
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

9-2009

Management of Target-Tracking Sensor Networks
Khaled Hadi
University of Massachusetts Amherst, hadikm@hotmail.com

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations
Part of the Engineering Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Hadi, Khaled, "Management of Target-Tracking Sensor Networks" (2009). Open Access Dissertations. 98.
https://doi.org/10.7275/zde7-9y76 https://scholarworks.umass.edu/open_access_dissertations/98

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13623478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/zde7-9y76
https://scholarworks.umass.edu/open_access_dissertations/98?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

MANAGEMENT OF TARGET-TRACKING SENSOR NETWORKS

A Dissertation Presented

by

KHALED HADI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2009

Electrical and Computer Engineering

© Copyright by Khaled Hadi 2009

All Rights Reserved

MANAGEMENT OF TARGET-TRACKING SENSOR NETWORKS

A Dissertation Presented

by

KHALED HADI

Approved as to style and content by:

C. Mani Krishna, Chair

Israel Koren, Member

C. Andras Moritz, Member

Nathaniel Whitaker, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

For my loving wife Hamdah,
And our precious ones– Ibraheem and Aisha.

ACKNOWLEDGMENTS

I am very grateful for my PhD advisor, Professor C. Mani Krishna, for giving me the

opportunity to work under his guidance. I have learned a lot from him and I acknowledge

his patience and kind, and giving me a lot of time and effort in order to discuss and complete

this project.

I am also thankful for the assistance and advice from my committee members: Profes-

sors Israel Koren, C. Andras Moritz and Nathaniel Whitaker. Their critiques and feedback

have been both invaluable and insightful, which increasingly led to improve the quality of

work. Special thanks go to Dr. Zahava Koren for her helpful suggestions.

I wish to express my gratitude to Kuwait University for financing this research and

giving me a scholarship to study the Master and Doctorate. Also thanks to all friends

and colleagues for their support and encouragement, and for empowering my life with

fun and joy. Special thanks go to my friend: Mahmoud Ben Naser for his continuing

encouragement.

Last but not least, I am thankful to my family, for their dedication and the support they

have given me during all of my life.

v

ABSTRACT

MANAGEMENT OF TARGET-TRACKING SENSOR NETWORKS

SEPTEMBER 2009

KHALED HADI

B.S., KUWAIT UNIVERSITY, KUWAIT CITY, KUWAIT, 1999

M.S., UNIVERSITY OF CALIFORNIA, IRVINE, CA, USA, 2004

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor C. Mani Krishna

Target tracking has emerged as an important application of sensor networks. There are

two subproblems inherent to target tracking. The first is the initial location of the target

as it enters the region being covered. The second is following its track once it has been

discovered.

In this work, we outline an approach to target tracking. We present an energy-aware

tracking algorithm that predicts the target track and activates nodes based on that predic-

tion. We then discuss different energy management schemes that resolve tradeoffs between

energy savings and track quality for a specified mission lifetime. Our energy management

schemes perform better in terms of track quality and have an energy consumption similar to

other schemes. We also consider energy harvesting in this energy management. We present

a multitarget tracking algorithm; in connection with that, we present a filtering algorithm

that improves the quality of tracking. We also study adaptive approaches to manage the

vi

tracking process to the observed mobility characteristics of the target. Such adaptive ap-

proaches are shown to have noticeable performance advantages.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Related Work . 2

1.1.1 Tracking Schemes . 2
1.1.2 Mobility Models . 4
1.1.3 Position Estimation Algorithms . 4
1.1.4 Track Quality . 5
1.1.5 Energy Harvesting . 5
1.1.6 Multiple targets . 6

1.2 Contributions of Dissertation . 6

2. KEY ASSUMPTIONS AND SIMULATOR SETUP . 8

2.1 Assumptions . 8
2.2 Simulation Setup . 10

3. BASIC TRACKING ALGORITHM . 12

3.1 The Algorithm . 12
3.2 Performance of the Basic Algorithm . 14

3.2.1 Wakeup Probability . 14
3.2.2 Prediction Error . 19

viii

3.2.3 Wakeup Range . 20

3.3 Impact of Sampling Interval . 22
3.4 Impact of Mobility Model . 23
3.5 Assessing The Averaging Approach . 24

3.5.1 Convex Hull Approach . 25
3.5.2 Linear and Logarithmic Weighting . 26

4. ANALYTICAL MODELS . 29

4.1 Impact of Node Density . 29
4.2 Modeling Track Mobility . 33

5. EXTENDING THE BASIC ALGORITHM . 40

5.1 Non-Uniform Waking . 40
5.2 Filtering Out False Alarms . 44
5.3 Adaptive Wakeup Probability . 45
5.4 Energy Harvesting . 46
5.5 Multiple Thresholds . 48

6. ADAPTIVE WAKEUP RANGE . 51

6.1 Mean and Standard Deviation . 51
6.2 Angle Variation . 58

7. MULTIPLE TARGETS . 61

7.1 Impact of Sampling Time Step and Number of Targets on Track
Coverage . 63

7.2 Filtering Algorithm . 64

8. USING SIGNAL STRENGTH . 68

8.1 Position Estimation . 68
8.2 Learning ζ and a . 70
8.3 Recalibration of Sensor Drift . 75

9. DISCUSSION . 81

BIBLIOGRAPHY . 84

ix

LIST OF TABLES

Table Page

2.1 Simulation Parameters . 11

x

LIST OF FIGURES

Figure Page

2.1 Sensor distribution, the red nodes are the border nodes, and the base
station located in the center of the area . 10

3.1 Tracking Algorithm . 13

3.2 Mean Position Error and Probability of at Least 3 Awake Sensors Ω(3) as
a Function of the Wakeup Probability ω for each Sensing Radius
Value . 15

3.3 The Impact of ω on the Number of Dead Nodes (R1 = 30) 16

3.4 The Impact of ω on the Cumulative Track Coverage (R1 = 30) 16

3.5 The Impact of ω on the Number of Dead Nodes (R1 = 60) 17

3.6 The Impact of ω on the Cumulative Track Coverage (R1 = 60) 17

3.7 The Impact of ω on the Number of Dead Nodes . 18

3.8 The Impact of ω on the Cumulative Track Coverage . 18

3.9 The Impact of the Mobility Model and the Sampling Time Step 19

3.10 Probability of Success in R1 . 21

3.11 The Impact of Sampling Time Step on Track Error and Energy as a
Function of R1 . 21

3.12 The Impact of the Sampling Time Step on (a) Number of Live Nodes and
(b) Track Error as a Function of R1 . 22

3.13 Number of Misses in R1 for 40 day mission lifetime . 24

3.14 Number of Misses in R1 for 40 day mission lifetime . 25

xi

3.15 Simple Averaging vs. Complex Convex Hull . 26

3.16 Closer Targets Spend More Time in Sensor’s Field of View 27

3.17 Effect of Waking Schemes on Position Error . 28

4.1 Sensing Circle . 30

4.2 Density Function of Position Error . 32

4.3 Mean Position Error for 30(m) Sensing Radius . 32

4.4 pdf of Projected Point Given the Current Point . 33

4.5 Density Function for Projected Target Position with Mobility Model [-60,
60] for Next Segments, and d = sT = 5 × 6 = 30m . 36

4.6 Cross Section Density . 36

4.7 Probability of Success in R1 and Expected Energy Consumption for
Different Mobility Models . 37

4.8 Expected Energy When R1 is Optimum . 38

4.9 Expected Energy When R1 = 70 . 39

4.10 Catch Probability as Function of Constant and Uniformly Distributed
Speed . 39

5.1 The Impact of Node Density on Position Error as a Function of R1 41

5.2 Impact of Track Uncertainty on N vs. NU Performance 42

5.3 Illustrating the Bias Effect . 43

5.4 Position Error under U and NU Approaches . 43

5.5 Noise Effect on Position Error . 45

5.6 Sample Path of the Generated Energy by Harvesting . 47

5.7 The Impact of on the Number of Dead Nodes and Cumulative Track
Coverage with Energy Harvesting . 47

5.8 Multiple Threshold functions . 48

xii

5.9 Track Coverage . 49

5.10 Number of Dead Nodes . 50

6.1 Energy Consumption in Adaptive Wakeup Algorithm . 52

6.2 Different Factors of Standard Deviation with Mobility Mode [-60, 60] 53

6.3 Energy Consumption for Different Factors of Standard Deviation with
Mobility Mode [-60, 60] . 54

6.4 Different Factors of Standard Deviation . 54

6.5 Energy Consumption for Different Factors of Standard Deviation 55

6.6 Number of Dead Nodes as a Function of Mobility Model 56

6.7 Number of Misses as Function of Mobility Model . 57

6.8 Number of Misses as a Function of Mobility Model with Energy
Harvesting (Pcloudless(t) = 7mW) . 57

6.9 How to Compute R1 adaptively . 58

6.10 Selected Percentage of Computed R1 under [-60, 60] Mobility Model 59

6.11 Catch Probability for both Adaptive Wakeup algorithms with Speed = 5
m/s under [-60, 60] Mobility Model . 60

6.12 Energy Consumption for both Adaptive Wakeup algorithms under [-60,
60] Mobility Model . 60

7.1 Two Targets: Confusion . 62

7.2 Two Targets: No Confusion . 62

7.3 Impact of Time Step and Number of Tracks on Track Coverage [-30, 30]
Mobility Model . 63

7.4 Filtering and No Filtering . 66

7.5 Impact of Time Step on Position Error as Function of R1 66

7.6 Impact of Mobility Model on Position Error . 67

xiii

8.1 The Convex Hull Points Approximate the Sensing Circle 72

8.2 The Impact of Learning ζ and a on Position Error as a Function of
Sampling Point Number (set a =10, and ζ = 2: known by the
simulation) . 72

8.3 The Impact of Mobility Model on Position Error While Learning ζ and a a
Function of Sampling Point Number . 73

8.4 Learning vs. 0/1 Model . 73

8.5 Energy Consumption for both Learning and 0/1 Model 74

8.6 Position Estimate with Node Density, ∆ = 0.0044, w = 4,
[kmin, kmax] = [0.1, 2], and t = 40 . 77

8.7 Position Estimate with Node Density, ∆ = 0.0044, w = 4 78

8.8 Position Estimate Using No Calibration and Calibration with Node
Density, ∆ = 0.0044 . 79

8.9 The Impact of Node Density on Position Estimate Using Calibration with
w = 4 . 79

8.10 Position Estimate Using Calibration given a mobility model with w = 4
and ∆ = 0.0044 . 80

8.11 Position Estimate with Calibration over a Mission Lifetime with w = 4 80

xiv

CHAPTER 1

INTRODUCTION

Advances in micro-electro-mechanical systems (MEMS) technology [8] have made

possible low power, small size, and low cost wireless sensor networks (WSNs). WSNs

need to gather information from the physical world and fuse it to achieve application

goals [15] [21] [26] [29].

Sensor networks have many applications. Typically, a sensor network encompasses a

large number of nodes deployed in the environment being sensed and controlled. Typically,

each sensor node comprises wireless communication and sensors. Power, memory and

computational capabilities are usually severely constrained. Sensor networks often consist

of a huge number of nodes. As these nodes susceptible to failure, the topology of the

network may change with time. Sensor networks may use either identical nodes or consist

of a heterogeneous structure in which some nodes are much more powerful than others or

have diverse resources [33].

In this work, we study an object tracking application which aims to locate a moving

object, and report this location in a timely fashion to a base station. Our tracking approach

is as follows: Nodes within the border region of the area being covered detect an intruder

and send messages to the base station to estimate its track. Based on this estimate, the base

station assigns a certain subset of interior nodes to sense the next position of the intruder. If

these nodes succeed in sensing the intruder, their data is used to update the intruder’s track

and another set of nodes can be deputized to generate the next position sample. If these fail

to find the intruder, the area of search is expanded until either the intruder is found or the

search is abandoned.

1

1.1 Related Work

1.1.1 Tracking Schemes

Object tracking is an active research problem in sensor networks and has been addressed

in previous work, e.g., [10] [18] [36] [43]. Most of these studies focus on achieving high

track quality without an excessive expenditure of energy. Energy savings are obtained

through a variety of sleep-wake cycling strategies.

In [18], there is only one node, called the leader node, which is awake at any given time,

while the rest of the network is asleep. The leader node applies a sophisticated algorithm

to estimate the target position. The leader then passes this updated belief to a node close

to this estimated position [11]. This node then becomes the new leader, and the original

leader goes back to sleep.

In [36], the authors show that combining a selective activation framework with predic-

tion (SA), where a small group of nodes in a circular monitoring region is in tracking mode,

and Duty Cycle Activation (DA), where the entire network is turned on and off at the same

time, is effective in terms of tracking quality and energy efficiency.

[43] proposes a dynamic convoy tree for data collection and fusion for target tracking

to achieve energy savings. A convoy tree is a moving tree of nodes that reconfigure in

an attempt to track a target. Collected and fused data are collected at the root of the tree.

The authors provide two schemes to track the target: 1) Conservative Scheme, where the

tree expands omnidirectionally according to a given threshold equation that depends on the

target speed and the current radius of the monitoring region, and 2) Prediction Scheme,

where the target expands along the predicted path of the target. In this scheme, new nodes

are added in the tree and some nodes are pruned. The results show that the conservative

scheme achieves better tracking quality than the prediction scheme, at the price of greater

energy consumption.

In [10], the authors propose a proactive waking algorithm, which involves adaptive

wake-period lengthening when a target is sensed nearby. This approach can be built atop

2

any sleep-awake algorithm (e.g. Geographic Adaptive Fidelity GAF [40] or Probing En-

vironment with Adaptive Sleeping PEAS [9]). The algorithm has multiple wake states of

sensor nodes layered around the current target position. Results show that using the proac-

tive waking algorithm in conjunction with a duty-cycling sleep-wake algorithm improves

track quality, but has some energy cost due to extending the waking period.

In [16], the authors propose a new object tracking algorithm based on a sensor network

that produces one bit value of information to indicate whether the object is approaching, or

moving away from, the sensor. Using this single bit model provides inexpensive sensing

and communication. This binary value provides a geometric characterization that gives

good information about the direction of a moving object. The exact location of this object,

however, can be determined using additional information provided by a proximity sensor.

The authors assume that all sensor nodes are awake all the time.

In [39], the authors propose an optimal control policy implemented in a sensor node

based on the observational history of a target, while taking into account both energy avail-

ability and tracking accuracy. The idea is to increase sensor power if the target is far away

and to skimp on sensor power dissipation when the target is perceived to be close by. Using

higher sensor power on faraway targets reduces the error in the position estimate; throttling

back when target is nearby saves energy. An optimal policy is obtained by mean of a

Markov chain analysis.

[23] weighs the positions of the sensors detecting a target, and uses a weighted average

to estimate the target location. The target track is computed in a central processing node.

Several weighting approached are considered and their performance evaluated. The authors

do not consider energy management.

Reducing communications during target tracking is one technique to save some energy.

In [45], each sensor that detects a target sends a one bit message to its cluster head, and the

cluster head then selects a subset of these sensors close to the target location. Only these

selected sensors then send back to the cluster head detailed information needed for target

3

localization. This approach also reduces network latency due to lower communication

overhead.

Real-time object tracking protocols have been addressed in the literature, where end-to-

end delay time from the detection of the target until the corresponding message is received

by a base station is bounded. [13] studies the effect of some parameters, i.e. speed and

duty cycle, on the end-to-end delay and the energy consumption per day per node. The

simulation results shows that the end-to-end delay decreases when increasing target speed

and sentry duty cycle, but it decreases when increasing detection delay, degree of aggrega-

tion, and number of reports. Energy consumption, however, increases upon increasing the

duty cycle, and it decreases by increasing the sensing range. This work divides the sensor

nodes into sentry and non-sentry subsets, where sentry nodes are active (duty cycled) and

able to detect target movement. The downside of this approach is when decreasing sentry

node density, we need to increase the duty cycle of these sentry nodes to maintain some

coverage, and this depletes the energy source of these nodes faster.

1.1.2 Mobility Models

There are several mobility models used to study the performance of target tracking

networks. The simplest of all these models has the target move along a straight track at a

constant speed [10] [18]. [43] [38] [6] make use of a Random Walk model, where at the

end of given time interval, the target changes its speed and direction according to some

probability distribution. Where there are roads that the target has to follow, one can use

the Pathway Mobility Model [18] [13], where the target tracker makes use of the fact that

the target is restricted to traveling on given roads or paths. Finally, [36] uses a sinusoidal

trajectory as mobility model.

1.1.3 Position Estimation Algorithms

There are different ways for a sensor network to estimate the location of a target. One

simple approach is to average the position of the nodes sensing the target [36]. [23] esti-

4

mates a weighting scheme for sensor position that exploits the fact that if the sensor lies

near to the path of the object, the detection period will be longer since the target will

spend a longer time in its sensing cicle. The estimated position is the weighted sum of the

detecting sensors, where the weight is a monotonically decreasing function of distance.

Another, more sophisticated, approach uses cooperative signal processing and Bayes’s

Law [18] [17] [44]. In particular, Bayes’s law is used to quantify the probability of the

target position, based on its recent history

1.1.4 Track Quality

One rather obvious metric to explores the quality of a tracking algorithm is to measure

the average error between the actual position of the track and the estimated one [36]. An-

other metric uses the fraction of successful sensing points, where the target is sensed once

every T seconds [43]. Another metric uses path exposure to measure the quality of the

tracking. Path exposure is the integral of the sensing intensity function over the track path,

where the sensing intensity is inversely proportional to the Euclidian distance between the

sensor and the target positions [10].

1.1.5 Energy Harvesting

A few authors have begun to consider energy harvesting issues in sensor networks,

e.g., [7] [19]. In these works, the authors provide an adaptive duty-cycling mechanism

that allows sensor nodes to maintain their power supply at sufficient levels (energy neutral

operation) by adapting their behavior to changing environmental conditions. The technique

in [19] differs from [7] by assuming a priori knowledge of the energy profile. While such

approaches are reasonable in environments that exhibit low variance, it is highly inefficient

in more variable scenarios, and this has been addressed in [7]. [7] solves this problem based

on results from adaptive control theory.

5

1.1.6 Multiple targets

Multiple target tracking techniques such as multiple hypothesis tracker (MHT) [28]

and the joint probabilistic data association filter (JPDAF) [5] are designed for centralized

processing. Both MHT and JPDAF are based on joint data association that enumerates

all possible associations between objects and observations. Both attribute data to appro-

priate source at every time step, thus identity updates and location are firmly interleaved.

These approaches are not scalable since they grow exponentially in complexity. Therefore,

they require large memory and intensive computation, as such are not suitable for sensor

networks.

MHT is a multi-scan tracking algorithm that retains multiple hypotheses by associating

past measurements with targets. When having an arrival of a new set of measurements, a

new set of hypotheses is created from each previous hypothesis. The algorithm generates

a hypothesis with the highest posterior probability as a solution. JPDAF, however, is a

suboptimal single-scan approximation to the optimal Bayesian filter; it can also be seen

as an assumed-density filter in which the joint state estimation is for all time a single set

of tracks for a ”known” set of targets. At each time step, rather than finding a single best

association between measurements and tracks, JPDAF enumerates all potential associations

and calculates association probabilities.

1.2 Contributions of Dissertation

Our principal contribution in this work is as follows:

1. A detailed examination of the various tradeoffs between tracking quality and node

wake-sleep cycling in the face of a limited energy budget over a given period of

operation. We study the impact of energy harvesting on these tradeoffs.

2. An approach to filter false reports from malfunctioning or noisy nodes.

3. An analytical model for position estimation, and target-catch probability.

6

4. An adaptive approach whereby the system can learn the parameters of the intruders’

mobility model and adapt the sensor network management.

5. An extension of the target-tracking algorithm handles multiple simultaneous targets.

Such an extension must include methods to disambiguate between targets even if

they are relatively close together. This is a topic that has been little-studied by other

researchers.

6. An approach to learn the current propagation conditions and target characteristics to

improve the quality of tracking.

7

CHAPTER 2

KEY ASSUMPTIONS AND SIMULATOR SETUP

2.1 Assumptions

The general system assumptions we are using in this work are:

• The sensor nodes are identical and distributed randomly on a given region. The

sensors are denser within the border area than internal to the region (see below).

• Each sensor position can be determined sufficiently and accurately by GPS [1], or

other techniques such as triangulation [25].

• The sensor nodes are divided into border nodes, located within a given distance of

the border, and interior nodes (see Figure 2.1). The border nodes, between them,

keep the border area under surveillance all the time. Until an intruder is discov-

ered, only their sensor part is on: the radio communications of the border nodes are

off. The border area is more densely populated with nodes to ensure that it is con-

tinuously monitored over the designated period of operation without running out of

energy. The radio communications of interior nodes use a low-energy paging chan-

nel [12] [41] [38] [32]. In this setup, a very low power radio is used to monitor

the channel all the time. This channel monitoring can be done for just microwatts,

and the monitoring circuit is responsible for waking up the node when appropriate.

Other than this radio, the sensor devices and other elements of these interior nodes

are turned off except when needed.

• The location of a target is estimated by simply averaging the locations of nodes sens-

ing this target. We show that this simple averaging approach performs as well as

8

a more sophisticated convex hull based algorithm [37]; we also compare it with

a signal-strength approach which performs somewhat better at the price of greater

complexity.

• Targets always enter the region through the border region: no targets are sponta-

neously created within the region under surveillance. In this work, the system can

handle either a single target or multiple simultaneous targets at any time.

• A single sink (base station) is also assumed in our implementation. This is where the

sensor system reports the tracking data. The base station is computationally more

powerful and we assume that it is not limited in its functioning by energy constraints

(e.g., it may be connected to a power outlet).

• Sensor nodes are battery powered. We consider both the simple (baseline) case of a

fixed energy budget per sensor node as well as the use of energy harvesting, which

allows some energy to be drawn from the operating environment.

The track movement follows the random walk model [43] [4], where the target changes

its speed and direction every T seconds, forming a piecewise linear track. Each of these

linear segments is at an angle with respect to its predecessor that is determined by a Uniform

distribution with zero mean over a certain range. Every T seconds, the target picks a new

direction generated using the Uniform distribution over a given range, with zero mean.

The speed over each linear segment can either be constant or also chosen according to a

Uniform distribution over a given range.

We have adopted the energy model presented in [14]. When transmitting, the radio

expends energy according to the following expression:

ET X(k, d) = Eelec × k + εamp × k × d2 (2.1)

When receiving, the radio expends:

9

Figure 2.1. Sensor distribution, the red nodes are the border nodes, and the base station
located in the center of the area

ERX(k, d) = Eelec × k (2.2)

where Eelec is the radio dissipation in (nJ/bit) to run the transmitter and receiver cir-

cuitry and εamp in (pJ/bit/m2) is the energy consumed by the transmitter amplifier. d is the

transmission range to transmit a k-bit message.

2.2 Simulation Setup

The simulation results we present throughout this work are based on the following

simulator setup. The sensor nodes are identical and distributed uniformly over a 600m ×

600m rectangle with each sensor knows its location. The base station is located at the center

of the sensor area. In simulation, target movement is controlled by setting different angle

range as described in Section 2.1. Table I provides the simulation parameters used in all

experiments.

10

Table 2.1. Simulation Parameters

Number of Nodes 2601, 3601
Border Width 20 m
Communication Range 80 m
Sensing Range 30 m
Power Consumption in Sensing 10 mW
Sensor Duty Cycle 10%
Power Consumption in Sleep Mode 1 uW
Transmission Rate 250 Kbps
Data Packet Size 64 bytes
Wakeup Packet Size 16 bytes
ACK Packet Size 32 bytes
Target Speeds 5 m/s, [2-8] m/s

11

CHAPTER 3

BASIC TRACKING ALGORITHM

3.1 The Algorithm

The tracking algorithm is summarized in the flowchart depicted in Figure 3.1. Tracking

starts when a border node senses a target. It then switches on its radio communication

channel and sends data information to interior nodes, which forward this message to the

base station using geographic routing [20] [35] [30] [42].

For data messages initiated from border nodes only and sent directly to the base station,

the base station collects these messages and computes the predicted location of the next

target point using linear prediction, i.e. a linear extrapolation of the last two sensing points.

The base station then sends a new data message to a sensor closest to the predicted location

of the target at the next sample point. We call this sensor a leader node.

The leader node then wakes up sensors that are within R meters away from it: more

details on the waking mechanism will be provided later in this work. R is a wakeup range

parameter that can take one of several allowed values. The system starts with a small value

of R and increases it as necessary to locate the target. The final R value usually involves

waking up all sensor nodes in the field. The waking sensors then switch on their sensor

devices, and try to detect the target. Every sensor that detects the target sends a report to

its leader node. If the leader node receives reports from sensors, it computes the predicted

next location of the target based on linear extrapolation of the previous and current sensing

points and sends a data message to sensors close to this location. It also sends a report to

the base station to update the target position. If the target is not detected after a given time

12

for the widest possible search area, the search is abandoned, and the target is declared to

have been lost or missed.

Border node(s) detect

intruder and inform

base station

Base station predicts

location of next target

point and informs sensor

closest to this point

(Leader Node)

Increase R

Leader node wakes up

sensors within R

meters of it

Target
detected

R limit not
Reached

Abandon

search

Calculates target location

and predicts its track.

Sends this to the base

station and next

leader node

YesNo

Yes

No

Figure 3.1. Tracking Algorithm

Key to the performance of the algorithm is the correct selection of the wakeup ranges.

As a wakeup range is increased, the probability of sensing the target rises with it (and

the probability of having to expand the search area due to missing the target declines).

However, this comes at the cost of increased energy expenditure. The mobility model

therefore greatly influences the choice of these ranges: a more deterministic track leads to

smaller search areas being sufficient.

13

3.2 Performance of the Basic Algorithm

3.2.1 Wakeup Probability

In this analysis, we will assume that the entire sensing circle is within the wakeup circle;

as long as the wakeup circle is not very small, the errors introduced by this simplifying

assumption will be small.

Let the density of the live nodes (i.e., nodes which have not yet depleted their energy

reserves) be ∆ per square meter. If the total number of sensors is quite large (as is almost

invariably the case), we can treat the scatter of the sensors as a spatial Poisson process. Let

S be the radius of the sensing circle and ω be the wake probability. The probability of at

least α awake sensors within the sensing circle can now be written down as:

Ω(α) = 1 −
α−1∑
i=0

e−πS
2ω∆ (πS 2ω∆)i

i!
(3.1)

We can now set Ω sufficiently high by controlling ω so that the position estimate is

reasonably accurate. Figure 3.2 provides some numerical results. For each sensing radius

value, we show the average error as a function of the wakeup probability, ω and the value

of Ω.

The wakeup probability has a strong impact on the energy consumption, and hence on

the useful lifetime of the sensor network. Small values of ω result in a greater chance of

missing the target and hence require the search area to be widened, thereby consuming

more energy. Even if the target is not missed, if only one or two nodes detect the target,

there can be significant error in the position estimate, which increases the prediction error

for the next target sample. Such increased prediction error increases the chance of the

subsequent sample not finding the target within the initial search area, which has the energy

consequences mentioned above. On the other hand, very large values of ω result in too

many nodes being awake in the first place, which also costs energy. This is summarized in

Figure 3.3 and Figure 3.4 (the scheme for adaptive ω shown in the figure is described later

in this work). Here, each node is assumed to have a fixed amount of energy and dies when

14

Figure 3.2. Mean Position Error and Probability of at Least 3 Awake Sensors Ω(3) as a
Function of the Wakeup Probability ω for each Sensing Radius Value

that energy has been spent. It is the trends, rather than the actual numerical values, that are

important.

Figure 3.5 and Figure 3.6 show the same experiment but with R1 = 60m. We can see

that the number of dead nodes increases again when ω = 0.5, and has the highest value

when ω = 1.0. Other ω’s, however, have the same effect. Figure 3.7 shows comparison in

detail between the two cases in term of dead node at track number equals 100. The number

of dead nodes is high when R1 = 30 due to missing the target in this range, which requires

the search area to be expanded and this imposes an additional energy cost. Figure 3.8 shows

the corresponding track coverage of these two cases. We can see that as the number of dead

nodes decreases, the track coverage increases.

15

Figure 3.3. The Impact of ω on the Number of Dead Nodes (R1 = 30)

Figure 3.4. The Impact of ω on the Cumulative Track Coverage (R1 = 30)

16

Figure 3.5. The Impact of ω on the Number of Dead Nodes (R1 = 60)

Figure 3.6. The Impact of ω on the Cumulative Track Coverage (R1 = 60)

17

Figure 3.7. The Impact of ω on the Number of Dead Nodes

Figure 3.8. The Impact of ω on the Cumulative Track Coverage

18

3.2.2 Prediction Error

The prediction error depends primarily on three parameters: the accuracy of the position

estimate, the mobility model followed by the target, and the sampling time step (i.e., the

inverse of the frequency with which the network tries to track the target). We have already

treated the accuracy of the position estimate. Here, we consider the impact of the mobility

model and the sampling time step. It is rather obvious that as the target’s track becomes ever

more random, our ability to predict the track goes down and the prediction error increases.

Similarly, the smaller the sampling time step, the better our prediction accuracy. This

is due to two factors. The first is that as the time step decreases, the target has less of

an opportunity to drastically change its position from what is expected. Secondly, with a

reduction in time steps comes an increase in the number of position fixes that are taken, and

this increased number of data points can improve accuracy. Figure 3.9 provides numerical

results related to these parameters.

Figure 3.9. The Impact of the Mobility Model and the Sampling Time Step

19

3.2.3 Wakeup Range

We now consider the impact of the wakeup ranges. For simplicity, we concentrate on

just the impact of just the first wakeup range, R1. The same remarks apply with respect to

the other ranges.

R1 is the radius of the first circle of nodes that are woken up. If R1 is small, only a

small number of sensors are awakened; as a result, only a small number of nodes expend

sensing energy. However, the price to be paid is an increased chance of missing the target,

in which case, this sensing step has been wasted and the search area has to be increased.

Also, with an excessively small R1, even if the target is detected, the number of detecting

nodes is likely to be small; this will have an impact on the accuracy of the estimate of the

target position.

Figure 3.10 shows the probability of catching the target as a function of R1. As ex-

pected, this probability increases as R1 increases for a range of values, and then flattens

out. Figure 3.11 shows the expected energy that is spent per sampling step. For very small

values of R1, this energy is large because the probability of missing the target is high and

a target miss triggers an expansion of the search area, which imposes additional energy

costs. As R1 increases, the energy consumed drops, as the probability of catching the tar-

get increases. Beyond the point where any further increases in the target do not result in

appreciable miss probability, the energy consumption increases because we are now wak-

ing up nodes over too wide an area. Note also the mean error in position estimate as a

function of R1. For small values of R1, the probability increases that even those targets

that are caught lie on the periphery of the waking circle; in such cases, the sensing circle

is not entirely within the waking circle. This introduces a bias in the measurement, since

the only nodes that can detect the target are those which lie in the intersection between the

sensing and waking circles.

20

Figure 3.10. Probability of Success in R1

(a) (b)

Figure 3.11. The Impact of Sampling Time Step on Track Error and Energy as a Function
of R1

21

3.3 Impact of Sampling Interval

In this section, we study the impact of sampling time step on the number of live nodes

and the track error as a function of the first wakeup range as shown in Figure 3.12. Track

error is the average distance between the estimated and actual tracks. When R1 is very

small, the probability of having to widen the search to the next wakeup radius is quite

large. In such a case, the number of nodes that need to be awakened is greater and the

drain on node energy reserves correspondingly large. As R1 increases, the need to switch

to R2, R3, etc. reduces, with a corresponding reduction in energy demands on the nodes.

This translates to a greater number of nodes still being alive. As R1 becomes very large,

however, the number of nodes far away from the target position that are awakened every

time also increases, and energy drain is high. Again, this reduces the number of nodes

left alive after any given period of operation. For small time-steps, the error in the target

estimate is small, and so the optimum R1 value at which the energy drain is minimized is

smaller. The tracking error is also a strong function of both R1 and the time step.

(a) Number of Live Nodes (b) Track Error

Figure 3.12. The Impact of the Sampling Time Step on (a) Number of Live Nodes and (b)
Track Error as a Function of R1

22

3.4 Impact of Mobility Model

In this section, we take into account the impact of a finite energy reserve in the perfor-

mance of the system. In particular, we count the number of misses in R1 over a period of

operation for different mobility models. A target is missed when there is no awake sensor

within range of the target. This may be either because of the size or position of the wakeup

circle or because of sensors within range running out of energy. When sensor networks run

out of energy, some or all part of the track trajectory is not covered, creating some missing

sensing points. This is accounted for in the second term of Equation 3.2.

TotalNumberO f MissesInR1 = MissesInR1 + MissingS ensingPoints (3.2)

Figure 3.13 shows the number of misses as a function of R1. When R1 is very small,

the probability of having to widen the search to the next wakeup radius is quite large. In

such a case, the number of nodes that need to be awakened is greater and the drain on node

energy reserves correspondingly large. In this case, both terms in Equation 3.2 contribute

heavily. As R1 increases, the need to switch to R2 reduces, with a corresponding reduction

in energy demands on the nodes. This translates to a greater number of nodes still being

alive and fewer misses in R1. As R1 becomes very large, however, the number of nodes

far away from the target position that are awakened every time also increases, and energy

drain is high. Again, this reduces the number of nodes left alive after any given period of

operation. In this case the total number of misses in R1 is more contributed by the second

term in Equation 3.2. It is rather obvious also that as the target’s track becomes ever more

random, our ability to predict the track goes down and the prediction error increases, which

increases the number of nodes needed to be awakened and drains node energy reserves,

which affects then the number of misses in R1.

Figure 3.14 studies the impact of mission time on the number of misses in R1. For

short mission lifetimes, the optimum setting for R1 is quite large, since the constraints on

23

Figure 3.13. Number of Misses in R1 for 40 day mission lifetime

energy are not tight. As the mission lifetime increases, however, the chances of running

out of energy increase and a less aggressive value of R1 is appropriate. Regardless of the

value of R1, larger missions tend to cause a greater rate of misses since more nodes run out

of energy and cause increasingly larger blind spots in the sensor network.

3.5 Assessing The Averaging Approach

Our algorithm uses simple averaging to estimate target position. In this chapter, we

show that this simple approach is as good as, if not better than, more complex methods.

We compare averaging against three other approaches: convex hull, linear weighting, and

logarithmic weighting.

24

Figure 3.14. Number of Misses in R1 for 40 day mission lifetime

3.5.1 Convex Hull Approach

The convex hull of a set of points is the smallest convex area containing all these

points [27]. We can calculate the convex hull of the detecting sensor nodes and estimate

the target position as its centroid.

Computing the convex hull is a problem in computational geometry and several algo-

rithms are available for computing the convex hull of a finite set of points, with various

computational complexities. Computing the convex hull means that a non-ambiguous and

efficient representation of the required convex shape is constructed. The complexity of the

corresponding algorithms is usually estimated in terms of n, the number of input points,

and h, the number of points on the convex hull [22].

We use an off-the-shelf efficient Convex Hull algorithm instead of implementing this

algorithm from scratch in our simulation. To do so, a Swing java library implemented in

Concord Consortium projects [2] is imported into our simulator. This library contains the

Convex Hull algorithm and other useful algorithms.

25

Experiments were conducted to compare the convex hull approach to averaging. Sam-

ple simulation results are provided in Figure 3.15. These indicate that the convex hull

algorithm has about the same performance as simple averaging.

Figure 3.15. Simple Averaging vs. Complex Convex Hull

3.5.2 Linear and Logarithmic Weighting

Two interesting weighted averaging approaches have been proposed in [23]. This

scheme estimates the distance of the sensor from the target and applies a weighting func-

tion that is monotonically decreasing with this distance. The distance estimate is obtained

by [23] under the assumption that the target is moving in a straight line and that the sensor

is always awake. In such a case, as Figure 3.16 shows, the distance between the sensor

and the target can be related to the duration over which the sensor can sense the target.

Proportional and logarithmic weighting apply weight that are linearly proportional to, and

26

a logarithm of, this duration, respectively. This weight factor is then normalized and then

multiplied by sensor position to estimate the position of the target. Such a scheme cannot

be exactly applied to our case, since we do not assume that sensors are always awake. As

a result, a sensor cannot be sure to sense the target for the entire duration over which that

target is within its sensing range (since it may have been asleep for part of that time. If we

simply use the duration for which the sensor does sense the target for weighting purposes,

we obtain a position error that is noticeably greater than under simple averaging. Even if

we use the actual time over which the target is within the sensing circle (this is obviously

not available to the sensor for reasons stated above), the quality of the position estimate

(marked ”Opt” in Figure 3.17) is not significantly better than that of simple averaging. NU,

however, is the best in term of position error because of the increased waking nodes closer

to the target.

Figure 3.16. Closer Targets Spend More Time in Sensor’s Field of View

27

Figure 3.17. Effect of Waking Schemes on Position Error

28

CHAPTER 4

ANALYTICAL MODELS

In this chapter, we provide analytical models for the expected and the tracking error

probability of catching the target.

4.1 Impact of Node Density

We start by considering the impact of the number of detecting nodes on the error in the

target position estimate. Intuitively, the greater the number of detecting nodes, the more

accurate will be the position estimate. Here, we quantify this intuition.

For convenience, define the origin of the coordinate system as the object position. Pic-

ture the target as being at the center of a circle, with radius equal to the sensing range.

We start by determining the Probability Distribution Function (PDF) of the error in

the estimate if there is only one active sensor over the entire sensing circle. To do so, we

calculate the PDF of the x and y coordinates of this one sensor, randomly placed within the

above-mentioned circle.

We start by obtaining the PDF of the x-coordinate; the derivation for the y-coordinate

is similar. The first step is to calculate the area, W, of the shadowed region shown in

Figure 4.1.

W = 2 × (Area o f S ector − Area o f Triangle)

= 2
(
θ

2
S 2 −

1
2
αS sin (θ)

)

29

Figure 4.1. Sensing Circle

= S 2cos−1
(
α

S

)
− αS sin

(
cos−1

(
α

S

))
(4.1)

The probability distribution function for the x-coordinate of the sensor, FX(α), can now

be derived as follows:

FX (α) = 1 − P[X > α]

FX (α) = 1 −
W

Area o f Circle

= 1 −
S 2cos−1

(
α
S

)
− αS sin

(
cos−1

(
α
S

))
πS 2 (4.2)

Differentiating this distribution function yields the probability density function (pdf) of

the x-coordinate of the single detecting sensor within the sensing circle:

fx1(α) =
2
√

S 2 − α2

πS 2 (4.3)

30

If we have a total of n awake sensors within the sensing circle, the estimate of the

target’s x-coordinate is the average of the x-coordinates of these sensors. By symmetry, the

pdf of the x-coordinate of each of these sensors is the same as in Equation 4.3; furthermore,

the sensor positions are assumed to be independent of one another. As a result, we can

obtain the pdf of the average of the sensor positions by convolution. In particular, the pdf

of the sum of the x-coordinates is

fx1+..+xn(β) =
∫ min(β+S ,(n−1)S)

max(β−S ,−(n−1)S
fx2+..+xn−1(α) fx1(β − α)dα (4.4)

The density function of the average x-coordinate can now be written as:

f x1+..+xn
n

(β) = n fx1+..+xn(nβ) (4.5)

As mentioned before, an identical argument applies to the average y-coordinate. We

can now write the pdf of the position estimate error as follows:

MeanPositionError =
∫ S

−S

∫ S

−S

√
α2 + β2 fx(α) fy(β)dαdβ (4.6)

Figure 4.2 and Figure 4.3, respectively, show the density functions and mean position

errors for one to up to four sensors detecting the target. There is a marked improvement in

the quality of the estimate for two, as opposed to just one, detecting node. Further gains

in accuracy are more limited. Our results indicate that as long as at least three nodes can

detect a target, its position estimate will be quite accurate; further marginal improvements

will be small. We do not therefore require a large number of sensors to be awake within the

sensing circle of the target. This fact can guide us in setting some of the parameters of the

tracking algorithm.

31

Figure 4.2. Density Function of Position Error

Figure 4.3. Mean Position Error for 30(m) Sensing Radius

32

4.2 Modeling Track Mobility

In this section, we model the probability of catching the target in the first wakeup range

R1, and the expected energy consumption. As discussed earlier, our mobility model follows

the Random Walk Model, where the target changes its direction every T seconds forming

a piecewise linear segment as shown in Figure 4.4. We assume that the target speed s is

fixed here1. Each such linear segment is at an angle θ with respect to its predecessor, and

is uniformly distributed over a certain range.

First of all, we calculate the probability density function (pd f) of the next position of

the target after n segments as a function of the previous and current sensing points.

In other words, we want to compute the projected pdf ∆xn+1 + · · · + ∆x2n and ∆yn+1 +

· · · + ∆y2n as a function of the current pdf ∆x1 + · · · + ∆xn and ∆y1 + · · · + ∆yn as shown in

Figure 4.4.

Figure 4.4. pdf of Projected Point Given the Current Point

We start by defining the indicator function:

1Extending this model by assuming randomly varying speed can be done by applying Bayes’s Law and
integrating over the range of allowed speed.

33

1(γ) =

 1 if γ is true (4.7a)

0 otherwise (4.7b)

Then, the probability density function of the projected position (βx, βy) given that the

current position is (αx, αy) can be written as follows:

P[βx, βy|αx, αy] =
1

(φup − φlo)n

∫ φup

φlo

· · ·

∫ φup

φlo

1(d cos(An+1) + · · · + d cos(A2n) = βx

AND d cos(A0) + · · · + d cos(An) = αx) 1(d sin(An+1) + · · · + d sin(A2n) = βy

AND d sin(A0) + · · · + d sin(An) = αy)dθ2n · · · dθn+1 (4.8)

Where d = sT , φup and φlo are the upper and lower bounds of the displacement angle

θi; successive values of θi are independent. A j is the absolute angle, and can be derived

from the displacement angle θi as follows:

A j =

j∑
i=0

θi (4.9)

The pdf of the estimated current target position can be written according to the follow-

ing equation:

P[αx, αy] =
1

(φup − φlo)n

∫ φup

φlo

· · ·

∫ φup

φlo

1(d cos(A0) + · · · + d cos(An) = αx)

1(d sin(A0) + · · · + d sin(An) = αy)dθ0 · · · dθn (4.10)

To find the catch probability in a given wakeup range R1, we need to compute the

prediction point (xp, yp) based on the current target position (αx, αy). This can be done

using a simple linear extrapolation. The probability of catching the target as a function of

the current position is shown in the following equation:

34

P[Catch in R1|αx, αy] =
∫ 2dn

−2dn

∫ 2dn

−2dn
1(

√
(βx − xp)2 + (βy − yp)2 6 R1)

P[βx, βy|αx, αy]dβxdβy (4.11)

Unconditioning on all possible values of current positions (αx, αy) we obtain the prob-

ability of finding the target in R1.

PCatchInR1 =

∫ dn

−dn

∫ dn

−dn
P[Catch in R1|αx, αy]P[αx, αy]dαxdαy (4.12)

Finally, the expected energy can be calculated using the following equation:

ExpectedEnergy = (PCatchInR1R
2
1 + (1 − PCatchInR1)R

2
all)πρE (4.13)

where ρ is the node density and E is the energy consumption per node.

In Figure 4.5, we present results for the pdf of the target position after one, and three,

steps, respectively. In each case, we assume that the step preceding the movement repre-

sented here was along the horizontal direction, i.e., with an absolute angle of 0. A cross-

section view at different X values is depicted in Figure 4.6. This figure shows that the

possibility of the target goes higher as the value of X coordinate increases, and then re-

duces after passing 180 m.

35

(a) (αx, αy) = (30,0) (b) (αx, αy) = (90,0)

Figure 4.5. Density Function for Projected Target Position with Mobility Model [-60, 60]
for Next Segments, and d = sT = 5 × 6 = 30m

Figure 4.6. Cross Section Density

36

The effect of the mobility model (φlo, φup) on the catch probability in R1 and expected

energy consumption is described in Figure 4.7. We can see that as the uncertainty of track

increases, our ability to catch the track is reduced. As R1 becomes larger, the probability of

catching also increases since the target becomes more likely to fall within. As expected, the

optimum R1 (for minimum expected energy consumption) depends on the mobility model:

the greater the intrinsic uncertainty of the track, the greater the optimum value of R1. The

reason is quite simple to explain. When R1 is very small, the probability of having to widen

the search to the next wakeup radius is quite large, and increases with the track uncertainty

(which is represented in our model by the maximum angular deflections of each segment).

In such a case, the number of nodes that need to be awakened is greater and the drain on

node energy reserves correspondingly larger; the second term in Equation 4.13 becomes

more important. As R1 increases, the need to switch to R2 reduces, with a corresponding

reduction in energy demands on the nodes. As R1 becomes very large, however, the number

of nodes far away from the target position that are awakened every time also increases, and

energy drain is high. In this case, the first term in Equation 4.13 dominates.

(a) (b)

Figure 4.7. Probability of Success in R1 and Expected Energy Consumption for Different
Mobility Models

37

We now turn to the case where there are three wakeup ranges (the third, R3, here in-

volves waking up all the nodes in the system that still have sufficient energy to function).

Figure 4.8 and Figure 4.9 provide some numerical results. Selecting the value of R1 that

offers the lowest energy in the two-level case results in constant value of expected energy

regardless of the value of R2 shown in Figure 4.8, this is because the catch ratio at this opti-

mum R1 almost equals one. When we set R1 = 70 as shown in Figure 4.9, for example, we

can have a lower energy cost for certain R2 values compared when we have the optimum

R1 value. The point of Figure 4.8 is that selecting the optimum R1 does not always provide

the minimum expected energy for different value of R2 as shown in Figure 4.9.

Figure 4.8. Expected Energy When R1 is Optimum

Figure 4.10 shows the catch probability in R1 for constant speed (s = 5m/s) and ran-

domly varying speed over the interval [2, 8] m/s. As expected, the speed uncertainty causes

a decrease in the catch probability. This change, for obvious reasons, becomes insignificant

as R1 increases

38

Figure 4.9. Expected Energy When R1 = 70

Figure 4.10. Catch Probability as Function of Constant and Uniformly Distributed Speed

39

CHAPTER 5

EXTENDING THE BASIC ALGORITHM

The tracking algorithm presented before can be extended to improve its performance

and efficiency. In this chapter, we present some such promising extensions.

5.1 Non-Uniform Waking

Rather than wake up every node within the wakeup circle with the same probability,

we can wake up more nodes closer to the anticipated location of the target, while keeping

the rest of the area covered less densely. The former allows the target to be located more

precisely in the likely event that the prediction error is limited; the latter ensures a lower

target miss probability if the predicted point is distant from the actual target location.

Perhaps the simplest non-uniform strategy is to have the wakeup probability decline

linearly as we move away from the predicted target location.

p(r) =
(
1 −

r
R

)
q (5.1)

where q is a control parameter. The expected number of waking nodes is given by

N(R, ρ, q) =
∫ R

0
2πrp (r) ρdr

=
1
3
πR2ρq (5.2)

40

Figure 5.1. The Impact of Node Density on Position Error as a Function of R1

Figure 5.1 compares the behavior of the Non-Uniform (NU) against that of the Uniform

(U) model we presented previously. To keep the comparison fair, the value of q is set so

that the expected total number of waking nodes in the U and NU cases are the same.

For the same value of R1, for example, the probability of locating the target is roughly

the same: this depends on R1 and not on the node density (so long as there is at least one

node in the sensing area of the target). Similarly, since the expected number of waking

nodes is the same, the energy consumed is about the same. However, there is a significant

effect on the accuracy with which the position error is estimated, for larger values of R1.

The NU approach allows an inner circle to be densely populated by awakened nodes: this

is compensated for by making the outer area more sparsely covered. When R1 is large

enough, the inner, denser, circle is large enough to capture most target instances and the

average position error is reduced.

For a similar reason, the advantage of the NU over the U case is increased when the

prediction accuracy is greater; indeed, the purpose of NU is to squeeze additional perfor-

41

mance out of accurate prediction. Figure 5.2 shows the estimated position accuracy as a

function of the variance in the target mobility model. The lower the variance the greater

the probability that the target will be in the more densely populated area near the predicted

position, and the better will be the NU performance. For a purely random track, NU is not

recommended.

An insufficient awakened node density is not the only reason that NU can behave poorly

if there is substantial error in predicting the target position. Another is a biasing caused by

the non-uniform positioning of the awakened nodes. Figure 5.3 illustrates this. Because

the prediction error in this case is considerable, there are more awakened nodes on one side

of the actual target position than in others. Therefore, any averaging of the positions of

all those nodes which detect the target will have an inherent bias. One can correct for this

bias by weighting each node position by the inverse of the awakened node density in that

location and then averaging over these weighted positions.

Figure 5.2. Impact of Track Uncertainty on N vs. NU Performance

42

Figure 5.3. Illustrating the Bias Effect

The impact of inaccurate position estimation (and the bias effect) on the NU approach is

quantified in Figure 5.4. The leader node is the one closest to the predicted target position.

If this distance is small, the increased density of nodes around the actual target position

renders NU more accurate than U; as this distance increases, however, NU behaves more

poorly.

Figure 5.4. Position Error under U and NU Approaches

43

5.2 Filtering Out False Alarms

Nodes are susceptible to noise and noise can give rise to false reports of target acqui-

sition. This false reporting has the potential to degrade the accuracy of the tracking if it is

not filtered out. We present here a simple noise filtering algorithm (shown in Algorithm 1)

that attempts to throw out noisy nodes from target position estimation.

This is an iterative process, executed by the leader node. The algorithm estimates the

target position based on all the reports sent by the nodes. Then, it filters out reports from

nodes whose distance from that estimated target position exceeds the sensing diameter (2 ×

sensorRange). This results in a new estimate of target position, and the process of filtration

can be iterated until no reports have to be filtered out.

Input: X,Y : Coordinate Vectors for Detecting Nodes
Output: x, y: Estimated Target Position After Filtering Noisy Nodes
x = 0; y = 0; size = 0;
for i = 0 to Detecting Node Size do

x = x + X[i]; y = y + Y[i]; size = size + 1;
end
x = x/size; y = y/size;
for i = 0 to Detecting Node Size do

d =
√

(X[i] − x)2 + (Y[i] − y)2;
if d ≥ 2 × S ensorRange then

X[i] = NULL; Y[i] = NULL;
end

end
x = 0; y = 0; size = 0;
for i = 0 to Detecting Node Size do

if X[i] , NULL then
x = x + X[i]; y = y + Y[i]; size = size + 1;

end
end
x = x/size; y = y/size;

Algorithm 1: Noise Filtering Algorithm

Figure 5.5 shows the effect of noisy nodes on position error. It can be seen in Fig-

ure 5.5(a) that noise filtering algorithm improves position error significantly compared with

the no filtering case for both U and NU waking schemes. We can see, in general, that the

NU scheme performs better than the U scheme because of the higher waking density sur-

44

rounding the current target position. So long as the estimated target position is not far

away from the actual position, the NU scheme will ensure that few nodes far away from

the target will be awake. As a result, there will simply be fewer awake nodes outside the

sensing range of the target. Figure 5.5(b) shows the effect of noise as we increase waking

probability.

(a) Position Error vs. False Alarm Prob. (b) Position Error vs. Waking Prob.

Figure 5.5. Noise Effect on Position Error

5.3 Adaptive Wakeup Probability

Rather than have the wakeup probability fixed, we can make it adapt to the energy

level of each node. One simple approach is to set the wakeup probability equal to the

ratio of the energy level at the node to its maximum energy level. This is a rather crude

adaptation scheme, but tends to balance the energy expenditure among the nodes and is

easy to implement and justifies itself in terms of performance (see again Figure 3.3 and

Figure 3.4 in Section 3.2.1).

45

5.4 Energy Harvesting

Energy harvesting consists of drawing energy from the operating environment. In our

energy harvesting model, we assume that each sensor node can scavenge energy from the

sun. We assume that there is a harvesting period during the day. If the sky is cloudless, the

harvested power rises linearly in the morning until it reaches its maximum value, at which

it holds steady for some time before then going down linearly. The maximum value for any

given day is generated using a Uniform distribution over a certain range. To add the effect

of the clouds in this model, we assume different levels of atmospheric transparency. One

can model amplitude transparency levels by means of a Markov model [24], which is rep-

resented as a state diagram with each state corresponding to a distinct level of attenuations,

ranging from none (for a clear day) to almost complete darkness. The harvested power is

given by Equation 5.3. Figure 5.6 shows an example of a sample path of energy generated

by harvesting using Equation 5.3 during three days.

Pactual(t) = Pcloudless(t) × Transparency(t) (5.3)

Figures 5.7 shows results similar to those of Figure 3.3 and Figure 3.4; however, here,

the energy reserves are periodically augmented by energy harvesting. Small values of ω

result in a greater chance of missing the target and hence require the search area to be

widened, thereby consuming more energy. On the other hand, very large values of ω result

in too many nodes being awake in the first place, which also costs energy. We can see

that the adaptive ω still the best in term of track coverage due to its adaptive behavior to

balance energy consumption. In contrast to the non-adaptive scheme, a node which runs

out of energy is only temporarily disabled: once its energy levels can be replenished by

harvesting, it comes back to service.

46

Figure 5.6. Sample Path of the Generated Energy by Harvesting

(a) Dead Nodes (b) Track Coverage

Figure 5.7. The Impact of on the Number of Dead Nodes and Cumulative Track Coverage
with Energy Harvesting

47

5.5 Multiple Thresholds

In this approach, each node uses its available energy reserves to decide whether or not

to participate in the tracking. In particular, each node constructs a linear threshold function

Threshold(t) = mt + b, where if the current energy level of the node is greater than the

current threshold value at time t, then the node is allowed to wake up and take part in

sensing and communication. The slope m of the threshold function is computed based

on the fraction of the start energy and the target energy level at end of mission lifetime,

which usually equals zero. The fractional value of start energy depends on the current

wake-up range (R). The common rule of thumb is to increase this fraction as we increase

R to conserve energy, since if R is large many nodes will likely be involved in sensing.

Clearly in this approach each node needs to know the mission time. On the other hand,

Threshold(t) = 0 (baseline approach) if multiple thresholds are not used. Figure 5.8 shows

an example of multiple threshold functions.

Figure 5.8. Multiple Threshold functions

In this experiment, we use multiple threshold algorithm for a given wake up range

(R). Figure 5.9 shows the cumulative track coverage with respect to the track number ar-

rived. For the baseline approach (ω = 1), we have the best track accuracy in the beginning

compared with the multiple threshold approaches; having the baseline starts degrading in

performance very early due to the increased of number of dead nodes as shown in Fig-

48

ure 5.10. For multiple thresholds, having lower multiple thresholds improves track quality

at the beginning of the period of operation, but it increases the chance of missing the target

later on due to energy depletion in the network. Having higher multiple thresholds, how-

ever, results in low track quality in the beginning of mission time, but lower number of

dead nodes. We compare the result also with the adaptive ω, we can see that it is the best

in term of track accuracy but has more number of dead node.

Figure 5.9. Track Coverage

49

Figure 5.10. Number of Dead Nodes

50

CHAPTER 6

ADAPTIVE WAKEUP RANGE

We have seen before that the optimum value of the wakeup ranges is a function of the

mobility model: the less predictable the track, the wider the wakeup range needs to be.

In this chapter, we consider an approach whereby the prior experience of the system

concerning track characteristics can be used to adaptively choose the wakeup range. We

present two approaches. The first approach is to learn the mean and standard deviation of

the error between the predicted and estimated points of the track and to set R1 equal to

the mean plus k times the standard deviation, where k is a control parameter. The second

heuristic computes R1 based on the variation of the angle between consecutive sensing

points.

6.1 Mean and Standard Deviation

As we mentioned before, this approach sets the first wakeup range R1 by learning the

mean and standard deviation between the predicted and estimated points of the track as

shown in the below equation:

R1 = Mean + k × S .D (6.1)

where k is a control parameter.

Figure 6.1 plots, however, a comparison between linear and perfect prediction under

adaptive wakeup. In perfect prediction, the next location of such target is known in ad-

vance. While perfect prediction cannot be achieved in practice, it is used here as a baseline

51

against the linear prediction algorithm. The figure shows, as expected, the considerable

impact of track uncertainty on the energy consumption associated with this algorithm. As

the sampling interval increases, the number of times the target is located goes down. Ev-

erything else being equal, this would tend to reduce the energy consumption. However,

with an increase in sampling interval comes a decrease in the chance of catching the target

within the first wakeup radius; This tends to drive up the energy consumption by requiring

a larger wakeup radius. The greater the track randomness, the shorter this sampling interval

needs to be.

Figure 6.1. Energy Consumption in Adaptive Wakeup Algorithm

52

Figure 6.2 shows the probability of catching the target in R1 as function of sampling

time step for different values of k. It is obvious why as we increase k, and therefore R1,

the probability of catching tends to increase. Figure 6.3 shows the corresponding energy

consumption for the same factors. Smaller factors result in an increase in miss probability,

and hence require the search area to be expanded, and thereby expends more energy. An

excessively large k, however, increases the energy consumption since this leads to a need-

lessly larger R1. The same behavior occurs under different mobility models as shown in

Figure 6.4 and Figure 6.5.

Figure 6.2. Different Factors of Standard Deviation with Mobility Mode [-60, 60]

53

Figure 6.3. Energy Consumption for Different Factors of Standard Deviation with Mobility
Mode [-60, 60]

Figure 6.4. Different Factors of Standard Deviation

54

Figure 6.5. Energy Consumption for Different Factors of Standard Deviation

55

We study in Figure 6.6 and Figure 6.7 the impact of adaptive wakeup range with differ-

ent mobility models on the system over a given mission lifetime. A similar explanation to

that provided earlier explains this, and the related, results. If the sampling interval is very

short we take an excessive number of samples and thereby waste energy. If the interval is

not short enough, we increase the chance of missing in R1 and having to expand the search

area thereby wasting energy. Clearly the more random the track the more often one needs

to sample the target. Figure 6.8 shows the number of misses when using energy harvest-

ing. Note that the shape of the curves is similar; The optimum sampling time has remained

virtually unchanged. However, the absolute number of dead nodes is significantly lower.

Figure 6.6. Number of Dead Nodes as a Function of Mobility Model

56

Figure 6.7. Number of Misses as Function of Mobility Model

Figure 6.8. Number of Misses as a Function of Mobility Model with Energy Harvesting
(Pcloudless(t) = 7mW)

57

6.2 Angle Variation

The second heuristic computes R1 based on the variation of the angle between consec-

utive sensing points. The basic idea behind this algorithm is shown in Figure 6.9. In this

figure, we have the last two sensing points: s1 and s2 captured by the system, and from

these points we are able to compute the predicted distance (d) of the next target position

by means of the current distance computed between s1 and s2. Then R1 will be set equal

to d tan(θ), where d = TimeS tep × TargetS peed. TimeS tep is an update time interval

of the moving target position. θ is the angle between s1 and s2. There are two steps to

calculate θ that are based on a heuristic learning method: 1) Find the standard deviation

of the tangent of the angle between consecutive sensing points, and this standard deviation

is updated as long as we have a new sensing points. The mean of the angle, however, is

zero. 2) θ is calculated by taking the arc tangent of the newly updated standard deviation

and multiplied by computed target speed and given time step to get the new updated R1 as

shown in Algorithm 2. S DA = stDev() is an online function that generates the standard

deviation of any variable that keeps its value updated one at a time.

Figure 6.9. How to Compute R1 adaptively

Figure 6.10 shows also the probability of catching the target for different percentages

of computed R1 size for the second adaptive algorithm. This figure shows as we reduce

the percentage value, there is a corresponding reduction in catch probability in general.

58

Input: x1, y1 : Coordinate of Previous Sensing Point
x2, y2 : Coordinate of Current Sensing Point
s : Computed Target Speed
t : Time Step

Output: newly computed R1

** Get the Newly Computed Standard Deviation * S DA = stDev(tan−1(y2−y1
x2−x1))

R1 = s × t × tan(S DA)
Algorithm 2: Adaptive R algorithm

Increasing the percentage beyond 100% will improve the catch probability for larger time

steps, which is already high, and increase the energy consumption.

Figure 6.10. Selected Percentage of Computed R1 under [-60, 60] Mobility Model

Figure 6.11 compares the two adaptive algorithms and shows the impact of the mobil-

ity model parameters on the catch probability as a function of the sampling time step. This

figure shows the effectiveness of the adaptive algorithms to estimate R1. The catch prob-

ability in R1 is very close to unity for both adaptive wakeup algorithms. Having the same

catch probability results in the same energy consumption for both algorithms as shown in

Figure 6.12.

59

Figure 6.11. Catch Probability for both Adaptive Wakeup algorithms with Speed = 5 m/s
under [-60, 60] Mobility Model

Figure 6.12. Energy Consumption for both Adaptive Wakeup algorithms under [-60, 60]
Mobility Model

60

CHAPTER 7

MULTIPLE TARGETS

Previous works related to multiple targets [28] [5] assume that all sensor nodes are

awake all the time and that there is a central processing area, where the disambiguation

of targets is carried out. In our work, however, most sensor nodes are asleep and are only

awakened as necessary. In this case, when targets interleave, this could lead to tracks being

confused with one another. Here, we investigate how our tracking algorithm functions

in the face of multiple targets and consider how to modify it to reduce ambiguation. In

this case, sensor nodes cannot differentiate between individual targets or count how many

targets there are within the range. Based on the sensor data received, we want to have

position estimates close to the actual target positions. Additionally, maintaining an identity

to which target belongs to which is important in the multiple target case. However, this

confusion and mixing among targets can be reduced but cannot be avoided as explained

before. The main factor associated with such loss of target identity is the mixing among

targets that happens when targets become close or cross each other. We would like to study

how our tracking algorithm handles multiple targets and how to achieve accuracy under

different sets of system parameters.

An example of the mixing between two targets is depicted in Figure 7.1. The green

circles are the wakeup circles to catch the target, and the brown and blue lines are the

prediction tracks. The black lines are the actual tracks. It can be seen that increasing the

wakeup range results in confusion. Figure 7.2, however, shows a case where there is no

confusion among target tracks.

61

Figure 7.1. Two Targets: Confusion

Figure 7.2. Two Targets: No Confusion

62

7.1 Impact of Sampling Time Step and Number of Targets on Track

Coverage

In this experiment, we study the impact of the sampling time step and the number

of targets on average track coverage. The track coverage is defined as the percentage of

estimated sensing points that are closer to the actual target track than to other target tracks.

As one would expect, the track coverage has the tendency to drop as the sampling time step

and the number of targets increase: some numerical data are provided in Figure 7.3.

Figure 7.3. Impact of Time Step and Number of Tracks on Track Coverage [-30, 30]
Mobility Model

63

7.2 Filtering Algorithm

A significant cause of error, when there are multiple targets, occurs when multiple tar-

gets are within the same waking circle. Our goal is to reduce this confusion by adopting

a filtering mechanism that casts away reports from sensors that are far away from the pro-

jected target location.

The filter step is shown in Algorithm 3. We filter out all reports received at the leader

node from nodes far away from the predicted point. The algorithm starts by binning the

distances of reporting sensors from the current leader node based on the ratio between this

distance and sensing radius. If the ratio, for example, is less than one, then the sensor is

located within the sensing radius. Figure 7.4 shows an example of filtering algorithm and

no filtering if two targets are captured in the wakeup circle of radius R1 (the big circle).

T1 and T2 (blue stars) stand for the presence of two targets at this moment of time, and L1

represents the leader node (the green dot) supposed to track T1 while the rest of the nodes

are denoted by the black dots. The small circles around T1 and T2 are the sensing circles

while the other small circle centered at L1 denotes the range of acceptable sensor readings

at L1. The red dots constitute the acceptable reporting sensors at L1. It is obvious that in

this example that no filtering results in larger position error than filtering algorithm since

in no filtering the L1 accepts all reports from sensor nodes.

Figure 7.5 shows that filtering is very successful in removing ambiguity when the sens-

ing region is too large (either because R1 was too large to begin with or R1 was too small,

which led to a larger R2 circle being awakened). The position error is rendered largely

insensitive to the sensing radius: it is only affected by the sampling time step.

We consider the impact of the mobility model and the sampling time step as depicted

on Figure 7.6. It is rather obvious that as the target’s track becomes ever more random, our

ability to predict the track goes down and the prediction error increases. And this increases

the confusion among targets which is translated in greater error in position estimate. Sim-

ilarly, the smaller the sampling time-step, the better our prediction accuracy. This is due

64

Input: All data collected at Leader Node at this moment of time
Output: closed data reading to leader node
for All data collected at the Leader Node do

for i = 0; i < List.size; i++ do
distance = the distance between a given coordinate stored in each data
packet and the Leader Node
if distance

SensingRange ≤ (i + 1) then
list[i].add(data); break;

end
end

end
for i = 0; i < List.size; i++ do

if list[i] not empty then
return list[i];

end
end

Algorithm 3: Filtering Algorithm

to the fact that as the time-step decreases, the target has less of an opportunity to drasti-

cally change its position from what is expected. A longer time-step, however, increases the

prediction error and confusion among tracks since the target could closer to the other track

than to its actual track, and hence averaging the detecting sensor positions leads into larger

position error. We can also see how the filtering algorithm improves the position estimation

accuracy.

65

Figure 7.4. Filtering and No Filtering

Figure 7.5. Impact of Time Step on Position Error as Function of R1

66

Figure 7.6. Impact of Mobility Model on Position Error

67

CHAPTER 8

USING SIGNAL STRENGTH

In our original implementation, the target position is estimated by simply averaging

sensor locations of detecting nodes. This requires us only to determine which sensors have

detected the target and not what the amplitude was at the sensor node. Such an approach

has the virtue of simplicity; however, the question arises whether the use of signal strength

information would allow for improved accuracy.

Generally, when all targets present in the sensor fields, they emit some types of signals

(acoustic, vibration, light, etc.) [31]. These signals will be attenuated as moving away from

target source with a decay intensity ζ. Equation 8.1 shows the signal strength model used

for the distance sensing model [18]. Where si is the received signal strength at sensor i,

a is the amplitude of signal strength, ζ is a coefficient that depends on the nature of the

device and weather. The typical value of ζ is 2 [18], but it can range depending on the

aforementioned factors. ri is the Euclidean range distance from sensor i and current target

position.

si = ari
−ζ (8.1)

8.1 Position Estimation

We use linearization and minimum mean square estimate to estimate the position of the

target using the measured distance range described in Equation 8.1 [3]. Ideally, we would

like the error to be 0.

68

fi = ri −
√

(xi − x0)2 + (yi − y0)2 = 0 (8.2)

Rearranging the previous equation, we get:

(x2
0 + y2

0) + x0(−2xi) + y0(−2yi) − r2
i = −x2

i − y2
i (8.3)

Subtract the last equation from the previous one to get rid of quadratic terms:

2x0(xk − xi) + 2y0(yk − yi) = r2
i − r2

k − x2
i − y2

i + x2
k + y2

k (8.4)

Note that this is linear. In general, we have an over-constrained linear system

Ax = b (8.5)

where

b =

r2
1 − r2

k − x2
1 − y2

1 + x2
k + y2

k

r2
2 − r2

k − x2
2 − y2

2 + x2
k + y2

k

:

r2
k−1 − r2

k − x2
k−1 − y2

k−1 + x2
k + y2

k

(8.6)

A =

2(xk − x1) 2(yk − y1)

2(xk − x2) 2(yk − y2)

: :

2(xk − xk−1) 2(yk − yk−1)

(8.7)

x =

 x0

y0

 (8.8)

Now we can use the least squares equation to compute estimation.

x = (AT A)−1AT b (8.9)

69

8.2 Learning ζ and a

In our tracking algorithm, learning the amplitude of signal strength a under unknown

target signature can be deduced by the received signal strength received at the leader node.

The maximum received signal strength value will be considered as a. We learn the decay

factor ζ by calculating the radius of the convex hull area of detecting nodes. Algorithm 4

shows the algorithm in detail. The first part of the algorithm finds the maximum received

signal strength from detecting nodes. Then it finds the convex hull points, and uses these

points to compute the radius of the convex hull, which approximately constitutes the radius

of the sensing circle as depicted in Figure 8.1. Finally, using this radius and maximum

signal strength, we are able to calculate the decay factor, ζ. Figure 8.2 provides some

numerical results showing the rate of learning in term of position accuracy. We get the

initial values of position accuracy using 0/1 model. As the target moves across the sensor

field, the values of a and ζ are updated based on the signal received at the sensor nodes. We

also consider the case where ζ is known; in such a case, there is greater position accuracy.

The figure also shows that the corresponding errors for the 0/1 model are much higher than

those obtained with the distance sensing model: we can see that signal strength sensing

yields notably higher accuracy (in exchange for increased complexity).

Figure 8.3 shows the impact of the mobility model on position error while using dis-

tance sensing model. The target mobility parameters have an effect on the rate of learning

of ζ and a, which eventually affect the position estimate. Initially, the first sample point uses

the 0/1 model since there is no information about ζ , successive points apply the updated

value of ζ for the position measurement. Increasing the randomness of the track tends to

increase the prediction error, where the target becomes far away from the predicted point.

This results in not having the sensing circle entirely within the waking circle. This affects

the convex hull calculation to compute ζ and finding the maximum signal strength value to

be used as the amplitude of the signal strength, a.

70

Input: All data collected at Leader Node at this moment of time
Output: Get computed decay factor ζ and amplitude of signal strength a
//For all data collected at a Leader Node
for i = 0; i <data.size; i++ do

if data[i].signal > maxSignal then
maxSignal = data[i].signal;

end
end
// Get convex hull points, convex hull algorithm is hidden here
points = getCovexHullPoints(data);
// Compute the central point of convex hull points, where points are sensor positions
for i = 0; i < points.size; i++ do

xc = xc + point[i].x; yc = yc + point[i].y; size = size + 1;
end
xc = xc / size; yx = yc / size;
// Compute the radius of convex hull
for i = 0; i < points.size; i++ do

d = d +
√

(point[i].x − xc)2 + (point[i].y − yc)2;
end
d = d / size;
ζ =

log(maxS ignal)
log(d) ;

Algorithm 4: Computing Decay Factor and Signal Strength Amplitude

Figure 8.4 compares the signal strength learning model with 0/1 model. it shows that

0/1 model with high value of ω is better at the beginning of sampling time numbers, but the

learning with small value of ω outperforms the 0/1 model in later sampling point numbers.

Figure 8.5 shows that the energy consumption of both the learning method and 0/1 model,

where it is recommended to use smaller value of ω to save energy and retain high accuracy

at the same time for later sampling point numbers.

71

Figure 8.1. The Convex Hull Points Approximate the Sensing Circle

Figure 8.2. The Impact of Learning ζ and a on Position Error as a Function of Sampling
Point Number (set a =10, and ζ = 2: known by the simulation)

72

Figure 8.3. The Impact of Mobility Model on Position Error While Learning ζ and a a
Function of Sampling Point Number

Figure 8.4. Learning vs. 0/1 Model

73

Figure 8.5. Energy Consumption for both Learning and 0/1 Model

74

8.3 Recalibration of Sensor Drift

Sensor miscalibration leads to an increased error in the target position estimate. This

miscalibration may occur both due to an initial miscalibration at manufacture and to sensors

drifting over time. In this section, we present simple heuristics to mutually recalibrate the

sensors by using correlated information from neighboring sensors.

Generally, the process of device calibration involves forcing a device to match a speci-

fied input/output mapping. This is often made by adjusting the device externally by passing

the device’s output through a calibration function that maps the actual device response to

the corrected response [34].

In this section, we study the case where the sensor drifs from its original value over a

period of operation. We create a drift model where the calibration factor, k varies with time,

t. k is defined as the ratio between measured and computed signal strengths. We assume

that for each sensor, the calibration factor is generated according to the following:

ki(t) = ai + bi × t (8.10)

where ai and bi are constants, which are randomly picked for each sensor i. (That is,

each sensor will have its own ai and bi values; these values will stay fixed for the lifetime

of that sensor). This is one of the simplest drift models one can think of.

When a target is detected by multiple sensors, their signal strength measurements can

be collected and used for sensor recalibration. Each detecting node then calculates the

drift factor ki according to its signal strength reading and the computed signal strength

value based on the distance of this node from the estimated target position. Here, we

study different target position estimation techniques: 1)using the 0/1 model, 2)weighted

averaging, where we give more weight to the sensor that has higher signal strength value

as shown in Equations 8.11 and 8.12, and 3) least square estimate described in the previous

section.

75

xwi = xi ×
Signal Strength at Sensor i

Sum of Signal Strengths for all Detecting Nodes
(8.11)

ywi = yi ×
Signal Strength at Sensor i

Sum of Signal Strengths for all Detecting Nodes
(8.12)

We then use ki as a correction factor. This calibration process is shown in Algorithm 5.

Also, we maintain a list of the last window w of values of ki’s for each sensor. We use the

average value of these as the estimate for the deviation factor, ki.

Input: X,Y : Coordinate Vectors for Detecting Nodes
x, y : Estimated Target Position before Calibration Using either:
1. Average Position Estimate
2. Weighted Average Estimate
3. Least Square Estimate
Output: Recalibrate sensor
for i = 0 to Detecting Node Size do
/** Get the distance from estimated average position and each node */
di =

√
(Xi − x)2 + (Yi − y)2;

/** Get the calibration factor for node i, ki */
ki =

S i

adi
−ζ ;

end
Algorithm 5: Recalibration Algorithm

In the following experiments, we quantify how the sensor drift affects position accuracy,

and how our recalibration algorithm improves this accuracy. Throughout, we assume that

the sensors are initially well-calibrated (i.e. ai = 1) and it is the drift over time that needs

to be corrected. The value of bi in Equation 8.10 is picked at random for each sensor from

a given interval. For obvious reasons, the calibration factor has upper and lower bounds.

The value of ki(t) is then given by

ki(t) =

kmin if ai + bit < kmin (8.13a)

kmax if ai + bit > kmax (8.13b)

ai + bit otherwise (8.13c)

76

Figure 8.6 shows the impact of the drift rate range on the position estimate. We use

these different approaches to making the initial position estimate that drives the estimate

of ki(t): simple averaging of the position of the detecting nodes, weighted averaging based

on signal strengths, and the method of least squares. Since the last two of these depend on

signal strength values, we use the latest available calibration factors to correct them before

use.

Once ki(t) has been estimated, least squares is used to obtain the corrected position

estimate.

Figure 8.6. Position Estimate with Node Density, ∆ = 0.0044, w = 4, [kmin, kmax] = [0.1, 2],
and t = 40

Figure 8.7 shows the impact of the t value on position estimate. Obviously, as t in-

creases, the position estimate degrades due to the effect of drift.

Figure 8.8 shows the impact of the window size on the accuracy. As the window size

increases, we average over a larger number of readings, thereby potentially increasing ac-

curacy by reducing the impact of random effects. However, as window size is increased,

we also use older data as part of the computation, which potentially reduces accuracy.

77

Figure 8.7. Position Estimate with Node Density, ∆ = 0.0044, w = 4

Figure 8.9 shows the impact of node density ∆ on position accuracy for a given drift

function. We can see that the position estimate with high density is improved compared

with lower node density case due to the increased accuracy of estimating the ki value due

to a potentially larger number of nodes available to detect the target.

The impact of the mobility model on error in position estimate is quantified in Fig-

ure 8.10. It is rather obvious that as the target becomes more random, the number of

detecting nodes is reduced due to increase in prediction error, which increases the error of

the ki calculation, which eventually increases the position error.

Figure 8.11 shows in detail how the drift affects position estimate over a given mission

lifetime. At the beginning of the mission, the position estimate starts the same for all given

drift ranges, the estimates diverge from each other as time passes by, and then level off

as the kmin and kmax bounds are reached. Increasing node density improves in general the

estimated value of ki, and thus the position estimate.

78

Figure 8.8. Position Estimate Using No Calibration and Calibration with Node Density,
∆ = 0.0044

Figure 8.9. The Impact of Node Density on Position Estimate Using Calibration with
w = 4

79

Figure 8.10. Position Estimate Using Calibration given a mobility model with w = 4 and
∆ = 0.0044

Figure 8.11. Position Estimate with Calibration over a Mission Lifetime with w = 4

80

CHAPTER 9

DISCUSSION

In this work, we have studied the problem of target tracking by means of a sensor net-

work. Our basic approach is that of the selective awakening of nodes, based on a prediction

of the target track. Our baseline algorithm awakens nodes within a given radius of the pre-

dicted target position and estimates that position by simply averaging the position of the

nodes which detect the target. If the target cannot be detected within a given wakeup circle,

the wakeup circle is successively increased until either the target has been detected or the

search is abandoned.

We present a simple analytical model to evaluate the impact of the number of detecting

sensor nodes on the accuracy of the position estimate. We show that relatively few nodes are

sufficient to allow an accurate estimate; indeed, beyond three detecting nodes, the increased

accuracy per every additional awakened node drops rather dramatically.

We consider several extensions of this basic algorithm. We show that there are condi-

tions under which a non-uniform waking of nodes provides superior target location. In this

approach, nodes close to the predicted target position are awakened with a greater proba-

bility; if -as is generally the case - the prediction is reasonably accurate, this allows for a

greater number of nodes to detect the target. If the prediction is not correct, a sparser node

field is still available to carry out target detection farther away from the predicted target

position.

We present an energy-adaptive node awakening scheme, which seeks to balance the

energy level at the various nodes. In this approach, nodes with lower energy levels are less

81

likely to be awakened. We show that this approach is the best in term of track coverage and

energy savings compared with non-adaptive scheme.

We introduce a filtering algorithm for two purposes: to remove the effects of false

reporting and to reduce the problem of confounding multiple targets. The fundamental

idea here is to ignore reports from sensor nodes that seem to be far away from the target

position. We show that the filtering algorithm always improves target estimate significantly

compared with no filtering case. Comparative little has been published on multiple target

detection, and results show that our filtering approach works well in improving tracking

accuracy and reducing the probability of confounding targets.

We consider energy harvesting and its impact on the performance of target tracking.

In energy harvesting, the network can obtain some, or most, of its operating energy from

the environment (e.g., from the sun or from vibration). Energy harvesting allows us to be

more aggressive in our expenditure of energy, since the system can rely on replenishing its

energy resources. We introduce and use a simple energy harvesting model in the context of

target tracking.

Most of our work involves sensors using a 0/1 detection model. In other words, a sensor

reports that it has detected the target; it does not report the signal strength. Obviously,

such information has the potential for improving our target position estimates. We provide

results in this work to quantify the extent of such improvement.

Adaptive approaches, which allow the system to react to perceived parameter values

in the operating environment, have obvious potential for improving system performance.

We study the advantages of learning the intruders’ mobility model parameters and then

adapting the tracking parameters appropriately. We are considering problems associated

with sensor miscalibration or drift when signal strength information is used for target esti-

mation. To counter the inaccuracies that then result, we are developing approaches which

seek to correlate inputs from neighboring sensors and to carry out mutual recalibration.

82

Finally, we are working on extending our analytical model to handle non-uniform sen-

sor distributions.

83

BIBLIOGRAPHY

[1] Us naval observatory (usno) gps operations. In http://tycho.usno.navy.mil/gps.html
(April 2001).

[2] Concord consortium projects. In http://source.concord.org/softwaredocs/swing/index.html
(2005).

[3] Bachrach, Jonathan, and Taylor, Christopher. Localization in sensor networks: Hand-
book of sensor networks. In Wiley Series on Parallel and Distributed Computing
(2005).

[4] Bai, Fan, and Helmy, Ahmed. A survey of mobility models in wireless adhoc net-
works. 129.

[5] Bar-Shalom, Y., and Fortmann, T.E. Tracking and data association. In Academic
Press (1988).

[6] Chen, Wei-Peng, Hou, Jennifer C., and Sha, Lui. Dynamic clustering for acoustic
target tracking in wireless sensor networks. IEEE Transactions on Mobile Computing
3, 3 (2004), 258–271.

[7] Christopher M. Vigorito, Deepak Ganesan, and Barto, Andrew G. Adaptive control
of duty cycling in energy-harvesting wireless sensor networks. In 4th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (June 2007), pp. 21–30.

[8] Eloy, JC. Status of the mems industry. In Yole Development (May 2007), p. 306.

[9] F. Ye, G. Zhong, J. Cheng S. Lu, and Zhang, L. Peas: A robust energy conserving
protocol for long-lived sensor networks. In International Conference on Distributed
Computing Systems (2003), vol. 23, IEEE Computer Society, pp. 28–37.

[10] Gui, Chao, and Mohapatra, Prasant. Power conservation and quality of surveillance
in target tracking sensor networks. In Proceedings of the 10th annual international
conference on Mobile computing and networking (MOBICOM) (2004), pp. 129–143.

[11] Guiasu, Silviu. Information theory with applications. In McGraw-Hill (1977), New
York.

[12] Guo, C., Zhong, L.C., and Rabaey, J.M. Low power distributed mac for ad hoc sensor
radio networks. In Global Telecommunications Conference (2001), pp. 2944 – 2948
vol.5.

84

[13] He, Tian, Vicaire, Pascal A., Yan, Ting, Luo, Liqian, Gu, Lin, Zhou, Gang, Stoleru,
Radu, Cao, Qing, Stankovic, John A., and Abdelzaher, Tarek. Achieving real-time
target tracking using wireless sensor networks.

[14] Heinzelman, Wendi Rabiner, Chandrakasan, Anantha, and Balakrishnan, Hari.
Energy-efficient communication protocol for wireless microsensor networks. In Pro-
ceedings of the Hawaii International Conference on System Sciences (HICSS) (2000).

[15] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci. Wireless sensor networks:
A survey. In Computer Networks (March 2002), vol. 38.

[16] Javed Aslam, Zack Butler, Florin Constantin Valentino Crespi George Cybenko, and
Rus, Daniela. Tracking a moving object with a binary sensor network. In Proceed-
ings of the First International Conference on Embedded Networked Sensor Systems
(November 2003), ACM Press, pp. 150–161.

[17] Juan Liu, Feng Zhao, and Petrovic, Dragan. Information-directed routing in ad hoc
sensor networks. In the 2nd ACM international conference on Wireless sensor net-
works and applications (2003), pp. 88 – 97.

[18] Juan Liu, James Reich, and Zhao, Feng. Collaborative in-network processing for
target tracking. In EURASIP JASP, , Journal on Applied Signal Processing (JASP)
(2003), pp. 378–391.

[19] Kansal, Aman, Hsu, Jason, Zahedi, Sadaf, and Srivastava, Mani B. Power manage-
ment in energy harvesting sensor networks. ACM Trans. Embedded Comput. Syst. 6,
4 (2007).

[20] Karp, B., and Kung, H. Greedy perimeter stateless routing. In Proceedings of the Sixth
Annual ACM/IEEE International Conference on Mobile Computing and Networking
(Mobicom 2000) (2000).

[21] Klein, L. Sensor and data fusion concepts and applications. In In Society of Photo-
Optical Instrumentation Engineers (SPIE) Optical Engr Press (1993).

[22] M. de Berg, M. van Kreveld, Mark Overmars O. Schwarzkopf. Computational geom-
etry, algorithms and applications. In Springer (2000).

[23] Mechitov, Kirill, Sundresh, Sameer, Kwon, YoungMin, and Agha, Gul. Cooperative
tracking with binary-detection sensor networks. In SenSys (2003), pp. 332–333.

[24] Meyn, S.P., and Tweedie, R.L. Markov chains and stochastic stability. In Springer-
Verlag, London. Available at probability.ca/MT (1993).

[25] N. Bulusu, J. Heidemann, and Estrin, D. Gps-less low cost outdoor location for very
small devices. In IEEE Personal Communication, Special Issue on ”Smart Space and
Environments” (October 2000).

85

[26] Pottie, G. J. Wireless sensor networks. In In IEEE Information. Theory Workshop
Proceedings (ITW) (June 1998).

[27] Preparata, Franco P., and Hong, S.J. Convex hulls of finite sets of points in two and
three dimensions. In Communication ACM (1977), vol. 20, ACM, p. 87–93.

[28] Reid, D.B. An algorithm for tracking multiple targets. In IEEE Transaction on Auto-
matic Control (December 1979), pp. 843–854.

[29] S. Tilak, N. Abu-Ghazaleh, and Heinzelman, W. A taxonomy ofwirelessmicro-
sensor network models. In ACM SIGMobile Computing and Communications Review
(MC2R) (April 2002), vol. 6.

[30] Santos, R. A., Edwards, A., Alvarez, O., Gonzalez, A, and Verduzco, A. A geo-
graphic routing algorithm for wireless sensor networks. In Electronics, Robotics and
Automotive Mechanics Conference (CERMA’06) (2006), pp. 64–69.

[31] Seapahn Meguerdichian, Farinaz Koushanfar, Gang Qu, and Potkonjak, Miodrag. Ex-
posure in wireless ad-hoc sensor networks. In International Conference on Mobile
Computing and Networking (2001), pp. 139 – 150.

[32] Song, L. Hatzinakos, D. A cross-layer architecture of wireless sensor networks for
target tracking. In IEEE ACM TRANSACTIONS ON NETWORKING (2007), vol. 15,
THE IEEE COMMUNICATIONS SOCIETY, pp. 145–158.

[33] Stankovic, John A., Lu, Chenyang, Sha, Lui, Abdelzaher, Tarek, and Hou, Jennifer.
Real-time communication and coordination in embedded sensor networks. In Pro-
ceedings of the IEEE (2003), pp. 1002–1022.

[34] Stum, Karl. Sensor accuracy and calibration theory and practical application. In
National Conference on Building Commissioning (2006).

[35] Subramanian, S. Shakkottai, S. Gupta P. On optimal geographic routing in wireless
networks with holes and non-uniform traffic. In 26th IEEE International Conference
on Computer Communications. IEEE (INFOCOM) (May 2007), pp. 1019–1027.

[36] Sundeep Pattem, Sameera Poduri, and Krishnamachari, Bhaskar. Energy-quality
tradeoffs for target tracking in wireless sensor networks. In Information Processing
in Sensor Networks (ISPN) (2003), p. 553.

[37] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Stein, Clifford. In
Introduction to Algorithms (2001), vol. Second Edition, MIT Press and McGraw-Hill,
p. 947–957.

[38] V.S. Tseng, K.W. Lin, and Hsieh, Ming-Hua. Energy efficient object tracking in
sensor networks by mining temporal moving patterns. In Ubiquitous and Trust-
worthy Computing (June 2008), IEEE International Conference on Sensor Networks,
pp. 170–176.

86

[39] Wagner, Jean-Paul, and Cristescu, Razvan. Power control for target tracking in sensor
networks. In Conference on Information Sciences ans Systems (2005).

[40] Xu, Ya, Heidemann, John S., and Estrin, Deborah. Geography-informed energy con-
servation for ad hoc routing. In Proceedings of the ACM International Conference on
Mobile Computing and Networking (MOBICOM) (2001), pp. 70–84.

[41] Xu, Yingqi, Winter, Julian, and Lee, Wang-Chien. Prediction-based strategies for en-
ergy saving in object tracking sensor networks. In Mobile Data Management (2004),
pp. 346–357.

[42] Yu, Y., Govindan, R., and Estrin, D. Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks, 2001.

[43] Zhang, W., and Cao, G. Dctc: Dynamic convoy tree-based collaboration for target
tracking in sensor networks, 2004.

[44] Zhao, F. Liu, J. Liu J. Guibas L. Reich J. Collaborative signal and information pro-
cessing: An information-directed approach. In IEEE INSTITUTE OF ELECTRICAL
AND ELECTRONICS (2003), vol. 91, pp. 1199–1209.

[45] Zou, Yi, and Chakrabarty, Krishnendu. Energy-aware target localization in wireless
sensor networks. In PerCom (2003), pp. 60–.

87

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	9-2009

	Management of Target-Tracking Sensor Networks
	Khaled Hadi
	Recommended Citation

	tmp.1259704652.pdf.lMEtg

