
A Comparative Evaluation of a New

Unsupervised Sentence Boundary Detection

Approach on Documents in English and

Portuguese

Jan Strunk1, Carlos N. Silla Jr.2, and Celso A. A. Kaestner2

1 Sprachwissenschaftliches Institut, Ruhr-Universität Bochum,
44780 Bochum, Germany

strunk@linguistics.rub.de
2 Pontifical Catholic University of Paraná,

Rua Imaculada Conceição 1155, 80215-901 Curitiba, Brazil
{silla,kaestner}@ppgia.pucpr.br

Abstract. In this paper, we describe a new unsupervised sentence boun-
dary detection system and present a comparative study evaluating its
performance against different systems found in the literature that have
been used to perform the task of automatic text segmentation into sen-
tences for English and Portuguese documents. The results achieved by
this new approach were as good as those of the previous systems, es-
pecially considering that the method does not require any additional
training resources.

1 Introduction

We are living today in an era of information overload. The web alone contains
about 170 terabytes of information, which is roughly 17 times the size of the
printed material in the Library of Congress of the USA; cf. [1]. However, it is be-
coming more and more difficult to use the available information. Many problems
such as the retrieval and extraction of information and the automatic summa-
rization of texts have become important research topics in computer science. The
use of automatic tools for the treatment of information has become essential to
the user because without those tools it is virtually impossible to exploit all the
relevant information available on the Web.

One pre-processing component that is essential to most text-based systems
is the automatic segmentation of a text into sentences. Existing systems for
sentence boundary detection mostly either use a set of heuristics or a super-
vised machine learning approach. The drawback of both these approaches is
that adapting them to new languages can be time and resource intensive. In the
first case, it is necessary to adapt the rules to the new language. In the second
case, a new training corpus has to be tagged manually for retraining.

In this paper, we compare a new unsupervised approach to sentence boundary
detection by Kiss & Strunk [2] with the results of a previous evaluation of three

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/13621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


different systems on English and Portuguese documents [3] carried out by Silla
Jr. & Kaestner. The three previous systems are described in the next section.

2 Description of the Systems

2.1 RE System

The first system tested was the RE (Regular Expressions) system3 developed
by Silla Jr. & Kaestner for English; cf. [3]. It was chosen as a representative of
the fixed rules approach. The system considers the context where each possible
end-of-sentence marker occurs within the document. It uses a database of regu-
lar expressions which denote strings that contain punctuation marks but don’t
indicate the end of a sentence, like abbreviations, e-mail addresses, URLs, etc.

In order to identify sentence boundaries, the system scans the text until it
finds a period (.). It then analyzes the preceding string; if this string matches
some regular expression, the system concludes that the period is not an end-of-
sentence marker and advances to the next period. If the preceding string doesn’t
match any regular expression, the system considers the string after the period. If
it doesn’t find any matching regular expression for this string, either, it concludes
that the period indicates a sentence boundary. The procedure is repeated until
the entire document has been analyzed. The system is also able to deal with
ellipses (. . . ).

In order to adapt the system to Brazilian Portuguese, 240 new regular ex-
pressions containing abbreviations for the new language had to be added.

2.2 MxTerminator

The MxTerminator system4 was developed by Reynar and Ratnaparkhi [4] at
the University of Pennsylvania. It uses a supervised machine learning approach
called maximum entropy modelling. From a corpus in which the sentences have
been identified manually, the model learns to decide for each instance of period
(.), exclamation mark (!) and question mark (?) whether it marks the end of a
sentence or not.

The training process is robust and doesn’t require any additional linguistic
information. During training, the system learns probabilistic contextual features
from the training corpus that can be used to identify sentence boundaries with
high accuracy, such as e.g. the prefix and suffix occurring around a potential
sentence boundary symbol, the preceding and following word, capitalization in-
formation, etc. It also induces a list of abbreviations from the training corpus
by considering as an abbreviation every token in the training set that contains
a possible end-of-sentence symbol but does not indicate a sentence boundary.

The system then uses the contextual features and the abbreviation list learned
during training to calculate the probability that a possible end-of-sentence marker
in a test corpus indeed indicates a sentence boundary or not.

3 Available from: http://www.ppgia.pucpr.br/∼silla/softwares/yasd.zip.
4 Available from: ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz.



The procedure to adapt MxTerminator to Brazilian Portuguese was quite
simple because the system only requires a text file of any size that must contain
one sentence per line as training corpus.

2.3 Satz

The Satz system5 was developed by Palmer and Hearst [5] at the University of
California in Berkeley. It is a supervised approach that uses estimates of the
part-of-speech distribution of the words surrounding potential end-of-sentence
punctuation marks as input to a machine learning algorithm. The part-of-speech
information is derived from a lexicon that contains part-of-speech frequency data.
In case a word is not in the lexicon, a part-of-speech distribution is estimated by
different guessing heuristics. In addition, Satz also uses an abbreviation list and
capitalization information. After training the system on a small training and a
small cross-validation corpus, it can then be used on new documents to detect
sentence boundaries. The system can work with any kind of machine learning
approach in principle. Palmer & Hearst’s original results [5] were obtained using
neural networks and the C4.5 decision tree classifier.

For our own evaluation reported in section 4 we employed a re-implementation
of the Satz system in Java by Silla Jr. & Kaestner, which uses J4.8 – a Java
version of the C4.5 decision tree induction algorithm. The system had to be re-
implemented because of problems with accented characters in Portuguese which
had occurred with the original version. However, this re-implementation alone
was not enough to adapt the system. Silla Jr. & Kaestner also had to create a
small training corpus and a new lexicon with part-of-speech information.

3 The Unsupervised System by Kiss & Strunk

The unsupervised system by Kiss & Strunk (subsequently abbreviated as KS)6

combines type-based and token-based classification7 in a two-stage approach. It
only has to be supplied with the test corpus and does not need further training
data, a lexicon, or a list of abbreviations. Instead it uses the test corpus itself
as a training corpus on the fly. The system is multilingual in the sense that it is
supposed to work for all languages with an alphabetic script in which the period
is used to mark both abbreviations and sentence boundaries.

Sentence boundary disambiguation lends itself to a two-stage approach com-
bining type-based and token-based classifiers because in many languages the
token-final period (.), the most frequently used sentence boundary marker, is
ambiguous in the following way: It can either indicate an abbreviation, a sen-
tence boundary, or an abbreviation at the end of a sentence in which case the

5 Available from: http://elib.cs.berkeley.edu/src/satz/
6 The KS system is based on an earlier system described in [6] and [7].
7 We define a classifier as type-based if it uses global evidence, e.g. the distribution of

a type in a corpus, to classify a type as a whole. In contrast, a token-based classifier
determines a class for each individual token based on its local context.



period performs a double duty as abbreviation and sentence boundary marker
at the same time; cf. [8]. Similar facts hold for ellipses (. . . ), a combination of
three or more periods that are used to indicate an omission or an omission fol-
lowed by a sentence boundary in which case the sentence boundary period is also
normally haplologically omitted. Abbreviations can be detected very well with
a type-based classifier because abbreviations are a (productive) class of lexical
items, i.e. all instances of abbreviation types such as e.g. or etc. are abbreviations
regardless of what context they occur in as individual tokens. Moreover, any peri-
ods that follow instances of types that have been identified as non-abbreviations
by the type-based classifier can safely be classified as sentence boundary markers:
If we know that a token with a final period is an ordinary word and not an ab-
breviation, it is clear that the period following it is a sentence boundary marker.
The first stage of the KS system therefore consists of a type-based classifier that
separates all word types in the test corpus into the three classes: abbreviation,
ellipsis, and ordinary word. Most sentence boundaries are already detected by
this type-based first stage. It is described in section 3.1.

The token-based second stage of the KS system improves on the initial classi-
fication of the periods in the test corpus performed by the type-based first stage.
It re-examines the initial annotation and reclassifies certain cases that can only
be decided by token-based classification in principle or present difficulties for
the type-based classifier. Whether an abbreviations or an ellipsis is followed by
a sentence boundary cannot be decided by a type-based algorithm at all because
instances of one and the same abbreviation type – such as the English etc. –
can be followed by a sentence boundary in one case and occur in the middle of
a sentence in another case. The token-based stage therefore decides for all ab-
breviation and ellipsis tokens in the test corpus whether they precede a sentence
boundary or not. In addition, the token-based stage is also used to correct the
initial classification for certain subclasses of abbreviations, namely initials – such
as in J. Bond – and ordinal numbers – such as in the German example 3. März

(“third of March”), which are less amenable to a type-based approach because
of problems with homography. The token-based second stage of the KS system
is described in section 3.2.

3.1 Initial Type-Based Classification

The type-based classification of the KS system is based on the task of abbrevi-
ation detection. By finding all abbreviation types in a test corpus, the system
is also able to detect a large portion of the sentence boundaries in the corpus
by classifying all periods following non-abbreviation types as sentence bound-
ary markers. Kiss & Strunk assume that abbreviation detection is a manageable
subproblem of sentence boundary detection and may also be useful in itself in
that dynamically generated lists of abbreviations could be used in subsequent
natural language processing tasks.

In their approach, Kiss & Strunk concentrate on the following three charac-
teristics of typical abbreviations:



1. Strong collocational dependence: Abbreviations always occur with a final pe-
riod.8

2. Brevity: Abbreviations tend to be short.

3. Internal periods: Many abbreviations contain additional internal periods.

As these three characteristics do not change for each individual instance of a
type, they can be combined in a type-based approach to abbreviation detection.

The criterion of strong collocational dependence expresses the intuition that
an abbreviation and the final period marking it as such form a tight unit in that
an ordinary abbreviation should never occur without a following period. Kiss &
Strunk implement this intuition using a modification of Dunning’s log-likelihood
ratio for collocation detection described in [9]. They use a log-likelihood ratio to
compare the probabilities of the following two hypotheses: The null hypothesis
H0 shown in (1) assumes that a type w is not an abbreviation and that therefore
the probability of a period occurring after this type is equal to the unconditional
probability of occurrence of the period.9

Null hypothesis H0: P (•|w) = PMLE(•) =
count(•)

N
(1)

The alternative hypothesis assumes that the type w in question is indeed an
abbreviation and therefore (almost) always occurs with a following period. The
conditional probability of a period given w is therefore taken to be 0.99, i.e.
almost one, cf. equation (2).

Alternative hypothesis HA: P (•|w) = 0.99 (2)

The KS system uses the actual number of occurrences of each type in the test
corpus with and without a following period to calculate the probabilities for
the two hypotheses with the binomial distribution. The two probabilities are
compared using the formula in (3).

log λ = −2 log
Pbinom(H0)

Pbinom(HA)
(3)

The list of candidate types is sorted according to the calculated log-likelihood
values. A type with a higher log λ value is more likely to be an abbreviation
according to the criterion of strong collocational dependence than all types with
lower values. The left half of Table 1 shows a section of this sorted list from

8 If abbreviations do not have to occur with a final period in a certain language or
certain types of abbreviations do not have to, the problem of deciding between the
end-of-sentence marker and the abbreviation marker does not occur in this language
or for these types of abbreviations.

9 MLE stands for maximum likelihood estimation. N is the number of tokens in the
test corpus.



an English test corpus. Some true abbreviations in this table are either ranked
lower than non-abbreviations (written in italics) or receive the same log λ values
as non-abbreviations. The criterion of strong collocational dependence alone is
thus not sufficient to separate abbreviations from non-abbreviations.

Table 1. Candidate list from an English test corpus

Candidate type count(w, •) count(w, ¬•) Original log λ Final sorting Final log λ

n.h 5 0 28.08 n.h 7.60

u.s.a 5 0 28.08 a.g 6.08

alex 8 2 26.75 m.j 4.56

ounces 4 0 22.46 u.n 4.56

a.g 4 0 22.46 u.s.a 4.19

ga 4 0 22.46 ga 3.04

vt 4 0 22.46 vt 3.04

ore 5 1 18.99 ore 0.32

1990s 5 1 18.99 reps 0.31

mo 8 3 17.67 mo 0.30

m.j 3 0 16.85 1990s 0.26

depositor 3 0 16.85 ounces 0.06

reps 3 0 16.85 alex 0.03

u.n 3 0 16.85 depositor 0.00

The calculated log-likelihood values are therefore taken as a starting point
and multiplied with additional factors to obtain an improved sorting of the
candidate types. Table 1 confirms that abbreviations tend to be rather short.
The factor Flength in (4) expresses this intuition and gives an exponentially
growing penalty to longer candidate types.

Flength =
1

elength(w)
(4)

Kiss & Strunk define length(w) as the length of candidate type w minus the
number of internal periods in w because internal periods are actually good evi-
dence in favor of a classification as abbreviation and should not lead to a higher
penalty by the length factor. Instead, the KS system rewards internal periods
with the factor given in (5).

Fperiod = number of internal periods + 1 (5)

The scaled log-likelihood ratio proposed by Kiss & Strunk has the advantage
that it makes abbreviation detection more robust. The algorithm does not ex-
clude a candidate from being classified as an abbreviation just because it has
occurred without a final period once or twice in the whole corpus when there
is otherwise good evidence that it is a true abbreviation. For most languages,
this increased robustness is unproblematic because almost all ordinary words oc-
cur without a period a sufficient number of times. However, for some languages



the log-likelihood ratio in (3) is not restrictive enough. One example are verb-
final languages – such as Turkish – where certain very common verbs happen
to appear at the end of a sentence most of the time. In such a case, the scaled
log-likelihood ratio described so far runs into difficulties because it mistakes the
occurrences of these verbs without a period as exceptions. To remedy this prob-
lem, the calculated log λ values are additionally multiplied by a third factor that
penalizes occurrences without a final period exponentially, cf. equation (6).

Fpenalty =
1

length(w)count(w,¬•)
(6)

In order to perform the classification into abbreviations and non-abbreviations,
the calculated log λ values for all candidate types are multiplied with all three
factors. The resulting final values are then compared with a threshold value.
All candidates that attain a value greater or equal to the threshold value are
classified as abbreviation types all others as non-abbreviation types, cf. (7).

For each w :
If log λ(w)×Flength×Fperiods×Fpenalty≥0.3 → w is an abbreviation.
If log λ(w)×Flength×Fperiods×Fpenalty<0.3 → w is not an abbreviation.

(7)

The threshold value 0.3 has been determined experimentally by looking at the
sorted list of candidates extracted from a development corpus which was built
from a 10 MB part of the Wall Street Journal corpus of American English. Kiss &
Strunk assume that the threshold value will not vary much for different languages
and corpora and the value 0.3 can thus be used on new corpora and languages
without the need for additional manual experiments.10 The scaling factors have
also been derived in experiments measuring their effect on the goodness of the
sorting of the candidate list.

The last two columns in Table 1 show the final scaled log λ values of the can-
didates and the resulting sorting. Multiplication with the three factors has led to
a cleaner separation of the candidates into abbreviations and non-abbreviations.

3.2 Token-Based Reclassification

In the token-based reclassification stage of the KS system, all tokens with a
final period are re-examined and possibly reclassified. The evidence for this
reclassification comes from the immediate right context of the period that is
re-examined.11

The token-based stage treats different classes of candidates such as abbre-
viations, ellipses, initials, and ordinal numbers in different ways. However, the
reclassification of all the different classes involves the same kinds of evidence
combined in slightly different ways.

10 This view is confirmed by a more detailed evaluation in [2].
11 If the next token following the period is separated from it by empty lines, up to

three new line tokens are ignored, i.e. etc. \n \n This is treated as etc. This.



One type of evidence that is usually taken to be very fundamental for sentence
boundary detection, namely capitalization, is only used as secondary evidence
during reclassification in the KS system. Moreover, the orthographic decision
heuristic used is quite cautious, which makes the system very robust against
capitalization errors and enables it to process single-case corpora with almost
the same accuracy as mixed-case corpora; cf. [2]. As data for the orthographic
decision heuristic, the capitalization behavior of all types in the test corpus is
recorded. For each type, it is counted how often it occurs with an uppercase first
letter and how often with a lowercase first letter. Moreover, it is also determined
on the basis of the initial annotation from the first stage how often every type
occurs upper- and lowercased after a sure sentence boundary12 and within a sen-
tence. The following is the pseudo-code for the orthographic decision heuristic:

function DECIDE_ORTHOGRAPHIC (TOKEN):

if TOKEN has uppercase first letter:

if TOKEN ever occurs with lowercase first letter:

if TOKEN never occurs with uppercase first letter

sentence internally:

Return sentence_boundary

else

Return undecided

else

Return undecided

else if TOKEN has lowercase first letter:

if (TOKEN ever occurs with uppercase first letter)

or (never occurs with lowercase first letter after

a sentence boundary):

Return no_sentence_boundary

else

Return undecided

The orthographic decision heuristic is especially cautious in two cases: First, if
a type also occurs with an uppercase first letter within a sentence, as is usually
the case with proper names, it is no longer counted as evidence for a preceding
sentence boundary if an instance of this type follows a period. Second, if a
type also occurs in lower case after a sure sentence boundary, it might be a
mathematical symbol or a special word such as amnesty international that is
always written with a lowercase first letter. This type is then no longer counted
as evidence against a sentence boundary if it follows a period.13

The second type of evidence that the system relies on during the token-based
stage is collocational data. It is often assumed that there are no strong local
dependencies between the end of one and the beginning of the following sentence;
cf. e.g. page 195 in [10]. If there is a strong collocational dependence between two

12 This means all periods following a type classified as an ordinary word that is longer
than one letter, i.e. no possible initial, and is not a number written in digits.

13 This also enables the KS system to classify all-lowercase corpora without bad reclas-
sification by the orthographic decision heuristic.



types – such as e.g. between an initial and a following last name – this is good
evidence against an intervening sentence boundary. The KS system therefore
employs the standard log-likelihood ratio for collocation detection described in
[9] to calculate the dependence between two types.14 If the log-likelihood ratio
yields a value greater or equal to 7.88, the two types are considered as collocates
and as evidence against an intervening sentence boundary.15

However, collocational data is also used as evidence in favor of a sentence
boundary. For this purpose, the collocational dependence between every type in
the test corpus and the abstract type preceding sentence boundary is calculated
in order to generate a list of frequent sentence starters on the fly. The counts
used in these calculations are based on all clear sentence boundaries detected
by the type-based first stage. All types for which Dunning’s log-likelihood ratio
yields a value of at least 30 are considered as frequent sentence starters and
regarded as evidence for a sentence boundary if they occur after a period and
are written with an uppercase first letter.16

The main question for all tokens classified as abbreviations by the type-
based first stage and all ellipses is whether they precede a sentence boundary. A
sentence boundary after these two classes of candidate tokens is assumed by the
KS system if the orthographic decision heuristic decides in favor of a sentence
boundary or the token following the period is a capitalized frequent sentence
starter. However, only abbreviations that are longer than one letter and thus
not possibly initials are reclassified in this way. Initials present special problems
and are therefore reclassified differently.

Initials are a subclass of abbreviations consisting of a single letter followed
by a period. As there are only about thirty different letters in the average Latin-
derived alphabet, the likelihood of being a homograph of a non-abbreviation
is very high for initials, consider e.g. the Portuguese articles o and a or the
Swedish preposition i. Initials are therefore often not detected by the type-based
first stage of the KS system. For this reason, every single letter followed by a
token-final period is treated as a possible initial during the token-based reclas-
sification – regardless of whether it has been classified as an abbreviation or not
by the type-based stage. Luckily, initials are very often part of a complex name
and can be identified using collocational evidence. If a possible initial forms a
collocation with the following token and the following token is not a frequent
sentence starter, the period in between is reclassified as an abbreviation marker.
Alternatively, if the orthographic decision heuristic decides against a sentence
boundary on the basis of the token following the possible initial, the period is
also reclassified as an abbreviation period. Last but not least, if the orthographic

decision heuristic returns undecided and the type following the possible initial
always occurs with an uppercase first letter, it is assumed to be a name and the
period between the two tokens is again classified as an abbreviation marker.

14 All numbers written in digits are folded into one abstract type ##number##.
15 This value was chosen because it represents a confidence degree of 99.95 % according

to the χ2 distribution and worked well on our English development corpus.
16 The threshold value 30 was determined experimentally on our development corpus.



In many languages such as e.g. German, ordinal numbers written in digits
are also marked by a token-final period. However, as every numeric type can also
be used as a cardinal number, it cannot be decided by a type-based algorithm
whether a period after a number is an abbreviation period or a sentence boundary
marker. Numbers are therefore treated in the same way as initials. If the token
following a number with a final period forms a collocation with the abstract type
##number## and is not a frequent sentence starter, the period in between
is classified as an abbreviation marker. The same conclusion is reached if the
orthographic decision heuristic decides against a sentence boundary. In other
languages such as English and Portuguese on which we did the evaluation for
this paper, ordinal numbers are usually not marked with a period. For these
languages, the detection of ordinal numbers can be turned off. The results of
the test runs of the KS system reported in section 4 were determined with the
detection of ordinal numbers switched off. As the detection of ordinal numbers
is a major feature of the KS system we have described it here nonetheless.

4 Experiments and Results

The RE system, MxTerminator, and Satz had already been evaluated by Silla
Jr. & Kaestner in a previous comparative study [3] on English and Portuguese
documents. For the current paper, we have used the same two test corpora in
English and Portuguese to evaluate the unsupervised system by Kiss & Strunk.
This allows for a direct comparison of the performance of all four systems.17

In order to perform the experiments, each of the test documents had its
sentence boundaries tagged manually. The different systems were then run on
these test documents and the resulting annotation was compared to the reference
annotation. We use the following performance measures: Precision is calculated
as the percentage of correctly classified sentence boundaries, i.e. the number
of sentence boundaries correctly identified divided by the number of sentence
boundaries identified. Recall indicates the percentage of sentence boundaries
present in the document that were actually found by a particular system, i.e. the
number of sentence boundaries correctly identified divided by the number of
sentence boundaries present in the reference annotation. The f-measure combines
precision and recall in a single metric: the harmonic mean. As an indication of
the difficulty of the sentence boundary detection task on the two test corpora,
we compare the results of the four systems with a simple baseline, which assumes
that every token-final period indicates a sentence boundary.

As the test corpus for English, we used part of the TIPSTER document
collection from the Text Retrieval Conference, which contains articles from the
Wall Street Journal (TREC reference number: WSJ-910130). This corpus com-
prises 156 documents of different sizes, totaling 3,554 sentences. We performed
two different test runs with the unsupervised system by Kiss & Strunk: For the
first one, we used the individual files containing the WSJ articles; for the second

17 Kiss & Strunk have carried out a more extensive evaluation of their system on further
languages and genres which is reported in [2].



one, we provided the system with all articles pasted together in a single file. This
was necessary to ensure a fair comparison between the different systems because
the KS system does not use any additional training data but instead learns from
the test corpus on the fly. When the test corpora used are very small, the KS
system is likely to suffer from data sparseness.18

Table 2 shows the results achieved on the English test corpus by the four
systems. When the KS system is run on the corpus as a single file, it produces
only slightly worse results than Satz – a supervised system which uses a language
specific lexicon and abbreviation list – and the RE system – which has been
specifically tailored to English newspaper texts – and it is even slightly better
than MxTerminator – a more straightforward machine learning system. When
the KS system is tested on the individual WSJ articles, which sometimes contain
less than ten sentences, performance drops considerably due to data-sparseness
but is still much better than the baseline.

Table 2. Results on the TIPSTER document collection (English)

System Precision Recall F-Measure

Baseline 30,29 % 50,61 % 37,89 %
KS (individual files) 80,43 % 83,40 % 81,88 %
MxTerminator 91,19 % 91,25 % 91,22 %
KS (single file) 90,70 % 92,34 % 91,51 %
RE 92,39 % 91,18 % 91,78 %
Satz 98,67 % 85,98 % 91,88 %

For Portuguese, we used the Lacio-Web Corpus [11], which contains 21,822
sentences in all. The systems were tested on this corpus using 10-fold cross-
validation. The results achieved are presented in Table 3.

Table 3. Results on the Lacio-Web document collection (Portuguese)

System Precision Recall F-Measure

Baseline 85,40 % 92,25 % 88,69 %
RE 91,80 % 88,02 % 89,87 %
MxTerminator 96,31 % 96,63 % 96,46 %
KS 97,58 % 96,87 % 97,22 %
Satz 99,59 % 98,74 % 99,16 %

The results of the KS system on Portuguese are better than those of Mx-
Terminator and the RE system. The KS system is only second to Satz. It has
to be kept in mind, however, that Satz, MxTerminator, and the RE system had

18 This could be remedied by equipping the KS system with a kind of memory function,
so that it is able to remember data from previous test runs.



to be customized before applying them to the Portuguese corpus, while the KS
system was used as is both for English and Portuguese.

5 Conclusions

We have described an unsupervised approach to sentence boundary detection
developed by Kiss & Strunk and have presented the results of a comparative
evaluation of this approach and three earlier systems – the RE system, MxTer-
minator, and Satz – on English and Portuguese corpora. We conclude that the
unsupervised approach can be very useful since it can be used out of the box for
new languages and genres, while the supervised or rule-based approaches have
to be adapted by hand or need retraining, which requires resources that are not
always available. Moreover, the performance of the unsupervised KS system is
only slightly worse and sometimes even better than that of the other systems.

Acknowledgments

We would like to thank Adwait Ratnaparkhi for sending us the MxTerminator
system, and Marti A. Hearst for providing the original files used by Satz.

References

1. Lyman, P., Varian, H.R.: How much information. Retrieved from
http://www.sims.berkeley.edu/how-much-info-2003 on [01/19/2004] (2003)

2. Kiss, T., Strunk, J.: Multilingual unsupervised sentence boundary detection.
http://www.linguistics.rub.de/∼strunk/ks2005FINAL.pdf (Under Review)

3. Silla Jr., C.N., Kaestner, C.A.A.: An analysis of sentence boundary detection
systems for English and Portuguese documents. In Gelbukh, A., ed.: Computa-
tional Linguistics and Intelligent Text Processing. Volume 2945 of Lecture Notes
in Computer Science, CAU, Seoul, Korea, Springer Verlag (2004) 135–141

4. Reynar, J., Ratnaparkhi, A.: A maximum entropy approach to identifying sentence
boundaries. In: Proceedings of the Fifth Conference on Applied Natural Language
Processing. (1997) 16–19

5. Palmer, D.D., Hearst, M.A.: Adaptive multilingual sentence boundary disambigua-
tion. Computational Linguistics 23/2 (1997) 241–267

6. Kiss, T., Strunk, J.: Scaled log likelihood ratios for the detection of abbreviations
in text corpora, Proceedings of COLING 2002, Taipei (2002) 1228–1232

7. Kiss, T., Strunk, J.: Viewing sentence boundary detection as collocation identifi-
cation, Proceedings of KONVENS 2002, Saarbrücken (2002) 75–82

8. Nunberg, G.: The Linguistics of Punctuation. CSLI Lecture Notes Number 18.
Center for the Study of Language and Information, Stanford, California (1990)

9. Dunning, T.: Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics 19/1 (1993) 61–74

10. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press, Cambridge/London (1999)

11. Aluisio, S.M., Pinheiro, G.M., Finger, M., Nunes, M.G.V., Tagnin, S.E.: The Lacio-
Web Project: Overview and issues in Brazilian Portuguese corpora creation. In:
Proceedings of Corpus Linguistics 2003. (2003) 14–21


