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ABSTRACT

PHYSICAL INFORMATION THEORETIC BOUNDS ON
ENERGY COSTS FOR ERROR CORRECTION

SEPTEMBER 2011

NATESH GANESH

B.Tech., NATIONAL INSTITUTE OF TECHNOLOGY, TRICHY, INDIA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Neal G. Anderson

With diminishing returns in performance with scaling of traditional transistor

devices, there is a growing need to understand and improve potential replacements

technologies. Sufficient reliability has not been established in these devices and ad-

ditional redundancy through use of fault tolerance and error correction codes are

necessary. There is a price to pay in terms of energy and area, with this additional

redundancy. It is of utmost importance to determine this energy cost and relate it

to the increased reliability offered by the use of error correction codes. In this the-

sis, we have determined the lower bound for energy dissipation associated with error

correction using a linear (n,k) block code. The bound obtained is implementation

independent and is derived from fundamental considerations and it allows for quan-

tum effects in the channel and decoder. We have also developed information theoretic

efficacy measures that can quantify the performance of the error correction and their

relationship to the corresponding energy cost.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Nanotechnology requires the manipulation of matter on an atomic and molec-

ular scale, and involves structures which are in the range of 1-100 nm in at least

one dimension. Nanotechnology can be used to create devices that can be used to

perform computation. Though these devices will not replace complementary metal-

oxide-semiconductor(CMOS) transistor devices in the nearby future, it is of utmost

importance that research is carried out to develop these devices as well as new archi-

tectures and tools to study and maximize their potential.

In computing, nanotechnology could follow two possible paths - Evolutionary and

Revolutionary [1]. In computing, the evolutionary path deals with continuing scaling

of CMOS devices. There are however many drawbacks to this including fundamen-

tal lower limit on transistor sizes, interconnect scaling, disproportional increase in

performance with device density, power density, etc. Revolutionary nanoelectronics

research involves the study of nanotube transistors, spintronics, magnetic memory

devices, quantum devices, molecular devices and optoelectronics. Extensive research

in these technologies to improve there reliability and signal to noise ratio (SNR) is

necessary if they are to replace CMOS in the future.

One of the major problems facing us with respect to future nanodevices is that

of high manufacturing defect rates. These devices which may operate at lower noise

margin result in greater soft errors. Low power devices possess low energy barriers

between different logic states and are very prone to thermal noise. Further the fun-

1



damental quantum nature of these devices renders them probabilistic and introduces

quantum noise which cannot be eliminated. Thus there is a need to achieve robustness

in nanoscale technology in order for them to be used effectively (for computation).

This is has been done so through defect tolerance built into the fabric, as well as

through the use of error-correction codes/techniques [1], [2].

Addition of redundancy in the form of error-correction codes leads to increase

in design complexity, chip area and power consumption. Since power dissipation

and energy efficiency have been identified as an important bottleneck in the growth

of future technologies, the focus of this study has been to determine fundamental

lower bounds on power dissipation associated with performing error correction on

physical realizations of signal states. Robustness is achieved through the use of a

linear (n,k) single error correcting code. Emphasis has also been laid on identifying

and testing potential information theoretic quantities that will provide an insight into

the relationship between the “amount” of error correction achieved with the energy

required to do so.

Chapter 2 and Chapter 3 present the theoretical background of the concepts used

in this thesis. We start Chapter 2 by introducing the concept of error correcting codes,

their construction, the parameters involved and the various properties associated with

them. We shall also look at the decoding strategy used. This will be followed by

an introduction into information theory. Starting from the concept of information

entropy, we shall move onto relative entropy and mutual information.

Chapter 3 will introduce principles associated with the physical realization of infor-

mation bearing systems. Decoherence and the relation between information theoretic

and thermodynamic quantities are also discussed. The chapter will also explore the

Referential approach to physical information theory and in depth, analyze the impli-

cations of this approach, for certain established ideas of relevance to this work [12],

[13]. The derivation and use of computational efficacy measures are also touched

2



upon. In Chapter 4, how information is encoded in a physical quantum system us-

ing density matrices and the need for changes to the efficacy measures introduced

in Chapter 3 are presented. The changes in the definitions are studied on an exam-

ple system, and are followed up by extending the usage of these definitions to more

complex systems. We have then focused on our system of interest and developed the

necessary formulation for performance metrics and energy dissipation. In the last

section of this chapter, the results we have obtained are presented, followed by a dis-

cussion of the various challenges faced and the interesting questions that have been

raised over the course of this work. Chapter 5 is a brief summary of what has been

covered in this thesis.
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CHAPTER 2

TECHNICAL BACKGROUND I: ERROR CORRECTION
CODES AND CLASSICAL INFORMATION THEORY

2.1 Introduction to Error-Correction Codes

Figure 2.1. Block diagram of a simple communication system with encoding (after
[5])

There are two structurally different types of codes which are in use today: Block

codes and Convolutional codes. For block codes, the encoder divides the information

sequence into message blocks of k-tuple message words u =(u0,u1,....,uk). The encoder

then transforms the k-tuple message word u into n-tuple code word v. Thus with the

binary alphabet, 2k message words are converted into the code words. This set of 2k

out of the possible 2n words is called a (n,k) block code. The code rate R is defined

4



as number of information bits entering the encoder per transmitted symbol and thus

R=k/n.

We have k≤n for error-correction codes, which implies the code rate R is lesser

than or equal to 1. The (n-k) bits added to each message to form a code word are

called parity bits. These redundant bits provide the code with the capability of com-

bating noise. The choice of the number of parity bits in a (n,k) block code is a major

issue while designing the encoder.

2.1.1 Linear Block Codes

For ease of code generation and analysis, we shall focus upon a subclass of codes

within the class of block codes called linear block codes. A block code of length n

and 2k code words is called a linear (n,k) code if and only if its 2k code words form

a k -dimensional subspace of the vector space of all the n-tuples over the field GF(2)

[4], [5], [6]. This means that a binary block code is linear if and only if the modulo-2

sum of any two code words is also a code word. For any two code words vi and vj

vi
⊕

vj = vk (2.1)

where vk is also a code word.

Since a (n,k) linear code C is a k -dimensional subspace of the vector space Vn

of all the binary n-tuples, it is possible to find k linearly independent code words,

{g0,g1, ...,gk−1}, in C such that every code word v in C is a linear combination of

these k code words; that is

v = u0g0 + u1g1 + ....+ uk−1gk−1 (2.2)

where ui=0 or 1 for 0 ≤ i ≤k. We can arrange these k linearly independent code

5



words as the rows of a k×n matrix as shown below:

G =



g0

g1

...

gk−1


=



g00 g01 g02 · · · g0,(n−1)

g10 g11 g12 · · · g1,(n−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gk−1,0 gk−1,1 gk−1,2 · · · gk−1,n−1


(2.3)

where gi=(gi0,gi1,....,g(i,n−1)) for 0≤i≤k. If u=(u0,u1,...,uk−1) is the message to be

encoded, the corresponding code word is given as

v = u ·G = (u0, u1, ..., uk−1) ·



g0

g1

...

gk−1


= u0g0 + u1g1 + ....+ uk−1gk−1 (2.4)

G is called the generator matrix and its rows span the (n,k) linear code C. There

is also another useful matrix associated with every linear code. For any k×n matrix,

there exists a (n-k)×n matrix H with (n-k) linearly independent rows such that any

vector in the row space of G is orthogonal to the rows of H. Hence we can describe

a linear code C generated by G as: A n-tuple v is a code word generated in C by G

if and only if v · HT= 0.

2.1.2 Minimum Distance of a Block Code

A very important parameter of a linear block code is its minimum distance, which

determines its error-detecting and error-correcting capabilities. Let v=(v0,v1,....,vn−1)

be a binary n-tuple. The Hamming weight of v, denoted by w(v) is defined as the

number of nonzero components of v. The Hamming distance between two n-tuples

6



u and v, denoted as d(u,v), is defined as the number of places where they differ.

For a block code C, the minimum distance, denoted as dmin is defined as

dmin = min{d(u,v) : u,v ∈ C,u 6= v}. (2.5)

Since in a linear block code, the modulo-2 sum of two code words is another code

word, the minimum distance of code C can also be defined as the smallest Hamming

weight of a nonzero code word. Thus dmin=wmin= min( w(x ): x∈C, x 6=0 )

2.1.3 Syndrome and Error Detection

Consider an (n,k) linear code with generator matrix G and parity-check matrix

H. Let v=(v0, v1, ..., vn−1) be the transmitted code word over a noisy channel and

r=(r0, r1, ..., rn−1) be the received vector at the output of the channel. Due to the

channel noise, r may be different from v. The vector sum

e = r + v. (2.6)

is a n-tuple, where ei=1 for ri 6= vi and ei=0 if ri = vi. This n-tuple is called the

error pattern or vector, which simply displays the positions where the received vector

r differs from the transmitted code word v. The 1’s in e are the transmission errors

caused by the channel noise. It is very clear that

r = v + e. (2.7)

On receiving r, the decoder must determine whether r contains any transmission

errors and if the presence of errors is detected, the decoder will have to take action

to locate and correct them.

7



When r is received, the decoder computes the (n-k)-tuple:

s = r ·HT (2.8)

which is called the syndrome of r. Now s=0 if and only if r is a code word, and s 6=0

if and only if r is not a codeword. It is possible that the errors in certain error vectors

are not detectable i.e. r contains errors but s = r · HT=0. This happens when the

error pattern e is identical to a non-zero code word. In this event, r is the sum of

two code words, which is a code word as well, and consequently s = r ·HT=0. Error

patterns of this kind are called undetectable error patterns. When an undetectable

error pattern occurs the decoder makes a decoding error.

The syndrome s computed from the received vector depends only upon e and not

on transmitted word v.

s = r ·HT = (v+e)HT = v ·HT + e ·HT (2.9)

However since v ·HT=0, the above Eq(2.9) reduces to

s = e ·HT (2.10)

Any error-correction scheme would be a method of solving the (n-k) linear equa-

tions of Eq. (2.8) for the error vector e. Once that is found, we can take r+e and

get the actual transmitted word. However this is not simple as the linear equations

of Eq(2.8) do not have a unique solution, but have 2k solutions. Thus there are 2k

error patterns that result in the same syndrome, and the true error pattern is just

8



one of them. The decoder has to hence decide the right solution from 2k candidates

and must do so in a way to reduce the probability of decoding error.

If the channel is a binary symmetric channel or BSC with crossover probability

less than 0.5, the most probable error pattern is the one that has the smallest number

of non-zero digits. This idea is used in the construction of a standard array which is

used in syndrome decoding [4].

2.1.4 Hamming Codes

The Hamming codes are a family of single error correcting linear codes. For any

integer m≥3, there exists a Hamming code with the following parameters:

Code length: n=2m-1

Number of information symbols: k=2m-m-1

Number of parity check symbols: n-k=m

Error correcting capability: t=1(dmin=3)

For m=3, we have n=7 and k=4, and thus the Hamming (7,4) code which is capable

of correcting all single-bit errors, or detecting all single-bit and double-bit errors. The

Hamming distance between the transmitted and received words should not be greater

than one for it to be correctable. The parity check matrix for the (7,4) code is given

by

H =


1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

 (2.11)
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The Hamming(7,4) code is a perfect code, i.e. it satisfies the Hamming bound

[5]. The weight distribution of a Hamming code of length n=2m − 1 is given by the

following polynomial,

A(z) =
1

n+ 1
{(1 + z)n + n(1− z)(1− z2)(n−1)/2} (2.12)

where the number of code vectors of weight i, Ai, is simply the coefficient of zi in

the polynomial, which is called the weighted enumerator for the Hamming code. For

m=3, n=7 and k=4, we have the weight distribution for the Hamming (7,4) code to

be A0=1,A3 = A4=7 and A7=1.

The extended Hamming (2m, 2m −m − 1, 1) code is formed by the addition of a

parity bit to the (2m−1, 2m−m−1, 1) code. For example, the Hamming (8,4) code is

formed by the addition of a parity bit to the Hamming (7,4) code. The addition of the

parity bit allows us to increase the minimum Hamming distance to 4. This enables

the correction of a single-bit error as well detection of a double-bit error at the same

time and they belong to the class of codes called Single Error Correcting and Double

Error Detecting codes or SECDED codes. However the Hamming (2m, 2m−m− 1, 1)

code is not a perfect code.

2.2 Introduction to Information Theory

2.2.1 Classical Information Theory

Information theory seeks to obtain the fundamental limits on the reliability of

compressing and exchanging data. The theory, originally used in the communica-

tion field, has since developed and found applications in a wide variety of disciplines.

Application of this theory to nanoelectronic circuits is necessary as their intended

purpose includes communication, computation and information storage. It can also
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be used to develop many important performance metrics which will help in the explo-

ration of future devices. Information theory allows us to connect such performance

measures directly with related thermodynamic quantities such as thermodynamic en-

tropy and energy dissipation, and hence provide us with important knowledge on the

capabilities of these nanoelectronic circuits.

2.2.2 Entropy and Information

The concept of entropy, originally a thermodynamic construct, has been adapted

to other fields of study, including information theory. It is commonly claimed that

thermodynamic entropy can be interpreted as an application of the information en-

tropy concept to a highly specific set of physical questions. Entropy is defined as the

measure of the disorder of a system, which can be expressed as

A state of high order=low probability

A state of low order=high probability

The information entropy was introduced in 1948 by Claude Shannon through his ex-

ploration of the entropy of random variables and random processes in [3]. Information

entropy is often eponymously called Shannon entropy or Shannon information. Before

delving deeper into the formal definition of information and the formulation of infor-

mation entropy, let us first see how the information content of an object is determined.

2.2.3 What is the Information Content of an Object?

In order to determine the information content of an object, let us introduce a

sender (i.e. us) and a receiver, say a friend who shares some background knowledge

with us (e.g. the same language or other sets of prior agreements that make commu-
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nication possible), but who does not know the state of our object. The information

content of the object is defined as “the size of the set of instructions that our friend

requires to be able to reconstruct the object, or better the state of the object.

Figure 2.2. Decision tree explaining information content of an object (after [11])

The Figure 2.2.3 displays an example of a decision tree. Two binary choices have

to be made to identify the shape (triangle or square) and the orientation (horizontal

or rotated). If we send with equal probabilities one of the four objects, two bits

of information is transmitted. The information content of an object can easily be

obtained by counting the number of equally likely binary choices. In classical infor-

mation theory, a variable which assumes the values of 0 or 1 equally likely, is called

a bit. It can be said that n bits of information can be encoded in a system when

instructions in the form of n binary choices needs to be transmitted to identify or

regenerate the state of the system.

2.2.4 Shannon Information

The Shannon entropy is a measure of the uncertainty associated with a random

variable. For an event X with n outcomes, (xi, i = 1, 2, 3,..., n) the information
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entropy, denoted by H(X) or H({p(xi)}), is defined as

H(X) = −
n∑
i=1

p(xi)logbp(xi). (2.13)

where p(xi) is the probability mass function of the outcome xi, b is the base of the

logarithm used. The unit of the information entropy H depends on the value of base

b, and is expressed in bits when b= 2 and in nats when b= e. For our purposes we

shall use b= 2.

The above definition was evolved for Shannon entropy by imposing three reasonable

conditions on the quantitative measure of the ”information content of an event”.

These are

(i) Information is non-negative.

(ii) Least probable events provide the most information.

(iii) Information is additive for independent events.

To understand the relationship between entropy and probability of an event, con-

sider the following experiment. Consider tossing a coin with known (not necessarily

equal) probabilities of coming up heads or tails. The entropy of the unknown result

of a toss of the coin is maximized if the coin is fair (i.e., heads and tails equally

probable). This is the situation of maximum uncertainty, as it is most difficult to

predict the outcome of a toss; the result of each toss of the coin delivers a one bit

of information. However, if we know the coin is not fair, but comes up heads or

tails with probabilities p and q, then there is less uncertainty. Every time, one side

is more likely to come up than the other. The reduced uncertainty is reflected in

a lower entropy, as on average, each toss of the coin delivers less than a full bit of

information. A double-headed coin which never comes up tails is an extreme case in

which there is no uncertainty. The entropy is zero and each toss of the coin delivers

no information.
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The use of the logarithm function allows entropy to follow the first and third

condition (assuming entropy vanishes for p(xi)=0). Suppose there is a set of n mu-

tually exclusive events (aj, j= 1, 2,..., n) each with equal probability p(aj)=1/n.

The Shannon entropy of this set of events is equal to logbn units. Consider another

set of m mutually exclusive events which are independent from the previous set of

events, with the probability of each event given as 1/m. The Shannon entropy asso-

ciated with this set is logbm units. Considering both the sets together, i.e. for the

set of mn possible events each with a probability of 1/mn, the Shannon entropy is

logb(mn)=logbm+logbn units which is the sum of the Shannon entropies of the two

independent sets of events.

2.2.4.1 Relative entropy and Shannon Mutual Information

The relative entropy is a measure of the distance between two distributions. For

two probability mass functions p(x ) and q(x ), the relative entropy or the Kullback

Leibler distance D(p ‖ q) is defined as

D(p ‖ q) =
∑
x∈X

p(x)log
p(x)

q(x)
(2.14)

The concept of mutual information is now introduced, which is a measure of the

amount of information that one random variable contains about another random

variable. Consider two random variables X and Y with a joint probability mass

function p(x,y) and marginal mass functions p(x ) and p(y). The mutual information

I(X;Y) is the relative entropy between the joint distribution and the product of the

marginal distributions p(x )p(y), i.e.,

I(X;Y)= D(p(x,y)‖p(x )p(y))
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=
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(2.15)

Using pre-defined quantities like the joint and conditional entropy from joint and

conditional probability distributions, the mutual information I(X;Y) can be expressed

as

I(X;Y)=H(X)+H(Y)-H(X,Y)

=H(X)-H(X|Y)

=H(Y)-H(Y|X)

where H(X,Y) is the entropy associated with the joint probability distributions of X

and Y. H(X|Y) and H(Y|X) are the conditional entropies [4].

H(X, Y ) = −
∑
xεX

∑
yεY

p(x, y)log2p(x, y) (2.16)

H(Y |X) = −
∑

xεX,yεY

p(x, y)log2
p(x)

p(x, y)
(2.17)

H(Y |X) = −
∑

xεX,yεY

p(x, y)log2
p(y)

p(x, y)
(2.18)

.

Mutual information is symmetric i.e.,I(X;Y)=I(Y;X), which implies there is as

much information about X in Y as there is information about Y in X. It is bounded

as 0≤I(X;Y)≤ min(H(X),H(Y)). Equality in the lower bound is achieved when X and

Y are independent, i.e. when there is no information in Y about X. For H(X)≤H(Y),

equality is achieved in the upper bound when Y uniquely determines X. This implies

that all information about X is in Y.

Heuristically I(Y;X) can also be viewed as the “entropy in Y that is attributable

to X”. This must hence be equal to the total entropy(H(Y)) less the entropy that is
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not attributable to X (H(Y|X)). Hence I(Y;X)=H(Y)-H(Y|X).

2.2.5 Binary Symmetric Channel

A binary symmetric channel (or BSC) is a common discrete memoryless commu-

nications channel model used in coding theory and information theory. In this model,

a transmitter wishes to send a bit (a zero or a one), and the receiver receives a bit. It

is assumed that the bit is usually transmitted correctly, but that it will be “flipped”

with a small probability (the “crossover probability”). This channel is often used by

theorists because it is one of the simplest noisy channels to analyze. Many problems

in communication theory can be reduced to a BSC. On the other hand, being able

to transmit effectively over the BSC can give rise to solutions for more complicated

channels.

A binary symmetric channel with crossover probability e denoted by BSCe, is a

channel with binary input and binary output and probability of error e; that is, if X

is the transmitted random variable and Y the received variable, then the channel is

characterized by the conditional probabilities

Pr(Y=0|X=0)= 1-e

Pr(Y=1|X=0)= e

Pr(Y=0|X=1)= e

Pr(Y=1|X=1)= 1-e

It is assumed that 0≤ e≤0.5. If e≥0.5, then the receiver can swap the output

(interpret 1 when it sees 0, and vice versa) and obtain an equivalent channel with

crossover probability 1-e≤0.5. The capacity of a channel is defined as the tightest

upped bound on the amount of information that can be reliably transmitted over a

channel. The capacity of the binary symmetric channel is 1-H(e)(as shown in figure

2.2.5) where H(e) is the binary entropy function which is equal to
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Figure 2.3. Channel capacity vs e

H(e) = −e× log2(e)− (1− e)× log2(1− e) (2.19)
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CHAPTER 3

TECHNICAL BACKGROUND II: PHYSICAL
INFORMATION THEORY-REFERENTIAL APPROACH

AND ITS IMPLICATIONS

In the previous chapter, a brief introduction to classical information theory was

made. The important quantities such as entropy and mutual information were defined

and their properties explored. The quantum equivalent of these classical information

theoretic quantities will now be introduced, and the important theorems in physical

information theory will be briefly discussed. In this chapter, we shall also develop the

Referential approach to information theory and its implications on the lower bounds

for entropic and energy costs in information processing physical systems [12], [13],

[15]. Noisy computational channels and the need for information theoretic measures

to quantify the “how well” a logical operation has been carried out is also discussed

[13],[14]. These measures are defined and derived and their relationship to the infor-

mation loss in a process is stated. In the next chapter, the referential approach is

applied to the problem of communicating information using a Hamming code. Re-

quired generalizations of the approach were derived and extended to more composite

systems.

3.1 Physical Information in Quantum Systems

Information is encoded in the states of classical and quantum systems. In quantum

systems,the encoding of information is done by using the quantum state vectors of

the system of interest. Yet in most cases, the state vector of a quantum system is

either not defined, or not known and only probabilities for various state vectors are
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available. In such situations, the density matrix formalism is used. Adaptation of

the notion of entropy to the field of quantum mechanics is provided by John von

Neumann with the introduction of von Neumann entropy. It is an essential concept

in determining the maximum amount of information that can be obtained from a

quantum mechanical system. We will now introduce the concept of von Neumann

entropy and follow it up with the Holevo information and its significance.

3.1.1 Density Matrix Formalism and Von Neumann Entropy

The density matrix formalism is used in the case where the state vector for a

system is not defined or the state vector is not known; only the probabilities of

various vectors are known. The density matrix operator is a positive operator with

unit trace defined on a complex Hilbert space, which represents the state space of the

system.

Consider a quantum system that is known to be in some state from the fixed set

| ψi〉, where the | ψi〉 are normalized but need not be orthogonal. Let pi indicate

the probability that the system is in state | ψi〉. The possible states of the system,

together with their corresponding probabilities, constitutes an ensemble of pure states

denoted as {pi,| ψi〉〈ψi |}. We can associate a density operator

ρ̂ =
∑
i

pi | ψi〉〈ψi | (3.1)

with such an ensemble, which acts as the statistical description of the state.

In a more general case, we construct an ensemble of mixed states {pi, ρ̂i} with the

density operator

ρ̂ =
∑
i

piρ̂i (3.2)

with

ρ̂i =
N∑
n

p(i)n | ψ(i)
n 〉〈ψ(i)

n | (3.3)
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The von Neumann entropy (or quantum entropy) associated with a density operator

ρ̂ is

S(ρ̂) = −Tr[ρ̂logρ̂] (3.4)

If the density operator ρ̂ can be written in the form of a spectral decomposition as

ρ̂ =
∑
i

λi|λi〉〈λi| (3.5)

where λi and |λi〉 are the eigenvalues and eigenvectors respectively. Then logρ̂ is an

operator given as

log ρ̂ =
∑
i

log(λi)|λi〉〈λi| (3.6)

S(ρ̂) maps the density operator into a real number, much as the Shannon entropy

H({pi}) maps a probability distribution {pi} into a real number. S(ρ̂) can be most

conveniently calculated by solving for the eigenvalues {λi} of ρ̂ and applying the result:

the von Neumann entropy of ρ̂ is the Shannon entropy of its eigenvalue spectrum.

S(ρ̂) = −
∑
i

λilog2λi (3.7)

The von Neumann entropy is non-negative and S( ˆρ = |ψ〉〈ψ|)=0 for pure state |ψ〉 as

the density operator for any pure state has identically one eigenvalue which is λ=1.

Furthermore it is bounded as

∑
i

piS(ρ̂i) ≤ S(ρ̂) ≤ H({pi}) +
∑
i

piS(ρ̂i) (3.8)
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Equality is achieved in the upper bound when the density operators ρ̂i have support

on orthogonal spaces i.e.,

ρ̂iρ̂i′=δii′ ρ̂2i ∀ i, i′

For an ensemble of quantum signal states ε = {pi, ρ̂i}, S(ρ̂) can be thought of as

the “entropy of the average signal state”, while the quantity
∑
i

piS(ρ̂i) represents

the ”average entropy of the signal states” and H({pi}) is the preparation entropy,

which is the Shannon entropy of the information source driving the state preparation

process. The bounds now say that entropy of the average channel state is never less

than the average entropy of the channel state and never greater than the average of

the channel state plus the preparation entropy. For pure signal states this bound

reduces to

0 ≤ S(ρ̂) ≤ H({pi}). (3.9)

The bound can be rewritten for ρ̂ =
∑
i

piρ̂i as

0 ≤ χ(ε) ≤ H({pi}) (3.10)

with

χ(ε) = S(ρ̂)−
∑
i

piS(ρ̂i) (3.11)

which is called the Holevo information or sometimes the entropy defect for the en-

semble ε = {pi, ρ̂i}. χ(ε) and I(X;Y) have many similar properties. These include

•χ(ε) and I(Y:X) have the same bounds. They are both ≥ 0 and upper bounded by

the Shannon entropy of the source.
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•χ(ε) is the entropy of the average channel state less the average entropy of the

channel state, while I(Y;X) is the entropy of the average output distribution less the

average entropy of the output distribution [10].

3.2 Decoherence

Decoherence is a process through which superposition states of a quantum system

are reduced to mixtures of orthogonal states in some particular basis. It requires a

certain type of interaction of the system with its environment and provides an expla-

nation on why measurements made on quantum system yield classical results. Deco-

herence coverts the initial pure state of a system S into a mixture of orthogonal eigen-

states, increasing the von Neumann entropy from S(ρ̂(S))=0 to S(ρ̂(S)
′
) = H({qj}).

The transformation

|ψ〉〈ψ| −→
∑
j

qj|aj〉〈aj|

is an example of decoherence [10].

The orthogonal states into which the system is reduced by decoherence are called

pointer basis. The probability of obtaining |aj〉〈aj| is given by qj = |〈aj|ψ〉|2 and

depends upon the initial state of the system. An observable Λ̂S’s eigenvectors will

constitute the pointer basis emerging from decoherence-for evolutions dominated by

interactions ĤI
Sε

that commute with Λ̂S:

[
Λ̂S, ĤI

Sε
]

= 0.

The following formulation will provide a better understanding of the idea. Let the

initial state of the system |ψ〉 be a superposition of the energy eigenstates

|ψ〉 =
∑
j

cj|Ej〉 (3.12)
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with cj = 〈Rj|ψ〉. The corresponding density operator is

ρ̂S =
∑
j

∑
j′
cjc
∗
j′ |Ej〉〈Ej′|. (3.13)

This can be written as

ρ̂S =
∑
j

qj|Ej〉〈Ej|+
∑
j

∑
j′ 6=j

cjc
∗
j′ |Ej〉〈Ej′ | (3.14)

Comparing with the final density operator

ρ̂S
′
=
∑
j

qj|Ej〉〈Ej| (3.15)

reveals that the environmental interaction has only left the diagonal terms in the

density operator and eliminated all off-diagonal terms. Since the off-diagonal terms

are called quantum coherences, any process which removes these terms is classified as

decoherence.

From the derivations in [10], we know that decoherence is never complete, but for

realistic interactions and large environments, the quantum coherences nearly vanish

after an extremely short time, which is referred to as the decoherence time. This is

usually orders of magnitude shorter than the time scales associated with the other

active dynamical processes and allows us to assume that decoherence is instantaneous

and complete. A much deeper analysis is available in [17].

3.3 Landauer’s Principle

The principle was first argued by Rolf Landauer and perhaps best restated by

Bennett is [8] which states that “any logically irreversible manipulation of informa-
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tion, such as the erasure of a bit or the merging of two computation paths, must be

accompanied by a corresponding entropy increase in non-information bearing degrees

of freedom of the information processing apparatus or its environment”. The prin-

ciple allows us to relate thermodynamical quantities to the amount of information

associated with the system. Specifically,

∆S ≥ −kB ln(2)∆I (3.16)

∆E ≥ −kBT ln(2)∆I (3.17)

where kB is the Boltzmann’s constant, T is the absolute temperature of the environ-

ment and −∆I is the amount of information lost in an operation. The first form is

called the “entropic form” and associated a minimum entropy increase (in thermo-

dynamic units) of kB ln(2) per bit of information lost in the operation. The second

form is called the “energetic form” associated a minimum energy of kBT ln(2) per bit

of information lost.

The very same inequalities arise in a wide variety of scenarios and definitions for

relevant quantities. However, a common feature amongst the various scenarios that

lead to these two inequalities assume the loss of information from a physical system

as a state transformation that reduces uncertainty in the system state, as quantified

by a self-referential information measure defined in the terms of the state of the

system undergoing the information loss. In the next chapter, we shall introduce the

Referential approach where quantities are described with respect to a referent which

remains unchanged during the process of information loss.
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3.4 Referential Approach to Physical Information Theory

3.4.1 “Information is always about something else!!”

The referential approach [12], [13], [15] is based on the idea that information is

always a measure of correlation between the system and a referent. The approach

has many significant advantages, one being the clear divide between the entropic

self information of a system and the mutual information of a system with a referent.

Since quantum mutual information is defined between two different systems, it cannot

be defined between the density operators of the same system at two different time

instants. However the referential approach allows the calculation of information loss

in the system over time with respect to an unchanged referent. Furthermore, in

terms of engineering applications in computing systems, the approach proves to be

very beneficial, as the information we manipulate and perform operations upon are

usually physical encodings of input information which is present in another location,

for example the memory which can act as our referent. Information stored in the

memory are not changed until the computation using them is completed and hence

are perfect for providing an unchanged referent. Since such memory elements like

flip-flops and latches that provide storage capabilities are used in abundance in the

intermediate stages of multiple cycle calculations, analyzing such processes using the

referential approach can provide crucial insight. Thus the referential approach to

physical information theory must be explored in detail to reap its full benefits.

3.4.2 Logical Irreversibility and Information Loss

Before we discuss the framework for studying physical systems in which informa-

tion is encoded, and the entropy and energy costs associated with them when logical

operations are involved, it is important to understand that not all information loss

is unnecessary. In a communication channel, we require that the output has all the

information about the input i.e., no information be lost in the channel for perfect
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communication. Loss of information is undesirable in this case. However even in

ideal computation channels, information is necessarily lost while going from input to

output that directly implements a logically irreversible operation. Such irreversible

operations include AND, OR, NAND, NOR, etc which form the cornerstones of logi-

cal operations that are performed in all general purpose computing (these operations

have the property that the number of inputs d is greater than the number of outputs

r). Thus using the referential approach, the information about some input referent R

that is lost going from input X to output Y is

−∆I = I(R;X)− I(R;Y ) = H(R|Y )−H(R|X) (3.18)

Thus for a channel that implements a logically irreversible transformation, it fol-

lows that −∆I > 0. Winograd and Cowan in [9], identified this connection and stated

that “the destruction of information” as the defining feature of computation.

We say that computation occurs if H(X|Y) greater than 0 i.e, if the out-

put symbols do not completely specify the input configurations; and we

say that communication occurs if H(X|Y)=0, i.e. if the output symbols

completely specify the input configurations...It follows...that computation

occurs if H(X) is greater than H(Y),i.e. if information is lost going from

X and Y.

3.4.3 Framework and Definitions

Input and Output Ensembles

In order to consider the implementation of a d-input r-output logical transforma-

tion L via evolution of the system S, we must define an L-referent RL associated

with an d-input r-output logical transformation L. The L-referent consists of

• A bipartite quantum system RL = RinRout.
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• A set {r̂Rin
i } of d distinguishable pure states of Rin.

• A set {r̂Rout
i } of r distinguishable pure states of Rout.

• A set of {r̂RLi } of d product states.

r̂RLi = r̂Rin
i ⊗ r̂Rout

j ∀iε{i}j = {i | L(xi) = yj} (3.19)

of RL, where L is a logical transformation that maps d logical input states xiε{xi}

into r logical output states yjε{yj} via xi → L(xi) = yj. The input referent in most

applications will be a real physical system which contains a physical instantiation

of the logical input that will remain unchanged till the process of computation is

complete. These include the cache, latches and flip-flops in the intermediate stages

of a multi-staged logical computation. The output referent is a perfect physical

instantiation of the logical outputs of a perfect logical transformation. It need not

exist and as the name suggests, it provides a reference to which we can compare our

actual physical outputs of the logical transformation.

The input ensemble is given by

εRLSX = {pi, ρ̂RLSi } (3.20)

where pi is the probability that RLS is initially prepared in the state ρ̂RLSi = r̂i
RLS⊗

ρ̂Si corresponding to the i-th logical input xi. The density operator describing the

statistical state of this ensemble is

ρ̂RLS =
d∑
i=1

piρ̂
RLS
i (3.21)

In order to obtain the output ensemble, all the members of the input ensemble

must be evolved via B̂, a quantum operation (which is a linear, completely positive
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map from the set of density operators into itself) to obtain the evolved input ensemble

εRLS
′

X = {pi, ρ̂RLS
′

i } (3.22)

where ρ̂RLS
′

i = r̂RLi ⊗ B(ρ̂Si ). The elements of the output ensemble

εRLS
′

Y = {qj, ρ̂RLS
′

j } (3.23)

can then be projected out of the statistical state

ρ̂RLS
′
=

d∑
i=1

piρ̂
RLS′
i (3.24)

of the evolved input ensemble as

ρ̂RLS
′

j =
1

qj
Π̂RLSj ρ̂RLS

′
Π̂RLSj =

∑
i∈{i}j

p
(j)
i ρ̂RLS

′

i (3.25)

where Π̂RLSj is the projector associated with the j-th logical output and is given by

Π̂RLSj =
∑
iε{i}j

π̂RLSi (3.26)

on HRL
⊗
HS with π̂RLSi = r̂RLi

⊗
π̂Si , where π̂Si is the identity for the support of

B(ρ̂
S(in)

i ), and ΠRLSj is the identity for the support subspace associated with the j-th

output.
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Also we have p
(j)
i = pi

qj
,and as expected

qj = Tr[Π̂RLSj ρ̂RLS
′
] =

∑
i∈{i}j

pi (3.27)

We then define N output ensembles

εRLS
′

j = {p(j)i , ρ̂RLS
′

i | i ∈ {i}j} (3.28)

associated with the r logical outputs, and the j-th reduced density operator is given

by

ρ̂S
′

j = TrRL [ρ̂RLS
′

j ] =
∑
i∈{i}j

p
(i)
j B(ρ̂

(in)
i ) (3.29)

ρ̂S
′

j is the physical representation of the j-th output stage or yj.

The j-th reduced density operator of the system is

ρ̂S
′

j = TrRL [ρ̂RLS
′

j ] (3.30)

This provides a statistical representation of the logical output-yj for input distribution

{pi} in the device state S alone.

3.4.4 Information Processing and Corresponding Entropic and Energy

Cost

Consider a closed composite system consisting of an “information bearing” sub-

system RS and environment ε. Let the states of R and S be initially correlated and

assume that RS is initially isolated from ε. Initial state of the global system is

ρ̂ = ρ̂RS ⊗ ρ̂ε (3.31)
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and the quantum mutual information between R and S is

S(ρ̂R; ρ̂S) = S(ρ̂R) + S(ρ̂S)− S(ρ̂RS) (3.32)

The initial total entropy is given as

Stot(ρ̂) = kB ln(2)[Stot(ρ̂
RS) + Stot(ρ̂

ε)] (3.33)

3.4.4.1 Information Processing

An operation processing information about R which is encoded in S is given as

an unitary evolution of RSε that involves only interactions between S and ε.

ρ̂′ = Û ρ̂Û † (3.34)

for which

Û = ÛR ⊗ ÛSε (3.35)

The interactions between S and ε will generally decrease the correlations between R

and S. Thus information about R is lost in S during the operation.

Final quantum mutual information between R and S is

S(ρ̂R
′
; ρ̂S

′
) = S(ρ̂R

′
) + S(ρ̂S

′
)− S(ρ̂RS

′
) (3.36)

and final total entropy is

Stot(ρ̂
′) = kB ln(2)[S(ρ̂RS

′
) + S(ρ̂ε

′
)] (3.37)

.
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3.4.4.2 Information Loss and Change in Entropy

The change in total entropy during the information processing operation

∆S = Stot(ρ̂
′)− Stot(ρ̂) (3.38)

The change in quantum mutual information is given by

∆I ≡ S(ρ̂R
′
; ρ̂S

′
)− S(ρ̂R; ρ̂S) (3.39)

From Anderson [14], using these definitions we can show that

∆S ≥ −kB ln(2)∆I (3.40)

3.4.4.3 Information Loss and Energy Flow

In order to study the energy costs of operations that discard information, like

irreversible logical operations, it is assumed that the environment is initially a thermal

bath at temperature T. Thus the initial state of ε is described by the canonical density

operator

ρ̂ε = Z−1exp

(
− Ĥε

kBT

)
(3.41)

where Ĥε is the Hamiltonian of the bath, T is the bath temperature, and

Z = Tr

[
exp

(
− Ĥε

kBT

)]
(3.42)

is the partition function. The expected energy increase in the environment engendered

by information loss is

∆〈E〉ε = 〈Eε′〉 − 〈Eε〉 = Tr[ρ̂ε
′
Ĥε]− Tr[ρ̂εĤε] (3.43)
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Consider the quantity

∆〈Eε〉 − T∆Sε where ∆Sε = S(ρ̂ε
′
)− S(ρ̂ε)

Following the derivation in [13], and using

ln ρ̂ε = − Ĥε

kBT
− lnZ (3.44)

we get

∆〈Eε〉 − T∆Sε = kBT (Tr[ρ̂ε
′
ln ρ̂ε

′
]− Tr[ρ̂ε′ ln ρ̂ε]) (3.45)

which is the relative entropy between initial and final environment states. Since

relative entropy is nonnegative for any two density operators, we obtain the inequality

∆〈Eε〉 ≥ T∆Sε (3.46)

From the entropic derivation of Landauer’s Principle, it is known

∆S = ∆SRS + ∆Sε ≥ −kB ln(2)∆I (3.47)

∆Sε ≥ −kB ln 2[∆I + ∆SRS ] (3.48)

Substituting into Eq. (3.46), we get

∆〈Eε〉 ≥ −kBT ln 2[∆I + ∆SRS ] (3.49)
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Since we know

∆I + ∆SRS = ∆SS = S(ρ̂S
′
)− S(ρ̂S) (3.50)

this gives

∆〈Eε〉 ≥ −kBT ln(2)∆SS (3.51)

This inequality implies that there is a minimum environmental energy increase

of kBT ln(2) associated with every operation that reduces the system entropy ∆SS

by 1 bit, regardless of how much information is lost. The bound thus accommodates

scenarios in which entropy of S is increased and energy is transferred out of the

environment during processes that cause loss of information. This stands in contrast

with the traditional form of Landauer’s Principle which associates a energy transfer

into the environment with loss of information.

3.4.5 Noisy Computation Channels

A d-input, r-output discrete channel with 0< qj/i <1 for at least one of the outputs

yj, cannot be associated with the implementation of any logical transformation, since

direct implementation requires that each xi map into one and only one output yj and

this requirement is not met if 0< qj/i <1 for any qj/i.

Thus rather than trying to answer the question “what logical transformation L

is implemented by the noisy channel”, we should try and answer the question “How

well does the noisy computational channel implement the logical transformation L”.

The information theoretic efficacy measures from [13] capture and quantify this and

the relationship of these measures to the information loss is also studied.
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3.4.5.1 Representational Faithfulness

For the computational channel to “complete the work” of implementing a logical

transformation L, then all device input states “belonging to” the same logical output

of L must evolve into the same device output state UL(S(in)
i ) = S(out)

j ∀i ∈ {i}j =

{i | L(xi) = yj}. This condition requires that the evolved states should contain no

information that could help identify the state S(in)
i ∈ {S(in)

i }j from which it is evolved.

This implies

I(ρ̂Rin
j ; ρ̂S

′

j ) = χ(εS
′

j ) = 0. (3.52)

From this, the following definition of representational faithfulness can be developed

[13],[10].

Definition For a quantum machine that implements a logical transfor-

mation L and input distribution {pi}, the representational faithfulness

is

fL ≡ 1− 1

HL(X/Y )

N∑
j=1

qjχ(εS
′

j ) (3.53)

where qj and HL(X/Y ) are the j-th output probability and the conditional

entropy associated with the logical transformation L for input distribution

{pi} and χ(εS
′

j ) is the Holevo information associated with the ensemble

εS
′

j = {p(j)i , ρ̂S
′

i | i ∈ {i}j} of final reduced device states ρ̂S
′

i representing

the logical output states yj of L.

fLHL(X/Y ) is the average over all logical outputs, of information about the logical

input that is lost in producing the physical representations of the logical outputs. It

is bounded as 0≥ fL ≥ 1.

3.4.5.2 Computational Fidelity

This efficacy measure is concerned with the distinguishability of the output states

independent of their faithfulness. It is related to the amount of information about
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the correct logical output-encoded in output referent states- that is reflected in the

final physical state of S,i.e by the quantum mutual information

I(ρ̂Rout ; ρ̂S
′
) = S(ρ̂Rout) + S(ρ̂S

′
)− S(ρ̂RoutS′) = χ(εS

′

Y ). (3.54)

From [13],[10] we obtain the following definition

Definition For a quantum machine implementing the logical transforma-

tion L and input distribution {pi}, the computational fidelity is

FL ≡
1

HL(Y )
χ(εS

′

Y ) (3.55)

where HL(Y ) is the entropy associated with the logical transformation L

for input distribution {pi} and χ(εS
′

Y ) is the Holevo information associ-

ated with the ensemble εY S′ )={qj ,ρ̂S′j }
of final device states representing the

logical outputs yj of L.

FLHL(Y ) indicates the amount of information about the logical output that is

present in the final device state. Computational fidelity is bounded as 0≥ FL ≥1.

3.4.5.3 Information Loss in Terms of Computational Fidelity and Repre-

sentational Faithfulness

Using mutual information, the information about the logical input X that is lost

as the system S evolves from its initial to final state to implement the logical trans-

formation is

−∆I ≡ I(ρ̂Rin ; ρ̂S)− I(ρ̂Rin ; ρ̂S
′
) (3.56)
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If S initially holds all the information about X, since the xi are encoded in distin-

guishable input states of S, then I(ρ̂Rin ; ρ̂S)=H(X) and information loss is

−∆I = H(X)− χ(εS
′

X ) (3.57)

where I(ρ̂Rin ; ρ̂S
′
) = χ(εS

′
X ) and since χ(εS

′
X ) ≤H(X), −∆I ≥ 0. Using the definitions

for computational fidelity and representational faithfulness, the information loss can

be written as(from [13])

−∆I = fLHL(X/Y ) + (1− FL)HL(Y ) (3.58)

The first term indicates the necessary desirable information loss that is required to

produce faithful representations of logical output states in channels implementing the

logical transformation. The second term accounts for the undesirable information loss

associated with the indistinguishability of the output states. From the equation 3.58,

we can clearly see that if the channel flawlessly implements the logical transformation

L i.e. FL = 1, fL = 1, then −∆I = HL(X/Y ) and if a channel that produce unfaithful

(fL = 0) yet perfectly distinguishable outputs (FL = 1), information loss −∆I = 0

which is what is expected in a perfect communication channel.

3.4.5.4 Lower Bound on Energy Dissipation in Terms of Efficacy Mea-

sures

In Eq. (3.58), we have related the information loss in a logical transformation

L with the efficacy which indicated ”how well the logical transformation L was
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achieved”. Since the information loss is directly related with the heat dissipation

to the environment, substituting Eq. (3.58) in Eq. (3.49), we get

∆〈Eε〉 ≥ −kBT ln 2[fLHL(X/Y ) + (1− FL)HL(Y ) + 〈∆SSi 〉] (3.59)

where 〈∆SSi 〉 is the average change in the von Neumann entropies of the system state

during the logical transformation L.

We thus have a very important relation between the lower bound on the physical

cost the user must pay to achieve a logical transformation, in terms of the performance

metrics fidelity and faithfulness which indicate how well the logical transformation

was performed.

In the next chapter, the concepts that we have discussed in this chapter will be

used to derive the lower bound on energy dissipation associated with performing error-

correction on a noisy system encoded using a linear (n,k) code. We will also explain

why generalizations to the efficacy measures discussed in this chapter are needed to

study the performance in the error-correction case, support the generalization with

an illustrative example and extend it to composite systems.
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CHAPTER 4

LOWER BOUNDS ON ENERGY DISSIPATION
ASSOCIATED WITH ERROR-CORRECTION USING A

(N,K) LINEAR BLOCK CODE

The goal of this thesis is to study and determine the lower bound of energy dis-

sipation associated with performing error-correction using a (n,k) linear block code.

The preliminary concepts dealing with linear codes and information theory have been

outlined in chapter 1. In the previous chapter, physical information theory was ex-

plored in detail and the lower bounds on entropic and energy cost associated with

a logical transformation L were discussed using the referential approach to physical

information theory. Furthermore, computational efficacy measures were described

and their relationship to information loss and minimum energy dissipation stated. In

this chapter, we will formulate the input and output ensembles for the system when

a linear (n,k) block code is used. The input ensemble system experiences noise and is

then subjected to the decoding logical transformation to form the output ensemble as

indicated in Figure 4.1. At this point, we will discuss the necessary generalizations

to the computational efficacy measures, that is required to account for noise in the

input states and derive the corresponding relationship to information loss and dissi-

pation costs. The generalized efficacy measures are applied on an illustrative example

system, as well extended for composite systems. The generalization of the efficacy

measures, application to an example system and their extension to composite systems

represent a significant contribution of this thesis.
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Figure 4.1. Block Diagram indicating the System states as it experiences Noise and
is then subject to Decoding, along with the Corresponding Referents

4.1 Formulation

As it is outlined in the previous two chapters, the physical encoding of a logical

state xi in an information bearing system can be regarded as preparation of the system

in a quantum state ρ̂i. Consider the n-tuple codeword as being perfectly encoded in

the initial state of the system. The input referent R has 2k states given by orthogonal

density operators ρ̂Ri with i=0,1,...,2k−1. The input ensemble of the bipartite system

RS is given by εSX = {pi, ρ̂RSi } with ρ̂RSi = ρ̂Ri ⊗ ρ̂Si and ρ̂RSi ρ̂RSj = δij ∀ i,j. Since the

physical state S is perfectly correlated to the input referent R

ρ̂RS =
2k−1∑
i=0

piρ̂
RS
i (4.1)

I(ρ̂R; ρ̂S) = χ(εSR) = H(R). (4.2)

where χ(εSR) is the Holevo information term which indicates the amount of information

the system state S contains about referent R.
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This perfect encoding of the input referent then experiences noise, to form a

noisily encoded ensemble i.e the channel output. The noise can be represented using

the operator N̂ . The input ensemble is evolved to form the noisily encoded ensemble

given by εS
′
X = {pi, ρ̂RS

′

i } with

ρ̂RS
′

i = ρ̂Ri ⊗ N̂ (ρ̂Si ) (4.3)

ρ̂RS
′

i = ρ̂Ri ⊗ ρ̂S
′

i (4.4)

ρ̂RS
′
=

2k−1∑
i=0

piρ̂
RS′
i (4.5)

and we have

I(ρ̂R; ρ̂S
′
) = χ(εS

′

R ) (4.6)

where χ(εS
′
R ) is the Holevo information term and indicates the amount of information

the system state S ′ which represents the channel output, contains about the initial

referent R.

After the system has been affected by noise, decoding, which is a logical trans-

formation is performed on the system. Thus channel outputs become inputs to the

decoding operation. The noisy ensemble is evolved by a operator given by Û to give

εS
′′

X = {pi, ρ̂RS
′′

i }.

ρ̂RS
′′

=
2k−1∑
i=0

piρ̂
RS′′
i (4.7)

and the quantum mutual information between the system state at the decoder output

S ′′ and referent R is given by

I(ρ̂R; ρ̂S
′′
) = χ(εS

′′

R ) (4.8)

.
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The information loss associated during the process of decoding is

−∆Idecoding = I(ρ̂R; ρ̂S
′
)− I(ρ̂R; ρ̂S

′′
) = χ(εS

′

R )− χ(εS
′′

R ) (4.9)

This can be substituted in the entropic form of Landauer’s Principle given by Eq.

(3.40) to obtain the lower bound on entropy change during decoding

∆Stotal ≥ −kB ln(2)∆Idecoding (4.10)

∆Stotal ≥ −kB ln(2)[χ(εS
′

R )− χ(εS
′′

R )] (4.11)

The terms are then substituted into the energy form of Landauer’s Principle given

by Eq. (3.51)

∆Eε ≥ −kBT ln(2)∆SS (4.12)

∆Eε
decoding ≥ kBT ln(2)[−∆Idecoding +

2k−1∑
i=0

pi(S(ρ̂S
′

i )− S(ρ̂S
′′

i )] (4.13)

Thus we have established the lower bound on the energy cost of decoding. Since

the user will only pay the energy cost associated with decoding, it will be extremely

useful to obtain the relationship between the energy dissipation of decoding and the

efficacy measures of the logical operation. However the information loss in the above

equation cannot be simply expanded using the definitions of computational efficacy

explained in the previous chapter. The earlier definitions had assumed that the

input states of the logical transformation L were a perfect encoding of the referent

and hence contained all the information about the referent. However the inputs

to the decoder, which are the outputs of the noisy channel are not so. Since the

communication channel can be considered as the computational channel performing

the identity operation, the noisy communication channel will output a noisy encoding
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of the initial referent states and hence will not be completely correlated to the referent.

Thus in order to study the heat dissipation associated with the decoder in terms of

its performance measures, there is a need to develop the required tools. Thus we

need to generalize the efficacy measures, test it on an example system and extend it

to composite systems.

4.2 Development of Generalized Efficacy Measures Required

to Study the Decoder Performance

4.2.1 Computational Fidelity Revisited

Recall that the computational fidelity measure is used to quantify the amount

of information about the “correct output” of a logical transformation that is in the

noisy channel output. For the quantum L-machine and input distribution {pi}, the

computational fidelity

FL =
χ(εD

′
Y )

HL(Y )
(4.14)

where HL(Y ) is the entropy associated with the logical transformation L for input

distribution {pi} and χ(εD
′

Y ) is the Holevo information associated with the ensemble

εD
′

Y = {qj, ρ̂D
′

j } of final device states representing the logical outputs yj of L.

This definition assumes that the input states of the system are perfectly corre-

lated to the input referent and hence can contain a maximum of HL(Y ) amount of

information about the output referent. However if the input states are not perfectly

orthogonal to each other, i.e. not perfectly correlated to the input referent, then

the earlier definition of fidelity is not valid. In fact, the fidelity is not defined in

such a case. With noise and quantum effects being a widespread phenomenon in

nanoscale devices, it might be very common that the input states of the system are

non-orthogonal and not completely correlated to the input referent. We also have

problems when it comes to defining the computational fidelity of an individual stage

42



in a multistage computation, because here again unless the states of the system at an

intermediate stage are perfectly orthogonal, the computational fidelity for the next

stage cannot be defined. For example, consider a two staged operation, in which for

the first stage 8 inputs are mapped into 4 outputs and in the second stage 4 inputs are

mapped into 2 outputs. Since the four output states of the first stage act as inputs to

the second, they have to be orthogonal and perfectly correlated to the output referent

of the first stage, in order for us to be able to define the fidelity of the second stage.

However this need not always happens, as the four output states of the first operation

can be non-orthogonal.

Thus we need to generalize to account for the non-orthogonality of the input

system states when formulating the computational fidelity measure. In general the

maximum amount of information that the input system state D for a logical op-

eration can have about the output referent Y is given by the Holevo information

term χ(εDY ) ≤H(Y), with equality obtained when the states of D are orthogonal and

perfectly correlated to the input referent. Since fidelity is the ratio of the amount of

information that the system state D′ has about the output referent Y to the maximum

information it could have contained, computational fidelity is defined as

FL =
χ(εD

′
Y )

χ(εDY )
(4.15)

As before, fidelity is bounded as 0≤ FL ≤1 but a fidelity of 1 does not mean

that the states of the system are perfectly orthogonal and distinguishable. The new

definition indicates the amount of non-orthogonality that has been introduced be-

tween input states that produce different logical outputs. Thus a computational

fidelity of 1, indicates that the logical transformation did not introduce any more non-

orthogonality into the system than what was already present between input states

that map into different logical outputs. This new definition, allows us to deal with

noisily encoded input states which are very likely in nanoelectronic systems and thus
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Figure 4.2. Meaning of Computational Fidelity in a 4-input 2-output Logical Oper-
ation. The colored region indicates the increase in non-orthogonality between system
states that map into different logical output, which is captured by the Computational
Fidelity measure.

allow us to deal with a wider range of scenarios, as well define fidelity for the individual

stages of a multi-stage logical transformation.

4.2.2 Representational Faithfulness Revisited

Recall that the representational faithfulness is a measure of how well the com-

putational channel “completed the work” of implementing the logical transformation

L. For a quantum machine that implements a logical transformation L and input

distribution {pi}, the representational faithfulness is

fL ≡ 1− 1

HL(X/Y )

N∑
j=1

qjχ(εD
′

j ) (4.16)

where qj and HL(X/Y ) are the j-th output probability and the conditional entropy

associated with the logical transformation L for input distribution {pi} and χ(εD
′

j ) is

the Holevo information associated with the ensemble εD
′

j = {p(j)i , ρ̂D
′

i | i ∈ {i}j} of

final reduced device states ρ̂D
′

i representing the logical output states yj of L.
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For a logical transformation to be faithfully implemented, the evolved states of the

device should not contain any information that could help identify the state Di ∈

{Di}j from which it is evolved. Quantitatively this is described as

I(ρ̂Rj ; ρ̂D
′

j ) = 0 (4.17)

The maximum value of this term is equal to

Hj(X/yj) = −
∑
i∈{i}j

p
(j)
i log2p

(j)
i . (4.18)

However this is true if and only the referent is perfectly encoded in the initial device

states D. If the system state D is a noisy encoding of the referentR, then the quantity

I(ρ̂Rj ; ρ̂D
′

j ) achieves its maximum value of

χ(εDj ) = I(ρ̂Rj ; ρ̂Dj ) (4.19)

where χ(εDj ) is the Holevo information associated with the ensemble εDj = {p(j)i , ρ̂Di }.

Thus the difference χ(εDj ) − χ(εD
′

j ) can serve as a basis for how well yj is faithfully

represented in D. The output average

∑
j

qj[χ(εDj )− χ(εD
′

j )] =

1−

∑
j

qjχ(εD
′

j )∑
j

qjχ(εDj )

∑
j

qjχ(εDj ) (4.20)

can hence be used as measure of the representational faithfulness of the L-machine
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Figure 4.3. Meaning of Representational Faithfulness in a 4-input 2-output Logical
Operation. The colored regions indicate the necessary increase in non-orthogonality
between system states that map into the same logical output, which is captured by
the Representational Faithfulness measure.

as a whole. Thus faithfulness is given as

fL ≡

1−

∑
j

qjχ(εD
′

j )∑
j

qjχ(εDj )

 . (4.21)

As before, representational faithfulness is bounded as 0 ≤ fL ≤ 1. The definition

of faithfulness can be interpreted as the amount of necessary non-orthogonality or

indistinguishability that is introduced between inputs that map into the same logical

output. A faithfulness of 1 indicates that there is no way to distinguish between

inputs that map into the same logical output and a faithfulness of zero implies that

the inputs are no less indistinguishable than they were before undergoing the logical

operation. Like in computational fidelity, the change in definition allowed us to define

faithfulness measures for individual stages in a multistage logical computation and

also to account for noisily encoded input systems.
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4.2.3 Information Loss in Terms of the Efficacy Measures

Let the information loss as device state D, which is a noisy encoding of the input

referent R, evolves to device state D′, implementing the logical transformation L be

-∆IL, with the output referent being denoted as R′.

−∆IL = I(ρ̂R; ρ̂D)− I(ρ̂R; ρ̂D
′
) = χ(εDR)− χ(εD

′

R ) (4.22)

The first term of this equation can be written as

χ(εDR) = χ(εDR′) +
∑
j

qjχ(εDj ) (4.23)

with

χ(εDR′) = S(ρ̂D)−
∑
j

qjS(ρ̂Dj ) (4.24)

χ(εDj ) = S(ρ̂Dj )−
∑
i∈{i}j

p
(j)
i S(ρ̂Di ) (4.25)

Similarly χ(εD
′
R ) can be written as

χ(εD
′

R ) = χ(εD
′

R′) +
∑
j

qjχ(εD
′

j ) (4.26)

Substitution into the equation for information loss gives us

−∆IL = χ(εDR′) +
∑
j

qjχ(εDj )− χ(εD
′

R′)−
∑
j

qjχ(εD
′

j ) (4.27)
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or

−∆IL =

(
1− χ(εD

′
R′)

χ(εDR′)

)
χ(εDR′) +

1−

∑
j

qjχ(εD
′

j )∑
j

qjχ(εDj )

∑
j

qjχ(εDj ). (4.28)

Using the modified definitions of computational fidelity and representational faithful-

ness defined in the previous subsections, the information loss can written as

−∆IL = (1− FL)χ(εDR′) + fL
∑
j

qjχ(εDj ) (4.29)

As indicated in [13] and in the earlier chapter, the information loss is resolved

into components related to faithful representation and computational fidelity. The

first term accounts for the undesirable information loss associated with the amount

of indistinguishability introduced between input states that map into different logical

output states. The term vanishes for FL=1, that is when there is no more non-

orthogonality between input states that map into different logical output states than

there was before initially. The second term accounts for the desirable information

loss that is required for faithful representations of logical outputs states in a logical

transformation. It achieves its maximum value of
∑
j

qjχ(εDj ) for fL=1 and vanishes

for completely unfaithful representations, i.e fL=0.

Thus Eq. (4.29) relates the information loss associated with the logical trans-

formation when the input states are not perfectly correlated to the input referent,

with the efficacy measures. The equation can be further substituted in Eq. (3.49) to

obtain the heat dissipation to the environment:

∆〈Eε〉 ≥ −kBT ln(2)

(1− FL)χ(εDR′) + fL
∑
j

qjχ(εDj ) + 〈∆SDi 〉

 (4.30)

.
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The above equation would enable us to understand the relation between the per-

formance metrics of a logical transformation when the input states are themselves

noisy and the heat dissipation associated with performing the logical transformation

on these inputs which are not perfectly correlated to the input referent. This allows

us to deal with a much wider range of scenarios that are more likely to occur due to

noise and quantum effects present in nanoelectronic systems.

4.2.4 Generalized Computational Fidelity and Representational Faithful-

ness: An Illustrative Example

In the following section, we will apply the generalized computational fidelity and

representational faithfulness formulation to access how well classical binary addition

is implemented by a quantum controlled-NOT gate that is subject to decoherence.

The example system used is borrowed from [14] and will help us study the effect

of input state indistinguishability and environmental interactions on the fidelity and

faithfulness of the logical operation. The quantum CNOT gate is used for the very

fact that it is not designed to perform binary addition and hence we will be able to

determine how well it did.

Setup

The controlled-NOT gate or CNOT gate is a quantum gate that flips the second

target qubit, if and only if the first control qubit is 1. The logical operation L is the

classical binary addition, which maps logical inputs xi = AiBi into logical outputs

yj = CjSj as

x0 = 00 −→ y0 = 00

x1 = 01 −→ y1 = 01

x2 = 10 −→ y1 = 01

x3 = 11 −→ y2 = 10
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where Ai and Bi are the input(summand) bits and Cj and Sj are the carry(C=AB)

and sum (S=A⊕B) output bits respectively.

The logical input xi = AiBi is physically encoded into the initial state of AB as

ρ̂Xi = |xABi 〉〈xABi | (4.31)

where

|xABi 〉 = |ψAAi
〉 ⊗ |ψBBi

〉 (4.32)

with

|ψA0 〉 = cosθ|0A〉+ sinθ|1A〉

|ψA0 〉 = sinθ|0A〉+ cosθ|1A〉

and |ψB0 〉 and |ψB1 〉 defined similarly. The parameter θ controls the indistinguishability

of the encoding states ρ̂Xi corresponding to the four logical states xi. For θ = 0, the

states are orthogonal and perfectly distinguishable and for θ = π
4
, the states are

identical and perfectly indistinguishable. The input distribution {pi} is uniform with

pi = 1
4

for all i. The input density matrices are represented as shown below

ρ̂Xi =



〈00|ρ̂i|00〉 〈00|ρ̂i|01〉 〈00|ρ̂i|10〉 〈00|ρ̂i|11〉

〈01|ρ̂i|00〉 〈01|ρ̂i|01〉 〈01|ρ̂i|10〉 〈01|ρ̂i|11〉

〈10|ρ̂i|00〉 〈10|ρ̂i|01〉 〈10|ρ̂i|10〉 〈10|ρ̂i|11〉

〈11|ρ̂i|00〉 〈11|ρ̂i|01〉 〈11|ρ̂i|10〉 〈11|ρ̂i|11〉


(4.33)
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ρ̂X0 =



cos4θ cos3θsinθ cos3θsinθ sin2θcos2θ

cos3θsinθ sin2θcos2θ sin2θcos2θ sin3θcosθ

cos3θsinθ sin2θcos2θ sin2θcos2θ sin3θcosθ

sin2θcos2θ sin3θcosθ sin3θcosθ sin4θ


(4.34)

ρ̂X1 =



sin2θcos2θ cos3θsinθ sin2θcos2θ sin3θcosθ

cos3θsinθ cos4θ cos3θsinθ cos2θsin2θ

sin2θcos2θ cos3θsinθ sin2θcos2θ sin3θcosθ

sin3θcosθ sin2θcos2θ sin3θcosθ sin4θ


(4.35)

ρ̂X2 =



sin2θcos2θ sin3θcosθ sin2θcos2θ cos3θsinθ

sin3θcosθ sin4θ sin3θcosθ sin2θcos2θ

sin2θcos2θ sin3θcosθ sin2θcos2θ cos3θsinθ

cos3θsinθ sin2θcos2θ cos3θsinθ cos4θ


(4.36)

ρ̂X3 =



sin4θ sin3θcosθ sin3θcosθ sin2θcos2θ

sin3θcosθ sin2θcos2θ sin2θcos2θ cos3θsinθ

sin3θcosθ sin2θcos2θ sin2θcos2θ cos3θsinθ

sin2θcos2θ cos3θsinθ cos3θsinθ cos4θ


(4.37)

The quantum CNOT gate maps the initial state ρ̂AB of the two qubit system AB

into a final state ρ̂AB
′

via the unitary transformation

ρ̂AB
′
= Û ρ̂ABÛ † (4.38)

with

Û = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11| (4.39)

|01〉 for example indicates the vector |0A〉 ⊗ |1B〉, where {|0A〉, |1A〉} and {|0B〉, |1B〉}
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are basis sets spanning the Hilbert spaces HA and HB of the control and target qubits

respectively. Considering a noisy CNOT operation that, with probability P, decoheres

ρ̂AB
′

into a mixture
3∑

k=0

Π̂kρ̂
AB′Π̂k of orthogonal pointer states {|00〉, |01〉, |10〉, |11〉},

where for example Π̂1 = |01〉〈01|. The output density operator is thus of the form

ρ̂Y
′
= (1− P )ρ̂AB

′
+ P

3∑
k=0

Π̂kρ̂
AB′Π̂k (4.40)

Note that the input and output states are denoted as ρ̂X
′

i and ρ̂Y
′

j respectively to

maintain consistency with the notations used in the previous sections, even though

the system is AB in both input and output. The output states are obtained from

ρ̂X
′

i = Û ρ̂Xi Û † as shown below

ρ̂Y
′

j =
1

qj

∑
iε{i}j

piρ̂
X ′
i (4.41)

where qj =
∑
iε{i}j

pi. The output density operator ρ̂Y
′

can be written as

ρ̂Y
′
=

2∑
j=0

qj ρ̂
Y ′
j (4.42)

Let a = sinθcosθ, and the output matrices are given as

ρ̂Y
′

0 =



cos4θ a(1− P )cos2θ (1− P )a2 a(1− P )cos2θ

a(1− P )cos2θ a2 a(1− P )sin2θ (1− P )a2

(1− P )a2 a(1− P )sin2θ sin4θ a(1− P )sin2θ

a(1− P )cos2θ (1− P )a2 a(1− P )sin2θ a2


(4.43)
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ρ̂

Y ′=



a2 1
2
(1− P )a (1− P )a2 1

2
(1− P )a

1
2
(1− P )a 1

2
{cos4θ + sin4θ} 1

2
(1− P )a (1− P )a2

(1− P )a2 1
2
a a2 1

2
(1− P )a

1
2
(1 = P )a (1− P )a2 1

2
(1− P )a 1

2
{cos4θ + sin4θ}


(4.44)

1

ρ̂Y
′

2 =



sin4θ a(1− P )sin2θ (1− P )a2 a(1− P )sin2θ

a(1− P )sin2θ a2 a(1− P )cos2θ (1− P )a2

(1− P )a2 a(1− P )cos2θ cos4θ a(1− P )cos2θ

a(1− P )sin2θ (1− P )a2 a(1− P )cos2θ a2


(4.45)

ρ̂Y
′
=



1
4

1
2
a(1− P ) (1− P )a2 1

2
a(1− P )

1
2
a(1− P ) 1

4
1
2
a(1− P ) (1− P )a2

(1− P )a2 1
2
a(1− P ) 1

4
1
2
a(1− P )

1
2
a(1− P ) (1− P )a2 1

2
a(1− P ) 1

4


(4.46)

Fidelity of the logical transformation L is given as

FL =
χ(εY

′

Y)

χ(εYY)
(4.47)

where

χ(εY
′

Y) = S(ρ̂Y
′
)−

2∑
j=0

qjS(ρ̂Y
′

j ) (4.48)

χ(εYY) = S(ρ̂Y)−
2∑
j=0

qjS(ρ̂Yj ) (4.49)

where ρ̂Y and ρ̂Yj for j=0,1,2 is given as
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ρ̂Y0 =



cos4θ acos2θ acos2θ a2

acos2θ a2 a2 asin2θ

acos2θ a2 a2 asin2θ

a2 asin2θ asin2θ sin4θ


(4.50)

ρ̂Y1 =



a2 1
2
a 1

2
a a2

1
2
a 1

2
{cos4θ + sin4θ} a2 1

2
a

1
2
a a2 1

2
{cos4θ + sin4θ} 1

2
a

a2 1
2
a 1

2
a a2


(4.51)

ρ̂Y2 =



sin4θ asin2θ asin2θ a2

asin2θ a2 a2 acos2θ

asin2θ a2 a2 acos2θ

a2 acos2θ acos2θ cos4θ


(4.52)

and

ρ̂Y =



1
4

1
2
a 1

2
a a2

1
2
a 1

4
a2 1

2
a

1
2
a a2 1

4
1
2
a

a2 1
2
a 1

2
a 1

4


(4.53)

With all the required matrices defined clearly, the fidelity FL can be calculated.

Similarly for the representational faithfulness fL given as

fL = 1−

2∑
j=0

qjχ(εY
′

j )

2∑
j=0

qjχ(εYj )
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where

χ(εY
′

j ) = S(ρ̂Y
′

j )− 1

qj

∑
iε{i}j

piS(ρ̂X
′

i ) (4.54)

χ(εYj ) = S(ρ̂Yj )− 1

qj

∑
iε{i}j

piS(ρ̂Xi ) (4.55)

From the above equations, the faithfulness with which the noisy CNOT gate

implements binary addition can be calculated for different values of P and θ. The

results of the calculation are presented below.

Figure 4.4. Variation in Computational Fidelity of CNOT gate with variation in θ
and P

From the Figure 4.4, we can use the generalized definition of computational fi-

delity to allow for the input states to be noisy, the variation with P and θ is very

insightful. It is important to remember that FL is a measure of the amount of non-

orthogonality introduced between system states that map into different logical out-

puts. For θ=0, that is if the system states are orthogonal initially, then FL=1 for

all values of P. Binary addition can be implemented with unit fidelity even though

the logical CNOT and binary addition operations are distinctly different because the

outputs can be unambiguously inferred. Also for P=0, FL=1 for all values of θ, in-

dicating that when there is no decoherence, the CNOT operation does not lead to
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Figure 4.5. Variation in Representational Faithfulness of CNOT gate with variation
in θ and P

increase in non-orthogonality between states that map into different logical outputs,

than what was already present. We can also see that with increasing P for any fixed

θ in the regime [0,π
4
], FL decreases, reflecting the reduction in available information

that accompanies loss of structure in output state caused by decoherence.

Figure 4.5 indicates the variation of fL with θ and P. It is important to note that

fL is a measure of the amount of non-orthogonality introduced between system states

that map into the same logical output. For θ=0, for all values of P, the CNOT gate

evolves into completely distinguishable orthogonal outputs states and the input from

which a output arose can be identified, hence fL=0. For any P varying from 0 to 1, for

θ in the given regime, there is a increase in fL with increasing θ as there is increased

non-orthogonality in the system states. However for a given θ, with increasing value

of the decoherence probability P, there is a decrease in fL as the decoherence leads to

creation of completely distinguishable orthogonal states whereas the logical operation

requires non-orthogonality to exist between system states that map into the same

logical output.
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We were thus able to study the variation of the generalized computational fidelity

and representational faithfulness measures of a quantum CNOT gate, subject to de-

coherence, performing classical binary addition. The results provided insight into the

effect of non-orthogonality between input system states and that of decoherence on

the performance of a logical operation.

4.2.5 Generalized Efficacy Measures for Two-Stage Logical Computations

One of the biggest advantages of the generalization in the efficacy measures for-

mulation is that it allows us to clearly define the computational fidelity and represen-

tational faithfulness of individual stages of a multistage computation and differentiate

it from the efficacy measures of the entire operation.

The next task would then be understand the relationship between the efficacy

measures of the individual stages and that of the entire logical operation, and develop

a clear formulation for it. This formulation would be very important as it would

allow us to associate the performance of an entire logical operation with that of the

individual stages. Further use of this in Eq. (3.49) would allow us to associate

dissipation costs associated with an entire logical operation with the individual steps

involved in the achieving it. For the error-correction problem, this formulation would

help us associate the information transmitted from end-to-end with the performance

metrics of the decoder and hence is very significant.

Since from Eq. (4.29), we know that information loss in a logical transformation is

clearly divided into desirable and undesirable information loss. This concise division

in −∆IL is used to determine the required relationship between the various efficacy

measures. In order to derive the relationship for a general N-stage computation,

we shall start initially with a two stage logical transformation and then proceed

from there. Let L1 and L2 indicate the individual stages of the two stage logical

transformation, which is known as L from end-to-end. For example, if L1 was the
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AND operation and L2 was the NOT operation performed on the outputs of the AND

operation, then L is the NAND operation. We hence need to obtain the efficacy

measures for L1 and L2 and relate it with that of L.

Let the initial input referent to the logical transformation be X with a the prob-

ability distribution {pi}. The input ensemble of the system states are given as

εDX = {pi, ρ̂Di }. The amount of information about X that is present in the system

states is given by the Holevo information χ(εDX) where

χ(εDX) = S(ρ̂D)−
∑
i

piS(ρ̂Di ) (4.56)

and

ρ̂D =
∑
i

piρ̂
D
i (4.57)

.

The system D undergoes the logical transformation L1 to produce the evolved input

states D′. Let Y be the output referent associated with the logical transformation L1

and input probability distribution {pi}. Let qj be the probability of the j-th logical

output. The fidelity and faithfulness for the logical transformation L1 is given as

FL1 =
χ(εD

′
Y )

χ(εDY )
(4.58)

fL1 = 1−

∑
j

qjχ(εD
′

j )∑
j

qjχ(εDj )
(4.59)

The evolved input states D′ which are correlated to Y, now act as the inputs to

second logical transformation L2. The amount of information that D′ contains about

Y is given by the Holevo information χ(εD
′

Y ), where

χ(εD
′

Y ) = S(ρ̂D
′
)−

∑
j

qjS(ρ̂D
′

j ) (4.60)
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Figure 4.6. System D Undergoing a Two-staged Logical Operation

and

S(ρ̂D
′
) =

∑
j

qj ρ̂
D′
j (4.61)

ρ̂D
′

j =
1

qj

∑
iε{i}j

piρ̂
D′
i (4.62)

The system state evolves from D′ to D′′ to implement the logical transformation

L2. Let Z be the output referent of the logical transformation L2 with input dis-

tribution {qj} and zk, the probability of the k-th logical output. The fidelity and

faithfulness associated with L2 is given as

FL2 =
χ(εD

′′
Z )

χ(εD
′

Z )
(4.63)

fL2 = 1−

∑
k

zkχ(εD
′′

k )∑
k

zkχ(εD
′

k )
. (4.64)

If the entire two stage logical operation L is considered as L1 followed by L2, then

the input and output referents are given as X and Z. The system state evolved from
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D to D′′ to implement the entire logical transformation. The fidelity and faithfulness

of L is given as

FL =
χ(εD

′′
Z )

χ(εDZ )
(4.65)

fL = 1−

∑
k

zkχ(εD
′′

k )∑
k

zkχ(εDk )
(4.66)

In order to relate all of these efficacy measures together, we need to study their

relationship to the information lost. If we can identify the desirable and undesirable

information lost in the two stage computation L and relate it with the information lost

in the individual stages L1 and L2, the important relationship between the efficacy

measures can be obtained.

Consider the desirable information loss in the second stage of the computation

given by fL2
∑
k

zkχ(εDk ). Adding and subtracting the term
∑
k

zkχ(εDk ) we get

fL2
∑
k

zkχ(εDk ) =
∑
k

zkχ(εD
′

k )−
∑
k

zkχ(εD
′′

k ) +
∑
k

zkχ(εDk )−
∑
k

zkχ(εDk ) (4.67)

Since ∑
k

zkχ(εDk )−
∑
k

zkχ(εD
′′

k ) = fL
∑
k

zkχ(εDk ) (4.68)

Thus substituting we get

fL2
∑
k

zkχ(εDk ) = fL
∑
k

zkχ(εDk ) +
∑
k

zk[χ(εD
′

k )− χ(εDk )] (4.69)

Since we know

χ(εD
′

k ) = S(ρ̂D
′

k )− 1

zk

∑
jε{j}k

qjS(ρ̂D
′

j ) (4.70)
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∑
k

zkχ(εD
′

k ) =
∑
k

zkS(ρ̂D
′

k )−
∑
j

qjS(ρ̂D
′

j ) (4.71)

Adding and subtracting S(ρ̂D
′
) to the above equation, we get

∑
k

zkχ(εD
′

k ) = χ(εD
′

X )− χ(εD
′

Z ) (4.72)

Similarly we can write ∑
k

zkχ(εDk ) = χ(εDX)− χ(εDZ ) (4.73)

The second term in Eq. (4.69) can be written as

∑
k

zk[χ(εD
′

k )− χ(εDk )] = {χ(εD
′

X )− χ(εD
′

Z )} − {χ(εDX)− χ(εDZ )} (4.74)

Since χ(εDX) − χ(εD
′

X ) is the information about X that is lost as the system evolves

from state D to D′ implementing L1, it can be written as

χ(εDX)− χ(εD
′

X ) = fL1
∑
j

qjχ(εDj ) + (1− FL1)χ(εDY ) (4.75)

Substituting into the previous equation we get

∑
k

zk[χ(εD
′

k )− χ(εDk )] = {χ(εDZ )− χ(εD
′

Z )} − fL1
∑
j

qjχ(εDj )− (1− FL1)χ(εDY ) (4.76)

61



Therefore we can write

fL2
∑
k

zkχ(εD
′

k ) = fL
∑
k

zkχ(εDk ) + {χ(εDZ )−χ(εD
′

Z )}− fL1
∑
j

qjχ(εDj )− (1−FL1)χ(εDY )

(4.77)

Rearranging the terms we get

fL
∑
k

zkχ(εDk ) = fL2
∑
k

zkχ(εD
′

k ) + fL1
∑
j

qjχ(εDj ) + (1−FL1)χ(εDY )−{χ(εDZ )−χ(εD
′

Z )}

(4.78)

fL =

fL2
∑
k

zkχ(εD
′

k ) + fL1
∑
j

qjχ(εDj ) + (1− FL1)χ(εDY )− {χ(εDZ )− χ(εD
′

Z )}∑
k

zkχ(εDk )
(4.79)

The above equation thus relates the representational faithfulness of the entire

two staged logical transformation with the efficacy measures of the individual stages.

The first term fL1
∑
j

qjχ(εDj ) indicates the amount of desirable information loss that

occurs about referent X, between system states that map into the same logical output

when operation L1 is performed. Similarly fL2
∑
k

zkχ(εD
′

k ) indicates the amount of

necessary information loss that occurs about referent Y, between system states that

map into the same logical output when L2 is implemented. There is some information

loss about referent Y which is undesirable for the implementation of L1 but is desirable

when the entire two-staged logical transformation L is considered. This is indicated

by (1− FL1)χ(εDY )− {χ(εDZ )− χ(εD
′

Z )}.

Using a similar approach of studying the information lost, we can derive the

relationship between the computational fidelity of L with the efficacy measures of the

individual stages. Consider the term (1− FL)χ(εDZ ). This can be written as

(1− FL)χ(εDZ ) = χ(εDZ )− χ(εD
′′

Z ) (4.80)
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Adding and subtracting χ(εD
′

Z ) we get

(1− FL)χ(εDZ ) = χ(εDZ )− χ(εD
′′

Z ) + χ(εD
′

Z )− χ(εD
′

Z ) (4.81)

Since

χ(εD
′

Z )− χ(εD
′′

Z ) = (1− FL2)χ(εD
′

Z ) (4.82)

We can write

(1− FL)χ(εDZ ) = (1− FL2)χ(εD
′

Z ) + {χ(εDZ )− χ(εD
′

Z )} (4.83)

The above equation thus relates the computational fidelity FL of the two stage

logical computation L with the efficacy measures of the individual stages. These equa-

tions can be extended for N-stage logical computations and will provide powerful tools

in characterizing the performances of individual stages in a multistage computation.

Furthermore it will also help associate the energy dissipation associated with each

stage to the performance metrics of that stage.

4.2.6 Generalized Efficacy Measures for N-Stage Logical Computations

Consider the N-stage logical transformation shown below

X1
L1−→ X2

L2−→ X3
L3−→ · · · Ln−1−→ Xn

Ln−→ Xn+1

D1 −→ D2 −→ D3 −→ · · · −→ Dn −→ Dn+1

X1 is the initial input referent and the Xi+1 is the output referent of the Li-th

logical transformation. D1 indicates the initial system state and it evolves to D2
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while implementing L1, which then evolves to D3 when implementing L2 and so on

and so forth. The entire end-to-end N-stage logical transformation is called L and is

implemented by evolving the system from D1 to Dn+1.

X1
L−→ Xn+1

D1 −→ Dn+1

Following the same procedure as in the previous subsection for the two-stage

computation, the relationship between the fidelity and faithfulness of the N-stage

computation in terms of the efficacy measures of the individual stages can be derived

to be

fL =

{
n∑
i=1

fLi
∑
a

piaχ(εDi
a ) +

n−1∑
i=1

(1− FLi)χ(εDi
Xi+1

)− [χ(εD1
Xn+1

)− χ(εDn
Xn+1

)]

}
∑
a

pn+1
a χ(εD1

a )
(4.84)

and furthermore

(1− FL)χ(εD1
Xn+1

) = (1− FLn)χ(εDn
Xn+1

) + [χ(εD1
Xn+1

)− χ(εDn
Xn+1

)] (4.85)

where FLi and fLi
is the computational fidelity and representational faithfulness of

the Li-th logical transformation and pia is the probability associated with the a-th

logical state in the referent Xi.

Over the last section we have generalized the computational fidelity and represen-

tational faithfulness measures, applied it to an example system and extended it for

more complex systems. We now possess the tools required to characterize the perfor-

mance the decoding operation and relate it to the amount of information obtained at

the decoder output as well the lower bound on energy dissipation.
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4.3 Application to the Case of Decoding the Noisy Channel

Output

The above changes to the definition of computational efficacy measures are now

applied to our system of interest implementing the decoding logical operation. The

noise, modeled after a bit-flip channel followed by decoherence is introduced by the

environment. There is no necessary heat dissipation to the environment associated

with the introduction of this noise into the system the user does not have to pay

in terms of energy cost. However when the system undergoes the decoding logical

transformation, there is a loss of information and a reduction in the system entropy,

which results in a heat dissipation cost that the user must pay. Determining a lower

bound on this energy cost, as well as studying the relationship of the computational

efficacy measures for the decoding process to this cost is one of the key goals of this

thesis.

Since we know

−∆Idecoding = I(ρ̂R; ρ̂D
′
)− I(ρ̂R; ρ̂D

′′
) = χ(εD

′

R )− χ(εD
′′

R ) (4.86)

and

〈Eε
decoding〉 ≥ −kBT ln(2){∆Idecoding +

2k−1∑
i=0

pi
[
S(ρ̂D

′

i )− S(ρ̂D
′′

i )
]
} (4.87)

Defining Fdecoding and fdecoding as the computational fidelity and representational

faithfulness of the decoding operation, we can substitute for−∆Idecoding and 〈Eε
decoding〉

in terms of Fdecoding and fdecoding. We thus have a lower bound on the average energy

dissipation to the environment, in terms of the fidelity and faithfulness of the decoding

process. This will allow us to study the trade offs between “how well” the decoding
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Figure 4.7. Block diagram of the System through the Communication Channel and
Decoding Operation

is achieved and the minimum energy cost the user must pay to do so. Regions of

diminishing returns for the decoder can also be determined.

In the previous sections, we have derived the equations for information loss and

the lower bounds on energy cost for general quantum systems undergoing logical

transformations. We shall develop the formulation for a system encoded as the lin-

ear codeword, which then experiences channel noise. The noisily encoded system

undergoes the logical transformation of decoding to form the decoded output. The

information loss and the energy dissipation associated with decoding is expressed in

terms of fidelity and faithfulness of the decoding operation.

The input referent of the codewords is given as R and contains 2k orthogonal states

given by ρ̂Ri and specified by a probability pi(let X be the random variable associated

with this probability distribution). The input ensemble of the system is given as

εDX = {pi, ρ̂Di }. The amount of information that the input ensemble contains about

the referent R is given by the Holevo information term.
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χ(εDR) = S(ρ̂D)−
2k−1∑
i=0

piS(ρ̂Di ) (4.88)

The system experiences noise given by the quantum operator Û1, and is followed

by decoherence to form the evolved system state D′. The system ensemble is given

as εD
′
R = {pi, ρ̂D

′
i }. The amount of information about referent R contained in system

state D′ is given as

χ(εD
′

R ) = S(ρ̂D
′
)−

2k−1∑
i=0

piS(ρ̂D
′

i ) (4.89)

Since a communication channel is performing the identity operation and the out-

put referent should be the same as the input referent R. However R cannot be used

as the input referent to the decoding logical transformation. Though it might provide

necessary results, it is not intuitive as decoding is usually a many-to-one irreversible

mapping while using R as the input referent to decoding would imply a one-to-one

mapping with the decoder output referent. Studying decoding as a one-to-one map-

ping implies unnecessary information loss and questions the very need to perform it.

Hence to overcome this, a Referent Translation is suggested, in which we replace

the channel output referent R with another referentR′. After decoherence, the system

decoheres into one of the possible 2n orthogonal pointer states |j〉〈j| with a certain

probability. Let us define each of the system states ρ̂D
′

i as

ρ̂D
′

i =
1

2n−1∑
j=0

qj/i

2n−1∑
j=0

qj/i|j〉〈j| (4.90)

Since we know that
2n−1∑
j=0

qj/i = 1,

ρ̂D
′

i =
2n−1∑
j=0

qj/i|j〉〈j| (4.91)
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Thus we can write

ρ̂D
′
=

2k−1∑
i=0

piρ̂
D′
i (4.92)

ρ̂D
′
=

2n−1∑
j=0

qj|j〉〈j| (4.93)

where

qj =
2k−1∑
i=0

piqj/i (4.94)

qj will depend upon the value of θ and e and will indicate the probability with which

we obtain the pointer state ρ̂D
′

j = |j〉〈j|.

We shall now define the new referent R′, specified by 2n orthogonal states ρ̂R
′

j

and corresponding probability qj(let Y be the random variable associated with this

distribution). The referentR′ is used to obtain the output referentR′′ of the decoding

logical operation. The probability distribution associated with the 2k logical outputs

is given by {zm} (and let Z be the random variable associated with this distribution)

where

zm =
∑

jε{j}m

qj (4.95)

The decoding transformation is implemented by evolving the system from the

state D′ to D′′ through the quantum operation Û2. The output ensemble is given as

εD
′′

Z = {zm, ρ̂D
′′

m } where

ρ̂D
′′

m =
1

zm

∑
jε{j}m

qj ρ̂
D′′
j (4.96)

Under these definitions, we can write

ρ̂D
′′

i =
2k−1∑
m=0

∑
jε{j}m

qj/iρ̂
D′′
j (4.97)
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The information loss about the referent R during the logical transformation is

given by

−∆Idecoding = χ(εD
′

X )− χ(εD
′′

X ) (4.98)

Writing χ(εD
′

X ) and χ(εD
′′

X ) as

χ(εD
′

X ) = χ(εD
′

Z ) +
2k−1∑
m=0

zmχ(εD
′

m ) (4.99)

where

χ(εD
′

Z ) = S(ρ̂D
′
)−

∑
m

zmS(ρ̂
D′m
j ) (4.100)

and since

ρ̂D
′

m =
1

zm

∑
iε{i}m

piρ̂
D′
i (4.101)

χ(εD
′

m ) = S(ρ̂D
′

m )− 1

zm

∑
iε{i}m

piS(ρ̂D
′

j ) (4.102)

Add and subtract 1
zm

∑
jε{j}m

qjS(ρ̂D
′

j ) to the above equation. Rearranging terms we

have

χ(εD
′

m ) = S(ρ̂D
′

m )− 1

zm

∑
jε{j}m

qjS(ρ̂D
′

j )− 1

zm

∑
iε{i}m

piS(ρ̂D
′

j +
1

zm

∑
jε{j}m

qjS(ρ̂D
′

j ) (4.103)

Similarly

χ(εD
′′

X ) = χ(εD
′′

Z ) +
2k−1∑
m=0

zmχ(εD
′′

m ) (4.104)

with

χ(εD
′′

Z ) = S(ρ̂D
′′
)−

∑
m

zmS(ρ̂D
′′

m ) (4.105)

χ(εD
′′

m ) = S(ρ̂D
′′

m )− 1

zm

∑
iε{i}m

piS(ρ̂D
′′

i ) (4.106)
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The above equation is rewritten as before

χ(εD
′′

m ) = S(ρ̂D
′′

m )− 1

zm

∑
jε{j}m

qjS(ρ̂D
′′

j )− 1

zm

∑
iε{i}m

piS(ρ̂D
′′

j +
1

zm

∑
jε{j}m

qjS(ρ̂D
′′

j ) (4.107)

If the computational fidelity Fdecoding and representational faithfulness fdecoding of

the decoding operation which mapped logical inputs from R′ to R′′ is defined as

below,

Fdecoding =
χ(εD

′′
Z )

χ(εD
′

Z )
(4.108)

fdecoding = 1−

2k−1∑
m=0

zmχ
′(εD

′′

m )

2k−1∑
m=0

zmχ
′(εD

′

m )

(4.109)

where we define

χ′(εD
′

m ) = S(ρ̂D
′

m )− 1

zm

∑
jε{j}m

qjS(ρ̂D
′

j ) (4.110)

χ′(εD
′′

m ) = S(ρ̂D
′′

m )− 1

zm

∑
jε{j}m

qjS(ρ̂D
′′

j ) (4.111)

Substituting into the equation for information loss, we get

−∆Idecoding = (1− Fdecoding)χ(εD
′

Z ) + fdecoding
2k−1∑
m=0

χ′(εD
′

m )

+
2n−1∑
j=0

qj
[
S(ρ̂D

′

j )− S(ρ̂D
′

j )
]
−

2k−1∑
i=0

pi
[
S(ρ̂D

′

i )− S(ρ̂D
′′

i )
]
(4.112)

The left hand side, information loss is loss of information in the system states about

the initial referentR at the channel input during the decoding operation. A closer look

at the information loss equation reveals that the first two terms (1− Fdecoding)χ(εD
′

Z )
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and fdecoding
2k−1∑
m=0

χ′(εD
′

m ) indicate information loss about the referent R′ as the system

undergoes the decoding process, expressed in terms of its efficacy measures. whereas

the term
2k−1∑
i=0

pi
[
S(ρ̂D

′

i )− S(ρ̂D
′′

i )
]
−

2n−1∑
j=0

qj
[
S(ρ̂D

′

j )− S(ρ̂D
′

j )
]

indicates the entropy

of the decoder input states that the decoder treats as information of the input states

(because of referent translation) and hence must be subtracted while calculating the

information loss about referent R.

We can substitute Eq. (4.112) into the equation for entropy change

∆SDdecoding = kB ln(2)

−∆Idecoding +
2k−1∑
i=0

pi{S(ρ̂D
′

i )− S(ρ̂D
′′

i )}

 (4.113)

We get

∆SDdecoding = kB ln(2)

(1− Fdecoding)χ(εD
′

Z ) + fdecoding
2k−1∑
m=0

zmχ
′(εD

′

m )

+
2n−1∑
i=0

qj{S(ρ̂D
′

j )− S(ρ̂D
′′

j )}
]

(4.114)

where ρ̂D
′

j and ρ̂D
′′

j are already defined. The lower bound on energy dissipation is thus

obtained as

〈∆Eε
decoding〉 ≥ kBT ln(2)

(1− Fdecoding)χ(εD
′

Z ) + fdecoding
2k−1∑
m=0

zmχ
′(εD

′

m )

+
2n−1∑
j=0

qj{S(ρ̂D
′

j )− S(ρ̂D
′′

j )}

 (4.115)

4.3.1 Central Result

The central result of the work done in this thesis is the following theorem
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Theorem- A decoding operation performed on a noisily encoded system

D′ with computational fidelity Fdecoding and representational faithfulness

fdecoding, to obtain χ(εD
′′
R ) bits of information about the initial referent R,

will lead to a minimum average energy dissipation to the environment of

〈∆Eε
decoding〉 ≥ kBT ln(2)

(1− Fdecoding)χ(εD
′

Z ) + fdecoding
2k−1∑
m=0

zmχ
′(εD

′

m )

+
2n−1∑
j=0

qj{S(ρ̂D
′

j )− S(ρ̂D
′′

j )}

 (4.116)

D′′ refers to the state of the system after the decoding operation is performed on

it. χ(εD
′′
R ) is the Holevo information associated with the system state D′′ and indi-

cates the maximum amount of information that the system can possess about the

initial referent R. Fdecoding and fdecoding is the computational fidelity and representa-

tional faithfulness of the decoding operation and depend purely upon the decoder’s

characteristics. The first two terms on the right hand side indicate the information

lost about the translated referent R′ with probability distribution {qj}, as the system

evolves from state D′ to D′′. χ(εD
′

Z ) indicates the amount of information that D′

will contain about the decoder output referent if the decoding is performed ideally,

and
2k−1∑
m=0

zmχ
′(εD

′

m ) indicates the maximum amount of information that D′ has to lose

for the decoding operation to be performed ideally. Both of these terms, χ(εD
′

Z ) and

χ′(εD
′

m ) depend only upon the channel and input state properties and probability dis-

tribution. The last term indicates the average change in self entropy of the system

during the logical operation.

We thus have a lower bound on the amount of energy dissipated on performing

the decoding operation on the noisy channel output in terms of decoder’s perfor-

mance metrics. This will enable us to study how well the decoder performs the
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error-correction operation, the amount of information we save by this process and a

lower bound on the energy dissipated in accomplishing this task.

4.3.2 Illustrative Example

In the previous sections, we have derived the equations for information loss and

the lower bounds on energy cost for general quantum systems. We shall now study

the results of the simulations for a pure state system. The input n-tuple codeword is

physically encoded into the system D. If the codeword xi is a string of binary digits

0’s and 1’s, they are encoded in the states |ψ0〉 and |ψ1〉 respectively. Both |ψ0〉 and

|ψ1〉 are as given in the CNOT gate example

|ψ0〉 = cosθ|0〉+ sinθ|1〉

|ψ1〉 = sinθ|0〉+ cosθ|1〉

Where |0〉 and |1〉 are orthogonal basis vectors and θ is a measure of indistinguisha-

bility between the two states. Thus a n-tuple codeword is thus formed by the tensor

product of n such states. For example, in a Hamming (7,4) code, the 7-digit 0000111

is encoded into the system as |ψ0 ⊗ ψ0 ⊗ ψ0 ⊗ ψ0 ⊗ ψ1 ⊗ ψ1 ⊗ ψ1〉.

The input referent of the codewords is given as R and contains 2k orthogonal

states given by ρ̂Ri and specified by a probability pi.The input ensemble of the system

is given as εDX = {pi, ρ̂Di } with each of the ρ̂Di given as

ρ̂Di = |ψc1⊗ψc2⊗ψc3⊗ψc4⊗ ...⊗ψcn−1⊗ψcn〉〈ψc1⊗ψc2⊗ψc3⊗ψc4⊗ ...⊗ψcn−1⊗ψcn|

(4.117)

where for l=1 to n, cl=0 or 1. Depending on the value of θ, the ρ̂Di may or may not

be orthogonal.
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If Û is the operator associated with the bit-flip noise, with the probability of a

bit-flip error being given by the parameter e, that is probability of flipping the state

|0〉 to the state |1〉 and vice versa. Then for a single bit flip, Û is given as

Û =
√

1− e{|0〉〈0|+ |1〉〈1|}+
√
e{|0〉〈1|+ |1〉〈0|} (4.118)

Thus the operator for channel noise associated with a n-tuple codeword Û1 is given

by the tensor product of n single error bit-flip operators Û .

Û1 = Û ⊗ Û ⊗ Û ⊗ Û ⊗ ....⊗ Û (4.119)

The system experiences noise given by the operator Û1 and is then followed by

decoherence on the evolved state to form the system state D′. The system ensemble

is given as εD
′
R = {pi, ρ̂D

′
i }. The decoding operation is implemented by evolving the

system from the state D′ to D′′ through the quantum operation Û2. The output

ensemble after performing referent translation is given as εD
′′

Z = {zm, ρ̂D
′′

m }.

The performance metrics of the decoder is solely technology-dependent. However

for this thesis, the following error scheme is followed and the performance metrics,

information at the decoder outputs and the lower bound on the energy dissipated

are calculated and the results are plotted and discussed in the next section. We

assume that the errors in the decoder is such that every one of the 2n noisy channel

outputs evolve into the correct codeword state with a probability (1-f ), where f is

a parameter which ranges in the interval [0,1] and maps into every wrong codeword

with a probability f
2k−1 each. The performance parameters will depend only upon

the value of f and will be independent of the values of e and θ, even though χ(εD
′′
R )
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will depend upon all three quantities. For jε{j}m, the decoding error scheme can be

viewed as evolving any state ρ̂D
′

j as

ρ̂D
′

j = |j〉〈j| −→ (1− f)|m〉〈m|+
∑

m′:j /∈{j}m′

f

15
|m′〉〈m′| (4.120)

As derived in the previous section the information lost in the decoding operation

is given as

−∆Idecoding = χ(εD
′

R )− χ(εD
′′

R ) (4.121)

which can be expressed in terms of the computational fidelity Fdecoding and represen-

tational faithfulness fdecoding of the decoding operation as

−∆Idecoding = (1− Fdecoding)χ(εD
′

Z ) + fdecoding
2k−1∑
k=0

zkχ(εD
′

k )

+
2n−1∑
j=0

qj
[
S(ρ̂D

′

j )− S(ρ̂D
′′

j )
]
−

2k−1∑
i=0

pi
[
S(ρ̂D

′

i )− S(ρ̂D
′′

i )
]
(4.122)

where

Fdecoding =
χ(εD

′′
Z )

χ(εD
′

Z )
(4.123)

fdecoding = 1−

2k−1∑
k=0

zkχ(εD
′′

k )

2k−1∑
k=0

zkχ(εD
′

k )

(4.124)

For the decoder error pattern that we have chosen for this thesis, calculation of

faithfulness produces a value of 1 always. When the fidelity equal to one as well, that

is the decoding operation was performed perfectly, we can write ρ̂D
′′

m = |m〉〈m| and
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an associated probability of zm, where |m〉〈m| are the 2k orthogonal output states.

Thus

ρ̂D
′′

i =
2k−1∑
m=0

zm/i|m〉〈m| (4.125)

The information loss −∆Idecoding reduces to the Shannon information loss as shown

below

χ(εD
′

R ) = S(ρ̂D
′
)−

2k−1∑
i=0

piS(ρ̂D
′

i ) (4.126)

Since ρ̂D
′
=

2n−1∑
j=0

qj|j〉〈j| and ρ̂D
′

i =
2n−1∑
j=0

qj/i|j〉〈j|,

S(ρ̂D
′
) = −

2n−1∑
j=0

qjlog2qj = H(Y ) (4.127)

S(ρ̂D
′

i ) = −
2n−1∑
j=0

qj/ilog2qj/i = H(Y |X) (4.128)

Thus we have χ(εD
′

R )=I(Y;X). Similarly we can show that χ(εD
′′

R )=I(Z;X). Substituting

into the equation for information loss,

−∆Idecoding = I(Y ;X)− I(Z;X) (4.129)

Since this equation is obtained when the fdecoding=1 and Fdecoding=1, we also have

−∆Idecoding = (I(Y ;Y )− I(Y ;Z))−
2k−1∑
i=0

pi [H(Y |xi)−H(Z|xi)]

−
2n−1∑
j=0

qj [H(Y |yj)−H(Z|yj)] (4.130)

where I(Y;Y)-I(Y;Z) indicates the amount of information loss about the channel out-
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puts that occurs during the decoding operation. This is equal to H(Y—Z)=
2k−1∑
m=0

zmH(Y |zm).

Furthermore since H(Y |yj)=0 always and when the decoding operation is executed

perfectly H(Z|yj)=0, information lost reduces to

−∆Idecoding = H(Y |Z)−
2k−1∑
i=0

pi [H(Y |xi)−H(Z|xi)] (4.131)

Thus substituting Eq. (4.129) into Eq. (3.40) and reducing it, we get

∆SD = kB ln(2)

(I(Y ;Y )− I(Z;Y )) +
2n−1∑
j=0

qj{H(Y |yj)−H(Z|yj)}

 (4.132)

∆SD = kB ln(2)H(Y |Z) (4.133)

and

〈Eε
decoding〉 ≥ kBT ln(2)H(Y |Z) (4.134)

The values of qj and zm depend upon the values of bit flip error (e), angle θ and

decoder error (f). However if θ=0 and the input states are completely orthogonal

to each other, then the values of qj are equivalent to those obtained from a classical

binary symmetric channel. Eq. (4.134) provides us with the lower bound on energy

dissipation for performing the decoding operation in the special case where the ini-

tial input states are orthogonal to each other and the decoding operation has been

performed perfectly. Since even in post-CMOS nanoelectronic systems, decoding op-

erations are performed by extremely robust CMOS based circuits, this equation will

provide a good idea of the least energy that is required to achieve error-correction.

The information obtained at the decoder output and lower bound on the energy dissi-

pation for various values of the channel bit flip error (e) , angle (θ) between the input
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states and decoder error (f ) for the Hamming (7,4) case are calculated and plotted

in the next section.

4.3.2.1 Results and Discussion

Figure 4.8. Information Loss in the Decoder (bits) vs Channel Bit Flip Error (e)
for different θ in Hamming(7,4) case

In Figure 4.8, the information lost about the referent R as the system undergoes

the decoding operation is plotted as the channel bit flip error (e) varies from 0 to 0.5.

The same is plotted for different values of the angle between the states θ to study the

effect of non-orthogonality on the states. The decoding operation is assumed to be

perfect, that is Fdecoding and fdecoding are both equal to one, which is possible as they

depend only upon the parameter f. We can see that in the figure, for θ=0, there is

no information loss at e=0. The information loss then increases with increase in e,

reaches a maximum and then decreases to zero. The decrease does not imply that the

decoder is performing better and loses lesser amount of information. With increasing

e, there is greater information loss in the channel and not enough information about

the initial referent R left to be lost in the decoder, culminating to the value of zero

for e= 0.5 when all the information is lost in the channel itself. As the value of
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θ is increased and the input states are made non-orthogonal, we see that there is

information loss even when the bit flip error (e)=0, which increases with increasing e,

reaches a maximum and then decreases as before as in the case of θ = π
12

and θ = π
8
.

However further increases in θ results in maximum information loss in the decoder

for e= 0 and increase in e only results in decrease in information loss(as in the case

of θ = π
6
).

Figure 4.9. Information Loss in the Decoder (bits) vs Channel Bit Flip Error (e)
for different values of Decoder Error (f ) and θ=0 in Hamming(7,4) case

In Figure 4.9, we have a graph of the information about the referent R lost in the

decoder as the bit flip error(e) varies between 0 and 0.5. The Hamming (7,4) code

is used in this case and curves for various values of the decoder error probability(f )

are calculated. We can see that for f =0, that is if the decoding operation is perfectly

carried out, then as indicated in Figure 4.8, information lost in the decoder increases,

reaches a maximum and then decreases. As the value of f increases, there is a similar

behavior in the manner information loss changes with e, except that there is a non-

zero information loss in the decoder at e=0. This information loss is due to the

erroneous functioning of the decoder even when there is no information loss in the

channel.For further increase in the value of f, information loss achieves a maximum
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at e=0 and then continues to decrease with increasing values of e as indicated for

f =0.1, f =0.3 and f =0.6.

Figure 4.10. Minimum Energy Dissipation in the Decoder (Joules) vs Channel Bit
Flip Error (e) for θ = 0 in Hamming (7,4) case

While information about the referent R decreases with increasing e, the energy

cost of decoding is a continuous increasing function as indicated in Figure 4.10.

Calculation of the energy dissipation in the decoder is independent of the amount of

decoder error present, but is dependent of the value of θ for the error scheme used in

this thesis. This can be attributed to the simple and highly symmetrical nature of

the Hamming (7,4) code used and that of the error scheme. This does not imply that

other error schemes will yield similar results and hence should be tested in detail. As

the value of θ increases, there is greater information loss at lower values of e, owing

to the non-orthogonality and this results in the lower bound achieving the value of

kBT ln(2) × n very quickly. Since there is clearly greater information loss in the

channel at higher values of e, it is interesting to study whether the energy cost we

pay in decoding actually pays dividends in the amount of information we get. For this

purpose, we define a new term called Information saved which is the difference in

the amount of information that is present in the decoder output when error-correction
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techniques like a linear code is used and the amount of information the channel output

contains about the input when no encoding is used, through a channel with a bit flip

error probability of e, assuming the same amount of information is transmitted on

the input side. When a (n,k) linear block code is used

χsaved = n× χcoded(εD
′′

R0
)− k × χnot−coded(εD

′

R1
) (4.135)

where χcoded(ε
D′′
R0

) indicates the amount of information the system state D′′, after the

decoding operation has been performed, about the initial referent R0 which contains

k bits of information. χnot−coded(ε
D′
R1

) is the amount of information that the system

state D′, after the system experiences bit flip noise and decoherence about the initial

referent R1 which contains n bits of information.

On a per bit of information transmitted at the input basis,

χsaved =
n× χcoded(εD

′′
R0

)− k × χnot−coded(εD
′

R1
)

nk
(4.136)

From the Figure 4.11, we see that for f = 0, that when the decoder is functioning

ideally, with increasing e the information saved initially increases and then decreases

to zero for e= 0.5. As the decoder is functioning without any error χsaved ≥ 0 for all

values of e. However when f is non-zero, there is a region of bit flip error e when the

χsaved < 0, which indicates that there is a range of values of e for which using a linear

(n,k) code is disadvantageous as there is dissipation of heat at the decoder without

providing adequate amount of information at the decoder output. In this range, it

might be more advantageous in terms of information obtained and heat dissipation

to not code at all. We also study the effect of the variation in the angle between

the input states θ in Figure 4.12. As non-orthogonality is introduced into the input

states, there is an expected decrease in the amount of information saved by using
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Figure 4.11. Information Saved per Bit Transmitted vs Channel Bit Flip Error (e)
for θ = 0 and different values of Decoder Error (f )

linear code. This is seen in figure, where we have plotted the amount of information

saved as e varies from 0 to 0.5 for θ = 0, π
12

and π
8
.

In Figure 4.13, we have studied the characteristics of information saved against the

computational fidelity of the decoder(we have studied for only Fdecoding, since for the

chosen error scheme in the decoder, faithfulness is always equal to one). This graph

is a very useful as it helps us analyze the relationship between how much information

is obtained to how well the decoder performed its operation. The graph is plotted

for various values of e= 0, 0.1, 0.2 and 0.3 and f is varied in the interval [0,1]. As

f increases, the fidelity of the operation decreases and as expected, with decrease in

the decoder fidelity, there is a decrease in the amount of information saved. It is

clear from the figure that more information about the input referent is saved when

the decoder is performing the logical operation more correctly.

Since our focus is to study the amount of heat dissipation associated with achiev-

ing a certain amount of error correction, we will study the energy lower bound for

corresponding information saved. The two quantities are plotted in Figure 4.14, for

varying values of the decoder error (f ) as the bit-flip error (e) varies between 0 and 0.5
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Figure 4.12. Information Saved per Bit Transmitted vs Channel Bit Flip Error (e)
for Decoder Error (f )=0 and different values of θ

and θ=0. We can see that in all the cases, the amount of information saved increases

reaches a maximum and then decreases but we continue to pay increasing amounts of

energy. We see that after information loss reaches a maximum and starts decreasing,

we are paying more amounts of energy for diminishing returns in the amount of infor-

mation saved. This allows us to determine one region of diminishing returns, where

use of the (n,k) linear code is not beneficial anymore. If emax is the maximum error

probability at which the linear code is to be used, then

(
∂〈Eε

decoding〉
∂χsaved

)
e=emax

= 0 (4.137)

Thus using the linear (n,k) code for e ≥ emax is disadvantageous to the user. Another

region of diminishing return is identified from varying the decoder error(f ). From

Figure 4.14, we see that for non-zero f, there is a range of bit flip error (e) where we

have χsaved < 0 but 〈Eε
decoding〉 ≥ 0 indicating that we are dissipating more heat to

obtain lower amounts of information compared to when not using coding at all. The
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Figure 4.13. Information Saved per Bit Transmitted vs Decoder fidelity for θ=0
and different values of Decoder Error (f )

same can be plotted for other linear (n,k) codes and similar regions of diminishing

returns can be identified. If e0 indicates the maximum value of bit flip error (e)

for which χsaved¡0, for a given value of f and θ, we can calculate e0 by solving for

χsaved = 0. The range of e between e0 and emax indicates the best region to operate

the decoder of a (n,k) linear code for a given values of f and θ, in terms of information

saved and associated energy dissipation.

In Figure 4.15 above, we have 〈Eε
decoding〉 vs χsaved for both Hamming (7,4) and

Hamming (8,4) code for θ = 0 and decoder error (f )=0. Calculations for the Hamming

(8,4) case were made assuming the same system state conditions as the Hamming (7,4)

case, discussed in the previous section. From the graph we can see that the Hamming

(8,4) code saves more amount of information than the Hamming (7,4) in many regions

but also requires dissipation of greater amount of heat. There is also a range of e for

which χsaved < 0 for the Hamming (8,4) code and represents a disadvantage when

compared to the Hamming (7,4) which always has χsaved ≥ 0.

Thus in this section we have analyzed the information loss and lower bound on

the decoder dissipation in the decoder as a function of indistinguishability of states
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Figure 4.14. Minimum Energy Dissipation in Decoder (Joules) vs Information Saved
per Bit of information Transmitted for θ=0 and Decoder Error (f )=0

θ, bit flip error (e) and decoder error (f ). We then identified the need to define

the new term information saved to understand how beneficiary the error correction

technique is and related it to the corresponding energy cost and discovered regions

of diminishing returns for the Hamming (7,4) and Hamming (8,4) codes in a special

case.

4.4 Obstacles to Obtaining a Tight Lower Bound for Any

(n,k) Linear Block Code

Before we proceed to the next chapter to summarize the work that has been car-

ried out , we shall end this chapter discussing work that formed a major part of the

thesis. The goal of this thesis is to study and develop a lower bound for energy costs

associated with decoding when a (n,k) t-error correcting linear block code was used.

The bound required is to be tight, yet independent of the code and hence the coding

structure used, and to depend purely on the value of n, k, t and the BSC crossover

probability e.
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Figure 4.15. Minimum Energy Dissipation in Decoder (Joules) vs Information Saved
per Bit of information Transmitted for θ=0 and Decoder Error (f )=0 in Hamming
(7,4) and Hamming (8,4) case

In order to calculate the bounds, we required the weight distribution of a Code C

which is a (n,k,dmin) code with minimum Hamming distance of dmin and error cor-

recting capability of t ≤ dmin−1
2

. Linear codes are distance invariant, i.e. all the

codewords have the same weight distribution, every codeword would see Ai code-

words at a distance i. This is not necessarily true for non-linear codes and we require

average weight distributions for them. Thus based on the values of n, k and dmin

and the properties of linear codes, we would require a formula or method to deter-

mine the weight distribution of any linear code with these parameters. This would

enable us calculate a tight lower bound quite accurately. However such a formula

for the weight distributions is not available yet. This is because, in all error correc-

tion codes we would like to separate the codewords as much as we possibly can in

order to prevent one codeword from being mapped into the other. This translates

into what is called the coding theory problem which requires maximizing the distance

between the codewords for given values of n, k and dmin. It is useful to think of this

geometrically. If a binary vector of length n gives the coordinates of a vertex of a
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unit cube in n dimensions.Then an (n,k,dmin) is a subset of these vertices. Thus the

coding theory problem, in a geometrical language is to choose as many vertices of

the cube as possible while keeping them a certain distance apart. This is in fact a

packing problem, for if the code has a minimum Hamming distance of dmin. then

the Euclidean distance between the codewords is ≥
√
dmin. Thus finding a (n,k,dmin)

code means finding 2k non-overlapping spheres of diameter
√
dmin with centers at the

vertices of the cube. The analogous problem of placing 2k points on the surface of a

unit sphere in n dimensions is unsolved [5].

What is available in literature are bounds like the Hamming bound, Singleton

bound and Plotkin bound that provide bounds on the number of codewords of partic-

ular weights that can exist for any (n,k,dmin) linear code above a particular Hamming

distance dmin. Bounds on the cost of decoding developed using these, as well as prop-

erties of linear codes are extremely inaccurate and can lead to predicting dissipation

costs lower than what is actually possible. This is evident from Eq. (4.116), as for all

the terms that need to calculated to determine the lower bound on energy dissipation,

it is necessary to know the code structure used and not just the values of n, k, t and

e. We only obtain weak bounds using just the values of n, k and t. Hence after

exhausting possiblities of determining a bound for any (n,k,dmin) linear codes based

on the values of n, k and dmin, the focus of this work was shifted to more specific

Hamming codes.
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CHAPTER 5

SUMMARY AND CONCLUSION

With shrinking CMOS device size not being a viable option to obtaining better

computational units in terms of power and reliability, there is a need for new compu-

tational paradigms to be explored. Fault tolerance and error correction in these new

paradigms to provide high accuracy in the computation is of utmost importance, and

the energy cost the user must pay in order to do so must be thoroughly studied. In

this thesis, error correction was implemented using a linear (n,k) code, and we have

investigated the relation between the information lost during the decoding operation

performed on noisy channel outputs and the corresponding heat dissipation involved,

based on the work of Anderson in [12] and [13]. Based on these results, the thesis

had been prepared as follows.

In Chapter 1, we have asserted our motivation and the significance of our work

for the emerging technologies. In Chapter 2, we have made a brief introduction into

the basic idea of error correction codes and some important parameters involved in

them. Following this is introduction to the fundamental ideas of classical information

theory.

In Chapter 3, we have introduced physical information theory, following which de-

coherence and Landauer’s Principle has also been discussed. The referent approach

to the physical information theory and the changes in ideas to entropic and energy

forms of Landauer’s principle are stated, with the derivations from [13] shown. Also

included is the requirement and definition of computational efficacy measures intro-

duced in [13] and their relationship to the information loss.
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Chapter 4 contains a discussion of our system of interest and the formulation for

information loss during the decoding operation. We then discover the need to gen-

eralize the computational efficacy measures to provide us with the necessary tools to

characterize the decoder performance. We have followed it up with the formulation

and verification of these generalized definitions for the performance measures on an

example system. The results of the variation in fidelity and faithfulness with different

parameters were presented and effects of system indistinguishability and environmen-

tal interactions on these efficacy measures were understood. Furthermore the rela-

tionship between computational fidelity and representational faithfulness of an entire

multi-stage computation with that of the individual stages has also been derived.

With the necessary mathematical tools at our disposal, we return to the problem of

relating decoder performance to the energy dissipation. The new method of Referent

Translation method is used to calculate the information loss in the decoder and the

corresponding energy lower bounds in terms of the decoder’s performance metrics. A

formulation for general quantum system with a noisy decoder is first derived, and is

then followed up by focusing on a more special case. The results of the thesis were

then presented and analyzed. We started with the lower bounds that we have calcu-

lated for the pure state quantum system encoded using Hamming (7,4) code based

on the formulation in the previous chapter. Variation in information lost, informa-

tion saved and the associated energy dissipation in the decoder with variation in bit

flip error (e), angle θ and decoder error (f ) were calculated and studied. Regions

of diminishing returns for the linear codes were identified and a comparison between

Hamming (7,4) and Hamming (8,4) was carried out.

The approaches discussed in this thesis employ key fundamental concepts of quan-

tum mechanics, physical information theory and error-correction codes relevant to

and significant for the analysis and design of nanoscale devices for many years into

the future. The goal of this thesis has been to provide a tight lower bound on the
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energy cost the user has to pay to perform error-correction. It ties together two of

the most important problems that most nanoelectronic devices are sure to face in

heat dissipation and the presence of noise and defects. In the process, we developed

computational measures to study the efficacy of systems performing computation for

a wider range of scenarios like noisy inputs for example, which is very likely when

dealing with such systems as well as the Referent Translation method which allows us

to employ these efficacy measures. The noise could include both inherent quantum

noise, as well as external thermal noise. They can also be used to quantify the per-

formance of individual stages in a multi-stage computation. These efficacy measures

provides us with a powerful tool to study and relate how well a system implements a

logical operation and the power dissipated in doing so. This would enable us to de-

termine regions of diminishing returns in terms of performance and energy dissipated

and provide a better idea on whether a particular nanoelectronic proposal is feasible

or not.

In conclusion, the contributions of this thesis are:

• Generalization of the computational efficacy measures- computational fidelity and

representational faithfulness.

• Extension of the generalized efficacy measures to first, a two-staged logical com-

putation and then a N-staged logical computation. Derivation of the relationship

between the efficacy of the entire multi-stage computation with that of the individual

stages.

• Introduction of the Referent Translation approach to allow definition of the required

efficacy measures for the decoding problem.

• Determination of the lower bound on energy dissipation in the decoder, in terms of

its efficacy measures for a Hamming (7,4) code..

• Determination of areas of diminishing performance returns in terms of information

saved and energy dissipated in the decoder for the noisy Hamming (7,4) decoder.
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