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Executive Summary 

This research studies contaminant spills in the Wachusett Reservoir by two dimensional 

modeling utilizing CE-QUAL W2.  The Wachusett Reservoir, located in central Massachusetts, 

has a capacity of 65 billion gallons and is the primary water source for the metropolitan Boston 

area.  There are numerous inflows and outflows to and from the Wachusett Reservoir, with the 

Quabbin Aqueduct supplying approximately half of the total water entering the Wachusett.  The 

Quabbin Aqueduct connects the Quabbin Reservoir (412 billion gallons) to the Wachusett 

Reservoir  and supplies water to maintain desired water surface elevations in the Wachusett 

during time of high demand and low flows, typically during the summer months.   

The CE-QUAL W2 V3.6 model was utilized to simulate spill contaminants for years 2003 to 

2008.  Sojkowski (2011) updated Matthews (2007) 2003 and 2004 models from V3.5 to V3.6, 

and also created models for calendar years 2005 and 2006.  Models were successfully created for 

calendar year 2007 and 2008 and were calibrated to temperature and specific conductance data 

for the North Basin of the Wachusett Reservoir.  Calibration was obtained by changing a variety 

of CE-QUAL W2 parameters to minimize the error between simulated results in Segment 42 and 

the measured North Basin data.   

The modeled spill scenarios included density of the contaminant, seasonal trends, Quabbin 

transfer, daily variation, high inflow events, and wind influence.  It was determined that the 

density of the contaminant  had an effect in the Spring and Summer seasons, with no effect in the 

Fall season with respect to arrival time and behavior at the Cosgrove Intake.  A spill that 

transports on the top of the water column (low density/high temperature spill) typically arrives 

earlier in the Spring and Summer seasons due to exposure to meteorological conditions (wind), 

while a contaminant spill that travels in the middle and  bottom of the water column (medium 



 
 

and high density/medium and low temperature spills) typically have arrival times later than a 

warm spill with similar behavior due to the hydrological conditions within the reservoir. 

Seasonal patterns are established with a Spring arrival of two to five days, a Summer arrival of 

five to fourteen days, and a Fall arrival of four to ten days.  The seasonal patterns were assessed 

by selecting one spill day for each season and year to represent the entire season for the selected 

year.  To assess variability within a season, daily variations were evaluated in order to identify 

differences in behavior if spills occurred within a twenty day time period; it was found that for 

some years there were similar arrival times and behaviors, while some seasons of some years 

demonstrated completely variable arrival times and behavior due to the meteorological and 

hydrological conditions during the time period.   It was found that the arrival time window for 

seasons was lengthened by one to two days, however, shorter arrival times did not result.  

The Quabbin transfer was found to have a significant impact on the behavior of the contaminant 

spill during the summer months, where the variability in spill concentration at the Cosgrove 

Intake was completely dampened when the Quabbin Aqueduct was shut off twelve hours after 

the spill occurred; however, little to no impact on the arrival time was found.   

High inflow events correlate to storm events and were investigated because of the increased risk 

of a tanker truck accident during a storm.  The results indicate that the high inflow events dictate 

when the spill will arrive and how it will behave with little dependence on the spill date in a five 

day period around the date of the storm.  Wind influence was investigated and found to have a 

significant role in the arrival time of surficial spills; given the right meteorological conditions,  

wind can produce arrival times as early as two days after the spill occurs. 
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1 INTRODUCTION 
 

This report presents the results of two dimensional modeling of the Wachusett Reservoir, done at 

the University of Massachusetts Amherst (UMass), using the software CE-QUAL W2 V3.6 (CE-

QUAL) during the period of January 2010 to May 2011.  This work is the product of a 

collaborative effort with the Massachusetts Department of Conservation and Recreation (DCR) 

and the Massachusetts Water and Resources Authority (MWRA). The focus of the research is to 

better understand the hydrodynamics of the Wachusett Reservoir and the behavior of a potential 

contaminant spill at the Route 140 bridge under a variety of conditions.  

1.1 Scope and Objectives 
 

The purpose of this research is to model the hydrodynamics and water quality of the Wachusett 

Reservoir using CE-QUAL W2 to simulate a contaminant spill.  For this project we have focused 

on six years, 2003 to 2008, of modeled spill scenarios in the Thomas Basin where two high 

traffic volume highway bridges cross the reservoir.  Certain parameters are analyzed to examine 

impacts on the resulting Cosgrove outflow contaminant concentration.  These include seasonal 

influence, spill temperature variation, Quabbin transfer influence, high inflow events and daily 

variation.  The objectives include development of two dimensional models for calendar years, 

2007 and 2008, and simulations of spill scenarios for calendar years 2003 to 2008. 

1.2 Wachusett Reservoir System 
 

The Wachusett Reservoir is critical to the water supply system for the metropolitan Boston area. 

Construction of the Wachusett Dam finished in 1908 and was able to provide water for 29 
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municipalities, becoming the largest public water supply reservoir in the world at the time 

(MWRA, 2006).  The Reservoir is located in central Massachusetts, managed by DCR and 

MWRA, and supplies water to the Boston Metropolitan area (Figure 1.1).  Wachusett Reservoir 

has a capacity of approximately 65 billion gallons (0.25 km
3
) with a length of 8.4 miles (13.5 

km), a surface area of 6.3 square miles (16.3 km
2
), and a maximum depth of 120 feet (36.6 

meters).    The Wachusett Reservoir can be divided into three separate basins, and has inflow 

from nine tributaries and the Quabbin Aqueduct.  Water travels from the northwestern basin 

(Thomas Basin), through the South Basin, to the North Basin, where it is typically exits through 

the Cosgrove Intake or the Nashua River.  All inflow and outflow locations are shown in Figure 

1.2. 

 

Figure 1.1: Wachusett Reservoir (Google Maps) 
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Figure 1.2: Location of Basins, inflows, and outflows 

 

One of the largest sources for inflow is water transferred from the Quabbin reservoir, accounting 

for approximately 34% to 59% of total inflows for calendar years 2003 to 2008.  The Quabbin 

Reservoir completed construction in 1946 becoming the largest man-made reservoir in the world 

dedicated to water supply, with a capacity of 412 billion gallons (MWRA, 2006).  The Quabbin 

Aqueduct was constructed in order to connect the Quabbin Reservoir to the Wachusett Reservoir 

through a rock tunnel.  With the two reservoirs connected, the Wachusett Reservoir is able to 

receive water from the Quabbin Reservoir; transfers are common in times of lower precipitation 

and high demand for the Boston area.   The MWRA water system supplies 50 communities, 44 

of which are in the Boston and MetroWest region (MWRA, 2009), as shown in Figure 1.3.  

Drinking water exits the Wachusett Reservoir through the Cosgrove Intake, where it is sent to the 

Carroll Water Treatment Plant for treatment and distribution.   It should be noted that the quality 

of water from the Wachusett and Quabbin Reservoirs is near drinking water standards without 
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treatment, in large part due to the fact that 85% of the total watershed area is protected naturally 

by forests and wetlands, thanks to the conservation efforts of DCR and MWRA. As a result, 

MWRA has a waiver of filtration so treatment consists of disinfection and corrosion control. 

 

Figure 1.3: MWRA water supply system 

1.2.1 Inflows and Outflows 
 

The purpose of this section is to describe the inflows and outflows for the Wachusett Reservoir.   

 

Table 1.1  shows the relative distribution among the inflows and outflows for calendar years 

2003 to 2008.  Inflows into the Wachusett Reservoir consist of nine tributaries, the Quabbin 

Aqueduct, direct precipitation, and direct runoff into the reservoir.  However, the majority of the 

tributary inflow is from two tributaries, Stillwater River and Quinapoxet River.  Overall, the 

most significant inflows are the Quabbin Aqueduct, precipitation, direct runoff, Stillwater River, 

and Quinapoxet River.  These sources make up 92% to 96% of the total inflows for 2003 to 

2008.   
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Table 1.1: Percentage Distribution of Total Inflow and Outflows (By Volume)  

 

 

Figure 1.4 shows the major inflows versus date for calendar year 2008, which is a typical 

representation for all years as can be seen in Appendix A.  A second y-axis is used in Figure 1.4 

to show the reservoir water surface elevation, which indicates how the reservoir responds to 

inflows and outflows.  It can be seen that when a high inflow event happens, usually because of 

rain, the elevation of the reservoir increases as well. 

2003 2004 2005 2006 2007 2008

Inflows: Quabbin Aqeduct 43.5 59.1 34.5 37.5 52.8 38.1

Direct Precipitation 5.23 4.74 6.04 4.91 4.62 6.10

Direct Runoff 9.20 5.29 11.4 9.95 8.09 11.1

Stillwater River 14.0 8.3 17.7 15.8 12.4 17.0

Quinapoxet River 21.4 18.7 22.1 24.7 16.3 19.8

Waushacum Brook 2.86 1.65 3.55 3.09 2.52 3.44

Malden Brook 0.57 0.33 0.71 0.62 0.50 0.69

Boylston Brook 0.19 0.11 0.24 0.21 0.17 0.23

Gates Brook 1.42 0.82 1.76 1.53 1.25 1.70

Muddy Brook 0.31 0.18 0.39 0.34 0.27 0.37

Malagasco Brook 0.40 0.23 0.49 0.43 0.35 0.48

French Brook 0.90 0.52 1.11 0.97 0.79 1.08

Outflows: Cosgrove Intake 66.0 60.2 84.0 76.7 72.3 69.2

Nashua River Release 14.1 15.3 7.1 12.7 9.7 15.2

Town Withdrawals 0.74 0.71 0.65 0.58 0.53 0.61

Nashua Spillway * 1.83 2.99 5.53 5.78 0.80

Wachusett Aqueduct 13.8 16.6 0.00 0.00 7.37 10.2

Evaporation 3.71 3.75 4.01 4.52 4.32 3.96

Other 1.72 1.64 1.31 0.00 0.00 0.00
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Figure 1.4: Water surface elevation and major inflows into Wachusett Reservoir 2008 

 

Outflows from the Wachusett Reservoir consist of the Cosgrove Intake, the Nashua River 

release, withdrawals from surrounding towns, the Nashua Spillway, the Wachusett Aqueduct, 

and evaporation.  The Cosgrove intake is the main outflow from the reservoir, accounting for 

60% to as much as 80% of the total outflows.  Water withdrawn via the Cosgrove flows to the 

Carroll WTP for use in metropolitan Boston.  The Wachusett Reservoir also supplies water for 

the headwaters of the Nashua River which begins on the downstream side of the Wachusett Dam.  

The Nashua Spillway is used to maintain the elevation of the Wachusett reservoir; if the 

elevation becomes too high, water flows over the spillway and discharges into the Nashua River.  

The most significant outflows consist of the Cosgrove Intake, the Nashua River release, and the 
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Nashua Spillway, which account for 77% to as much as 95% of the total outflows.  Figure 1.5 

shows the major outflows from the Wachusett Reservoir, with daily flows on the y-axis over the 

entire year by date on the x-axis.  A secondary y-axis is used to show the daily water surface 

elevation of the reservoir.  A full account of all outflow graphs for all years are presented in 

Appendix A. 

 

Figure 1.5: Water surface elevations and major outflows from the Wachusett Reservoir 2008 

 

1.2.2 Data Collection 
 

Hydrodynamic and water quality data are required in order to develop the hydrodynamic and 

water quality models.  Flow through the Quabbin Aqueduct is measured by the MWRA because 
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they control the flow to meet the demand.  Flows in the two major tributaries (Stillwater and 

Quinapoxet Rivers) are measured by the United Stated Geological Survey (USGS) through gages 

located on the rivers.  The gage readings are recorded every fifteen minutes, supplying a good 

temporal resolution of the flow data.  The other tributary flows are calculated, as described 

further in the CE-QUAL W2 Model Development section.  Precipitation is measured at a 

weather station located at the Worcester Airport.  Note that there is a weather station located on 

the Wachusett Reservoir, however it has been found that it is not consistently functional and has 

not always captured precipitation for the entire year.  Reservoir outflows are measured or 

estimated by MWRA, who supply UMass with the data. 

Water quality measurements are taken within the reservoir periodically throughout the year by 

the DCR team going out on a boat to collect water samples in the North Basin and at other 

locations.  Measurements are taken more often, about once per week, from May to August due to 

warmer weather and the desire for frequent assessment of algal activity.  Other measurements are 

taken in the spring and fall months, but less frequently, about every 2 weeks, while no 

measurements are taken in the winter months when there is ice cover.  The water quality 

parameters that are measured include temperature, specific conductance, dissolved oxygen, and 

pH.  These measurements are taken at one meter intervals with depth, providing a profile of 

water quality.  Profiles during the year show transitions between destratified and stratified 

conditions with respect to temperature. 

Tributary water quality data area also collected by the DCR team.  Measurements are taken about 

once per week and include measurements of Escherichia coli, fecal coliform, specific 

conductance, temperature, and turbidity.  
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2 BACKGROUND 
 

2.1 Modeling 
 

Computer modeling is used throughout all disciplines involving science and engineering in order 

to help understand a variety of problems.  For  this report, hydrodynamic and water quality 

modeling are of interest.  Hydrodynamic computer models use numerical methods to simulate 

water flow and temperature using equations from physics and thermodynamics.  Models may be 

used to assess how many people may be able to be served by a given body of water, simulate 

how a river or reservoir may respond to a one hundred year storm, identify the transport of a 

water molecule to determine hydraulic residence time, and many other purposes.    Water quality 

models simulate concentrations of constituents such as contaminants, nutrients, and microbes 

within a body of water, based on equations from biology, water chemistry and physics.  Models 

can be developed for water quality purposes to predict contaminant degradation, identify the 

source of contamination, help identify an effective procedure to clean up a contaminant using 

chemical methods, and many other scenarios.  As helpful as models can be, it is important that 

the person or persons developing such a model have experience within the field that they are 

trying to model and have knowledge of all the model parameters in order to appropriately 

understand and interpret model results.  If model parameters are not estimated properly, model 

results may not be applicable. 

2.2 CE-QUAL W2 
 

CE-QUAL W2 is a two-dimensional, laterally averaged, hydrodynamic and water quality model 

using finite difference approximations.  This model is most applicable for long narrow water 
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bodies because the model is laterally averaged; however, it has been applied to many different 

applications for rivers, lakes, reservoirs, and estuaries. 

CE-QUAL W2 Version 1.0 was initially developed in 1975 by Edinger and Buchack, however, 

the name of the model at the time was LARM (Laterally Averaged Reservoir Model) (Coles and 

Wells, 2008). With the help of the Water Quality Modeling Group at the US Army Corps of 

Engineers Waterways Experiment Station, new water quality algorithms were applied to LARM 

which resulted in CE-QUAL W2 Version 1.0.  Additional versions were created in order to 

improve calculation accuracy and decrease computation time relative to the prior version.  The 

current model available is CE-QUAL W2 Version 3.6.   

CE-QUAL W2 was chosen for this project due to the long narrow geometry of the Wachusett 

Reservoir, and because of the short model run time.  The latest model is used because of greater 

accuracy, shorter computational times, and the fact that Version 3.5 files (model version used in 

most recent UMass work) are compatible with Version 3.6.  For a full account of model updates, 

see the CE-QUAL W2 user manual by Cole et. al. (2008) available at www.cee.pdx.edu/w2/. 

2.3 Literature Review 
 

The purpose of this section is to present past work involving CE-QUAL W2 in order to present 

the potential range of applications of the two dimensional model.  The UMass/DCR project uses 

CE-QUAL W2 to model the hydrodynamics and water quality of the Wachusett Reservoir in 

order to determine worst case scenarios of a spill using a conservative tracer, however, in many 

cases, this model is applied to simulate water quality issues to help identify water quality 

management strategies. 
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Water quality problems are found throughout the world in lakes, reservoirs, rivers, and the ocean.  

The Neuse River Estuary (Neuse) in North Carolina has been plagued with high chlorophyll-a 

and low dissolved oxygen concentrations for almost 30 years (Bowen and Hieronymus, 2003).  

The Neuse is the second largest watershed in North Carolina, approximately 16,000 km
2
 in area.  

Bowen and Hieronymus were charged with developing a model in order to evaluate a total 

maximum daily load (TMDL) for the watershed, which will be used to determine actions 

required to eliminate the water quality problems.  Many models were considered, both two and 

three dimensional, but in the end CE-QUAL W2 Version 2.0 was selected mainly because of the 

relative simplicity and short run times.  Bowen and Hieronymus (2003) modified the code to 

calculate parameters that CE-QUAL W2 did not include, such as: allowing the simulations of 

three separate algal groups; adding a predictive model of light attenuation; and modifying a 

predictive sediment model to include two additional state variables and a sediment denitrification 

feature.  The river was simulated from June 1, 1997 to December 31, 2000, using June 1997 to 

December 1999 for calibration of parameters, while January 2000 to December 2000 was used 

for a model verification exercise.  The results of the TMDL analysis found that a 5% reduction in 

nutrient loading would eliminate water quality impairment for chlorophyll-a by lowering water 

quality exceedances below 10%; however, even a 30% reduction in nutrient loading would not 

eliminate the other water quality exceedances, with exceedances of approximately 5% (Bowen 

and Hieronymus, 2003).  In order to apply this method for other models, the model residual, 

defined as the logarithmic difference of the predicted and observed chlorophyll a concentrations, 

is required to be unbiased and normally distributed, however, it was found that the model 

residuals were neither unbiased nor normally distributed. 
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A model was developed for the Patuxent estuary (Patuxent) in Maryland in order to address 

impacts of current and projected land use changes on water quality (Lung and Bai, 2003).  There 

were two previous modeling studies conducted for the Patuxnet; Hydroscience (1981), and a 

model developed by Lung (1990, 1992) (Lung and Bai, 2003).  Both models, however, could 

only calculate water quality without any hydrodynamic modeling, and the previous models had 

to be linked with a separate hydrodynamic model.  With improved hardware and software, CE-

QUAL was later selected for the study because it could simulate both hydrodynamics and water 

quality simultaneously.  The model simulation ran from August 1, 1997 to July 31, 1998.  The 

model was able to estimate hydrodynamic and water quality properties within satisfaction.  There 

were two scenarios that were used in the calibrated model from scenarios based on a paper 

written by Weller et al. (2003): double developed and point source, and halve crop, developed, 

and point source (Lung and Bai, 2003).  The two scenarios deal with possible changes in water 

and material discharges for the entire Patuxent watershed under alternate watershed scenarios, 

where their names describe the changes in alternate watershed scenarios.  The double developed 

and point source scenario resulted in a total nitrogen increase of 135%, a total phosphorus 

increase of 124%, and a sediment oxygen demand increase of 20%.  The halve crop, developed, 

and point source scenario resulted in a total nitrogen decrease of 52%, a total phosphorus 

decrease of 55%, and a sediment oxygen demand decrease of 25% (Lung and Bai, 2003).  This 

study was used as a baseline to identify how the Patuxent would respond to certain scenarios 

under 1997-1998 conditions. 

The Feitsui Reservoir (Feitsui) has been declining in water quality in the past decade or so based 

on the trophic state index (TSI) proposed by Carlson (1977) (Kuo et al., 2003).  A CE-QUAL 

W2 model was developed by Kuo et al. (2003) to determine water quality management strategies 
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on the Feitsui.  The model was run from the beginning of calendar year 1996 to the end of 

calendar year 1997, where 1996 was used for model calibration and 1997 was used for model 

validation.  The model was able to predict water temperature and water quality parameters within 

the range of measured data, which were considered satisfactory results.  The model verified 

previous claims of phosphorous being the limiting nutrients in the Feitsui, so water quality 

management strategies were focused on the reduction of phosphorous within Peishih Creek, 

which was found to contain the majority of the nutrient reaching the Feitshu.  The model found 

that if the phosphorous load was reduced by 50% then the lake would switch trophic state from 

eutrophic/mesotrophic to oligotrophic (Kuo et al., 2003).  The results of this study were useful in 

identifying limiting nutrients, the major sources of nutrient loading, while also identifying 

criteria for nutrient reduction strategies.   

The Mingder Reservoir (Mingder) located in Taiwan has water quality that varies between 

mesotrophic and eutrophic, as determined using the TSI method (Liu, 2008).  A water quality 

model using CE-QUAL W2 Version 3.0 was developed by Wen-Cheng Liu et. al. (2008). Two 

calendar years were simulated, January 1, 2003 to December 31 ,2004.  A similar finding was 

found for the Mingder as for the Feitsui, where phosphorous was identified as the limiting 

nutrient with the majority of the nutrient loading in the main inflow.  Using a similar method as 

Kuo et al. (2003), it was determined that reducing the phosphorus load by 20% would improve 

the Mingder trophic state to mesotrophic and a 80% total phosphorus reduction would improve 

the trophic state to oligotrophic (Lui and Chen, 2008).  From these results, watershed water 

quality management strategies were established to be implemented in the future.   

 



14 
 

2.4 Past UMass Work 
 

Camp, Dresser & Mckee, Inc., along with FTN Associates, LTD, originally modeled the 

Wachusett Reservoir using CE-QUAL W2, calibrated for calendar years 1987, 1990, and 1992 

(CDM, 1995).  The model was later obtained by UMass, where Alejandro Joaquin (2001) 

developed a water budget on a daily time scale and constructed new models for calendar years 

1998 and 1999 to model the effects of the Quabbin transfer on the Wachusett Reservoir 

composition (Tobiason, 2002).  Daniel Butrick (2005) developed models for calendar years 2001 

to 2002, where he updated the CE-QUAL W2 source code to include light induced decay of 

UV254 absorbance as part of the modeling of natural organic matter.  Thomas Matthews (2007) 

developed models for calendar years 2003 and 2004 to model the fate and transport of fecal 

coliform due to a sewage pump station overflow.  Matthews also modified the CE-QUAL W2 

v.3.5 source code to include light induced coliform decay.   Christina Stauber (2009) used the 

model years 2003 and 2004, developed by Matthews, to examine the behavior of a spill of 

ammonium nitrate and fuel oil number 1 under different wind conditions, temperatures of the 

spill, and state of the Quabbin transfer.  Stauber modified the CE-QUAL W2 v.3.5 source code 

to include volatilization to better simulate benzene.  Bryan Sojkowski (2011) developed models 

for calendar years 2005 and 2006 using new CE-QUAL W2 v.3.6, while also converting models 

for 2003 and 2004 from version 3.5 to version 3.6.  Sojkowski used modeled years 2003 to 2006 

to simulate a conservative tracer spill and analyze the arrival time and behavior of the spill at the 

Cosgrove Intake, while identifying similarities between arrival times for all years for the Spring, 

Summer, and Fall seasons.  This report expands on the spill behavior modeling efforts.  
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3 CE-QUAL W2 MODEL DEVELOPMENT 
 

Model results are very important, however, it is equally as important to understand how models 

are developed.  The purpose of this section is to describe the development of CE-QUAL W2 

models for calendar years 2007 and 2008.  A large portion of project work consists of developing 

and calibrating the models, so it is necessary to document the process. 

3.1 CE-QUAL W2 Grid and Segments 
 

Camp, Dresser, and McKee (CDM) developed the original modeling grid for the Wachusett 

Reservoir in 1994 (CDM, 1995), which it was later updated by Joaquin (Joaquin, 2001).  The 

original grid consisted of 26 layers and 62 segments, while the updated grid consists of 47 layers 

and 64 segments.  The Joaquin grid is shown in Figure 3.1 and Figure 3.2.  Figure 3.1 presents a 

top view of the segments, where the main body of the reservoir consists of segments 2 through 

46.  The South Bay is represented by segments 49 through 51.  Segments 54 through 62 

represent the wide portion of the reservoir which would not be accurately represented by 

increasing the width of the main body segments.   

The reservoir grid captures key features of the Wachusett Reservoir.  Segment 15 is much 

narrower than the adjacent upstream and downstream segments to simulate the constriction of 

the reservoir due to the Route 12 Bridge.  Segment 39 is not as wide as its surrounding segments 

to represent the Narrows, which separates the South Basin from the North Basin.  Another key 

feature is Segments 45 and 46, where Segment 45 represents the cofferdam which was built in 

order to keep water out during the construction of the Cosgrove Intake.  When construction was 

completed, only the top was cut off to allow water to flow into the Cosgrove Intake, leaving most 

of the cofferdam and a relatively shallow water depth.  Segment 46 represents the area adjacent 
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to the Cosgrove Intake, where CE-QUAL withdraws water that flows to the Carroll Water 

Treatment Plant. 

 

Figure 3.1: CE-QUAL W2 top view of segments. 

 

Figure 3.2 presents a profile view of the model grid, showing the layers and their thickness.  The 

top 31 layers are 0.5 meters thick, layers 32 and 33 are 0.75 meters thick, and layers 34 through 

47 are 1.5 meters thick.  The layers are labeled from top to bottom, where layer 1 is the top of the 

reservoir and layer 47 is the bottom.  Finer grid layers at the top of the reservoir were created to 

better simulate the thermocline in higher resolution. 
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Figure 3.2: CE-QUAL W2 profile view of layers 

 

3.2 Data Collection 
 

 The collection of appropriate temporal resolution hydrodynamic and water quality measured 

data is essential to produce an accurate, calibrated, model.  Data needed for this project include 

reservoir inflows and outflows, meteorological conditions, and water quality, including specific 

conductance.  The raw data are converted into files that can be read by the CE-QUAL W2 

algorithm. 

3.2.1 Meteorological Data 
 

Meteorological data were acquired from the National Climatic Data Center (NCDC) website, 

where weather station data from across the world are gathered and available for public use.  

Worcester Airport weather station is the closest (about ten miles southwest) available weather 

station to the Wachusett Reservoir, and is assumed to have similar weather conditions as occur at 

Wachusett Reservoir.  The required meteorological data include air temperature, dew point 



18 
 

temperature, wind speed, wind direction, and cloud cover; measurements are recorded every 

fifteen minutes. 

The only calculation needed to process the NCDC data is for cloud cover.  NCDC uses 

descriptive words for cloud cover: clear, scattered, broken, and overcast.  CE-QUAL W2 

requires that the input data for cloud cover be in the range from zero to ten, with zero being clear 

and ten being total cloud cover.  Therefore, the descriptive cloud cover words were translated 

into numerical values, as shown in Table 3.1.   

Table 3.1: Cloud Cover Data Conversion 

 

 

3.2.2 Water Balance 
 

A water balance model was developed in the Excel software spreadsheet by Kennedy (2003), in 

order to calculate water surface elevation based on daily inflows and outflows for the Wachusett 

Reservoir.  As stated previously, four of the major inflows are measured directly: Stillwater and 

Quinapoxet Rivers are measured using USGS gages, Quabbin Aqueduct is measured by MWRA, 

and precipitation is measured at the Worcester Airport weather station.  There are no recording 

gages on the other tributaries, therefore, flows for the other six tributaries and direct runoff are 

calculated using a runoff coefficient multiplied by the tributary area.  The runoff coefficient is 

based on the Stillwater River and is the ratio of its flow to watershed area. 

NCDC Cloud 

Cover Description

Numerical Equivalent 

(0-10)

Clear 0

Scattered 3.125

Broken 7.5

Overcast 10
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All of the outflows are measured by the MWRA, except for evaporation, which is calculated to 

develop an accurate water balance.  Loss by evaporation is calculated based on surface 

temperature, dew point temperature, and wind speed, as presented in Equation 1.  This equation 

is based on calculations made in CE-QUAL W2.   
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)      Eq.(1)                                                                                             

Using the daily inflow and outflows, the water balance spreadsheet calculates the daily changes 

in reservoir storage volume based on a known initial total volume on January 1
st
 of each year.  

The water surface elevation (WSE) is calculated based on a Wachusett capacity versus elevation 

equation that was determined from capacity and elevation information provided by MWRA and 

can be seen in Appendix B.   

Figure 3.3 and Figure 3.4 show the difference between the uncalibrated calculated WSE from the 

water balance and the measured WSE (from MWRA) for calendar years 2007 and 2008, 

respectively.  It should be noted that the calculated and measured WSE do not match perfectly 

due to error or uncertainties in measured and calculated inflows and outflows.  To correct this 

problem, calibration is needed as discussed later in this section of this report. 
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Figure 3.3: Measured and uncalibrated calculated WSE for 2007 

 

 

Figure 3.4: Measured and uncalibrated calculated WSE for 2008 
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3.2.3 Specific Conductance/TDS 
 

Specific conductance is a measurement of the ability of water to conduct electricity.  CE-QUAL 

W2 models the total dissolved solids (TDS) concentration in the water. The relationship between 

specific conductance and TDS is greatly affected by the types of dissolved solids in the water, 

however Matthews (2007) established a relationship which is based on a constant relative ionic 

composition, presented in Equation 2.  Equation 2 is used to convert measured specific 

conductance to TDS for model inputs and calculated TDS to calculated specific conductance for 

comparison of model output to measured specific conductance. 

    (
  

 
)                          (

  

  
)  Eq.(2) 

3.3 Calibration 
 

Models rarely simulate reality well enough to be used without calibration due to possible errors 

in measured inputs and because many equations have variable parameters to describe the 

physical description of the environment or other physical/chemical attributes. Calibration is 

conducted to create a model with realistic simulations and predictions; this requires measured 

data to compare to the model simulations.  During the calibration process, conducting a 

sensitivity analysis is a good way to identify the influence of certain parameters.  A sensitivity 

analysis involves varying only one parameter over a range of values to identify the impact of that 

parameter on model outputs. 

3.3.1 Water Balance Calibration 
 

The water balance spreadsheet has multiplier calibration factors that can be applied to each 

inflow to account for error and variability of the data.  Calibration factors are applied to inflows 
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only because the inflow measurements are considered to be less accurate due to stream gage 

measurements while outflows are measured at the defined outflows.  The calibration factors are 

set to a default value of 1.0; a calibration factor of 1.1 increases the flow by 10%.  Using the 

SOLVER function in Excel, the calibration factors are variable with constraints set to not let 

them vary beyond a selected specific amount, typically no more than 30%.  The Quabbin 

Aqueduct inflow is only allowed to vary as much as 15% because it is a measured controlled 

flow.   The calibration is used to minimize the sum of square residuals (SSR) for water volume 

simulation which is calculated as follows: 

    ∑(                                 )
 

 

Calibration factors have been calculated for calendar years 1994 to 2008 and vary about 10% on 

average, with exceptions in some years due to unaccountable errors in measured data.  Table 3.2 

presents average calibration factors for 1994 to 2006, the historical ranges, and the calibration 

factors used for creating the 2007 and 2008 models.  After calibration, the calculated WSE 

becomes significantly more accurate as shown in Figure 3.5 for 2007 and Figure 3.6 for 2008.   

Figure 3.7 shows the differences between the calibrated and measured WSE, where a value of 

zero means that the calibrated WSE equals the measured WSE.  The largest difference in 

calibrated and measured WSE is 0.45 meters, which is within an acceptable range; the goal is for 

all differences to be less than 0.15 meters (0.5 feet). 
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Table 3.2: Comparison of Range of Historical Average Calibration Factors to New Factors 

 

 

 

Figure 3.5: 2007 calibrated WSE simulation 

 

Inflow
Annual Averages 

(1994-2006)

Range 

(1994-2006)
2007 2008

Quabbin Aqueduct 1.02 0.93-1.16 1.01 1.10

Stillwater River 0.99 0.7-1.28 1.04 1.02

Quinapoxet River 1.08 0.82-1.30 1.04 1.04

Waushacum Brook 1.14 0.78-1.65 1.05 1.03

Nashua River 0.95 0.76-1.04 1.06 0.94

Direct Runoff 1.13 0.76-1.62 1.05 1.03

Malden 1.09 0.78-1.35 1.05 1.03

W. Boylston 1.11 0.78-1.35 1.05 1.03

Gates 1.16 0.78-2.00 1.05 1.03

Muddy 1.09 0.78-1.35 1.05 1.03

Malagasco 1.09 0.78-1.35 1.05 1.03

French 1.09 0.78-1.35 1.05 1.03
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Figure 3.6: 2008 calibrated WSEsimulation 

 

 

Figure 3.7: Difference between measured and calibrated WSE 
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3.3.2 Initial Conditions - Temperature 
 

There are two initial condition water quality parameters that are used in calibrating the models: 

water temperature and TDS.  The initial (January 1) temperature and TDS are applied as uniform 

initial conditions for the entire reservoir, implying a completely mixed condition.  Initial 

conditions hold more significance for simulations for dates early in the year; initial conditions 

have less impact on simulated conditions later in the year.  Estimates of the initial reservoir 

temperature are obtained online from an MWRA website, where temperature data taken every 

fifteen minutes at the Cosgrove intake are available.  The average temperatures on January 1, 

2007 and January 1, 2008 were 5.2
o
C and 2.5

o
C respectively.   

 

3.3.2.1 Reservoir Temperature - 2007 

 

A sensitivity analysis of the impact of varying the initial temperature on the simulated 

temperatures was conducted, as presented in Figure 3.8 and Figure 3.9.  Figure 3.8 shows a 

sensitivity analysis for 4/10/2007, where the results show that there is a difference in the 

predictions of about 1
o
C for varying the initial temperatures from 0 to 10

o
C.  The temperature 

profiles for each case are uniform, implying a completely mixed reservoir.  Figure 3.9 shows the 

same sensitivity analysis for 6/25/2007, where it can be seen that there is little to no difference in 

the simulated temperature profile for the varying initial temperatures.  The temperature profile 

shows a high temperature gradient implying that the reservoir is stratified, with high 

temperatures in the epilimnion and low temperatures in the hypolimnion.  No difference in 

profiles for each case shows that the temperature in June is mostly controlled by the cumulative 
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effects of weather conditions to that date, with little impact of the reservoir water temperature on 

January 1.    

 

Figure 3.8: Varying initial temperature calibration, 4/10/2007 

 

 

Figure 3.9: Varying initial temperature calibration, 6/25/2007 
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3.3.2.2 Reservoir Temperature - 2008 

 

A similar sensitivity analysis was performed for calendar year 2008 and the results can be seen in 

Figure 3.10 and Figure 3.11.  Figure 3.10 presents results for April 23, 2008 where it can be seen 

that the reservoir is beginning stratification.  An odd result for early 2008 profile data is that the 

initial temperatures of 0
o
C and 2

o
C result in higher predicted surface reservoir temperatures on 

April 23 than beginning the model with higher initial temperatures; it is unclear as to why the 

model is producing these results, however, this effect is damped out later in the year.  One 

possibility may be that initial warmer temperatures may cause the Spring overturn later in the 

year and cause cooler surface temperatures in April  The model does not capture the measured 

data very well, however it does capture the time of stratification well. Figure 3.11 presents 

results for June 26, 2008, where the initial temperature does not have any effect on the simulated 

profile, which indicates that the temperature of the reservoir in June is controlled by 

meteorological conditions in prior months.  The model accurately simulates the depth of the 

epilimnion of about six meters. 

 

Figure 3.10: Varying initial temperature calibration, 4/23/2008 
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Figure 3.11: Varying initial temperature calibration, 6/26/2008 

 

3.3.3 Initial Conditions - Specific Conductance 
 

Specific conductance is the other water quality parameter used because of available measured 

data and the overall relatively conservative nature of specific conductance.  MWRA also 

measures specific conductance at the Cosgrove Intake every fifteen minutes.  The average 

Cosgrove Intake specific conductance values on January 1, 2007 and January 1, 2008 were 117 

µS/cm and 100 µS/cm respectively.  An analysis of the sensitivity of simulated specific 

conductance profiles to initial specific conductance was performed using a range of initial 

specific conductance from 75.0 to 166.7 µS/cm for calendar year  2007 and 66.7 to 166.7 µS/cm 

for calendar year 2008.   
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3.3.3.1 Reservoir Specific Conductance - 2007 

 

The year 2007 is a special situation where there is measured data as early as January 25, 2007; 

Figure 3.12 presents the sensitivity analysis for that day.  It would seem that an initial condition 

of 116.7 µS/cm is the correct choice.  However, this is not the case for later profiles, as shown in 

Figure 3.13 and Figure 3.14.  Figure 3.13 presents the results of a sensitivity analysis of the 

impact of varying the initial specific conductance on the concentration profile for April 10, 2007, 

the next available measured data. Figure 3.14 presents the same simulations for June 25, 2007.  

These results show that the initial specific conductance affects results as the year progresses 

because specific conductance is not affected by meteorological conditions, only by the inflow 

and outflow specific conductance levels.  It should be noted that, in Figure 3.14, a lower initial 

specific conductance (75.0 µS/cm) value better represents the measured values within the North 

Basin than a more realistic initial value of 116.7 µS/cm.  It is unclear as to why a lower initial 

specific conductance results in a better calibration profile later in the year, however, it is believed 

that there may be some missing or inaccurate inflow specific conductance data.  It should be 

noted that the specific conductance does not affect the hydrodynamics of the reservoir and is 

used for water quality calibration purposes only. 
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Figure 3.12: Varying initial specific conductance calibration, 1/25/2007 

 

 

Figure 3.13: Varying initial specific conductance calibration, 4/10/2007 
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Figure 3.14: Varying initial specific conductance calibration, 6/25/2007 

 

Through an intensive analysis, it was noted that there was an increase in simulated specific 

conductance between the first measurement data (January 25, 2007) and the second measurement 

data (April 10, 2007), while the measured value decreased about 9 µS/cm.  The simulated 

increase varies depending on the initial condition selected because of interaction of inflows.  The 

flow weighted specific conductance contribution from the tributaries was examined, as shown in 

Figure 3.15.  It should be noted that the tributaries contributing insignificant amounts were 

removed from Figure 3.15 for presentation purposes.  From this analysis it was discovered that 

direct runoff was a major contributor to specific conductance input to the reservoir.  The direct 

runoff specific conductance is not a direct measurement, however, as it is calculated as the 

average of all the other tributaries.  It should be noted that the calculated direct runoff specific 

conductance is not flow weighted, which could be a source of the error because some of the 
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tributaries have significantly higher specific conductance, such as Gates with an average specific 

conductance of 700 µS/cm.   

 

 

Figure 3.15: Flow weighted specific conductance of all major contributing inflows, 2007 

 

Another possible source of the discrepancy between measured data and model results is that the 

instrument used to measure specific conductance may not have been calibrated correctly.  In 

order to verify this possibility, the measurements taken automatically every fifteen minutes at the 

Cosgrove Intake are compared to the CE-QUAL W2 output, presented in Figure 3.16.  Results 

for three different initial conditions (83 µS/cm, 116.7 µS/cm, and 167 µS/cm) are shown along 

with the measured Cosgrove data. The 83 µS/cm initial condition best fit the measured North 

Basin data for the entire year, the 116.7 µS/cm initial condition was the initial condition based on 

the Cosgrove Intake measurements, and the 167 µS/cm initial condition was selected as a high 
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value to see how the model would respond to an extremely high initial specific conductance.  

When starting with an initial condition of 116.7 µS/cm, the CE-QUAL output matches the 

Cosgrove measured data reasonably well, however the model overestimates recorded data during 

the summer months, with high variability.  It should be noted that the measured data spikes up at 

around Julian day 280, which is believed to be a recalibration of the instrument that is used to 

calculate the specific conductance.  It is very unlikely that the actual specific conductance could 

spike in that fashion. 

 

Figure 3.16: Comparing specific conductance at the Cosgrove Intake measured taken 

every 15 minutes with CE-QUAL W2 output for varying initial specific conductance 

concentration for calendar year 2007 

 

3.3.3.2 Reservoir Specific Conductance - 2008 

 

A similar sensitivity analysis was performed for calendar year 2008.  The first available 

measurement data are for March 6, 2008, and the results of the sensitivity analysis for that day 
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are presented in Figure 3.17.  The next available measurement data are for April 23, 2008, and 

the results are presented in Figure 3.18.  An initial condition of 83.3 µS/cm fits the measured 

data better than the other initial conditions, even though the measured specific conductance at the 

Cosgrove Intake for January 1, 2008 was 100 µS/cm.  The initial condition of 83.3 µS/cm is the 

best fit throughout the year, and can be seen in Figure 3.19 and Figure 3.20, where Figure 3.19 

shows the results for June 6, 2008 and Figure 3.20 shows the results for September 8, 2008.  In 

each of the figures the initial condition of 83.3 µS/cm best represents the measured data.  A 

similar check was performed by comparing the online fifteen minute measurements at the 

Cosgrove Intake to the CE-QUAL output for the entire calendar year 2008, as presented in 

Figure 3.21.  It should be noted that the profile specific conductance measurement device may be 

calibrated differently than the online device, resulting in discrepancies between measurements on 

the same dates.   The figure presents the measured Cosgrove data and simulations with initial 

conditions of 83.3 µS/cm and 100 µS/cm.  Interestingly the initial condition of 100 µS/cm is a 

better fit than the 83.3 µS/cm initial condition.  It should be noted that the Cosgrove Intake 

instrument specific conductance response had some problems for this year, with some negative 

values as measurements and other measurements above 500 µS/cm, which have been removed in 

Figure 3.21 for presentation purposes.   
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Figure 3.17: Varying initial specific conductance calibration, 3/6/2008 

 

 

Figure 3.18: Varying initial specific conductance calibration, 4/23/2008 
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Figure 3.19: Varying initial specific conductance calibration, 6/26/2008 

 

 

Figure 3.20: Varying initial specific conductance calibration, 9/8/2008 
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Figure 3.21: Comparing specific conductance at the Cosgrove Intake measured taken every 15 

minutes with CE-QUAL W2 output for varying initial specific conductance concentration for 

calendar year 2008 

 

3.3.4 Wind Sheltering Coefficient 
 

The wind sheltering coefficient (WSC) is used to alter wind velocities at various points on the 

Wachusett Reservoir by describing the impacts of the surrounding landscape.  Values for the 

WSC range from 0.0 to 1.0, where a value of 1.0 represents an open plain and a value of 0.0 

represents mountains or manmade structure such that the reservoir surface is fully sheltered from 

the wind.  CE-QUAL allows WSC to vary by segment in order to set values to specific 

landscapes.  The landscape surrounding the Wachusett Reservoir is similar, so only one value of 

the WSE is used for the entire area.  



38 
 

Previous students calibrating the model for years 2003-2006 (Mathews, 2007 and Sojkowski, 

2011) determined that using a WSC of 0.626 was the best choice.  In order to verify the 

appropriate WSE value to use, a sensitivity analysis was performed by varying the WSC values 

from 0.5 to 0.7; results for impacts on temperature profiles for July 2, 2007 are shown in  Figure 

3.22.  A WSC value of 0.626 works well and is appropriate to use. An interesting note about 

varying the WSC is that when the reservoir is stratified, a higher WSC value results in a lower 

epilimnial surface temperature and a higher hypolimnion temperature than for a lower WSC 

value.  The result of a higher WSC value is that the reservoir is slightly less stratified, i.e., there 

is less of a difference between top and bottom temperatures. 

 

Figure 3.22: Impact of varying WSC, 7/2/2007 

 

To illustrate the impact of the WSC on the reservoir temperature profile, the same sensitivity 

analysis was performed for calendar year 2008.  For this analysis, however, less simulations 

were run but with a wider WSC value range of 0.25, 0.626, and 1.00.  Figure 3.23 presents the 
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results of this analysis for July 3, 2008, where similar results occur as for the 2007 simulations; a 

higher WSC value produces lower epilimnial surface temperature with less stratification and a 

higher hypolimnion temperature with greater stratification for a lower WSC value.  Again, 0.626 

is a reasonable choice for the WSC value. 

 

Figure 3.23: Impact of varying WSC, 7/3/2008 

 

3.3.5 Bottom Heat Exchange Coefficient 
 

The bottom heat exchange coefficient (CBHE) is used to calculate temperature changes at the 

bottom of the reservoir due to heat transfer between the reservoir and sediment interface.  

Varying the CBHE can significantly change the calculated temperature of the bottom layers in 

CE-QUAL.  This parameter is used for calibration to  help accurately calculate bottom 

temperatures of the reservoir by allowing or inhibiting heat transfer between the sediments and 

bottom water column temperatures.  CE-QAUL specifies a default value of 0.3 W/m
2
-s.  A value 
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of zero cannot be input into CE-QUAL, so to minimize heat transfer between the reservoir and 

sediments, a value of 7x10
-7

 W/m
2
-s was selected, and a maximum value of 2.0 W/m

2
-s was 

selected.  Figure 3.24 shows the impacts of varying the CBHE on temperature profiles in 

Segment 42 for June 25, 2007.  The results show a difference in bottom temperature of about 3
o
C 

between the minimum and maximum CBHE values.   A higher value for CBHE increases the 

bottom temperature of the reservoir, while a low value decreases the bottom temperature.  These 

results are consistent with intuition because CBHE determines the extent of heat transfer 

between the bottom water column and the sediment.  For calibration, the sediment temperature 

was set to 10
o
C, which is consistent with realistic subsurface temperatures.   As the year 

progresses, the difference in simulated bottom temperature for the range of CBHE values 

increase, as shown in Figure 3.25, where the difference in minimum and maximum bottom 

temperatures is about 5
o
C.  A value of 1.0 was picked for CBHE, which resulted in the best fit 

for the entire year. 

 

Figure 3.24: Varying CBHE, 6/25/2007 
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Figure 3.25: Varying CBHE, 10/15/2007 

 

3.3.6 Sediment Temperature 
 

It is important to assess the impact of varying the sediment temperature on model simulations.  

Figure 3.26 shows the results of a sensitivity analysis of the sediment temperature for 6/25/07; a 

realistic range of 10 to 15
o
C was selected.  In the summer months, a sediment temperature of 

10
o
C  resulted in a 2

o
C lower bottom temperature than a sediment temperature of 15

o
C.  As 

shown in Figure 3.27, the difference in simulated bottom temperature increases for 11/1/07 to 

approximately a 4
o
C difference.  A sediment temperature of 10

o
C was selected as the best fit for 

the entire year. 
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Figure 3.26: Varying sediment temperature, 6/25/2007 

 

 

Figure 3.27: Varying sediment temperature, 11/1/2007 

 



43 
 

3.3.7 Ice On/Off 
 

Ice cover is known to develop on the Wachusett Reservoir, however, since CE-QUAL has the 

ability to turn on and off the formation of ice in its calculations, the possibility for ice not to form 

was investigated.  Historically, for this project, ice calculations have always been on.  An 

analysis was performed to determine the impact the ice calculations have on the temperature 

profiles.  Figure 3.28 shows results for the ice calculations on and off for March 3, 2008, 

resulting in about a 1
o
C difference.  If ice formation is on, the reservoir is slightly warmer 

because ice shields the reservoir from the environment, where freezing weather can result in 

lower reservoir temperatures if ice does not form.  During the warmer seasons, ice cover has no 

effect on the temperature of the reservoir, as shown in Figure 3.29, which is a simulation for June 

9, 2008. 

 

Figure 3.28: Comparison of on and off ice calculation, 3/6/2008 
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Figure 3.29: Comparison of on and off ice calculation, 6/9/2008 

 

3.4 Final Calibration Results 
 

This section provides the final values selected for the calibration parameters and shows the 

calibrated temperature and specific conductance profiles for calendar years 2007 and 2008. Table 

3.3 presents the parameter values selected from the calibration process.  The initial specific 

conductance for each year was selected in order to produce a better calibration fit and to account 

for possible errors in measurements and calculations. The WSC, CBHE, and sediment 

temperature values are the same for both years because they reflect the physical parameters of 

the reservoir and should not change year to year.  The sediment temperature may vary slightly, 

however, not significantly.  Ice is also turned on for each year because ice is known to form on 

the reservoir, and thus should be included in the calculations.   
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Table 3.3: Parameter Results of Final Calibration 

 

 

3.4.1 Temperature and Specific Conductance Profiles 

 

Figure 3.30 to Figure 3.33 present all of the final calibrated temperature and specific 

conductance profiles for calendar years 2007 and 2008. The final calibration results in slight 

error well within acceptable values.  Error is measured at top, middle, and bottom for all 

available measured data with top depth measured at zero meters, middle depth measured at 

fifteen meters, and bottom depth measured at thirty meters.   

The 2007 temperature error for top, middle, and bottom depths averages -0.4, +2.1, and -0.4
o
C 

respectively; maximum errors of +1.4 and -2.2 
o
C for top, always higher for the middle with a 

maximum error of 5.9 
o
C, and maximum errors of +0.8 and -1.0 

o
C for  bottom depth.  The 2008 

temperature error for top, middle, and bottom averages -0.4, +1.7, and -0.9 
o
C respectively; 

maximum errors of +1.3 and -2.8 
o
C for top depth, +4.5 and -0.4 

o
C for tmiddle depth, and +1.0 

and -1.6 
o
C for bottom depth.  Both years on average underestimate the top and bottom depth 

temperatures, while overestimate the middle depth. 

The 2007 specific conductance error for top, middle, and bottom depths averages -4.3, -0.9, and  

-3.3 μS/cm respectively; maximum errors of +4.2 and -39.4 μS/cm for top depth, +17.3 and -39.1 

Parameter 2007 2008

Initial Temperature (oC) 7 4

Initial Specific Conductance (µS/cm) 75 86.6

Wind Sheltering Coefficient 0.626 0.626

Bottom Heat Exchange Coefficient 1 1

Sediment Temperature (
o
C) 10 10

Ice On/Off On On
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μS/cm for middle depth, and +8.7 and -41.9 μS/cm for bottom depth.  The 2008 specific 

conductance error for top, middle, and bottom depths averages -2.0, -5.5, -0.1 μS/cm; maximum 

errors of +2.2 and -7.7 μS/cm for top depth, +4.6 and -29.0 μS/cm for middle depth, and +8.4 

and -4.0 for bottom depth.  Both years on average underestimate the specific conductance for all 

depths.  Interestingly, 2007 has higher specific conductance errors for top and bottom depths, 

while 2008 has higher errors in the middle depth and lower.  The high errors for the maximums 

are due to the first date of available data because initial conditions were selected based on results 

that better match data later in the year.  

  



47 
 

 

 

Figure 3.30: 2007 temperature calibration profiles, North Basin (Segment 42) 

 



48 
 

 

 

Figure 3.30 (cont.): 2007 temperature calibration profiles, North Basin (Segment 42) 



49 
 

  

 

 

Figure 3.31: 2007 specific conductance calibration profiles, North Basin (Segment 42) 
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Figure 3.31 (cont.): 2007 specific conductance calibration profiles, North Basin (Segment 42) 
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Figure 3.32: 2008 temperature calibration profiles, North Basin (Segment 42) 
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Figure 3.32 (cont.): 2008 temperature calibration profiles, North Basin (Segment 42) 

  



53 
 

 

 

Figure 3.33: 2008 specific conductance calibration profiles, North Basin (Segment 42) 
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Figure 3.33 (cont.): 2008  specific conductance calibration profiles, North Basin (Segment 42) 
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3.5 Spill Simulation 
 

Spill simulations were accomplished by specifying that the contaminant is a general constituent, 

and is a conservative, non-reactive substance that does not volatilize or degrade over time.  For 

this study, all spills occurred at noon at the Rt. 140 bridge, Segment 7 in CE-QUAL, with a high 

concentration of 1x10
8
 mg/L at a flow of 0.02 m

3
/s.  It should be noted that the spill 

concentration is high, and the flow low, to simulate a certain mass of contaminant spilled to the 

reservoir.  Simulated contaminant concentration results are presented as relative or normalized 

concentrations as developed by Stauber (Stauber, 2009).  The simulated concentration is divided 

by the calculated completely mixed concentration that would occur if the mass of the spill was 

mixed into the total volume of the reservoir. A relative concentration of 1.0 represents a spill that 

is completely mixed throughout the reservoir, while values greater than 1.0 occur when the spill 

is not as well mixed.  Simulations have been conducted to demonstrate that the actual mass of 

contaminant spill has no effect on the simulated relative concentration. 

CE-QUAL does not have the capability of modeling different contaminant densities directly for 

general constituents, however, density effects can be simulated by varying the spill temperature.  

By setting the spill temperature high relative to the temperature of the reservoir, the spill will act 

as if it had a low density, so it will tend to float on the top of the water column.  If the 

temperature is set low compared to the reservoir temperature, the spill will tend to sink and stay 

at the bottom of the water column.  Thus spill temperature was varied to simulate possible 

difference in the density or temperature of a spill. 
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3.5.1 Spill Date Selection 
 

In order to examine seasonal effects for spill scenarios, specific dates, or Julian Days, were 

selected within each season of the year. Sojkowski (2011) used periods with four consistent days 

of average wind direction based on Stauber’s (2009) finding that wind direction has a substantial 

effect on the behavior of the spill.  Table 3.4 presents the days chosen for each of the six years 

(2003-2008) and subsequent seasons.  The day selected for the spill is the first day listed in each 

section.  It should be noted that the direction of the wind listed is the direction from which the 

wind is coming from, so a northwest wind listed in the table is traveling towards the southeast. 

Another series of spill scenarios were selected for periods of high inflows due to storm events.  

These days were selected based on criteria that if the Stillwater and Quinapoxet flows were 

unusually high for a brief period of time, then spill day simulations for few days before, during 

and after the unusually high inflows were selected to assess the impact of a high inflow event on 

the behavior of the spill at the Cosgrove Intake.   
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Table 3.4: Average Daily Wind Comparison for all Six Years 

 

 

  

JDAY Wind Dir
Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir Wind Mag JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)

117 SW 4.03 120 SW 6.67 114 SE 6.78 115 NW 6.04 119 NW 2.70 122 NW 3.45

118 SW 4.23 121 SW 6.73 115 SW 5.10 116 SW 5.28 120 NW 4.42 123 SE 2.33

119 NW 4.72 122 SW 6.65 116 SW 5.26 117 SW 4.21 121 NW 5.27 124 SE 3.11

120 SW 4.00 123 SW 6.08 117 SE 3.78 118 SE 3.82 122 SW 3.01 125 SE 3.11

4.24 6.53 5.23 4.84 3.85 3.00

JDAY Wind Dir
Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)

237 SW 4.30 230 SE 2.56 233 SW 8.27 222 SW 4.67 222 SE 2.53 227 SW 1.77

238 SW 3.84 231 SW 4.21 234 NW 9.54 223 NW 5.01 223 NW 2.79 228 SW 1.98

239 SW 5.28 232 SW 4.79 235 NW 8.21 224 NW 4.59 224 NW 2.55 229 NW 2.44

240 SW 3.38 233 SW 3.63 236 NW 7.25 225 NW 4.32 225 NW 3.70 230 SW 4.84

4.20 3.80 8.32 4.65 2.89 2.76

JDAY Wind Dir
Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)
JDAY Wind Dir

Wind Mag 

(m/s)

311 NW 3.40 319 NW 6.47 323 SW 3.32 318 SE 4.36 318 SW 4.59 314 SW 4.75

312 NW 7.21 320 NW 4.48 324 SW 4.99 319 SE 3.20 319 SW 5.40 315 SW 3.78

313 NW 4.61 321 NW 2.96 325 SW 3.47 320 SE 5.66 320 NW 8.25 316 SW 4.84

314 SW 4.00 322 SW 2.42 326 SE 6.98 321 SW 7.28 321 NW 5.55 317 NW 2.91

4.81 4.08 4.69 5.12 5.94 4.07Avg.

Avg.Avg.

Avg.Avg.

Avg.

Avg.

Avg.

Avg.

Avg.

Avg.

Avg. Avg. Avg. Avg. Avg.

2003 SUMMER 2004 SUMMER 2005 SUMMER 2006 SUMMER

2003 FALL 2004 FALL 2005 FALL 2006 FALL

2003 SPRING 2004 SPRING 2005 SPRING 2006 SPRING 2007 SPRING

2007 SUMMER

2007 FALL

2008 SPRING

2008 SUMMER

2008 FALL

Avg.

Avg.
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4 RESULTS 
 

The purpose of this section is to present and discuss the results of the CE-QUAL W2 modeling 

work.  This section presents results for modeled years 2003-2008 using CE-QUAL W2 v.3.6.  

Model years 2003 and 2004 were developed by Matthews (2007) in CE-QUAL W2 v.3.5 and 

later converted to CE-QUAL v.3.6 by Sojkowski (2011).  Model years 2005 and 2006 were 

developed by Sojkowski (2011).   The impacts of  season of year, Quabbin transfer, daily 

variation of spill day, high inflow events, and wind on the contaminant spill behavior are 

presented by considering the relative magnitude of the spill concentration at the Cosgrove Intake 

as a function of time after the spill occurs.   The following graphs are displayed on either a Julian 

day or a "Days After" temporal scale.  The "Days After" scale displays a time scale where time 

zero represents the time of the spill and subsequent times are presented as days after the spill 

occurred.   It is important to note that the mean hydraulic residence time (volume/outflow) of the 

Wachusett Reservoir is approximately 200 days. 

4.1 Seasonal Influence 
 

Contaminant spills are modeled on a seasonal basis as the hydrology, temperature and 

stratification of the Wachusett Reservoir vary seasonally.  The seasons have a profound effect on 

the behavior of the contaminant spill arriving at the Cosgrove Intake as shown in Figure 4.1, 

which shows simulated relative Cosgrove Intake contaminant concentration for each of the 2007 

Spring, Summer, and Fall cold spills over the entire calendar year. The relative concentrations 

for the Spring and Fall spills peak at approximately 1.0, whereas in Summer the peak is much 

higher at nearly 3.0.  The reservoir stratification (temperature gradients) in the Summer and 
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hydraulics cause greater variability and higher concentrations.  The 2007 results are typical of all 

modeled years with respect to seasonal impacts; this aspect is explored later in this report.  The 

elapsed time between the spill data and appearance of the contaminant at Cosgrove, and the 

concentration variability, are of great interest; the effects of seasons are well illustrated in Figure 

4.1. 

 

Figure 4.1: Relative contaminant concentration at the Cosgrove Intake for 2007  

Spring, Summer, and Fall cold spills for the entire year 

 

4.1.1 Spring Season Spills 

 

During the Spring season, when the reservoir is not stratified, there are also normally higher 

precipitation events and snow melt that increase the tributary flows, adding to the complexity of 

the reservoir hydrodynamics.  Spring spills typically have the shortest Cosgrove arrival time, 

ranging from two to five days (Sojkowski, 2011). Typically, spill temperature does not affect the 

behavior of the concentration at the Cosgrove Intake, but for modeled year 2007, the warm spill 
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arrives about two days earlier than a medium or cold spill, as shown in Figure 4.2.  It is believed 

that meteorological conditions are the main reason for the differences between the warm and 

colder spills as the warm spill is initially located at the top of the water column.  During the day 

of the spill, the wind came from the northwest direction, thus in the direction of the Cosgrove.  

More analysis of wind impact is presented later in this report. 

 

 

Figure 4.2: Relative contaminant concentration behavior at Cosgrove Intake for 2007 

Spring, spill temperature variations for spill at Rt. 140 Bridge on Julian Day 119 

 

Modeled year 2008 is a more typical result with no difference in the concentration behavior at 

the Cosgrove with varying spill temperatures as seen in Figure 4.3; the arrival time is about five 

days.  An unusual characteristic for Spring 2008 is that there is an increase in contaminant 

concentration from 5 to 8 days after the spill, then the concentration decreases sharply until about 

9 days after the spill, and finally increases again to a relative concentration of 1.25, and slowly 
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decreases to a value of 1.0.  Calendar year 2008 had unusual Quabbin transfer activity early in 

the year, followed by high Stillwater and Quinapoxet inflows, which may have contributed to 

this behavior.  Also, the spill occurred at the end of the high inflows, which may have impacted 

transport.   

 

 

Figure 4.3: Relative contaminant concentration behavior at Cosgrove Intake for 2008 

Spring, spill temperature variations for spill at Rt. 140 Bridge on Julian Day 122 

 

There are now six simulated years for the Spring season for use in assessing typical patterns, as 

shown in Figure 4.4 to Figure 4.6.  A Cosgrove arrival time frame of two to five days for warm 

and medium spills, and three to five days for a cold spill is established, consistent with results 

from Stauber (2009) and Sojkowski (2011).  It can be seen in Figure 4.4 to Figure 4.6 that for 

simulated years 2005, 2006, and 2008, the contaminant arrives at five days the after the spill 

occurs, with no dependence on where (based on temperature) the contaminant is located in the 
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water column.  Simulated year 2003 has unusual behavior for warm and medium spills, with an 

almost delayed CFSTR behavior where the bulk of the contaminant reaches the Cosgrove at the 

same time two days after the spill occurred and decreases over time.  Simulated year 2004 shows 

an arrival time of three days after the spill and has the same behavior for cold, medium, and 

warm spills, with an arrival time of about 3 days and a gradual increase to a relative 

concentration value of 1.0.  Simulated year 2007 has arrival times approximately two and a half 

days after a warm spill, with behavior similar to simulated Spring 2003.   Medium and cold spills 

for Spring 2007 are very similar with an arrival time of about five days with a gradual increase in 

relative concentration to a value of 1.0.  The difference between warm and colder spills indicates 

that the warm behavior is impacted by meteorological conditions; this is explored further in later 

sections of this report.  

 

Figure 4.4: Relative contaminant concentration behavior at Cosgrove Intake for 

Spring model years 2003-2008 with warm spill at the Rt. 140 Bridge 
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Figure 4.5: Relative contaminant concentration behavior at Cosgrove Intake for 

Spring model years 2003-2007 with medium spill at the Rt. 140 Bridge 

 

 

Figure 4.6: Relative contaminant concentration behavior at Cosgrove Intake for 

Spring model years 2003-2008 with cold spill at the Rt. 140 Bridge 
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4.1.2 Summer Season Spill 

 

The Summer season is characterized by warmer temperatures, reduced tributary inflows, a 

stratified reservoir with large temperature gradients, and increase in water demand.  To maintain 

Wachusett reservoir levels while meeting water demands under these conditions, the Quabbin 

transfer is initiated, which causes an interesting effect within the reservoir known as the Quabbin 

interflow.  Sojkowski (2011) discovered that the Quabbin Interflow has a significant influence on 

the behavior of the contaminant; this is discussed in later sections of this report. 

With low inflows, higher demands, and the Quabbin interflow on, the Wachusett Reservoir has 

complex hydrodynamics, which can be seen in the behavior of the spill contaminant at the 

Cosgrove Intake shown in Figure 4.7 and Figure 4.8.  Figure 4.7 shows the behavior of the spill 

contaminant at the Cosgrove Intake for warm, medium, and cold spill temperatures for simulated 

Summer 2007, while Figure 4.8 presents the same for simulated Summer 2008.  Both years have 

similar behaviors, with high concentration variability for medium and cold spills, while the warm 

spills have earlier arrival times with a dampening effect on the concentration variability.  Due to 

the difference between warm and colder spills, there is an indication that meteorological 

conditions dictate behavior for warm spills, while the complex hydrodynamics are responsible 

for the response for colder spills.  Summer 2007 and 2008 have initial low concentrations 

arriving at five to six days after a warm spill occurs, while medium and cold spills have an 

arrival time of about ten days after the spill.   
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Figure 4.7: Relative contaminant concentration behavior at Cosgrove Intake for 2007 

Summer,  spill temperature variations for spill at Rt. 140 Bridge on Julian Day 222 

 

 

Figure 4.8: Relative contaminant concentration behavior at Cosgrove Intake for 2008 

Summer,  spill temperature variations for spill at Rt. 140 Bridge on Julian Day 227 
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The seasonal pattern for Summer spills for all six simulated years is shown in Figure 4.9 to 

Figure 4.11, which present results for simulated Summer years 2003 to 2008 for warm, medium, 

and cold spills.  Typically a warm spill has less concentration variability and lower concentration 

magnitude than medium and cold spills.  A warm spill has an arrival from five to fourteen days 

after the spill, while medium and cold spills arrive time ten to fifteen days after the spill occurs, 

which is consistent with the timeframe found by Sokjowski (2011).  The difference between 

spills that remain on top of the water column and the spills that transport at lower levels suggest 

that meteorological conditions greatly impact the surface spills and that the complex overall 

hydrodynamics of the reservoir greatly impact the spills located at lower levels in the water 

column.  The relative concentration magnitudes vary from nearly 1.5 to 3.0 for the peaks and 0.5 

to 2.0 for minimum in the variability, showing the Summer variability for all years.  One 

influence explored later in this report is the Quabbin interflow.   

 

Figure 4.9: Relative contaminant concentration behavior at Cosgrove Intake for 

Summer model years 2003-2008 with warm spill at the Rt. 140 Bridge 
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Figure 4.10: Relative contaminant concentration behavior at Cosgrove Intake for 

Summer model years 2003-2008 with medium spill at the Rt. 140 Bridge 

 

 

Figure 4.11: Relative contaminant concentration behavior at Cosgrove Intake for 

Summer model years 2003-2008 with cold spill at the Rt. 140 Bridge 
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4.1.3 Fall Season Spill 

 

The Fall season captures the destratification of the reservoir and temperatures typically become 

colder and more uniform.  Quabbin Aqueduct usually has no flow, and water demand, inflows, 

outflows, and precipitation are somewhat low.  Figure 4.12 and Figure 4.13 present the spill 

results for the 2007 and 2008 Fall seasons, respectively. When the spill occurs, the reservoir 

typically has a small temperature gradient (if not uniform temperature) therefore the behavior of 

the spill does not depend on where it is located (i.e. temperature) within the water column.  The 

2007 results show an arrival time of nine days after the spill.  There is a spike in relative 

concentration to a value of 1.0 at approximately fourteen days after the spill occurs and then 

concentration decreases to a value of 0.75 shortly after, followed by a steady increase to a value 

of 1.0, which is an unusual Fall behavior.  The 2008 results show an arrival time of six days with 

a slow, almost linear with time, increase in concentration at the Cosgrove Intake which indicates 

that there are lower velocities within the reservoir and the contaminant is more slowly dispersed 

throughout the reservoir.  Sojkowski (2011) determined that the arrival times for the Fall season 

were between seven and ten days after the spill, so the results for 2007 and 2008 indicate that the 

full arrival timeframe may be broader, from six to ten days. 
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Figure 4.12: Relative contaminant concentration behavior at Cosgrove Intake for 

2007 Fall, spill temperature variations for spill at Rt. 140 Bridge on Julian Day 318 

 

 

Figure 4.13: Relative contaminant concentration behavior at Cosgrove Intake for 
2008 Fall, spill temperature variations for spill at Rt. 140 Bridge on Julian Day 318 
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The results for Fall season spills for five years, as shown in Figure 4.14 to Figure 4.16,  establish 

the Fall seasonal pattern for the simulated years for warm, medium, and cold spills.  It should be 

noted that there is no simulation for 2003 because during the Fall of that year there was 

construction at the connection of Cosgrove Intake to the new Carroll Water Treatment Plant so 

the Wachusett Aqueduct was being implemented as the main withdrawal to supply the Boston 

metropolitan area.   An arrival time frame of four to ten days emerges with no dependence on the 

temperature of the spill as there is no difference in behavior of the contaminant spill for warm, 

medium, and cold spills; indicating that the Wachusett Reservoir temperature and velocities are 

relatively uniform with depth.  The year to year behavior varies, which is due to the particular 

hydrodynamics of the time, not due to meteorological conditions (which do have significant 

influence in the Spring and Summer seasons). 

 

 

Figure 4.14: Relative contaminant concentration behavior at Cosgrove Intake for Fall 
model years 2004-2008 with warm spill at the Rt. 140 Bridge 
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Figure 4.15: Relative contaminant concentration behavior at Cosgrove Intake for Fall 
model years 2004-2008 with medium spill at the Rt. 140 Bridge 

 

 

Figure 4.16: Relative contaminant concentration behavior at Cosgrove Intake for Fall 
model years 2004-2008 with cold spill at the Rt. 140 Bridge 
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4.2 Quabbin Transfer Influence 
 

The Quabbin Aqueduct is used to supply water to Wachusett maintain desired water surface 

elevation and also sometimes to alter water quality by increasing discharge to the Nashua River, 

typically during the summer and early fall months.  An interesting event happens when the 

Quabbin water flows through the reservoir during periods of stratification; this is known as the 

Quabbin Interflow.  The Quabbin interflow is essentially Quabbin water flowing through the 

Wachusett Reservoir at a specific depth.  This can be observed in the specific conductance depth 

profiles because the Quabbin water specific conductance is relatively low compared to overall 

Wachusett Reservoir water.  Due to the cold temperature of the Quabbin water, it is found to 

transport mainly at a depth of five to fifteen meters below the water surface.  Sojkowski (2011) 

explored the influence of the Quabbin transfer on spill behavior for 2003 to 2006; his results 

showed that turning the Quabbin transfer off during the summer (when it is normally on) 

dampens the variability of the contaminant concentration arriving at the Cosgrove Intake.  He 

also noted that there is little difference when changing the state of the Quabbin transfer during 

the Spring and Fall seasons; these seasons are not explored for 2007 and 2008. 

The influence of the Quabbin transfer is presented in Figure 4.17 to Figure 4.20, which show 

results for changing the state of the Quabbin transfer for simulation years 2007 and 2008 warm 

and cold spills during the Summer.  The “Quabbin_Actual_On” legend means that the real state 

of the transfer is on and flowing into the Wachusett Reservoir at the time of the spill, whereas 

“Quabbin_Turned_Off” means that the model input file was altered to simulate the Quabbin 

transfer being shut off in response to the spill.  The Quabbin transfer is “turned off” twelve hours 

after the spill to simulate actual reaction time and is kept off for a twenty day period.  Results for 
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2007 show similar arrival times with no dependence on the state of the Quabbin transfer.  When 

the Quabbin transfer was “turned off”, the magnitude of the maximum concentration is greater 

than when it is “actually on”, however, variability is dampened, which is the important attribute 

to note.   These results are not consistent with past results for years 2003 to 2006, which 

indicates that there may be other factors responsible for the 2007 behavior.  Simulated 2008 

results (Figure 4.19 and Figure 4.20) are more similar to those for 2003 to 2006 where the 

concentration variability at the Cosgrove is dampened when the Quabbin transfer was “turned 

off” for both warm and cold spills.  There is no difference in arrival times, however, there is a 

significant difference in the behaviors at the Cosgrove Intake.  These results are consistent with 

results from Sojkowski (2011).   

 

Figure 4.17: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2007 warm spill by varying the state of the Quabbin Transfer 
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Figure 4.18: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2007 cold spill by varying the state of the Quabbin Transfer 

 

 

Figure 4.19: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2008 warm spill by varying the state of the Quabbin Transfer 
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Figure 4.20: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2008 cold spill by varying the state of the Quabbin Transfer 

 

4.3 Daily Variability in Spill Behavior 
 

Seasonal impacts on spill behavior have been examined by selecting one day within a season for 

the spill for multiple years.  This section provides results to investigate the variability at arrival 

time for spills occurring week to week within a twenty day seasonal period.  Figure 4.21 to 

Figure 4.23 present results of day of spill variation for Spring, Summer, and Fall seasons.  The 

figures present the behavior of relative Cosgrove concentrations for five different spill dates 

within a twenty day period.  The spill dates are selected in five day intervals, starting ten days 

before and going to ten days after the previously investigated yearly seasonal spill date.  The 

solid line in the graphs are the results from the seasonal yearly plots presented in Section 4.1. 

Figure 4.21 presents results for a Spring 2005 warm spill.  The arrival time is very similar for all 

cases at about four to six days after the spill occurred and the behavior after arrival are relatively 

similar as well.  The spill that occurred on Julian day 104 has a couple of peaks when it first 
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arrives at the Cosgrove, most likely due to meteorological conditions; this behavior is not seen 

for spills on subsequent dates.    

 

 

Figure 4.21: Relative contaminant concentration behavior at Cosgrove Intake for 
Spring model year 2005 warm spill; varied spill date ten days before and after 
original date in five day intervals 

 

Summer 2008 day of spill variation results are presented in Figure 4.22.  Arrival times are 

similar at eight to ten days, however, the behavior patterns and concentration magnitudes vary 

considerably.  The spills which occurred on Julian day 219 and 224 are more variable than the 

other days which suggests that some event occurs within that period of time to increase the 

variability.  The spills which occurred on Julian day 229, 234 and 239 are less variable with a 

steady increase in concentration.  The results help enforce the prior seasonal results that show  

that the summer spills have extremely variable Cosgrove concentrations, but arrival times are 

similar due to similar meteorological conditions over the twenty day period.    
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Figure 4.22: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2008 warm spill; varied spill dates, ten days before and after 
original date in five day intervals 

 

Fall 2006 day of spill variation results are presented in Figure 4.23.  Concentration behavior 

similar to a delayed CFSTR, and arrival times, are very similar, with an arrival time of about five 

days.  The similar behavior and magnitudes for the five day interval spill dates enforces the 

belief that there are uniform hydrological conditions throughout the reservoir that do not vary 

drastically day to day in the Fall season.    
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Figure 4.23: Relative contaminant concentration behavior at Cosgrove Intake for Fall 
model year 2006 warm spill; varied spill dates, ten days before and after original 
date in five day intervals 

 

Not all the years show similar arrival times and behaviors for the five day variation in day of 

spill, as shown in Figure 4.24 and Figure 4.25.  The following examples are warm spills, and are 

considered special cases, as discussed in further sections, but are presented in order to 

demonstrate that arrival time and behavior can vary significantly for spill date variations of only 

several days.  Figure 4.24 presents results for Spring 2003, where the arrival times and behaviors 

vary drastically between the various spill dates.  The arrival time varies from two to seven days, 

which is a larger timeframe than resulted from the seasonal pattern established by results for all 

six years.  Figure 4.25 presents results for Summer 2007, where arrival times and behaviors vary 

drastically.  The arrival time varies from four to ten days, which is within the timeframe 

established by the seasonal patterns.  Since this is a warm spill, it seems that there is some 
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meteorological event that is influencing the behaviors of the spills.  The Summer season has 

potential for the extremely variable weather which may be responsible for the behavior. 

 

 

Figure 4.24 Relative contaminant concentration behavior at Cosgrove Intake for 
Spring model year 2003 warm spill; varied spill date, ten days before and after 
original date in five day intervals 
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Figure 4.25: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2007 warm spill; varied spill date ten days before and after 
original date in five day intervals 

 

4.4 High Inflow Influence 
 

The purpose of this section is to present results that examine the impact of high inflow events on 

the spill behavior at the Cosgrove Intake.  High inflow events are determined by unusually high 

inflows for short periods of time in the Quinapoxet and Stillwater Rivers.  This is an area of 

interest because high inflow events correlate to high precipitation events or storms, causing 

unfavorable driving conditions and accidents may be more likely. The following are case studies 

for three different storms.   

The first case study is for a high inflow event that occurred on Julian day 173 in the Spring of 

2003; results for the spill analysis are presented in Figure 4.26.  The results are similar to those 

presented in the day of spill section of this report, however, these figures present results for spills 
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that occurred two days before to two days after the high inflow event with one day spill 

occurrence intervals.  As the spill occurs in later dates, the arrival time becomes earlier (i.e. a 

spill that occurs on Julian day 171 has an arrival time of 13 days and a spill that occurs on Julian 

Day 172 has an arrival time of twelve days).  The arrival times range from nine to thirteen days.  

The concentration behavior is extremely variable and there does not seem to be any similarity to 

the behavior or arrival time at all.  A new view of this data is needed to see if a similarity to the 

spill behaviors exist. 

 

 

Figure 4.26: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2003 warm spill; varied spill date, two days before and after 
original date in one day intervals to evaluate high inflow events with “Days After 
Spill” time 

 

Interestingly, the arrival times and concentration variability are all very similar, as seen in Figure 

4.27, which displays the same results as Figure 4.26, but on a Julian Day time scale instead of a 
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days after spill basis.  All the spills arrive on Julian day 184 with  identical behaviors, except for 

the magnitudes of the concentrations.  The results suggest that the storm influences the 

movement of the contaminant within the reservoir.  The spills that occur prior to the high inflow 

event are transported when the high inflows enter the reservoir, while the spill that occurs during 

and after the high inflow event have the reservoir has increased velocities.  It should be noted 

that outflow from the Cosgrove Intake and Nashua River also increased during that time period, 

which may contribute to increased net transport velocities within the reservoir. 

 

 

Figure 4.27: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2003 warm spill; varied spill date, two days before and after 
original date in one day intervals to evaluate high inflow events with “Julian Day” 
time 

 

The same Spring 2003 high inflow event is evaluated for a cold spill and the results are presented 

in Figure 4.28.  Arrival times are more similar, around thirteen to fifteen days and there appears 
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to be a correlation between the spills for the concentration peaks for the spills that occur before 

and during the high inflow event.  The peaks look offset by about a day and a pattern emerges if 

the same data are plotted on a Julian day time scale rather than a days after spill time scale, as 

presented in Figure 4.29.  All the spills have very similar contaminant behavior to the spill that 

occurs on the day of the high inflow event, with the peaks and valleys occurring at the same 

Julian day.  The high inflows may be responsible for dampening out the magnitudes of the spill, 

which could be due to the high velocities at the deeper section of the  reservoir due to the 

increase of inflows to the reservoir.   

 

 

Figure 4.28: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2003 cold spill; varied spill date, two days before and after 
original date in one day intervals to evaluate high inflow events in “Days After Spill” 
time 
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Figure 4.29: Relative contaminant concentration behavior at Cosgrove Intake for 
Summer model year 2003 cold spill; varied spill date, two days before and after 
original date in one day intervals to evaluate high inflow events in “Julian Day” time 

 

The second case study examined is a high inflow event that occurred for five days in the Spring 

of 2005 from Julian day 88 to 93.  Only a warm spill is evaluated because colder spills have 

more similar responses to high inflow events, as shown for the Spring 2003 high inflow event.  

The results from evaluating the Spring 2005 high inflow event are presented in Figure 4.30.  

Spills on Julian days 87 and 94 occur one day before and one day after the high inflow event to 

capture the full spectrum of the high inflow influence.  A similar result as for the previous case 

emerge as for spills that occur on later subsequent dates, the arrival times become shorter (i.e. a 

spill that occurs on Julian day 87 has an arrival time of seven days and a spill that occurs on 

Julian day 88 has an arrival time of six days).  Interestingly, at the end of the high inflow event, 

the spill arrival time increases, indicating that the high inflow event has less of an impact on the 

behavior of the contaminant spill. 
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Figure 4.30: Relative contaminant concentration behavior at Cosgrove Intake for 
Spring model year 2005 warm spill; varied spill date before, during, and after 
original date in one day intervals to evaluate high inflow events with “Days After 
Spill” time (high inflows Julian day 88-93) 

 

Similar to the previous case, when plotted on a Julian day scale (Figure 4.31), most of the spills 

arrive on Julian day 95, indicating that the high inflow event influences the behavior of the 

contaminant.  The spills on Julian day 92 to 94 occur during the end of the high inflow event and 

there is noticeable difference in the behavior and arrival date.  This attribute is consistent with 

the previous case in that the arrival time for spills that occur at the end of the high inflow event is 

shorter than for previous days, however, the spill arrives at a later Julian day (i.e. a spill that 

occurs on Julian day 93 has the earliest arrival time of two days, but arrives a day after all the 

previous spills arrive).  Perhaps the momentum of the high inflow event, which is responsible for 

the early arrival times, is decreased and the spills are essentially following the increased flux of 

water from the high inflow event. 
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Figure 4.31: Relative contaminant concentration behavior at Cosgrove Intake for 
Spring model year 2005 warm spill; varied spill date before, during, and after 
original date in one day intervals to evaluate high inflow events with “Julian Day” 
time (high inflows Julian day 88-93) 

 

The last case study examined is a high inflow event that occurred over a period of three days in 

the early months of 2008 from Julian day 65 to 66 followed by another high inflow event on 

Julian day 69.  The results from evaluating the early 2008 high inflow event are presented in 

Figure 4.32. Spills on Julian days 64 and 70 occur before and after the high inflow events, while 

the spills on Julian days 67 and 68 fall in between the two high inflow events.  The behavior 

patterns are very similar with a  steady increase to a relative concentration value of 1.0.  The 

similar pattern emerges as the spills that occur later in time have shorter arrival times and if 

plotted on a Julian day time scale, (Figure 4.33), most of the spills arrive on Julian day 70.  Spills 

at the end of the high inflow (Julian days 69 and 70) have the shortest arrival times, however 

arrive a couple of days after the date of arrival of the spills that occur on Julian days 64 to 67. 
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Figure 4.32: Relative contaminant concentration behavior at Cosgrove Intake for 
model year 2008 warm spill; varied spill date before, during, and after original date 
in one day intervals to evaluate high inflow events with “Days After Spill” time (high 
inflows Julian day 65-69) 

 

Figure 4.33:  Relative contaminant concentration behavior at Cosgrove Intake for 
model year 2008 warm spill; varied spill date before, during, and after original date 
in one day intervals to evaluate high inflow events with “Julian Day” time (high 
inflows Julian day 65-69) 
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4.5 Wind Influence 
 

Wind over the Wachusett Reservoir is a force of nature that cannot feasibly be altered by 

humans, however, it is important to know the impact of wind on the spill concentration at the 

Cosgrove Intake. Stauber (2009) identified that wind has a significant impact on the behavior of 

a warm spill that is located on top of the water column.  She determined that the direction of the 

wind greatly impacts arrival time  and magnitudes for Spring and Summer warm temperatures.   

A similar study was conducted for this report, however, wind speed was set to zero for selected 

periods of time after the spill, instead of varying wind direction, in order to identify the impact of 

the wind on the concentration at the Cosgrove Intake.  The model years selected were based on 

the yearly seasonal warm spill results, where unusual early arrival times can be distinguished.  

Warm spills should theoretically be affected most by wind because a warm spill is located on top 

to the water column.   Modeled year 2003 Spring is unlike any other year with a large increase in 

Cosgrove concentration at two days after the spill, while modeled year 2007 Spring has a short 

arrival time, but with not nearly as much mass arriving at once.  The warm 2003 and 2007 Spring 

spills are used to analyze the effects of wind on the arrival time of the spill contaminant at the 

Cosgrove Intake. 

 

4.5.1 Modeled Year 2003 Spring Warm Spill 

 

Various time periods were selected for setting zero wind speed in order to assess the 

concentration response at the Cosgrove Intake.  Figure 4.34 presents a comparison of 

concentration at the Cosgrove Intake for modeled year 2003 in the Spring season by setting wind 

to zero for selected periods within the first two days following the spill.  Recall that the spill 
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occurs at noon on the day of the spill, in this case Julian day 117.  The most profound effect is 

found by removing wind for Julian days 117.0 to 118.9, the first two days after the spill occurs, 

which increases the arrival time of the spill by one day and significantly decreases the magnitude 

of the concentration at the Cosgrove Intake.  Further investigation as to what the driving force 

behind the unusual early arrival time included setting wind to zero for smaller increments of time 

within the first two days after the spill.  Setting the wind to zero for Julian day 117.5 to 118.5 

resulted in a very similar result as found for removing the wind for 117.0 to 118.0, which 

indicates that the wind speed from Julian day 118.5-119.0 has little effect on the spill behavior.  

In order to investigate further, an even narrower time period of one half a day was selected for 

zero wind.  Simulations setting wind to zero for Julian days 117.5 to 118.0 and 117.75 to 118.25 

resulted in a decrease in magnitude of the spill concentration, but had no impact on the initial 

arrival time at the Cosgrove.  Interestingly, however, setting zero wind for Julian days 118.0 to 

118.5 resulted in similar results as zero wind for one day after the spill (Julian day 117.5 to 

118.5), which indicates that the driving force for slowing down the arrival time is within that 

window of time. 
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Figure 4.34: 2003 Spring comparison of contaminant concentration behavior at 

Cosgrove by varying wind speed with spill on Julian Day 117 

 

Investigating the wind speed and direction for the two days after the spill help identify the 

driving force behind the early arrival time of the spill at the Cosgrove intake.  Figure 4.35 

presents the “wind rose” for Julian days 117.5 to 118.9, where the axis units are in meters per 

second and the direction is the actual direction of the wind, not where the wind is coming from.  

Setting wind to zero for Julian days 117.0 to 118.9  delays the arrival time by about a day, 

however the wind rose data do not give any insight as to why. Further investigation found that 

removing wind speed for Julian day 118.0 to 118.5 resulted in similar results as removing wind 

speed for the entire two days after the spill.  The wind rose shows that during Julian day 118.0 to 

118.5 the wind is primarily an easterly wind.  Based on this it is intuitive that the arrival time at 

Cosgrove is earlier because that is the direction of the Cosgrove Intake from the spill location at 

the Route 140 bridge. 
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Figure 4.35: Wind Rose (m/s) for Julian Day 117.5 to 118.9  

 

4.5.2 Modeled Year 2007 Spring Warm Spill 

 

The Spring 2007 warm spill simulation resulted in an unusually short arrival time of two days, 

similar to the Spring 2003 warm spill.  An analysis was conducted similar to the prior analysis of 

the Spring 2003 spill by selecting specific periods of time to force zero wind in order to identify 

the wind influence; results are presented in Figure 4.36.  The spill occurs on Julian day 119, and 

the time period of interest is two and one half days after the spill, or Julian days 119.5 to 121.9.  

The first test was to set wind to zero for Julian day 119.5 to 121.9 which resulted in an increase 

in arrival time from two days to about four and one half days, which indicates that wind is the 

key factor behind the early arrival time.  However, other sections of time were selected to set the 

wind to zero and there is no twelve hour period of time that affects the arrival time significantly 

as was found for the Spring of 2003. 
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Figure 4.36: 2007 Spring comparison of contaminant concentration behavior at 

Cosgrove by varying wind speed with spill on Julian day 119 

 

In order to find out why there is no one short period of time that influences the spill behavior 

significantly, a modified wind rose was produced as for the Spring 2003 case, with the wind 

direction showing the actual direction the wind is traveling.  The wind is in a general easterly 

direction, however, there are variations north and south quite a bit.  Under investigation, 

however, it can be seen that from Julian day 120.0 to 120.5 the direction is a south east direction, 

which would be in the direction from the spill location to the South Basin.  From Julian day 

120.5 to 121.0 there is a general easterly direction, which is the direction from the beginning to 

the middle of the South Basin.  Under further inspection, the wind direction on Julian day 121.0 

to 121.5 is in a northeast direction, which is the direction the contaminant would need to travel 

from the South Basin to the North Basin.  The Wachusett Reservoir makes a semi “U” shape, 

and the combination of wind directions and speeds could be the cause of the early arrival times. 
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Figure 4.37: Wind Rose (m/s) for Julian Day 119.5 to 121.9 
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5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Summary 
 

CE-QUAL W2 Models were successfully generated for calendar years 2007 and 2008 by 

matching water surface elevations as well as temperature and specific conductance 

measurements within the Wachusett Reservoir.  Error between measured and calculated water 

surface elevations was minimized by an optimization model in the water balance that adjusts 

inflow calibration factors to minimize the sum of square residuals.  CE-QUAL W2 parameters 

were adjusted to minimize error between temperature and specific conductance profiles 

measured in the North Basin by MWRA.  This was accomplished by a sensitivity analysis of 

specific parameters, which included varying a single parameter and comparing the results to 

other simulations that varied the same parameter, thus finding results that minimized error. 

Contaminant spill scenarios were modeled using CE-QUAL W2 and behavior at the Cosgrove 

Intake was analyzed for calendar years 2003 to 2008 under a variety of conditions.  The various 

scenarios included density of the contaminant, seasonal trends, Quabbin transfer, daily variation, 

high inflow events, and wind influence.  Every spill scenario occurred at the Rt. 140 Bridge 

because it was determined to be at high risk site for vehicles, and the contaminant was modeled 

as a conservative tracer (non-reactive).  Simulated contaminant concentrations at the Cosgrove 

Intake were analyzed to determine arrival time and behavior patterns under the various 

conditions for all modeled years. 
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5.2 Conclusions 
 

The various scenarios included density of the contaminant, seasonal trends, Quabbin transfer, 

daily variation, high inflow events, and wind influence.  It was determined that the density of the 

contaminant  had an effect in the Spring and Summer seasons, with no effect in the Fall season 

with respect to arrival time and behavior at the Cosgrove Intake.  A spill that transports on the 

top of the water column (low density/high temperature spill) typically arrives earlier in the 

Spring and Summer seasons due to exposure to meteorological conditions, while a contaminant 

spill that travels in the middle and  bottom of the water column (medium and high 

density/medium and low temperature spills) typically has arrival times later than a warm spill 

with similar behavior due to the hydrological conditions within the reservoir.  

The newly modeled years 2007 and 2008 were added to update the seasonal patterns developed 

by Sojkowski (2011), establishing a Spring arrival time of two to five days after the spill, a 

Summer arrival of five to fourteen days, and a Fall arrival of four to ten days.  The seasonal 

patterns were assessed by selecting one day for each season and year to represent the entire 

season for the selected year.  To determine variability within a season, daily variations were 

evaluated in order to identify differences in behavior if spills occurred over a twenty day time 

period; it was found that some years may have similar arrival times and behaviors, while other 

years/seasons were found to have quite variable arrival times and behavior due to the 

meteorological and hydrological conditions during the time period.   It was found that the arrival 

time window for seasons could be lengthened by one to two days, however, the results never led 

to a shorter arrival time.  
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The Quabbin transfer was found to have a significant impact on the behavior of the contaminant 

spill during the summer months, where the variability in spill concentration at the Cosgrove 

Intake is dampened when the Quabbin Aqueduct is shut off twelve hours after the spill occurs, 

however, little to no impact on the arrival time period was found.   

High inflow events correlate to storm events and were investigated because of the increase risk 

of a tanker truck accident.  The results indicate that the high inflow events dictate when the spill 

will arrive and how it will behave with minor dependence on the spill date in a five day period 

around the date of the storm.   

Wind was determined to have a significant role in the arrival time of surficial spills; given the 

appropriate meteorological conditions,  wind can produce arrival times as early as two days after 

the spill occurs.  

 

5.3 Recommendations 
 

Future work should include further exploration of each of the scenarios investigated by this 

report for additional years to develop and strengthen the knowledge obtained by this continuing 

project.  Additional work could include modeling of Giardia cysts due to increase concentrations 

measured recently in tributaries and  at the Cosgrove Intake.  In addition, it is recommended that 

DCR and MWRA increase the frequency of measured temperature and specific conductance data 

and take measurements in the South Basin for better calibration of the CE-QUAL W2 model.  
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APPENDIX A - TIME SERIES OF MAJOR INFLOWS/OUTFLOWS 
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A. 1: Major Inflows into the Wachusett Reservoir for 2003 

 

A. 2 Major Inflows into the Wachusett Reservoir for 2004 
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A. 3: Major Inflows into the Wachusett Reservoir for 2005 

 

 

A. 4: Major Inflows into the Wachusett Reservoir for 2006 
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A. 5: Major Inflows into the Wachusett Reservoir for 2007 

 

 

A. 6: Major Outflows into the Wachusett Reservoir for 2003 
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A. 7: Major Outflows into the Wachusett Reservoir for 2004 

 

 

A. 8: Major Outflows into the Wachusett Reservoir for 2005 
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A. 9: Major Outflows into the Wachusett Reservoir for 2006 

 

 

A. 10: Major Outflows into the Wachusett Reservoir for 2007 
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APPENDIX B - WACHUSETT RESERVOIR CAPACITY AND ELEVATION 

FROM MWRA 
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B 1 – Wachusett Reservoir new capacity versus elevation graph 
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