The STREAMS Experience in Improving Student Success in STEM at Bridgewater State University

Thomas P. Kling ${ }^{1}$, Jennifer Mendell ${ }^{2}$, Matthew Salomone ${ }^{3}$, Joshua Twomey ${ }^{4}$, Stephen Waratuke ${ }^{5}$, Jeffrey Williams ${ }^{1}$
Departments of Physics ${ }^{1}$, Biology ${ }^{2}$, Mathematics ${ }^{3}$, Institutional Research ${ }^{4}$ \& Chemistry ${ }^{5}$. Bridgewater State University, MA 02325

Data Promoting Institutional

 Change - Project Compassriagewater State University's Project Compass Grant from the Nellie Mae Foundation led to a deeper, institution-wide study of the success rates of all students, but first generation, low-income, and minority
students in particular. The initial ideas for STREAMS grew out of sharin
 also were done as part of the Project Compass work

tion data combined for all BSU STEM majors.

Retention data combined for biology majors. Th same was discussed with all other STEM major.

STREAMS Initiatives

A best practices approach to STEM student success based on STEM and multi-cultural literature focus on group work, inquiry, increased student support and advising

1. Course Development Grants - encouraging group work \& inquiry particularly in gateway courses
2. Structured Learning Assistance - all STEM gateway courses, mandatory for all students
3. Summer Bridge Program - residential, undergrad research focus for 16 students
4. Residential Learning Community - for STEM majors, multi-year community
5. Increased Transfer Coordination - articulation, advising, course development at Cape Cod and Massasoit Community Colleges
6. Networking / Mentoring - for new native and transfer students with reflective e-portfolios

Grant activities began Summer 2010 We are in grant year 2 of a 5 year grant.
Student D, F, W, and I grades in gateway STEM courses were
shared with departmental faculty, who designed new teaching
$\begin{aligned} & \text { modes. Bridgewater's rates are similiar to peer institutions } \\ & \text { but STREAMS looks to reduce these rates to below } 20 \% \text {. }\end{aligned}$

Coume	ei couns mite	$\xrightarrow{\text { tumamem }}$			chemem
		${ }_{23}^{20}$	${ }_{35}{ }_{30}$	${ }^{*}$,
	Come	$\underset{\substack{218 \\ 120}}{10}$		\%	
(emme			,	近	

roject Compass analysis showed no statistically significant difference in the progress of low income, first generation, women, or minority sudents compared to the average in STEM retentio
ast-Tme Fulu- Tme fressumen aul stuoen

Summer Bridge Program

+ 15 students in Summer 2010, 16 students in Summer 2011
4 Residential, 3-week program
\# Students complete 2 college-level courses
* Physics 199: Scientists at Work, a writing intensive Core Curriculum course
* Math 125: Integrated Science and Math, an introduction to pre-calculus and calculus
\$ Students work in groups of 4 in a research lab for 30 hours -mentored by a peer (senio undergrad) and faculty member

Overall GPA, STEM Courses GPA, and STEM Credits Earned during the 2010-2011 academic year for 2010 summer bridge participants and declared STEM majors. There were no statistical differences in gender, ethnicity, income-status, firstgeneration status, Math SAT, high school GPA between the two groups. Only the STEM Credits Earned comparison is statistically significant ($\mathrm{p}=0.05$) at $\mathrm{p}=0.016$.

Structured Learning Assistance

1. Small group, inquiry based work added or integrated into introductory biology, calculus,
chemistry, computer science, and physics courses.
. Based on the idea that an advanced student peer leader can elicit greater student interaction
with the material (more honest questions, open discussion)
om each department creating their
. Fully implemented in Biology 121 in fall 2010 - with positive results!
. Futed in calculus, physics, chemistry in spring 2011. Computer science pilots in fall 201
2. Fully implemented in calculus and physics, strong chemistry presence in fall 2011

The Biology 121 SLA model was to require all students to sign up for a co-requisite, pass / fail, students led by 150) delivered in groups of

The co-requisite course met for 2 hours per week and focused on inquiry activities, case studies reinforcing lecture topics, sharing of notes, and general study skills.
The historical DFWI rate has been in excess of 30% for many years, but the STREAMS sponsored SLA reduced the DFWI rate to under 15%.

