0.9 91 ± 17 1.39 ± 0.27 
PF 81 ± 27 -12 ± 13 110 ± 34  3.2 ± 7.6 75 ± 57 1.38 ± 0.33 

Cohen’s f  0.40 0.21 0.16  0.21 0.34 0.18 
Main Effects  M M -  - A - 
Interactions  A x G - -  - G x M - 

Significant main effects and interactions are shown for age (A), gender (G), and muscle (M) 
†Non-normal distribution. 
aThe ankle angle at which the peak torque occurred; Dorsiflexion = Negative; Plantarflexion = Positive 

 

For the maximum isometric torque predicted from the coactivation-adjusted 

torque-angle curve (0T ), no significant main effect for age was found (p = .063); 

however, a main effect for muscle (higher torques were produced for plantarflexion; p < 

.001) and a significant interaction between age and gender was found (p = .040). To assist 

with interpretation of the interaction, interaction plots are shown in Figure 2-8 (Left). In 

the females, there were no differences between age groups for the dorsi- (p = .820) or 

plantarflexors (p = .999). In the males, although there were also no age-related 

differences in the dorsiflexors (p = .308), the plantarflexors were significantly stronger in 

the young males (p = .005) compared to the older males. 
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Figure 2-8. Interaction plots for the maximal isometric torque (T0, left) and the 
coefficient BTω for the co-activation adjusted torque-angular velocity relation (right). 

 

The maximum dorsiflexion torque occurred in a plantarflexed position, and the 

maximum plantarflexion torque occurred in a dorsiflexed position (see Table 2-4). There 

was a main effect of muscle group for the angle at which the peak torque occurred; the 

maximum dorsi- and plantarflexion torques occurred at significantly different angles (p < 

.001). There were no effects of age (p = .315) or gender (p = .954) on the peak torque 

ankle angle. There were also no significant main effects for the width of the torque-angle 

relation with respect to age (p = .655), gender (p = .909), or muscle (p = .244). 

 There were no effects of age (p = .533), gender (p = .996), or muscle (p = .712) on 

the TA ω  coefficient, which is similar to the Hill 0a P  coefficient, primarily affecting the 

shape of the concentric portion of the torque-angular-velocity relation (see  

Figure 2-11 for a schematic depicting the effects of changing the Hill coefficients).  Also, 

for the eccentric plateau (ECCT ), there were no significant main effects of age (p = .368), 

gender (p = .490), or muscle (p = .601).  

There was a significant main effect of age forTB ω , such that the value of the 

coefficient was greater for the younger subjects (p = .029). This coefficient is similar to 

the Hill 0b L  coefficient, which affects the overall shape of the concentric and eccentric 
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portions of the torque-angular velocity curve; the larger value in the young subjects 

indicates a higher concentric shortening velocity and a less sharp (steep) transition 

between the concentric and eccentric portions of the curve. There was also a significant 

interaction between gender and muscle group (p = .044). Ignoring age (in the interaction), 

TB ω was greater for plantarflexion in the male subjects, while TB ω  was greater for the 

dorsiflexors in the female subjects (Table 2-4).  

2.3.4 Modeling Results 

As expected, several of the muscle property parameters were correlated (see 

Appendix C). In particular, the maximum series elastic component extension  ( )MAXL∆  

was correlated with the coefficients defining the force-extension relation ( ),α β . In 

addition, the maximal contractile component shortening velocity (MAXV ) was correlated 

with the coefficients defining the shape of the force-velocity relation ( 0a P , 0b L ). 

Therefore, MAXL∆ and MAXV were not included in the MANOVA.  

2.3.4.1 General  

The optimized force-length, force-extension, and force-velocity relationships are 

shown in Figure 2-9. The results of the MANOVA performed on the muscle mechanical 

properties defining the aforementioned relationships (Table 2-5) revealed overall 

significant main effects for age (p = .012), gender (p = .025), and muscle (p < .001). The 

results from separate ANOVAs on each mechanical property follow. To assist with 

interpretation, variables listed in Table 2-5 with significant main effects are displayed in 

Figure 2-10. The individual costs for Phase 1 and 2 optimizations are in Appendix C. 
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Figure 2-9. Graphical representations of optimized muscle mechanical properties 
defining the shapes of the contractile-component (CC) force-length (FL) and force-
velocity (FV) relations, and the series elastic component (SEC) force-extension (F∆L) 
relation. Properties for the dorsiflexors (DF), gastrocnemius (GA), and soleus (SO) are 
shown. The thin gray lines represent data from individual subjects, while the thick black 
lines represent the mean of the young (solid) and old (dashed) subject groups. Note that 
x-axis scales are different for the three muscles to allow finer resolution of the curves. 



 

 

 
 

Table 2-5. Optimized muscle mechanical properties. 

Group Mus. 
0P  (N) 

 Force-Length (FL)  Force-Extension (F∆L)  Force-Velocity (FV) 

 
0L (cm) W ( )0%L   α  β  

SL (cm)  0a P † 0b L (s-1) ε ‡
 

Young 
Male 

DF 976 ± 403  15.4 ± 5.4 52.2 ± 11.8  370 ±165 11.6 ± 14.0 14.9 ± 3.4  0.102 ± 0.002 0.757 ± 0.309 1.58 ± 0.39 
GA 1423 ± 695  20.7 ± 7.6 58.6 ± 11.1  630 ± 299 19.2 ± 13.4 24.2 ± 7.3  0.380 ± 0.117 0.854 ± 0.554 1.42 ± 0.40 
SO 1616 ± 739  14.8 ± 9.7 53.2 ± 12.7  404 ± 284 13.3 ± 14.6 16.0 ± 4.7  0.267 ± 0.150 0.532 ± 0.587 1.31 ± 0.31 

Young 
Female 

DF 679 ± 128  14.2 ± 2.3 57.9 ± 12.4  689 ± 645 9.3 ± 6.3 14.1 ± 1.2  0.300 ± 0.230 0.736 ± 0.152 1.60 ± 0.32 
GA 873 ± 584  20.0 ± 6.7 63.4 ± 10.9  954 ± 1055 28.1 ± 23.6 21.5 ± 4.0  0.399 ± 0.151 1.011 ± 0.479 1.64 ± 0.32 
SO 1113 ± 658  13.9 ± 4.0 51.9 ± 10.5  898 ± 973 25.8 ± 23.8 13.0 ± 1.9  0.270 ± 0.136 0.258 ± 0.120 1.53 ± 0.43 

Older 
Male 

DF 623 ± 62  15.3 ± 4.6 53.6 ± 13.4  969 ± 795 15.5 ± 12.4 15.7 ± 2.7  0.105 ± 0.012 0.514 ± 0.217 1.37 ± 0.19 
GA 718 ± 149  23.0 ± 6.1 54.3 ± 14.2  1575 ± 910 10.3 ± 9.5 20.6 ± 7.4  0.395 ± 0.203 0.594 ± 0.359 1.27 ± 0.37 
SO 1053 ± 343  21.5 ± 6.0 52.5 ± 11.4  1800 ± 859 8.7 ± 14.0 11.0 ± 3.5  0.237 ± 0.128 0.270 ± 0.226 1.28 ± 0.25 

Older 
Female 

DF 721 ± 255  16.0 ± 2.0 45.2 ± 5.9  1412 ± 1237 5.0 ± 3.5 13.0 ± 2.2  0.112 ± 0.029 0.596 ± 0.210 1.44 ± 0.29 
GA 775 ± 225  23.7 ± 8.6 50.9 ± 7.8  1093 ± 590 42.2 ± 37.9 19.2 ± 7.0  0.432 ± 0.059 0.735 ± 0.311 1.48 ± 0.44 
SO 1301 ± 356  17.7 ± 4.0 57.1 ± 12.9  736 ± 529 25.2 ± 23.0 12.6 ± 3.4  0.285 ± 0.110 0.205 ± 0.154 1.41 ± 0.43 

Cohen’s f  0.43  0.24 0.21  0.47 0.25 0.22  0.19 0.27 0.30 
Main Effects  A, M  - -  A G,M -  M A,M A 
Interactions  A x G  - -  A x G G x M -  - - - 

 
Note:  Main effect and interaction abbreviations: A  = Age, G = Gender, M = Muscle 
 

Note:  Muscle property abbreviations: 
0P
 
= Maximum isometric force capability; 

0L = Optimal CC length; 
SL = SEC Slack Length; W = Width of force-length relation; α , β = Coefficients 

defining force-extension relation; 0a P , 0b L  = Coefficients defining force-velocity relation; ε  = eccentric force plateau 
 

†Non-normal distribution (for DF only) 
 

‡ Non-normal distribution (all muscles) 
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Figure 2-10. Effects of age, gender, and muscle on selected muscle mechanical properties. 

 

2.3.4.2 Maximal Isometric Force 

With aging there were declines in maximal isometric force ( )0P  of the male subject 

group, as there was a significant main effect for age (p = .019), but an interaction between 

age and gender (p = .006). To quantify the interaction, two-way ANOVAs were performed 

separately for each gender group, with Age and Muscle as factors. These showed that the 

older male subjects were significantly weaker than the younger males (i.e. an Age effect; p 

= .002). However, the young and older female subjects had similar strengths (p = .751). In 
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these separate ANOVAs, there were also main effects of muscle type, such that SO muscle 

was stronger than the DF for both the male (p = .025) and female subject (p = .015) groups. 

2.3.4.3 Force-Length and Slack Length 

There were no significant main effects of age on the parameters describing the 

force-length relation (0L : p = .054; SL : p = .165;W : p = .145). Nor were there any 

differences between the genders (0L : p = .567; SL : p = .275;W : p = .896) and muscles (0L : 

p = .355; SL : p = .448;W : p = .664). 

2.3.4.4 Force-Extension Shape Coefficients 

In general, the force-extension relations were stiffer in the older male subjects and 

more linear overall in the female subjects. For the α force-extension coefficient, which 

controls the rate of increase in stiffness (larger value = stiffer), there was a main effect of 

age (p = .001), such that the older subjects had larger α  values (stiffer muscles). However, 

there was also an interaction between age and gender (p = .043), which warrants 

consideration. Separate two-way follow up ANOVAs (Age x Muscle for each gender 

group) revealed that α  was greater in the older male subjects compared to the younger 

males (p < .001), but was not different between the young and older females (p = .432).  

Overall, the female subjects had more linear force-extension relations ( )β↑ . The 

statistical analysis for β  revealed main effects of gender (p = .034) and muscle (p = .031), 

but also an interaction between gender and muscle (p = .039). There was no main effect for 

age (p = .986). With respect to the gender main effect, the female subjects had more linear 

relations, while post-hoc analysis on the muscle type main effect revealed that the GA had 

a significantly more linear force-extension relation than the TA muscle (p = .023). In terms 
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of the gender and muscle interaction, the female GA force-extension relation was more 

linear than the female DF (p =.006) and the male SO relations (p = .027). 

 In general, subjects who were young or male tended to have greater maximal series 

elastic component extensions (Table 2-6), as there were main effects for age (p = .009) and 

gender (p = .007), but not for muscle type (p = .161). There was no interaction between age 

and sex (p = .055). When normalized to the series elastic component slack length, there 

were no main effects for age (p = .072) and gender (p = .060). However, there was a main 

effect for muscle (p = .022); the DF extended to a greater percentage of its slack length 

compared to the GA muscle (p = .016) 
 

Table 2-6. Maximal extensions and shortening velocities. 

Group Mus. MAXL∆  (mm) (% )MAX SL L∆
 MAXV  (m/s) ( )0MAXV L s  

Young 
Male 

DF 6.3 ± 2.5 4.1 ± 1.0 1.05 ± 0.38 7.5 ± 3.1 

GA 7.2 ± 2.6 3.1 ± 1.2 0.39 ± 0.14 2.4 ± 1.8 

SO 7.0 ± 3.6 4.4 ± 2.1 0.24 ± 0.15 2.4 ± 2.2 

Young 
Female 

DF 5.0 ± 1.5 3.6 ± 0.9 0.67 ± 0.56 5.0 ± 4.1 

GA 4.8 ± 1.8 2.3 ± 0.8 0.50 ± 0.18 2.9 ± 1.7 

SO 3.1 ± 6.0 2.4 ± 0.8 0.14 ± 0.06 1.1 ± 0.5 

Older 
Male 

DF 5.4 ± 3.4 3.4 ± 2.4 0.74 ± 0.29 5.0 ± 2.3 

GA 4.9 ± 1.9 2.5 ± 0.8 0.50 ± 0.51 2.6 ± 3.3 

SO 2.8 ± 1.7 2.4 ± 0.9 0.30 ± 0.25 1.5 ± 1.3 

Older 
Female 

DF 4.1 ± 1.7 3.1 ± 1.2 0.87 ± 0.31 5.6 ± 2.4 

GA 4.0 ± 2.3 2.0 ± 0.8 0.52 ± 0.22 1.7 ± 0.7 

SO 3.6 ± 1.9 3.0 ± 1.5 0.14 ± 0.13 0.7 ± 0.5 

Cohen’s f  0.51 0.36 0.11 0.18 

Main Effects  A, G M M M 

Interactions  - - - - 
 

Note:  Main effect and interaction abbreviations: A  = Age, G = Gender, M = Muscle 

MAXL∆ = maximum series elastic component (SEC) extension in absolute units (mm) 

(% )MAX SL L∆ = maximum SEC extension as a percentage of the SEC slack length 

MAXV   = maximum CC shortening velocity 

( )0MAXV L s
 
= maximum CC shortening velocity in optimal fiber lengths/s ( )0L s  
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2.3.4.5  Force-Velocity 

The two scaled Hill coefficients control the shape of the force-velocity relation. The 

first, 0a P , primarily affects the shape of the concentric portion of the curve, such that 

greater values draw the curve out to higher concentric velocities (Figure 2-11). There was 

no significant effect of age (p = .194) or gender (p = .122) on 0a P . However, there was a 

significant main effect for muscle (p < .001), with 0a P being the greatest for GA, followed 

by SO, and then the DF.  

The second Hill coefficient, 0b L , has a large influence on the overall shape of 

both concentric and eccentric portions of the force-velocity curve; large values tend to 

flatten out the curve and increase the maximal shortening velocity, while small values 

create a much sharper transition between concentric and eccentric sides and a decrease in 

the maximal shortening velocity (Figure 2-11). In contrast to 0a P , there was a significant 

main effect of age for 0b L , such that the values were greater in the younger subjects (p = 

.013). There was also a main effect for muscle; the values for DF and GA were both higher 

than SO (p < .001), however DF and GA were not different (p = .798). 

There was a main effect of age (p = .047) for the eccentric plateau of the force-

velocity relation (ε ), such that the plateau was lower for the older subjects. There were no 

main effects of gender (p = .175) or muscle (p = .061). 
 



 

54 

 
 
Figure 2-11. Effects of changing the coefficients describing the Hill rectangular hyperbola. 
Left: effect of varying a/P0 from 0.1 to 0.6 while keeping b/L0 constant at 0.45 s-1. Right: 
effect of varying b/L0 from 0.02 to1.22 s-1 while keeping a/P0 constant at 0.25. Both Sides: 
The optimal fiber length (L0) was set to 0.15 m and the eccentric plateau was equal to 1.5 
P0. The increment between each line is 0.01. 
 
 
 

For the maximal CC shortening velocity (VMAX, Table 2-6), there was a main effect 

for muscle type, whether in absolute units (p < .001) or normalized to the optimal CC 

length (p < .001). Post-hoc analysis revealed that the DF had a higher VMAX  than both the 

GA (p < .001) and SO (p < .001). However, this result should be interpreted with caution, 

as the values chosen for the DF 0a P  were up against the lower boundary (0.1) for most 

subjects. Smaller values for 0a P will lead to progressively larger VMAX values. When the 

lower boundary was decreased beyond 0.1, the optimization chose even smaller values for 

0a P as this gave better solutions. These improvements were only marginal though, and in 

this case we would only be “curve fitting”, as 0a P values below 0.1 have not been 

observed in experimental studies on mammals. We did not encounter this behavior with the 

plantarflexor muscles, as the values chosen for 0a P in the optimization were well within 

the limits. In absolute units, the GA had a faster shortening velocity than the SO (p = .016). 
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On the other hand, this difference was not significant when expressed in relative units (p = 

.277). There were no main effects of age or gender for the maximal shortening velocity in 

absolute (p = .940 and p = .264, respectively) and relative units (p = .202 and p = .187, 

respectively).  

2.3.4.6 Comparison with Experimental Data 

The joint torque time histories for a representative young and older subject, as well 

as the results from simulations using the optimized mechanical properties, are shown in 

Figure 2-12. Qualitatively, the model predictions are in good agreement with the 

experimental data. However, there were differences in the shapes of the predicted net joint 

torques. Upon muscle excitation, the muscle forces/joint torques rise relatively quickly for 

the model, compared with the slower rise in the experimental data. This is likely based on 

the assumption that once the model’s muscles are excited (based on the onset times of the 

experimental EMG data), they instantaneously rise to a maximal excitation level. However, 

it should be noted that although the excitation signal to the muscle increased 

instantaneously, the force producing capability did not due to an excitation-activation 

relationship with a rising time constant of 15 ms (See Appendix B). In the present study, 

we use the term “activation” for this force producing capability, which accounts for the 

various physiological delays that occur after the nervous signal (“excitation”) reaches the 

muscle, such as the release of calcium from the sarcoplasmic reticulum. Bobbert and Van 

Ingen Schenau (1990) demonstrated that substantial errors could be introduced in the high-

velocity isovelocity contractions when the excitation-activation relationship is not 

accounted for. In the present study, it is likely that some subjects did not fully excite their 
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muscles initially, which may be responsible for the discrepancy. However, as shown in 

Figure 2-12, this discrepancy usually occurs before movement, and therefore did not 

influence the results, as the model was not allowed to choose peak torques occurring 

outside the isovelocity movement period ( i.e. before movement began, and after the 

movement ended). 
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Figure 2-12. Comparison between experimental net joint torque-time histories (red curves) 
and the net joint torques (black curves) predicted using the optimized muscle properties for 
a representative young and older subject. The top panels are when the dorsiflexors were 
acting as agonists, and the bottom panels are when the plantarflexors were agonists. The 
vertical lines denote periods of a constant rate of change in muscle length.  
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2.4 Discussion 

The main purpose of this study was to determine whether there were differences in 

the mechanical properties of the dorsiflexors and individual gastrocnemius and soleus 

plantarflexor muscles between a group of healthy young and older community-dwelling 

adults. In general, our hypothesis that there would be age-related decreases in the maximal 

isometric muscle strength, increases in series-elastic stiffness, and slower contractile 

properties was supported. However, only the male subjects demonstrated significant 

decreases in muscle strength and increases in muscle stiffness with age. With regard to the 

velocity-dependent properties of the muscles, there were age-related changes in the shape 

of the force-velocity relation in both genders, such that less relative force could be 

produced during both concentric and eccentric muscle contractions for all three muscles. 

However, the maximal shortening velocity was not different between the age groups.  

To obtain these mechanical property estimates for the individual dorsi- and 

plantarflexor muscles, we combined experimental ultrasound, and MRI, and dynamometer 

data with musculoskeletal modeling and numerical optimization techniques. The modeling 

efforts used the experimental data as “inputs”, which were designed to constrain the 

outputs of the model (the muscular properties). Since the experimental measurements had a 

great influence on the resulting muscle property estimates, the experimental data will be 

discussed first, followed by a discussion of the optimized muscle mechanical properties. 
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2.4.1 Experimental Studies 

2.4.1.1 Ultrasound Experiments 

  Stiffness as measured in the ultrasound experiments relates to the change in the 

length of the series-elastic components within a muscle with a corresponding change in 

joint torque. This stiffness was characterized by a second-order polynomial that was fit to 

the torque-extension data, which was defined by two shape coefficients. The first term 

( )T Lα ∆  reflects the overall stiffness, such that larger values are associated with a greater 

rate of increase in torque as the series elastic components are stretched. The second ( )T Lβ ∆  

reflects the linearity of the torque-extension relation, such that larger values are associated 

with a more linear rise in torque with extension. Rather than characterize the series elastic 

stiffness in this fashion, in terms of torque and extension, researchers have computed the 

series elastic stiffness as the slope of the force-extension relation in the linear region at high 

force levels, i.e. the final 10% (Kubo et al. 2003). We chose not to do this for several 

reasons. First, it involves estimating the moment arms to convert the measured torque to 

force, and second, the stiffness measures would be based on only the small, highly variable 

portion of the force-extension relationship at large force levels. We also did not compute 

Young’s modulus, as these computations require assumptions concerning the length and 

cross-sectional area of the series-elastic components, which in reality reside in many 

different locations (e.g. internal and external tendon, within the cross-bridges). Finally, 

these scaling procedures were unnecessary, as the torque-extension data were used as 

inputs to a musculoskeletal model, which made its own predictions of the series elasticity 

(force-extension) within the individual muscle models (i.e. it was not necessary to compute 

Young’s modulus). 
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The results of this study clearly demonstrated that the older individuals had stiffer 

( )T Lα ∆↑  torque-extension relationships for both dorsi- and plantarflexor muscle groups, 

based on an analysis using ultrasound imaging to measure in vivo displacements of the 

internal aponeurosis. These results agree with other reports of increased plantarflexor 

stiffness with aging (Blanpied and Smidt 1993, Ochala et al. 2004a, Ochala et al. 2005). 

However, to the author’s knowledge, there have not been any studies performed to 

determine changes in the dorsiflexor stiffness with aging.  

Another overall finding was that for both age groups, the torque-extension relation 

was stiffer ( )T Lα ∆↑  and more linear ( )T Lβ ∆↑  for the plantarflexor muscles, compared with 

the dorsiflexors. Although data in the literature are variable, there is support for the 

differences between the muscle groups. For young individuals, Young’s modulus has been 

reported to range from 530-1200 MPa for the dorsiflexors (Ito et al. 1998, Maganaris and 

Paul 1999), and 1108-1806 MPa for the plantarflexors (Magnusson et al. 2001); this 

equates to a difference of  109% for the lower end and 51% at the higher end of the range. 

In this study the mean T Lα ∆  for the younger subjects was twice as large for the 

plantarflexors compared to the dorsiflexors (a 99% difference), agreeing closely with the 

lower ranges in the literature. 

Overall, the younger subjects reached higher maximal torque values and had greater 

maximum extensions than the older subjects. In the older subjects the maximum extension 

of the plantarflexor muscles was lower than the dorsiflexors (DF: ~7.3 vs. PF: ~4.1 mm), 

while the opposite was true for the younger subjects (DF: ~8.2 vs. PF: ~9.4 mm). This can 

be explained by the varying magnitude of the torque differences between the age groups, as 
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the torque performance of the older subjects was relatively close to the younger subjects in 

dorsiflexion, but much lower than the younger subjects in plantarflexion.  

2.4.1.2 Magnetic Resonance Imaging (MRI) 

MRI was used to obtain measurements of the volume of contractile material in the 

dorsi- and plantarflexor muscles for each young and older subject. Our analysis revealed 

that the muscle-only volumes and PCSAs were larger in the younger subjects, compared 

with the older subjects (for male and female subjects). This was expected, and supports 

previous studies showing reductions in muscle size with increasing age (Aniansson et al. 

1980, Frontera et al. 2000a, Frontera et al. 1991), regardless of gender (Young et al. 1985, 

1984) or whether the muscle is in the upper or lower extremity (Lynch et al. 1999).  

There was no effect of age on total-muscle volume, which includes the muscle 

volumes occupied by tendon and fat. This suggests that it is important to consider the 

increasing amount of non-contractile tissue that appears with age, and that the size of the 

muscle is not necessarily predictive of the force generating capacity of a muscle (which is 

related to the PCSA calculated from the muscle-only volume). This is supported by studies 

demonstrating weak relationships between muscle cross-sectional area and strength (Sipila 

and Suominen 1994, Young et al. 1985). Another finding was that the total muscle 

volumes, the muscle-only volumes, and the PCSAs were larger in the male subjects 

(regardless of age), and were different between the muscles, such that the SO had the 

greatest volume and PCSA, followed by the GA, and finally the DF. These results are again 

consistent with our expectations and the literature (Wickiewicz et al. 1983).   
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2.4.1.3 Dynamometer Experiments 

An important feature of the present study is that the dynamometer data were 

adjusted to account for the effects of antagonistic co-activation. The main purpose of 

performing this adjustment was so the torque-angle and torque-angular velocity 

relationships of the separate muscle groups, free from antagonistic influences, could be 

quantified and compared. Thus, the rest of the discussion will focus on the results for the 

co-activation adjusted data. This adjustment was also done for incorporation into the 

musculoskeletal model, which did not include antagonistic muscle contributions in the 

optimization algorithm. 

2.4.1.3.1 Torque-Angle Properties 

Overall, the maximal isometric torques measured from the co-activation adjusted 

dynamometer data ( )0T  decreased with aging in the male subjects, but did not change in the 

female subjects. This suggests that there are differences between the genders with respect 

to the loss of joint strength with aging. For the dorsiflexors, these gender differences are 

supported by Kent-Braun and Ng (1999), who showed that young men were able to 

generate significantly more dorsiflexor torque than older men, but there were no 

differences between young and elderly women. In addition, Metter et al. (1997) 

demonstrated a greater loss in upper extremity strength for elderly men compared with 

elderly women. Some caution should be exercised in interpreting the gender differences 

found in the present study, as the gender sub-groups were relatively small (N = 6), and our 

findings could be related to random subject selection. 
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The maximal isometric torque was higher for plantarflexion than for dorsiflexion. 

This is consistent with the larger PCSAs that were measured for the plantarflexors. The 

average maximum co-activation adjusted dorsiflexor torque for the young (~50 Nm) and 

old (~43 Nm) subjects in the present study are higher than those reported by Lanza et al. 

(2003), which averaged about ~36 Nm and ~28 Nm for young and old subjects respectively 

(males + females). This discrepancy can be explained by antagonistic co-contraction, which 

was not accounted for in Lanza et al., and would cause the measured dorsiflexor torques to 

be underestimated. In terms of the magnitude of the difference between the age groups, the 

older subjects in the present study produced about 16% less torque than the older subjects, 

while the difference in Lanza et al. was about 21%.  

The vast majority of studies in the literature reporting torque-angle data for the 

plantarflexors have only used male subjects. In the present study, the maximal co-

activation adjusted isometric torques averaged 128 Nm and 74 Nm for young and older 

male subjects, respectively. Maximal isometric plantarflexion torques have been reported 

as ~175 Nm (Sale et al. 1982), ~166 Nm (non-dominant leg; Oberg et al. 1987), and ~210 

(dominate leg; Oberg et al. 1987) for younger men, and ~120 Nm for older men (Ferri et al. 

2003). Thus, the maximal plantarflexor torques of the males in the present study are lower 

than those in the literature, even with the co-activation adjustment (which increased the 

agonist torque values). There are many factors that may contribute to this discrepancy, 

which are related to the data collections on the dynamometer. Overestimation of the agonist 

torques can be caused by not fixating the upper body or from subjects “cheating” by using 

muscles groups other than the ones of interest (Oberg et al. 1987). In addition, subjects in 
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the present study used their left leg, which is likely the non-dominate leg for the majority of 

subjects. 

A recent study by Anderson et al. (2007) measured the maximal isometric 

plantarflexor torques in younger and older males and females. However, their results are 

only reported in units that are scaled to body weight and height. For comparison with the 

results of the present study, the results of Anderson et al. were un-normalized based on the 

average subject body weights and height reported in their study. After doing these 

calculations, the results are somewhat curious: young males = 119 Nm and females = 102 

Nm, older males = 156 Nm and females = 128. Thus, the older subjects in the Anderson et 

al study were stronger than the younger subjects. This is not an artifact of the un-

normalization procedure, as their normalized values show the same pattern.  

There were no differences between the young and older subjects with respect to the 

ankle angle at which the peak co-activation adjusted isometric torques occurred, but there 

were differences between the muscle groups. The maximum dorsiflexor torque occurred 

while the ankle was more plantarflexed (~9.5°, relative to a neutral ankle angle), in 

agreement with other studies (Belanger et al. 1983, Brown et al. 1999, Lanza et al. 2003, 

Marsh et al. 1981). On the other hand, the maximal plantarflexor torque occurred with the 

ankle in a more dorsiflexed position (~ -8.5°, relative to a neutral ankle angle), also 

consistent with other reports (Belanger et al. 1983, Bobbert and van Ingen Schenau 1990, 

Ferri et al. 2003, Sale et al. 1982). 
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2.4.1.3.2 Torque-Velocity Properties. 

The ability of the subjects to generate torque at different eccentric and concentric 

angular velocities was captured by first scaling the data to account for torque-angle effects, 

and then fitting a rectangular hyperbola, which was the same equation that was used to 

describe the force-velocity relationships of the individual muscles (see Appendix B). 

Finally, the torque values were adjusted to account for antagonistic co-activation. There are 

four parameters that described the shape of this torque-angular velocity curve: T0, ATω, BTω, 

and TECC. The discussion will focus on the latter two parameters, as the first parameter (T0) 

has already been discussed, and the second (ATω,), showed no differences between the age, 

gender, or muscle groups. 

 In the younger subjects, values for BTω 
were significantly higher than they were for 

the older subjects, indicating that the younger subjects tended to have larger torques during 

concentric contractions. The meaning of this difference is shown graphically for the force-

velocity relation (for individual muscles) in Figure 2-11, which shows that larger values of 

the scaled “b” force-velocity coefficient ( )0b L  signify higher torques across the concentric 

velocities (the same holds true for BTω when looking at the torque-velocity relation, since 

the equations are the same). It is important to note that the age-related differences in the 

BTω coefficient reflect differences in the scaled torque-angular velocity relation, which 

therefore takes into account differences in the maximal isometric torque capabilities of the 

subjects. These age-related differences in the concentric torque capabilities are consistent 

with the findings of other studies, which showed age-related declines in maximal torques 

across all concentric velocities (also accounting for torque-angle effects) for the 

dorsiflexors (Lanza et al. 2003) and knee extensors (Harries and Bassey 1990). 
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To the author’s knowledge, previous studies have not shown gender related 

differences in the torque-velocity relation. However, in the present study the male subjects 

were able to generate more relative torque during concentric plantarflexion compared to 

dorsiflexion (PF BTω > DF BTω), while the female subjects generated more relative torque 

during concentric dorsiflexion compared to plantarflexion (PF BTω < DF BTω). Note that 

these differences are for the scaled torque-velocity data, so differences in the strengths of 

the male and female subjects, and between the dorsi- and plantarflexors are accounted for.  

2.4.2 Individual Muscle Mechanical Properties 

Collectively, there were significant changes in the individual muscle properties with 

aging, as well as differences between the genders and muscles. These general findings are 

based on the results of the multivariate analysis of variance (MANOVA) performed on the 

complete set of muscle properties defining the maximal isometric force ( )0P , force-length 

( )0,L W , force-velocity ( )0 0, ,a P b L ε , and force-extension ( ), , SLα β  properties. Of note, is 

that a similar multivariate analysis on the joint properties (based on the dynamometer data) 

only revealed significant overall effects for muscle group (dorsi- or plantarflexors). 

Therefore, the analysis of individual muscle properties revealed some age and gender 

differences that were absent at the joint level.  

2.4.2.1 Maximal Isometric Force 

 In broad terms, the predicted maximal isometric force (P0) for the individual 

muscles was significantly lower for the older subjects, compared with the younger subjects, 

supporting the hypothesis that the older subjects would be weaker. This finding is 
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consistent with the PCSA data, which are closely associated with the maximal isometric 

muscle force (Gans 1982). However, some restraint should be exercised in this general 

interpretation, as there was an interaction between age and gender, such that the older 

males had significantly weaker P0 values than the younger males, but there were no 

differences in strength between the young and older females. In other words, the gender-

related differences in strength tended to disappear in the older subjects. Because the model 

data were based on the dynamometer measurements, these data are consistent with the age-

related changes seen in the maximal isometric torque data. 

 Due to the difficulty of measuring muscle forces in vivo, researchers have employed 

a number of different methods to arrive at estimates of the maximal isometric force. A 

representative sampling of these studies, along with the results of the present study are 

presented in Table 2-7. To facilitate comparison with the studies in Table 2-7, only the data 

on the younger subjects from the present study are included, as almost no simulation 

studies have tried to measure/estimate the maximal isometric force in older adults (besides 

the present study). One of the only studies to report maximal isometric muscle forces based 

on direct measurements is Arndt et al. (1998), who inserted an optic fiber through the 

Achilles tendon. Other studies have made direct force measurements, but during dynamic 

activities and not during maximal isometric contractions (Komi et al. 1992, Komi et al. 

1987). Arndt et al. (1998) report a maximal isometric force of ~3000 N for the 

plantarflexors of a young male subject, which is very close to the average of the young 

male subjects in the present study. In contrast, it appears that many studies have used 

relatively large maximal isometric force values, which might be overestimate the strength 

of “average” individuals; especially for the plantarflexor muscles (see Table 2-7).  
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No studies have reported direct force measurements from the dorsiflexor muscles, 

presumably due to the difficulty of attaching a buckle transducer or inserting an optic fiber 

through the smaller dorsiflexor tendons. Nevertheless, based on the trends seen in 

estimating the plantarflexor maximal isometric force, values used for the dorsiflexors in the 

literature might be considered on the high side. However, it should be considered that the 

results of the present study were all taken from the left leg, which is likely the non-

dominant side for most subjects - values for the dominant side may be larger. 

Muscle maximal isometric force is one of the most influential muscle model 

parameters, as previously shown in models of individual joints (Maganaris 2004, Out et al. 

1996), jumping (Nagano and Gerritsen 2001, Pandy et al. 1990), and running (Scovil and 

Ronsky 2006) have been shown to be sensitive to this parameter. Of note however, is that 

jumping and running are very vigorous movements, where many muscles would be 

expected to operate for brief periods near their maximal capacities. Simulations of 

submaximal movements, such as upright standing may not be as sensitive to maximal 

isometric muscle force, although the control signals sent to the muscles of a weaker older 

musculoskeletal model will necessarily be larger than if the muscle was stronger. In 

general, considering the age- and gender-related changes in the maximal isometric muscle 

force observed here, it is important to consider the implications of using general estimates 

rather than subject-specific values in musculoskeletal modeling and simulation. 



 

 

 
 
 

Table 2-7. Maximal isometric force (P0) for dorsi- and plantarflexor muscles reported in the literature and the present study. 

 Subjects Method TA DF GA SO PF 

Present Study 
Males (21-30 yrs) 

8 
- 976 1432 1616 3048† 

Females (21-31 yrs) - 679 873 1113 1986† 
Arndt et al (1998) Male (26 yrs) 2 -  - - ~3000 
Wickiewicz. et al. (1984) Males & Females (20-38 yrs) 1 - 792 - - 2769 
Bobbert et al. (1986) Males (23 ± 4 yrs) 4 - - 3000a 3000a 6000† 
Brand et al. (1986) Male Cadaver (37 yrs) 7 535 1348b 688 1008 1696 
Bobbert et al. (1990) Males (23 ± 3 yrs) 4 - - 2430 2430 4860† 
Hoy et al. (1990) None (Data taken from literature) 3 - 1400 2372 4234 6606† 
Pandy et al. (1990) None (Data taken from literature) 5 1400 - 2370 4235 6605 
Raasch et al. (1997) None (Data taken from literature) 9 1375 - 2225 3549 5774 
Anderson et al.  (1999) Males (26 ± 3 yrs) 6 1003 - 1651 3016 4667 
1: Divided measured torque by moment arm estimate (tendon-excursion method) 
2: Measured using optic fiber through Achilles tendon 
3: Maximum isometric force of muscle models predicted using CSA from Wickiewicz et al. (1983), multiplied by a scaling factor to match 
experimental torque from Sale et al. (1982) and Marsh et al. (1981) 
4: Forces in muscle model predicted by best-fit to experimental torque-angle data (assigned GA and SO same value) 
5: Estimated from data reported by Wickiewicz et al. (1983) and Brand et al. (1986) 
6: Estimates from Delp (1990) were adjusted to fit experimental maximal isometric torques 
7: Predicted using static nonlinear optimization, minimize muscle stresses, used measured PCSAs as inputs 
8: See methods section. 
9: Data from Delp (1990) were used 
 
aAdjusted upwards from 2790 N based on submaximal activation 
bSummed values given for all dorsiflexors (includes extensor hallucis longus, extensor digitorum longus, peroneus tertius) 
†Added GA an SO values in table together 
TA: tibialis anterior; DF: dorsiflexors; GA: gastrocmenius; SO: soleus; PF: plantarflexors 
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2.4.2.2 Force-Length 

No differences in the parameters describing the force-length relation were found 

with respect to age. These parameters include the optimal contractile component length 

(L0) and the width of the force-length relation (W). These results are supported by studies 

of isolated rat muscle and human skeletal muscle, which have shown that both the 

optimal fiber length and shape of the force-length relation are relatively unchanged with 

age (Brown et al. 1999, Larsson et al. 1997). However, many previous studies have 

shown that the performance of both Hill muscle models and locomotion simulations are 

sensitive to the values chosen for the optimal contractile component length (Lloyd and 

Besier 2003, Lloyd and Buchanan 1996, Manal and Buchanan 2004, Out et al. 1996, 

Scovil and Ronsky 2006, van den Bogert et al. 1998). Based on these past studies, the 

force-length properties of muscle should be selected with care when simulating human 

movement with musculoskeletal models; however, the data from the present study 

suggest that it may not be crucial to account for age-related differences in force-length 

properties. 

2.4.2.3 Series Elasticity 

There were age-related differences in the stiffness of the series elastic components 

of the muscle models, such that the rate of increase of stiffness ( )α  with increasing force 

was greater in the older male subjects. However, there were no such differences in 

stiffness in the female subjects, and no age-related differences in the degree of linearity 

of the force-extension relationship (β) or the series-elastic slack length ( )0L  in either 

gender group. In general, these results are consistent with the data from the ultrasound 
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experiments, where the older subjects had stiffer torque-extension relationship, although 

there was no interaction with gender present in the ultrasound data. Our findings of 

increased stiffness with age are also supported by reports in the literature (Blanpied and 

Smidt 1993, Ochala et al. 2004a, Valour and Pousson 2003). Additional support is 

provided based on Ochala et al. (2007a), who demonstrated significant age-related 

increases in the stiffness of single muscle fibers obtained from muscle biopsies of the 

vastus lateralis.  

The gender-related differences in stiffness may be explained by differences in the 

overall physical condition of the older subject gender groups. Although all of the older 

subjects were healthy, active, community-dwelling individuals, the older females may 

have been in better physical condition. This is supported by the different age-related 

changes in muscle strength ( )0P  between the gender groups, such that the strength of the 

female subjects did not decrease with aging, compared to significant decreases in the 

male subjects. Therefore, the series elastic stiffness of the male subjects’ muscles may 

have increased to offset the strength loss, allowing a tighter coupling between muscle 

activation and force production, “counterbalancing the effect of aging” (Ochala et al. 

2007b). In the literature, results of studies on aging and gender differences in stiffness are 

equivocal. For instance, Ochala et al. (2004a) showed that the plantarflexor stiffness of 

older males is decreased compared to older females. However, Burgess et al. (2008) 

demonstrated no differences between genders in more active older adults - providing 

additional support for physical activity as a moderator of muscle stiffness in older adults. 

Along with the results of the present study, these observations suggest that age and 
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gender related differences in the stiffness of musculotendon complexes should be 

considered when modeling the movements of older individuals. 

2.4.2.4 Force-Velocity 

 In the present study, there were no differences between the age groups or genders 

for 0a P , which mainly controls the shape (concavity) of the concentric side of the force-

velocity relationship (Figure 2-11). On the other hand, there were age-related changes in 

0b L , which was greater for the younger subjects compared with the older subjects. The 

parameter 0b L  affects both concentric and eccentric portions of the force-velocity 

relation; a larger value of 0b L  causes the force-velocity curve to “flatten out”, increases 

the maximum shortening velocity, and enables larger forces to be produced at high 

velocities (Figure 2-11).  The values for the eccentric plateau ( )ε  of the force velocity 

relation were lower for the older subjects, compared to the younger subjects, suggesting 

that the capacity to produce eccentric force is reduced with aging. 

Although there were no differences between the age or gender groups for 0a P , 

there were differences between the muscles, with 0a P being the largest on average for 

the GA (0.40), followed by the SO (0.27), and then the DF (0.15). Close (1972) stated 

that values of 0a P for mammalian muscles are generally in the range of 0.15 - 0.30 

(Close 1969, 1964), and are higher in the faster contracting muscles compared to slower 

ones. However, other studies have suggested values that are higher than Close’s upper 

limit. For instance, with regard to individual muscles, values for rat tibialis anterior of 

0.36 were given by Wells (1965), while Phillips and Petrofsky (1980) reported values 

greater than 0.5 for cat lateral and medial gastrocnemius and soleus. Concerning 
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experiments on muscle groups, Wilkie (1950) reported values for ranging from 0.20 – 

0.48 in five male and female subjects for the elbow flexors. Chow and Darling (1999) 

reported even larger values between 0.5 - 0.6 in male and female subjects performing 

wrist flexion. Finally Bobbert and Van Ingen Schenau (1990) used values as low as 0.12 

for a “slow” model of the triceps surae, which they estimated from measurements made 

by Hof and Van Den Berg (1981). Thus, the average 0a P values for the GA and SO 

estimated in the present study seem reasonable, as the value for the GA should be higher 

than the SO, based on the  proportion of fast-twitch Type II muscle fibers (GA has about 

50/50 Type I and Type II)  (Johnson et al. 1973); (SO has mostly Type I [89%]) 

(Gollnick et al. 1974, Johnson et al. 1973). The relatively low value for the DF also fits 

expectations, as the dorsiflexors have a large proportion of slower Type I muscle fibers 

(for TA: 76% young, 84% old) (Jakobsson et al. 1988).  

 In the literature, values for 0b L  are reported far less frequently than0a P . 

Bobbert and Van Ingen Schenau (1990) used a value for 0b L  of 5.2 s-1, calculated from 

the data of Spector et al. (1980) for the cat medial gastrocnemius. Wells (1965) reported a 

values of 2.25 s-1for rat tibialis anterior, and 0.40 s-1 for rat soleus. Unfortunately, as 

pointed out by Wickiewicz (1984), it is difficult to compare values across studies, since 

the value depends on the definition of muscle length. Both Spector et al. and Wells used 

the in situ lengths of the muscles as the “standard length”. In the present study, the Hill 

b  coefficient was normalized to the optimal contractile component length (L0 ) of the 

Hill muscle model ( )0b L , which is very different than the lengths of the small animal 

muscles used in Spector et al. and Wells. Despite the significant age-related differences 

in 0b L in the present study, these may not have a large impact on the results of 
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simulation studies, as Scovil and Ronsky (2006) showed that the results of an isolated 

muscle model simulation and walking and running simulations were insensitive to the 

values of 0b L . 

Finally, the force-velocity eccentric plateau constant ( )ε  
for the older subjects 

(average = 1.34) was lower than for the younger subjects (1.51), suggesting that the 

capacity to produce eccentric force is reduced with aging. This agrees with reports 

showing that eccentric strength is decreased with age both in absolute and relative (to the 

isometric maximum) units (Hortobagyi et al. 1995, Klass et al. 2005, Porter et al. 1995a, 

Porter et al. 1997, Poulin et al. 1992, Vandervoort et al. 1990). 

2.4.2.5 Maximal Shortening Velocity 

 The results of the modeling and optimization revealed no age- or gender-related 

differences in the maximal shortening velocity (VMAX), which is frequently expressed in 

optimal fiber lengths per second. Epstein and Herzog (1998) give typical values of 8 

0L s  or less for slow twitch muscles, and about 14 0L s for fast-twitch muscles in 

humans. These values are difficult to compare with our results (Averages: DF=5.8 0L s , 

GA = 2.4 0L s , SO = 1.4 0L s ) for the same reasons discussed earlier for comparing 

0b L between studies, as they are dependent on the definition of fiber length. Most 

phenomenological muscle models use a functionally equivalent contractile component; 

therefore, the length of this component is not equal to any physiological structure. An 

alternative is to express the maximal shortening velocity in terms of the total 

musculotendon length, which also poses problems. Close (1972) points out that maximal 

shortening speeds, whether expressed as the speed of shortening of the whole muscle or 



 

75 

in muscle lengths per second are of “…little use in estimating the properties of the 

contractile material unless they are converted to speed of individual fibers or 

sacromeres.” Ideally, speed of shortening should be expressed in terms of the lengths of 

single sacromeres (Close 1972). For modeling studies using phenomenological models, 

this is not possible as there is no explicit representation of single sacromeres. However, if 

the model’s contractile component can be considered to behave as a scaled-up version of 

a single sacromere, the best approach may be to scale VMAX  to the length of the 

contractile component (as done in this study), and not the length of the entire muscle 

model (contractile and series elastic component lengths). 

2.4.3 Limitations 

Every musculoskeletal model is a simplification of the human system. The degree 

of simplification depends largely on the research question, and a good philosophy is to 

use the simplest model possible (Winters and Stark 1987). Adhering to this, a number of 

simplifications and assumptions were made in the present study. Several simplifications 

were made of the lower leg anatomy, all of which are common in musculoskeletal 

modeling. The optimized mechanical properties of the dorsiflexors represent a lumped 

“equivalent” dorsiflexor muscle. Thus, the dorsiflexor properties may not represent any 

single dorsiflexor muscle, such as the tibialis anterior. Similarly, the plantarflexor muscle 

properties were found for the GA and SO muscles, which do not include the “other 

plantarflexors” (e.g. tibialis posterior) and do not separate the contributions of the medial 

and lateral heads of the GA muscle. 
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We assumed that once the muscle models were excited, the excitation level 

instantly rose to a maximum and remained at this level for the remainder of the 

simulation. For the isometric simulations, this occurred immediately; for the isovelocity 

simulations, the excitation onset time was based on experimental EMG data. We based 

this assumption on the appearance of the measured EMG, which appeared to remain 

relatively constant throughout the isometric and isovelocity contractions. Data from Klass 

et al. (2005) support this assumption, as they showed that there are no age-related 

differences in the ability of individual to maximally excite their muscles in either 

isometric or isovelocity movements. An alternative approach would have been to use the 

entire experimental EMG time-series as an input to the model, by computing the linear 

envelope and “driving” the simulation. However, there are a number of considerations 

with this approach: 1) there is movement between the surface EMG electrode and the 

underlying muscle during isometric and isovelocity contractions (Kamen and Caldwell 

1996), which will alter the relationship between the linear envelope and the level of 

excitation, 2) the surface EMG activity detected from the SO is quasi-specific (i.e. there 

is substantial cross-talk present) (Cram et al. 1998). An additional consideration is that 

the isovelocity dynamometer data collections were done on separate days, complicating 

the normalization of EMG data due to daily variations in skin preparation and electrode 

placement. 

 We did not include pennation angle explicitly in the simulations; however, 

pennation angle was used in the PCSA calculations, which influenced the relative 

maximal isometric forces that the model could choose for the GA and SO muscles. By 

not including pennation angle, the predicted muscles forces would be slightly 
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overestimated. However, even with a relatively large pennation angle, as in the SO 

muscle, the effects would be minor (although noticeable, e.g. if the pennation angle is 

25°, the force transmitted to the skeleton would be reduced by about 9%.). However, 

studies have shown that an accurate correction for pennation angle would be nonlinear, 

such that the pennation angle would change as a function of the muscle force (Kawakami 

et al. 1998). The addition of a pennation angle would also change the velocity of 

shortening, as it changes the orientation between the contractile and series elastic 

component. Thus, including an accurate pennation angle adjustment would have 

increased the complexity of the model considerably. 

Finally, the muscle model does not have history dependence, such as force 

depression following muscle fiber shortening (Edman et al. 1993) or enhancement 

following lengthening (Edman et al. 1978, Rassier and Herzog 2002). This would have 

had minimal influence on the results of the isometric simulations, as the force level in the 

muscle models reached a plateau and remained at this level for at least a few seconds. In 

the isovelocity simulations on the other hand, it is expected that neglecting force 

depression/enhancement would have caused small errors in the predictions of muscle 

force. However, these errors would have been consistent across the subjects groups, as 

there have been no reports on age-related changes in force depression/enhancement. 

2.4.4 Conclusions 

This study developed a methodology to combine muscle imaging, dynamometer 

experiments, muscle modeling, and numerical optimization to arrive at subject-specific 

estimates of the mechanical properties of the dorsi- and plantarflexors in young and older 
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adults. Compared to the younger males, the older males had lower maximal isometric 

force capabilities and increased stiffness, while there were no age-related differences in 

strength and stiffness in the female subjects. Regardless of gender or muscle group, the 

older subjects had significant changes in the shape of the force-velocity relation, and had 

lower eccentric force capabilities. No differences were found for the parameters 

describing the force length relation. Based on these age-related related differences in 

muscle mechanical properties, consideration should be given to the values of these 

parameters when implementing musculoskeletal models to describe the movement of 

older individuals. 
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CHAPTER 3  

MUSCULAR PROPERTIES AND POSTURAL CONTROL 

3.1 Introduction 

While standing upright, older adults are less stable than younger adults 

(Woollacott and Shumway-Cook 1990), as they exhibit increased center of pressure 

(CoP) and center of mass (CoM) motion (Brocklehurst et al. 1982, Colledge et al. 1994, 

Era and Heikkinen 1985, Redfern et al. 2001). These differences have been associated 

with an increased risk of falling (Shumway-Cook et al. 1997, Tinetti et al. 1988). Older 

adults also exhibit reduced temporal margins of stability, which can be measured through 

variables such as the CoP and CoM time-to-contact (Slobounov et al. 1998). 

To maintain postural stability in humans, the sensory system must provide 

information about the body’s orientation and relative stability, while the neuromuscular 

system must make necessary postural corrections. The sensory system includes the 

visual, vestibular, and somatosensory systems, while the neuromuscular system includes 

the motor unit pool and its interactions with the skeletal muscle system. The literature has 

shown that both systems are degraded with aging, negatively influencing the postural 

stability of older adults. Although the effects of age-related changes in the visual, 

vestibular, and somatosensory systems (Woollacott and Shumway-Cook 1990, 

Woollacott et al. 1986) as well as the neural system (Light 1990, Speers et al. 2002) have 

been well documented, the influence of age-related changes in muscular mechanical 

properties on postural stability is not clear.  
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The mechanical properties of muscle are those that influence force production. 

The amount of force produced by a muscle in response to a neural input (muscle 

excitation) is dependent on a number of factors, including the length and velocity of the 

muscle contractile elements, as expressed in the force-length (Gordon et al. 1966) and 

force-velocity (Hill 1938) relations, and the compliance of the series elastic structures as 

seen in its force-extension relation (Bahler 1967). The force-length relationship dictates 

how much force a muscle can produce at a given muscle length, and has been shown to 

remain unchanged with age (Chapter 2) (Brown et al. 1999, Larsson et al. 1997). 

However, with regard to the force-velocity relation, older individuals have shown a 

decrease in the maximum shortening velocity of plantarflexor muscles (Narici et al. 

2005), as well as shifts in the torque-angular velocity relationship (Karamanidis and 

Arampatzis 2005, Lanza et al. 2003). In addition, the maximal contraction velocity of 

single muscle fibers reportedly decreases with age (Doherty and Brown 1997, Larsson et 

al. 1997, Thompson and Brown 1999).  Age-related changes in these mechanical 

properties will alter the translation of neural commands into muscle force. This may in 

turn change the way in which the nervous system coordinates multiple muscles during 

postural control, and may at least partially explain the declines in balancing ability with 

aging. 

In living humans, it is difficult to measure these mechanical properties for 

individual muscles. Therefore, it is common to use a combination of experimentation and 

modeling to estimate these muscular properties (Bobbert and van Ingen Schenau 1990, 

Garner and Pandy 2003, Koo and Mak 2005, Lloyd and Besier 2003, Winters and Stark 

1988, Zajac 1989). Muscle behavior is often modeled using a two-component Hill model 
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(Hill 1938), consisting of a contractile component with nonlinear force-length and force-

velocity relations and a series-elastic component possessing a nonlinear force-extension 

relation. The parameters that determine the shapes of the relations for the contractile 

component are the maximal isometric force capability ( )0P , optimal length ( )0L , slack 

length ( )SL , width of the FL relation
 ( )W , and shape coefficients for the force-velocity 

relation( )a P b L ε0 0, , . Finally, two coefficients define the shape of the force-extension 

relation of the series elastic component( )α β, . A detailed explanation of these equations 

is provided in Appendix B. 

In Chapter 2, these model parameters were estimated for the major muscles 

controlling the ankle joint (dorsiflexors [DF], gastrocnemius [GA], and soleus [SO]), for 

a group of young and old subjects. The results of this study provided evidence for age-

related changes in the maximal isometric force, series elasticity, and force-velocity 

characteristics of the dorsi- and plantarflexor muscles. Compared to the younger subjects, 

the older male subjects had muscles with lower maximal isometric force capabilities 

( )0P↓  and increased series elastic stiffness ( )α↑ . Regardless of gender, the shape of 

the force-velocity relation was changed with age, such that older adults produced 

relatively less force during periods of either muscle shortening (concentric) or 

lengthening (eccentric) ( )0 ,b L ε↓ ↓ . 

The purpose of this chapter is to evaluate the postural control of the same subjects 

from Chapter 2, and relate alterations in balance control with the changes seen in 

muscular properties. In particular, we sought to identify specific mechanical properties 

that are most predictive of the performance on various static and dynamic postural tests. 

It was hypothesized that the older adults would have poorer postural control than younger 
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subjects, and these deficits would be associated with the age-related changes in the 

muscle mechanical properties. Based on the age-related changes in muscle properties 

seen in Chapter 2, it was expected that the maximal isometric force, series elasticity, and 

force-velocity properties would be most predictive of age-related differences in balance 

performance.  

3.2 Methods 

3.2.1 Overall Experimental Design 

 Experimental postural control data were collected on the same young and old 

subjects who participated in the study described in Chapter 2. Their postural stability was 

evaluated under several static (quiet stance, leaning forward and backward) and dynamic 

conditions (swaying at preferred and imposed frequencies, reaching, and responding to an 

external perturbation).  

3.2.2 Experimental Setup 

3.2.2.1 Ground Reaction Forces and Marker Kinematics  

 A force platform (Model BP600, 1200 x 2000 mm, AMTI, Watertown, MA) was 

used to collect ground reaction forces and moments. For measurement of the total body 

center of mass (CoM) motion, whole-body kinematics were measured using passive 

reflective markers placed on anatomical landmarks (Figure 3-1) and an 8-camera infrared 

motion capture system (ProReflex MCU 240, Qualysis, Gothenburg, Sweden). Three-

dimensional marker coordinates were captured, however only sagittal plane motion was 

analyzed. 
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Figure 3-1. Subject marker setup. 

 

3.2.2.2 External Perturbation Backboard / Pendulum System 

For the balance perturbations, a backboard apparatus (Figure 3-2, Left) was 

constructed similar in concept to the one developed by Peterka and Loughlin (2004). The 

backboard acted to distribute the impact forces imparted by a swinging pendulum during 

the balance perturbations. The backboard was supported on two bearings aligned with the 

ankle joint, limiting motion to the sagittal plane. Straps secured the subject’s upper body 

to the backboard, allowing movement only about the ankle joints, such that the subject’s 

motion approximated that of an inverted pendulum. Concern that the backboard inertia 

might influence postural control was minimal based on Perteka and Loughlin (2002), 

who found no differences in the amplitude and frequency of the CoP or ankle torque 

generated in freestanding and backboard-restrained subjects.  
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 A pendulum striker was used to ensure consistent external perturbations of known 

magnitudes. The pendulum was instrumented with a load cell (Figure 3-2, B) to measure 

the impact force, and a potentiometer (Figure 3-2, C) to measure the angular position of 

the pendulum. A shock absorber mounted to a load cell dampened the impact force 

(Figure 3-2, D). The shock absorber consisted of an outer brass tube attached to the load 

cell, and an inner spring-loaded telescoping brass tube attached to a padded strike plate 

(Figure 3-2, E). The pendulum angle was displayed on an LCD mounted on the pendulum 

(Figure 3-2, F), which allowed an investigator to easily release the pendulum from 

specific angles. The magnitude of the perturbation was fully determined by the release 

angle of the pendulum.  
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Figure 3-2. Left: Setup for the external perturbation condition. Right: Detail of the 
pendulum. 

 

3.2.2.3 Safety Considerations 

 All of the older subjects wore a full-body safety harness anchored to the ceiling. 

The tether rope was adjusted for each subject to remain slack during all postural tests 

unless the subject fell. Although subjects lost their balance and needed to take 

compensatory steps during some of the postural tests, none of the subjects fell at any 

time. During the external perturbations, subjects were told that they could stop at any 

time if they felt uncomfortable or the magnitude of the perturbations was too large. None 

of the subjects reported any discomfort during these tests, and all subjects completed all 

aspects of the protocol successfully, with the exception of one older subject who chose 

not to do the external perturbation condition. 
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3.2.2.4 Sampling 

 Ground reaction forces, marker kinematics, pendulum angles, impact forces, and 

metronome signals (for Rhythmic Sway) were sampled using a 16-bit analog-to-digital 

card on a personal computer. The marker kinematics were sampled at 200 Hz, while all 

other data were sampled at 1000 Hz. 

3.2.3 Protocol 

 The experimental conditions included: 1) quiet stance, 2) static leaning (forward 

and backward), 3) rhythmic sway (anterior-posterior sway at preferred and imposed 

frequencies), 4) maximum reach, and 5) an external pendulum perturbation. A schematic 

showing the flow of the experimental session is shown in Figure 3-3. 
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Figure 3-3. Diagram of the experimental protocol. Numbers in parenthesis indicate total 
number of trials performed for each condition; numbers in brackets indicate number of 
trials in different sub-conditions. For the external perturbations, the number of 
perturbations (n) varied between subjects (see text for details). 

  

For all conditions, subjects were instructed to stand with their eyes open. The feet 

were positioned directly under the hips in line with the anterior-superior iliac spines, 

parallel with the sagittal plane. For most conditions, two trials were performed. Three 

trials were performed for the maximum reach, while a variable number of trials were 

performed for the external perturbations, until subjects needed to step.  
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3.2.3.1 Quiet Stance 

 For the quiet stance condition subjects were instructed to stand as still as possible 

for 30 s with their hands behind their back, keeping their gaze focused on a target placed 

at eye-level on a wall 10 ft in front of them.  

3.2.3.2  Static Leaning 

 Subjects were instructed to lean as far forward (backward) as possible without 

bending at the waist, keeping their heels on the floor and their arms behind their back. 

Once data collection started, a 1-3 s delay was observed, after which subjects were given 

the cue to begin leaning. Upon achieving maximum lean, subjects were required to 

maintain the leaning position while data were collected for 30 s.   

3.2.3.3 Rhythmic Sway 

 Subjects performed anterior-posterior sways at both their preferred frequency and 

an imposed frequency. In each condition two trials were performed. Subjects were 

instructed to sway forwards and backwards at the ankle joint as much as possible without 

stepping, keeping their feet flat on the floor and their body straight with the arms behind 

the back (Owings et al. 2000). In the preferred frequency condition, subjects were not 

given specific instructions on how fast to sway, but in the imposed condition they were 

instructed to entrain their sway to a metronome beating at 0.25 Hz. The analog audio 

metronome signal was amplified and output to both a speaker and an A/D converter. Data 

were collected for 30 s after the subject had successfully entrained their swaying for 4 

consecutive cycles. 
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3.2.3.4 Maximum Reaching  

 The maximum reach of subjects was first determined by instructing them to reach 

as far forward as possible with their hands together without losing their balance. Each 

subject performed four trials, with their maximum distance reached used to determine the 

location for a reaching target. Next, data was collected while subjects performed three 

maximum reach trials, in which they were instructed to touch the target with both hands 

as quickly as possible upon hearing a verbal cue, and then return to quiet stance. The 

movement cue occurred after several seconds of quiet stance. In all reaching trials, 

subjects were told that they could lift their heels. Data were collected for 10 s, capturing 

the entire quiet stance/reach/quiet stance sequence. 

3.2.3.5 External Perturbation 

 Subjects were strapped to the backboard apparatus, and their foot position was 

marked to ensure consistency across trials. Subjects were told to fix their gaze on a point 

located at eye-level on a wall 5 m away. They were instructed to resist the perturbations, 

resume quiet stance as quickly as possible, and only step if they felt a fall was imminent. 

The pendulum was positioned at a static release angle with respect to vertical. A 

light signaled subjects to commence quiet stance; after a random delay of 2 to 6 s the 

pendulum was released to swing forward, contacting the backboard/subject in the upper 

back region, accelerating the body forward. Subjects listened to white noise through 

headphones to mask the sound of the pendulum release. The first pendulum release angle 

was 10°. In subsequent perturbation trials the release angle was increased sequentially in 

increments of 5° (light subjects, i.e. <70 kg) or 10° (heavier subjects) until subjects 
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needed to step to prevent a fall. Only one trial was performed at each perturbation level. 

The different increments were used so that subjects would receive a similar number of 

perturbations. The perturbations were impulsive; after the pendulum shock absorber 

made contact, it rebounded away and was caught, resulting in a singular perturbation of 

short duration (~0.25 s). Subjects received two sets of sequentially increasing 

perturbations.  

3.2.4 Data Analysis 

The center of pressure (CoP) was computed from the measured ground reaction 

forces and moments. Sagittal plane segment center of mass (CoM) locations and inertial 

properties were estimated using regression equations, and then combined to give the total 

body sagittal plane CoM motion (Winter, 1990). Kinematic and kinetic data were 

smoothed using a Butterworth digital filter, with optimal cut-off frequencies determined 

through spectral analysis and residual analysis (Winter 1990). The anterior-posterior 

displacements of the CoP and CoM were referenced to the position of the ankle joint, so 

that a value of zero indicated that the anterior-posterior CoP or CoM location was the 

same as the ankle joint center in the sagittal plane.  

Only the second trial was analyzed for the quiet stance, leaning, and swaying 

postural conditions, and only the second set was analyzed in the perturbation condition. 

For the maximum reach, all three trials were processed and the performance measures 

were averaged together; this was done since there was only a singular event (e.g. 

maximum reach), compared with the other conditions which all included multiple events 

of interest (e.g. CoP position during 30 s of quiet stance). 
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In the literature, researchers have used an array of variables for the quantification 

of postural control. For example, Prieto et al. (1996) examined over 15 different measures 

of postural steadiness – just for the CoP. Considering that most methods of analyzing the 

CoP can be applied to the CoM, it is evident that there are many variables to choose 

from. For simplicity, we chose to use relatively basic variables in most cases, which have 

been shown to reliably distinguish between younger and older individuals (Prieto et al. 

1993). For the different experimental conditions, we computed various measures related 

to the movement of both the CoP and CoM, which reflect different aspects of postural 

control (Figure 3-4). Displacements of the CoP are related to the modulation of ankle 

and/or hip torque, and therefore capture the neuromuscular control processes involved in 

postural control. On the other hand, the CoM is the key variable that needs to be 

controlled in order for stability to be maintained, and thus reflects how successful an 

individual is at performing a particular balance task. A more detailed description of the 

various measures for the different postural conditions follows. 
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Figure 3-4. Summary of balance measures (right side) computed for the different 
postural conditions (left side). Abbreviations: CoP (center of pressure), CoM (center of 
mass), TtC (time-to-contact). 

 

3.2.4.1 Quiet Stance and Leaning Variables 

 For the quiet stance and leaning conditions, only the last 20 s of the 30-second 

trial were used in the analysis. The mean CoP speed was computed as the average 

absolute value of the first time-derivative of the anterior-posterior CoP displacement. 

This measure was chosen because it reflects the overall amount of CoP movement, which 

might be greater in the older subjects if their postural control is poorer (i.e. more CoM 
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movement in the normal and leaning conditions). This measure has been shown to 

reliably distinguish between young and older individuals (Prieto et al. 1996). 

For the quiet stance condition, the mean time-to-contact of the CoM was 

computed. Time-to-contact combines instantaneous CoM kinematics to predict a future 

time when it will contact the base of support boundary, akin to the “extrapolated CoM” 

described by Hof et al.(2005). This measure has been shown to decrease with age during 

quiet stance (Slobounov et al. 1998). The instantaneous CoM time-to-contact to the 

anterior (toe) and posterior (heel) support boundaries was calculated based on Slobounov 

et al. (1997): 

 
( )v v a p p

a

− ± − −
=

2
max2

Time-to-Contact  (4.1) 

where p, v, and a are the anterior-posterior positions, velocities, and accelerations of the 

CoM, respectively, and -./0 is the anterior-posterior location of the toe (or heel) 

markers. This calculation was performed at each point in time, and the average CoM 

time-to-contact was calculated. 

Finally, for the leaning conditions, the average anterior-posterior CoM position 

was computed, and expressed relative to the anterior-posterior position of the ankle joint 

center. Because subjects were asked to lean as far as they could, this variable reflects the 

postural control of the subjects at the extreme limits of their postural capabilities. 

3.2.4.2 Rhythmic Sway Variables 

 In the swaying conditions, the entire 30 second trial was used in the analysis, as 

the data collection started after subjects established a stable swaying pattern. A fast-
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Fourier transform was used to calculate the frequency and power spectrums of the CoM 

anterior-posterior displacement. The median CoM frequency was calculated, such that 

half of the total power was below and above the median frequency. This variable captures 

the basic requirements of the swaying task, which was to perform a stable oscillatory 

motion (Chiari et al. 2002). In the imposed swaying condition, subjects were required to 

match a target frequency, so the median frequency assessed how well subjects were able 

to perform the task.  

The maximum forward and rearward positions of the CoM during each sway 

cycle were computed automatically using a local min/max detection algorithm; all 

identifications were manually checked and adjusted if misidentifications occurred. The 

maximum forward and rearward CoM positions were averaged across the 30 s swaying 

trial. Similar to the static leaning condition, these variables measured the postural control 

of the subject at the limits of their stability, but in a dynamic condition that required 

appropriate deceleration of the CoM as it approached the base of support boundary. 

3.2.4.3 Reaching Variables 

For the reaching condition, the maximum distance reached was indicated by the 

maximum anterior position of the wrist marker. This absolute distance was expressed 

relative to the anterior-posterior positions of the toe markers, and then divided by the 

height of the subjects to account for differences in stature. This variable reflects the basic 

task requirement of reaching as far forward as possible. The maximal anterior position of 

the CoP was also computed and expressed relative to the anterior-posterior position of the 
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ankle joint center, which reflects in part the maximum amount of ankle torque generated 

by the subjects during the reach. 

3.2.4.4 External Perturbations Variables 

In the external perturbation condition, sagittal plane pendulum angles were 

calculated and numerically differentiated to compute the pendulum angular velocity. To 

account for differing subject inertias, we computed the “postural challenge” for each 

perturbation level by dividing the peak pendulum velocity at impact by the subject’s 

mass. The pendulum was adjusted to strike subjects at 78% of their standing height to 

account for varying CoM height. In the analysis, the postural challenge at which the 

subjects initiated a stepping response was used. This reflects the capacity of the subjects 

to resist the perturbations; subjects who perform better will step at a higher postural 

challenge level. Newton-Euler equations of motion were solved for the reaction forces 

and torque at the ankle (Elftman 1939). The maximum plantarflexor torque generated on 

the stepping perturbation level was calculated. 

3.2.5 Statistics 

3.2.5.1 Balance Measures 

 All statistical analyses were done with the software package R (2008). Separate 

two-way ANOVAs (age x gender) were performed on each of the dependent balance 

variables. Effect sizes for the ANOVAs were determined using Cohen’s f statistic (Cohen 

1969). Although the effect sizes will not be discussed explicitly, they are listed in tables 

so that the reader can make informed interpretations of the results (see Chapter 2 for 
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more details on interpreting effect sizes). Multiple comparisons were used for post-hoc 

analysis. A p-value of .05 was used as a guide for judging statistical significance for all 

tests. 

3.2.5.2 Regression Analysis 

3.2.5.2.1 Individual Mechanical Properties 

Linear regression analysis was used to assess the relationship between the muscular 

mechanical properties measured in Chapter 2 and the 16 balance variables presented here. 

The first step was to perform linear regressions for each individual muscle mechanical 

property, for each of the three muscles (DF, GA, and SO), against each balance measure. 

The aim of this analysis was to determine the ability of each property to independently 

predict the performance of the subjects on the postural tests, and to determine whether 

there were differences between the age groups. The form of the regression model was: 

 ( )0 1 2 3BM Age MP Age MPβ β β β= + + + ⋅  (4.2) 

where Age is a dummy variable allowing the examination of the effect of age group 

(young or old), MP is a single mechanical property for one muscle, BM is the balance 

measure, and the βs are the coefficients describing the relationship.  

The results of these regressions were screened for significance ( ).05p ≤ , and a 

subset of those with overall significance was created. This subset was further examined 

for significant differences in the y-intercepts – representing an effect of age only (Figure 

3-5A), slopes – representing an effect of the balance measure only (Figure 3-5B), effects 

of age and the balance measure (Figure 3-5C), and the interaction between age and the 

balance measure (Figure 3-5D). Out of these possibilities, the interaction between age 
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and the balance measure was of most interest. Cases where there was an effect of age 

only were not examined further, as the age-only effects were tested in the ANOVA 

described in the previous section (3.2.5.1, Balance Measures). Specific muscles were not 

analyzed for postural conditions in which they would have little or no influence (e.g. the 

DF muscles during the forward lean).  
 

 

Figure 3-5. Hypothetical regression results between a muscle property (MP) and a 
balance measure (BM) for young (Y) and older (O) subject groups. See text for details. 

3.2.5.2.2 Multiple Mechanical Properties 

The second step of the regression analysis was to examine the ability of multiple 

mechanical properties, considered together, to predict the performance of the young and 

older subjects on the different postural tests. The form of the full linear regression model 

used in this analysis was: 
 

  (4.3)
 ( ) ( ) ( )0 1 2 1 3 1 4 2 5 2 i j i jBM Age MP Age MP MP Age MP MP Age MPβ β β β β β β β= + + + ⋅ + + ⋅ + ⋅K
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where j  represents each of nine mechanical properties and  i  represents each of the β  

coefficients. In the full model, each mechanical property appeared as an independent term 

(9 terms) and as an interaction with age (9 terms).  Thus, the 18 mechanical property 

terms, the y-intercept ( )0β , and the age effect ( )1Ageβ  gave a total of 20 terms in the 

full regression model (i = 0 to 19). As shown in the equation, the interaction of age with 

each mechanical property was included in the regression model. Separate regression 

models were created using the mechanical properties for each muscle (DF, GA, and SO).  

A hybrid branch-and-bound/backward elimination procedure was used to find the 

best set of mechanical property predictors for the 16 balance variables, implemented with 

the regsubsets search algorithm in the R (2008). See Appendix D for a detailed example 

of this selection procedure. The search algorithm was configured to output the best 

models for different model sizes (one of each size up to nine mechanical properties), 

arranged according to their “adjusted” R2 values ( )2R , which weighs the predictive 

power of the models against the number of terms in each model (if two models have 

equal R2 values, the one with fewer terms will have the higher 2R  ). In the arranged model 

list, the break-point was manually identified. The break-point was the point at which the 

removal of any parameter caused a precipitous drop in 2R . The model right before the 

breakpoint was selected as the final “best” model. If there were multiple models close to 

the breakpoint with similar 2R  values, the one with the lowest Bayesian information 

criterion was selected (Schwarz 1978). For tractability in the interpretation of the results, 

and to help identify the most important mechanical properties, the final model was 

limited to a maximum of five predictors. Thus, no optimal model was selected if there 

were no significant ( ).05p ≤  models with five or less predictors. The final models for 



 

99 

each muscle and balance measure were inspected and compared. In some cases, terms 

were added or subtracted manually to ensure that the final models were indeed optimal. 

As in the linear regression using independent mechanical properties, the interaction terms 

were of interest, as these signify that the effect of a mechanical property on predicting 

balance performance depends on the age of the subjects (young or old). 

3.3 Results 

3.3.1 Balance Measures 

An example of representative young and older subject performance on the 

different postural tests is shown in Figure 3-6. In general, there were significant 

differences between the age groups in all postural conditions, with the exception of the 

backward leaning. There were main effects of age for most variables, main effects of 

gender for a few variables, and no age by gender interactions. 

The results for the static postural tests of quiet stance and leaning are presented in 

Table 3-1. For quiet stance, the older adults had significantly higher CoP speeds (p < 

.001) and significantly shorter mean CoM times-to-contact (p < .001). In the forward 

lean, the older adults had higher CoP speeds (p = .016) and did not lean as far forward (p 

< .001). 
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Table 3-1. Balance measures for static postural tasks. 

 Quiet Stance  Lean Forward  Lean Backward 
 CoP Speed 

(mm/s) 
CoM TtC 

(s) 
 CoP Speed 

 (mm/s) 
CoM Pos. 

(mm) 
 CoP Speed 

(mm/s) 
CoM Pos. 

(mm) 
Young Male 6.5 ± 2.1 10.3 ± 0.7  19.4 ± 4.2 142 ± 14  20.6 ± 6.0 4.6 ± 13.8 

Young Female 6.3 ± 1.6 9.5 ± 1.4  15.9 ± 6.6 119 ± 14  15.4 ± 5.6 -7.6 ± 12.2 
Old Male 14.7 ± 5.7 7.4 ± 2.0  26.2 ± 7.7 101 ± 18  26.2 ± 9.1 4.4 ± 17.4 

Old Female 10.3 ± 2.8 8.2 ± 1.0  22.3 ± 5.6 101 ± 18  19.5 ± 7.6 0.6 ± 8.8 
Main Effects A A  A A  - - 
Interactions - -  - -  - - 
Cohen’s f 0.99 0.85  0.62 1.04  0.53 0.37 

Note:  Main effect abbreviations: A  = Age
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Figure 3-6. Representative young (left) and older (right) subject anterior-posterior center 
of mass (black lines) and center of pressure (red lines oscillating around black center of 
mass lines) for the different postural conditions. From top to bottom: quiet stance, 
forward lean, backward lean, imposed swaying (preferred swaying is not shown), 
maximum forward reach, and sequential external perturbations (the solid circles indicate 
trials in which the subjects stepped off the force platform). Positions are referenced to the 
ankle joint. 
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The results for the swaying postural tests are presented in Table 3-2. For both 

swaying conditions, the older adults did not sway forward (indicated by “+” in Table 3-2) 

as far as the younger subjects (preferred: p = .005; imposed: p = .006). In contrast, there 

were no age-related differences in the maximum posterior CoM displacement (indicated 

by “-” in Table 3-2) for either swaying condition (preferred: p = .155; imposed: p = .302).  

In the imposed swaying condition, the median frequency of the anterior-posterior CoM 

movements was closer to the target frequency for the younger subject group (p = .023). In 

the preferred swaying condition, males chose to sway at a lower frequency compared to 

females, regardless of age (p = .039). 

 

 Finally, the results of the reaching and perturbation postural conditions are shown 

in Table 3-3. In the reaching condition, the older subjects were able to reach farther (p = 

.020) than the younger subjects, but were not able to shift their CoP as far forward (p < 

.001). Males were able to shift their CoP farther than the females (p < .001). There were 

Table 3-2. Balance measures for swaying. 

 Swaying - Preferred  Swaying – Imposed 
 CoM Median 

Freq. (Hz) 
+ CoM Pos. 

(mm) 
- CoM Pos. 

(mm) 
 CoM Median Freq. 

(Hz)† 
+ CoM Pos. 

(mm) 
- CoM Pos. 

(mm) 

Young Male 0.17 ± 0.06 136 ± 6 0.9 ± 17  0.23 ± 0.01 130 ± 12 11.6 ± 14 
Young Female 0.23 ± 0.05 112 ± 11 -4.3 ± 18  0.22 ± 0.02 111 ± 13 -4.2 ± 12 

Old Male 0.14 ± 0.08 106 ± 25 -10.2 ± 2  0.21 ± 0.03 100 ± 33 1.1 ± 21 
Old Female 0.18 ± 0.04 98 ± 20 -5.9 ± 19  0.20 ± 0.01 91 ± 18 -7.8 ± 14 
Main Effects G A, G -  A A - 
Interactions - - -  - - - 
Cohen’s f 0.58 0.81 0.49  0.58 0.71 0.46 

Note:  Main effect and interaction abbreviations: A  = Age, G = Gender 
†Target median frequency was 0.25 Hz. 
+ Anterior; - Posterior 
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no significant differences between the foot length of the young and older subjects (p = 

.969), although there were differences between the male and female subjects (p < .001). 

 In the perturbation trials, the younger subjects were able to withstand a larger postural 

challenge level (p < .001), and the male subjects generated larger plantarflexor torques 

than females (p < .001). 
 
 

Table 3-3. Balance measures for reaching and in response to a perturbation. 

 Reaching  Perturbation 
 Max. Reach 

(% Height)† 
Max. CoP Shift 

(mm) 
 Max. Challenge 

(deg/s/kg) 
Peak Torque 

(Nm) 
Young Male 13.0 ± 1.9 172 ± 8  1.92 ± 0.14 168 ± 21 

Young Female 13.2 ± 2.7 139 ± 10  1.69 ± 0.27 105 ± 12 
Old Male 14.5 ± 3.1 134 ± 19  1.17 ± 0.31 164 ± 25 

Old Female 18.2 ± 4.3 122 ± 14  0.97 ± 0.27 99 ± 25 
Main Effects A A, G  A G 
Interactions - -  - - 
Cohen’s f 0.67 1.35  1.50 1.49 

Note:  Main effect and interaction abbreviations: A  = Age, G = Gender 
†Distance reached beyond toes, normalized to subject height. 

 
 

3.3.2 Regression Analysis: Individual Mechanical Properties 

The first part of the regression analysis was designed to determine the relationship 

between muscle mechanical properties, considered individually, and the performance of 

the young and older subjects on the postural tests. Muscle mechanical properties that had 

significant overall effects on the prediction of the static balance measures are shown in 

Figure 3-7, with the coefficients describing these relationships and statistical results 

displayed in Table 3-4.  
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Figure 3-8 and Table 3-5 report similar information for the dynamic tests. In most 

cases, the properties for only one muscle were significant for a given balance measure. 

The sole exception was the mean CoM position in the forward lean condition, which was 

predicted by both GA and SO muscular properties.  

3.3.2.1 Static Balance Conditions 

For the quiet stance condition, the prediction of mean center of pressure (CoP) 

speed included a significant interaction between age and the slope of the SO force-length 

width ( )W  vs. mean CoP speed relationship. In the older subjects, as the width of the 

force-length relation increased, the mean center of pressure speed decreased. In contrast, 

mean CoP speed tended to increase as the width of the force-length relationship increased 

for the young subjects. 

 In the forward lean condition, the relationship for mean CoP speed showed a 

significant interaction between age and the slope of the GA 0a P  force-velocity 

coefficient. In the young subjects, 0a P increased with greater CoP speeds; however, the 

opposite was true for the older subjects, with increasing 0a P  associated with decreasing 

CoP speed. For the prediction of mean CoM forward position, there were no significant 

age group interactions with any of the muscular mechanical properties, but there were 

significant overall relationships with both the GA slack length ( )SL  and the SO 0a P  

coefficient. For both age groups, when the mean CoM position moved farther forward 

away from the ankle joint the GA slack length increased, and the SO 0a P decreased. 
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 Figure 3-7. Relationships between static postural measures and muscle mechanical 
properties for the dorsiflexors (DFs), gastrocnemius (GA), and soleus (SO). Data sets 
with overall significance are outlined by a dashed rectangle. Older subjects are shown as 
solid circles and a solid fitted line; young subjects are represented by open triangles and a 
dashed fitted line. 
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Table 3-4. Linear regression results for static postural variables. Only those with an 
overall p-value below .05 are shown. 

Balance Variable Muscle 
Property 

Muscle Coefficient 
Value Error p-value 

Quiet Stance 
Mean CoP Speed 

Force-Length 
Width 
( )W  

SO 

Age -29.5 7.80 < .001* 
Slope -0.253 7.80 .001* 
Interaction 0.555 0.143 .018* 
Multiple R2 .432 
Overall p-value .009* 

Leaning Forward 
Mean CoP Speed 

Force-Velocity 
Coefficient 
( )0a P  

GA 

Age -26.1 7.75 .003* 
Slope -26.4 12.3 .044* 
Interaction 63.5 18.4 .002* 
Multiple R2 .376 
Overall p-value .022* 

Leaning Forward 
Mean CoM 
Position 

Slack Length 
( )SL  

GA 

Age -10.6 29.5 .723 
Slope 175.7 83.4 .049* 
Interaction 64.3 130 .628 
Multiple R2 .379 
Overall p-value .026* 

SO 

Age -23.4 29.3 .434 
Slope 301 160.7 .076 
Interaction 174 217 .431 
Multiple R2 .454 
Overall p-value .008* 

Force-Velocity 
Coefficient 
( )0a P  

SO 

Age 4.79 19.3 .806 
Slope -117 49.5 .029* 
Interaction 23.7 65.6 .072 
Multiple R2 .382 
Overall p-value .025* 

*Significant at p <= .05 
 

3.3.2.2 Dynamic Balance Conditions 

 In the preferred-frequency swaying balance test, there was a significant age-

related interaction between the stiffness of the GA muscle ( )α  and the median swaying 

frequency, such that the higher median frequencies were associated with increased 

stiffness in the young subjects, while the opposite was true for the older subjects. There 

was also an age-related interaction between the maximal isometric force ( )0P  of the SO 
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muscle and the median swaying frequency, such that the swaying frequency tended to 

decrease with greater muscle strength in the younger subjects, but in the older subjects 

higher SO ( )0P
 
values were associated with higher swaying frequencies. 

When asked to time their sways to a metronome in the imposed swaying 

condition, there was a significant age-related interaction between the GA slack length 

( )SL and the mean forward sway position. Greater GA slack lengths were associated with 

greater forward positions in both age groups, in agreement with the results of the static 

forward leaning condition. However, the rate of increase (slope) in the forward CoM 

position relationship with slack length was larger for the younger subjects. For both age 

groups, there was an overall negative relationship between the SO 0a P  coefficient and 

the mean forward CoM position, with less forward swaying associated with greater 0a P  

coefficients. 

 In the reaching test, there was an age-related interaction between the width of the 

SO force-length relation ( )W  and the maximum distance reached. The young subjects 

with greater SO force-length widths were able to reach farther forward, but this relation 

was not seen in the older subjects. 
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Figure 3-8. Relationships between dynamic postural measures and muscle mechanical 
properties for the dorsiflexors (DFs), gastrocnemius (GA), and soleus (SO). Data sets 
with overall significance are outlined by a dashed rectangle. Older subjects are shown as 
solid circles and a solid fitted line; young subjects are represented by open triangles and a 
dashed fitted line. 
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Table 3-5. Linear regression results for dynamic postural variables. . Only those with 
an overall p-value below .05 are shown. 

Balance Variable Muscle Property Muscle Coefficient Value Error p-value 

Swaying (Preferred) 
Median Frequency 

Series Elasticity 
( )α  GA 

Age -0.038 0.036 .308 
Slope -0.035 0.001 .078 
Interaction 0.001 0.001 .004* 
Multiple R2 .488 
Overall p-value .005* 

Maximum 
Isometric Force 
( )0P  

SO 

Age 0.019 0.065 .009* 
Slope 0.001 0.045 .197 
Interaction 0.001 0.001 .043* 
Multiple R2 .389 
Overall p-value .022* 

Swaying (Imposed) 
Mean Forward 
Position 

Slack Length 
( )SL  GA 

Age -0.024 0.131 .079 
Slope -0.137 0.584 .030* 
Interaction 2.08 0.905 .033* 
Multiple R2 .399 
Overall p-value .019* 

Force-Velocity 
Coefficient 
( )0a P  

SO 

Age -11.9 21.0 .579 
Slope 140 54.0 .018* 
Interaction 92.8 71.5 .210 
Multiple R2 .336 
Overall p-value .047* 

Maximum Reach 

Force-Length 
Width 
( )W  

SO 

Age -0.161 0.063 .019* 
Slope -0.001 0.001 .865 
Interaction 0.003 0.001 .027* 
Multiple R2 .364 
Overall p-value .026* 

*Significant at p <= .05 
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3.3.3 Multiple Mechanical Properties 

3.3.3.1 General Multiple Regression Results 

To aid in interpreting the results of regression analyses incorporating multiple 

muscle mechanical properties, Table 3-6 lists the frequency of appearance of each 

mechanical property in the models of the static and dynamic tests (based on the final 

“best” regression models). For the static conditions, the slack length ( )SL  and the 

stiffness coefficient α appear the most (4 or more times) in the regression models, 

suggesting that these properties are important for explaining the variance in static 

postural conditions. The maximal isometric strength ( )0P  and optimal contractile 

component length  ( )0L  were also important predictors (3 appearances). For the dynamic 

postural conditions the most prominent muscle parameters were those describing the 

force-length relation( )0,L W , the force-extension relation ( ), , SLα β , and the force-

velocity relation ( )0 0,a P b L . 
 

Table 3-6. Frequency of appearance of mechanical properties in regression 
models. 

 

Postural 
Condition 

Form in Model 
Mechanical Properties 

Total 
0P  0L  SL  W  α  β  a/P0 b/L0 ε  

Static 
Alone 2 2 2 2 3 0 2 0 0 13 
Age Interaction 1 1 3 0 1 1 0 0 0 7 
Total 3 3 5 2 4 1 2 0 0 20 

Dynamic 
Alone 0 4 2 5 3 3 3 5 0 25 
Age Interaction 0 2 1 1 1 1 2 1 2 11 
Total 0 6 2 6 4 4 5 6 2 36 

Grand Total 3 9 8 8 8 5 7 6 2 56 
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Overall, there were regression models for individual muscles that demonstrated 

significant predictions of balance variables when incorporating multiple mechanical 

properties that were not significant by themselves. This is to be expected; mechanical 

properties of a single muscle have varying degrees of correlation (see Appendix C for 

correlations). The majority of the models include age as a separate factor or in an 

interaction with a mechanical property. In some cases, relatively few mechanical 

properties are needed to give moderately strong predictions (R2 > .40) for some balance 

measures. 

3.3.3.2 Static Postural Tests 

 The predictive abilities of the best regression models using multiple muscle 

mechanical properties for the static postural tests are shown in Figure 3-9 and the 

corresponding regression models are listed in Table 3-7. Regression models without 

overall significance are not shown, which meant that none of the independent measures 

accounted for the variability in the balance measure at the .05p ≤  significance level.  

For quiet stance, regression models for the DF and SO muscles were significant 

when explaining the variance in the mean CoP speed, while the GA regression model was 

significant when explaining the variance in the mean CoM time-to-contact (Table 3-7). 

Age, stiffness ( )α , and slack length ( )SL  of the DF and SO muscles were all important 

predictors of the mean CoP speed. In these models, α appeared independently, but SL

only appeared as an interaction with age. The maximal isometric force ( )0P  was also an 

important predictor, but only for the DF muscle. In contrast, there was a different set of 

predictors for the for the mean CoM time-to-contact based on the GA muscle properties, 
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including the optimal fiber length ( )0L , width of the force-length relation ( )W , and the 

interaction between age and the linearity of the force-extension relation ( )β . Together, 

these predictors accounted for almost 40% of the variance in the mean CoM time-to-

contact. 

 In the forward lean condition, similar predictors were included in the GA and SO 

regression models for the mean CoP speed ( )0, , ,SAge L L α . However, the 0a P  

coefficient of the force-velocity relation was also included in the model for the SO. For 

the mean CoM position,SL , and 0a P were again important predictors, with the maximal 

isometric force ( )0P  and the width or the force-length ( )W  relation also making 

contributions. No mechanical properties were significant predictors for the backward 

lean. 
 
 

 
 

Figure 3-9. Actual vs. predicted static balance measures using the regression models. 

 
 



 

 

 
 
 
 

Table 3-7. Multiple regression results for static postural tests. 

Postural 
Condition 

Balance Measure Muscle Independent Measures Included in Best Model # Terms R2 p 

Quiet 
Stance 

Mean CoP Speed 
DF P0 + α + (Age·P0) + (Age·LS) 4 .34 .015 
GA - - - - 
SO Age + α + (Age·LS) + (Age·α ) 4 .57 .039 

Mean CoM TtC 
DF - - - - 
GA L0 + W + (Age·β) 3 .40 .013 
SO - - - - 

Lean Forward 

Mean CoP Speed 
DF NA NA NA NA 
GA L0 + LS 2 .42 .004 
SO Age + a/P0 + α + (Age·L0) 4 .47 .038 

Mean CoM Position 
DF NA NA NA NA 
GA P0 +  LS 2 .45 .003 
SO Age + W + a/P0+  (Age·LS) 4 .59 .004 

Lean 
Backward 

Mean CoP Speed 
DF - - - - 
GA NA NA NA NA 

SO NA NA NA NA 

Mean CoM Position 
DF - - - - 
GA NA NA NA NA 

SO NA NA NA NA 

Regressions including more than 9 terms and/or no significant regressions not shown, signified by “-”.  
NA: model not applicable; CoP: center of pressure; CoM: center of mass; TtC: time-to-contact 
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3.3.3.3 Dynamic Postural Tests 

The predictive abilities of the best regression models using multiple muscle 

mechanical properties for the dynamic postural tests are shown in Figure 3-10 and the 

corresponding regression models are listed in Table 3-8. Again, regression models 

without overall significance are not shown. 

Many of the same predictors were present in the dynamic balance conditions as in 

the static balance conditions. New parameters present in the dynamic conditions (but not 

in the static models) were the 0b L  force-velocity coefficient and the eccentric plateau

( )ε . The regression models for the median CoM frequency in the preferred swaying 

included the optimal length  ( )0L  , the α  stiffness coefficient, the 0a P  force-velocity 

coefficient, and ε ; the majority of these properties appeared as an age interaction (except 

0a P ). Only the DF and GA muscles were associated with significant regression models – 

none were found for the SO muscle. There were no significant regression models for the 

median CoM frequency in the imposed swaying condition.  

There were significant plantarflexor regression models for the mean forward CoM 

position during both preferred and imposed frequency swaying, including the force-

length properties ( )0 andL W , the slack length ( )SL , and the force-velocity coefficients 

( )0 0anda P b L . Here, 0b L played a prominent role, but age did not. Similar properties 

were included in the mean rearward CoM position model for preferred swaying. 

However, different terms were included for imposed swaying, including the β  stiffness 

coefficient and ε . 
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The regression models for the maximum reach were significant for only the 

plantarflexor muscles, and included both age and age-interaction terms. The predictors 

included the force-velocity coefficients( )0 0,a P b L , the optimal fiber length( )0L , and 

the stiffness ( )α . The GA and SO muscles also had significant regression models for the 

maximum forward CoP shift during the maximum reach that included 0L , W , and β ; the 

SO model also included 0a P . There were no significant dorsiflexor regression models 

with respect to the maximum reach or the maximum CoP shift. Finally, the slack length 

SL  and force-velocity coefficient 0b L  were significant predictors for the maximum ankle 

torque in the external perturbation condition, with age playing a prominent role. On the 

other hand, there were no significant models for the maximum postural challenge that 

caused subjects to take a compensatory step. 
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Figure 3-10. Actual vs. predicted dynamic balance measures using the regression 
models.  



 

 

Table 3-8. Multiple regression results for dynamic postural tests. 

Postural Condition Balance Measure Muscle Independent Measures Included in Best Model # Terms R2 P 

Swaying 
(Preferred) 

CoM Median 
Frequency 

DF Age + (Age·L0) 2 .43 .021 
GA a/P0 + α +(Age·ε) + (Age· α ) 4 .65 .001 
SO - - - - 

Mean CoM  
Forward Position 

DF NA NA NA NA 
GA LS+ b/L0 2 .41 .005 
SO W + a/P0 + b/L0 3 .46 .007 

Mean CoM  
Rearward Position  

DF L0 + (Age· LS) + (Age· W) 3 .54 .022 
GA NA NA NA NA 
SO NA NA NA NA 

Swaying 
(Imposed) 

CoM Median 
Frequency   

DF - - - - 
GA - - - - 
SO - - - - 

Mean CoM  
Forward Position  

DF NA NA NA NA 
GA L0 + W + b/L0   3 .60 .001 
SO  a/P0 + b/L0 2 .47 .009 

Mean CoM  
Rearward Position  

DF W + β + (Age· ε) 3 .43 .013 
GA NA NA NA NA 
SO NA NA NA NA 

Maximum Reach 

Maximum Reach 
DF - - - - 
GA Age + b/L0 + α + (Age· L0)   4 .43 .050 
SO Age + α  + (Age· a/P0)   3 .44 .005 

Maximum Forward 
CoP Shift 

DF - - - - 
GA L0 + W +β + (Age·β) 4 .38 .049 
SO L0 + W +β + (Age· a/P0) 4 .62 .005 

External 
Perturbation 

Maximum Challenge 
DF NA NA NA NA 
GA - - - - 
SO - - - - 

Maximum  
Ankle Torque 

DF NA NA NA NA 
GA Age + LS + (Age·b/L0) 3 .47 .006 
SO - - - - 

Regressions including more than 9 terms and/or no significant regressions not shown, signified by “-”.  
NA: model not applicable; CoP: center of pressure; CoM: center of mass; TtC: time-to-contact 
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3.4 Discussion 

The purpose of this chapter was to evaluate the postural control of a group of 

young and older subjects under a variety of static and dynamic balance conditions, and to 

determine if there were specific muscle mechanical properties (measured in Chapter 2) 

that could explain the age-related changes in postural control. The balance tests 

demonstrated that the older adults had poorer postural control. We hypothesized that the 

maximal isometric force, the series elasticity, and the force-velocity characteristics of the 

plantar- and dorsiflexor muscles would be predictive of the age-related changes in 

postural control. While maximal isometric force had less predictive power than expected, 

the series elasticity and force-velocity characteristics did indeed explain a significant 

proportion of the age-related variance in the balance tests. Muscle force-length properties 

were also important in predicting age-related differences in balance ability, even though 

they were not significantly different between the age groups in Chapter 2. The multiple 

linear regression analysis revealed that for most postural tests, a combination of 

mechanical properties was needed for good predictive power. 

3.4.1 Age-Related Differences in Static and Dynamic Balance Conditions 

Almost all postural conditions were associated with differences between the 

younger and older groups. In upright quiet stance conditions, the older subjects exhibited 

more CoP movement (greater mean CoP speed), reflecting greater modulation of active 

ankle torque. The older subjects also had lower mean CoM times-to-contact, indicating 

decreased spatio-temporal margins of stability. These findings agree with previous 
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studies that have shown increased CoP speed (Maki et al. 1990, Prieto et al. 1996) and 

lower time-to-contact values (Slobounov et al. 1998, van Wegen et al. 2002) in older 

individuals. Overall, the present results suggest that older subjects had an increased 

amount of postural modulation but still had more CoM movement (based on the shorter 

CoM TtC), indicating less stability than the younger subjects during upright quiet stance.  

A maximum forward lean places increased demands on the plantarflexor muscles 

(Sinha and Maki 1996), and is therefore regarded as a more challenging postural task. 

The older adults could not lean as far and had more CoP movement than the younger 

subjects, supporting reports that older adults have smaller maximum recoverable lean 

angles (Cummings and Nevitt 1989, Grabiner et al. 2005). No age-related differences 

occurred in the maximal backward lean, perhaps due to the very small stability margins 

afforded to all subjects in this condition, where the CoM must be controlled by the 

dorsiflexors to be within a narrow range of positions (i.e. the ankle-heel distance is much 

shorter than the ankle-toe distance). The similar young and older responses may reflect 

the relatively few postural strategies from which to choose. In most balance studies 

involving older subjects, backward leaning is not included, as it is much more difficult to 

recover should a fall occur. An exception is a study by Van Wegen et al. (2002), who 

found that older subjects did indeed lean less far in the rearward direction, which 

contrasts with the results of the present study. This may be because the older subjects in 

the present study were all healthy and active individuals, who wore a safety harness to 

increase their confidence during the backward lean, which may have allowed them to 

more closely match the younger subjects. 
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In the dynamic maximal range swaying conditions, the older adults did not sway 

as far forward as the young when swaying at either preferred or imposed frequencies. 

Similar to the backward leaning, no age differences were found for the maximum 

rearward sway position. Thus, the results for the swaying kinematics and the static 

leaning are in agreement. Further, no age-related differences were seen in the preferred 

swaying frequencies, but the younger subjects were able to more closely match the target 

frequency (0.25 Hz) in the imposed swaying condition. This age-related decrement in 

entrainment performance is consistent with reports that errors in time estimation increase 

with age (Coelho et al. 2004, Rakitin et al. 2005). While several studies have examined 

voluntary swaying to study multi-muscle synergies (Danna-Dos-Santos et al. 2007, 

Krishnamoorthy and Latash 2005, Wang et al. 2006) or time-to-contact calculation 

methods (Haddad et al. 2006) in young healthy adults, this was the first comparison of 

voluntary swaying behavior between young and older adults of which we are aware. 

Internal and external perturbations also showed age differences. In the rapid 

forward reach condition (an internal perturbation), the older subjects did not shift their 

CoP as far forward as the young subjects, but were able to reach farther forward than the 

young subjects. The age-related differences in the maximum CoP shifts are consistent 

with other studies (Duncan et al. 1992, Duncan et al. 1990, Weiner et al. 1992). But why 

were the older adults able to reach farther forward? An inspection of the reaching 

movement motion capture data revealed that the speed of the older reaching movements 

was slower than the younger subject; this allowed their CoM to come closer to their 

forward base of support boundary and thus enabled them to reach farther.  
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In the sequentially increasing postural perturbations, subjects were instructed to 

resist stepping if possible. The older adults used a stepping strategy at a lower postural 

challenge than the younger subjects, which agrees with other studies (Luchies et al. 1994, 

Mille et al. 2003, Thelen et al. 1996) . The maximum plantarflexor torque used to resist 

the perturbations was similar between the age groups, agreeing with studies that suggest 

that maximal torque capability does not limit the ability of older adults to recover from 

postural perturbations (Grabiner et al. 2005, Hall and Jensen 2002, Mille et al. 2003). 

3.4.2 Muscle Mechanical Properties and Balance Control  

The main purpose of this chapter was to relate sets of individual muscle 

mechanical properties to balance performance in young and older individuals. Although 

other studies have examined the effects of isolated properties on postural control, such as 

the strength or stiffness of the plantarflexors (Fitzpatrick et al. 1992, Loram and Lakie 

2002a, Morasso and Sanguineti 2002, Winter et al. 1998, Winter et al. 2001), to our 

knowledge this is the first study to relate full sets of mechanical properties that describe 

the static and dynamic properties of the dorsi- and plantarflexor muscles. 

 A previous study by Onambele et al. (2006) examined the influence of 

plantarflexor muscle properties on postural control in the elderly, performing a multiple 

regression analysis similar to that reported here. Their study focused on total joint 

strength, muscle size, activation capacity, and Achilles tendon stiffness, rather than 

individual muscle properties. They found that age-related changes in these measures 

could explain a relatively large amount of the variance (> 70%) in balance performance 

during challenging postural tasks like tandem and single leg stance. In the present 
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chapter, age-related mechanical property alterations were significant predictors for a wide 

range of balance conditions, including mundane tasks such as quiet stance. In comparison 

to the Onambele study, the present regression models explained a lower proportion of the 

variance in the postural conditions, averaging ~40% when using specific independent 

mechanical properties to predict specific postural conditions, and increasing to ~50% 

when using multiple mechanical properties. The lower predictive power may be related to 

subject populations, as the Onambele study included many more subjects (n = 90), 

distributed across young, middle-aged, and older age groups. The smaller sample size in 

our study was associated with the involved experimental and computational aspects of 

our protocol, which included MRI and ultrasound imaging, multiple dynamometer 

experiments, musculoskeletal modeling, and computer optimization (Chapter 2).  

3.4.3 Maximal Isometric Force 

It is well established in the literature that muscle strength generally decreases with 

age (Bemben et al. 1991, Frontera et al. 2000a). Most studies providing this evidence 

have studied the strength of entire joints, due to the difficulty in measuring individual 

muscle forces directly in humans (Komi et al. 1987). While the torque-producing 

capability of a joint can be informative, knowledge of the maximal isometric strength of 

individual muscles is needed to fully understand the influence of age-related changes on 

balance performance. Individual muscles make unique contributions to the overall joint 

strength, as is the case for the gastrocnemius (GA) and soleus (SO), both of which are 

important in the control of upright posture (Nashner and McCollum 1985). For example, 

selective age-related atrophy of the faster-contracting Type II muscle fibers (Frey et al. 
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2000, Larsson and Ansved 1995, Lexell 1995) may cause the GA to be disproportionally 

weaker in older adults, changing the relative contributions of GA and SO to the control of 

posture in older individuals. The present study accounts for these possibilities, as the 

maximal isometric force ( )0P  capabilities of the dorsiflexors and individual 

plantarflexor muscles were estimated in Chapter 2 for the young and old subjects.  

In general, 0P  was weakly related to performance on the different static and 

dynamic postural tests. The regression analysis revealed that SO 0P  was a significant 

individual predictor of only one balance variable – the preferred swaying frequency 

(explaining ~40% of the variance overall). In this case, there was an age-related 

interaction, such that the preferred swaying frequency was inversely related to 0P  for the 

young, but directly related in the older subjects. One possible explanation could be that 

SO 0P  was a limiting factor in swaying speed for the older subjects, who may have 

needed stronger muscles to sway faster. Other mechanical properties may have been 

more important than0P  in the younger subjects, such as series elasticity (which was 

included in the multiple regression models). Another possibility is that the younger 

subjects who had stronger muscles also tended to have larger masses, and therefore had a 

lower natural swaying frequency, which would explain the inverse relationship between 

0P  and preferred swaying frequency in the young subjects. In the multiple regression 

analysis 0P  was an important predictor for only 3 of the 16 balance variables associated 

with the different balance conditions. These included the mean quiet stance CoP speed 

and mean forward leaning CoM position; 0P  did not appear in any of the multiple 

regression models for the dynamic conditions. 



 

124 

 Compared to the other muscle properties, the sparse appearance of 0P  as a 

significant predictor indicates a relatively minor role in predicting age-related 

degradations in postural performance. We had expected that 0P  might be a more powerful 

predictor, especially in conditions that require large ankle torques, such as the maximal 

lean and perturbation conditions. This expectation was in part due to the large influence 

of muscle strength on other muscle properties (0P  scales both the force-length and force-

velocity relationships), the age-related decreases in 0P  with age found in Chapter 2, and 

other studies demonstrating that musculoskeletal models are highly sensitive to 0P  

(Maganaris 2004, Out et al. 1996, Scovil and Ronsky 2006). Instead, the present results 

are consistent with other studies showing that maximal plantarflexor strength had little 

relation with age-related balance ability in tandem and single-leg stance (Onambele et al. 

2006), and recovering from a maximal lean (Grabiner et al. 2005). It may be that the 

strength of the healthy older adults in the present study was well beyond the minimal 

values required for the performance of the various static and dynamic postural tasks, and 

that muscle strength may play a more important role in frail elderly individuals (Kuo and 

Zajac 1993).  

3.4.4 Stiffness of the Series Elastic Components 

 The stiffness of the series-elastic component has a large influence on the behavior 

of muscle. As the contractile component of a muscle produces force, it is expressed 

across the series elastic component, causing it to stretch. This in turn alters the contractile 

component length and velocity, changing the time-course of force production due to the 

force-length and force-velocity relations. A variety of studies have shown an increase in 
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the stiffness of the series elastic components with aging (Chapter 2) (Blanpied and Smidt 

1993, Ochala et al. 2007a, Ochala et al. 2005, Ochala et al. 2004b); although others have 

shown opposite trends in the stiffness of the external portion of the Achilles tendon, 

which decreased with age (Onambele et al. 2006). These different findings may be due to 

different measurement sites (overall series elasticity vs. external tendon), which have 

different adaptations with age (Galler and Hilber 1998, Higuchi et al. 1995, Kjaer 2004, 

Ochala et al. 2007a, Tuite et al. 1997) (see section 2.1 Introduction for a brief 

discussion). The increase in series elastic stiffness is thought to be an adaptation to the 

aging process, as a stiffer musculotendon complex will allow a faster rise in force after a 

muscle is excited, as the contractile elements will not shorten as much compared to a 

more compliant musculotendon complex (Morasso and Sanguineti 2002). This adaptation 

may partially offset the decrease in the rate of tension development that occurs with aging 

(Clarkson et al. 1981). If this change in series elasticity is indeed an age-related 

adaptation, we expected that it would be predictive of the age-related changes in postural 

control. In general, this hypothesis was supported by the results of the regression 

analyses; however, series elastic stiffness was most predictive of age-related differences 

in balance performance when it was combined with other mechanical properties in the 

multiple regression analysis.  

Series elastic stiffness was characterized by the force-extension relationship, 

expressed as a second order polynomial for each muscle. The two polynomial 

coefficients specified the rate of extension with increases in force( )α , and the degree of 

linearity in the force-extension relation( )β . A third parameter, the slack length ( )SL , is 

the length at which the series-elastic component becomes “taut.”. Independently, the α  
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stiffness coefficient for the GA explained ~50% of the variance in the preferred swaying 

frequency, with an age interaction. In the younger subjects, the preferred swaying 

frequency was directly related to α , perhaps because the stiffer series elasticity allows a 

faster rise in force that promotes a greater swaying frequency. It is not clear why 

increases in the GA stiffness of the older group were related to lower swaying 

frequencies. One possibility is that other age-related changes in mechanical properties 

play a role in determining the preferred swaying frequency. For instance, the older 

subjects with decreased plantarflexor maximal isometric muscle force capabilities tended 

to have lower swaying frequencies (see previous section). Therefore, gains in force rise 

time due to the increased stiffness may be offset by diminished force capacity, thus 

reducing the net muscular impulse and decreasing the ability to accelerate and decelerate 

the CoM during swaying. 

 In the multiple regression analysis, the series elastic stiffness coefficients were 

important predictors in the regression models for both static and dynamic balance 

conditions. Theα coefficient was particularly important in predicting the mean CoP 

speed during quiet stance, while theβ  coefficient seemed to be most important in 

predicting the maximal forward CoP shift during a forward reach. Theα coefficient 

appeared as an interaction with age in the multiple regression models for both median 

swaying frequency (as in the independent linear regression) and mean quiet stance speed. 

Theβ  coefficient had age interactions for both mean CoM time-to-contact in quiet stance 

and the maximum forward CoP shift during reaching. In general, these results are 

consistent with the findings of Onambele et al. (2006), who showed that the stiffness and 

Young’s modulus of the Achilles tendon are both important predictors for postural stance 



 

127 

ability, and suggested that ankle stiffness would be important in sinusoidal swaying 

movements. 

In both age groups, subjects with longer GA and SO slack lengths  tended to 

lean further forward during the leaning task, and subjects with longer GA slack lengths 

reached more anterior positions during the imposed swaying task. The slack length of a 

muscle is an important factor in setting the operating range of a muscle. However, 

anatomical constraints dictate that the contractile fibers of a muscle with a long series 

elastic slack length will be relatively shorter than the fibers of a muscle with a shorter 

slack length, possibly placing the fibers on a different region of the force-length relation 

(Figure 3-11). Therefore, the series elastic slack length can alter plantarflexor force 

production indirectly due to its effect on the active force-length muscle property, and thus 

influence the degree to which subjects can lean forward. Although numerous studies have 

shown that slack length is an important property of human muscle based on modeling 

efforts (Buchanan et al. 2004, Hoy et al. 1990, Lloyd and Besier 2003, Manal and 

Buchanan 2004, Scovil and Ronsky 2006), this provides the first experimental evidence 

of a functional  link between slack length and postural control of which we are aware. 
 
 
 

( )SL



 

128 

 

Figure 3-11. A schematic of the role of the series elastic slack length during upright 
posture using a simplified inverted pendulum model. A subject with a long (left) and 
short (right) series elastic slack length.  

 

3.4.5 Force-Velocity Characteristics 

 The force-velocity relationship dictates that contractile elements produce less 

force than 0P  when shortening, and more force than 0P  when lengthening. In Chapter 2, 

the parameters that define the shape ( )0 0,a P b L and the eccentric force plateau ( )ε  of 

this relationship were estimated for the young and older subjects. When each of these 

parameters was included in separate linear regression models, only the 0a P  coefficient 

for the plantarflexor muscles was predictive of age-related differences in balance 

performance. The SO 0a P  coefficient explained almost 40% of the variance in the mean 

CoP speed when leaning forward, with the younger subjects displaying a direct relation 

between CoP speed and 0a P . In contrast, the older subjects had an indirect relationship, 

with greater mean CoP speeds associated with smaller 0a P  values. A smaller SO 0a P  

coefficient produces a higher maximum shortening velocity. 
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We were initially surprised to find this age-related interaction of the SO 0a P  

coefficient with CoP speed in a static postural task such as quiet stance. However, as 

previous researchers have pointed out, quiet stance is actually quite dynamic (Loram et 

al. 2004). During quiet stance, the body is constantly making small corrections, 

“catching” the CoM when it moves too far, and “throwing” it back towards an 

equilibrium point (Loram and Lakie 2002b). During this process, the muscle fibers 

undergo small stretch and shortening cycles, in which the force-velocity properties of 

muscle would play an important role. This throw-and-catch behavior, combined with 

increased neural delays, may explain the association between greater mean CoP speeds 

and smaller (faster) 0a P  values in the older subjects. To elaborate, in order to maintain 

posture with a minimal amount of effort the throws should be of just the right magnitude 

to bring the CoM velocity to zero at the equilibrium point, although in reality some 

overshoot is always present (Loram et al. 2005). The magnitude of the “throws” in the 

older subjects with faster contracting SO muscles (smaller0a P ) may have been greater 

than those observed in the older subjects with slower muscles, causing the CoM to 

overshoot the equilibrium point, and therefore requiring an increased corrective action 

(increasing the CoP speed). This behavior could arise from the increased neural delays 

observed in older adults (Norris et al. 1953, Sato et al. 1985), causing the older adults 

with faster contracting muscles to have a harder time controlling the larger forces 

(impulses) that can be produced at concentric muscle velocities. Older subjects with 

slower muscles may not have “overcorrected” as much, which resulted in slower CoP 

speeds. On the other hand, the younger subjects may have been better able to control their 

postural adjustments due to shorter neural delays. Therefore, younger subjects with faster 
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contracting SO muscles were able to use smaller corrections resulting in slower CoP 

speeds through a more precise control of the throws and subsequent catches of the CoM 

during quiet stance. 

In the multiple regression analysis, both force- velocity coefficients ( )0 0,a P b L
 

appeared often in the models for the dynamic balance tests, with 0a P also appearing as 

an age interaction. This reinforces the importance of the 0a P coefficient as a predictor of 

balance performance. The eccentric plateau coefficientε also appeared as an interaction 

with age in predicting dynamic postural performance, albeit with less frequency than

0a P and 0b L .  Although to our knowledge this is the first study to examine the relation 

between age-related changes in individual muscle force-velocity properties and postural 

control, other studies have suggested that age-related decreases in the rate of torque 

development can explain performance differences in a variety of postural tasks (Chandler 

et al. 1990, Horak et al. 1989, Lord et al. 1991, Luchies et al. 1994, Wolfson et al. 1986). 

Together, this suggests that velocity-dependent muscle properties are important in 

explaining age-related differences in postural control, even during relatively static 

postural tasks. 

3.4.6 Force-Length Properties 

 The contractile component force-length properties were described by parameters 

defining the optimal length( )0L and the width ( )W  of this parabolic relation (see 

Appendix B for more details). Although the optimal contractile length ( )0L
 
was not 

associated with balance ability independently, it was one of the most frequently 

appearing terms in the multiple regression analysis, appearing in models for both static 
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and dynamic postural tasks, and as an age-related interaction term. This suggests that 0L  

has an influential performance on general postural control, and played a part in predicting 

age-related differences in balance ability. 

 The width of the SO force-length relation  ( )W  was able to independently explain 

more than 35% of the variance associated with the age-related differences in both quiet 

stance CoP speed and the maximum forward reach, with significant age interactions in 

both cases. Younger subjects with wider force-length relations tended to have greater 

CoP speeds, while in the older group narrower force-length parabolas were associated 

with greater CoP speeds. Narrower force-length relations decrease the operating range of 

muscle, such that force is produced over a smaller range of motion; the force also 

decreases more sharply as the muscle fibers move away from the optimal length. This 

would cause greater changes in muscle force potential as the muscles repeatedly shorten 

and lengthen during quiet stance (Figure 3-12, Top). Therefore, in the older subjects the 

narrower force-length relations may have required greater neural inputs from the central 

nervous system to compensate for the greater changes in the force potential (Figure 3-12, 

Bottom). The greater neural inputs may have caused over-corrections (i.e. moving from 

one side of the force-length relation to the other), leading to repeated large inputs and 

corresponding changes in muscle force, which would be expected to increase the mean 

CoP speed. However, this does not explain the positive relationship between the force-

length width and the CoP speed in the younger subjects. This may again be due to the 

influence of other mechanical properties, such as the series elastic slack length and 

stiffness, which were also terms in the multiple regression models for quiet stance CoP 

speed. When performing a maximal reach, younger subjects with wider force-length 
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relations could reach farther, but this association was absent in the older subjects. This 

absence may be related to the importance of multiple factors that dictate the maximum 

reach in older adults. Indeed, in the multiple regression analysis the series elastic stiffness 

and force-velocity shape parameters together accounted for more variance in the reaching 

task performance than the width of the force-length relation by itself.  
 

 

Figure 3-12.  Top: Example of “wide” and “narrow” force-length relations, for a given 
operating range (“Op. Range”; vertical dashed lines). Bottom: For the wide force-length 
relation, the force potential changes gradually so only small inputs are needed to remain 
near optimal length. On the other hand, large inputs are needed to counteract the large 
changes in force potential when the force-length relation is narrow. 

 

 Based on the results of Chapter 2 and previous studies that reported no age-related 

changes in the force-length relationship of muscles (Brown et al. 1999, Larsson et al. 

1997), we did not expect that the force-length parameters would be predictive of age-

related differences in the performance of the postural tasks. On the contrary, the force-
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length parameters of the dorsi- and plantarflexor muscles were indeed predictive of age-

related differences in both static and dynamic balance performance, independently or 

when combined with other mechanical properties. The Chapter 2 analysis was designed 

to compare parameter differences between the young and old subject groups, but did not 

consider the relationship between the force-length properties and the balance variables 

for each subject within each group, as did the regression analysis performed in the 

present chapter. Although others have examined the influence of a variety of muscle 

characteristics (e.g. activation capacity, strength, stiffness) on postural control (Loram 

and Lakie 2002a, Onambele et al. 2006, Winter et al. 1998, Winter et al. 2001, Wolfson 

et al. 1995), few (if any) have examined the relationship between force-length properties 

and balance control in older adults.  

3.4.7 Limitations 

Although the regression results suggest that muscle mechanical properties are 

important in explaining age-related differences in balance control, they should be 

interpreted with a degree of caution due to the limitations imposed by the relatively small 

sample size and the inherent limitations of multiple regression. One such limitation is that 

of multicollineraity, as the mechanical property predictor variables exhibit varying 

amounts of correlation (see Appendix C). Although some mechanical properties 

exhibited moderate correlations (R ≈ .4 to .5 between a few properties), most were very 

low - far below values for “strong” (R > .8) correlations (which may cause problems with 

model selection and interpretation) (Licht 1994).  
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Another caveat relates to the use of a specified significance cut-off of p < .05, 

which is the traditional approach for statistical analysis of data and served to simplify the 

reporting of results. However, there were cases where p-values were close, but not below 

the cut-off value. In particular, there were instances where one of the plantarflexor 

muscles had a significant predictive relationship with a balance variable, but the other 

plantarflexor did not – although the regression plot was qualitatively similar (e.g. median 

CoM frequency during preferred swaying vs. P0; Figure 3-8).  

Finally, because our subjects were all healthy, active, community-dwelling 

individuals, the results of this study may not extend to others with neurological or 

musculoskeletal disorders, who may have vastly different mechanical properties and 

postural abilities. It also unknown whether the present results are indicative for other 

postural conditions not examined here. 

3.4.8 Conclusions 

This study examined the performance of healthy young and older adults on a 

variety of static and dynamic balance tasks, and sought to determine whether the 

differences in balance performance could be explained by age-related changes in the 

mechanical properties of the dorsi- and plantarflexor muscles. The older adults performed 

more poorly on the balance tasks, and the series-elasticity, force-length, and force-

velocity properties all made important contributions to the prediction of age-related 

differences balance control. Contrary to expectations, the maximal isometric force 

capability of the muscles had relatively little predictive power. For some balance tests, a 
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combination of mechanical properties was needed to explain the variance in postural 

performance. 
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CHAPTER 4  

MUSCULOSKELETAL MODEL OF POSTURAL CONTROL 

4.1 Introduction 

In upright standing posture, older individuals are generally considered less stable 

than younger adults (Woollacott and Shumway-Cook 1990). This conclusion is often 

based on increases in the amount center of mass (CoM) and center of pressure (CoP) 

movement in older adults. This decrease in stability has been linked to degradation of the 

sensory and neuromuscular systems (Horak et al. 1989, Hughes et al. 1996, Lord et al. 

1991), and have been associated with increased sway and increased risk of falling (Lord 

et al. 1991, Lord et al. 1994).  

 There have been a number of prospective studies designed to elucidate cause and 

effect relationships between age-related changes in components of the neuromuscular 

system and postural stability (Baloh et al. 1998, Brauer et al. 2000, Maki 1997, Maki et 

al. 1994). However, these studies follow subjects for only a few years at most, making it 

difficult to assess changes occurring over a human life span. An inherent difficulty is that 

a multitude of anatomical, physiological, and neural changes occur as a person ages, 

making it difficult to draw causal relationships between specific neuromuscular changes 

and their effect on posture. An alternate approach is the use of musculoskeletal models, 

where simulated age-related changes in the neuromuscular system can be invoked 

instantaneously, and the effects of individual changes can be evaluated systematically.

 Human standing posture is often modeled as a two-segment inverted pendulum 

(Karlsson and Lanshammer 1997, Loram and Lakie 2002b, Winter 1995b, Winter et al. 
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1997), which is appropriate when the amplitude of body sway is small and movement 

occurs about the ankle joint (Gage et al. 2004). Such models can be controlled through 

regulation of “ankle” joint torque (Fitzpatrick et al. 1996, Peterka and Loughlin 2004, 

Winter et al. 1998), but these “torque controlled” models are unable to address the role of 

individual muscles in postural control. A musculoskeletal model incorporating individual 

muscle forces rather than net ankle torque is more useful for studying the effects of age-

related changes of muscle properties on postural control. This is because there may be 

changes specific to certain muscles, such as the preferential loss of fast-twitch Type II 

fibers in the gastrocnemius (Frey et al. 2000, Larsson and Ansved 1995, Lexell 1995). 

The mechanical behavior of muscle can be represented by a Hill muscle model 

that delineates the nonlinear relationships affecting the force produced when neural 

control signals are input to a muscle (Hill 1938). The Hill model is comprised of an 

active contractile component that is responsible for producing force, and a passive series 

elastic component that accounts for the series elasticity within a muscle-tendon complex. 

The mechanical properties defining contractile component behavior include force-length, 

and force-velocity relations, while a force-extension relation defines the series-elastic 

component (see Chapters 2 & 3 and Appendix B for more details).  

The major muscles contributing to ankle torque and the control of sway in the 

sagittal plane include the dorsiflexors (DF) and the gastrocnemius (GA) and soleus (SO) 

plantarflexor muscles (Nashner and McCollum 1985). These muscles can be represented 

as Hill-type actuators with unique sets of parameters describing the Hill muscle 

properties. For the contractile component these include the maximal isometric force 

capability ( )0P , the optimal contractile component length ( )0L , the width of the force-
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length relation ( )W , and shape coefficients for the force-velocity relation  (0 0, ,a P b L ε

). For the force-extension relation of the series elastic component, parameters include the 

slack length( )SL , and stiffness coefficients ( ),α β (see Chapters 2 & 3 Appendix B for 

details). These parameters define the mechanical behavior of muscle, and have been 

shown to be important for the dynamic stability of the musculoskeletal system during 

simulations of locomotion (Gerritsen et al. 1998). Although muscular properties are a 

fundamental part of neuromuscular control, they are difficult to measure in living 

humans. As a result, many studies measure the properties of joints as a whole, where the 

behavior is the result of a complex combination of individual muscle mechanical 

properties. For example, studies have reported that in older individuals the maximum 

muscle shortening velocity decreases (Doherty and Brown 1997, Lanza et al. 2003, 

Larsson et al. 1997, Narici et al. 2005, Thompson and Brown 1999), and 

musculotendinous stiffness increases (Blanpied and Smidt 1993, Ochala et al. 2004a). 

However, these studies have focused on estimating the “net” mechanical properties of 

joints; few have investigated age-related changes in individual muscles (Thelen 2003).  

 The role of musculotendinous stiffness in the control of posture has received 

much attention (Loram and Lakie 2002a, Morasso and Sanguineti 2002, Winter et al. 

1998, Winter et al. 2001). Conversely, little research has examined the impact of other 

muscle mechanical properties on posture. Changes in muscle mechanical properties may 

influence the effective operating range of the muscles controlling posture (e.g. the width 

of the force-length relation), and may alter the ability of muscle to react to changing 

postural conditions (e.g. the coefficients of the force-velocity relation). Indeed, the results 

of Chapter 2 showed that with aging there are declines in the maximal isometric force of 
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the dorsi- and plantarflexor muscles, increases in musculotendinous stiffness, and altered 

force-velocity characteristics. In Chapter 3, it was shown that age-related changes in 

muscle mechanical properties can account for a significant amount of the variability in 

the balancing abilities of young and older adults. However, one limitation of this 

experimental research is that the contributions of age-related changes in individual 

muscle properties to balance control cannot be isolated, as many properties changed 

together with aging. A musculoskeletal model of postural control will assist in 

delineating the relations between muscle mechanical properties and postural control by 

allowing independent changes in muscle property values.  

 In previous chapters, the mechanical properties of the DF, GA, and SO muscles 

have been estimated for a group of young and old individuals (Chapter 2), and the 

postural stability of the same subjects has been evaluated through a series of static and 

dynamic postural tasks (Chapter 3). The present chapter extends this work by using an 

inverted pendulum model of sagittal plane postural dynamics that incorporates sets of 

subject-specific “young” and “old” muscle mechanical properties. The model integrates 

the muscle models with a feedback-based neural controller and uses numerical 

optimization to simulate postural control when maintaining upright “quiet” stance. The 

mechanical properties of the postural model are then systematically changed to 

investigate how age-related alterations in these properties affect postural control.  
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4.2 Methods 

4.2.1 Overall Study Design 

 Initially, a musculoskeletal model of postural control that includes sub-models of 

the skeleton, foot-floor interaction, and individual muscles is described. This is followed 

by a description of the simulation and optimization procedures, consisting of two parts: 1) 

the performance of the model in quiet stance using sets of “young” and “older” 

mechanical properties is compared with the results of young and old subjects in the 

Chapter 3 experiments; and 2) a sensitivity analysis is performed to assess effects of 

changes in individual muscle mechanical properties on the performance of quiet stance. 

4.2.2 Skeletal Model 

 The skeletal model comprised two rigid segments linked by a frictionless hinge 

ankle joint, confined to sagittal plane movement (Figure 4-1). One segment represented 

the head, arms, trunk, and legs (the “body”); the other combined both feet into a single 

rigid foot segment. Although the model includes a landmark representing the metatarsal-

phalangeal joint (Figure 4-1, 5th Met.), no movement was permitted at this joint. The 

mass of the body and foot segments were concentrated at single points, CoMBody and 

CoMFoot, respectively. The mass and inertial properties of the segments was scaled to that 

of an average adult male, based on Maurer and Perterka (2005). See Appendix E for 

details on the skeletal model parameters. For consistency, the same skeletal model 

parameters were used for the “young” and “older” quiet stance models, so that any 

differences in the behavior of the model would be solely due to the muscle mechanical 

properties and the magnitudes of the control signals. 
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Figure 4-1. Schematic of the skeletal and foot-floor model. See text for details. 

4.2.3 Foot-Floor Model 

The foot-floor interaction was modeled with a series of 21 spring-damper 

elements, spaced uniformly along the length of the foot. Thus, the foot was not rigidly 

attached to the ground, but was allowed to have translational and rotational movement as 

dictated by the spring-damper elements. Each spring-damper could apply force in the 

vertical and anterior-posterior directions. The vertical force exerted by each spring was 

an exponential function of the vertical displacement of the foot relative to the ground 

(Anderson and Pandy 1999). The net ground reaction force was computed by summing 

the forces exerted by the springs on the foot segment. See Appendix E for more details. 

4.2.4 Muscle Model 

The skeletal model was actuated by three two-component Hill-type (1938) muscle 

models representing the DF, GA, and SO. Each muscle model included a contractile 
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component with nonlinear stimulation-activation, force-length, and force-velocity 

properties, and a series elastic component with a nonlinear force-extension relationship. 

Details about the equations representing these relationships and the muscle model 

algorithm can be found in Appendix B. The combined parallel elasticity of the muscle-

tendon complexes, ligaments, and other tissues was represented by a nonlinear passive 

torque-angle relation, based on Riener and Edrich (1999): 

 ( ) ( )exp 2.1016 0.0843 exp 7.9763 0.1949 1.792PASSIVE ANK ANKT θ θ= − − − + −  (5.1) 

where ANKθ  is the ankle angle, and PASSIVET  is the passive ankle torque, which contributed 

to the net ankle torque. Although passive ankle torque contributions were measured using 

a dynamometer in Chapter 2, we chose to use the literature-based equation to facilitate 

comparison with studies in the literature, and also the ankle angle vs. passive torque 

relationships were similar (i.e. equations based on the Chapter 2 results vs. the Riener and 

Edrich equation). 

4.2.5 Anatomical Model 

The software package SIMM (Delp et al. 1990) was used to construct an 

anatomical model that included the body and foot segments, and could generate the DF, 

GA, and SO muscle kinematical relationships. The model anthropometric measurements 

were scaled to that of an average man (see Appendix E). For each of the three muscles, 

fourth-order polynomials were used to describe the relationships between the length and 

moment arms of the muscles and the ankle flexion-extension joint angle.  
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4.2.6 Neural Controller 

The motor commands for postural stabilization were generated using a type of 

proportional-derivative (PD) feedback control based on existing models (Barin 1989, 

Johansson et al. 1988, Masani et al. 2003, Morasso and Sanguineti 2002, Peterka 2002, 

Peterka and Loughlin 2004). These studies all used PD feedback to control an active joint 

torque generator, but in the present model the control scheme was modified to include 

models of the individual muscle model actuators. An outline of the control scheme is 

shown in Figure 4-2. 

A single proportional controller was used to modulate the excitation signals of the 

plantarflexor muscles (GA and SO). This was done for simplicity, and also due to reports 

indicating that the GA and SO are modulated together during quiet stance. (Loram et al. 

2005, 2004). The proportional controller responded linearly to the horizontal deviation of 

the CoM from a position in line with the anterior-posterior position of the ankle joint 

center ( )REF
CoMX . Separate plantar- and dorsiflexor derivative controllers based on the CoM 

time-to-contact (see below) were also included. When the CoM was moving forward (+ 

v) the plantarflexors were excited, while the dorsiflexors were excited whenever the CoM 

was moving rearward (- v). No dorsiflexor proportional controller was needed, because it 

would only be active when the CoM was behind the ankle joint. Since one of the criteria 

for the optimization was for the model to maintain its position about an equilibrium point 

in front of the ankles (see 4.2.8 Optimization Procedure), dorsiflexor proportional control 

would be of no benefit.  

A novel aspect of the feedback control system is that the derivative control was 

based on the CoM time-to-contact, a spatiotemporal variable that includes information 
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about CoM kinematics (position, velocity and acceleration) relative to the base of support 

boundaries (see Chapter 3 for computational details). Previous feedback-control models 

used the segmental angular velocity as a basis for the derivative controller (Masani et al. 

2003, Maurer and Peterka 2005, Peterka 2002, Peterka and Loughlin 2004). Knowledge 

of the putative time before the CoM would cross (contact) a base of support boundary 

provides information concerning the urgency of the postural situation, and introduces 

nonlinearities into the derivative control. These nonlinearities arise from the constraint 

imposed by the finite foot length distance over which the CoM can travel before stability 

is lost. The inverse of time-to-contact (1/time-to-contact was used as the input to the 

derivative controllers, meaning that decreased stability (i.e. shorter time-to-contact) 

would cause an increase in the excitation level of the appropriate muscle models. In 

contrast, the excitation signal generated by the derivative controllers would be very small 

if the time-to-contact to the base of support boundary was large. 

The postural control model also accounted for various delays and noise that are 

found in the transmission of control signals within the neural system (Eurich et al. 2000, 

Faisal et al. 2008). A time delay of 50 ms (τd) was chosen to represent the cumulative 

time delay due to sensory transduction, neural transmission, and nervous system 

processing (Masani et al. 2003, Peterka and Loughlin 2004). An additional delay was due 

to the excitation-activation properties of the muscles, in which the activation increased or 

decreased exponentially following changes in the excitation signal (see Appendix B for 

details). The time constants were 10 and 70 ms for rising and falling excitation levels, 

respectively (Winters 1995). A noise source was injected into the control model by 

generating white noise with a maximum range of ±20 Nm with a pseudo-random number 
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generator (the noise gain KN was equal to 20). The white noise was filtered with a 

moving average from the previous 2 s of data (thus, the noise level was zero for the first 2 

s). This filtering removed the higher frequency components of the white noise, leaving a 

more prominent lower frequency oscillation, reproducing the “random walk” behavior of 

human postural control (Collins and Deluca 1993). The resulting noise was introduced 

into the model as a disturbance torque (maximum range ~ ±2 Nm, standard deviation ~ 

0.7 Nm; Figure 4-2). This disturbance torque (TDisturb) represented the combined effects 

of noise throughout the neuromuscular system. The pseudo-random number generator 

was started with the same seed for each simulation, causing each simulation to receive 

identical disturbance torque-time series. 



 

 

 
 

 
 
 

Figure 4-2. Schematic of the postural control model. Subscripts DF, GA, and SO refer to the dorsiflexors, gastrocnemius, and soleus 
muscles, respectively. XCoM: the anterior-posterior (AP) position of the body center-of-mass (CoM), REF

CoMX : the AP position of the ankle 
joint center, Boundary

CoMX : the AP position of the base of support boundaries, vCoM: AP velocity of CoM, DtB: distance from CoM to toe or 
heel boundaries, depending on the CoM velocity direction (vCoM), TtCCoM: CoM time-to-contact to toe or heel boundaries depending 
on the CoM velocity direction (vCoM), P

PFK : proportional control gain for a the plantarflexors, DK : derivative control gain for a given 
muscle (DF or PF), STIM: neural excitation signal, ACT: muscle activation, F: muscle force, d = muscle moment arm at the ankle, T: 
ankle torque produced by each muscle, TMUS: net muscle torque produced at ankle, TPassive: passive torque contributions, KN: noise 
gain, TDisturb: disturbance torque, TNET: net ankle torque, τd: time delay. 
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4.2.7 Equations of Motion  

 The equations of motion for the two-segment inverted pendulum model were 

derived symbolically using Autolev (Version 4, OnLine Dynamics, Inc., Sunnyvale CA), 

software, which is based on Kane’s method (Kane and Levinson 1985). The model had 

four degrees of freedom, as it was not pinned to the ground. A variable step-size Runge–

Kutta–Merson integrator (Fox 1962) was used to integrate the model state equations 

(maximum step size = 0.01 s, maximum absolute & relative error ≤ 10 -7).  

4.2.8 Optimization Procedure 

Numerical optimization was used to find the values of the unknown gains for the 

PD controller( ), ,P D D
PF DF PFK K K that would allow the model to maintain quiet stance. A 

genetic algorithm (Storn and Price 1995) was used to find the solution to the optimization 

problem (see Chapter 2 for details). In the experimental quiet stance condition (Chapter 

3), subjects were asked to stand “as still as possible”, analogous to the task of minimizing 

the amount of CoM motion. Other implicit goals included maintenance of upright stance 

and minimal muscular effort, which would be reflected by reduced muscle excitations, 

relatively low muscle forces, and small CoP movements - as seen in experimental quiet 

stance data. Therefore, a multi-component fitness criterion (cost function) that takes all 

these goals into account was specified.  

Maximal fitness ( )f X
r

 was obtained by minimizing a function comprised of 

four components related to the time the model could stand without losing its balance
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( )FALLC , the total muscle force produced( )FORCEC , the deviation from a target 

equilibrium point ( )EQC , and the total CoM-CoP difference ( )CoM CoPC − : 

 ( ) 1 2 3 4FALL FORCE EQ CoM CoPf X wC w C w C w C −= + + +
r

 (5.2) 

where w  is a weighting factor, such that 1w = 1, 2w =1, 3w =7.5, and 4w =10. These 

weighting factors were obtained through pilot work, and resulted in the fastest and most 

robust convergence to an optimal solution. The vector X
r

consisted of the neural 

controller gains: 

 , ,P D D
PF DF PFX K K K =  

r
 (5.3) 

where P
PFK  is the gain of the proportional controller for the plantarflexor muscles, and 

D
D FK  and D

PFK  are the derivative gains for the dorsi- and plantarflexors, respectively.
 

The first cost ( )FALLC was associated with the time until the model lost stability 

because the CoM moved outside of the base of support: 

 ( ) 210FALL FINAL FALLC T T = −   (5.4) 

where FINALT  is the selected duration of the simulation and FALLT  is the instant at which 

stability was lost. This cost was much greater than the other cost components, to drive the 

optimization procedure away from unacceptable solutions where the model falls. Once 

this cost was brought to zero, the optimization then focused on reducing the other three 

costs. The inclusion of this stability cost was preferred to simply adding a large fixed 

penalty if the model fell because it improved the performance of the optimization 

procedure.  

The second cost ( )FORCEC was based on the cumulative sum of the muscle forces, 

scaled to each muscle’s maximal isometric force 0P : 
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1 0 0 0

DF GA SOn

FORCE DF GA SO
i

P P P
C

P P P=

      
= + +      

       
∑  (5.5) 

where P  is the muscle force at time step i  for a given muscle. Since 0P  is a function of a 

muscle’s physiological cross-sectional area, this cost function is identical to one which 

minimizes the net muscle stress (Crowninshield and Brand 1981). This cost component 

encouraged optimal solutions associated with a minimal level of muscle activity, as 

exhibited during quiet stance in humans. In pilot work, a nonlinear cost component 

associated with minimizing the sum of the squared muscle forces was also explored. The 

results were virtually identical, so the simpler linear cost function, which produced 

realistic solutions, was employed.  

The third cost component ( )EQC  was associated with the cumulative sum of the 

CoM distance from the target equilibrium point. Previous modeling studies implementing 

feedback control of an inverted pendulum model have used a target position directly 

above the ankle joint (Masani et al. 2003, Maurer and Peterka 2005). However, humans 

normally keep their CoM about 50 mm in front of the ankle joint during quiet stance 

(Winter et al. 1998), which agrees with our results from Chapter 3 (young 52 mm; older 

43 mm; see Table 4-1). Based on our experimental data, the target equilibrium point was 

set to 47 mm, and the cost component defined as: 

 
1

n

EQ CoM EQ
i

C X X
=

= −∑  (5.6) 

where CoMX is the anterior-posterior position of the CoM at time step i , and 
E QX is the 

equilibrium point (47 mm). This cost component introduces a constant plantarflexor 

muscle activity bias to maintain this forward-leaning position, and encourages the model 
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to limit excessive CoM motion. The same target equilibrium point was used for both 

young and old models so both would have identical optimization goals. 

The final cost( )CoM CoPC −  included the cumulative difference between the 

positions of the CoM and CoP, which is proportional to the horizontal acceleration of the 

CoM during quiet stance (Winter 1995a). A small CoM-CoP difference has been 

suggested as indicative of more efficient postural control (Benvenuti et al. 1999): 

 
1

n

CoM CoP CoM CoP
i

C X X−
=

= −∑  (5.7) 

where CoMX is the anterior-posterior position of the CoP at time step i .  

4.2.9 Assessment of Quiet Stance Model 

The model was evaluated by assessing how well its behavior reproduced the 

experimental data of the young and old subjects in the 30 s quiet stance balance condition 

in Chapter 3. Separate optimizations were performed using the average DF, GA, and SO 

mechanical properties of the young and older subjects, estimated for each age group in 

Chapter 2. The maximal isometric force capabilities were doubled to represent the 

combined muscle strengths in both legs together in the inverted pendulum model. The 

simulation time was set for 90 s but only the middle 30 s was compared with the 30 s 

long experimental data time-series. The beginning of the model data series was ignored to 

ensure that initial transients decayed. Each simulation required ~18 hours of computing 

time on a Pentium 4 processor to converge to an optimal solution. Several postural 

control variables were computed for the CoM and CoP, including the mean position and 

its standard deviation, the total path length, mean speed, maximum range, and median 

frequency. To test the long-term stability of the quiet stance model, the optimized young 
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model was simulated for 10 min (600s). Ignoring the first 10 s due to transients, a linear 

equation was fit to the CoM position data. The y-offset of this equation represents the 

effective equilibrium point of the model, and the slope represents the long-term trend, 

such that a slope of zero would mean that the model always tends to return to the same 

equilibrium point over time (did not drift). 

4.2.10 Sensitivity Analysis 

The initial sensitivity analysis was designed to examine the behavior of the young 

quiet stance model in response to age-related changes in muscle mechanical properties. 

The young quiet stance model was simulated multiple times using the optimized 

proportional and derivative controller gains; however, for each simulation one of the nine 

plantarflexor (GA and SO) muscle mechanical properties was independently “aged” by 

changing the value to the mean of the older male subjects. Although the dorsiflexor 

muscles contribute to postural control, the mechanical properties of the dorsiflexor 

muscle model were not changed as the analysis was designed to focus on the 

plantarflexor muscles since they have a dominate role in postural control (Nashner and 

McCollum 1985). Investigated parameters were the maximal isometric force ( 0P ), the 

force-length relationship (0L ,W ), the force-extension relationship (α ,β , SL ), and the 

force-velocity relationship ( 0a P , 0b L ,ε ), all of which were described in Chapter 2. 

For this initial sensitivity analysis, the gains of the controllers were not re-optimized. 

Each simulation lasted for 180 s, with all other model parameters and mechanical 

properties kept constant. A final 180 s simulation was performed with all of the 
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mechanical properties changed to the older values, again with the same control gains as 

in the optimal young model solution.  

A further sensitivity analysis was performed by systematically altering each 

plantarflexor muscle model parameter to assess the general nature of their influence on 

the control of quiet stance. In this case the model was re-optimized each time so the gains 

of the neural controllers could change, adapting to the change in mechanical properties. 

The initial model parameters were the average values of the young male subjects 

estimated in Chapter 2. The nine parameters were then varied systematically across six 

levels (±5%, ±10%, and ±15%), based on a similar sensitivity analysis by Maurer and 

Perterka (2005). After each change the model was re-optimized to find the proportional 

and derivative controller gains that minimized the fitness criteria, for a total of 54 

separate optimizations.  

 Some of the older subjects had mechanical properties that were outside of the 

investigated range of ±15%. Thus additional optimizations were performed where each of 

the mechanical properties was independently changed to the mean older value. For all of 

the sensitivity analysis re-optimizations, the simulation time was set to 50 s, followed by 

a model simulation using the new optimized parameters for 180 s. For these re-

optimizations, a subset of the balance variables was calculated, including the mean 

position, standard deviation of the mean position, mean speed, and median frequency. 

These variables were only computed for the CoM, as preliminary data analysis showed 

that the changes in the variables computed using CoM and CoP were virtually identical. 
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4.3 Results 

4.3.1 Assessment of Quiet Stance Model 

The model and experimental performances are compared in Figure 4-3. The 

models were able to achieve stable postural states and qualitatively capture the basic 

structure of the CoM and CoP motion during quiet stance. Quantitatively, summary 

measures from the “older” postural model more closely matched the older subject group 

data than did the “younger” model for the younger subjects (Table 4-1). For the older 

model, the CoM and CoP path lengths and mean speeds were similar for the model and 

subjects, while the younger model displayed longer CoM and CoP path lengths and 

higher mean speeds than the young subjects (Table 4-1).  

Figure 4-3 (bottom graphs) clearly shows that the older model needed more 

excitation to the muscles than did the young model. In both young and old models, the 

dorsiflexor muscle excitation displayed higher frequencies and more phasic activity than 

the plantarflexors, associated with the exclusive derivative control of the dorsiflexors 

versus the combined proportional/derivative plantarflexor control. The young model 

exhibited stable long-term behavior when simulated to stand for a total time of 10 min. 

This stability was assessed by fitting an equation to the CoM position data:  

 0.0031 46.9y t= +  (5.8) 

where t  is time (s), and y  is the anterior-posterior CoM position (mm). The y-offset of 

46.9 indicates that the model remained very close to the target equilibrium point of 47 

mm, and the very small slope of 0.0031 mm/s indicates that in the long term, the model 

did not drift away from the equilibrium point (Figure 4-4). 
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Figure 4-3. Performance of the optimized quiet stance postural control models using 
muscle mechanical properties measured for young (left) and older (right) subjects. For 
comparison, experimental data from representative young and older male subjects are 
shown (top graphs). 
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Figure 4-4. Long duration behavior of the optimized young postural model (10 min). The 
center of pressure (red) is shown oscillating around the center of mass (black). The linear 
trend is shown (not including the first 10 s). 

 
 
 
 
 

Table 4-1. Balance measures characterizing the performance of young and old 
subjects and the postural control model using sets of young and old mechanical 
properties.  

Balance Measure 
Young  Old 

Subjects Model % Diff.  Subjects Model % Diff. 

Mean Position 
(mm) 

CoM 51.3 47.4 -7.6  43.1 52.6 22.0 

CoP 51.1 47.5 -7.0  42.6 52.5 23.2 

SD of Position 
(mm) 

CoM 5.8 4.8 -17.2  6.9 5.1 -26.1 

CoP 6.2 5.5 -11.3  7.7 5.8 -24.7 

Path Length 
CoM 68.6 108.7 58.5  108.6 101.8 -6.3 

CoP 206.5 330.9 60.2  385.3 398.2 3.3 

Mean Speed 
(mm/s) 

CoM 2.3 3.6 56.5  3.6 3.4 -5.6 

CoP 6.9 11.0 59.4  12.8 13.3 3.9 

Max. Range 
(mm) 

CoM 21.4 19.7 -7.9  27.1 18.8 -30.6 

CoP 26.2 24.2 -7.6  36.1 24.3 -32.7 

Median 
Frequency (Hz) 

CoM 0.04 0.03 -25.0  0.05 0.01 -80.0 

CoP 0.05 0.04 -20.0  0.11 0.03 -72.7 
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With the musculoskeletal model we can observe variables that we are unable to 

measure in the human subjects, such as the individual muscle forces (Figure 4-3). The 

length and velocity of the muscle fibers are important as they dictate the force that the 

muscle can produce for a given excitatory input. Figure 4-5 shows the operating lengths 

of the DF, GA and SO contractile components for the optimized young and older models. 

The DF and GA muscles were very close to the optimum lengths of their force-length 

relations in the young model, but in the older model the DF was further on its ascending 

limb (shorter lengths), and the GA was positioned further on the descending limb (longer 

lengths). The SO muscle was operating on the ascending limb of its force-length 

relationship for both young and old models, with a shorter length in the older model. The 

shortening and lengthening actions of the plantarflexor contractile components were 

largely synchronous with the kinematics of the total musculotendon complex, with zero-

lag cross-correlations of .73 and .89 for the GA and SO muscles, respectively, in the 

optimized young model (Figure 4-6). 

 

 

Figure 4-5. Lengths of the contractile components of the young (Y) and older (O) 
optimized quiet stance models, relative to the optimum contractile component length 
(dashed line). 

 



 

157 

 

 
 

Figure 4-6. Total musculotendon (thick line) and contractile component (thin line) 
lengths for the gastrocnemius (left) and soleus (right) muscles for the optimized young 
model during 20 s of quiet stance. 

 

4.3.2 Sensitivity Analysis 

For the initial sensitivity analysis, the young quiet stance model was simulated 

nine times using the optimized values for the proportional and derivative controller gains. 

In each simulation, one of the nine plantarflexor mechanical properties was changed to 

the value of the older subjects. The model quickly fell forward after only a few seconds 

when the maximal isometric force( )0P , optimal fiber length( )0L , and slack length 

( )SL  were changed to the older values. Conversely, the model was able to stand for the 

entire 180 s simulation time when the other six mechanical properties were changed 

(Figure 4-7). When an additional simulation was performed with all of the young 

mechanical properties changed to the older values simultaneously, the model fell 

forward. 
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Figure 4-7. Results of the optimized young quiet stance model (top), and after each of six 
of the mechanical properties were independently changed to the mean value of the older 
subjects. The center of pressure (red) is shown oscillating around the center of mass. The 
models were simulated for 180 s, the first 60 s of data are not shown. For three of the 
mechanical properties, the model was unable to maintain balance for 180 s. See text for 
an explanation of nomenclature.  

 For the second sensitivity analysis each of the nine plantarflexor mechanical 

properties was systematically changed by ±15%, and the model was re-optimized with 

the altered properties. Because some of the older mechanical properties were outside of 

the ±15% range, additional optimizations were performed with each mechanical property 

shifted by the average difference between the mean plantarflexor young and old property 
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values (Table 4-2). Six of the nine mechanical properties fell outside the ±15% range, 

including: 0P , 0L , SL ,α ,β , and 0b L .  
 
 

Table 4-2. Differences between average mechanical properties for young and older 
subjects. (Data are from Chapter 2). 

Mus. Group 0P (N) 0L (cm) W (%L0) α  β  SL (cm) 0a P  0b L (s
-1

) ε  

GA 

Young Males 1423 20.7 58.6 630 19.2 24.2 0.38 .854 1.42 
Old Males 718 23.0 54.3 1575 .395 20.6 .395 .594 1.27 
Difference -705 2.3 -4.3 945 -8.9 -3.6 0.015 -0.260 -0.15 
Ratio (Change) -0.50 0.11 -0.07 1.50 -0.46 -0.15 0.04 -0.30 -0.11 

SO 

Young Males 1616 14.8 53.2 404 13.3 16.0 0.267 0.532 1.31 
Old Males 1053 21.5 52.5 1800 8.7 11.0 0.237 0.270 1.28 
Difference -563 6.7 -0.7 1396 -4.6 -5.0 -0.03 -0.262 -0.03 
Ratio (Change) -0.35 0.45 -0.01 3.46 -0.35 -0.31 -0.11 -0.49 -0.02 

Mean 
GA&SO Ratio (Change) -0.42*  0.30* 0.04 2.48* -0.40* -0.20*  -0.04 -0.40*  -0.06 

*Average older plantarflexor mechanical properties more than ±15% different than young. 
 
 

After re-optimization, the model was able to maintain quiet stance successfully 

for all modification levels of the mechanical properties, with two exceptions. The model 

fell forward after a few seconds when the slack length of the series elastic component 

was increased by 15% from the young optimal value. This was because the change in 

slack length caused the length of the SO contractile component to be outside of its force-

length relation, and therefore the SO was unable to contribute to postural stabilization 

(Figure 4-8). The model also fell forward when the optimal length of the contractile 

component was increased to the value of the older subjects (+30%); however in this case 

the integration process was very unstable as the SO muscle was completely outside its 

force-length relation, and the GA muscle remained on the very edge of its force-length 

relation, causing numerical instabilities. 
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Figure 4-8. Left Panel: Center of mass (black) and center of pressure kinematics (red line 
oscillating around black) when the slack length was increased by 15% from the reference 
young value, where the model fell after about 40 s. Right Panels: Corresponding length of 
the GA and SO contractile components. The GA length remained within the force-length 
(FL) relation, while the SO began outside of the force-length (FL) relation, but moved 
inside right before falling forward. 

 

In the majority of the simulations, the model oscillated around a position that was 

close to the equilibrium position of 47 mm in front of the ankle joint center.  In a few 

simulations, the model either drifted forward and maintained quiet stance at a much more 

forward position without falling over (0L at -5% and +10%, 0a P  at -15%, and ε  at 

+10%) or exhibited a pattern that was very unstable (0L at +15%) (Figure 4-9).Because 

this behavior was very different from the rest of the simulations, variables computed for 

these trials were not included in the presentation of the results of the sensitivity analysis. 
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Figure 4-9. Center of mass (black) and center of pressure (red line oscillating around 
black) kinematics for the simulations in which the model had qualitatively different 
behavior compared to the rest of the simulations. The percentages represent the amount 
each muscle mechanical property was changed from the young reference values, while all 
other model parameters remained constant. 

 

As the model was re-optimized with each parameter change, new proportional and 

derivative controller gains were found. The changes in the plantarflexor proportional gain 

had very well defined trends for changes in the maximal isometric force capability (0P ), 

the optimal contractile component length (0L ), and the slack length ( )SL (Figure 4-10 

A). As 0P  increased, the gain of the plantarflexor proportional controller decreased 
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linearly. Changes in 0L  and SL  from the optimal young model values produced nonlinear 

increases in the controller gain. In contrast, there were no well-defined patterns of change 

in the dorsi- and plantarflexor derivative controllers (Figure 4-10B).  

When the model parameters were changed to the values for the older subjects, the 

resulting changes in the controller gains were consistent with patterns established from 

the standardized increments of ±5%, ±10%, and ±15%. The results of these optimizations 

are also displayed in Figure 4-10 (squares, dashed lines). The gain values for these 

extreme changes were all close to the ±15% range, except for two cases (not shown in 

Figure 4-10). The plantarflexor derivative controller gain was set very low when the 

stiffness coefficient α was increased by 248% (meaning a stiffer series elastic 

component). When the maximal isometric strength of the plantarflexors was decreased by 

42%, there was a corresponding increase in the plantarflexor proportional control gain, 

which was higher than would be predicted based on a linear extrapolation of the ±15% 

range data (Figure 4-11). 
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Figure 4-10.  Results of the sensitivity analysis for each of the muscle mechanical 
properties. A: Effects on the gains of the plantarflexor proportional controller). B: Effects 
on the gains of the derivative controllers for the dorsi- (open data points) and 
plantarflexor (closed data points) muscle models. The results for the optimized model 
using the original mechanical property values are shown as triangles. Proportional and 
derivative controller gains for the older parameter values are identified by square data 
points and horizontal lines. Note that some of the changes for the older parameters were 
very large; these values are indicated by horizontal lines, but do not have the data points 
identified. 
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Figure 4-11. Result of decreasing the strength of the plantarflexors by 42% (open 
square). 

 
 

Changing the mechanical properties had relatively small effects on the mean and 

standard deviation of the model’s CoM position (Figure 4-12 and Figure 4-13, 

respectively). At most, changes in the mechanical properties resulted in a shift of about 

±10 mm in the mean CoM position, excluding the few notable exceptions mentioned 

earlier. The optimal contractile component length ( )0L , had a relatively strong positive 

correlation with the mean and standard deviation of the CoM position; however, in half 

of these simulations the model maintained balance in a much forward-shifted position 

(and were therefore not included in the correlation). 

 The slack length (SL ) had relatively large and systematic effects on CoM speed 

(Figure 4-14), with the mean CoM speed decreasing linearly as slack length increased. 

Increasing maximal isometric force ( )0P  caused an increase in mean CoM speed. The 

optimal contractile component length ( )0L  had a strong negative relationship with both 

mean CoM speed and median CoM frequency (Figure 4-15), but again there were 

relatively few data points due to the excluded far-forward simulations. 
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 In almost all cases where the mechanical properties were changed to the older 

values, even when the changes were relatively large, the resulting performance of the 

model was similar to that observed when the properties were manipulated within the 

standardized ±15% range (Figure 4-12 to Figure 4-15). 
 

 

 
 

Figure 4-12. Mean center of mass (CoM) position with changes in the mechanical 
properties. The horizontal line with wide dashes represents the postural set point. The 
results from changing the properties to the older values are indicated by horizontal lines 
with small dashes, and where possible, are indicated by hollow squares. Note that some 
of the changes for the older parameters were very large; these values are indicated by 
horizontal lines, but do not have the data points identified. 
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Figure 4-13. Average standard deviation of the center of mass (CoM) position with 
changes in the mechanical properties. The results from changing the properties to the 
older values are indicated by dashed horizontal lines, and where possible, are indicated 
by hollow squares. Note that some of the changes for the older parameters were very 
large; these values are indicated by horizontal lines, but do not have the data points 
identified. 
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Figure 4-14. Mean center of mass (CoM) speed with changes in the mechanical 
properties. The results from changing the properties to the older values are indicated by 
dashed horizontal lines, and where possible, are indicated by hollow squares. Note that 
some of the changes for the older parameters were very large; these values are indicated 
by horizontal lines, but do not have the data points identified. 
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Figure 4-15. Median center of mass (CoM) frequency with changes in the mechanical 
properties. The results from changing the properties to the older values are indicated by 
dashed horizontal lines, and where possible, are indicated by hollow squares. Note that 
some of the changes for the older parameters were very large; these values are indicated 
by horizontal lines, but do not have the data points identified. 
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4.4 Discussion 

In this chapter we developed a feedback-driven postural control model of quiet 

stance that included estimates of dorsi- and plantarflexor mechanical properties measured 

from the young and older adults in Chapter 2. The model was able to balance using either 

the young or older mechanical properties, and predicted age-related changes in muscle 

activity consistent with experimental studies. A sensitivity analysis demonstrated that the 

maximal isometric force, the optimal contractile component length, and the slack length 

of the series elastic component had the most influence on the behavior of the model in 

quiet stance. 

4.4.1 Comparison of Optimized Young and Old Model Behavior 

In general, the model described the basic characteristics of quiet stance postural 

control, as described by the random walk theory of Collins and DeLuca (1993). This 

theory suggests that over short-time intervals during quiet standing, the postural system 

tends to drift away from an equilibrium point (persistence). In contrast, over longer time 

intervals the system returns to the equilibrium point (anti-persistence). A major factor 

contributing to the persistent model behavior was the disturbance torque, generated by 

low-pass filtering white noise, which tended to “push” the model away from the 

equilibrium point. Although both age-related models exhibited similar quiet stance 

behaviors, they did so with unique levels of muscle model excitations and contractile 

forces, which caused differences in the postural kinematics. 

When the optimized model responses were compared with the age-appropriate 

experimental quiet stance data, the “older” model was a better match than the “young” 
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model. This was because the optimization process was unable to reduce the amplitude of 

the corrective actions of the young and older models beyond a specific level (a floor 

effect). Therefore the end result was closer to the older subject data that had larger CoM 

and CoP fluctuations, since the young model couldn’t reduce its corrective actions 

enough to match the younger subject data with smaller CoM and CoP movements. One 

reason for this may be due to the relatively simple skeletal model, which assumed 

inverted pendulum-like dynamics. The inertial properties of all body segments (except 

the feet) were lumped together into a single inertial mass (the “body” segment), which 

could only be controlled by a single ankle torque. This could have caused the model to 

need larger control inputs, which were needed to accelerate the large inertial mass. On the 

other hand, the minute motions occurring in the numerous linked body segments in 

humans may serve to dampen the various intrinsic postural disturbances (e.g. the random 

noise torque introduced at the ankle joint in the model). Thus, smaller control inputs may 

be needed in humans, compared with the simplified model. 

 In the postural model, the control signals represent the nervous system excitations 

sent to the dorsi- and plantarflexor muscles. The synchronized control signals for both 

muscle groups were larger in the older model, indicating more antagonistic co-activation 

than in the younger model. This agrees with the experimental results of Laughton et al. 

(2003) whose elderly non-fallers demonstrated significantly greater muscle activation and 

co-activation during quiet stance compared to younger subjects. In the model, one 

explanation is that the older muscle models were weaker, so muscle excitations needed to 

be higher because the masses and inertial properties of the two age-appropriate models 
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were the same. Therefore, the muscles of the older model were operating at a greater 

percentage of their maximum capacity (although still well below the maximum).  

 An interesting observation is that for both the young and older optimized postural 

models, the GA and SO muscle model forces were similar (SO-GA Avg. Force 

Difference: Y = 31 Nm; O = 8 Nm), despite differences in the maximal isometric strength 

of the muscles (P0: Y = 192 Nm; Old = 335 Nm). The reason for this is that although 

both plantarflexor muscles received the same control inputs, the GA muscle was closer to 

its optimal length than the SO muscle (Figure 4-5). This served to offset the force 

capability discrepancies, such that the weaker muscle (GA) was able to produce a greater 

proportion of its “rated” maximal force output. 

4.4.2 Model Sensitivity to Changes in Muscle Mechanical Properties 

Previous studies on postural control have investigated the ability of different types 

of neural controllers to regulate posture (Maurer and Peterka 2005, Micheau et al. 2003, 

Peterka 2002, Peterka and Loughlin 2004), and others have focused on the effects of 

ankle joint stiffness (Loram and Lakie 2002a, Morasso and Sanguineti 2002, Winter et al. 

1998, Winter et al. 2001). In the same vein, the present study investigated the sensitivity 

of a postural control model to changes in muscle mechanical properties. The mechanical 

properties of each muscle model were defined by a set of parameters describing nonlinear 

force-length ( )0, ,SL L W , force-velocity ( )0 0, ,a P b L ε , and force-extension ( ),α β  

relationships. A unique aspect of the postural model was that the values of these 

parameters were based on age-appropriate estimates from the experimental and modeling 

work done in Chapter 2. 
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 One issue addressed in the sensitivity analysis was the consequence of replacing 

all of the plantarflexor mechanical properties in the young postural model with the 

properties of the older subjects, while maintaining the optimized control gains from the 

younger model. In other words, what if the plantarflexor muscles of a younger subject 

were instantly aged, but the basic “settings” of their nervous control were unchanged? 

The outcome was that the postural model was unable to stand and promptly fell forward. 

This provides evidence that the postural model is sensitive to the muscle mechanical 

properties, and that the gains of the neural controllers must be changed if the model is to 

remain standing with the altered muscle properties. This is in line with other studies 

showing that the maximum vertical jumping height of an optimized musculoskeletal 

model is reduced when the muscles are strengthened  without adjusting (re-optimizing) 

the control signals (Bobbert and van Soest 1994). 

 Perhaps it is not surprising that the model fell when all of the muscle mechanical 

properties were simultaneously aged, as this could be seen as a drastic perturbation, and it 

was not clear whether there were particular muscle properties that were causing the 

instability. Thus, further simulations were performed where each muscle property was 

“aged” independently (i.e. one-at-a-time), and in most cases the model was able to remain 

standing with kinematics similar to the original unaltered model. However, the model 

quickly fell forward when the maximal isometric strength ( )0P , optimal fiber length 

( )0L , or the slack length ( )SL  were changed, suggesting that model performance is 

sensitive to these three parameters. However, in the face of an instant change in a muscle 

property of a young human, it is likely that the nervous control settings would adapt to 

the change to maintain adequate postural control. To account for this, a sensitivity 
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analysis was performed where each mechanical property was changed and the model was 

re-optimized to find the combination of neural controller gains for optimal quiet stance 

performance. 

The results of the re-optimizations demonstrated that in general, the model was 

quite robust to changes in muscle mechanical properties if new controls could be used, 

and achieved stable balance in many cases. However, model behavior was sensitive to 

changes in 0P , 0L , and SL , with large changes in the gains of the proportional controllers 

needed to maintain balance, and in some cases the model was unable to remain standing 

no matter what the control adjustments.  

 Changes in plantarflexor muscle maximal isometric strength ( )0P  were inversely 

related to the optimal gains of their proportional controller (i.e. gain increased as 0P  

decreased). The plantarflexor proportional gain almost doubled when the muscle strength 

was decreased by 42% from the young to the older value, undoubtedly because the 

weaker muscles required an increase in excitatory drive to compensate. Although the 

control gains changed in response to changes in0P , the model was able to perform quiet 

stance well as long as the plantarflexor 0P  did not decrease too much. Even when 0P  was 

changed to the older value the model was able to remain standing – provided the control 

gains were allowed to change. This suggests that quiet stance performance is not sensitive 

to changes in 0P ; however, there is a lower limit beyond which upright stance cannot be 

achieved (Winter et al. 1998). 

 Although changes in 0P  had an approximately linear effect on the plantarflexor 

proportional controller gains, the optimal length ( )0L  and the slack length ( )SL  had 

nonlinear effects. The proportional controller gains were close to their minimum values 
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using the original set of young muscle mechanical properties, but the control gains 

increased as 0L  and SL were either increased or decreased. This suggests that the 

combination of 0L  and SL in the younger subjects was close to optimal in terms of 

minimizing the level of excitatory drive to the muscles. 

 The performance of the model was particularly sensitive to changes in the optimal 

contractile component length 0L , producing quite different behaviors depending on the 

specific value. In some cases, the model initially drifted forward towards the toes, and 

then remained balanced in this forward position. This behavior also occurred for specific 

values of the force-velocity shape coefficient 0a P  and the eccentric plateauε . 

Curiously, this behavior did not only occur at the extreme parameter values. For instance, 

the forward shift occurred when the eccentric plateau was increased by 10%, but did not 

occur at +15%. It is plausible that certain combinations of controller gain levels and 

mechanical properties caused “bifurcations” in model behavior, due to the control delays, 

model nonlinearities, and uncertainty from the random disturbance torque. For example, 

on a given forward sway, the noise could randomly “bump” the model forward in a state 

where the neural controllers can’t immediately stop its motion. The plantarflexor 

proportional controller alone might be insufficient to bring the model back to the target 

equilibrium position, and therefore the model continues to drift forward due to the 

destabilizing gravitational torque. As the model drifts forward the SO muscle will 

lengthen, moving its contractile component closer to optimal length, allowing it to 

produce more force for the same control input. Eventually, the increase in force potential 

will be enough to counteract the gravitational torque, and therefore the model 

consolidates its motion around this forward equilibrium point to take advantage of this 
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stronger, near optimal length position. Such behavior highlights the importance of the 

force-length properties of muscle in the control of quiet stance, and aligns well with the 

spring-like behavior of muscle proposed by equilibrium point theory (Bizzi et al. 1992). 

Changes in series elastic component slack length ( )SL  prompted large changes in 

the gain of the plantarflexor proportional controller, and altered model balance 

performance, especially the mean CoP speed. As the slack length decreased, CoP speed 

also decreased; when the slack length was increased by 15%, the model fell. The slack 

length dictates the length at which the series elastic component becomes “taut” when the 

contractile component produces force. Because the contractile component force-length 

characteristics (0L  and W ) were not changed in concert with the changes in SL  in the 

sensitivity analysis, the contractile component would have operated on a different portion 

of its force-length relation (Figure 4-16, left panel). For the optimal young model, both 

the GA and SO were near their optimal lengths ( )0L  during quiet stance. Thus, 

increasing (decreasing) the slack length would shift the contractile component operating 

ranges to shorter (longer) lengths and thus weaker positions, based on the parabolic force 

length relation (Figure 4-16, right panel).  

This conjecture is supported by the (inverted) parabolic shape seen in the 

plantarflexor proportional controller gain with changes in the slack length (Figure 4-10). 

At long slack lengths, the contractile component is shifted to the ascending limb of the 

force-length curve, which is a stable configuration since a forward sway would move the 

contractile component towards a more optimal length (Figure 4-16, right panel). Note that 

when the slack length was increased past 15% the model fell since the contractile 

component length shifted completely off the force-length curve (Figure 4-8). On the other 
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hand, short slack lengths would shift the contractile component to the descending limb of 

the force-length curve, which is a more unstable situation as a forward sway would move 

the contractile component further away from the optimal length. As pointed out by 

Rassier et al. (1999), the negative slope of the descending limb is representative of a 

softening material and is therefore unstable. Therefore, we conclude that the shorter slack 

lengths shifted the contractile component to an unstable force-length region, causing 

greater sway magnitudes and therefore a larger mean CoP speed. Of note, is that Rassier 

et al. also point out that in humans there are two reasons why this instability may not be 

observed experimentally: 1) the phenomenon known as “force enhancement” following a 

muscle stretch (Edman et al. 1978) has the potential stabilize muscles that operate on the 

descending limb of the force-length relationship, and 2) in-homogeneity of sarcomere 

lengths (Edman and Reggiani 1984), which causes the force transmitted across 

sarcomeres to be close to the force capabilities of the shorter sarcomeres which remain on 

the ascending limb of the force-length relation at the expense of other lengthening 

sarcomeres on the descending limb. The quiet stance model utilized in the present study 

did not include force enhancement or non-uniform sarcomere lengths, so these stabilizing 

mechanisms did not influence the model’s behavior. 
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Figure 4-16. Left panel: schematic showing the effect of changing the series elastic 
component slack length (LS ) on the force-length operating range of the contractile 
component (CC). The optimal CC length (L0 ) is indicated by the vertical dashed line. If 
the CC is near L0, increasing  LS (B) will shift the CC to the ascending region of the 
force-length curve, while decreasing LS (A) will shift the CC to the descending region of 
the force-length curve. Right panel: when the CC lengthens during forward sway, case B 
will be “stable” as the CC will move to a more optimal length, while case A is “unstable” 
as the CC will move to a less optimal length and thus the force-potential will reduce.  

 
 

Previous modeling studies on jumping (van Soest and Bobbert 1993) and 

locomotion (Gerritsen et al. 1998) have shown that muscle mechanical properties 

contribute to the stability of the musculoskeletal system with respect to the influences of 

static and dynamic movement perturbations. These studies employed purely open-loop 

control, and focused on stability related to relatively dynamic multi-joint movements, 

with the goal of the model being to either maximize vertical jumping height (van Soest 

and Bobbert 1993) or to match experimental locomotion data (Gerritsen et al. 1998). The 

present study used feed-back control to stabilize an inverted pendulum model, which had 

the goal of maintaining quiet stance with a minimal amount of control (i.e. muscle force). 

The force-length relationship of the SO muscle had a great influence on behavior of the 

quiet stance model, as the optimal contractile component length largely determined the 
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equilibrium point of the model, and the series elastic slack length was an important factor 

in the determining the amplitude of the control inputs required for stabilization. 

Therefore, despite the differences in model design and control, the results of this study 

agree with the previous studies (Gerritsen et al. 1998, van Soest et al. 1993), and provide 

support for the importance of muscle mechanical properties for the stabilization of human 

movement. 

4.4.3 Different Control for Young and Older Adults? 

An interesting result was that when the model of quiet stance was optimized using 

the young and older sets of muscle mechanical properties, the model behavior more 

closely matched older subject experimental data. This could suggest that the postural 

control of the older subjects was more like the simple feedback control used with our 

inverted pendulum model. The younger subjects may rely more on predictive (feed-

forward) control mechanisms that were not included in the postural model, leading to 

poorer agreement between model and subject behavior. Morasso and Sanguineti (2002) 

point out that reliable sensory information is necessary for anticipatory or feed-forward 

control, and that age-related sensory deficits would reduce its efficacy. They suggest that 

decreased use of predictive control would result in an increase in ankle stiffness through 

an “energetically expensive co-activation of the ankle muscles”. Our modeling results 

provide support for this notion, as do the results from Chapters 2 and 3 that demonstrated 

increased stiffness of the series elastic components of the older subjects, which was an 

important predictor of balance ability. However, we did not perform measurements for 

possible sensory deficits or explore possible uses of different control (feedback/forward) 
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in our experimental subjects, so we are only able to speculate on these age-related 

adaptations in feed-back/forward control.  

Another possible reason for the difference in how well the young and old models 

matched their experimental counterparts was the use of the same absolute perturbation 

torque for both models. This caused the perturbation to be relatively larger for the older 

model, which had reduced muscular strength parameters (i.e. 0P  values). While there is 

evidence for increased noise and uncertainty with aging (Poliakov et al. 1996), which 

would support the relatively larger disturbance torque in the older model, the exact 

magnitude of such age-related changes in noise levels for postural control is unknown.  

4.4.4 Novel Aspects of the Postural Model 

 A novel aspect of this study was the inclusion of individual muscle models that 

incorporated age-appropriate estimates of the muscle mechanical properties, driven by a 

proportional-derivative feedback neural controller. Numerous studies have used postural 

models with feedback control, however most have used hypothetical torque generators to 

control the model (Barin 1989, Johansson et al. 1988, Masani et al. 2003, Maurer and 

Peterka 2005, Micheau et al. 2003). Studies that have used musculotendon actuators have 

all used parameters from the literature to define the behavior of their muscle models 

(Menegaldo et al. 2003, Ramos and Stark 1990, Verdaasdonk et al. 2004). Our results 

indicate the behavior of postural control models is influenced by the mechanical 

properties of the individual muscles. 

Another novel aspect was the use of time-to-contact information in the neural 

controller. Previous studies have used feedback derivative controllers based solely on the 
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angular velocity of a body segment (Barin 1989, Johansson et al. 1988, Masani et al. 

2003, Maurer and Peterka 2005, Micheau et al. 2003). From an engineering perspective, 

the use of velocity as input to proportional-derivative (and proportional-integral-

derivative) controllers is prudent to help stabilize unstable mechanical systems. However, 

our approach is based on studies that have suggested humans may use time-to-contact 

information for controlling posture (Riccio 1993, Slobounov et al. 1997). Time-to-contact 

information has been shown to differentiate between balance abilities in young vs. elderly 

and diseased populations (Forth et al. 2007, Hertel and Olmsted-Kramer 2007, Slobounov 

et al. 1998, van Wegen et al. 2002), and also to predict stepping behavior in response to 

perturbations (Hasson et al. 2008). The time-to-contact estimate includes information 

about the distance, velocity and acceleration of the CoM relative to the base of support 

boundary, such that time-to-contact decreases nonlinearly as the CoM approaches the 

boundary. The present results demonstrate that time-to-contact control is able to produce 

realistic simulations of human postural control. Future modeling work should examine 

time-to-contract control under different simulated postural conditions, and make 

comparisons between the time-to-contact control and other putative control schemes. 

4.4.5 Conclusions 

A feedback-driven postural control model was developed that incorporated 

realistic models of young and older dorsi- and plantarflexor muscles. The model 

reproduced the basic characteristics of human postural control in quiet stance, and was 

most sensitive to changes in the maximal muscle strength, optimal contractile component 

length, and series elastic slack length. The results highlight the importance of the muscle 
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model parameter accuracy in models of postural control, given the evidence for age-

related changes in muscle characteristics established in Chapter 2 and in the literature.  
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CHAPTER 5  

GENERAL DISCUSSION 

 

The main goal of this dissertation was to understand how age-related changes in 

the mechanical properties of muscle influence postural control. With aging, we found 

lower maximal isometric strength and increased series elastic stiffness in the male 

subjects, and decreased velocity-dependent force capabilities in both gender groups. 

These properties were predictive of age-related differences in the performance of subjects 

on the postural tests. However, the maximal isometric force was less influential than 

expected, and the length-dependent muscular properties also contributed to prediction of 

balance performance. When the estimated young and older mechanical properties were 

used in a musculoskeletal model of quiet stance, the balancing ability of the model was 

most sensitive to the contractile component optimal length and series elastic slack length 

of the muscle models. 

 To put these findings in perspective, the main hypotheses of this dissertation can 

be restated in the form of several general questions: How can we estimate subject-

specific muscle mechanical properties? Do muscle mechanical properties change as we 

age? How important is it that researchers use subject-specific muscle properties when 

simulating human movement? How do age-related changes in muscle properties 

influence postural control? What can a musculoskeletal model tell us about the influence 

of muscle properties on postural control? Of what clinical use are the results? This 

dissertation contributes to each of the areas of musculoskeletal modeling, aging, and 

postural control, and provides answers to these six questions. 
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Estimating subject-specific muscle mechanical properties. The first study 

developed methods for estimating subject-specific muscle mechanical properties that 

incorporated imaging techniques, dynamometer experiments, musculoskeletal modeling, 

and numerical optimization. Although many of these ideas are not new, they are often 

implemented in separate experiments to determine specific mechanical properties of 

interest. This study combined all of these techniques, and by doing so was able to 

estimate full sets of subject-specific mechanical properties describing the force-length, 

force-velocity, and force-extension properties of human muscle. Moreover, these 

properties were determined for an agonist/antagonist muscle pair (the dorsi- and 

plantarflexors) instead of just a single muscle group. The computational methods that 

were developed provided realistic estimates of muscle mechanical properties for both 

young and older adults. 

Age-related changes in muscle mechanical properties. After using the developed 

methodology to estimate the mechanical properties of the dorsi- and plantarflexor 

muscles, significant differences were found between the young and older subjects. The 

older male subjects had lower maximal isometric strength and increased stiffness; both 

gender groups had decreased velocity-dependent force capabilities. Although similar 

findings have been shown before for older joint properties, a unique contribution here is 

that these changes were shown in individual muscles. This has important implications for 

musculoskeletal modeling, and suggests that not only should the strength of muscle 

models be altered when modeling the behavior of older adults, but other properties need 

to be changed as well. 
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Importance of subject-specific mechanical property measurements. The degree 

to which subject-specific estimates are needed when modeling human movement depends 

on the nature of the research question. For example, when investigating tasks that are 

predominately static, such as the quiet stance task used in this dissertation, it may not be 

necessary to have extremely accurate force-velocity properties, as it was shown that the 

quiet stance model was not sensitive to changes in these properties. However, other tasks 

such as locomotion have been shown to be sensitive to the force-velocity properties of 

muscle (Gerritsen et al. 1998). Subject-specific estimates may be especially important 

when trying to explain the behavior of individuals that vary from the normally used 

healthy young male subject group. In this dissertation a variety of muscular 

characteristics of older muscles were found to differ from younger muscles, including 

increased stiffness and decreased velocity-dependent force capabilities.  

 Influence of age-related changes in muscle properties on postural control. The 

second study of the dissertation was designed to assess the balance abilities of the young 

and older subjects, and to determine whether there were specific muscle mechanical 

properties that would be predictive of the differing balance abilities of the two age 

groups. Despite being healthy and relatively active, older adults displayed poorer postural 

control than the younger subjects. Age-related differences were found in both static and 

dynamic balance, and were found on even relatively unchallenging tasks such as quiet 

stance. Contrary to our initial expectations, the maximal isometric strength of the muscles 

had comparatively little predictive power. However, the contractile force-length and 

force-velocity characteristics, and the series elastic force-extension parameters were all 

able to explain a significant proportion of the age-related variance in the balance tests. 
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Some muscle properties that were not predictive of balance ability when examined 

individually did reveal significant predictive abilities when combined with other 

mechanical properties. Thus, it seems important to consider multiple mechanical 

properties together when trying to understand their influence on postural control.  

 Sensitivity of musculoskeletal models of postural control to muscle mechanical 

properties. The third study developed a feedback-driven inverted pendulum model of 

postural control that incorporated realistic representations of young and old dorsi- and 

plantarflexor muscles. Novel aspects of the model included the use of proportional-

derivative controllers to drive subject-specific Hill two-component muscle models, and 

the use of time-to-contact information as input to the derivative controllers. The 

balancing ability of the model was most influenced by the optimal length of the 

contractile components and the slack length of the series elastic components within the 

muscle models. This study highlighted the importance of the force-length relation of 

muscle to the stabilization of upright posture.  

Clinical significance. Musculoskeletal modeling is widely used for understanding 

human movement, and also as an invaluable tool for clinicians to assist in the treatment 

of musculoskeletal disorders. For example, a rectus femoris tendon transfer is used in 

patients with cerebral palsy to improve knee flexion during walking (Asakawa et al. 

2002). Prior to such a surgery, a musculoskeletal model can be used to simulate the 

effects of the transfer on movements such as walking. In this case, it is imperative to use 

subject-specific muscle properties to minimize the errors in the model predictions, 

especially in these cases where the individual may be differ from the norm. The 
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methodology developed in Chapter 2 can be used to obtain subject-specific muscle 

property measurements, and will be useful in such pre-surgery simulations. 

Although ankle joint strength is routinely measured in humans, this dissertation 

showed that the strength of individual dorsi- and plantarflexor muscles has relatively little 

power in predicting age-related changes in balance ability. This suggests that clinical 

tests of strength may be of little use in assessing the risk of postural instability in healthy 

older adults. This dissertation highlighted the importance of other muscle properties, 

including those related to series elastic stiffness and active force capabilities at different 

lengths and velocities. This is important information for clinicians, may provide clues to 

the origin of balance problems in the elderly, and may also lead to balance improvement 

in older adults. For example, strength training has been shown to increase the stiffness of 

muscles in older adults (Reeves et al. 2003a, Reeves et al. 2003b), which may provide 

benefits by changing the dynamics of the force response in the muscles that control 

posture. Although stiffness was an important predictor of age-related changes in balance 

ability in the static and dynamic balance experiments, the quiet stance model was not 

particularly sensitive to the muscle stiffness. However, stiffness may be more important 

under more dynamic conditions, such as a responding to a postural perturbation. Future 

work with the postural control model can address this issue and other questions. 

5.1 Future Study 

 With regard to future work, there are two aspects of this dissertation that should 

prove particularly fruitful. The first is related to further improvement of the methods to 

estimate subject-specific muscle mechanical properties, and the other is related to 



 

187 

improving the physiological realism of the postural control model and evaluating the 

model’s sensitivity on other more challenging postural tasks.  

Improvements in subject-specific parameter estimation.  A significant amount of 

time and effort was required for the determination of subject-specific mechanical 

properties, from both participants and researchers. The subjects were required to attend 

numerous experimental sessions with various physical and psychological demands. For 

the MRI experiments, subjects needed to travel to a hospital and lie motionless for a half-

hour while images were taken. Individuals with metal in their body were unable to 

participate. In the ultrasound and dynamometer sessions, the subjects needed to perform 

numerous maximal effort muscle contractions. The dynamometer contractions were 

particularly taxing for the older subjects, requiring the dynamometer experiments to be 

spread out over multiple experimental sessions. Collectively, this produced a significant 

amount of data for post-processing. The ultrasound data produced many large video files 

that required “tracking”, and the MRI data produced multiple images (up to 80 per 

muscle) that required manual processing by outlining the muscles in each image, 

requiring considerable analysis time. 

Thus, one objective of future studies will be to reduce the amount of data and data 

processing needed to obtain accurate subject-specific mechanical property estimates. For 

example, fewer MRI slices may be needed to obtain muscle volumes. Alternatively, MRI 

may not be needed at all, as studies have shown that ultrasound can be used to estimate 

muscle volumes (Esformes et al. 2002). However, one advantage of using MRI is that 

non-contractile tissue (e.g. fat, tendon) can be identified and accounted for in the 

measurements of contractile tissue. This is currently not possible with ultrasound, and is 
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an important consideration when studying older adults. It may also be possible to reduce 

the number of trials performed in the dynamometer data collection sessions; however this 

depends on the nature of the research questions being investigated.  

A more physiological basis for postural control models. Another area that is in 

need of further research is the improvement of physiological realism in postural control 

models. Currently, an engineering perspective dominates, such that postural control 

models are commonly controlled by fictitious torque generators (Johansson et al. 1988; 

Barin 1989; Masani et al. 2003; Micheau et al. 2003; Maurer and Peterka 2005). The 

amount of torque generated is frequently based on the angular deviation of the body from 

a vertical reference line passing through the ankle joint and the time rate of change of this 

deviation (i.e. proportional-derivative [PD] control). Although we do not know the 

precise way in which sensory information is integrated in the human nervous system and 

the way this information is represented as an internal model, it is likely that strict PD 

control is not used. In other words, the PD control may be combined with other control 

schemes, such as a forward internal model that predicts future behavior (Morasso et al. 

1999). In the current study, we used “time-to-contact” as a control input to the postural 

model. Time-to-contact is a measure that includes information about the kinematic 

relation between the center-of-mass and the base of support boundary, and is based on 

experiments that have provided evidence that humans may use time-to-contact 

information to control posture (Riccio 1993, Slobounov et al. 1997). Future work should 

investigate this further, and should compare the two control schemes (traditional PD vs. 

time-to-contact), to examine how postural control models respond to different types of 

control. 
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 An obvious shortcoming of torque-controlled postural models is that humans use 

muscles that have complex and nonlinear mechanical properties. These properties will 

drastically alter the relationship between the control signal and the resulting actively 

generated torque. As shown in this dissertation, small changes in some muscle 

mechanical properties will cause nonlinear changes in the gains of the control signals. 

Other studies have shown that muscle acts as a damping element, and therefore can 

reduce the sensitivity of models to perturbations (Gerritsen et al. 1998). More work is 

needed in developing musculoskeletal models of postural control that include accurate 

representations of muscle mechanical properties, to help our understanding of the role 

these properties play in controlling balance under different conditions. 

Future applications of the postural control model. The postural control model 

developed in this dissertation holds much promise for future improvements and 

modifications. Most previous postural control models have been artificially pinned to the 

ground (Barin 1989, Johansson et al. 1988, Masani et al. 2003, Maurer and Peterka 2005, 

Micheau et al. 2003), which simplifies the numerical complexities of the model. This 

assumption limits the validity in investigations of many postural tasks. Even the simple 

act of leaning forward is associated with some degree of heel rise. The postural model 

used in the present study was not pinned directly to the ground, using a visco-elastic 

interface found in other models of locomotion and jumping (Anderson and Pandy 2001, 

1999). This model formulation should prove useful for future work on postural control in 

various situations. For example, it will allow the study of how the mechanical properties 

of muscle influence the way in which a postural model responds to a perturbation. 
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5.2 Final Thoughts 

 Apart from the scientific contributions of this dissertation, it is useful to step back 

and take a more introspective viewpoint. If nothing else, this dissertation has reinforced a 

sense of wonderment at the complexities of human muscle. Muscles exhibit a wide 

spectrum of nonlinear behaviors that have taken researchers decades to fully appreciate – 

but are still not completely understood. Most fascinating of all is the extreme adaptability 

of muscle, which is constantly changing to best suit the demands placed upon it by the 

human body. The challenge for future research is to understand the nature of these 

adaptations, and how they influence the control of human movement. 



 

191 

APPENDIX A 

ISOVELOCITY AND CO-ACTIVATION ADJUSTMENTS 

 
Adjusting Isovelocity Data for Torque-Angle Effects 
 Adjustments were made to the measured experimental torque-angular velocity 
data to account for torque-angle effects and to ensure agreement between the torque-
angle and torque-angular velocity data. First, the relationships between the joint angles 
and angular velocities coinciding with the peak isovelocity joint torques were assessed 
using linear regression (Figure A-1B). Each peak isovelocity torque data point was then 
adjusted by the following procedure (outlined in Figure A-1):  
 

1)  The angular velocity at which the peak torque occurred (in original data set; 
Figure A-1C, #1) was input into the joint angle-angular velocity regression, 
giving a predicted joint angle (Figure A-1B, #2). This predicted joint angle was 
then mapped onto the original fit of the torque-angle data, giving the predicted 
isometric torque at that angle. 

3)  Each isovelocity peak torque data point was divided by the predicted isometric 
joint torque, giving a scaled isovelocity peak torque (Figure A-1C, #3). A 
scaled isovelocity value of 1 would be equal to the maximum isometric joint 
torque at the predicted joint angle.  

4)  A Hill equation was fit to the scaled isovelocity peak torque data. However, 
due to subject variability and experimental error, when evaluated at zero 
angular velocity, the fitted Hill equation did not pass exactly through 1. 
Therefore, the scaled data points were shifted so that the fitted Hill equation 
was equal to 1 at zero velocity (Figure A-1C, #4). 

5)  The scaled isovelocity data were then multiplied by the predicted peak torque 
from the torque-angle data, converting the units back to Nm (Figure A-1C, #5). 

 
The result of this procedure was to have “matching” torque-angle and torque-angular 
velocity relationships, so that the torque at zero angular velocity equals the peak torque 
form the torque-angle relation (curve #5 in Figure A-1A and 2C).  
 
Adjustments for Co-Activation (Isometric & Isovelocity Data) 
 Next, the torque-angle and torque-angular velocity data were adjusted for the 
effects of antagonist co-activation. The relationships between agonist muscle torque and 
the percentage of antagonist muscle co-activation were based on the data of Simoneau et 
al. (2005), which showed similar linear relationships for young and older adults. From the 
data of Simoneau et al., we estimated the linear equations to be 
 

 0.270 2PF DFy x= +
 (A.1) 

 0.177DF PFy x=
 (A.2) 
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where y is the percentage of antagonist co-activation as a function of the agonist torque 
level (x). To adjust the dorsiflexor torque-angle data, each measured torque data point 
(x34) was adjusted using the following procedure: 

 
1) Determining the corresponding percentage of plantarflexor co-activation (5#6), 
2) Taking the maximum agonist plantarflexor torque at the same ankle angle (7#6�/0@�) 
3) Shifting the dorsiflexor torque-angle data point upwards by 5#6 100⁄ · 7#6�/0@�.  
 

A similar procedure was then used to adjust the plantarflexor torque-angle data; however, 
the adjusted dorsiflexor torque-angle data were used for the antagonistic contribution. 
Each original dorsiflexor torque-angle data point was re-adjusted using the adjusted 
plantarflexor torque-angle data; this procedure continued iteratively until the results 
stabilized (which occurred after only a few iterations at the most). An example of the 
final co-activation adjusted isometric torque angle data is shown in Figure A-1A (#6). 
Finally, the torque-angular velocity data were adjusted so that the torque produced at zero 
angular velocity equaled the peak co-activation adjusted isometric torque (Figure A-1, 
#6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

Figure A-1. Example of the procedure for adjusting the experimental torque-angle (A) and torque-angular velocity data (C) data for a 
representative subject. The torque-angular velocity data were  adjusted for the effects of the torque-angle relationship, based on the 
angle at which the peak torques occurred (B), and also adjusted for the effects of antagonistic co-contraction. See text for details. 
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APPENDIX B 

MUSCLE MODEL 
 
 
Nomenclature 
CC   Contractile component 

SEC   Series elastic component 

MT   Musculotendon actuator 

, ,CC SEC MTl l l   Length of CC, SEC, and MT 

, ,CC SEC MTv v v   Velocity of CC, SEC, and MT 

CCP , SECP , MTP   Force expressed across the CC, SEC, and MT 

SA    CC stimulation-activation relation 

FL    CC force-length relation 

FV    CC force-velocity relation 

F L∆    SEC force-extension relation 

Riseτ , Fallτ   Time constants for rise and fall of activation 

µ    CC excitation level 

λ    CC activation level 

W    Width of force-length parabola 

L0    Optimal CC length 

SL    SEC slack length 

,α β    SEC F L∆ shape coefficients 

,a b   Hill coefficients for CC FV relation 

a P b L0 0,   Normalized Hill coefficients for CC FV relation 

ε    CC eccentric force plateau 

P0    Maximal CC isometric force 

FP   Force potential of CC based on location on FL curve 

P0̂     Maximal isometric CC force adjusted for λ , FP, and P0  

MAXV    Maximal CC shortening velocity 
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Muscle Model Design 

Each muscle-tendon unit will be represented by a Hill-type (1938) model. This 
phenomenological lumped-parameter model incorporates a contractile component (CC) 
in series with an elastic component (SEC) (Figure B-1). 

 

 

Figure B-1. Components of the musculotendon model. 

 
The behavior of the SEC is defined by a force-extension (F∆L) relation. The behavior of 
the CC is defined by stimulation-activation (SA), force-length (FL) and force-velocity 
(FV) relations. Both the FL and FV relations are linearly scaled with activation level. 
Note that in the present model: 
 

 MT CC SECP P P= =   (B.1) 

 MT CC SECl l l= +  (B.2) 

 MT CC SECv v v= +   (B.3) 
 
Conceptually, the muscle models act as transducers of neural stimulation into force. What 
follows, is a description of the model algorithm as it is implemented in a dynamic 
simulation of musculoskeletal movement (Figure B-2). 
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Figure B-2. Flowchart of the musculotendon model algorithm as implemented within a 
simulation. 

 
Force-Extension Relationship 

When a force is expressed across the SEC, the length of the SEC changes by a 
given amount. The length of the SEC (lSEC) was given by a second-order polynomial, 
which defined the amount of extension for a given force relative to the slack length of the 
SEC (LS) and the maximal isometric force capability of the CC (P0): 

 

 

2 20
0 0 0 0

0

2 4
2SEC CC

L
l P P P P P

P
α β β α = − + +

 
 

(B.4) 
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where PCC is the force generated by the CC (and is thus expressed across the SEC), and α 
and β are coefficients defining the shape of the polynomial (Figure B-3.). 
 
 

 

Figure B-3. Illustration of the force-extension relation. 

 
Stimulation-Activation Relationship 
 An exponential (Figure B-4) characterizes the relationship between the 
stimulation input to the muscle model and the activation of the CC. When the current 
stimulation level (µi) is greater than the previous activation level (λi-1) (rising activation): 
 

 ( )Rise

t

i i i i ie τλ λ µ µ λ
 ∆
− 

 
− −

  
  = + − −
  

  
1 11

 

(B.5) 

 
 When the current stimulation level (µi) is less than the previous activation level (λi-1) 
(falling activation): 
 

 ( ) ( )Fall

t

i i i i ie τλ λ λ µ λ
 ∆
− 

 
− − −

  
  = + − −
  

  
1 1 11

 

(B.6)  

where i denotes the sample number, ∆t is the integration step-size, and τRise and τFall are 
time constants specifying the rate muscle activation and deactivation, respectively. 
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Figure B-4. Example of the exponential relation between stimulation (thick line) and 
activation (thin line) using hypothetical data. ∆t = 0.001, τRise = 5 ms, and τFall = 80ms. 

 
 
Force-Length Relationship 

The force producing potential of the CC (FP) is based on the normalized CC 
length ( 0CCl L , where CC MT SECl l l= − ) and modeled as an inverted parabola (van Soest 

and Bobbert 1993), with width determined by the coefficient W. The force-length 
relationship is scaled with activation (Figure B-5). Based on Woittiez (1983): 

 

 CCl
FP W

L

 
= ⋅ ⋅ − + 

 

2

0

100 1 1
 

(B.7) 

 
 
  

 
 
 
Figure B-5.  Illustration of the force-length relation. The black line is when the CC is at 
full activation, while the gray lines show the CC at below-maximal activation. 
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Force-Velocity Relationship 

An adjusted maximal isometric CC force (P0̂ ) can be determined based on the 
activation level of the CC (λ ), the current location on the force-length relation, and the 
isometric force potential of the CC (FP): 

 
 P FP Pλ= ⋅ ⋅0 0

ˆ
 (B.8) 

 
with λ and FP ranging from 0 to 1, and P0 in units of Newtons. The Hill constants a/P0 
and b/L0 determine the shape of the rectangular hyperbola describing the force-velocity 
relation (Figure B-6). These values are best expressed as dimensionless numbers (Hill 
1970) for use in subsequent equations: 
 
 a a P P= ⋅0 0̂  (B.9)  

 b b L L= ⋅0 0  (B.10)  

 
If the force generated by the CC (PCC) is less than the adjusted isometric maximum CC 
force (P0̂ ), the CC must be shortening. Therefore, based on Hill (1970): 
 

 
( )
( )CC

CC

P a b
v b

P a

 +
 = − −

+ 
 

0̂
 (B.11) 

 
If PCC  is greater than the adjusted isometric maximum CC force (P0̂ ), the CC must be 
lengthening. Therefore, based on FitzHugh (1977): 
 

 
( ) ( )

( ) ( )
CC

CC

CC

b P P P P
v

P a P P

ε

ε

 ⋅ − − =
 + − ⋅ 

0 0 0

0 0

ˆ ˆ

ˆ ˆ
 (B.12) 

 
Where ε is the saturation force for an eccentric contraction (eccentric plateau). The 
velocity of the CC is constrained by the maximum shortening velocity (VMAX): 
 

 0̂
MAX

P b
V

a
= −  (B.13) 
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Figure B-6. Illustration of the CC force-velocity relationship used. The black line is 
when the CC is fully activated at optimal fiber length, while the gray lines show the CC 
at sub-maximal activation and/or at a non-optimal fiber length. 
 
 
Final Muscle Model Output 

The output of the muscle model is the rate of change of muscle force with respect 
to time:  

 

 CCCC
SEC

S

P b P aPdP
v

dt L

+
= ⋅

2 2
0 04

 (B.14) 

 
where the velocity of the SEC is vSEC + VMT - VCC. This allows the derivative to be sent to 
the integration routine, which is integrated along with the other model state variables to 
give the PCC for the next iteration.  
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APPENDIX C 

OPTIMIZATION COSTS AND MUSCLE PROPERTY CORRELATIONS 
 
 
Optimization Costs 

The individual costs for the Phase 1 and 2 optimizations are listed in Table C-1.  
Note that the statistical analysis was performed on the net isometric and isovelocity costs, 
which are displayed in Figure C-1. For the net costs, there was a significant main effect 
for muscle (p = .018) and contraction type (p = .001), indicating that overall the costs 
were greater for the plantarflexion simulations, and were greater for the isometric 
simulations (Cohen’s f = 0.14). There was also an interaction between muscle and 
contraction type (p = .030), such that for the isovelocity optimizations (Figure C-1, 
Right) the costs were higher for plantarflexion compared with dorsiflexion (p < .001); 
however, for the isometric optimizations the costs were similar for dorsi- and 
plantarflexion (p = .906).  

 

Table C-1. Optimization Costs 

Group Mus. 
Isometric Costs (Nm)  Isovelocity Costs (Nm) 

TC θ  T LC∆  SOGAC   1
TC ω  

2
TC ω  

Young 
Male 

DF 0.02 ± 0.04 0.25 ± 0.07 -  0.97 ± 1.16 1.64 ± 0.48 
PF  0.81 ± 0.43 0.47 ± 0.65  0.42 ± 0.38  1.01 ± 0.90 1.78 ± 2.43 

Young 
Female  

DF  0.19 ± 0.44 0.40 ± 0.06 -  0.85 ± 0.48 0.62 ± 0.62 
PF 0.92 ± 1.53 0.43 ± 0.39 0.33 ± 0.28  0.96 ± 1.44 0.62 ± 0.43 

Older 
Male 

DF 0.14 ± 0.05 0.40 ± 0.05 -  0.90 ± 0.85 0.85 ± 0.29 
PF 0.66 ± 0.19 0.71 ± 0.18 0.76 ± 0.49  0.64 ± 0.45 2.00 ± 0.90 

Older 
Female 

DF 0.15 ± 0.06 0.33 ± 0.20 -  1.24 ± 0.41 0.76 ± 3.11 
PF 1.03 ± 0.35 0.49 ± 0.21 0.70 ± 0.08  0.31 ± 0.40 1.50 ± 1.34 

†Non-normal distribution. 
aDorsiflexion = Negative; Plantarflexion = Positive 

 

 
 

Figure C-1. Interaction plots for costs associated with isometric and isovelocity 
optimizations. 
 



 

    

 
 

Table C-2. Correlations (R) between muscle mechanical properties. 

Muscle 
Property 0P

 

 Force-Length (FL)  Force-Extension (F∆L)  Force-Velocity (FV) 

 0L  SL  W   α  β  MAXL∆
  0a P  0b L  ε  MAXV  

               0P  1              

                

FL 

0L  -0.11  1            

SL  0.11  -0.31* 1           

W  0.03  0.41* -0.07 1          

                

F∆L 

α  -0.34*  0.25 -0.07 -0.15  1        

β  0.00  0.12 0.16 0.15  -0.05 1       

MAXL∆
 0.38*  -0.23 -0.10 -0.16  -0.59* -0.53* 1      

                

FV 

0a P  0.01  0.48* 0.16 0.36*  -0.02 0.18 -0.21  1    

0b L  -0.04  -0.24 0.56* 0.01  -0.08 0.04 -0.07  0.03 1   

ε  0.08  -0.06 -0.04 0.11  -0.16 -0.08 0.08  0.07 0.11 1  

MAXV  0.23  0.16 -0.06 0.14  -0.09 0.18 -0.07  0.56* -0.55* -0.04 1 

* Denotes at least a moderately strong relationship. 
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APPENDIX D 

MULTIPLE REGRESSION MODELING PROCEDURE 
 
 

The form of the full regression model used in this analysis was: 
 

 
 
where j represents each of nine mechanical properties and i represents each of the β 
coefficients. In the full model, each mechanical property appeared as an independent term 
(9 terms) and as an interaction with age (9 terms).  Thus, the 18 mechanical property 
terms, the y-intercept β0 and the age effect (β1Age) gave a total of 20 terms in the full 
regression model (i = 0 to 19). 

The multiple regression analyses was done with the software package R (2008). 
The function “regsubsets” from the “leaps” package was used to select the best regression 
models using a “branch-and-bound” search algorithm. In short, the algorithm constructs a 
search tree and “prunes” the tree in a backward stepwise fashion by removing variables 
that increase the residual sum-of-squares (which quantifies the discrepancy between the 
model and the data). For more details, see Miller (2002). 

The output of the model selection algorithm for an example model is presented in 
Table D1. The example model included the mechanical properties of the DF muscle as 
predictors, and the mean rearward CoM position during imposed swaying as the response 
variable. The algorithm outputs the best model for each number of terms (up to 9), and 
arranges them according to the adjusted 2R  ( )2R  values (Table D1).  

Before defining 2R , the coefficient of determination( )2R needs to be defined. 
The 2R  is a measure of the global fit of a regression model, representing the proportion 
of the variability in the observed values that can be attributed to a particular linear 
combination of the predictor variables, and is defined as 
  

2 1 ERR

TOT

SS
R

SS
= −  

 

where ( )2

TOT i
i

SS y y= −∑  and ( )2

ERR i i
i

SS y f= −∑
 

 
In the above equations, iy  and y are the observed values and mean of the observed 
values, and if are the predicted values. SSTOT is the total sum of squares, which is 
proportional to the sample variance, and SSERR is the sum of squared errors (residual sum 
of squares). 
 
 
 

( ) ( ) ( )0 1 2 1 3 1 4 2 5 2 i j i jBM Age MP Age MP MP Age MP MP Age MPβ β β β β β β β= + + + ⋅ + + ⋅ + ⋅K
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The 2R  weighs the predictive power of the models against the number of terms in 
each model and is defined as 

 ( )2 2 1
1 1

1

n
R R

n p

−
= − −

− −  
 
where p is the number of terms in the model and n is the sample size. 
 

In the output of the model selection algorithm, there is usually a “cluster” of 
models with similar adjusted R2 values (in this example, the top seven models in Table 
D1), and then a break where the removal of terms is associated with a large drop in 2R  

(bottom two models). The goal is to select a model that has the least number of terms, but 
still has good predictive power (i.e. only the most important predictors are included). 
Three candidates are highlighted in bold in Table D1, which have similar 2R values and 
appear just before the break. In this example the 2R values of the candidate models are 
very similar so an additional criterion is used to select the appropriate model, the 
Bayesian information criterion (BIC). The BIC measure is similar to 2R , as it measures 
the efficacy of the model in its predictions and applies a penalty for an overly complex 
model (one that has many terms); however the BIC is based upon a Bayesian statistical 
framework. Given two models, the one with the lower BIC is preferred (Schwarz 1978). 
The BIC is computed as 

 ( )ln lnERRSS
BIC n p n

n
 = + 
 

 

 
where SSERR is the residual sum of squares, n s the number of fitted data points, and p is 
the number of parameters in the model. For this example, the model with three terms [W 
+ β + (Age·ε)] was chosen as the best model since the BIC was the lowest. There is high 
confidence that this is the best model, as dropping any of the terms (e.g. β) results in a 
large change in the 2R  (e.g. from .318 to .176). 
 

Table D-1. Best regression models (one of each size up to 9) for predicting the mean 
rearward CoM position during imposed swaying based on the mechanical properties of 
the DF muscle. 
#  Model 2R  2R  BIC 
8 L0 + LS + W + b/L0 + β + (Age·L0) + (Age·ε) + (Age·β) .507 .715 1.9 
9 L0 + LS + W + b/L0 + β + (Age·P0) + (Age·L0) + (Age·ε) + 

(Age·β) 
.476 .724 4.2 

7 L0 + LS + W + b/L0 + β + (Age·L0) + (Age·ε) .373 .604 5.4 
6 L0 + W + b/L0 + β + (Age·L0) + (Age·ε) .362 .563 4.4 
4 W + b/L0 + β + (Age·ε) .322 .465 2.5 
3 W + β + (Age·ε) .318 .426 0.9* 
5 W + b/L0 + β + (Age·L0) + (Age·ε) .316 .496 4.3 
2 W + (Age·ε) .176 .263 2.9 
1 Age .053 .102 3.8 

*Best Model 
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APPENDIX E 

QUIET STANCE INVERTED PENDULUM MODEL PROPERTIES 
 

A schematic illustrating the inverted pendulum model, which includes the 
dimensions of the segments is shown in Figure E-1. The mass and inertial properties of 
the model were defined as: 

 
 
Mass of body segment = 76 kg 
Mass of foot segment = 2.01 kg 
Mass moment of inertia of body segment about segment CoM = 8.48 kg m2 

Mass moment of inertia of foot segment about segment CoM = 0.148 kg m2 

 

 
 
 

 
 
 

Figure E-1. The inverted pendulum model. 
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The force applied by each spring-damper elements was an exponential function of the 
height of the foot above the ground (Anderson and Pandy 1999): 
 

 

( ) ( )01150
0.5336 1000yi

i i i

p y

y y yF e v g p
− −

= −
 

(D.1)
 

 

( ) ( )0

1

1 10 500i

i

y

y

g p
e p g

=
+ −

 
(D.2)

 

 

where i represents each of the 21 spring-damper elements, vyi is the vertical velocity of 
the point of application of the spring force, py is the vertical position of the point of 
application of the spring force, y0 is a parameter (0.0065905 m) that determines when the 
magnitude of the spring force becomes significant (> 0.5 N), g(pyi) is a function that 
brings damping into effect as the foot approaches the ground, and g0 is a parameter that 
determines the point at which the damping force is applied. The horizontal forces exerted 
by the spring-damper elements were defined as:  
 
 1000

i ix xF v= −  
(D.3) 

If the horizontal force becomes greater their limiting value, the foot will slip: 

 0.7
i i i ix y x yIf F F then F F> =  

(D.4) 

The center-of-pressure in the anterior-posterior direction (CoPX) was computed as: 

 

N
i i
X Y

i
X N

i
Y

i

p f
CoP

f

=

=

=
∑

∑
1

1  

(D.5) 

 

where i = 1 to the number of springs (N = 21), i
Xp  is the horizontal position of spring i, 

and i
Yf  is the vertical force exerted by spring i on the foot. Although the foot is not 

constrained from vertical or rotational movement, it was assumed that frictional forces 
were sufficient so that the foot did not slip horizontally. 
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