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ABSTRACT 

MITOCHONDRIAL DNA POLYMERASE IB: FUNCTIONAL 

CHARACTERIZATION OF A PUTATIVE DRUG TARGET FOR AFRICAN 

SLEEPING SICKNESS 

 

 MAY 2011 

 

DAVID F. BRUHN, B.S., MARYWOOD UNIVERSITY 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Michele M. Klingbeil 

 

 

Trypanosoma brucei and related parasites are causative agents of severe diseases 

that affect global health and economy. T. brucei is responsible for sleeping sickness in 

humans (African trypanosomiasis) and a wasting disease in livestock. More than 100 

years after T. brucei was identified as the etiological agent for sleeping sickness, 

available treatments remain inadequate, complicated by toxicity, lengthy and expensive 

administration regiments, and drug-resistance. There is clear need for the development of 

a new antitrypanosomal drugs.  Due to the unique evolutionary position of these early 

diverging eukaryotes, trypanosomes posses a number of biological properties 

unparalleled in other organisms, including humans, which could prove valuable for new 

drug targets. One of the most distinctive properties of trypanosomes is their 

mitochondrial DNA, called kinetoplast DNA (kDNA). kDNA is composed of over five 

thousand circular DNA molecules (minicircles and maxicircles) catenated into a 

topologically complex network. Replication of kDNA requires an elaborate 

topoisomerase-mediated release and reattachment mechanism for minicircle theta 

structure replication and at least five DNA polymerases. Three of these (POLIB, POLIC, 
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and POLID) are related to bacterial DNA polymerase I and are required for kDNA 

maintenance and growth. Each polymerase appears to make a specialized contribution to 

kDNA replication.  

The research described in this dissertation is a significant contribution to the field 

of kDNA replication and the advancement of kDNA replication proteins as putative drug 

targets for sleeping sickness.  Functional characterization of POLIB indicated that it 

participates in minicircle replication but is likely not the only polymerase contributing to 

this process. Gene silencing of POLIB partially blocked minicircle replication and led to 

the production of a previously unidentified free minicircle species, fraction U. 

Characterization of fraction U confirmed its identity as a population of dimeric 

minicircles with non-uniform linking numbers. Fraction U was not produced in response 

to silencing numerous other previously studied kDNA replication proteins but, as we 

demonstrated here, is also produced in response to POLID silencing. This common 

phenotype led us to hypothesize that POLIB and POLID both participate in minicircle 

replication. Simultaneously silencing both polymerases completely blocked minicircle 

replication, supporting a model of minicircle replication requiring both POLIB and 

POLID. Finally, we demonstrate that disease-causing trypanosomes require kDNA and 

the kDNA replication proteins POLIB, POLIC, and POLID. These data provide novel 

insights into the fascinating mechanism of kDNA replication and support the pursuit of 

kDNA replication proteins as novel drug targets for combating African trypanosomiasis. 
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CHAPTER 1 

UNIQUE BIOLOGICAL PROPERTIES PROVIDE POTENTIAL NEW DRUG 

TARGETS FOR THE TREATMENT OF AFRICAN SLEEPING SICKNESS 

1.1 Kinetoplastid Parasites and Neglected Tropical Diseases 

Neglected Tropical Diseases (NTDs) are a group of chronic infectious diseases 

affecting some of the world’s poorest populations (Payne & Fitchett, 2010). An estimated 

2.7 billion persons (approximately 14-28% of the global population) are affected by 

NTDs (Hotez et al., 2009). Of these at risk individuals, more than 1 billion are already 

infected with at least one NTD (Payne & Fitchett, 2010). More so than direct medical 

expenses, the greatest cost of NTDs is their economic burden (Boelaert et al., 2010). 

Time lost from work during infection and the inability to return to work following 

infection (due to blindness and disfigurement) compound desperate economic conditions 

in already impoverished communities (Zhang et al., 2010). The dire economic situation 

of peoples affected by NTDs has led to very little financial incentive for pharmaceutical 

investment in novel therapeutics. As a result, treatments for these truly socio-economical 

diseases remain hugely inadequate.  

NTDs are caused by a variety of organisms, ranging from viruses to eukaryotic 

parasites. Parasites belonging to the order Kinetoplastida are responsible for 3 of 17 

NTDs recognized by the World Health Organization. This group of single-celled 

eukaryotes are responsible for numerous diseases, including leishmaniasis (Leishmania 

ssp.), Chagas Disease (Trypanosoma cruzi), and Human African trypanosomiasis (HAT) 

(Trypanosoma brucei). In addition to devastating human diseases, kinetoplastid parasites 

also cause economically important diseases in livestock. T. brucei, for example, causes 
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sleeping sickness (trypanosomiasis) in humans and nagana in domestic animals. Given 

the lack of adequate treatment for HAT, it may be surprising that the cause of the disease 

and identification of its insect vector have been known for over a century (Cox, 2004, 

Bruce, 1895).  

1.2 Human African Trypanosomiasis 

Human sleeping sicknesses are caused by two subspecies of T. brucei that vary in 

their geographic distribution and clinical manifestation. T. brucei gambiense is found in 

Central and Western Africa, where it causes chronic sleeping sickness and extended 

mortality. Symptoms of chronic sleeping sickness can last for years. In Southern and East 

Africa, T. brucei rhodesiense is responsible for high mortality. This subspecies causes a 

rapidly progressing form of the HAT that leads to death within weeks or months of 

infection. Left untreated, infection with either T.b. gambiense and T.b. rhodesiense is 

absolutely fatal (Baral, 2010). Despite differences in epidemiological properties, T.b. 

gambiense and T.b. rhodesiense are morphologically indistinguishable and share a 

common lifecycle that is absolutely dependent upon development in its insect vector, the 

tsetse fly (Fig. 1.1) (Wang, 1995). Tsetse flies are large, bloodsucking insects found in 37 

countries in the African continent (Van den Bossche et al., 2010, Ilemobade, 2009). 

When an infected fly takes a blood meal from a mammalian host, metacyclic stage 

parasites are injected into subcutaneous tissues including blood and lymph systems. Here, 

the parasites begin to divide and differentiate into a long, slender form know as 

trypomastigotes, or bloodstream form (BF). In this early stage of the disease, known as 

the haemolymphatic phase, BF parasites are restricted to the blood and lymph system 

where they cause fever, headache, pruritus (itching), and joint pain (Steverding, 2008). In 
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untreated patients, proliferating BF parasites cross the blood-brain barrier and enter the 

cerebrospinal fluid. After passing the blood-brain barrier, the parasites disrupt normal 

neurological and endocrine function, resulting in coma and, eventually, death (Wang, 

1995, Steverding, 2008, Baral, 2010). Some of the BF parasites proliferating in the blood 

differentiate into a non-proliferative, stumpy form. When a tsetse fly draws a bloodmeal 

from an infected mammal and ingests stumpy form parasites, the parasites differentiate 

into the epimastigote form in the fly midgut. The parasite’s complex lifecyle is completed 

when epimastigotes migrate into the fly’s salivary gland, where they differentiate into the 

mammalian-infectious metacyclic stage (Baral, 2010).  

1.3 A Limited Arsenal of Anti-Trypanosomal Drugs 

Like many NTDs, treatment options for HAT are antiquated and ineffective. The 

choice of treatment depends upon disease progression. Early, haemolymphatic stage, 

infections are treated using the drugs suramine and pentamidine. Suramine was 

introduced by Bayer in 1916 and is still used today (Steverding, 2008). Given the long 

history of suramin use, it is not surprising that suramin-resistant parasites have been 

reported both in the clinic and in a laboratory setting. Suramin treatments are extensive 

and last up to 30 days, complicating patient compliance (Brun et al., 2010). Sleeping 

sickness patients in central and western Africa often suffer from co-infection with 

roundworm species (Onchocerca ssp.). The high activity of suramin against Onchocerca 

ssp. is known to lead to dangerous allergic reactions, precluding the use of the drug in 

areas affected by T.b. gambiense (Brun et al., 2010). Early stage cases of T.b. gambiense, 

which represent 90% of total cases, are treated using pentamidine (Aksoy, 2011). 

Pentamidine is the treatment of choice for early stage T.b. gambiense infections, but the 
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course of administration is cumbersome and requires 7 consecutive days of intramuscular 

injections. Long-term culture of BF parasites in the presence of subcurative levels of 

pentamidine successfully selects for pentamidine-resistant parasites, raising concerns that 

drug resistant parasites could also be selected during patient treatment (Bernhard et al., 

2007). The same study showed that resistance to melarsoprol, introduced in 1949 to treat 

late-stage infections, could also be acquired in vitro (Bernhard et al., 2007). Recent 

efforts to replace melarsoprol as the first-line drug to late-stage infections have been 

driven by concerns of reported clinical drug resistance and the highly toxic nature of this 

organoarsenic compound (Brun et al., 2010, Delespaux & de Koning, 2007). Following 

administration of melarsoprol 5-10% of patient are afflicted with severe encephalopathy, 

50% of which die from the treatment (Barrett et al., 2007). A safer alternative to 

melarsoprol became available in 1990 with the introduction of eflornithine. Originally 

marketed as a topical cream used to remove undesired facial hair (Vaniqa®), eflornithine 

was found effective treatment for trypanosomiasis in the late 1980s (Pepin et al., 1987). 

Largely the result of concerted WHO efforts, in the form of training programs and 

coordination of donations, the percentage of late-stage T.b. gambiense patients treated 

with eflornithine increased from 17% in 2003 to 62% in 2009 with a corresponding 

decline in the use of melarsoprol (Simarro PP, 2011). Although a safer alternative to 

melarsoprol, eflornithine treatment is cumbersome and requires intravenous 

administration every 6 hours for 14 days (Priotto et al., 2009, Kennedy, 2008). Despite 

severely limited treatment options the number of cases of sleeping sickness continues to 

decline from the more recent epidemic, which peaked in the late 1990s with an estimated 

300,000-500,000 annual infections (WHO, 1998, Kennedy, 2008). The recent decline in 
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the number of cases of sleeping sickness reflects the successful implementation of disease 

education, surveillance, combination therapies, control efforts, and drug administration 

programs (Aksoy, 2011, Simarro PP, 2011).  These advances, however, by no means 

indicate a diminished need for the development of novel anti-trypanosomal drugs (Aksoy, 

2011). Current treatments for both early and late-stage sleeping sickness are time and 

resource intensive, dependent upon patient compliance and continued drug donations 

from pharmaceutical manufacturers (such as Sanofi-Aventis and Bayer) (Aksoy, 2011). 

Given the severely limited number of treatments available for treating sleeping sickness 

and the constant threat of acquired drug-resistance, there is a clear and critical need for 

the development of the next generation of drugs for combating this medically and 

economically devastating disease. 

 

1.4 Kinetoplast DNA: Structure and Function 

  Kinetoplastid parasites possess a number of unusual biological features without 

counterpart in nature that could be exploited for the development of novel drugs. One of 

the most notable features, after which the group is named, is its mitochondrial DNA 

network. Known as kinetoplast DNA (kDNA), this network is composed of thousands of 

circular DNA molecules catenated into a structure with topology likened to that of 

medieval chain mail (Morris et al., 2001). Although isolated kDNA networks are of 

similar size to the cell from which they were extracted, in vivo the network is compacted 

into a disk-shaped structure close to the flagellar basal body. kDNA is found in T. brucei, 

T. cruzi, and Leishmania ssp, as well as non-infectious kinetoplastids. The relatively 
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recent availability of RNA interference (RNAi) and ease of cell culture has made T. 

brucei the model organism of choice for many kinetoplastid research groups.  

 The two DNA components of kDNA networks are known as maxicircles and 

minicircles. In each T. brucei network there are approximately 40-50 maxicircles, each 

~23 kb in length (Morris et al., 2001). Maxicircles are identical in sequence and are 

similar to other eukaryotic mitochondrial DNA in that they encode numerous proteins 

involved in respiration. This includes seven subunits of Complex I (NADH:Ubiquinone 

oxireductase 1,3-5, 7-9), one subunit of Complex III (apocytochrome b), three subunits of 

Complex IV (cytochrome oxidase I-III), and as well as a subunit of Complex V (Subunit 

A6). Maxicircles also encode proteins involved in mitochondrial translation, including 

ribosomal protein RPS12 and ribosomal RNAs 9S and 12S. In addition to these more 

typical mitochondrial genes, maxicircles encode five open reading frames of unknown 

function. Three of these are known as MURFs (maxicircle unidentified reading frames; 

MURF1, MURF2, MURF5) while the other two are GC-rich sequences called CR3 and 

CR4. Experiments elucidating the functions of these reading frames will increase 

comprehension of maxicircles products and, so, mitochondrial function in trypanosomes. 

Predicting the function of maxicircle-encoded proteins is made both complicated 

and intriguing by the propensity of maxicircle transcripts to require post-transcription 

editing. This process, known as RNA editing, involves the insertion and deletion of 

uridines to create a final open reading frame that can be translated at the ribosome. RNA 

editing is restricted to maxicircle transcripts. Not all nascent transcripts are edited 

equally. Only portions of apocytochrome b and cytochrome oxidase subunit II are edited, 

whereas the entire length of other transcripts is edited (Fisk et al., 2008). The later 
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scenario is called pan-editing and has long been hypothesized a means for parasites to 

increase mitochondrial protein diversity. Indeed a recent study revealed that alternative 

editing of cytochrome c oxidase III (COXIII) produces a protein (alternatively edited 

protein 1, or AEP1) required for segregation of replicated kDNA networks (Ochsenreiter 

et al., 2008).  

The insertion and deletion of uridines during RNA editing is by no means a 

random process. RNA editing is, rather, a highly coordinated process directed by trans-

acting RNAs (guide RNAs) encoded by the minicircle component of the kDNA network. 

T. brucei kDNA networks include about 5000 minicircles, each ~1kb in length. Given 

that there are more than 250 sequence classes of minicircles in T. brucei and that each 

minicircle encodes for 3 guide RNA molecules, it seems the field has only scratched the 

surface in regards to the potentially vast pool of proteins produced by alternative editing 

of maxicircle transcripts. Nonetheless, the clear dependency of nascent maxicircle 

transcripts upon minicircle-encoded guide RNAs indicates that both species are required 

for proper mitochondrial physiology and, hence, parasite viability. 

1.5 Replication of Kinetoplast DNA Networks 

In addition to its unique topology, kDNA is distinct from other mitochondrial 

genomes in that it is only replicated once per cell cycle, in close coordination with 

nuclear S-phase. In vivo, kDNA networks are compacted into a disk-shaped structure by 

histone-like proteins and each of the network’s 5000 minicircles is catenated to three 

other minicircleds. To overcome the challenges presented by complex topology and 

dense packaging of kDNA networks, trypanosomes use a network-free mechanism of 

DNA replication in which minicircles are releases, replicated, and then re-attached to the 
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network. kDNA replication initiates just prior to nuclear S-phase and begins with the 

vectoral release of minicircles from the network by a yet unidentified topoisomerase. 

Minicircles are released in a specialized region of the cell know as the kinetoflagellar 

zone (KFZ), which is located between the kDNA disk and the flagellar basal body. 

During release, minicircles encounter Universal Minicircle Sequence Binding Protein 

(UMSBP), a replication initiation protein that binds to a  region conserved in all 

minicircles, and an RNA primase (PRI2), which synthesizes RNA primers. Primed 

minicircles are replicated unidirectionally as theta structures in the KFZ, where minicircle 

replication intermediates have been detected and two DNA polymerase (POLIB and 

POLIC) have been localized. Replication of each minicircle produces two daughter 

minicircles. Daughter minicircles migrate to antipodal sites, two protein-rich sites located 

180 degrees apart on opposite sides of the kDNA disk. Here, Structure Specific 

Endonuclease I (SSEI) removes RNA primers and Okazaki fragments are processed. 

During Okazaki fragment processing, DNA Polymerase ! and DNA ligase k! fill all but a 

single gap in the backbone of progeny minicircles, which are then re-attached to the 

network periphery. The single gap remaining on replicated minicircles is proposed to 

serve as a book keeping mechanism (preventing re-replication) and is filled by DNA 

polymerase !-PAK and DNA ligase k" only once all network minicircles been replicated. 

Double-sized kDNA networks are physically attached to the cell’s two flagellar basal 

bodies via a transmembrane filament system known as the tripartite attachment complex 

(TAC). As the cell proceeds through cytokinesis, movement of flagellar basal bodies 

separates the double-sized kDNA network into individual networks and pulls these into 

the two daughter cells. Maxicircle replication is far less understood, but it is known that 
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maxicircles replicate attached to the kDNA network and that an RNA primase (PRI1) 

participates in the initiation of maxicircle replication. 

1.6 Polymerase I – Like Enzymes   

Early biochemical and genetics attempts to identify a polymerase !-like protein 

from trypanosomes were unsuccessful, despite the participation of polymerase ! as the 

sole enzyme replicative enzyme in mitochondrial DNA replication in other known 

eukaryotes (Klingbeil et al., 2002). Surprisingly, classical (activity-based) purification 

from T. brucei mitochondrial extracts revealed two peaks corresponding to Pol " activity 

as well as additional, distinct peaks of polymerase activity in other fractions (Fuenmayor 

et al., 1998). While the two classically purified Pol " enzymes (Pol " and Pol "-PAK) 

were proposed to contribute to Okazaki fragment processing, insight into the identities of 

the additional mitochondrial DNA polymerases came later, from analysis of the partially 

sequenced T. brucei genome. Sequence analysis confirmed the absence of a discernable 

polymerase ! homologue, and verified the presence of two distinct Pol " enzymes. 

Unexpectedly, however, this analysis revealed the presence of a four additional DNA 

polymerases predicted to localize to the parasite’s single mitochondrion. Reflecting their 

25-35% sequence identity to bacterial polymerase I, these DNA polymerases were named 

POLIA, POLIB, POLIC, and POLID and confirmed, by fluorescence microscopy, to 

localize to the mitochondrion (Klingbeil et al., 2002). POLIA and POLID were reported 

to localize throughout the mitochondrial matrix while POLIB and POLIC were found to 

localize proximal to the KFZ, where minicircles are replicated. Sequence analysis 

revealed that all four Pol I-like proteins contained amino acids critical for polymerase 

activity, including two aspartic acid residues required for coordination of Mg
2+

, 
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stabilizing transition states during nucleotide incorporation (Klingbeil et al., 2002). It was 

therefore possible that one, or all, of these Pol-I like polymerase participates in kDNA 

replication. 

RNAi was used to individually silence each Pol I-like protein in order to dissect 

out their unique (and potentially overlapping) functions. Initial studies (conducted in 

procyclic parasites) indicated that POLIB, POLIC, and POLID are required for T. brucei 

cell growth. Silencing each essential polymerase resulted in a progressive loss of kDNA 

networks, indicating that each makes a non-redundant contribution to kDNA maintenance 

(Klingbeil et al., 2002). Detailed analyses of the function of POLIC and POLID revealed 

a perturbation of the abundance of free minicircle species during RNAi, but did not 

indicate that minicircle replication is blocked in the absence of either enzyme. (Chandler 

et al., 2008, Klingbeil et al., 2002). These studies suggested that an additional Pol was 

functioning at the minicircle replication fork. POLIB, localizes to KFZ and possesses 

sequence motifs and residues predicted critical for both DNA Polymerase activity and 

proofreading exonuclease (Klingbeil et al., 2002). It is, therefore, plausible that POLIB 

performs a critical role at the core of minicircle replication.  

 

1.7 Purpose of Study 

The following dissertation research was conducted with the goal of deepening the 

understanding of the molecular events underlying replication of kDNA, the most complex 

mitochondrial genome known. The proteins and molecular mechanism involved in kDNA 

replication are unparalleled in higher eukaryotes (including humans), suggesting that 

kDNA replication enzymes could be valuable targets for the development of novel anti-
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parasitic drugs.  Given this intended application and long-standing concerns that kDNA 

could be dispensable in the medically relevant lifecycle stage of T. brucei, a second major 

aim of this research was to determine if disruption of kDNA replication is lethal to the 

form of the parasite that proliferates in the blood of an infected host and causes disease. 

1.8 Research Questions 

The following dissertation research addresses three major questions: 

1. What contributions does Mitochondrial DNA Polymerase IB make to 

minicircle replication? 

2. Do two or more mitochondrial DNA polymerases participate in minicircle 

replication? 

3. Are Mitochondrial DNA Polymerases IB, IC, and ID required for survival of 

bloodstream form Trypanosoma brucei? 

 

1.9 Significance of Findings 

In the absence of product markets attractive to the pharmaceutical industry, the 

pursuit of badly needed drugs to combat Neglected Tropical Diseases has largely fallen to 

the academic research community. Ninety-percent of candidate drugs that enter clinical 

trials fail and this failure is frequently attributed to a lack of understanding the 

compound’s biological target and mode of action. Rational, target-based approaches to 

drug discovery, therefore, offer a means to improve the odds of a candidate drug 

successfully gaining approval for clinical use. To this end, the research presented in 

following dissertation is directed at expanding comprehension of the molecular 
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mechanism of kDNA replication. The current study is a significant addition to the 

scientific community in that it both deepens knowledge of the molecular biology of 

kDNA replication and encompasses in vitro validation of kDNA replication proteins as 

drug targets in disease-causing trypanosomes. 
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Figure 1.1 Representation of Trypanosoma brucei metabolism and morphology in 

two distinct life cycle stages 

Diagram illustrating morphology of Procyclic and Bloodstream form T. brucei. Stage 

specific differences are described and referenced in the Introduction. 
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CHAPTER 2 

MITOCHONDRIAL DNA POLYMERASE POLIB IS ESSENTIAL FOR 

MINICIRCLE REPLICATION IN AFRICAN TRYPANOSOMES 

2.1 Abstract 

The unique mitochondrial DNA of trypanosomes is a catenated network of 

minicircles and maxicircles called kinetoplast DNA (kDNA). The network is essential for 

survival, and requires an elaborate topoisomerase-mediated release and reattachment 

mechanism for minicircle theta structure replication.  At least seven DNA polymerase 

(pols) are involved in kDNA transactions, including three essential proteins related to 

bacterial DNA pol I (POLIB, POLIC and POLID).  How Trypanosoma brucei utilizes 

multiple DNA pols to complete the topologically complex task of kDNA replication is 

unknown. To fill this gap in knowledge we investigated the cellular role of POLIB using 

RNA interference (RNAi).  POLIB silencing resulted in growth inhibition and 

progressive loss of kDNA networks. Additionally, unreplicated covalently closed 

precursors become the most abundant minicircle replication intermediate as minicircle 

copy number declines. Leading and lagging strand minicircle progeny similarly declined 

during POLIB silencing, indicating POLIB had no apparent strand preference.  

Interestingly, POLIB RNAi led to the accumulation of a novel population of free 

minicircles that is composed mainly of covalently closed minicircle dimers.  Based on 

these data, we propose that POLIB performs an essential role at the core of the minicircle 

replication machinery. 
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2.2 Introduction 

  The African trypanosome Trypanosoma brucei is the protist parasite responsible 

for the neglected tropical disease known as sleeping sickness and a related disease in 

livestock called nagana.  With no vaccine for this fatal disease, current drug treatments 

that are toxic, and emerging drug resistant parasites, there is a concerted effort to identify 

and validate new molecular targets for development of the next generation of therapeutic 

interventions.  T. brucei and closely related trypanosomatid parasites (T. cruzi and 

Leishmania ssp.) are interesting experimental organisms because of their impact on 

global human health and as early diverging eukaryotes.  Their long and independent 

evolutionary history has resulted in a number of unusual biological properties that can be 

exploited as drug targets.  One property without counterpart in nature is the kinetoplast 

DNA (kDNA) network that resides in the cell's single mitochondrion.  

The structure and replication of kDNA have been reviewed extensively (Shlomai, 

2004, Liu et al., 2005).  The trypanosomatid kDNA is a planar structure composed of 

relaxed circular DNA molecules (5000 minicircles and 25 maxicircles) that are 

topologically interlocked into a single network, and is considered the most complex 

among mitochondrial genomes. Several histone-like proteins help condense the network 

into a disk-shaped structure within a specialized region of the mitochondrial matrix, 

which is linked to the flagellar basal body through the transmembrane tripartite 

attachment complex (TAC) (Xu et al., 1996, Lukes et al., 2001, Ogbadoyi et al., 2003).  

Maxicircles (23 kb) resemble other mitochondrial DNAs in that they encode rRNA and a 

few subunits of respiratory complexes (Lukes et al., 2005).  However, most maxicircle 

transcripts require editing, a process that involves minicircle encoded gRNAs that direct 
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the proper insertion or deletion of uridine residues to create open reading frames (Stuart 

et al., 2005).  Parasite survival requires the kDNA network (Sela et al., 2008), therefore 

understanding the replication and repair mechanisms of this unique DNA structure is an 

important aspect of trypanosome biology. 

For this single celled eukaryote, network replication requires the coordinated 

replication of each maxicircle and minicircle in close synchrony with nuclear S phase, 

and segregation of progeny networks into daughter cells via the basal body associated 

TAC (Woodward & Gull, 1990, Robinson & Gull, 1991).  The topological complexity of 

replicating a catenated DNA network dictates some unusual features such as the elaborate 

topoisomerase II-mediated release-and-reattachment mechanism for minicircle 

replication, and at least seven mitochondrial DNA polymerases (pols) for kDNA 

transactions (Klingbeil et al., 2002, Saxowsky et al., 2003, Rajao et al., 2009). In brief, 

individual covalently closed minicircles are released from the network into a region 

between the kDNA disk and the mitochondrial membrane near the flagellar basal body 

called the kinetoflagellar zone (KFZ) (Drew & Englund, 2001).  The free minicircles 

initiate unidirectional theta replication at the conserved universal minicircle sequence 

(UMS) through interactions with several proteins that localize to the KFZ including UMS 

binding protein, DNA primase, and two family A DNA pols, POLIB and POLIC (Abu-

Elneel et al., 2001, Li & Englund, 1997, Klingbeil et al., 2002).  Replication of circular 

DNA molecules imposes additional topological complexities including supercoiling and 

formation of pre-catenanes that must be resolved for proper replisome progression and 

successful segregation of progeny molecules.  The recent report on the essential role of 

mitochondrial topoisomerase IA for minicircle theta structure resolution highlights the 
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roles of kDNA modifying enzymes in network replication (Scocca & Shapiro, 2008).  

Okazaki fragment processing of progeny minicircles is mediated by structure specific 

endonuclease 1, pol !, and DNA ligase k! at two antipodal sites flanking the kDNA disk 

(Hines et al., 2001, Engel & Ray, 1999, Ferguson et al., 1992, Downey et al., 2005).  

Minicircles that still contain at least one gap are subsequently reattached to the network 

periphery by topoisomerase II localized at the antipodal sites (Melendy et al., 1988).   

When all minicircles have replicated and reattached, the discontinuities are presumably 

closed by pol !-PAK and DNA ligase k" prior to segregation of progeny networks 

(Saxowsky et al., 2003, Sinha et al., 2006).  

Although recent proteomic and bioinformatics approaches have led to the 

identification of several new minicircle replication proteins such as p38 and p93 (Li & 

Englund, 1997, Liu et al., 2006, Li et al., 2007), characterization of the processive 

minicircle replisome has remained elusive.  Our lab studies four family A DNA pols that 

are related to bacterial pol I and localize to the mitochondrion. Three (POLIB, POLIC, 

and POLID) are essential for parasite growth, suggesting each performs a specialized 

function (Chandler et al., 2008, Klingbeil et al., 2002).  The fourth, POLIA, is non-

essential under normal growth conditions and may contribute to kDNA repair.  The use 

of multiple DNA pols in mitochondrial DNA replication has never been documented in 

other eukaryotes; instead a single DNA polymerase, pol gamma, is used for replication 

and repair.  Previous studies using RNA interference (RNAi) indicated that POLIC and 

POLID are required for kDNA maintenance, but suggested that an additional pol was the 

primary minicircle replicase.  The third pol I-like protein, POLIB, localizes to the KFZ 

where free minicircle replication intermediates are detected and contains amino acid 
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residues critical for proofreading exonuclease and DNA polymerase activities suggesting 

it is an ideal candidate for the minicircle replicative DNA polymerase.   

In the present study we report a detailed analysis of the in vivo role of POLIB and 

its contributions to the complex process of minicircle replication using a RNAi-based 

approach. POLIB silencing resulted in loss of the kDNA network and greatly disrupted 

the pattern of minicircle replication intermediates.  Depletion of POLIB also led to the 

accumulation of both unreplicated minicircle monomers and fraction U, a new free 

minicircle species. Despite the presence of six other mitochondrial DNA pols, none were 

able to effectively compensate for the loss of POLIB.  These data suggest that POLIB 

serves a critical role at the core of the minicircle replication machinery. 

2.3 Material and Methods 

2.3.1 Trypanosome growth 

T. brucei procyclic cell line 29-13 expressing T7 RNA polymerase and 

tetracycline repressor was maintained at 27°C in SDM-79 medium (Wirtz et al., 1999, 

Brun & Schonenberger, 1979) supplemented with heat-inactivated fetal bovine serum 

(15%), G418 (15 µg/mL), and hygromycin (50 µg/mL).   

2.3.2 RNA interference  

The pSLIB vector produces an intramolecular stemloop double-stranded RNA to 

target the mitochondrial DNA polymerase POLIB (Tb11.02.2300) and was constructed as 

previously described (Wang et al., 2000).  Briefly, 500 bp of TbPOLIB coding sequence 

(nucleotides 275-774) was PCR amplified from T. brucei 927 genomic DNA using 

primers with appropriate restriction enzyme linkers (forward: 5'-
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AAGATGAGCGTGTCAACGAGG-3' and reverse: 5'-

GGTAAACCGTGGCGCGACGGAGG-3') to generate the two fragments for subsequent 

cloning steps.  This was the same region used for the pZJMIB vector previously reported 

(Klingbeil et al., 2002). The resulting construct, pSLIB, contains two copies of the 

TbPOLIB fragment as inverted repeats separated by an unrelated stuffer fragment.  

EcoRV-linearized pSLIB (12 µg) was transfected into T. brucei 29-13 cells by 

electroporation, and the generation of stable cell lines by selection (2.5 µg/ml 

phleomycin) and limiting dilution were described in detail as previously reported 

(Chandler et al., 2008).  RNAi of TbPOLIB in clonal cell lines was induced by adding 

tetracycline (1.0 µg/ml).  Cell growth was monitored using a Z2 model Coulter Counter 

(Beckman Coulter), and cultures were maintained between 2.0 x 10
5
 - 1.0 x 10

7
 cells/ml.   

To avoid variation in sample preparations, staggered RNAi inductions were performed to 

process all time points on the same day. 

2.3.3 RNA isolation and Northern Analysis   

Total RNA was isolated from 5 x 10
7
 cells (mid-log phase) using the Purescript 

RNA isolation kit (Gentra Systems), fractionated on a 1.5% agarose/ 7% formaldehyde 

gel, and transfered to GeneScreen Plus membrane (NEN).  Specific mRNAs were 

detected with 
32

P-random primed labeled probes, and signals quantified as previously 

described (Chandler et al., 2008). 
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2.3.4 Microscopy Analysis and Quantitation  

Uninduced and POLIB RNAi induced cells were processed from staggered 

inductions.  Conditions for fixation, permeabilization and staining cells as well as the 

microscope equipment and camera software were as previously described (Chandler et 

al., 2008).  For quantitative analysis of kDNA network morphology, more than 300 cells 

per timepoint were scored by eye for size of the kDNA and other changes to kDNA 

morphology based on 4'-6'-diamidino-2-phenylindole (DAPI) fluorescence.  For cells 

classified with small kDNA (sK), the surface area of the network was at least 50% less 

than that found in uninduced cells.  For those classified with no kDNA (nK), there was no 

detectable extranuclear DAPI staining even when focusing up and down through several 

focal planes. 

2.3.5 DNA Isolation and Southern Blot Analysis  

Total DNA was isolated from 1 x 10
8
 cells using Purescript Genomic DNA 

isolation kit (Gentra Systems).  For Southern blot analysis of minicircle and maxicircle 

content, total DNA was digested with HindIII and XbaI for 24 hr, fractionated on a 1% 

agarose gel containing 1.0 µg/mL ethidium bromide (EtBr).  For analysis of free 

minicircle replication intermediates, total DNA was fractionated on a 1.5 % agarose gel 

for 16 hours at 2.4 V/cm including 1.0 µg/mL EtBr in the gel and Tris-Borate-EDTA 

(TBE) running buffer (buffer was recirculated).  Fractionated DNA was processed using 

standard depurination, denaturation, and neutralization treatments, transferred to 

GeneScreen Plus membrane using capillary transfer and then UV cross-linked.  

Membranes were probed with maxicircle, minicircle, and !-tubulin specific random 

primed radiolabeled probes as previously described (Chandler et al., 2008).  Quantitation 
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was performed using a Typhoon 9210 Molecular dynamics Phosphoimager (GE 

Healthcare) with background intensity subtracted, and normalized against the tubulin 

signal using ImageQuant 5.2 software.  

2.3.6 Neutral/Alkaline Two-Dimensional Analysis  

Total genomic DNA isolated from cells after 0, 4, and 6 days of POLIB RNAi 

was fractionated using two-dimensional electrophoresis as previously described (Liu et 

al., 2006, Ryan & Englund, 1989). Briefly, total DNA (3 x 10
7
 cells) was fractionated in 

the first dimension as described above. After 18 hr (2.5 V/cm), the gel was washed 2 

times in 50 mM NaOH, 1 mM EDTA, and then equilibrated with 3 washes in running 

buffer, (30 mM NaOH, 2 mM EDTA).  DNA was then separated for 20 hr (0.8 V/cm) in 

recirculating running buffer, processed, transferred and cross-linked to GeneScreen Plus 

membrane.  Hybridization with T4 polynucleotide kinase 5'-end labeled oligonucleotide 

probes 5'-AAAATAGCACGGGATTTGTGTATGGTGAAATCTGCACGCCC-3’ or 5’-

GGGCGTGCAGATTTCACCATACACAAATCCCGTGCTATT TT-3’ detected heavy 

(lagging) strand and light (leading) strand minicircle intermediates, respectively.   

 

2.3.7 Free minicircle isolation   

Cells (8 x 10
9
) were pelleted and washed in NET-100 (100 mM NaCl, 100 mM 

EDTA, 10  mM Tris-HCl, pH 8.0).  Cells were lysed for 1 hour at 56°C in NET-100 

containing 0.5% SDS and 200 µg/mL proteinase K and then treated with RNase A (500 

µg/mL, 30 min at 37˚C).  The lysates (3.5 ml/gradient) were loaded to the top of 34 mL 

linear 5%-20% sucrose gradients (TE, 1M NaCl) and centrifuged for 20 hours (4ºC at 
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25,000 x g) using a Beckman SW28 rotor.  Fractions (1 mL) were collected from the top 

of gradient.  To detect free minicircle species, 10 µl of each fraction was analyzed on a 

1.5% agarose gel followed by Southern blotting using a minicircle probe.  Fractions 

containing non-monomeric minicircle species (19-25) were pooled, concentrated using 

phenol:chloroform extraction (pH 8.0), ethanol precipitated and resuspended in TE.  This 

concentrated fraction U was then treated with proteinase K (500 µg/mL) and SDS (0.5%) 

for 2 hours at 56°C.  Proteinase K was brought to 1 mg/mL and the reaction incubated 

overnight at 56°C.  Deproteinated fraction U was then treated with RNase A (500 µg/mL, 

15 min at 37°C) followed by phenol:chloroform extraction, ethanol precipitation and 

hydration in 50 µl TE. 

2.3.8 Minicircle Treatments  

Minicircles (1.6x 10
7
 cell equivalent) were treated with 5 units of Topoisomerase 

I (NEB, 30 minutes at 37ºC), 10 units of topoisomerase II human alpha (USB, 15 minutes 

at 30ºC), or 5 units of T7 endonuclease (NEB, 37ºC) according to manufacturers 

instructions. All reactions were stopped by the addition of EDTA to 0.9 µM and 

incubation with proteinase K (Invitrogen, 0.5 mg/mL) at 56ºC for 20 minutes. 

2.3.9 Allelic Tagging of POLIC  

The C-terminal 2226 bp of TbPOLIC coding sequence was PCR amplified from 

T. brucei 927 genomic DNA using primers with appropriate restriction enzyme linkers 

underlined (forward: 5'-GGG CCC GTT CGC TCT ACG CAG GAT ATC AGC-3' and 

reverse: 5'-CGG CCG CCT GGA CAA CTC CCC TAG TGA TG-3’). The resulting 

fragment was restriction enzyme digested with ApaI and EagI and ligated into the pC-
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PTP-NEO, which had been restriction digested using ApaI and NotI.  The neomycin 

resistance cassette was liberated from pPOLIC-PTP-NEO by digestion with NdeI and 

SpeI and replaced with  the puromycin cassette, liberated from pN-PURO-PTP using 

these same restriction enzymes. The resulting construct, pPOLIC-PTP-PURO was 

linearized with AflII and transfected in the clonal cell line SLIB2C7.  Stable transfectants 

were selected using 1 µg/mL puromycin. 

2.3.10 Microscopy Analysis and Quantitation  

Uninduced and induced cells for the indicated days of POLIB RNAi were 

harvested by centrifugation, washed in PBS, spotted onto poly-L-lysine coated slides, and 

fixed using 4% paraformaldehyde.  After overnight permeabilization in methanol, cells 

were rehydrated with PBS.  Staining of basal bodies was carried out using rat monoclonal 

YL1/2 primary antibody (1:400, 60 min) and secondary polyclonal goat anti-rat Alexa 

488 secondary antibody (1:250, 60 min). YL1/2 recognizes the tyrosinated tubulin. 

Staining of POLIC-PTP was performed using rabbit monoclonal Anti-Protein A (1:5000, 

90 min) primary antibody and goat anti-rabbit Alexa 594 secondary antibody (1:250, 90 

min). Fixed cells were stained with 3 µg/mL DAPI and mounted in Vectashield. POLIC-

HA localization was also examined and was comparable to POLIC-PTP localization (data 

not shown).  Experiments presented are all based on POLIC-PTP. The pC-PTP-NEO and 

pN-PURO-PTP vectors were generously provided by Arthur Günzl (University of 

Connecticut Health Center). 
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2.3.11 Metabolic Labeling and Epitope Detection  

SLIB2C7 cells in mid-log phase were cultured for 3 hours in presence of 50 !M 

Bromodeoxyuridine (BrdU) and 50 !M deoxycytidine under otherwise normal growth 

conditions.  Cells were fixed and permeabilized as described above, then treated with 

1.5M HCl (30 min) to expose the BrdU epitope. Slides were incubated with anti-BrdU 

AlexaFluor 594 conjugate (Molecular Probes, 1:50), washed in 1X PBS with 0.1M 

glycine, and then incubated with AlexaFluor 594 goat anti-mouse IgG (Invitrogen, 1:50).  

2.3.12 Western Blot Analysis 

 Parasites were pelleted, washed in cytomix containing Protease Inhibitor Cocktail 

Set II (CalBioChem), and lysed by heating in sodium dodecyl sulfate (SDS) loading dye. 

Samples were separate using SDS-PAGE and transferred to PVDF membrane. 

Chemiluminescence detection of POLIC-PTP was performed using Peroxidase-Anti-

Peroxidase soluble complex (PAP) reagent (Sigma) at a dilution of 1:2000. Detected 

membrane was incubated for 15 minutes at 37°C in 100 mM Glycine (pH 2.5) to remove 

PAP.  Membrane was then incubated with primary antibody MCP72 (1:10000) followed 

by secondary chicken anti-rabbit IgG-HRP (Santa Cruz Biotechnology, 1:10000) to 

detect Hsp70, a loading control. Rabbit polyclonal antibody MCP72 was generously 

provided by Paul Englund (Johns Hopkins School of Medicine). 

2.3.13 Live Cell Imaging with MitoTracker  

Parasites were incubated in media containing 200 nM MitoTracker Red CM-

H2XRos (Molecular Probes) for 30 minutes and 50  µg/mL DAPI for 20 minutes covered 
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from light. Following incubation parasites were washed and then resuspended in cytomix, 

spotted on microscope slides, and immediately viewed.   

 

2.4 Results 

2.4.1 Stem-loop silencing of TbPOLIB  

Previous TbPOLIB silencing experiments using the pZJM vector, that produces an 

intermolecular dsRNA trigger, led to a reduced growth rate in procyclic cells and a small 

increase in the percentage of cells with abnormal sized kDNA networks.  While depletion 

of POLIB indicated an essential role for growth and suggested a role in kDNA 

maintenance, the resulting phenotype could not be fully characterized due to poor 

penetrance (Klingbeil et al., 2002). Therefore, the aim of this study was to more fully 

assess the cellular function of TbPOLIB, particularly its role in minicircle replication.  

A 500 bp fragment corresponding to 275-774 bp of the TbPOLIB coding sequence 

used to generate the previous pZJM construct was also used to generate the POLIB stem-

loop construct (Fig. 2.1A). The final construct (pSLIB) was transfected into 29-13 cells.  

Ten clonal SLIB cell lines were analyzed and all produced a similar pattern of growth 

inhibition with average doubling times of 13 hr for the uninduced cells (data not shown).  

Detailed phenotypic analyses using clonal line SLIB2C7 are presented. Tetracycline 

induction of the intramolecular stem-loop dsRNA resulted in growth inhibition starting 4 

to 5 days post-induction. This growth inhibition lasted for at least 10 days, while the 

growth rate of the uninduced population remained constant (Fig. 2.1B). The growth arrest 

for induced SLIB cells lagged behind the depletion of the target mRNA and was similar 
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to RNAi phenotypes of other replication proteins that result in kDNA loss (Downey et 

al., 2005, Li et al., 2007, Liu et al., 2006, Scocca & Shapiro, 2008, Wang & Englund, 

2001). Northern blot analyses revealed a 90% reduction of TbPOLIB mRNA 48 hr after 

tetracycline induction of dsRNA synthesis with no significant changes in the mRNA 

levels for the two other essential mitochondrial pols (TbPOLIC and TbPOLID) (Fig. 

2.1B, inset). Further indication that the observed RNAi phenotype is specifically due to 

downregulation of TbPOLIB, was obtained by chromosomally tagging TbPOLIC in the 

SLIB2C7 clonal cell line (Fig. 2.2). Kinetics of growth inhibition of this tagged cell line 

was comparable with parental SLIB2C7 (Fig. 2.2A). Silencing of POLIB for up to 4 days 

resulted in no significant effect on abundance of POLIC-PTP as determined by Western 

Blot (Fig. 2.2B). Additionally, quantitation of more than 300 cells per timepoint revealed 

no change in POLIC-PTP distribution during POLIB RNAi (Fig. 2.2, C-H). These data 

are consistent with the previously determined essential role in growth, and demonstrate 

that SLIB2C7 is an ideal cell line for a detailed study of the in vivo role of POLIB.  

2.4.2 Progressive loss of kDNA networks during TbPOLIB RNAi  

The previous POLIB pZJM RNAi data resulted in a subtle shrinking kDNA defect 

and suggested a likely role in kDNA maintenance (Klingbeil et al., 2002). To further 

assess the effects on kDNA networks, uninduced and induced SLIB RNAi cells were 

DAPI-stained and examined by fluorescence microscopy to manually score the size of the 

kDNA network (>300 cells per data point).  Uninduced cells exhibited normal 

duplication and segregation of the nuclear (N) and kDNA (K) genomes with each cell 

cycle karyotype easily observed [1N1K, 1N1K*(replicating kDNA), 1N*2K (replicating 

nucleus) and 2N2K] (Fig. 2.3A, Day 0).  In contrast, POLIB depleted cells exhibited 
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progressive shrinking and loss of the kDNA network (Fig. 2.3 A,B).  Additionally, figure 

3B shows the kinetics of kDNA loss with Day 6 post-induction displaying the greatest 

transition.  At this timepoint, only 30% of the cell population still contained normal-sized 

kDNA, while the remaining population contained small kDNA (mean 34.7%) or no 

kDNA (mean 33.5%).  While there was variation in the percentage of cells with small 

kDNA and no kDNA at Day 6 in the two separate RNAi inductions, the rapid decline of 

cells with normal-sized kDNA was consistent.  Cells with no detectable kDNA continued 

to accumulate and constituted 54% of the population following 10 days of POLIB RNAi.  

Although multiple focal planes were analyzed for residual kDNA, the possibility of a 

network too small to be detected cannot be excluded. Those cells with abnormal sized 

kDNA still appeared to initiate the cell cycle properly. Detection with YL1/2 antibody, 

which is specific for tyronsinated !-tubulin, shows uninterrupted basal body duplication 

and segregation following staining (Fig. 2.4A).  Cells with abnormally small kDNA also 

contained nuclei that still incorporated the thymidine analog, BrdU, while there was no 

detectable BrdU observed in the residual kDNA networks (Fig. 2.4B).  Therefore, loss of 

kDNA is likely the primary defect following POLIB silencing, and not a secondary effect 

due to cell cycle disruption. 

2.4.3 TbPOLIB RNAi affects minicircle replication 

The kDNA network is a unique mitochondrial genome requiring duplication of 

two different DNA templates, minicircles and maxicircles.  Silencing of some kDNA 

replicative proteins such as TopoII, POLIC, or p38 resulted in parallel loss of the two 

templates, while RNAi of mitochondrial RNA polymerase or the PIF2 helicase showed 

selective loss of maxicircles suggesting critical roles in maxicircle replication (Wang & 
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Englund, 2001, Klingbeil et al., 2002, Liu et al., 2006, Grams et al., 2002, Liu et al., 

2009).  Therefore, we investigated whether POLIB might display a preference for 

minicircle or maxicircle templates.  Loss of kDNA mass was further evaluated by 

Southern blotting of restriction digests of total DNA isolated from a staggered induction 

(Fig. 2.5A).  Minicircle and maxicircle loss was evident as early as Day 2 with a 25% 

decline in abundance for both molecules (Fig. 2.5B).  Subsequent days of silencing 

revealed continued reduction in minicircle and maxicircle abundance.  Following 8 days 

of POLIB silencing, maxicircle abundance declined 70% while minicircle abundance 

declined 85%.  To further evaluate the role of POLIB in kDNA replication, we next 

focused our analysis to ask how POLIB contributes to minicircle replication.  

A key feature of kDNA network replication is the release of covalently closed 

(CC) minicircles, unidirectional theta replication as free molecules, and then reattachment 

of minicircle progeny to the kDNA network.  If POLIB were a replicative enzyme for 

minicircles, RNAi should alter the population of free minicircles so that CC precursors 

become the most abundant species. Although the replication intermediates are a small 

fraction of the total kDNA in an unsynchronized population (Englund, 1979), free 

minicircles are resolved in a specific and predictable pattern on a single-dimension (1D) 

agarose gel containing ethidium bromide (Kitchin et al., 1985, Ryan & Englund, 1989).  

Following separation of total DNA, free minicircles were detected on a Southern blot 

using a minicircle probe that contains the UMS, a sequence found in all minicircles.  In 

control cells, newly replicated nicked/gapped (N/G) progeny and replication precursors, 

CC monomers, are approximately equimolar (Fig. 2.5C, Day 0).  The concentration of 

free minicircles changed minimally during the first 3 days of RNAi.  At Day 4 there was 
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a modest decline in N/G molecules, and then in parallel with shrinking and loss of the 

kDNA network, free minicircle abundance rapidly declined.  During the later time points, 

newly replicated progeny were barely detectable with a striking increase in the CC:N/G 

ratio (mean 4.5) after RNAi for 8 days (Fig. 2.5C, D).  The fold increase in unreplicated 

CC molecules may be even greater since background hybridization resulting from general 

degradation of the kDNA network (smear running from the top of the gel to N/G species 

beginning at Day 4) overlapped with the N/G signal. The apparent decline in CC 

molecules seen in D6 is due to underloading (see tubulin loading control). Notably, a 

heterogeneous smear migrating between N/G and CC molecules accumulated following 4 

days of POLIB RNAi (Fig. 2.5C, U) with a similar migration pattern to previously 

described partially replicated multiply-gapped (MG) free minicircle intermediates (Ryan 

& Englund, 1989).  These data are consistent with a defect in minicircle replication. 

 

2.4.4 POLIB participates in leading and lagging strand minicircle synthesis 

Heterodimeric replicases with individual DNA pols exhibiting leading or lagging 

strand preferences are well documented from bacteria to mammals (Dervyn et al., 2001, 

Inoue et al., 2001, Nick McElhinny et al., 2008, Pursell et al., 2007).  To investigate 

whether POLIB exhibits strand preference during minicircle replication and to further 

characterize the free minicircle population, we utilized neutral/alkaline two-dimensional 

agarose electrophoresis of free minicircle replication intermediates.  Free minicircle 

molecules were separated first on an agarose gel containing ethidium bromide.  Strands 

were denatured with 30mM NaOH and separated in the second dimension and were then 

detected separately with 5’ end-labeled synthetic oligonucleotides specific for the 
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continuously synthesized leading strand (L) and the discontinuously synthesized lagging 

strand (H) (Liu et al., 2006).  Consistent with previous findings, the L strand probe 

recognized all free minicircle species in control cells including multiply gapped 

minicircles migrating below N/G species (Fig. 2.6A, MG).  Additionally, the more slowly 

migrating theta structure intermediates (Fig. 2.6B, T) were detected by adjusting contrast 

on phosphoimager scans from the uninduced population.  After probing for H strand 

(lagging strand), the levels of CC, N/G and covalently closed dimer (ccD) minicircles 

were comparable to L strand probing. 

After 4 days of POLIB RNAi, there was a modest decline in N/G molecules 

(consistent with the 1D analysis) with a slight increase in CC:N/G ratio that was 

comparable in both L and H strand probings (Fig. 2.6C).  Notably, there were no 

detectable theta structures by day 4, and the abundance of MG molecules greatly 

diminished (Fig. 2.6B, L strand D4, Fig. 2.6D).  The pattern of free minicircle molecules 

was greatly altered by day 6 of silencing. Reduction in both N/G and CC minicircle 

abundance was comparable for L and H strand probings, and this reduction coincided 

with loss of the kDNA network.  Quantitation of the free minicircle populations indicated 

an increase in the ratio of CC to N/G, consistent with the 1D analysis (Fig. 2.6C, Fig. 

2.5D).  The concurrent accumulation of unreplicated CC minicircles and decline in newly 

replicated progeny is consistent with a block in the synthetic phase of minicircle 

replication during POLIB silencing.  The pattern and abundance of both L and H stand 

minicircle replication intermediates were equally effected by silencing, suggesting 

POLIB contributes to both leading and lagging strand replication (Fig. 2.6A, C).   
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2.4.5 Fraction U, a novel free minicircle species that accumulates during POLIB 

silencing  

Unexpectedly, the two-dimensional (2D) analysis revealed that the heterogeneous 

minicircle population detected in 1D analyses (Fig. 2.5C, U) migrated with mobility 

distinct from the previously characterized MG and fraction S (Liu et al., 2006, Ryan & 

Englund, 1989). Our partial characterization of this novel fraction isolated from POLIB-

depleted cells suggests similar properties to a population of free minicircles composed of 

multiply interlocked covalently closed dimers recently reported by Liu and colleagues.  

This population, which they named fraction U, was produced in response to silencing 

either of two other kDNA replication proteins, TbPIF1 and TopoII (Liu et al., 2010). 

Therefore, we have provisionally adopted the same name, fraction U, for the 

heterogeneous minicircle species that accumulates during POLIB RNAi.  Fraction U 

migrates as a continuous arc originating from ccD, and is detected as early as Day 4 of 

POLIB silencing (Fig. 2.6A, B).  Importantly, fraction U accumulates simultaneously 

with the decline in replicating molecules and contains nearly equimolar L and H strands 

(Fig. 2.6A, C-D).  

To understand the properties of this new minicircle species, we used sucrose 

gradient sedimentation for a large-scale purification of free minicircles and analyzed each 

fraction on a neutral 1D gel by Southern blotting with a minicircle probe.  The 

monomeric species CC, N/G, L and MG, sediment near the top of the sucrose gradient for 

both the uninduced and Day 6 POLIB RNAi samples.  In contrast, fraction U sediments 

farther into the sucrose gradient than the monomeric molecules (Fig. 2.7A, D6). 

Sedimentation rate depends on both mass and molecular conformation. The faster 

sedimentation of fraction U is likely due to increased molecular mass, but may also 
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reflect a difference in molecular conformation. The day 6 sample contained more 

linearized minicircle than in uninduced cells reflecting that the residual kDNA from 

POLIB RNAi cells may be more fragile than the intact network in an uninduced 

population. Fraction U properties were further analyzed by comparing migration patterns 

in the absence and presence of ethidium bromide. Ethidium bromide introduces 

supertwists into otherwise relaxed minicircles.  The unreplicated CC minicircles are 

highly supertwisted and migrate more rapidly than nicked and gapped progeny, 

facilitating the resolution of these two species.  In the absence of ethidium bromide 

fraction U migrated more slowly than CC and N/G molecules, further suggesting that 

fraction U consists of minicircles more massive than these monomeric minicircles, 

possibly dimers (Fig. 2.7A, bottom panel). The majority of fraction U ran faster than N/G 

molecules in the presence of ethidium bromide, but significantly slower than CC 

molecules suggesting that fraction U molecules are covalently closed and capable of 

being supertwisted, but more massive than CC monomers (Fig. 2.7A, top panel).  

To further evaluate fraction U, we pooled and concentrated fractions 19-25, and 

deproteinized the sample using proteinase K digestion and phenol/chloroform extraction.  

Fraction U was then treated with several DNA modifying enzymes and the products were 

separated on a 1D gel containing ethidium bromide (Fig. 2.7B).   A short treatment with 

human Topo II converted the fraction U smear to mainly CC monomers strongly 

suggesting that a majority of fraction U is composed of covalently closed molecules.  

Topo II treatment also resulted in a population migrating similar to N/G monomers, 

which were neither detectable in untreated fraction U or in the original sucrose gradient 

fractions.  Additionally, fraction U was resistant to treatment with Topo I from two 
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different sources. This suggested that the heterogeneous fraction U molecules were not 

significantly supercoiled, or that increasing levels of catenation in dimers could have 

obscured topoisomerase I mediated relaxation of supercoiling.  Taken together these data 

indicate that fraction U is composed mainly of covalently closed dimers that accumulate 

when the synthetic phase of minicircle replication is impaired during POLIB silencing. 

2.5 Discussion 

Mitochondrial DNA replication and repair in other eukaryotes requires just a 

single DNA polymerase, pol gamma (Kaguni, 2004, Graziewicz et al., 2006).  In 

contrast, trypanosomes contain seven mitochondrial DNA polymerases from three 

different DNA polymerase families; four Family A proteins (Klingbeil et al., 2002), two 

Family X proteins (Saxowsky et al., 2003), and one from Family Y (Rajao et al., 2009).  

While POLIB, POLIC and POLID are essential for growth with non-redundant roles in 

kDNA maintenance, it is unclear exactly how trypanosomes utilize the three pol I-like 

proteins for kDNA network replication.  One hypothesis is that each pol may perform a 

specialized role; for example preference for the minicircle and maxicircle templates, or a 

strand specific role in synthesis (leading vs. lagging).  Using stemloop RNAi, we report 

here a primary role for the essential POLIB as a replicative minicircle DNA polymerase.  

Importantly, we also report the accumulation of a novel, heterogenous free minicircle 

species when POLIB is depleted. 

Consistent with an essential role in kDNA replication, POLIB RNAi resulted in 

growth inhibition and a corresponding loss of the kDNA network.  The first indication 

that POLIB is required for minicircle replication comes from the loss of minicircles 

during silencing experiments.  The subsequent decline in maxicircles could result from 
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kDNA network fragmentation or nucleotlytic breakdown.  Our data clearly highlight a 

role for POLIB in minicircle replication, but do not rule out a possible contribution to 

kDNA repair or maxicircle replication.  When other proteins involved in minicircle 

replication are silenced, maxicircle depletion also accompanies the minicircle loss defect 

(Klingbeil et al., 2002, Liu et al., 2006, Scocca & Shapiro, 2008, Wang & Englund, 

2001). The observed delay in growth inhibition following 4 to 5 days of RNAi likely 

represents the time required for the numerous minicircle copies that encode essential 

gRNAs for maxicircle editing to drop below a critical threshold.  Indeed cells depleted of 

POLIB for more than 4 days exhibited decreased fluorescence of MitoTracker Red CM-

H2XRos (Fig. 2.8). Decrease in MitoTracker fluorescence appeared to correlate with cells 

containing small or no kDNA.  

Further evidence supporting a role in minicircle replication was obtained from 

analyzing free minicircle replication intermediates via 1D and 2D agarose gel 

electrophoresis.  After 4 days of POLIB RNAi, the decrease in theta structure 

intermediates, decrease in multiply gapped molecules, and an initial accumulation of 

unreplicated covalently closed molecules were all indicative of a defect in minicircle 

replication.  The pattern for replication intermediates was not altered greatly until day 4 

of silencing, even though the minicircles abundance had decreased nearly 60%.  This 

indicated that CC unreplicated precursors were still released from the kDNA network and 

initiated minicircle synthesis resulting in an increase in free minicircles without 

subsequent reattachment to the network.  It is possible that during the earlier days of 

RNAi, one or more of the six other mitochondrial DNA pols were compensating for loss 

of POLIB, but could not effectively keep pace with cell cycle progression. 
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To address the possibility that POLIB is a strand-specific enzyme at the core of a 

heterodimeric replicase, we detected leading and lagging strand minicircle progeny using 

neutral/alkaline electrophoresis.  Interestingly, probing for L or H strand progeny was 

nearly identical strongly suggesting that POLIB does not appear to have strand 

preference.  An alternative explanation is that minicircle replication proceeds by a strand-

coupled mechanism similar to what has been proposed for mammalian mtDNA 

replication (Holt, 2009), and could require another of the essential pol I-like pols.  In this 

case, depletion of POLIB could then result in disruption of the replisome uncoupling the 

leading and lagging strand pols and any of their associated components.  The possibility 

of a minicircle strand-coupled mechanism has never been investigated and warrants 

further investigation. 

Previous TbPOLIB silencing experiments using the pZJM vector, that produces 

an intermolecular dsRNA trigger, led to a reduced growth rate in procyclic cells and a 

small increase in the percentage of cells with abnormal sized kDNA networks. While 

depletion of POLIB indicated an essential role for growth and suggested a role in kDNA 

maintenance, the resulting phenotype could not be fully characterized (Klingbeil et al., 

2002).  Recently, we demonstrated that a stem-loop dsRNA trigger was the better tool to 

study the function of the related mitochondrial Pol I-like protein, TbPOLID (Chandler et 

al., 2008).  Therefore we chose to fully characterize TbPOLIB using the pSL vector. 

Similar to TbPOLID, stem loop silencing of TbPOLIB produced a more robust 

phenotype than reported using pZJM. Although the same region of POLIB was used for 

two separate constructs (pZJMIB and pSLIB) and produced at least a 90% knockdown, 

only the intramolecular stem-loop trigger achieved notable growth inhibition and a 
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marked kDNA phenotype. At this time we cannot definitively state why silencing the two 

Pol I-like proteins is more effective with a stem-loop dsRNA.  Silencing with pZJM or 

other constructs that contain opposing T7 promoters is generally effective in T. brucei.   

However, cell lines generated using the pZJM constructs are more susceptible to leaky 

transcription problems (synthesis of dsRNA trigger in the absence of tetracycline 

induction) since the promoter of pSL is regulated by two tetracycline promoters whereas 

pZJM is regulated by only a single operator (Wang et al. 2000). Leaky transcription can 

lead to development of RNAi insensitive cell lines, termed revertants (Chen et al., 2003). 

Similarly, trace amounts of tetracycline may be present in media (from fetal bovine 

serum) and could lead to the development of a sub-population of revertants. Chen et al. 

studied the molecular basis for generation of RNAi resistance and demonstrated that 

deletion of the target-specific portion of the integrated pZJM-derived construct occurred 

in revertant parasites. Alternative mechanisms for development of resistance likely also 

exist. The presence of RNAi insensitive cells may have contributed to the weaker 

response in pZJMIB studies and could be assessed using dilution cloning. Others have 

also reported that stem-loop dsRNAs are more efficient at knockdown of target mRNAs, 

and are less sensitive to leaky transcription (Durand-Dubief et al., 2003, Chanez et al., 

2006).  However, which proteins are silenced best with a stem-loop dsRNA will likely 

need to be determined empirically. Certainly, culturing parasites in tetracycline-free 

media and avoiding long term cultivation may help to avoid development of revertants 

and apparent incomplete penetrance of RNAi.   

An unexpected finding from POLIB RNAi was the accumulation of a new free 

minicircle species, provisionally called fraction U.  Although initially presumed to be 
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multiply-gapped minicircles, this free minicircle population migrated distinctly from any 

other species previously reported and continued to accumulate until it represented a 

majority of the free minicircle population.  Most free minicircle species are replication 

intermediates that still contain discontinuities in the newly replicated strands with the 

exclusion of the non-replicated precursors, covalently closed monomers.  Englund and 

co-workers recently described fraction U as a population of ccDs with multiple interlocks 

resulting from silencing either TbPIF1 or TopoII (Liu et al., 2010). However, our 

enzymatic treatments with topoisomerase I and II indicate that fraction U produced 

following POLIB silencing may be a more heterogenous population of molecules 

composed mainly of ccDs and possibly pre-catenane dimers, even though electrophoretic 

analyses of the fraction U populations were quite similar. It is interesting to note that the 

formation and accumulation of fraction U minicircles has not been reported for any other 

kDNA replication proteins besides TopoII, TbPIF1, and POLIB. 

Multicatenane (multiply interlocked) dimers are produced in theta structure 

replication of circular DNA (Sundin & Varshavsky, 1981, Sakakibara et al., 1976). While 

a kDNA replication mechanism involving a multicatenane pathway was suggested in T. 

brucei (Scocca & Shapiro, 2008) the presence of multiply interlocked dimeric minicircle 

intermediates have not been demonstrated in wild type trypanosomes.  Fraction U was 

occasionally detected in very low abundance in the uninduced population (data not 

shown), suggesting that this species may occur transiently during normal cell cycle 

progression. Naturally occurring multicatenane replication intermediates are often 

resolved quickly and, thus, challenging to detect in an unperturbed cellular population 

(Martinez-Robles et al., 2009, Leonard et al., 1982). While this observation is intriguing, 
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we have not yet succeeded in isolating sufficient amounts of these molecules from 

uninduced cells to indisputably confirm that these molecules are indeed fraction U. 

Fraction U may accumulate in POLIB depleted cells as a result of minicircle 

replication fork stalling and restart with an alternative DNA polymerase.  During normal 

replication, the replisome can encounter DNA lesions or structures that stall or collapse 

the progressing replication fork.  Bacteria and eukaryotes utilize several well-

characterized mechanisms for restarting stalled forks (Heller & Marians, 2006).  

However, there is no available data on the protein machinery or mechanism of 

mitochondrial DNA replication restart in any organism.   In this case, loss of POLIB from 

the replisome following silencing would likely result in collapse of the replication fork, 

and disassembly of other essential proteins from the processive minicircle replisome.  

These proteins may include polymerase loading and processivity factors, a helicase to 

unwind the parental DNA duplex, and a topoisomerase to decatenate replication 

intermediates.  The stalled minicircle replication fork may elicit a kDNA repair response 

similar to bacterial SOS and result in the recruitment of proteins including alternative 

DNA pols.  One of the six other trypanosome mitochondrial DNA pols may load at the 

minicircle replication fork, successfully complete synthesis and preserve interactions with 

proteins required for final gap closure and ligation yet fail to efficiently recruit those 

enzymes required for resolution of pre-catenanenes. Replication of kDNA would still 

need to keep pace with nuclear replication every cell cycle, and we demonstrated that 

nuclei are capable of incorporating BrdU through day 5 of POLIB RNAi.   However, 

these alternative DNA pols likely have differing affinities and lower processivity than 

POLIB, hence slowing down the entire minicircle replication process.  Decreased 
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processivity would result in incomplete replication of all minicircles within the given 

time frame, fewer minicircles progeny reattaching to the kDNA network, and subsequent 

decline in minicircle copy number as seen starting as early as day 2 of POLIB silencing.  

Evidence for such slowing of a replication fork was recently demonstrated with 

translesion synthesis (TLS) proteins DNA pol II and DNA pol IV, which occupy the 

replication fork during DNA damage and proceed at a slower pace with lower fidelity 

(Indiani et al., 2009).  Additionally, two other eukaryotic DNA pols with low fidelity are 

implicated in TLS, pol nu (Takata et al., 2006, Arana et al., 2007) and pol theta (Arana et 

al., 2008).  Interestingly, both these TLS pols and the essential pol I-like proteins of T. 

brucei are family A DNA polymerases.   

 Currently, the exact mechanism of fraction U formation is difficult to determine.  

However, it is attractive to hypothesize that disruption of putative minicircle replisome 

components could give rise to fraction U.  Indeed, silencing the mitochondrial helicase, 

TbPIF1 and Topoisomerase II produces a population of free minicircles with similarity to 

our partially characterized fraction U resulting from POLIB silencing.  Therefore, we are 

now poised to ask questions about other proteins that may be interacting with POLIB at 

the minicircle replication fork.   Interestingly, the bacterial replisome is the target for 

small molecule inhibitors that disrupt the complex but do not necessarily inactivate the 

DNA polymerase (Georgescu et al., 2008).  Discovering inhibitors of the essential 

replicative minicircle DNA polymerase, POLIB, or any associated factors would offer 

new options for treatment of kinetoplastid diseases. 

 



 

42 

2.6 Acknowledgements 

This paper is dedicated to the memory of Dr. David V. Pollack, a colleague and 

friend.  We thank George Cross (Rockefeller University) for T. brucei 29-13 cell and the 

pLew100 vector, and Paul Englund (Johns Hopkins School of Medicine) for the pZJM, 

pJM326 and pJN6 vectors. Additionally, we are grateful to Drs. Paul Englund and Beiyu 

Liu for sharing results prior to publication, and insightful discussions. We thank Anthula 

Vandoros for excellent technical assistance, and members of the Klingbeil Lab for many 

thoughtful discussions, and appreciate comments on the manuscript by Drs. James Morris 

and Nicholas Downey.  This research was supported by NIH grant AI066279 to MMK. 

 

 

 

                    



 

43 

 

 

 Figure 2.1: Effects of POLIB RNAi on trypanosome growth 

(A) Diagram: Protein domain structure of TbPOLIB was predicted using the conserved 

domain database (version 2.16).  The black bar indicates the 500 bp region of TbPOLIB 

used to generate the pSLIB vector.  (B) Clonal cell line SLIB 2C7 was grown in the 

absence (open circles) or presence (open diamonds) of tetracycline (1 µg/ml) to express 

the stem-loop dsRNA.  Cell density was plotted as the product of cell number and total 

dilution. Values are the mean (+ standard deviation) of three separate RNAi inductions.  

Inset: Northern blot of total RNA from uninduced (-) and RNAi induced (+) 2C7 cells for 

48 hr.  Following probing for POLIB (4.2kb), the same blot was stripped and reprobed in 

succession with POLIC (6.1 kb), POLID (5.3 kb), and !-tubulin as the loading control. 
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Figure 2.2: POLIC localization is not disrupted during POLIB silencing 



 

45 

(A) SLIB2C7 (red) or SLIB2C7 expressing POLIC-PTP (blue) were grown in the 

presence (diamonds) or absence (circles) of tetracycline. (B) Western blot of lysates from 

induced cells for indicated number of days of POLIB RNAi. POLIC-PTP was detected 

with Peroxidase-Anti-Peroxidase Soluble Complex (PAP) reagent. Membrane was 

stripped and the loading control, Hsp70, was detected. (C-D) Representative images of 

POLIC-PTP localization in uninduced (C) and Day 4 induced (D) POLIB cells. Basal 

bodies (green, YL1/2), POLIC-PTP (red, anti-protein A), and DNA (blue, DAPI). Bar, 10 

µm. Enlarged images of uninduced (E) and induced (F) cells presented in C. Bar, 2 µm.  

(G, H) Quantitation of POLIC-PTP localization during POLIB RNAi. More than 300 

randomly selected cells were scored for each time point.  Cells were classified as positive 

(red bars) or negative (grey bars) for POLIC-PTP foci, karyotype, and size of kDNA. 

Values are the mean (+ standard error) of two separate RNAi inductions. (G) Prevalence 

of POLIC-PTP foci scored by size of cell karyotype. (H) Prevalence of POLIC-PTP foci 

in uninduced and induced cells. 
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Figure 2.3: Effect of POLIB RNAi on kDNA morphology 

(A) Effect of TbPOLIB RNAi on kinetoplast size. Left panel, DAPI-stained fluorescent 

images; right panel, DIC images.  Representative images for the indicated timepoints 

showing progressive loss of kDNA are presented. N, nucleus; K, normal-sized kDNA; * 

replicating genome; arrowhead, small kDNA; arrow, no kDNA. Bar, 10 µm.  (B) 

Kinetics of kDNA loss determined by visual analysis of DAPI-stained cells. Normal-size 

kDNA (filled circles); Small kDNA (open squares); No kDNA (filled triangles).  More 

than 300 randomly selected cells were scored for each time point. Values are the mean (+ 

standard deviation) of two separate RNAi inductions.  
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Figure 2.4: POLIB silencing specifically inhibits kDNA replication  

(A) Representative images for the indicated timepoints showing normal basal body 

duplication and segregation during POLIB RNAi-mediated kDNA network loss. Bar, 10 

µm.  (B) Representative images of uninduced and RNAi induced cells cultured in the 

presence of bromodeoxyuridine and deoxycytidine. BrdU epitope was exposed by 

treating fixed cells with HCl prior to detection with anti-BrdU and DAPI staining. Arrow 

indicates a small kDNA. Bar, 5 µm.
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Figure 2.5: POLIB is required for kDNA replication 
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SLIB2C7 clonal cells uninduced or induced for RNAi were harvested at the indicated 

time points from a staggered induction. (A) Representative images of kDNA loss 

determined by Southern blot analysis. Total DNA (10
6
 cell equivalents/sample) was 

digested with HindiIII and XbaI, fractionated on a 1% agarose gel and transferred to 

nylon membrane.  Minicircle and maxicircle abundance was determined with minicircle 

and maxicircle specific probes. (B) Phosphoimaging quantitation total minicircle and 

maxicircle abundance. Values were normalized against the !-tubulin loading control. 

Minicircles (open diamonds); Maxicircles (closed circles). (C) Southern blot analysis of 

free minicircles. Total DNA (2 x 10
6
 cells/lane) was fractionated on a 1.5% agarose gel in 

the presence of ethidium bromide (1 µg/ml), and transferred to nylon membrane.   After 

probing for minicircle DNA, the blot was stripped and probed for !-tubulin as the 

loading control.  CC, covalently closed; N/G, nicked/gapped; U, uncharacterized, 

heterogenous minicircle population.  (D) Phosphorimager quantitation of free minicircles.  

The relative abundance of free minicircle molecules was estimated by plotting the ratio of 

signals from CC and N/G minicircles detected from southern blots similar to the one in 

Fig. 2.5C. Values presented in B and D are the mean (+ standard deviation) of two 

separate RNAi experiments. 
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Figure 2.6:  Silencing of POLIB inhibits minicircle replication 

SLIB2C7 clonal cells induced or uninduced for RNAi were harvested at the indicated 

time points from a staggered induction.  (A) Neutral/alkaline two-dimensional gel 

electrophoresis of free minicircles.  Total DNA (3 x 10
7
 cell equivalents) from uninduced 

and cells induced for the indicated number of days of RNAi were separated first in the 

presence of ethidium bromide and then under denaturing conditions.  After transfer to 

nylon membrane, radiolabeled H and L strand oligomers were used for detection.  

Individual blots were probed first with L strand oligoprobe, stripped, and reprobed with 

the H strand oligoprobe.  CC, covalently closed; ccD, covalently closed dimer; MG, 

multiply gapped; N/G, nicked/gapped; U, uncharacterized, heterogenous minicircle 

population.  (B) Higher contrast images.  Contrast was adjusted equally in images of 

membranes probed for L strand in (A) to visualize abundance of theta structures. T, theta 

structures.  (C) Quantitation of changes in CC and N/G free minicircles. Phosphoimager 

quantitation was used to plot the relative abundance of unreplicated CC and newly-

replicated N/G intermediates determined by scanning blots in Fig. 2.6A.  L strand 

detection (open squares) and H strand detection (open triangles).  (D) Quantitation of 

fraction U accumulation using leading strand probe.  Phosphoimager quantitation of blots 

in Fig. 2.6A were used to plot the relative abundance of unreplicated CC, MG 

intermediates, and fraction U.  Ratio of MG:CC (filled circles) and U:CC (open boxes). 
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Figure 2.7: Fraction U is a heterogeneous, topologically complex minicircle 

population 

(A) Sucrose gradient sedimentation of free minicircles.  Total DNA from cell lysates of 

uninduced and induced for 6 days of TbPOLIB RNAi were sedimented through 5-20% 

sucrose gradients.  Fractions 6-30, 32, 34, 36 (10 µl each) were separated on a 1.5% 

agarose gel in the presence or absence of ethidium bromide.  DNA was transferred to 

nylon membrane and detected with a minicircle probe.  CC, covalently closed; L, 

linearized; M, monomers; MG, multiply gapped; N/G, nicked/gapped; and U, fraction U.  

(B) Enzymatic treatments of concentrated fraction U.  Fraction U (1.6 x 10
7 
cell 

equivalents) was treated as indicated for each lane and separated on a 1.5% agarose gel 

containing ethidium bromide before transfer to nylon membrane and detection with a 

minicircle probe.  CC and N/G minicircles purified from uninduced cells (not shown) 

were used as mobility markers. Lane 1, untreated; Lane 2, Topoisomerase II (10U, 30 

min); Lane 3, Topoisomerase I (5U, 15 min).  
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Figure 2.8: POLIB silencing results in decreased mitochondrial membrane potential 

Live SLIB2C7 cells induced for indicated number of days of RNAi were incubated with 

MitoTracker Red CM-H2XRos, which accumulates and fluoresces in cells dependant 

upon mitochondrial membrane potential, and DAPI. White arrows indicate cells with 

decreased accumulation of MitoTracker. Bar, 10 µm. 
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CHAPTER 3 

TWO MITOCHONDRIAL DNA POLYMERASES, POLIB AND POLID, 

PARTICIPATE IN MINICIRCLE REPLICATION IN TRYPANOSOMA BRUCEI  

3.1 Abstract 

Kinetoplast DNA (kDNA), the mitochondrial DNA of kinetoplastid parasites, is a 

catenated network of minicircles and maxicircles essential for parasite survival. kDNA 

replication is unparalleled in nature, involving multiple mitochondrial  DNA polymerases 

and an elaborate mechanism of release, replication, and re-attachment of minicircles. 

Three family A DNA polymerases (POLIB, POLIC, and POLID) are essential for 

parasite growth and perform non-redundant roles in kDNA maintenance. Individual 

silencing of POLIB or POLID perturbs but does not block minicircle replication. A 

covalently closed species of minicircle dimers (Fraction U) was previously found to 

accumulate during POLIB RNAi and, as we show here, during POLID RNAi. Fraction U 

production is a unique phenotype restricted to RNAi of a subset of four kDNA replication 

proteins, thus suggesting that each enzyme makes a specialized contribution to a common 

pathway of minicircle replication. Here, we examine this possibility by simultaneously 

silencing POLID and POLIB. Silencing both polymerases together accelerated growth 

inhibition and loss of kDNA witnessed during individual polymerase silencing 

experiments. Additionally, dual gene silencing resulted in a near-complete inhibition of 

minicircle replication, which was never achieved with single-gene silencing. Our data are 

supportive of a model of minicircle replication requiring the specialized functions of 

POLIB and POLID. 
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3.2 Introduction 

  Trypanosoma brucei and related trypanosomatid protozoan parasites are agents of 

severe and wide-spread diseases affecting some of the world’s poorest populations. T. 

brucei causes Human Africa Trypanosomiasis (HAT) in humans and nagana in cattle. 

Despite the tremendous economical and medical burden T. brucei exerts globally, there is 

no vaccine to prevent infections and available drugs are inadequate (Luscher et al., 2007). 

Trypanosomatid parasites posses a number of biological properties without counterpart in 

their mammalian hosts that could provide new drug targets. One of the most intriguing 

and unique properties of T. brucei is its mitochondrial genome, termed kinetoplast DNA 

(kDNA). This giant network resides in the cell’s single mitochondrion where is it 

compacted into a disk- shaped structure positioned near the flagellar basal body. The 

network consists of two types of circular DNA molecules, minicircles and maxicircles, 

which are catenated into a network that has been likened to medieval chain mail. 

Maxicircles (23kb each, 25 per network) encode rRNAs and mRNAs for subunits 

of respiratory complexes (Lukes et al., 2005). Maxicircle transcripts often require post-

transcriptional editing, including the insertion and deletion of uridines to create a 

functional open reading frame. This essential process, RNA editing, is directed by 

templates (guide RNAs) encoded by minicircles (Stuart et al., 2005). Therefore, 

expression of mitochondrial proteins is a combined effort between maxicircles and 

minicircles, making both necessary for parasite survival. 

The catenated topology of kDNA presents a unique challenge for DNA 

replication. To overcome this topological challenge, trypanosomes employ a network-

free minicircle replication mechanism. Minicircles are released from the network into the 
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kinetoflagellar zone (KFZ), a specialized region between kDNA disk and flagellar basal 

body. Here unreplicated, covalently closed (CC) minicircles encounter several replication 

proteins, including universal minicircle sequence binding protein (UMSBP), RNA 

primase, and at least two DNA polymerases (POLIB and POLIC) (Abu-Elneel et al., 

2001, Klingbeil et al., 2002, Li & Englund, 1997, Liu et al., 2006). Following theta 

structure replication, nascent minicircles possessing multiple gaps (MG) and nicks (N/G) 

are attached to the network periphery by a topoisomerase II (TopoIImt). Here, RNA 

primers are removed by structure specific endonuclease 1 (SSE1) and all but a single gap 

in the backbone is filled by DNA polymerase ! and ligase K! (Engel & Ray, 1999, Hines 

et al., 2001, Downey et al., 2005). This gap is proposed to serve as a bookkeeping 

mechanism and is filled by DNA polymerase !–PAK and ligase k" only after all network 

minicircles have been replicated. The double-sized network is split into two daughter 

networks, which are attached to flagellar basal bodies through a filamentous structure 

known as the tripartite attachment complex (TAC) (Melendy et al., 1988, Saxowsky et 

al., 2003). As basal bodies are pulled apart during late cytokinesis, daughter networks are 

subsequently segregated into the two new cells.   

The utilization of multiple DNA polymerases (pols) for mitochondrial DNA 

replication in trypanosomes is unprecedented in other higher eukaryotes, which reply 

upon a single mitochondrial DNA polymerase, Pol # (Copeland & Longley, 2003). At 

least six mitochondrial DNA polymerases are required for kDNA maintenance, including 

three family A polymerases (POLIB, POLIC and POLID), two family X polymerases 

(pol ! and pol !-PAK) and a family Y polymerase (pol $). RNAi silencing of POLIB, 

POLIC, or POLID results in kDNA loss and subsequent lethality, indicating that each 
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performs a specialized function in kDNA replication. Individual silencing of each of 

these three polymerases altered minicircle replication intermediates but did not 

completely block minicircle replication, suggesting that two or more polymerases may 

work together as a minicircle replicase. Previously, we found that silencing of POLIB or 

POLID resulted in the production of a heterogeneous minicircle species with 

electrophoretic mobility similar to that of MG (leading strand) replication intermediates 

(Chandler et al., 2008, Bruhn et al., 2010). We recently demonstrated that, in the case of 

POLIB silencing, this heterogeneous population is a distinct species of multiply 

interlocked minicircle dimers known as fraction U (Bruhn et al., 2010). Production of 

fraction U has only been reported upon depletion of two other kDNA replication proteins 

(a mitochondrial topoisomerase II and helicase), suggesting that this subset of kDNA 

replication proteins contribute to a common pathway in minicircle replication.  

In the current study we discern that the heterogeneous minicircle species 

produced during POLID silencing is also fraction U. This shared phenotype suggests that 

POLIB and POLID both participate in minicircle replication. To test this hypothesis, we 

simultaneously silenced POLIB and POLID. Combinatorial gene silencing of both 

POLIB and POLID resulted in accelerated growth inhibition and loss of kDNA networks, 

as compared to silencing of either polymerase individually. A complete block in 

minicircle replication was achieved by silencing both proteins simultaneously. These data 

indicate that mitochondrial DNA polymerases IB and ID perform specialized functions in 

a common pathway of minicircle replication. 
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3.3 Material and Methods 

3.3.1 Plasmid Construction  

Nucleotides 694 – 1193 of the TbPOLID coding sequence (Gene ID 

Tb11.02.0770) were PCR amplified with forward (5’- GAG TCT AGA CGT GAT TGC 

TTA GTA AGT TGG -3’) and reverse (5’- TAT GAG CCA TGG GTA CGA ATC AGT 

GCC CAA GTG G) primers containing XbaI and NcoI linker (underlined). The resulting 

product was purified, restriction enzyme digested with XbaI and NcoI, and ligated into 

vector pL4440 to generate pL4440-ID. Nucleotides 275 - 774 of the TbPOLIB coding 

sequence (Gene ID Tb11.02.2300) were PCR amplified by forward (5’- TAT GAG CCA 

TGG AAG ATG AGC GTG TCA ACG AGG -3’) and reverse (5’- TAT GAG AAG CTT 

GGT AAA CCG TGG CGC GAC GAG G -3’) primers containing NcoI and HindIII 

linkers (underlined). This fragment was digested and ligated into pL4440-ID to create 

pL4440-DB. The 1020 bp region containing both TbPOLID and TbPOLIB fragments, 

DB, was PCR amplified from pL4440-DB using forward (5’-GAG TCT AGA CGT GAT 

TGC TTA GTA AGT TGG-3’) and reverse (5’- TAT GAG ACG CGT GGT AAA CCG 

TGG CGC GAC GAG G-3’) primers containing XbaI and MluI linkers (underlined). 

Resulting fragment DB was restriction with XbaI and MluI and then ligated into 

pLEW100 to generate pLEW100-DB.  Separately, fragment DB was digested with 

HindIII and NheI and ligated into pJM326 to create pJM-DB. To create the final 

stemloop vector, pLew100-DB was digested with XbaI and HindIII, and the vector 

backbone (6316bp) was gel extracted. pJM326-DB was digested with XbaI and HindIII, 

the insert (DB+stuffer ~1500bp) was gel extracted. The final pSLDB was acquired by 

ligation of vector backbone and insert.  
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3.3.2 Cell Culture and Transfection 

T. brucei brucei procyclic strain 29-13 was grown in SDM-79 medium containing 

15% heat-inactivated fetal bovine serum (Invitrogen), 15 µg/ml G418 (Fisher) and 50 

µg/ml hygromycin (Invitrogen) at 28 °C. Parasites were cultured at densities between 

5x105 and 1x107 parasites per milliliter. For transfections, 10 µg of linearized pSLDB 

was introduced by electroporation. Stable transfectants were subsequently selected with 

2.5 µg/ml phleomycin (Invitrogen) and clonal cell lines obtained by limiting dilution 

described previously (Chandler et al., 2008). To induce for RNA interference (RNAi), 

growth medium was supplemented with tetracycline (1 µg/mL). Single-gene silencing of 

POLID was performed using clonal cell line C8P1, the cell line used previously for 

functional analysis of this protein (Chandler et. al. 2008).  

3.3.3 Microscopy Analysis 

Parasites were harvested by centrifugation (5 minutes at 1000 rcf) and washed and 

resuspended in phosphate-buffered saline before settling by gravity to poly-L-lysine-

coated slides (10 min. at room temperature). Adhered parasites were fixed with 4% 

paraformaldehyde, which was then neutralized by washing in phosphate-buffered saline 

containing 0.1M glycine. Fixed parasites were stained with 2 µg/ml 4’-6’-diamidino-2-

phenylindole (DAPI) prior to mounting in Vectashield (Vector Laboratories). Slides were 

viewed with a Nikon Eclipse E600 microscope. Quantitation of kDNA was performed as 

described previously. For each timepoint, more than 300 cells were classified as 

possessing normal kDNA (the size in uninduced populations), small kDNA (networks 
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clearly < 50% the size of normal kDNA), or no kDNA. The later category was reserved 

for parasites that contained no distinguishable staining in the kinetoplast region in 

multiple focal planes. Images were captured using a Spot digital camera (Diagnostic 

Instruments). 

 

3.3.4 DNA Isolation and Southern Blotting 

Total DNA was isolated from 1!108 parasites using the Puregene Core Kit A 

(Qiagen). Southern Blotting was performed to assess kDNA loss during RNAi. Briefly, 

total DNA from 1!107 cells was digested with HindIII/XbaI, fractionated on a 1% 

agarose gel, and transferred to Genescreen plus membrane. Based molecular weight 

markers and known migration patterns of bands detected with minicircle, maxicircle, and 

tubulin fragments, the resulting membrane was cut into three sections to separated these 

bands. Individual strips were then detected with minicircle, maxicircle and "-tubulin-

specific radiolabeled probes as described previously (Chandler et al. 2008).    

3.3.5 Two-Dimensional Electrophoresis 

Two-dimensional analyses of network free minicircles were performed as 

described previously (Bruhn et al. 2010). Total DNA from 3!107 cells was fractionated 

at 60V on a 1.5% agarose gel in (20 ! 25 ! 0.5 cm) in Tris-borate-EDTA (TBE) 

containing 10 µg/ml ethidium bromide.  After 18 hours, the gel was washed with 500mL 

of 50mM NaOH/1mM EDTA (three washes, 20 minutes each) and equilibrated in 500mL 

of 30mM NaOH/2mM EDTA (two washes, 30 minutes each). The gel was rotated 90 

degrees clockwise, relative to its original orientation, and the denatured DNA was 
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electrophoresed in 30mM NaOH/2mM EDTA for 20 hours at 25V. Subsequently, the gel 

was depurinated, denatured, and neutralized and the DNA transferred to membrane.  

DNA was detected with 32P end-labeled oligos that detect heavy strand (5’- GGG CGT 

GCA GAT TTC ACC ATA CAC AAA TCC CGT GCT ATT TT-3’) or light strand (5’- 

AAA ATA GCA CGG GAT TTG TGT ATG GTG AAA TCT GCA CGC CC -3’) 

minicircle replication intermediates. Images were acquired using a Molecular Dynamics 

PhosphorImager (Typhoon 9210; GE Healthcare).  

  

3.4 Results 

3.4.1 Fraction U accumulates during POLID RNAi 

To determine if the heterogeneous minicircle population produced during POLID 

silencing was MG replication intermediates or fraction U, we examined changes in 

minicircle replication intermediates during POLID RNAi. Minicircle replication is a 

network-free process, making replication intermediates resolvable by two-dimensional 

electrophoresis. The continuous DNA backbone of unreplicated covalently closed (CC) 

minicircles makes these intermediates more susceptible to ethidium bromide induced 

supertwisting than gapped (N/G) nascent minicircle replication products. In the presence 

of ethidium bromide, CC minicircle migrate more rapidly into an agarose gel than N/G. 

Total DNA extracted from parasites induced for 0 or 6 days of POLID RNAi was 

fractionated first in the presence of ethidium bromide and then in a second dimension, 

under alkaline conditions. Resolved minicircles were then transferred to membrane and 

detected with oligo probes specific for leading and lagging strand minicircle replication 
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intermediates. As previously demonstrated (Bruhn et al., 2010, Liu et al., 2006), 

unreplicated (CC) and newly replicated (N/G) free minicircles were present in 

approximately equal amounts in uninduced populations with no detectable fraction U. In 

parasites induced for POLID RNAi, CC became slightly more abundant than N/G 

minicircles and fraction U represented a large portion of the pool of network-free 

minicircles (Fig. 3.1). Importantly, fraction U was not produced in response to silencing 

POLIC (data not shown) or other previously studied kDNA replication proteins. 

Production of fraction U during RNAi of this subset of essential kDNA replication 

proteins suggests that, although neither POLIB or POLID can effectively compensate for 

the loss of the other, these two polymerases perform specialized, non-redundant functions 

in a common pathway of minicircle replication.  

3.4.2 Dual gene silencing of POLIB and POLID 

To examine the possibility that POLIB and POLID both participate in minicircle 

replication, we generated the dual gene silencing vector pSLDB to simultaneously 

knockdown transcripts of both polymerases. Clonal cell lines derived from stable 

transfectants showed similar growth inhibition, knockdown efficiency, and doubling 

times. Clonal cell 1A10 was selected for further phenotypic analysis. Northern blot 

analysis of mRNA from uninduced and induced cells revealed over 80% reduction of 

both target mRNAs (TbPOLIB and TbPOLID) within 48 hours of RNAi induction 

(personal communication, J. Luo). Importantly, mRNA levels of the third essential 

mitochondrial DNA polymerase TbPOLIC remained unchanged during the induction. We 

further confirmed polymerase silencing by examining proteins levels of affinity-tagged 

POLID and POLIB during RNAi. Western blot analysis revealed that the abundance of 
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both proteins rapidly declined following RNAi induction, reduced by more than 95% 

after 2 days of silencing (personal communication, J. Luo). The powerful knockdown 

achieved with clonal cell line 1A10 suggests that this cell line is suitable our analyses. 

Inhibition of parasite growth was consistently observed 3 to 4 days following induction 

of RNAi (personal communication, J. Luo). The onset of growth inhibition by silencing 

POLIB and POLID together is earlier than when either protein is silenced alone. 1A10 

divides more slowly than the clones used in single gene RNAi experiments, indicating 

that parasites induced for dual gene silencing complete fewer rounds of cell division, and 

presumably DNA replication, prior to growth inhibition than parasites induced for single-

gene silencing (Fig. 3.2).   

3.4.3 POLIB/POLID RNAi accelerates minicircle loss 

Parasites depleted of individual kDNA replication proteins (including POLIB and 

POLID) exhibit network shrinkage and loss that can be visualized using DAPI staining. 

Since minicircles constitute more than 90% of the kDNA mass, we anticipated that 

microscopy analysis would reveal a more rapid loss of kDNA during dual gene silencing 

than when either polymerase was silenced individually. To examine this possibility, the 

sizes of kDNA networks were observed in cells induced for increasing durations of 

POLIB/POLID RNAi. Both nuclear and kinetoplast genomes are clearly visible in 

uninduced DAPI-stained parasite populations. Following moderate kDNA loss during the 

first few days of dual gene silencing, a dramatic loss of kDNA was seen beginning 3 days 

post induction for RNAi (Fig. 3.3A). This increase in the rate of network loss correlated 

with the onset of growth inhibition, which also occurs after 3 days of RNAi. To quantify 

kinetics of kDNA loss, DAPI-stained parasites were examined and scored as possessing 
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normal, small, or no kDNA by criteria defined in Materials and Methods. To eliminate 

possibility for bias, the identities of samples were withheld from the microscopist during 

the analysis. Two independent experiments confirmed that kDNA loss during 

POLIB/POLID RNAi was more rapid and complete than that elicited by silencing either 

protein individually (Fig. 3.3C). After just 4 days of POLIB/POLID silencing, the 

percentage of the population possessing normal-sized networks fell to less that 10%. This 

is markedly less than the normal-sized population seen after 3 days of silencing POLIB or 

POLID (50 and 70%, respectively) (Bruhn et al., 2010, Chandler et al., 2008). In single-

gene silencing experiments, the normal-sized population did not fall below 10% until 

more than 6 days of RNAi. Consistent with these data, parasites completely lacking 

kDNA appeared earlier during dual gene silencing. For example, after 8 days of 

POLIB/POLID RNAi more than 70% of the population lacked detectable kDNA (Fig. 

3.3C). This is a significantly greater portion of the population than that produced during 

the same duration of silencing either POLIB (~40%) or POLID (~50%) (Bruhn et al., 

2010, Chandler et al., 2008). These data indicate that kDNA networks are lost more 

rapidly when POLIB and POLID are simultaneously silenced than when either gene is 

silenced individually.  

To confirm these observations, we performed Southern blot analysis and probed 

with maxicircle and minicircle-specific radioprobes to monitor changes in their 

abundance during the timecourse of RNAi.  We were initially surprised that plotting 

minicircle/maxicircle abundance as a function of days of RNAi did not reveal accelerated 

loss of these kDNA components, as compared to single gene silencing (personal 

communication, J. Luo). Considering that our single-gene silencing clones grow more 
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rapidly than our dual gene silencing clone, we found that plotting kDNA loss as a 

function of cumulative doublings (rather than days of RNAi) confirmed that silencing a 

second polymerase accelerated minicircle loss (Fig. 3.4A). For example, 7 cell doublings 

were required for minicircle abundance to fall below 20% of uninduced population 

during POLIB/POLID RNAi whereas more than 10 cell doublings were required to 

achieve this level of minicircle loss when either gene was silencing individually. 

Interestingly, POLIB/POLID RNAi did not increase the rate of maxicircle loss produced 

during POLID RNAi (Fig. 3.4B). This observation suggests POLID may be the primary 

polymerase in maxicircle replication and will be explored further elsewhere. Therefore, 

both our microscopy and Southern blot analyses indicate that simultaneous depletion of 

POLIB and POLID accelerates kinetics of minicircle loss.  

3.4.4 Dual silencing of POLIB and POLID blocks minicircle replication 

Individual silencing of POLIB or POLID perturbed the pool of minicircle 

replication intermediates, yet neither was sufficient to completely block production of 

nascent, N/G progeny minicircles; in each case the production of N/G minicircles 

declined but was not abolished. To determine if dual gene silencing was sufficient to 

produce such a block, we began by performing single dimension replication intermediate 

assays. The abundance of CC and N/G (which are present in approximately equimolar 

amounts in uninduced populations) was consistent until day 3 of the induction, when both 

species began to decline and fraction U began to accumulate (personal communication, J. 

Luo). Notably the production of fraction U seen during dual gene silencing occurs earlier 

than in either single gene silencing background, where fraction U only becomes evident 

4-6 days post induction.  
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Single-dimensional analyses of minicircle replication intermediates are a powerful 

tool for comparing changes in the relative abundance of minicircle species during a 

timecourse experiment, but are limited in that they cannot resolve N/G minicircles from 

singly-interlocked covalently closed dimers (ccD).  Due to this technical limitation an 

increase in fraction U (which emerges from unreplicated ccD) could be mistaken for the 

persistence of N/G minicircles in single-dimension analyses. To determine if a block in 

the production of N/G occurred during dual gene silencing but was masked by fraction U, 

we used two-dimensional analysis to more finely resolve these individual species. Indeed, 

two-dimensional analysis confirmed that fraction U production obscured a tremendous 

decline in the production of N/G minicircles during POLIB/POLID RNAi (Fig. 3.5A). 

Whereas CC and N/G are present in about equimolar amounts in uninduced cells, CC 

were about 6 times more abundant than N/G in parasites depleted of POLIB and POLID 

for six days (Fig. 3.5B). Occasionally during our analysis, N/G minicircles were 

completely undetectable in cells induced for POLIB/POLID RNAi (data not shown).  The 

block in the production of N/G during POLIB/POLID RNAi strongly supports a model in 

which POLIB and POLID both participate in minicircle replication.  

 

 

3.5 Discussion 

The accommodation of multiple DNA polymerases at a replicative fork is well 

documented in the context of nuclear DNA replication of both prokaryotes and 

eukaryotes. Pol III holoenzyme in E. coli, the nuclear replisome, contains two copies of 

pol III core which are individually responsible for leading and lagging strand synthesis 
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(Johnson & O'Donnell, 2005).  Several eukaryotes, such as Saccharomyces cerevisiae, 

coordinate three essential family B DNA polymerases, pol !, pol " and pol #, at the 

replicative core. Pol ! synthesizes RNA primers and short DNA segments then pol " and 

pol # extend leading strand and lagging strands, respectively (Pursell et al., 2007). 

Mitochondrial DNA replication in most known eukaryotes, however, relies upon a single 

mitochondrial DNA polymerase, pol $ (Copeland & Longley, 2003). To date, no 

mitochondrial replisome has been purified, yet T. brucei requires at least three 

mitochondrial DNA polymerases. Although the polymerase domains of POLIB, POLIC, 

and POLID are more than 90% identical, each protein appears to make a specialized 

contribution to kDNA replication. An increased comprehension of the characteristics that 

distinguish the unique functions of these three closely-related polymerases affords a rare 

opportunity to dissect mitochondrial replication fork dynamics.  

While two-dimensional analysis of minicircle replication intermediates is a 

powerful tool that affords fine resolution and detection of minicircle replication 

intermediates, this methodology precludes comparative analysis of changes in the 

abundance of replication intermediates over the timecourse of an RNAi induction. Single-

dimensional analysis (electrophoresis in the presence of ethidium bromide) remains the 

most appropriate method for detecting changes in the relative abundances of minicircle 

replication intermediates. In the study presented we found that, despite microscopy and 

Southern blot analyses indicating a decline in total minicircle content, the pattern of 

minicircle replication intermediates was not visibly different from our uninduced control 

during the first three days of RNAi. Lack of change in levels of free minicircle species 

during early RNAi is neither paradoxical nor inconsistent with the moderate kDNA loss 
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observed during this time. Rather, the presence of consistent levels of these network-free 

species maintained as total network minicircle mass declined, suggests that a larger 

percentage of residual minicircles were network-free.   

Although POLIB/POLID silencing resulted in a block in minicircle replication, 

our single-dimension analysis of minicircle replication intermediates did not reveal an 

accumulation of unreplicated CC minicircles. There are two clear reasons why this may 

be so. First, CC minicircles may not be the only pre-replication product indicating a block 

in minicircle replication initiation. Metabolic labeling experiments were unsuccessful at 

labeling fraction U, suggesting that it may not be the end-product of active DNA 

replication (Liu et al., 2010). Thus, fraction U could be a pre-replication molecule 

produced by aberrant topoisomerase activity as was recently described for a different free 

minicircle species, Fraction E. In this case, the accumulation of Fraction U and the 

persistence of CC minicircles during RNAi would indeed be indicative of an 

accumulation of unreplicated minicircles. More definitive studies regarding the 

production of fraction U are necessary to fully assess this possibility.  A second 

explanation why an accumulation of CC minicircles was never witnessed during the 

timecourse of POLIB/POLID RNAi is that the progressive loss of networks masks an 

increase in the percentage of total minicircles existing separate from the network, 

including unreplicated CC minicircles. For example, parasites induced for 3 days of 

RNAi have lost ~50% of total minicircles but one-dimensional analyses show no changes 

in the abundance of CC minicircles, indicating that percentage of total minicircles 

existing apart from the network as CC has doubled, suggestive of a block in minicircle 

replication.  
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The most definitive proof that POLIB and POLID both participate in minicircle 

replication comes from our two-dimensional analyses. Multiply-gapped minicircles and 

Okazaki fragments are markers for leading and lagging strand minicircle replication, 

respectively, and are detectable in high-contrast images of minicircle from uninduced 

populations (Bruhn et al., 2010). These markers for active minicircle replication either 

absent or below the limit of detection in two-dimensional analyses of parasites induced 

for POLIB/POLID RNAi, indicating disruption of minicircle replication. Additionally, 

production of nascent (N/G) minicircles is almost completely blocked in response to 

simultaneous silencing of POLIB and POLID, a phenotype never achieved when 

silencing either polymerase individually. The production of N/G molecules was almost 

beyond the limit of detection in two-dimensional analysis of replication intermediates 

within 6 days of dual gene silencing. Residual production of N/G minicircles could be the 

result of incomplete gene silencing. Efforts to assess minicircle replication intermediates 

beyond this timepoint of RNAi were unsuccessful due to the extent of kDNA loss and 

unavailable minicircle mass to analyze. Occasionally during our analysis, N/G were 

completely absent in RNAi induced populations, indicative of a complete block in 

minicircle replication. 

Production of fraction U during RNAi of POLIB and POLID (but not POLIC) 

suggested that both proteins participate in minicircle replication, thus, posing the question 

of strand-specific functions. For example, POLIB (which possesses an exonuclease 

domain similar to the leading strand ! subunit) could participate primarily in light strand 

synthesis. Our analyses of replication intermediates during POLIB and POLID RNAi did 

not reveal obvious strand-preferences (Fig. 3.1) (Bruhn et al., 2010). Nonetheless, these 
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data provide significant insight into minicircle replication fork dynamics. Silencing 

POLIB and POLID simultaneously produces a more severe phenotype than silencing 

either protein individually, suggesting that the two do not participate in a strand-coupled 

replication mechanism whereby inhibition of synthesis in one direction disrupts synthesis 

of the opposite strand (as seen with the T4 replisome) (Nelson & Benkovic, 2010). A 

more likely scenario is that under conditions of dysfunction (including RNAi), one 

polymerase substitutes for the other, but with limited efficiency; the result is a partially 

functioning, less processive replisome. Propensity for polymerase switching under 

conditions of dysfunction has been documented in other eukaryotes, where pol ! is 

capable of substituting for a polymerase-deficient pol " (Garg & Burgers, 2005). Indeed, 

immunodepletion of either leading (pol ") of lagging strand (pol !) polymerase impairs 

but does not completely inhibit DNA synthesis in xenopus egg extracts, indicating partial 

yet inadequate polymerase substitution occurs (Fukui et al., 2004). Similarly, in vivo 

depletion of either POLIB or POLID only partially inhibits minicircle replication. The 

complete inhibition of minicircle replication witnessed when both polymerases are 

depleted is consistent with a model of asymmetric minicircle replication where POLIB 

and POLID inefficiently replace one another under conditions of individual polymerase 

dysfunction.  

In addition to its fascinating molecular biology, kDNA is a remarkable structure 

in that it is a validated target for antitrypanosomal drugs (pentamidine for humans and 

ethidium bromide in livestock). Indeed, we recently demonstrated that ablation of kDNA 

replication proteins is lethal to disease-causing T. brucei (Chapter 4). Studies that unravel 

molecular mechanisms of kDNA replication, such as that presented here, enable target-
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specific screens for novel antitrypanosomals with improved fewer side effects than those 

currently available. Efforts to identify protein-protein interactions of POLIB and POLID 

are ongoing (and will be presented elsewhere) and will likely expand our pool of novel 

drug targets without human homologues and deepen our understanding of the replication 

of the most complex genome in nature. 
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Figure 3.1: Fraction U is produced during POLID RNAi 

Two-dimensional gel electrophoresis of free minicircles from SLID RNAi.  Total DNA 

extracted from parasites induced for 0 or 6 days of POLID RNAi was harvested and 

fractionated in the presence of ethidium bromide and then under alkaline conditions. 

DNA was transferred to membranes and free minicircle detected using radio-labeled 

oligos specific for leading (L, light) and lagging (H, heavy) strand replication progeny.  

Abbreviations: ccD, covalently closed dimer; N/G, nicked/ gapped minicircles; MG, 

multiply gapped minicircles; CC, covalently closed minicircles; U, fraction U.  
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Figure 3.2: POLIB/POLID RNAi accelerates growth inhibition 

Growth of parasites induced for RNAi of indicated polymerase(s) was plotted as a 

function of cumulative cell divisions following induction for RNAi. Data for POLIB, 

POLIC, and POLID were adapted from original publications (Klingbeil et al., 2002, 

Bruhn et al., 2010, Chandler et al., 2008).   
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Figure 3.3: Dual gene silencing of POLIB and POLID causes accelerated loss of 

kDNA networks  

(A) Representative DAPI (left) and DIC (right) images of parasites induced for indicated 

days of POLIB/POLID RNAi. Abbreviations and Symbols: N, nucleus; K, normally sized 

kDNA; arrowhead, small kDNA; arrow, no kDNA. Scale bar is 10 µm. (B) DAPI images 

showing examples of the three categories used to score parasites in panel C.  (C) 

Microscopy quantitation of kinetics of kDNA loss. More than 300 cells per timepoint 

were scored as possessing normal sized kDNA (filled circles), small kDNA (open 

squares) or no kDNA (filled triangles). Graph displaying mean (+/- standard error) from 

two independent experiments. 
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Figure 3.4: Loss of minicircles is accelerated during POLIB/POLID RNAi 

Abundance of total (A) minicircle (B) maxicircle mass were determined from Southern 

Blot analyses and plotted as a function of cumulative cell divisions following induction 

for RNAi. POLIB/POLID data was adapted from Figure 3. Data for POLIB, POLIC, and 

POLID were adapted from original publications (Klingbeil et al., 2002, Bruhn et al., 

2010, Chandler et al., 2008).  
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Figure 3.5: Dual gene silencing of POLIB and POLID blocks minicircle replication 

Total DNA was isolated from parasites uninduced or induced for the indicated time of 

POLIB/POLID RNAi. (A) Two-dimensional analysis of free minicircles from parasites 

induced for indicated days of POLIB/POLID RNAi. Analyses were performed described 

for Figure 1. Abbreviations: ccD, covalently closed dimer; N/G, nicked/ Gapped 

minicircles; M.G., multiply gapped minicircles; CC, covalently closed minicircles; U, 

fraction U. (B) Quantitation of the relative abundance of CC and N/G minicircles during 

stemloop silencing of POLIB, POLID, or POLIB and POLID together. The relative 

abundance of minicircle species was estimated by plotting the ratio of signals from CC 

and N/G minicircles after 6 days of silencing POLIB (Bruhn et al., 2010), POLID (SLID, 

Figure 1), or POLIB and POLID (Figure 3, panel A). 
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CHAPTER 4 

THREE MITOCHONDRIAL DNA POLYMERASES ARE ESSENTIAL FOR 

KINETOPLAST DNA REPLICATION AND SURVIVAL OF BLOODSTREAM 

FORM TRYPANOSOMA BRUCEI 

4.1 Abstract 

Trypanosoma brucei, the causative agent of Human African Trypanosomiasis, has 

a complex life cycle that includes multiple life cycle stages and metabolic changes as the 

parasite switches between insect vector and mammalian host. The parasite’s single 

mitochondrion contains a unique catenated mitochondrial DNA network called 

kinetoplast DNA (kDNA) that is composed of minicircles and maxicircles.  Long-

standing uncertainty about the requirement of kDNA in bloodstream form (BF) T. brucei 

has recently eroded with reports of post-transcriptional editing and subsequent translation 

of kDNA-encoded transcripts as essential processes for BF parasites. These studies 

suggest that kDNA and its faithful replication are indispensable for this life cycle stage.  

Here we demonstrate that three kDNA replication proteins (mitochondrial DNA 

polymerases IB, IC, and ID) are required for BF parasite viability. RNAi silencing of 

each polymerase was lethal, resulting in kDNA loss, persistence of pre-replication DNA 

monomers, and collapse of the mitochondrial membrane potential.  These data 

demonstrate that kDNA replication is indeed crucial for BF T. brucei. The contributions 

of mitochondrial DNA polymerases IB, IC, and ID to BF parasite viability suggest that 

these and other kDNA replication proteins warrant further investigation as a new class of 

targets for the development of anti-trypanosomatid drugs. 
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4.2 Introduction 

  Trypanosoma brucei is the protist parasite responsible for the fatal human disease 

Human African Trypanosomiasis (HAT) and a related disease in livestock called nagana. 

The few current pharmacological options to treat HAT are hampered by high toxicity and 

the emergence of drug resistant parasites (Baral, 2010). Therefore, there is an urgent need 

for the development of new anti-trypanosomal drugs. Trypanosomes possess a number of 

biological features without counterpart in humans that may provide sources of new 

targets for drug discovery efforts. One of the parasite’s most remarkable properties is the 

unusual mitochondrial DNA network of trypanosomatids called kinetoplast DNA 

(kDNA). This DNA network is housed within the parasite’s single mitochondrion and 

contains topologically interlocked circular DNA molecules called minicircles and 

maxicircles (Shlomai, 2004). Maxicircles are functionally similar to other eukaryotic 

mitochondrial DNA in that they encode proteins involved in respiratory complexes 

(Feagin, 2000). Nascent maxicircle transcripts require insertion and deletion of uridines 

in order to create a functional open reading frame (Hajduk & Ochsenreiter, 2010). This 

post-transcriptional process, known as RNA editing, is dependent upon minicircle-

encoded guide RNAs (Hajduk & Ochsenreiter, 2010, Stuart et al., 2005). Therefore, both 

minicircles and maxicircles are essential for mitochondrial physiology. 

The topological complexity of the catenated kDNA network dictates a unique 

mode of replication in which minicircles are released from the network, replicated as 

theta structures, and reattached to the network periphery where Okazaki fragment 

processing occurs (Shlomai, 2004). A plethora of proteins involved in kDNA replication 
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have been studied in T. brucei, including five DNA polymerases (Bruhn et al., 2010, 

Klingbeil et al., 2002, Saxowsky et al., 2003, Chandler et al., 2008), six helicases (Liu et 

al., 2009a, Liu et al., 2009b, Liu et al., 2010, Scocca & Shapiro, 2008), two DNA ligases 

(Downey et al., 2005), two primases (Hines & Ray, 2010, Hines & Ray, 2011), a 

topoisomerase IA (Scocca & Shapiro, 2008), and a topoisomerase II (Wang & Englund, 

2001). These studies provide compelling molecular evidence for essential function in the 

distinct steps of kDNA replication in procyclic form (PF) parasites, a life cycle stage 

found in its insect vector.  However, analysis of kDNA replication protein functions in 

bloodstream form (BF) parasites, the life cycle stage found in the mammalian host and 

the target for disease intervention (Schnaufer et al., 2005, Hannaert et al., 2003), is an 

understudied area of trypanosome biology. 

A striking feature of T. brucei is its ability to adapt to diverse environments 

encountered throughout the stages of its life cycle. Developmental regulation of 

mitochondrial activity appears to play a central role in these adaptations (Hannaert et al., 

2003; Milman et al. 2007). PF parasites posses a highly active, branched mitochondrion 

and generate ATP through oxidative phosphorylation and mitochondrial substrate level 

phosphorylation (Tielens & van Hellemond, 2009). Conversely, BF parasites have a 

much-reduced mitochondrion, lack cytochromes and depend exclusively upon glycolysis 

for ATP production.  A strictly glycolytic metabolism creates a seeming independence of 

BF parasites from maxicircle-encoded products and contributed to the assumption that 

kDNA is dispensable in the BF stage, thus diminishing the value of kDNA replication 

proteins as a source of new drug targets. This notion has been challenged by multiple 

lines of evidence, beginning with the demonstration that RNA editing is active and 
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essential in BF parasites and that maxicircle-encoded subunit A6 of ATP synthase 

complex (complex V) is required for generation of the mitochondrial membrane potential 

(!"m) (Schnaufer et al., 2001, Fisk et al., 2008, Schnaufer et al., 2005). More recently, 

mitochondrial translation was found to be essential for BF T. brucei (Cristodero et al., 

2010). Further, inhibition of minicircle replication initiation appears to contribute to the 

trypanosome death elicited by treatment of infected animals with ethidium bromide (Roy 

Chowdhury et al., 2010). These findings suggest that kDNA is by no means dispensable 

in this medically relevant life cycle stage. 

Only a single kDNA replication protein, topoisomerase II (TbTopoII¬mt), has 

been examined in BF T. brucei thus far. RNA interference (RNAi) resulted in modest loss 

of kDNA networks (20-30%) accompanied by slowed parasite growth but not cell death 

(Timms et al., 2002, Worthen et al., 2010).  The kDNA loss phenotype produced in BF 

parasites was significantly reduced compared to that produced in PF, where TbTopoII¬mt 

RNAi resulted in loss of kDNA in ~80% of the population (Wang & Englund, 2001). 

Silencing efficiency was not reported in these BF studies. Thus, it remains unclear if the 

slow growth phenotype reflected a diminished requirement for this kDNA replication 

protein in BF parasites or an inefficient knockdown that makes data interpretation 

difficult. Nonetheless, these data could indicate that TbTopoII¬mt is crucial for BF 

survival and strongly suggest that kDNA replication proteins are indeed required for 

viability of BF parasites.  

We directly examined this hypothesis by individually silencing the family A 

mitochondrial DNA polymerases POLIB, POLIC, and POLID in BF parasites. Our 

previous studies of these polymerases indicated that all three are required for cell growth 
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and revealed non-redundant roles in PF kDNA replication but did not encompass studies 

in BF parasites (Bruhn et al., 2010, Chandler et al., 2008, Klingbeil et al., 2002). Here we 

report that depletion of these proteins was lethal to BF parasites and resulted in loss of 

kDNA networks.  Network loss appeared to result from inhibition of minicircle 

replication and was accompanied by depolarization of mitochondrial membrane potential 

and subsequent parasite death. These findings provide the first direct evidence that BF 

parasites require kDNA replication for viability. Therefore, kDNA replication proteins 

warrant further investigation as biological targets for the development of new anti-

trypanosomal drugs. 

 

4.3 Material and Methods 

 

4.3.1 Trypanosome growth   

Bloodstream form T. brucei single marker (SM), a derivative of Lister 427 

engineered to express T7 RNA polymerase and tetracycline repressor, were maintained at 

37°C with 5% CO¬2 in HMI-9 medium as previously described (Wirtz et al., 1999). Cell 

densities were determined using a Neubauer hemocytometer, and cultures were 

maintained between 5 x 10
5
 and 1 x 10

6
 parasites/mL unless otherwise indicated. To 

avoid generation of revertants, clonal cells were maintained in culture for no longer than 

21 days.   
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4.3.2 RNA interference  

Vectors for RNAi were constructed as described previously (Shi et al., 2000, 

Brandenburg et al., 2007, Wang et al., 2000) substituting pT7-stl, a derivative of 

pLew100 for initial cloning steps. Coding sequences corresponding to 500 bp fragments 

of POLIB (Tb11.02.2300), POLIC (Tb927.7.3990), and POLID (Tb11.02.0770) were 

PCR amplified from Lister 427 genomic DNA using gene-specific primers with 

appropriate linkers. The coding sequences and primers for POLIB and POLID were 

identical to those previously used for RNAi in PF with no reports of off-target effects 

(Bruhn et al., 2010, Chandler et al., 2008). Forward 

(CGAGAGACAACCGAATCATCC) and reverse (TGCATAGCACCTCACGC) primers 

were used to amplify the fragment for POLIC.  Following linearization with EcoRV, the 

stemloop plasmids were transfected into SM parasites, using the Amaxa Nucleofector 

System as previously described (Burkard et al., 2007) and stable clonal transfectants were 

selected using phleomycin (2.5 µg/mL) with limiting dilution.  Clonal cell lines for 

silencing of POLIB, POLIC, and POLID were termed SMIB, SMIC, and SMID, 

respectively. RNAi was induced by the addition of 1.0 µg/mL tetracycline in growth 

medium. Staggered RNAi inductions were performed to minimize variation in sample 

preparation. 

4.3.3 RNA isolation and Northern Analysis   

Total RNA was extracted from 5 x 10
7
 cells using the Purescript RNA isolation 

kit (Gentra Systems) and fractionated on a 1.5% agarose/ 7% formaldehyde gel. RNA 

was transferred to GeneScreen Plus membrane (NEN).  Transcripts were detected with 
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32
P-random primed labeled gene-specfic probes as previously described (Bruhn et al., 

2010). 

4.3.4 Clonogenic Assays  

Parasites that were uninduced or induced for 10 days of RNAi were subjected to 

limiting dilution cloning in HMI-9 supplemented with appropriate antibiotics but lacking 

tetracycline using 96 well plates at 1 parasite/ml. Individual wells were examined five 

days later for the presence of motile parasites and plating efficiencies determined. 

Proliferating parasites were diluted in HMI-9 medium and maintained as described 

above. 

4.3.5 Microscopy and Fluorescence Analyses  

Parasites were pelleted at 800 x g, washed in room temperature trypanosome 

dilution buffer (TDB; 5 mM KCl, 80 mM NaCl, 1 mM MgSO4, 20 mM Na2HPO4, 2 

mM NaH2PO4, 20 mM glucose, pH 7.7) and resuspended in TDB at a concentration of 2 

x 10
7
 parasites/mL. Parasites were allowed to settle by gravity onto poly-L-lysine coated 

microscopy slides, and fixed for 5 minutes in 1% formaldehyde dissolved in TDB. 

Following overnight permeabilization in ice-cold methanol, parasites were rehydrated 

with 3 washes in phosphate buffered saline (PBS, pH 7.4), stained with 6.7 µg/mL 4'-6'-

diamidino-2-phenylindole (DAPI), and mounted in Vectashield (Vector Laboratories). 

Slides were viewed using a Nikon Eclipse E600 microscope and images acquired using a 

Spot digital camera from Diagnostic Instruments. Quantitation of kDNA network 

morphology was performed as previously described (Bruhn et al., 2010, Chandler et al., 
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2008). To eliminate any potential for bias, the identities of samples were withheld from 

the individual performing quantitation. 

4.3.6 Neutral/Alkaline Two-Dimensional Analysis  

Two-dimensional fractionation of total DNA was performed as previously 

described (Bruhn et al., 2010, Liu et al., 2006). Briefly, total DNA was separated in the 

first dimension for 18 hr in the presence of 1.0 µg/mL ethidium bromide and then 

equilibrated and electrophoresed in the second dimension for 20 hr in the presence of 50 

mM NaOH.  Following standard depurination, denaturation, and neutralization 

treatments, DNA was transferred to GeneScreen Plus membrane. Leading and lagging 

strand minicircle replication intermediates were detected using strand-specific T4 

polynucleotide kinase 5'-end labeled oligonucleotide probes. 

4.3.7 Analysis of Mitochondrial Membrane Potential   

Detection of mitochondrial membrane potential was performed essentially as 

described previously (Brown et al., 2006). Uninduced and induced parasites were 

sedimented, resuspended in HMI-9 at 2.5 x 10
-6

 cells/mL, and incubated for 30 minutes at 

37°C with 5% CO2 in HMI-9 containing MitoTracker Red CM-H2XRos (Invitrogen) 

provided at 1µM for microscopy analyses or 2.5 µM for flow cytometry analyses. Cells 

were then washed 3 times in PBS and fixed for microscopy as described above or 

resuspended in 1mL of PBS for flow cytometry. Control cells were pre-treated for 60 

minutes with 5 µM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) or 

the FCCP carrier (100% ethanol), washed and then resuspended in PBS.  Changes in 

mitochondrial fluorescence intensity were analyzed using a Becton Dickinson LSR II 
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flow cytometer. FlowJo software (version 7.6.1) was used to analyze and graph 

experimental results. 

 

4.4 Results 

4.4.1 POLIB, POLIC, and POLID are required for viability of BF T. brucei  

To determine if POLIB, POLIC, or POLID are required for T. brucei BF growth, 

inducible stemloop RNAi constructs for each of the polymerases were stably integrated 

and selected for in SM parasites, which express T7 RNA polymerase and tetracycline 

repressor protein. The individual clonal cell lines, referred to as SMIB, SMIC, and SMID, 

grew with average doubling times of approximately 8.5 hours which was slightly slower 

than the parental line (~8.2 hours per doubling). Induction for silencing of POLIB, 

POLIC, and POLID all resulted in slowed growth after 4 days of RNAi with subsequent 

parasite cell death (Fig. 4.1A-C). Northern blot analysis of parasites induced for 48 hours 

of RNAi revealed knockdown efficiencies ranging from 90 – 95% for each target 

transcript (Fig. 4.2). Notably, parasites non-responsive to RNAi, commonly referred to as 

“revertants,” did not emerge after 10 days of the SMIB, SMIC, or SMID RNAi induction, 

as previously reported for silencing other essential proteins in BF parasites (Urbaniak, 

2009, Chen et al., 2003).  

The low cell culture density required to cultivate BF parasites makes it 

challenging to observe cells that have potentially recovered or following prolonged 

periods of time in culture. Therefore we performed clonogenic assays by limiting dilution 

to further assess the contributions of these kDNA replication proteins to BF parasite 
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viability. Parasites cultures, that were uninduced or induced for 10 days of RNAi, were 

diluted to a single parasite per mL and plated in 96-well plates. Five days later, wells 

were examined for the presence of parasites. Parasites induced for RNAi prior to plating 

exhibited dramatically reduced plating efficiencies as compared to the uninduced 

controls, which were 80-90% viable. Parasites induced for silencing of POLIB, POLIC, 

and POLID clonally proliferated with efficiencies of 2.6%, 2.6%, and 0% respectively 

(Fig. 4.1D). These experiments demonstrate, for the first time, a lethal phenotype upon 

silencing of kDNA replication proteins in BF T. brucei.  

4.4.2 POLIB, POLIC, and POLID perform essential kDNA maintenance roles in BF 

parasites  

Functional studies have implicated numerous essential proteins for kDNA 

replication in PF parasites, yet only a single kDNA replication protein has been examined 

in disease-causing BF parasites. Silencing of this topoisomerase II (TbTopoII¬mt) in BF 

parasites resulted in a modest loss of kDNA compared to the extent of network loss 

observed when silencing this gene in PF (Timms et al., 2002, Worthen et al., 2010). 

Therefore, we sought to assess the role of three mitochondrial DNA polymerases in BF 

kDNA maintenance. Parasites were stained with DAPI, which intercalates into both 

nuclear and mitochondrial DNA, and viewed using fluorescence microscopy. While 

normal sized kDNA networks were clearly distinguishable in uninduced cultures, 

parasites induced for 4 days of polymerase silencing exhibited obvious network 

shrinkage and loss (Fig. 4.3A,C, E). To quantify these striking observations, parasites 

induced for silencing of POLIB, POLIC, or POLID were observed and scored according 

to network size. More than 300 parasites per timepoint were classified as possessing 



 

93 

normal-size networks, small kDNA (networks unambiguously less than one-half the size 

of normal seen in uninduced cells), or no kDNA if no extranuclear DAPI-staining was 

observed despite viewing multiple focal planes. Loss of kDNA resulted when each 

polymerase was silenced (Fig. 4.3B, D, F). For example, after 4 days of POLIB silencing 

the percentage of parasites possessing normal sized kDNA fell to less than 3% while 

parasites with no kDNA represented more than 85% of the cells at this timepoint. 

Kinetics of kDNA loss during silencing of POLIC and POLID were also rapid, with the 

majority of parasites completely lacking kDNA after 4 days of silencing. Interestingly, 

the kinetics of network loss seen during POLID silencing were almost indistinguishable 

from those produced during POLIB silencing, with less than 3% of the cells viewed 

possessing intact networks following 4 days of RNAi. 

4.4.3 Dyskinetoplastid BF parasites produced during RNAi are not viable 

Previously, viable T. brucei that lacked portions of kDNA (dyskinetoplastids) 

were reported following extended treatment with the highly mutagenic DNA-binding 

compounds acriflavin and ethidium bromide (Schnaufer et al., 2002, Stuart, 1971). A 

small percentage of parasites surviving ten days of polymerase RNAi were viable in the 

clonogenic assays (Fig. 4.1D). To address the possibilities that the viable cells following 

silencing had become non-responsive to RNAi or were in fact dyskinetoplastid, parasites 

recovered from clonogenic assays were expanded and further analyzed. Recovered 

parasites from POLIB RNAi induced and uninduced control cultures were stained with 

DAPI. All recovered cells examined possessed kDNA networks, as evident from DAPI 

staining (Fig. 4.4A,C), and remained sensitive to RNAi induction with similar growth 

inhibition patterns as the parental cells (Fig. 4.4B, D). Similar results were seen for cells 
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recovered following POLIC RNAi (Fig. 4.5). These data suggest incomplete knockdown, 

rather than the development of insensitivity to RNAi or survival of parasites in the 

absence of kDNA. 

4.4.4 Disruption of network-free minicircle replication precedes parasite death 

During kDNA replication, minicircles are released as covalently closed (CC) 

monomers and replicated as theta structures to produce nicked and gapped (N/G) nascent 

minicircles (Drew & Englund, 2001). Discontinuities in the DNA backbones of nascent 

minicircles decreases susceptibility to ethidium bromide induced supertwisting; thus 

newly replicated N/G species exhibit decreased electrophoretic mobility compared to 

unreplicated CC minicircles. The pattern of minicircle replication intermediates is well 

established in PF, with CC and N/G present in approximately equimolar amounts (Bruhn 

et al., 2010, Liu et al., 2006, Scocca & Shapiro, 2008). To ensure that the network-free 

mode of minicircle replication utilized by PF parasites is conserved in BF parasites, we 

performed two-dimensional analysis of free minicircles from single-marker cells, the 

parental line of our RNAi clones. Hybridization with radiolabeled oligos that detect 

leading and lagging strand replication intermediates revealed that the pattern of free 

minicircles in BF parasites was virtually indistinguishable from that of PF (Fig. 4.6A). 

Higher contrast images of detected membranes revealed theta structures as well as 

leading (MG) and lagging strand (Okazaki Fragments) specific intermediates (Fig. 4.6B).  

To provide further evidence that parasite cell death during RNAi resulted from 

inhibition of kDNA replication, we used two-dimensional electrophoresis to assess 

disruption of minicircle replication. Previously, silencing of POLIB in PF parasites 

resulted in the persistence of unreplicated CC minicircles accompanied by the 
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accumulation of a multicatenane dimeric minicircle species known as fraction U (Bruhn 

et al., 2010). Analysis of minicircle replication intermediates produced during BF POLIB 

silencing revealed an increase in the abundance of unreplicated minicircles relative to 

newly replicated progeny beginning 4 days post induction for silencing (Fig. 4.6C). As in 

PF, the persistence of unreplicated minicircles was accompanied by the accumulation of 

fraction U. These data indicate that POLIB performs a conserved role in minicircle 

replication in both PF and BF parasites and that disruption of kDNA replication leads to 

parasite cell death.    

4.4.5 Disruption of mitochondrial membrane potential accompanies loss of kDNA  

Viability of BF trypanosomes requires an intact !"m (Brown et al., 2006). The 

ATP-synthase complex is responsible for !"m generation in BF trypanosomes and 

Schnaufer and colleagues demonstrated !"m depolarization and lethality upon RNAi 

silencing of the # subunit (Schnaufer et al., 2005). Loss of kDNA networks during RNAi 

of mitochondrial DNA polymerases resulted in depletion of maxicircles (Bruhn et al., 

2010, Chandler et al., 2008).  We anticipated the same loss of maxicircles in BF parasites 

(including the maxicircle-encoded subunit 6 of the ATP-synthase complex) would 

subsequently lead to the collapse of !"m and cell death. To determine if a collapse in 

!"m could be contributing to lethality in parasites depleted of POLIB RNAi, we used 

the fluorescent dye MitoTracker Red CM-H2XRos. This cell permeable dye is provided 

in a reduced form that fluoresces when oxidized within a polarized mitochondrion. 

Fluorescence microscopy analysis of uninduced parasites revealed staining of the tubular 

mitochondrion, indicating an intact !"m (Fig. 4.7A). Parasites induced for RNAi 

exhibited depolarization of !"m, with MitoTracker fluorescence signal dramatically 
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declining within 4 days of POLIB depletion (Fig. 4.7A). To provide a more quantitative 

analysis of !"m collapse, flow cytometry analysis of MitoTracker stained cells were 

performed. Fluorescence intensity of control cells pre-treated with the protonophore 

FCCP to uncouple !"m was significantly decreased compared to cells that were 

uninduced or pre-treated with ethanol or DMSO, the solvents used for FCCP and 

Mitotracker, respectively. Fluorescence intensity of POLIB-depleted cells decreased over 

the time course of RNAi. Mean fluorescence intensity (MFI) of parasites induced for 

more than 3 days was similar to that of FCCP-treated negative control parasites. 

Together, our findings demonstrate that loss of kDNA during DNA polymerase silencing 

results in depolarization of !"m, which contributes to cell death. 

 

4.5 Discussion 

Individual silencing experiments for three mitochondrial DNA polymerases, 

POLIB, POLIC, and POLID have previously revealed essential kDNA replication roles 

in the PF insect stage of the parasite. This stage relies on maxicircle-encoded proteins for 

its oxidative phosphorylation metabolism. Alternatively, the metabolism of the disease-

causing BF stage of the parasite is exclusively glycolytic (Durieux et al., 1991, Tielens & 

van Hellemond, 2009). Therefore, the loss of kDNA would be lethal to BF parasites only 

if the kDNA-encoded proteins function in cellular processes besides oxidative 

phosphorylation. Recent studies indicate that RNA editing proteins, A6 subunit of ATP 

synthase, and mitochondrial translation are essential in BF trypanosomes (Cristodero et 

al., 2010, Schnaufer et al., 2005). However, silencing of TbTOPOIImt, the enzyme 

involved in reattaching newly synthesized minicircles to the network, in BF parasites 
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resulted in only mild growth and kDNA loss defects.  The goal of this study was to 

determine whether kDNA replication proteins were essential for BF viability.  Here we 

report rapid loss of kDNA networks upon silencing of POLIB, POLIC, and POLID, and 

for each polymerase, loss of kDNA was followed by cell death. This marks the first time 

that ablation of kDNA replication proteins results in lethality of BF T. brucei.  

Knockdown of each polymerase gene resulted in cell death 5-6 days post RNAi 

induction (Fig. 4.1). This likely indicates that loss of proteins encoded by kDNA, rather 

than depletion of enzymes required for its replication, is the primary cause of cell death. 

Proper mitochondrial function is required for numerous processes critical to cell 

physiology, including energy metabolism, calcium homeostasis and signaling, and 

generation of membrane potential (Brown et al., 2006). This creates an attractive 

paradigm in which inhibition of a single kDNA replication enzyme could lead to the 

disruption of multiple cellular pathways, effectively creating a multi-potent effect from 

inhibiting a single target.  Maintenance of the mitochondrial membrane potential is 

clearly amongst these pathways, as we demonstrate here (Fig. 4.7). Yet unknown 

functions for kDNA-encoded proteins likely exist and may prove essential in BF 

parasites. Alternative editing of maxicircle transcripts is hypothesized to increase 

mitochondrial protein diversity (Ochsenreiter et al., 2008b). Indeed AEP1, a product of 

alternative editing of cytochrome oxidase III, was identified as a kDNA maintenance 

factor in BF T. brucei (Ochsenreiter et al., 2008). Additionally, maxicircle coding 

sequence also contains three “maxicircle unidentified reading frames” (MURFS) and a 

series of GC-rich regions predicted to encode a series of highly hydrophobic proteins of 

unknown function (Schnaufer et al., 2002).  A more complete understanding of these 



 

98 

components and the repertoire of proteins produced by alternative editing of maxicircle 

transcripts may reveal additional indispensable functions of kDNA encoded components 

for BF parasites.  

Our current functional analyses of the kDNA replication proteins POLIB, POLIC, 

and POLID indicate that the essential roles of these proteins in kDNA replication appear 

consistent in both life cycle stages examined. Silencing each of the polymerase resulted 

in loss of kDNA networks and was accompanied by changes in the repertoire of free 

minicircle species. For example, when silencing POLIB, unreplicated CC monomers 

persisted and fraction U accumulated with the BF results indistinguishable for those 

obtained when silencing POLIB in PF parasites (Fig. 4.6). Additionally the kinetics of 

kDNA loss for POLIB and POLID were nearly identical, again similar to the results 

obtained from the PF silencing experiments (Fig. 4.3). Interestingly, when comparing the 

rate of kDNA loss however, the BF parasites appear to lose their kDNA with faster 

kinetics.  While it takes nearly 20 doublings for cells to lose their kDNA in PF POLIB 

silencing (52% no kDNA, 40% small kDNA), it took only 12 generations for BF 

parasites to lose their kDNA (90% no kDNA).  Currently we do not understand why 

kDNA loss occurs more rapidly in BF parasites but life stage-specific cell cycle 

checkpoints have been identified and may contribute to these differences (Hammarton, 

2007). 

This study is the first in-depth analysis of kDNA replication protein function in 

BF parasites. Previous functional studies of kDNA replication proteins have been 

performed in PF, including those from our laboratory, yet the relevance of these analyses 

to drug development mandates essential function in disease-causing BF parasites. Focus 
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on the PF stage is largely the result of highly efficient stable transfection methods for this 

form of the parasite. While standard transfection methodologies yield efficiencies of 10
-3

 

– 10
-6

 in PF T. brucei, the technique is remarkably less successful in BF parasites (10
-7

 – 

10
-8

) (Li & Gottesdiener, 1996, McCulloch et al., 2004, Asbroek et al., 1990, Carruthers 

et al., 1993). However, the recent application of nucleofection to BF parasites increased 

stable transformation efficiency nearly 1000 fold, providing greater opportunity to 

examine kDNA replication protein function in this disease-causing life cycle stage 

(Burkard et al., 2007).  When silencing the three DNA polymerases, we found that 

parasites that survived RNAi (proliferated in clonogenic assays) still contained intact 

kDNA networks and remained responsive to induction for RNAi, as evident from growth 

kinetics and loss of kDNA during RNAi (Fig. 4.4, Fig. 4.5). Sustained sensitivity to 

induction for RNAi is noteworthy here, since RNAi resistant “revertant” parasites have 

been widely reported in both PF and BF T. brucei (Krazy & Michels, 2006, Chen et al., 

2003, Urbaniak, 2009, Milman et al., 2007, Galland et al., 2007, Moyersoen et al., 2003). 

The reasons why revertants were not produced when silencing POLIB, POLIC, or POLID 

is beyond the scope of our analyses. Sustained RNAi sensitivity, however, was critical in 

determining the essential contribution each of these mitochondrial DNA polymerases 

makes to the viability of BF T. brucei. 

The demonstration that BF T. brucei cannot survive without kDNA is 

fundamental in evaluating kDNA replication proteins as drug targets. Yet, trypanosomes 

lacking functional portions of their kDNA genome exist in nature (T. evansi and T. 

equiperdum) and have been generated through prolonged culture in the presence of 

mutagenic conditions (Schnaufer et al., 2002, Stuart, 1971). Although permissive in those 



 

100 

BF parasites, partial loss of kDNA locks the parasite into a monomorphic life cycle that is 

unable to survive in the tsetse fly vector and, therefore, spread from an infected host 

(Schnaufer, 2010, Lun et al., 2010). Naturally dyskinetoplastid T. equiperdum and T. 

evansi, as well as an acriflavine-induced dyskinetoplastid strain of T. brucei were 

recently found to possess mutations in the nuclear encoded ! subunit of ATP synthase 

complex. These mutations are proposed to compensate for the loss of maxicircle-encoded 

subunit A6 of this complex (Lun et al., 2010, Schnaufer, 2010, Schnaufer et al., 2005). 

The compound ethidium bromide inhibits kDNA replication in BF parasites yet, viable 

dyskinetoplastid T. brucei have not emerged despite decades of the compound’s use in 

treating infected animals suggesting that compensatory nuclear mutations occur at low 

frequency (Roy Chowdhury et al., 2010).  Additionally, RNAi of other proteins required 

for kDNA function (particularly RNA editing) fails to produce viable dyskinetoplastid 

parasites. Chemical inhibitors of kDNA replication proteins would likely inactivate target 

proteins even more rapidly than RNAi, thus decreasing the window of time for selection 

of these low frequency mutations.  

Our current study adds to a rapidly growing body of literature indicating that 

kDNA is required for BF mitochondrial physiology and, thus, viability. Indeed two 

available treatments for sleeping sickness, pentamadine (in humans) and ethidium 

bromide (in livestock) appear to target kDNA (Shapiro & Englund, 1990, Roy 

Chowdhury et al., 2010). The historical success of drugs targeting kDNA and our finding 

that mitochondrial DNA polymerases IB, IC, and ID are essential in BF parasites indicate 

that targeting kDNA replication proteins remains a promising approach for the discovery 

of new anti-trypanosomal drugs. 
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Figure 4.1: Effect of DNA polymerase RNAi on bloodstream form cell viability 

(A-C) Clonal cell lines were grown in the absence (open circles) or presence (open 

diamonds) of tetracycline (1 µg/mL) to induce for RNAi. Cell density was plotted as the 

product of cell number and total dilution. Mean and standard error of three separate 

RNAi inductions are presented for clonal cell lines (A) SMIB A24, (B) SMIC A15, and 

(C) SMID A13. (D, Table)  Results of clonogenic assays performed with parasites that 

were uninduced (-) or induced (+) for 10 days of RNAi prior to plating. Viability (plating 

efficiency) and standard error from two separate inductions are presented for each clonal 

cell line. 
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Figure 4.2: Knockdown of DNA polymerase mRNA in bloodstream form using 

stemloop RNAi 

Northern Blot of RNA isolated from 5 x 10
7
 parasites induced for 0 or 48 hours of RNAi 

of the gene indicated. Membranes were hybridized with 32-P labeled probes as described 

previously (Bruhn et al., 2010). 



 

104 

 
 

 

Figure 4.3: Kinetics of kDNA loss during bloodstream form DNA polymerase 

silencing 

(A,C,E) Representative images of parasites induced for indicated number of RNAi for 

(A) POLIB, (C) POLIC, or (E) POLID. (B,D, F) Kinetics of kDNA loss were determined 

by classifying cells as possessing normal sized kDNA (closed circles), small kDNA 

(open squares), or no kDNA (closed triangles). The mean and standard error from two 

inductions are presented for parasites depleted of (B) POLIB, (D) POLIC, and (F) 

POLID. Abbreviations: N, nucleus; K, normal sized kDNA; sK, small kDNA; no K, no 

kDNA. Scale bar, 5 µM.  
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Figure 4.4: Analysis of parasites recovered from POLIB clonogenic assays 

(A-B) Parasites viable in clonogenic assays of cultures induced for POLIB RNAi were 

recovered and examined for presence of kDNA and sensitivity to RNAi. (A) DIC and 

fluorescence microscopy images of DAPI stained parasites that were grown in the 

presence or absence of tetracycline. (B) Growth curve of parasites recovered from 

clonogenic assays of POLIB RNAi induced cultures. (C-D) Parasites viable in clonogenic 

assays of uninduced control cultures were recovered and assessed for RNAi sensitivity as 

in A-B. Scale bar, 5 µM.
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Figure 4.5: Analysis of parasites recovered from POLIC clonogenic assays 

(A-B) Parasites viable in clonogenic assays following POLIC RNAi were recovered and 

examined RNAi sensitivity and presence of kDNA. (A) Growth curve of parasites 

recovered from clonogenic assays (B) Images of DAPI-stained parasites that were grown 

in absence (-) or presence (+) of tetracycline. (C-D) Parasites recovered from clonogenic 

assays of uninduced cultures were assessed for RNAi sensitivity as in A-B. 
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Figure 4.6: Analysis of minicircle replication intermediates in parental and POLIB-

depleted parasites  

Neutral/alkaline two-dimensional gel electrophoresis of free minicircles. (A) Total DNA 

from parental parasites was separated in the presence of ethidium bromide and then under 

denaturing conditions (NaOH) prior to transfer to membrane. Minicircle replication 

intermediates were detected with oligomers that specifically hybridize to leading (L) or 

lagging (H) strand intermediates. (B) Higher contrast images of membranes presented in 

panel A. Contrast was adjusted equally in images of membranes to visualize abundance 

of theta structures and Okazaki fragments (C) Two-dimensional analysis of parasites 

induced for indicated number of days of POLIB RNAi. Abbreviations: CC, covalently 

closed; ccD, covalently closed dimer; MG, multiply gapped; N/G, nicked/gapped; U, 

Fraction U. 
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Figure 4.7: Disruption of mitochondrial membrane potential during DNA 

polymerase silencing 

(A) Representative images of MitoTracker stained parasites that were either uninduced or 

induced for 4 days of POLIB RNAi. (B-C) Flow cytometry analysis of MitoTracker 

stained parasites. Unstained control; parasites treated with DMSO (used as solvent for 

MitoTracker solutions), FCCP; protonophore used as negative control, Carrier; parasites 

treated with ethanol (used as a carrier for FCCP). (B) Histogram showing fluorescence 

intensity of indicated samples. (C) Relative mean fluorescence intensity (MFI) of 

parasites presented in panel B. Unstained background was subtracted from raw MFI 

values prior to graphing adjusted MFI relative to that of uninduced cells.  
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APPENDIX 

A GROUNDWORK FOR IN VIVO FUNCTIONAL ANALYSES  

5.1 Abstract 

The mitochondrial genome of Kinetoplastid protists is known as Kinetoplast 

DNA, or kDNA. kDNA is a massive network composed of thousands of catenated 

minicircles and dozens of maxicircles. Each minicircle is attached to three others within 

the network, which is compacted into a disk-like structure close to the flagellar basal 

body. Replication of kDNA is a highly complex process that requires at least three 

mitochondrial DNA polymerases (Pols) related to bacterial polymerase I. Silencing of 

each polymerase (POLIB, POLIC, and POLID) is lethal and results in loss of kDNA 

networks. Thus it appears that each polymerase makes a specific contribution to kDNA 

replication. POLIB, POLIC, and POLID each possess conserved motifs of family A DNA 

polymerases and are predicted to adopt the canonical “right hand” polymerase structure. 

In vivo dissection of protein activities will reveal the unique contributions each makes to 

kDNA replication and, hence, cell viability. Several important tools and strategies for in 

vivo functional analyses have been established and are described here.  

 

 

5.2 Introduction 

  Mitochondrial DNA replication in trypanosomes (kinetoplast DNA, kDNA) is a 

remarkably complex process, reflecting the highly unusual topology of kDNA - a 

network of over 5000 catenated DNA circles (Morris et al., 2001). Minicircles, which are 
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1kb each and account for  ~90% of kDNA mass, are released from the network, 

replicated as theta structures, and then reattached to the network. The other network 

component, maxicircles, are ~23 kb each and are replicated while still attached to the 

network. At least 5 DNA polymerases contribute to kDNA replication. Two Family B 

DNA polymerases (Pol ! and Pol ! PAK) participate in Okazaki fragment processing and 

three Family A DNA polymerases similar to prokaryotic DNA Pol I (POLIB, POLIC, 

and POLID) appear necessary for synthesis (Bruhn et al., 2010, Chandler et al., 2008, 

Klingbeil et al., 2002, Saxowsky et al., 2003). POLIB, POLIC, and POLID are essential 

for parasite survival. Silencing these Pol I-like polymerases results in loss of kDNA 

networks, suggesting each makes a unique contribution to kDNA replication.  

 Family A DNA polymerases are found in a wide range of organisms yet share a 

common “cupped right hand” overall structure composed of three subdomains (Lange et 

al., 2011). The palm subdomain includes residues critical for catalysis and, along with the 

thumb subdomain, interacts with the primed DNA template (Marini et al., 2003). The 

fingers subdomain switches between an “open” and “closed” state to form a binding 

pocket with appropriate geometry for substrate recognition and incorporation of the 

proper nucleotide (Loh & Loeb, 2005). The structure of family A DNA polymerases can 

be further described by a series of motifs and highly conserved amino acid residues 

critical for accurate and processive DNA synthesis (Fig. 5.1, Fig. 5.2A). Motif 1 is 

located at the tip of the thumb and contributes to processivity through its contacts with 

the phosphate backbone of the DNA template and primer. Contacts with the template 

phosphate backbone are also made by motif 2 (Loh & Loeb, 2005). Motif 2 consists of 

two beta strands that make additional contacts with the minor groove (Marini et al., 
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2003). Motif 3, also known as motif A, is highly conserved in all DNA and RNA 

polymerases. Residues in this portion of the palm subdomain make contacts with the 

phosphate backbone and RNA primer bases (Kiefer et al., 1998). Motif A contains 1 of 2 

aspartic acid residues strictly required for polymerase activity, serving to coordinate 

divalent cations necessary for catalysis (Loh & Loeb). Motif 4 (motif B) contributes to 

enzyme substrate recognition (recognition of incoming dNTPs) and, hence, fidelity.  The 

second critical aspartic acid residue is found in motif 5 (motif C), two antiparallel ! 

strands located in the palm subdomain (Marini et al., 2003). An additional motif located 

in the palm, Motif 6, is an alpha helix that interacts with the minor groove of the DNA 

template and appears to contribute to processivity and fidelity (Loh & Loeb, 2005). 

Variations in these conserved motifs can significantly alter enzyme properties that may 

lead to specialized cellular functions (Loh & Loeb, 2005, Marini et al., 2003). Therefore 

the recognition of both novel and conserved residues in motifs of trypanosome 

mitochondrial DNA polymerases could be used to form testable hypotheses and provide 

valuable insight into individual polymerase characteristics and cellular functions.  

 Studies of Family A DNA polymerase structure-function relationships studies are 

of tremendous importance for interests ranging from development of polymerases with 

traits desired for laboratory applications (such as increased fidelity and velocity) to 

correlation of structural changes in mutated polymerases with development of cancer 

(Longley et al., 2005, Lange et al., 2011). Knowledge of family A motifs has many 

applications to the study of kDNA polymerases. The most immediate application is the in 

vivo dissection of the polymerase contributions to kDNA replication, namely determining 

which domains/activities of each polymerase are required for cell viability. Mutations 
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introduced to alter polymerase properties (such as fidelity) have been successfully used to 

dissect the leading and lagging strand-specific contributions of eukaryotic polymerases (! 

and ") and could be applied to dissecting the in vivo functions of T. brucei’s multiple 

mitochondrial polymerases (Burgers, 2009, Pursell et al., 2007). 

Analysis of primary sequences for POLIB, POLIC, and POLID confirmed 5 of 6 

known family A DNA polymerase motifs are present. Aspartic acid residues critical for 

polymerase activity are conserved in all three proteins and homology modeling suggests 

that these residues are positioned within the active site of each polymerase’s conserved 

right hand structure. Much progress has been made in generating an appropriate strategy 

and materials to examine specificity of RNAi and finely resolve the functions of 

mitochondrial DNA polymerases in vivo. This progress and materials are described here. 

  

 

5.3 Material and Methods 

 

5.3.1 Homology Modeling 

Residues corresponding to the C-terminal 1200 residues of POLIB 

(Tb11.02.2300), POLIC (Tb927.7.3990), and POLID (Tb11.02.0770) were used as the 

query for the Protein Homology/analogY Recognition Engine (Phyre). Phyre is an 

ensemble homology modeling server that, based on the query sequence, identifies 

homologues with solved protein structures, uses multiple threading programs to generate 

a three dimensional model of the protein of interest. Importantly, Phyre does not model 
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regions of low homology. Provided atomic coordinates were imaged using PyMOL 

software. Relevant polymerase motifs in the resulting models for POLIB, POLIC, and 

POLID were colorized for future analysis and comparison with crystal structures 

deposited in the Protein Data Bank (PDB). 

5.3.2 Trypanosome Growth 

Procyclic T. brucei (29-13 line) were cultured as described previously, at 27°C in 

SDM-79 medium containing 15% heat-inactivated fetal bovine serum in the presence of 

G418 (15 µg/mL), and hygromycin (50 µg/mL) (Bruhn et al. 2010).   

5.3.4 Inducible Overexpression 

The overexpression plasmid pLew79MHTAP was used to create 

pLew79IBMHTAP, suitable for tetracycline inducible overexpression of POLIB with a 

C-terminal Myc-6His-Tandem Affinity Purification tag (Jensen et al., 2007). The full-

length coding sequence for POLIB (including its predicted mitochondrial targeting 

sequence) was PCR amplified using Phusion Polymerase (NEB) and the gene specific 

primers 5’-CTCGAGATGCGGCTAAATAGCTGCTGG-3’ and 5’-

CTCGAGCACCGTAATTTCACTGTCAG-3’ with appropriate XhoI restriction enzyme 

linkers (underlined). The resulting product and the empty vector were digested with 

XhoI. Digested backbone and insert were gel extracted without exposure to UV and 

ligated. The resulting plasmid, pLew79IBMHTAP was transformed into E. coli. Positive 

transformants (with POLIB in the desired orientation) were identified using restriction 

enzyme analysis. The positive plasmid chosen was sequenced and found to possess no 

mutations, which could be introduced during PCR. pLew79IBMHTAP was linearized 
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with NotI and transfected into 29-13 parasites. Phleomycin used to select for positive 

transfectants. The resulting parasite population was cultured in the presence of G418 (15 

µg/mL), and hygromycin (50 µg/mL) and phleomycin (2.5 µg/mL). Tetracycline was 

added to culture media to induce for expression of POLIBMHTAP. 

5.3.5 RNA Interference  

A ~500 bp region of the POLIC 3’ untranslated region (utr) was PCR amplified 

using forward and reverse primers 5’-AAGCTTGCGGAGGTGAGGAGTAGCGTCG-3’ 

and 5’-TCTAGAGTGTAGTAATCAGGGCGACG-3’ which amplified the target 

sequence and HindIII and XbaI linkers, respectively. For insertion into the plasmid 

pJM326, the resulting PCR product was digested with XbaI and HindIII and ligated into 

pJM326 that had been digested with NheI and HindIII. Ligation of cohesive compatible 

ends of XbaI and NheI resulted in destruction of these sites and the production of 

pJM326-ICutr.  The same ~500bp region of the 3’ UTR was PCR amplified as above, 

except the linker used for the forward primer was MluI. The resulting product digested 

with MluI and XbaI and ligated into the corresponding sites on pLew100, resulting in 

pLew100-ICutr. pJM326-ICutr was digested with XbaI and HindiIII and the liberated 

band corresponding to the ~500 bp region plus a ~500 bp stuffer was gel extracted and 

ligated into the XbaI/HindIII sites of pLew100-ICutr to generate the plasmid “stem loop 

–IC UTR” (pStl-ICutr). pStl-ICutr was linearized with EcoRV and transfected into 29-13 

cells. Positive transfectants were selected using phleomycin and cultured in SDM79 

media containing G418 (15 µg/mL), and hygromycin (50 µg/mL) and phleomycin (2.5 

µg/mL).  
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5.3.6 Constitutive Expression of POLIC 

Plasmid pC-POLICPTPpuro, previously generated by replacing the phleomycin 

resistance cassette of pC-POLICPTP with a puromycin resistance cassette was 

transfected into 29-13 cells or 29-13 cells containing pStlICutr (Bruhn et al., 2010).  

 

 

5.4 Results and Future Applications 

5.4.1 Homology modeling reveals a conserved “right hand” structure for POLIB, 

POLIC, and POLID 

Family A DNA polymerases share a series of structural elements that contribute 

to specialized polymerase characteristics, such as fidelity, processivity, substrate 

recognition/nucleotide selectivity. The motifs can be identified using bioinformatics 

analysis, including multiple sequence alignments with well-studied family A DNA 

polymerase. POLIB, POLIC, and POLID each possess five of the six family A motifs, 

including residues predicted critical for catalysis (Fig. 5.1A). Proper positioning of each 

motif within the right hand polymerase structure is crucial for their contributions to 

catalysis and protein-specific characteristics (Fig. 5.2A). Homology modeling was used 

to predict if the motifs conserved in POLIB, POLIC, and POLID are spatially oriented to 

make contacts with template and products. Threading using the Phyre Server predicted 

that each polymerase adopts the characteristic three-dimensional right hand structure 

(Fig. 5.2, B-D). Conserved motifs were predicted to occupy appropriate positions of 

polymerase subdomains (fingers, palm, thumb) with critical aspartic acids of motifs 3 and 

5 located within the predicted catalytic site. Therefore, each of the examined T. brucei 
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mitochondrial DNA polymerase appears suited to contribute polymerase activity to 

kDNA replication and repair processes. 

5.4.2 Overexpression of POLIB is not lethal to the parasites and may be used for 

dominant negative analyses.  

Efforts to study the enzymatic properties of POLIB in vitro have been hampered 

by consistent production of POLIB as insoluble and truncated protein when using 

heterologous expression (E. coli and insect cells).  Numerous attempts to favor soluble 

protein production of POLIB - including titration of IPTG for induction of expression, 

expression at decreasing temperatures, ethanol/cold shocks to upregulate bacterial 

chaperone expression, and even outsourcing production to a private company – failed to 

yield soluble POLIB. Given that these difficulties might arise from improper post-

translational modification in a heterologous expression system, we chose to overexpress 

affinity-tagged POLIB in procyclic form T. brucei using the vector pLew79IBMHTAP. 

Overexpression of POLIBMHTAP was not cytotoxic, as parasites induced for more than 

10 days of expression exhibited growth kinetics indistinguishable from uninduced 

controls (Fig. 5.3). Importantly, immunofluorescence microscopy (kindly performed by 

Jeniffer Concepción) indicated that POLIBMHTAP is successfully targeted to the 

mitochondrion. These pilot overexpression studies suggest that POLIBMHTAP is 

suitable for several desired applications including (1) immunoprecipitation to assay for 

enzymatic activity, (2) tandem affinity purification to identify interacting proteins (3) 

overexpression of mutant versions of POLIB to dissect enzymatic and essential activities.  
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5.4.3 Polymerase silencing by targeting untranslated regions 

Previous constructs for RNAi of POLIB, POLIC, and POLID were designed to 

specifically target a 500bp C-terminal region. Although these target regions chosen lack 

homology to other sequences within the parasite’s genome, the influence of off-target 

effects cannot be ruled out and, therefore, must be addressed. One effective strategy for 

examining potential off-target effects is to target endogenous transcripts for degradation 

by producing UTR-specific dsRNA while simultaneously driving transcription of the 

target gene with a heterologous UTR that does not share identity with the endogenous 

(target) UTR. An inducible RNAi vector suitable for this approach, pStl-utrIC was 

generated and transfected into 29-13 parasites, a procyclic cell line engineered to 

expression T7 RNA polymerase and tetracycline repressor protein. Integration of 

chromosomal tagging vectors replaces the endogenous gene’s UTR with sequence 

lacking sufficient identity to the dsRNAi trigger. Thus, transcription from the tagged 

allele produces mRNA refractory to RNAi. If the phenotype produced during RNAi is the 

result of specific silencing (rather than off target effects), silencing the endogenous 

transcript in the presence of RNAi refractory transcript is anticipated to rescue the 

phenotype, with no distinguishable differences between uninduced and induced parasites.  

 

5.4.4 Constitutive expression of POLIC (and mutants) refractory to RNAi 

Silencing endogenous POLIC transcripts in the presence of an RNAi refractory 

POLIC transcript can also be used to dissect enzyme function in vivo. The family A 

polymerase domain of POLIC is the only predicted domain in the protein yet accounts for 

less than 20% percent of the total coding sequence. It is, therefore, possible that the 
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essential activity POLIC makes for kDNA replication (and/or cell viability) is not limited 

to nucleotide incorporation. Identifying the essential contribution(s) that POLIC will 

deepen understanding of kDNA replication processes while enabling the design of 

screens for antitrypanosomal compounds inhibiting the enzyme’s essential function. An 

approach similar to that described above for examining specificity of RNAi can be taken 

to introduce an RNAi refractory allele of POLIC with ablated polymerase activity. 

Aspartic acid residues critical for polymerase activity have been identified and mutagenic 

PCR primers designed to mutate these residues to alanines (Fig. 5.4). A clonal population 

for UTR-targeted RNAi (pStl-ICutr) is actively being selected for at the time of this 

dissertation and will be transfected with either POLICPTP or 

POLICPTP(D1380A/D1592A). Induction for RNAi in resulting cell line (29-13/pStl-

ICutr/POLICPTP(D1380A/D1592A) will be lethal is the polymerase activity of POLIC is 

amongst its essential function(s). Adequate constructs were designed and generated to 

examine specificity of POLIB and POLID RNAi and are available for future analyses. 

 

5.5 Additional Discussion 

An attractive application of family A DNA polymerase structure-function 

relationships is applying this knowledge to the design of target driven, cell-based high-

throughput drug screens. Identification of pathogen-specific drug targets without 

counterpart humans decreases the chance for identification of compounds with off-target 

effects. Nonetheless, inhibitor screens performed on heterologously expressed proteins in 

a non-native environment are not strictly representative of the cellular conditions under 
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which the compound must succeed in clinical trials and following approval. The in-depth 

knowledge of the molecular biology and cellular functions of replicative polymerases 

(such as that acquired in this thesis work and related studies), however, can be applied to 

design cell-based inhibitors screens for a specific target polymerase. For example, 

mutations known to increase efficiency of fluorescent nucleotides could be introduced 

into a target kDNA replication polymerase and hit compounds identified by a readout of 

decreased fluorescence (Anderson et al., 2005, Giller et al., 2003, Ghadessy et al., 2004). 

Several molecular tools for resolving the specialized activities of POLIB, POLIC, and 

POLID have been generated and hold future potential for answering a long list of 

intriguing questions about kDNA replication in T. brucei.  

Trypanosomes are amongst the earliest diverging eukaryotes to posses a 

mitochondrion. Perhaps reflective of its unique evolutionary position, this group of 

eukaryotes utilizes DNA polymerases with apparently bacterial origin. Further, our 

studies are supportive of a minicircle replication mechanism in which prokaryotic-like 

DNA polymerases contribute to asymmetric, non-strand coupled synthesis bearing 

similarities to eukaryotic nuclear replication. While our findings do not rule the 

possibility that POLIC contributes to minicircle replication, they suggest that POLIB and 

POLID both participate at the minicircle replication fork. Biochemical experiments 

(including co-immunoprecipitation of POLIB with POLID and purification of replication 

complexes using tandem affinity purification) are ongoing in the Klingbeil laboratory. 

These future experiments will expand knowledge of minicircle replication dynamics 

gained through this dissertation research and deepen biological understanding of kDNA 

replication proteins, a new class of drug targets for combating African trypanosomiasis.
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Figure 5.1: Conserved Family A DNA polymerase motifs in POLIB, POLIC and 

POLID 

Multiple sequence alignment of Family A DNA polymerases performed with ClustalW. 

Residues corresponding to motifs 2-6 are indicated by colorized boxes. Abbreviations: 

E.c, E. coli Polymerase I; Taq, Thermus aquaticus; Bacst, Bacillus Stearothermophilus; 

T7, Bacteriophage T7; POLIB, T. brucei mitochondrial DNA polymerase IB; POLIC, T. 

brucei mitochondrial DNA polymerase IC; POLID, T. brucei mitochondrial DNA 

polymerase ID.  
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Figure 5.2: Predicted structures of mitochondrial DNA polymerases IB, IC, and ID  

(A) Cartoon representation of the three dimensional structure of Thermus aquaticus DNA 

Polymerase I (PDB 4KTQ) produced using PyMOL. (C-D) Homology models were 

produced using the ensemble homology modeling server Phyre and shown as cartoon, 

produced in PyMOL. and critical aspartic acid residues shown as spheres. (B) Model of 

POLIB based on Thermus aquaticus DNA Polymerase I (PDB ID: 4KTQ). (C) Model of 

POLIB based on Thermus aquaticus DNA Polymerase I (PDB ID: 4KTQ). (D) Model of 

POLID based on Geobacillus stearothermophilus DNA POLYMERASE I/DNA 

COMPLEX (PDB ID: 3BDP). Motifs are colorized as in Figure 5.1. 
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Figure 5.3: Overexpression of POLIBMHTAP 

(A) The POLIBMHTAP population was grown in the absence (open circles) or presence 

(open diamonds) of tetracycline (1 µg/ml) to induce for overexpression of IBMHTAP.  

Cell density was plotted as the product of cell number and total dilution. (B) Western blot 

of lysates from parental (29-13) cells, cells transfected but not induced for 

overexpression, or cells induced for overexpression. POLIC-PTP ( predicted M.W., 188 

kDa) was detected with Peroxidase-Anti-Peroxidase Soluble Complex (PAP) reagent. 
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Figure 5.4: Location of critical aspartic acid residues in motifs A and C 

(A) Residues flanking the critical aspartic acid residue in Motif A are shown, with the 

corresponding coding sequence displayed below. (B) Residues flanking the critical 

aspartic acid residue in Motif C are shown, with the corresponding coding sequence 

displayed below.
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5.6 Plasmids Generated 

5.6.1 pSLIB 
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5.6.2 pSLIC 
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5.6.3 pSLID 

 



 

132 

5.6.4 pSLDB 
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5.6.5 pT7-Stl IB 
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5.6.6 pT7-Stl IC 
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5.6.7 pT7-Stl ID 
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5.6.8 pStlutr IC 
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5.6.9 pMO POLICHA 
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5.6.10 pC PTP Puro 
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5.6.11 pC POLIBPTP Puro 
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5.6.12 pC POLICPTP Puro 
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5.6.13 pC POLIDPTP Puro 
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