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ABSTRACT

TRANSMISSION-LINE METAMATERIAL DESIGN OF AN

EMBEDDED LINE SOURCE IN A GROUND RECESS

MAY 2011

CAGLAR D. EMIROGLU

B.Sc., MIDDLE EAST TECHNICAL UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Do-Hoon Kwon

A transmission-line metamaterial design of a material-embedded electric line source

radiating inside a ground recess is investigated. The media embedding the recessed line

source are designed such that the embedded current creates the same radiation pattern as a

line source over a flat conducting ground plane. Transmission-line metamaterial unit cell

designs for the embedding media obtained from the transformation electromagnetics design

technique are shown. The metamaterial design of the overall embedded source configura-

tion is numerically tested using circuit simulations. It is shown that the embedded-source

design creates the same radiation characteristics as the line source above a flat ground plane

at the design frequency.
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CHAPTER 1

INTRODUCTION

Metamaterials are artificial structures that can be constructed to have unconventional

electromagnetic properties which may not be commonly found in nature. They are designed

to interact with and control electromagnetic waves. Unusual properties of metamaterials

have allowed novel applications, concepts and devices.

This thesis work presents a transmission-line (TL) metamaterial design of an embedded

line source radiating inside a ground recess. The media embedding the recessed line source

is designed such that the embedded current yields the same far-field radiation characteristics

as a line source over a flat conducting ground plane. In this chapter, the background needed

to understand the purpose of the project and the motivation for studying this problem are

presented. The material properties of the embedding media are presented in Chapter 2.

In Chapter 3, the non-orthogonal transmission line unit cell structure is introduced and

its characteristics are numerically demonstrated. Two-dimensional (2D) TL metamaterial

design is discussed in Chapter 4 along with the periodic unit cells. The overall embedded

source configuration is numerically tested using circuit simulations and numerical analysis

results are presented in Chapter 5.

1.1 Background

The transformation optics/electromagnetics technique [1] allows designing novel elec-

tromagnetic and optical devices that feature unconventional wave-material interaction prop-

erties. The theory is based on the form-invariant nature of Maxwell’s equations under

spatial coordinate transformations [2]. Utilizing this method, various device designs have

1



been introduced following the invisibility cloak proposed in [1] and [3]. Embedded trans-

formations were introduced in [4], generalizing the technique to coordinate transformations

possessing discontinuities along device boundaries. Overviews of the coordinate transfor-

mation based device designs are available in [5, 6]. In addition, a negative-index material

(NIM) superlens or the “perfect lens” [7] was interpreted in [8] as a device that realizes a

coordinate transformation involving a negative slope between coordinates.

Similar to the change in the material parameters as a result of a coordinate transfor-

mation in space, a change in the source distribution results with a transformation on a

volume containing sources. The behavior of line sources and surface currents under coor-

dinate transformations were investigated in [9]. In [10–12], source transformations were

applied to different array structures. In [13], a material-embedded monopole antenna inside

a ground recess was designed such that the embedded antenna creates the same far-zone

radiation pattern as the same monopole placed over a flat conducting ground plane. The

embedded configuration is flush with the surrounding ground plane and there is no physical

structure above the ground plane. It is capable of radiating vertically polarized fields with

a pattern maximum in the horizon on the ground plane.

1.2 Motivation

The 2D TL metamaterial design approach [14, 15] has been useful in realizing coordi-

nate transformation based designs. The theory is a widely used analysis and design tool for

conventional right/left-handed metamaterials which can be realized using loaded coaxial

or microstrip lines. In [16], the TL approach was used to design and simulate a cylindrical

invisibility cloak. Loaded TL networks constructed with lumped elements were utilized

for the simulation. In [17], a method for designing TL metamaterials with arbitrary mate-

rial tensors was proposed. A TL unit cell topology that can represent full-tensor material

parameters was presented and demonstrated. In contrast, this study utilizes a different unit-

cell topology based on the coordinate transformation technique. The topology uses the

2



skewness of a unit cell’s branches instead of adding additional branches intersecting at a

node. This topology enables a direct extension to a three-dimensional (3D) adaptation of

the implementation.

In this study, a TL metamaterial design for the 2D version of the material-embedded

antenna introduced in [13] is investigated. A coordinate transformation maps a 2D line

source above a flat ground plane into one embedded in transformation-derived media inside

a ground recess such that the embedded-recessed line source has the same far-field radiation

characteristics as the original configuration. The TL metamaterial design method is utilized

to obtain a 2D circuit network for lumped circuit implementations.

Cavity-backed antennas have been widely used and analyzed in the past, and numerous

studies have been reported in the literature. A cavity-backed spiral antenna design was

presented in [18]. In [19–21], characteristics of several cavity-backed slot antenna designs

were investigated. In practical applications, one of the drawbacks of slot antennas is the

bidirectional radiation characteristic. In [22,23], a cavity was used to eliminate the backside

radiation of slot antennas. In contrast, in this study, it is targeted to embed a line source

inside a recess below the ground plane, without distorting the far-field radiation pattern. In

other words, the recess serves as a nest for the embedding media and the line source.

Motivation of the overall research is to design a material-embedded monopole antenna

that radiates vertically polarized fields with a pattern maximum in the horizon on the ground

plane, as numerically investigated in [13]. This configuration will be completely flush with

the surrounding ground plane, having no physical component above it. This advantage of

the setup will be more significant when low profile antennas are needed at low frequencies,

where antenna dimensions are physically large.

This thesis work is the first step towards the objective, where a design of the 2D TL

metamaterial radiation configuration is investigated to validate the approach. Future work

includes an extension of the embedded line source configuration from the TL metamaterial

3



design to a resonator-based counterpart. Then, design and implementation of the embedded

3D monopole setup using resonant inclusion-based metamaterials will be the next step.
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CHAPTER 2

EMBEDDED LINE SOURCE DESIGN BASED ON COORDINATE

TRANSFORMATION

In this chapter, coordinate transformation design of the problem will be presented. Ma-

terial parameters of the embedding media are calculated.

Consider a 2D line source along +ẑ direction radiating at (x, y) = (0, s) in free space

above a perfectly conducting x − z ground plane in the Cartesian (x, y, z) coordinate system

as shown in Figure 2.1(a). It is desired that a line source and embedding media be arranged

inside a ground recess, such that the new arrangement has the same far-zone radiation

pattern as the original configuration at the operating frequency. The resulting radiation

configuration is completely flush with the surrounding ground plane and there is no physical

structure above the x − z plane. This is a 2D variant of the coordinate transformation

design of an embedded monopole in a ground recess [13]. Figure 2.1(b) depicts the desired

configuration.

A coordinate transformation from the original (virtual) to the transformed (physical)

systems specifies the material parameter values of the embedding region. We choose to

transform only the coordinate normal to the ground plane; the region bounded by the

dashed contour and the ground plane in Figure 2.1(a) is folded below the ground plane

in Figure 2.1(b). The transformation from y to y′ is kept continuous along y′ = 0 to ensure

the interface reflectionless. The following transformation can be defined:

5



A 1

A 2 A 3

f(x)

ground

a

(a)

(b)

O

g(x’)

p(x’)

Conducting

Line source

h

c−a a

O

−t

−d

x’

x

y

y’

−a c−c

−c

A 4

A 5

Figure 2.1. The coordinate transformation between the original (virtual) and embedded

(physical) radiation configurations. (a) Original configuration. (b) Embedded configura-

tion.

x = x′, z = z′,

y =































y′, y′ ≥ 0

f(x)
p(x′)

y′, p(x′) ≤ y′ < 0

f(x)
p(x′)−g(x′)

[y′ − g(x′)], g(x′) ≤ y′ < p(x′)

. (2.1)

One first finds the Jacobian matrix of the transformation A = ∂(x′, y′, z′)/∂(x, y, z) and

then computes the relative permittivity and permeability tensors from A for regions A1,

A2, A3 and A4 [24]. In Cartesian bases, non-zero elements of 3× 3 tensors are found to be

µ′

x′x′ = ǫ′z′z′ =
h

d − t
, µ′

y′y′ =
d − t

h
in A1, (2.2)

µ′

x′x′ = ǫ′z′z′ =
h

d − t
, µ′

x′y′ = µ′

y′x′ =
hd

(a − c)(d − t)
,
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µ′

y′y′ =
d − t

h
+

hd2

(c − a)2(d − t)
in A2, (2.3)

µ′

x′x′ = ǫ′z′z′ =
h

d − t
, µ′

x′y′ = µ′

y′x′ =
hd

(c − a)(d − t)
,

µ′

y′y′ =
d − t

h
+

hd2

(c − a)2(d − t)
in A3, (2.4)

µ′

x′x′ = ǫ′z′z′ = − h

t
, µ′

y′y′ = − t

h
in A4. (2.5)

We now remove primes in (2.2)–(2.5) to interpret them as medium parameters in the origi-

nal space.

Of particular interest is the choice h = t = d/2, with which A1 and A4 become isotropic

media, A1 is free space and A4 is a negative-index material (NIM) with ǫ = µ = − 1.

For the lateral dimension, choosing a = c/2 = d, yields following anisotropic tensor

parameters:

ǫ = µ =













1 ∓1 0

∓1 2 0

0 0 1













(2.6)

for the remaining regions A2 and A3. It is noted that all constituent blocks A1, A2, A3, and

A4 are homogeneous. The free space region in y > 0 is denoted as A5.

The radiation characteristics of an embedded line source are numerically investigated

using COMSOL Multiphysics which is a commercial full-wave analysis tool based on

the finite-element technique. At the design frequency, a line source along the +ẑ direc-

tion is placed λ0/4 above the ground plane at (x, y) = (0, 0.25λ0) for the original and

at (0, − 0.75λ0) for the embedded configurations. Dimensional parameters of the ground

recess were chosen to be a = d = c/2 = 2h = 2t = λ0. Snapshots of the electric field

distributions are compared in Figure 2.2 for two configurations. It can be observed that the
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same field distribution is reproduced away from the immediate neighborhood of the bound-

ary at y = 0. The high field values along the horizontal NIM boundaries are associated with

surface-mode plasmon resonances.

In principle, the design relies on the same physics as a NIM superlens [7], with two ma-

jor distinctions. First, the horizontal dimension of the NIM lens is finite and the associated

truncation effect is compensated by the impedance-matching regions A2 and A3. Second,

no extreme accuracy is required for the effective medium parameters in practical antenna

applications [13], unlike in the sub-diffraction-limit near-field lensing applications [25].

In comparison, we consider an embedded line source inside a rectangular ground recess

in order to stress the function of the impedance-matching regions. This configuration is

shown in Figure 2.3(a), where a line source is placed at (x, y) = (0, − 0.75λ0). Dimensional

parameters for the recess are chosen to be a = d = 2t = λ0. The NIM slab with ǫ = µ =

− 1 is present between y = 0 and y = − 0.5λ0. A snapshot of the electric field distribution

is provided in Figure 2.3(b). This distribution clearly shows significant distortion compared

to Figure 2.2(b) due to the truncation effect associated to the finite horizontal dimension of

the NIM lens region.
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CHAPTER 3

NON-ORTHOGONAL GRIDS IN 2D TL METAMATERIALS

The 2D effective medium design in Chapter 2 can be implemented in TL metamateri-

als using periodic unit cells. Several design approaches have been reported regarding the

implementation of regions that possess anisotropic material parameters. This chapter sum-

marizes the design of non-orthogonal TL metamaterial grid unit cell introduced in [26] for

realizing arbitrary full-tensor medium parameters.

3.1 The Non-Orthogonal Grid Unit Cell

The shunt node configuration for 2D TL networks is used to model 2D electromag-

netic fields in the TE polarization [27]. A non-orthogonal grid TL metamaterial unit cell

is illustrated in Figure 3.1. Total series impedances along the two branches are Z1 and Z2,

and a shunt admittance Y is connected between the junction of the series branches and

the ground as shown in Figure 3.1. Voltages and currents at the four nodes are also indi-

cated. The advantage of this unit cell over the conventional unit cell approaches [14] is that

both branches are allowed to run in fixed, but arbitrary directions. In the non-orthogonal

(q1, q2, q3) coordinate system shown in Figure 3.2, q1 and q2 axes are aligned with the series

branches. The unit vector sets q̂1, q̂2, q̂3 built along the coordinate axes and q̂1, q̂2, q̂3 built

normal to coordinate surfaces are also defined, where q̂3 = q̂3 = ẑ. The lengths of the

series branches are p1 and p2, and the height of the shunt branch is p3. The geometrical

arrangement of immittances constitutes a non-orthogonal grid unit cell or a parallelogram

unit cell as indicated with a dashed-line in Figure 3.2.
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Figure 3.1. A perspective view of the non-orthogonal grid TL metamaterial unit cell.
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Figure 3.2. Top view of the non-orthogonal grid TL metamaterial unit cell.

The effective medium parameters represented by the non-orthogonal unit cell can be

found by establishing an isomorphism between Kirchoff’s circuital laws and 2D Maxwell’s

equations in the TE polarization. In the limit p1, p2 → 0, application of Kirchoff’s voltage

law along the two branches gives

∂V

∂q1
= − (q̂3 · q̂1 × q̂2)Z

′

1

(

I1
p2

)

, (3.1)

∂V

∂q2
= − (q̂3 · q̂1 × q̂2)Z

′

2

(

I2
p1

)

. (3.2)
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Kirchoff’s current law applied at the junction results in

∂

∂q1

(

I1
p2

)

+
∂

∂q2

(

I2
p1

)

= − (q̂3 · q̂1 × q̂2)Y
′V. (3.3)

Primed immittances in (3.1)–(3.3) are per-unit-length quantities of the unprimed coun-

terparts for the medium being modeled. For TE-polarized 2D electromagnetic fields E

(E3 = q̂3 ·E) and H (H1 = q̂1 ·H, H2 = q̂2 ·H), the source-free time-harmonic Maxwell’s

equations written in the (q1, q2, q3) system take the same form as in the Cartesian system,

i.e.

∇× E = − jωµ0µH, (3.4)

∇×H = jωǫ0ǫE, (3.5)

due to the form-invariant nature of Maxwell’s equations [2]. In (3.4)–(3.5), µ and ǫ are

permeability and permittivity sensors relative to free space. The network equations (3.1)–

(3.3) and Maxwell’s equations (3.4)–(3.5) are isomorphic with the following substitutions

E3 → − V

p3
, H1 → − I2

p1
, H2 →

I1
p2

(3.6)

for field quantities and

ǫ → q̂3q̂3
q̂3 · q̂1 × q̂2

jωǫ0
Y ′, (3.7)

µ → q̂3 · q̂1 × q̂2
jωµ0

(q̂1q̂1Z
′

2 + q̂2q̂2Z
′

1) (3.8)

for medium parameters. Therefore, expressed in the (q1, q2, q3) system, the effective medium

parameters represented by the non-orthogonal grid are







µ11 0

0 µ22






=

q̂3 · q̂1 × q̂2
jωµ0







Z ′

2 0

0 Z ′

1






, ǫ33 =

q̂3 · q̂1 × q̂2
jωǫ0

Y ′, (3.9)
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where primed immittances in (3.9) are per-unit-length quantities of the unprimed counter-

parts for the medium being modeled.

3.2 Coordinate Transformation

In order to utilize the non-orthogonal grid to synthesize anisotropic medium with a

full tensor in the Cartesian system, it is of interest to find the relative effective medium

parameters (3.9) in the (x, y, z) system, which are denoted by







µxx µxy

µyx µyy






, ǫzz. (3.10)

Restricting our attention to reciprocal media, we impose the condition µyx = µxy in (3.10).

Consider a coordinate transformation from (q1, q2, q3) to (x, y, z). The Jacobian matrix

A = ∂(x, y, z)/∂(q1, q2, q3) of the transformation is equal to

A =













x̂ · q̂1 x̂ · q̂2 x̂ · q̂3
ŷ · q̂1 ŷ · q̂2 ŷ · q̂3
ẑ · q̂1 ẑ · q̂2 ẑ · q̂3













=

[

q̂1 q̂2 q̂3

]

, (3.11)

where q̂1, q̂2, q̂3 are written as column vectors in Cartesian components. The medium tensor

parameters in the (x, y, z) system are then expressed by AǫAT/|A| and AµAT/|A| [24].

Let q̂1 and q̂2 in Figure 3.2 make angles φ1 and φ2 from the +x direction in the x − y plane

such that

q̂1 = x̂ cosφ1 + ŷ sinφ1, q̂2 = x̂ cosφ2 + ŷ sinφ2. (3.12)

One finds the medium parameters in the (x, y, z) system to be
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µxx =
µ11 cos

2 φ1 + µ22 cos
2 φ2

sin(φ2 − φ1)
, (3.13)

µyx = µxy =
µ11 sinφ1 cosφ1 + µ22 sinφ2 cosφ2

sin(φ2 − φ1)
, (3.14)

µyy =
µ11 sin

2 φ1 + µ22 sin
2 φ2

sin(φ2 − φ1)
, (3.15)

ǫzz =
ǫ33

sin(φ2 − φ1)
. (3.16)

Useful inverse relations can be obtained from (3.13)–(3.16):

µ11 =
µxx sin

2 φ2 − µyy cos
2 φ2

sin(φ1 + φ2)
, (3.17)

µ22 = − µxx sin
2 φ1 − µyy cos

2 φ1

sin(φ1 + φ2)
, (3.18)

ǫ33 = ǫzz sin(φ2 − φ1), (3.19)

tanφ1 = − µyy cosφ2 − µxy sinφ2

µxx sinφ2 − µxy cosφ2

. (3.20)

3.3 Design Procedure

In the x − y plane, three independent medium parameters µxx, µxy, and µyy in (3.10)

need to be synthesized in a typical design problem. This requires three independent design

parameters for a unit cell. In comparison, the non-orthogonal unit cell in Figure 3.2 has

four design parameters in the x − y plane, namely Z1, Z2, φ1, and φ2. Design flexibility

is achieved with this one extra degree of freedom. For example, one grid direction can be

chosen in an arbitrary direction. If there is an interface between two media, one grid can run

always along the interface. The other three parameter values are then uniquely determined

to synthesize a given arbitrary full-tensor parameter.

In a design problem for full-tensor (3.10) material parameters, the following design

procedure can be taken. First, determine one grid angle, e.g. φ1, in a preferred direction.

Second, determine the angle φ2 according to (3.20). Finally, two diagonal elements of µ in

the (q1, q2, q3) system are found from (3.17–3.18). The value of ǫ33 is found from (3.19).
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These medium parameters of the (q1, q2, q3) system determine the immittance values Y ′

and Z ′

1, Z ′

2 in the non-orthogonal grid unit cell via (3.9).

Y and Z1, Z2 are equal to [27]

Y = Y ′
p1(q̂

2 · q̂2p2)
p3

= jωǫ0ǫ33
p1p2
p3

, (3.21)

Z1 = Z ′

1

(q̂1 · q̂1p1)p3
p2

= jωµ0µ22
p1p3
p2

, (3.22)

Z2 = Z ′

2

(q̂2 · q̂2p2)p3
p1

= jωµ0µ11
p2p3
p1

. (3.23)

These values can be expressed relative to their free-space counterparts:

Y0 = jωǫ0
p1p2
p3

, Z10 = jωµ0
p1p3
p2

, Z20 = jωµ0
p2p3
p1

. (3.24)

Y0 and Z10, Z20 in (3.24) are the cell immittance values associated with an orthogonal grid

corresponding to free space with periods p1 and p2 in the x̂ and ŷ directions, respectively.

Via (3.24), (3.21–3.23) can be rewritten as

Y = ǫ33Y0, Z1 = µ22Z10, Z2 = µ11Z20. (3.25)

We can split the total immittances of (3.25) into host and loading part contributions by

defining

Y = Y0 + Yl, Z1 = Z10 + Z1l, Z2 = Z20 + Z2l. (3.26)

In practice, the immittance values Y0, Z10, Z20 may be realized by an unloaded host

TL grid and Yl, Z1l, Z2l may be implemented with lumped load elements. Full-tensor

anisotropic medium synthesization with the non-orthogonal unit cell structure is simple,

since no additional load elements are needed compared with the conventional orthogonal

grid unit cells.
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Figure 3.3. Lumped element representations of the unit cell immittances.

3.4 A Numerical Example

To validate the non-orthogonal grid unit cell design for synthesizing full-tensor medium

parameters in 2D, a radiation problem by a line source near a linear reflectionless interface

between two anisotropic media is investigated. A 2D wave refraction problem that has

an exact analytical solution is chosen intentionally, so that a numerical solution from a TL

metamaterial circuit network based on non-orthogonal grids can be tested. We will consider

lumped circuit elements representations for the immittances Y , Z1 and Z2 as illustrated in

Figure 3.3. Thus,

Y = jωC0 +
1

jωCY

+ jωLY , (3.27)

Z1 = jωL01 +
1

jωCZ1

+ jωLZ1, (3.28)

Z2 = jωL02 +
1

jωCZ2

+ jωLZ2. (3.29)

These choices correspond to the lumped-element version of the composite right/left-

handed (CRLH) TL metamaterials [14] and the positive/negative-refractive-index TL meta-

materials. Terms in (3.27)–(3.29) correspond to the host TL grid and loading elements.
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Figure 3.4. Problem configuration of a line source radiating near a linear interface between

two homogeneous, anisotropic media.

3.4.1 Line Source Radiation Near a Reflectionless Interface

As illustrated in Figure 3.4, two anisotropic semi-infinite media — medium a and

medium b — has a planar boundary in the y − z plane. Quantities associated with ei-

ther medium is indicated by a superscript ‘a’ or ‘b’. At an angular frequency ω = 2πf ,

an electric line source radiates time-harmonic fields from (x, y) = (x0, y0). Two media

are based on the following transformation from free space in the (x, y, z) system to the

transformed (x′, y′, z′) system:

x′ = x, y′ =















αax+ y in x < 0

αbx+ y in x ≥ 0

, z′ = z. (3.30)

Since the transformation (3.30) is continuous at x = 0, the interface is reflectionless for

any wave — propagating or evanescent. The two parameters in (3.30) are selected to be

αa = − 0.3640 and αb = 0.5774 with which the tensor metamaterial parameters for the two

media are equal to
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ǫa = µa =













1 − 0.3640 0

− 0.3640 1.1325 0

0 0 1













, (3.31)

ǫb = µb =













1 0.5774 0

0.5774 1.3333 0

0 0 1













, (3.32)

interpreted in the (x, y, z) space.

Following the design procedure presented in Section 3.3, we start with choosing the

angle φ2 for both media. If we set the second branches of the unit cells modeling the two

media to be aligned in the q̂a2 = q̂b2 = ŷ directions (φa
2 = φb

2 = 90◦), these two parameter

values result in the directions of the first branches given by φa
1 = − 20◦ and φb

2 = 30◦

via (3.20). Then, from (3.17)—(3.19), diagonal tensor elements for medium a are equal to

µa
11 = 1.0642, µa

22 = 0.9397, ǫa33 = 0.9397 (3.33)

in the (qa1 , q
a
2 , q

a
3) system. Similarly, diagonal tensor elements for medium b are found to be

µb
11 = 1.1547, µb

22 = 0.8660, ǫb33 = 0.8660 (3.34)

in the (qb1, q
b
2, q

b
3) system. Finally, the immittance values of the unit cells are computed

via (3.21)—(3.23). The exact analytical solution for the ẑ-directed electric field Ez is

known in terms of a simple transform of the field distribution for a line source radiating in

free space.

Common to both media, the per-unit-length inductance and capacitance of the host

TL grid were chosen to be L′

0 = 25.88nH/λ0 and C ′

0 = 20.70pF/λ0 where λ0 denotes

the guided wavelength of the unloaded TL grid serving as a reference (free space). The

intrinsic impedance of this TL grid is then equal to Z0 =
√

L′

0/C
′

0 = 35.36 Ω. The unit
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Table 3.1. Lumped element values for the host TL and the loading elements for both media.

Medium
Host Loading

L01, L02 C0 LZ1 CZ1 LZ2 CZ2 LY CY

a
2.588 nH 2.070 pF

− 90.40 pF 0.1661 nH − 113 nH −
b − 13.68 pF 0.4004 nH − 50.86 nH −

cell dimensions were uniformly chosen to be pa1 = pa2 = pa3 = pb1 = pb2 = pb3 = p0 = λ0/10.

This choice of p0 together with the values of L′

0 and C ′

0 determined the operating frequency

to be f = 1.34 GHz via the dispersion relation for the non-orthogonal grid network [26].

Both the host TL grid and reactive load elements were modeled using lossless lumped

circuit components. Lumped component values for the series impedances and the shunt

admittance in the two media are tabulated in Table 3.1 with terminating resistive load values

equal to the Bloch impedance ZB for a normally-incident plane wave [26].

Cells along the medium interface at x = 0, should be constructed with care. For a cell

having the junction of the three paths positioned at the interface, let the series impedance

in the q̂2 direction and the shunt admittance be denoted by Zab
2 and Y ab, respectively. Each

should contain contributions from the media on both sides and they are connected in par-

allel. Therefore, their values are equal to Zab
2 = 2Za

2Z
b
2/(Z

a
2 + Zb

2), Y
ab = (Y a + Y b)/2.

In essence, the procedure is superposing the properties of both media on both sides of the

interface [28].

The circuit network was modeled and simulated using Agilent Advanced Design Sys-

tem (ADS) on a 60× 40 grid of unit cells. A current source injecting 1 mA into the circuit

network was positioned at (x0, y0) = ( − 0.4698λ0, 0.1710λ0), which can be associated with

a cell port in the ADS setup. At 1.34 GHz, the node voltage distribution was recorded. Then

the node voltages were converted to Ez = E3 via the relationship (3.6). As to the exact

analytical solution, cylindrical fields are first obtained for a line source carrying a current of

1 mA in the +ẑ direction located at ( − 0.4698λ0, 0) in a reference homogeneous medium
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with an intrinsic impedance Z0. Then, the solution is transformed according to (3.30) to

arrive at the exact field distribution for the problem under consideration.

Figure 3.5 compares the field distributions from the TL metamaterial simulation and

the analytical solution. Figures 3.5(a) and 3.5(b) plot the phase and magnitude responses

from the circuit simulation, and Figures 3.5(c) and 3.5(d) show the analytical counterparts.

It is noted that the field results are unnormalized values corresponding to a line source

carrying a 1 mA current for both solution methods. The phase distributions in Figures 3.5(a)

and 3.5(c) show an excellent agreement in both media a (x < 0) and b (x > 0). The

field magnitude distribution in Figure 3.5(b) closely agrees with the analytical response in

Figure 3.5(d) in the two media. Some irregularity appears in the simulation results, which

is due to spurious reflections from the truncation boundary for obliquely incident wave

components. However, their impact on the overall solution is minor. For a closer evaluation

of the accuracy of the TL metamaterial solution, Ez along a horizontal line y = 0.1710λ0

through the line source is plotted in Figure 3.6. Excellent agreements are obtained in both

media between simulation and exact results for both real and imaginary parts of the electric

field. An obvious exception is Im{Ez} at the source position, which diverges to −∞ for

the analytical solution. As intended, note that no indication of reflection from the linear

interface is observed. Numerical results in Figures 3.5 and 3.6 validate the non-orthogonal

(parallelogram) unit cell design for 2D TL metamaterials for realizing full-tensor medium

parameters. The key feature of the non-orthogonal grid is the simplicity of the unit cell

construction while being capable of synthesizing any full-tensor anisotropic parameters.
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CHAPTER 4

TL METAMATERIAL CELL DESIGNS

In this chapter, unit cell designs for all regions in Figure 2.1(b) and, in addition, unit

cells for region interfaces and boundaries are presented.

Rather than specifying a specific planar TL such as a stripline or microstrip, we rep-

resent short TL sections in a unit cell with equivalent lumped elements. This will keep

the metamaterial designs in the following subsections general. Once the equivalent series

inductance and shunt capacitance values are determined, the host TL can be implemented

to meet the requirements. We use the shunt node configuration [27] to model the TE polar-

ization of Figure 2.1.

4.1 Orthogonal-Grid (Rectangular) Unit Cell for A1 and A5

A conventional rectangular unit cell is shown in Figure 4.1(a), where lumped elements

are physically aligned in the q̂1 = x̂ and q̂2 = ŷ directions. The values of shunt admittance

Y and the series impedances Z1, Z2 in the two branches are given by

Y = Y0 + Yl, Z1 = Z10 + Z1l, Z2 = Z20 + Z2l, (4.1)

where Y0 and Z10, Z20 are the immittances corresponding to the host TL section, i.e. the

unloaded unit cell, and are equal to

Y0 = jωC0, Z10 = jωL01, Z20 = jωL02. (4.2)
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Figure 4.1. The TL unit cell and its immittances. (a) Top view of the orthogonal grid

(rectangular) unit cell. (b) Definitions for Z1, Z2 and Y in terms of lumped components.

For unit cell dimensions p1, p2, p3 in the q̂1, q̂2, q̂3 directions, from (3.24) we have

C0 =
p1p2
p3

C ′

0, L01 =
p1p3
p2

L′

0, L02 =
p2p3
p1

L′

0, (4.3)

where L′

0 and C ′

0 are the per-unit-length series inductance and shunt capacitance, respec-

tively, for the lumped model of a lossless TL with characteristic impedance of Z0 and

wavenumber k0 = 2π/λ0 (λ0=guided wavelength of the host TL grid). Yl and Z1l, Z2l in

(4.1) are the shunt load admittance and series load impedances, respectively. Y , Z1 and Z2

are given in Figure 4.1(b) in their general form, composed of lumped components.

For realizing diagonal tensor parameters, such as those for A1, A4 and A5, with arbitrary

diagonal elements, given by

µ =







µxx 0

0 µyy






, ǫzz, (4.4)

the values of Y , Z1 and Z2 are found to be [14]

Y = ǫzzY0, Z1 = µyyZ10, Z2 = µxxZ20. (4.5)
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From (4.1) and (4.5), the values of reactive loading elements can be computed. For A1 and

A5 representing unloaded TL grid regions, the load values are simply equal to zero. A4 is

a NIM lens region with µxx = µyy = ǫzz = − 1. Via (4.5) one can find the load values

Yl = − 2Y0, Z1l = − 2Z10, Z2l = − 2Z20, (4.6)

where Y0, Z10 and Z20 are as given in (4.2).

Finally, dimensions p1 = p2 = p3 = p0 are chosen for the unit cells of A1, A4 and A5

for some fixed length p0.

4.2 Non-Orthogonal Grid (Parallelogram) Unit Cell for A2 and A3

Since A2 and A3 are anisotropic regions with non-zero off-diagonal tensor elements

expressed in Cartesian system, the non-orthogonal grid unit cell presented in Chapter 3 is

employed.

Define a non-orthogonal (q1, q2, q3) coordinate system with the coordinate axes as in-

dicated in Figure 4.2. Here, the q1 axis makes an angle α from the +x̂ direction in the

x − y plane. By properly choosing the shunt admittance load at the junction and the se-

ries impedance loads in the two branches, an effective medium with the following diagonal

tensor parameters written in the (q1, q2, q3) system can be synthesized:

µ =







µ11 0

0 µ22






, ǫ = ǫ33. (4.7)

Similar to (4.5), the total shunt admittance Y and the series impedances Z1, Z2 are given in

terms of µ11, µ22 and ǫ33 as

Y = ǫ33Y0, Z1 = µ22Z10, Z2 = µ11Z20. (4.8)
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Figure 4.2. Top view of the non-orthogonal grid (paralleogram) unit cell.

Now, from Chapter 3, the material tensor values of (4.8) can be written in the (x, y, z)

system as

µ =







µ11 cosα µ11 sinα

µ11 sinα µ11
sin2 α
cosα

+ µ22
1

cosα






, ǫ = ǫ33

1

cosα
. (4.9)

Finally, four parameters µ11, µ22, ǫ33 and α can be properly determined to synthesize any

full-tensor medium parameters written in the (x, y, z) system.

To realize the particular set of medium parameters for A3 in (2.6), we obtain

µ11 =
√
2, µ22 = 1/

√
2, ǫ33 = 1/

√
2, α = 45◦. (4.10)

Although we are free to choose any set of values for p1, p2 as long as k0p1 ≪ 1,

k0p2 ≪ 1 for each region, it is desirable to select the periods such that grids from two
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(a)
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(b)

Z2/2Z2/2

Figure 4.3. Boundary elements. (a) Half-cell element for the bottom of the recess and the

surrounding flat ground plane. (b) Half-cell element for the slanted boundary of the recess.

adjoining regions to coincide for smooth transition across a common boundary. For the

grids running in the q̂2 = ŷ direction to integrate easily with those of A4, we choose

p1 = p0/ cosα = p0
√
2, p2 = p3 = p0. (4.11)

According to (4.2)–(4.3), note that the immittances of the unloaded TL in a unit cell for

A2, A3 will be different from those for A1, A4, A5.

4.3 Boundary Elements and Terminations

The simulation domain of the TL metamaterial design is bounded by the ground recess

and the surrounding ground plane from below. The open boundary on the remaining three

sides is truncated with resistive terminations. For the conducting boundary, there are two

different surfaces — flat and slanted — as shown in Figure 2.1(b). For the flat portion of the

ground, half cells are used along the conducting boundary, i.e. the junction at the center of

a unit cell is grounded. Along the flat boundary at the bottom of the recess and outside the

recess, the short circuit shown in Figure 4.3(a) is used. The setup in Figure 4.3(b) is used

along the slanted side walls of the recess. At each port along the truncation boundary of A5,

a terminating resistor with resistance equal to the Bloch impedance for a normally-incident

plane wave [26, 29] is connected.
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Figure 4.4. Definitions for the interface elements. (a) A1 − A3 interface. (c) A3 − A4

interface. (c) A1 − A4 interface element. In each case, a dashed line indicates the physical

interface between two regions.

4.4 Interface Elements

For ease of physical realization, the coordinate transformation has been deliberately

chosen to give homogeneous medium parameters for each region. Hence, medium param-

eters are discontinuous across every interface between two media. Any unit cell positioned

along a medium boundary needs to be carefully designed. Since a unit cell is a discrete

model of the area covered by the cell itself, the immittance values for a unit cell should in-

corporate medium parameters of every region it sits on. It should be stressed that choosing

a full set of immittances associated with either one medium for an interface cell needs to

be avoided; it amounts to shifting the position of the interface by half a unit cell dimension.

We construct boundary elements for each interface by superposing the properties of

both sides of the interface [28]. Referring to Figure 4.1(a), the shunt admittance Y accounts

for the total admittance for the whole unit cell, i.e. the sum of shunt admittances from

the four quadrants. The series impedance Z1/2 on the +x̂ axis is responsible for the total

impedance in the x̂ direction in quadrants 1 and 4. The two impedances are shunt connected

to form Z1/2. Similarly, the impedance Z2/2 is given by two impedances in the ŷ direction

in quadrants 1 and 2 in a shunt connection. Therefore, if a TL grid is chosen such that the
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junction of the two branches is positioned along an interface, immittance values associated

with individual quadrants can be properly selected to find the four series impedances and

one shunt admittance.

Three interface elements should be defined for the embedded configuration along the

A1 − A3, A3 − A4, and A1 − A4 interfaces. They are illustrated in Figure 5(a), (b) and (c),

respectively. The shunt admittances are given by

Ya =
Y A1

2
+

Y A3

2
, Yb =

Y A3

2
+

Y A4

2
, Yc =

Y A1

2
+

Y A4

2
. (4.12)

In (4.12), the immittances YAk
and ZAk

respectively, correspond to region Ak with k being

the region number. Their values were found in Sections 4.1 and 4.2. Mirror images of the

interface elements depicted in Figure 4.4(a) and 4.4(b) are used for the elements along the

A1 − A2 and A2 − A4 interfaces, respectively.
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CHAPTER 5

NUMERICAL RESULTS

5.1 Embedded Line Source in a Ground Recess

A numerical 2D circuit analysis was performed to validate the TL metamaterial design

of the embedded line source radiation. Advanced Design System (ADS) from Agilent was

used to simulate the 2D lumped-element network. For the host TL, L′

0 = 25.88 nH/λ0 and

C ′

0 = 20.70 pF/λ0 were selected to realize the characteristic impedance Z0 = 35.36 Ω.

Using the dispersion relation for the 2D composite right/left-handed network [14], the fre-

quency of operation f0 = ω0/2π is calculated via

ω0 = ωR

√

2(1 − cos k0p0), (5.1)

where k0p0 is the per-unit-cell phase delay and ωR = 1/
√
L01C0. Setting p0 = λ0/10

(k0p0 = 0.2π), design frequency is selected to be f0 = 1.34 GHz. Finally, dimensional

parameters of the ground recess were chosen to be a = d = c/2 = 2h = 2t = λ0.

For the original and embedded radiation configurations in Figures 2.1(a)–(b), 2D circuit

models for an area of 6λ0×4λ0 were created in ADS using 60 by 40 grid points. Complete

structure of the embedding media is shown in Figure 5.1. The solid gray line shows the

ground recess. Green and blue unit cells correspond to regions A3 and A4, respectively.

Free space regions are shown with thinner black unit cells. Interface unit cells in Fig-

ures 4.4(a), 4.4(b), and 4.4(c) are shown in red, cyan, and magenta, respectively. A more

detailed view over the area of the slanted recess wall is provided in Figure 5.2 to clearly

show the non-orthogonal grid for A3 and the three types of interface elements in place.
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Figure 5.1. A detailed view of the TL metamaterial grid over the area of the embedding

region.

A 5
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Figure 5.2. A detailed view of the TL metamaterial grid over the area of the slanted recess

wall.

The lumped circuit element values for the host TL and the loading elements were com-

puted from the expressions derived in Chapter 4 and they are tabulated in Table 5.1. The

line source was modeled using an ideal AC current source at 1.34 GHz placed λ0/4 above

the ground plane at (x, y) = (0, s = 0.25λ0) for the original and at (0, − 0.75λ0) for the

embedded configurations. Voltages at the end of the vertical branches of each unit cell were

recorded.

At the design frequency f = 1.34 GHz, Figure 5.3 shows a snapshot and the phase

distribution of the node voltages at the current source phase of zero for the original config-
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Table 5.1. Lumped element values for the host TL and the loading elements for each

region.

Host Loading

LR1 LR2 CR LZ1 CZ1 LZ2 CZ2 LY CY

A1 2.588 nH 2.588 nH 2.070 pF N/A

A2
3.660 nH 1.830 nH 2.927 pF − 13.160 pF 0.758 nH − 16.453 nH −

A3

A4 2.588 nH 2.588 nH 2.070 pF − 2.725 pF − 2.725 pF 3.407 nH −
A5 2.588 nH 2.588 nH 2.070 pF N/A

uration of Figure 2.1(a). The results show excellent agreements with the available analytical

solutions.

The same set of plots for the embedded configuration are shown in Figure 5.4 for com-

parison. In y ≥ 0, Figures 5.3(a) and 5.4(a) show an excellent agreement that cannot be

visually distinguished. A comparison of the phase distributions in Figures 5.3(b) and 5.4(b)

clearly shows that the waves generated by the embedded configuration appear as if they

originate above the ground plane as intended.

In contrast, the node voltage distribution for a source radiating inside a ground recess

without any embedding media is shown in Figure 5.5. This distribution agrees with the

2D numerical analysis result based on effective medium parameters. It is observed that the

radiation characteristics of the line source are significantly affected by the unfilled recess.

To quantify the fidelity of the proposed embedded design in reproducing the radiation

characteristics of the original configuration, 2D far-field directivity patterns are computed

and compared. Using a near-field to far-field transformation using the node voltages and

branch currents from ADS along the truncation boundary of the simulation domain, a direc-

tivity pattern can be obtained. Detailed discussion for the numerical calculation is provided

in Appendix A. In addition, one can obtain the exact far-field pattern for the original con-

figuration at the design frequency analytically. It is equal to
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Dexact(φ) =
sin2(π

2
sinφ)

2π
∫ π

0
sin2(π

2
sinφ)dφ

. (5.2)

The 2D directivity patterns are compared in Figure 5.6 for the three configurations

shown in Figures 5.3–5.5 together with the analytical result of the original configuration

given in (5.2). The pattern curves for the original and embedded configurations lie on top

of each other in the entire angular range of φ in 0 ≤ φ ≤ π measured from the +x̂ axis.

This validates the effectiveness of the embedded configuration in reproducing the original

radiation pattern at the design frequency, especially the non-orthogonal unit cell design in

Figure 4.2 as well as the three interface elements in Figure 4.4. The very slight discrepancy

between the analytical solution and the original/embedded configuration is attributed to

discrete nature of the metamaterial design and a small amount of reflections from the open

boundary of region A5 for obliquely incident wave components. In contrast, the directivity

pattern for the line source in an open recess exhibits a significant distortion.

The effect of loss on the performance is investigated by incorporating component losses

to lumped load elements in A2, A3, and A4. The host TL grids in A1 and A5 are treated

lossless. In Figure 5.7, directivity patterns with different quality factor (Q) values of 100,

50, and 20 are compared with the lossless case. Although the radiation pattern deviates

from that of the lossless case as Q is decreased, there is no significant degradation. Low-

loss inductors and capacitors in the GHz range with the Q values up to 100 are commonly

available, so it is anticipated that a TL metamaterial fabrication of the embedded design

will exhibit a radiation pattern comparable to what is expected of a lossless design.

In addition to the performance at the design frequency, bandwidth characteristics of

the metamaterial design are of great interest. Figure 5.8 shows 2D directivity patterns at

− 2%, − 4%, +2%,+4% away from f = f0 as well as the design frequency. It is observed

that the pattern degradation is more sensitive to a frequency increase than a decrease. The

pattern bandwidth is further characterized by the relative rms error eD defined by
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eD =

∫ π

0
|D(φ) − Dexact|2dφ
∫ π

0
|Dexact|2dφ

(5.3)

as a function of frequency. In (5.3), D(φ) is the directivity of the embedded configuration

which changes with frequency and Dexact is the analytical directivity pattern of the original

configuration fixed at f = f0. The error eD is plotted in Figure 5.9 at different frequencies.

Using eD = 0.1 as the reference, the pattern bandwidth is found to be approximately 8%.

The input impedance observed by the current probe was computed for the original

and embedded configurations to assess the impedance bandwidth characteristics. A small

amount of loss with Q = 1000 was added to the lumped load elements for the embedded

case to help the ADS solution stabilize. In the absence of loss, there is no unique solution

due to the presence of surface-mode plasmon resonances along the NIM boundaries. The

input impedances Zin = Rin + jXin are plotted with respect to frequency in Figure 5.10(a)

for the two configurations. They turn out to be inductive and the reactances match each

other at f = f0. The slightly higher resistance for the embedded source is attributed to the

added loss. The input impedance exhibits multiple resonances similar to the 3D monopole

case predicted with effective medium parameter simulations [13]. Figure 5.10(b) shows

the magnitude of the input reflection coefficient with a reference impedance of 10 Ω after

a series capacitor was inserted at the driving port to cancel the inductive reactance. The

impedance bandwidth of the embedded system is narrow compared with the original sys-

tem, mainly due to the dispersion of the NIM in A4.

Now we consider the same embedded line source radiation case with increasing the

resolution of the discrete unit cell TL metamaterial design. Keeping the same parameters

for the host TL, L′

0 = 25.88 nH/λ0 and C ′

0 = 20.70 pF/λ0 to realize the characteristic

impedance Z0 = 35.36 Ω, we chose p0 = λ0/20 which doubled the resolution of the circuit

model. The new design frequency was determined to be f0 = 0.68 GHz according to the

dispersion relation given in 5.1. The dimensional parameters of the ground recess were

chosen to be a = d = c/2 = 2h = 2t = λ0/2. At the design frequency, the lumped
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circuit element values for the host TL and the loading elements were computed similar

to the previous design. The line source was modeled using an ideal AC current source at

0.68 GHz placed λ0/8 above the ground plane at (x, y) = (0, s = 0.125λ0) for the original

and at (0, − 0.375λ0) for the embedded configurations. With doubled resolution, the same

2D circuit model of 60 by 40 grid points now represents a simulation area of 3λ0 × 2λ0.

At the new design frequency f = 0.68 GHz, Figure 5.11 shows a snapshot of the node

voltages at the current source phase of zero for both original and embedded configura-

tions. The agreement between the node voltage distributions of Figure 5.11 was further

investigated via 2D directivity patterns. Figure 5.12 shows directivity patterns for the two

configurations shown in Figures 5.11(a) and (b) together with the analytical result of the

original configuration. We observed that the pattern curves for the original and embedded

configurations lie on top of each other and follow the exact pattern of the analytical result

of the original configuration.

5.2 Embedded Line Source Array in a Ground Recess

In this subsection, we consider an embedded array configuration inside a ground recess,

where a horizontal array is embedded inside the designed embedding media.

Consider a 2D horizontal array of N line sources carrying complex currents In (n =

1, 2, ..., N) positioned at (rn, y0), where rn = x̂[n − (N +1)/2)]d and d is the interelement

spacing. A seven-element linear array is illustrated in Figure 5.13. To demonstrate a pattern

null in the broadside direction ŷ, and a pattern maximum close to the end-fire direction, we

chose In to be

In = ej
4π

7d
x̂·rn . (5.4)

The seven-element line source array with d = 0.3λ0 was simulated inside the ground recess

at y0 = − 0.75λ0 and the same array was also simulated above the ground plane positioned

at y0 = 0.25λ0. Snapshots of the node voltage distribution are shown in Figure 5.14 for
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the two configurations. As expected, in y ≥ 0, Figures 5.14(a) and 5.14(b) are in excellent

agreement that cannot be visually distinguished.

In Chapter 2, A2 and A3 were interpreted as impedance-matching regions, compensat-

ing the truncation effect associated with the finite horizontal dimension of the NIM lens.

Now, we consider the case where high loss values are introduced for A2 and A3. This case

was examined by incorporating component losses to both lumped load elements and to

lumped elements corresponding to host TL grids in A2 and A3. This is, in effect cancelling

the waveguiding function of the impedance-matching regions. The same seven-element

array of Figure 5.13 was embedded inside the ground recess. For the loss tangent value,

tan δ = 1, Figure 5.15 shows a snapshot of the node voltage distribution. In comparison

to Figure 5.14(a), the distortion in the pattern is visually distinguishable. In Figure 5.16,

directivity patterns with different tan δ values of 1 and 5 are compared with the lossless

case. We observed that, functionally removing A2 and A3 distorts the far field pattern. This

example emphasizes the importance of the impedance-matching regions.
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Figure 5.3. Node voltage distribution for the original configuration. (a) A snapshot. (b)

Phase distribution. Both are referenced to the current source phase zero.
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Figure 5.5. A snapshot of the node voltage distribution for a source inside the ground

recess without any embedding media.
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CHAPTER 6

CONCLUSIONS

A 2D TL metamaterial design of an embedded line source radiation based on the coor-

dinate transformation approach has been presented. The line source inside a ground recess

is embedded in metamaterials such that it creates the same waves away from the source

as a line source in free space above the ground plane. TL metamaterial unit cell designs

for the NIM lens region and the anisotropic impedance-matching regions were presented.

The impedance-matching regions were realized with a novel non-orthogonal grid unit cell.

The performance of this cell was examined via a line source radiation configuration near a

reflectionless interface. The final embedding media were numerically analyzed via circuit

simulations. Numerical results show an accurate reproduction of the radiation characteris-

tics by the embedded design at the design frequency. The effect of loss is predicted to be

minimal with low-loss reactive loading elements. Predicted pattern and impedance band-

width characteristics have been presented.

The proposed metamaterial design may be realized by loading a host TL such as a

2D microstrip network with lumped reactive loading elements. The ground plane and the

recess can be realized using a series of vias along the conducting boundary. Resistors can

terminate the truncation boundary of the 2D TL network.

Due to the simplicity of the unit cell structure representing the anisotropic impedance-

matching regions, the TL metamaterial design can be extended to a resonator-based meta-

material counterpart in a straightforward manner. For the anisotropic regions in the 2D

metamaterial, a unit cell in the form of a cylindrical shell with a parallelogram cross sec-

tion can be used. Electric and magnetic resonators positioned on the tilted side walls will
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be able to synthesize any anisotropic tensor medium parameters expressed in the Cartesian

coordinate system.
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APPENDIX

CALCULATION OF 2D FAR-FIELD RADIATION PATTERNS

Near-field to far-field transformation method is utilized to extract the far-field radiation

pattern from the boundary voltages and branch currents of the associated TL grid structure.

A circuit network boundary is illustrated in Figure A.1 with a PEC ground plane at y = 0.

Node locations are indicated with red dots and the associated branches are marked with

arrows. The isomorphism relations between the node voltages, branch currents and the

fields for the TE polarization were derived in Chapter 3 as given in (3.6). Accordingly, the

surface electric field and the surface magnetic field intensities Es and Hs, respectively, are

equal to

Es = − ẑ
V

p0
, Hs = ĉ

I

p0
(A.1)

in the Cartesian (x, y, z) coordinate system, where p0 is the fixed unit cell dimension of

the orthogonal unit cell for region A5. The c direction is indicated for each part of the

piecewise continuous boundary in Figure A.1. The surface electric current density Js and

surface magnetic current density Ms are given by

Js = n̂×H, Ms = E× n̂. (A.2)

Via (A.1) and (A.2),

Js = ẑI, Ms = − ĉV. (A.3)

We obtain node voltages and branch currents along the truncation boundary at discrete

positions via circuit simulations. For the numerical calculations, current densities Js and

Ms are interpolated as
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Figure A.1. Boundary node voltages and branch currents.

Js = ẑ

N
∑

n=1

Infn(r
′), Ms = − ĉ

N
∑

n=1

Vnfn(r
′), (A.4)

where fn(r
′) is a triangular interpolating function as shown in Figure A.2. In (A.4), Vn is

the node voltage of node n and In is the branch current of the associated branch as indicated

in Figure A.1. r′
n

is the position vector of node n and N is the total number of node voltage

and branch current pairs.

Now, we apply the image theory by removing the ground plane and placing equivalent

current densities in y ≤ 0 along the dotted line indicated in Figure A.1. We consider

the radiation of the original and the image current densities in free space. The radiation

integrals N and L are defined to be

51



1

r r n+1nr

f
n

r
n−1

Figure A.2. Interpolation function.

N =

∫

C

Jejkr̂·r
′

dl′, L =

∫

C

Mejkr̂·r
′

dl′, (A.5)

where C is the closed contour composed of the original and the image boundaries. At

far-field, the equivalent electric field expression can be written as [30]

E = jkZ0
e−jkr

√
jk8πr

[

r̂ × r̂ ×N+
1

Z0

r̂ × L

]

(A.6)

expressed in the cylindrical coordinate system (r, φ, z). Z0 is the characteristic impedance

of the TL grid which is the circuit equivalent for the intrinsic impedance of the free space.

Using the field expression in (A.6), the far-field radiation pattern can be found. Finally, the

directivity expression is given by

D(φ) =
U(φ)

2π
∫ π

0
U(φ)dφ

, (A.7)

where

U =
|E|2
2Z0

(A.8)

is the radiation intensity.
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