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ABSTRACT 

INNATE IMMUNERESPONSES TO B. BURGDORFERI MEDIATED BY JNK1 AND 

THE COCHAPERONE, METHYLATION CONTROLLED DNAJ (MCJ) 

FEBRUARY 2011 

HOOMAN IZADI 

B.S., UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Juan Anguita 

 

The infections agent of Lyme disease, Borrelia Burgdorferi is a complex 

microorganism with a highly diverse genome. One of the most remarkable aspects of the 

B. burgdorferi genome is the large number of sequences encoding predicted or known 

lipoproteins, including outer-surface proteins. The B. burgdorferi genome encodes no 

recognizable toxins. Instead, this extracellular pathogen causes pathology by migration 

through tissues, adhesion to host cells, and evasion of immune clearance. Inflammation 

elicited by infection with B. burgdorferi depends on the ability of the spirochete to 

survive in the mammalian host, as well as the immune response that arises upon the 

interaction of the bacterium with phagocytic, T and other cell types.  Innate immune 

responses are critical in recognition and clearance of pathogens, and also play an 

important role in the outcome of adaptive immune responses. 

The regulation of innate immune responses to pathogens occurs through the 

interaction of Toll-like receptors (TLRs) with pathogen-associated molecular patterns 



vii 
 

(PAMPs) and the activation of several signaling pathways whose contribution to the 

overall innate immune response to pathogens is poorly understood. In this study we 

demonstrate a mechanism of control of murine macrophage responses mediated by 

TLR1/2 heterodimers through c-Jun N-terminal kinase 1 (JNK1) activity. JNK also 

controls tumor necrosis factor production and TLR-mediated macrophage responses to B. 

burgdorferi. We also show that the proximal promoter region of the human tlr1 gene 

contains an AP-1 binding site that is subjected to regulation by the kinase and binds two 

complexes that involve the JNK substrates c-Jun, JunD, and ATF-2. These results 

demonstrate that JNK1 regulates the response to TLR1/2 ligands and suggest a positive 

feedback loop that may serve to increase the innate immune response to the spirochete. 

MCJ is a newly identified member of the DnaJ protein family of cochaperones 

that contains unique features different than the normally described DnaJ proteins. 

However, there is little known about its function and the role it plays in different cells 

and systems. It has been previously shown that MCJ is required for the repression of the 

ABCB1 drug transporter expression in breast cancer cells, and that this repression is 

mediated through the control of c-Jun protein stability.  We were therefore interested in 

determining the role that MCJ plays in macrophages in response to B. burgdorferi 

antigens. We now provide evidence that MCJ controls inflammatory responses of 

macrophages through the regulation of c-Jun protein stability, and the expression and 

release of the inflammatory cytokine TNFthrough the regulation of the expression of 

TNF converting enzyme (TACE) inhibitor tissue inhibitor of metalloproteinase 3 (TIMP-

3). 
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CHAPTER I 

INTRODUCTION 

Lyme disease was first discovered in 1975 as a tick-borne infection affecting a 

cluster of children in Lyme, Connecticut. In 1982, Willy Burgdorfer and co-workers 

indentified the agent of Lyme disease as a new spirochetal, extracellular bacterium (1). 

This spirochete was named Borrelia burgdorferi. Since then, at least three species of the 

genus Borrelia have been shown to be agents of Lyme disease. These include B. 

burgdorferi sensu stricto, B. afzelii and B. garinii, which as a group are referred to as B. 

burgdorferi sensu lato (2, 3). At least twelve other genospecies of B. burgdorferi that are 

minimally pathogenic or nonpathogenic have been identified, geographically spanning 

the United States and Eurasia (4, 5, 6). In the United States B. burgdorferi is the sole 

agent of Lyme disease; however B. afzelii and B. garinii cause the disease in areas of 

Europe and Asia (3, 7). In the United States, B. burgdorferi is transmitted by the hard-

bodied ticks, Ixodes scapularis and I. pacificus. Lyme disease is the most reported 

arthropod-borne disease in United States.  

Biology of Borrelia and Lyme disease 

B. burgdorferi is a highly prevalent vector-transmitted spirochete.  Spirochetes are 

a diverse and unique group of bacteria that can inhabit different environments like soil, 

arthropods and humans. Many spirochetal species are able to cause disease in mammals 

such as Treponema pallidum, Borrelia burgdorferi and Leptospira spp (8). Lyme disease 

is a zoonotic, vector-borne disease that is transmitted by Ixodes ticks. Ixodes ticks are 
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obligate blood-feeding ectoparasitic acari that belong to the large family Ixodidae (hard 

ticks). A diverse array of infectious agents of medical and veterinary importance are 

transmitted by Ixodid ticks (9). In particular, I. scapularis ticks act as vectors for several 

pathogens including B. burgdorferi, Anaplasma phagocytophilum, and Babesia microti 

(1, 10) and are second only to mosquitoes worldwide as vectors of human pathogens. 

The life cycle of I. scapularis, commonly known as the black-legged tick, consists 

of three developmental stages: larva, nymph, and adult (11). It takes about two years for 

the life cycle of the black-legged tick to be completed. Adult female ticks lay eggs on the 

ground in early spring and by summer the eggs are hatched into larvae. Larval ticks feed 

on small animals such as mice, other rodents, deer, and birds and molt into nymphs. 

Nymphs feed on small animal and rodents as well as humans in the late spring and 

summer, and mature into adults. Adult ticks feed and mate on large mammals (especially 

deer). The adult females then drop from these animals and lay eggs in spring to complete 

the two-year cycle. 

Humans and deer are not involved in the maintenance of B. burgdorferi, and thus 

are not part of the enzootic life cycle of the spirochete. Instead, both large mammals are 

incidental hosts, which acquire the infection from infected ticks questing for a blood 

meal. B. burgdorferi infects a wide range of vertebrate animals including small 

mammals, and birds (12, 13). Ticks most frequently acquire spirochetes from infected 

rodents during their larval feeding (13, 14). After molting to the nymphal stage, infected 

ticks feed on a broad range of animals including rodents, which become a new reservoir, 

perpetuating the cycle (15). The spirochetes are rarely, if ever, transmitted transovarially 

(16), making the nymphal stage the most significant for human transmission, which is 
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also aided by their small size that makes them difficult to detect and, therefore, more 

likely to feed long enough to transmit the spirochete (16, 17). B. Burgdorferi is most 

commonly transmitted to humans during late spring or early summer, which coincides 

with the nymphal feeding period. The tick must be attached for at least 24 to 48 hours in 

order to transmit the bacteria to humans (18). B. burgdorferi is well adapted to survive in 

two different environments, the tick and the mammalian host. B. burgdorferi must persist 

in the tick midgut for an extended period, post feeding, without nutrients. Upon tick 

feeding, B. burgdorferi adjusts protein expression to enable a successful infection of the 

vertebrate host. A well characterized paradigm in protein expression shift is that of OspA 

and OspC. OspA is expressed at high levels in the midgut of the unfed tick, but its 

expression is down regulated upon tick feeding, whereas OspC is up regulated (19). 

During pathogenesis of Lyme disease, B. burgdorferi produces a number of 

products that allow it to colonize and persist in its natural mammalian and tick hosts. 

Although the functions of only a few B. burgdorferi products have been clearly defined, 

some such as (OspC) are required for the bacteria to survive the initial attack of the 

mammalian innate immune system, whereas others (such as VlsE) contribute to resisting 

the subsequent acquired immune response (20). These bacterial products allow it to 

replicate and survive. Although they are not true virulence factors, they seem to be 

adequate for the bacterium to cause disease in a susceptible host. In support of this idea, 

the genome sequence of B31, the type strain of B. burgdorferi sensu stricto, revealed that 

the bacterium lacks factors common to many bacterial pathogens, such as 

lipopolysaccharide, toxins, and specialized secretion systems. The bacterium does 

however; contain immunogens such as lipoproteins on its surface (19, 21). 
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A hallmark of infection with B. burgdorferi is the appearance of a skin rash 

known as erythema migrans, which is a sign of early infection and the most reported 

symptom associated with the disease (22). Other symptoms that may occur at this time 

include fever, headaches, malaise and myalgias. If untreated, the spirochete can 

disseminate through the blood (stage II, Lyme disease) and cause symptoms that include 

meningitis, conduction system abnormalities and acute arthritis. These symptoms appear 

in 60% of untreated individuals. Some untreated individuals may progress to stage III 

Lyme, also known as late persistent disease, a prolonged infection of unclear etiology 

with symptoms that can include chronic arthritis and neuroborreliosis (22, 23). 

Overview of the immune response to B. burgdorferi 

Vertebrates are constantly threatened by the invasion of multiple microorganisms 

and have evolved immune defense systems to detect and eliminate pathogens from the 

body. Mammals have two branches in their immune system: innate and adaptive 

immunity (24). The innate immune responses are the first line of defense against invading 

pathogens and include phagocytic cells such as macrophages and neutrophils. The 

recognition of B. burgdorferi by innate immune cells depends on the rapid detection of 

the microorganism, mediated by germline-encoded pattern recognition receptors (PRRs) 

that are critical to discriminate between host factors from infectious agents. These 

interactions are also important for determining the extent and quality of adaptive immune 

responses. Toll-like receptors (TLRs) are PRRs that detect foreign pathogens (25, 26). 

Following the recognition of B. burgdorferi, phagocytic cells are recruited to the site of 

infection, mediated by the initial production of cytokines and chemokines from cells at 
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site of the infection, which also initiates the up regulation of cell adhesion molecules in 

endothelial cells (27, 28).  

Upon presentation of B. burgdorferi antigens by phagocytic and other antigen 

presenting cells, CD4+ T cells become differentiated effector cells. IFN-producing Th1 

cells are regulators of cell-mediated inflammatory reactions, which are characterized by 

macrophage activation and production of opsonizing IgG antibodies.  Infection with B. 

burgdorferi results in the production of IL-12 that drives differentiation of CD4
+ 

T cells 

toward a Th1 phenotype (29). Functional T cells are not required for resolution of 

infection with B. burgdorferi; however they contribute to the pathology associated with 

infection (30, 31). Moreover, during Lyme carditis, which is a B. burgdorferi-induced 

inflammatory phenomenon that involves predominantly macrophages, the activation of 

iNKT cells and aTh1 response are required for the clearance of B. burgdorferi and the 

resolution of disease (25, 32).  In spite of intense efforts to determine the mechanisms 

that contribute to the ability of B. burgdorferi to cause persistent infection, even in the 

presence of strong immune responses, no clear mechanism has been unveiled to date 

(25).   

Innate immunity and B. burgdorferi 

A critical part of an effective host defense is the detection of microbial products 

by innate immune cells (33). Innate immune responses are mediated by several cell types, 

including macrophages (24). Originally, innate immune responses were thought to be 

nonspecific; however it is now known that they have some specificity and are able to 

differentiate between self and a variety of invading organisms. Innate immune cells can 
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recognize pathogens by a variety of PRRs (24, 34). There are several classes of PRRs 

such as toll like receptors (TLRs), Retinoic acid inducible gene (RIG) like receptors 

(RLRs) and NOD like receptor (NLRs).  

These receptors are essential components of innate immune cell responses to 

pathogens. They recognize Pathogen-associated molecular patterns (PAMPs). PAMPs are 

molecules associated with groups of pathogens that can be referred to as small molecular 

motifs conserved within a class of microbes. Recognition of PAMPs initiates a cascade of 

responses that lead to the up regulation of cytokines (TNF, IL-12, IL-18, and IL-1β 

among others), chemokines (IL-8, MCP-1, KC) and adhesion molecules (E-selectin, 

VCAM-1 and ICAM-1) (24, 34, 35). These events result in the activation of phagocytic 

cells and the eventual development of adaptive immune responses (27, 36). One of the 

most studied PAMPs of B. burgdorferi recognized by innate immune cells is triacylated 

outer-surface lipoproteins. B. burgdorferi lipoproteins interact with the complex formed 

by TLR1 and TLR2 leading to the activation of several signaling cascades that result in 

the production of pro-inflammatory cytokines such as TNF and IL-12. Detection of B. 

burgdorferi lipoproteins is important for defining the in vivo responses to B. burgdorferi 

as demonstrated by the increased bacterial burdens in TLR1- or TLR2-defficent mice (35, 

37, 38). 

The Toll like Receptors (TLRs) and their signaling 

TLRs are members of a larger super family of receptors (to which IL-1R also 

belongs) that are involved in recognition of microbial conserved structures.  TLRs are 
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among the most conserved signaling components that are widely expressed on antigen 

presenting cells, especially macrophages and dendritic cells (39-41).  

The TLR family is highly conserved evolutionarily from worms to mammals, and 

was found as essential for the development in Drosophila (24). Twelve members of the 

TLR family have been discovered in mammals. Toll like receptors are type I integral 

membrane glycoproteins and have a trimodular structure. The N-terminal domain, which 

is the extracellular portion, contains approximately 16-28 leucine rich repeats (LRRs), 

each LRR with 20-30 amino acids with conserved motifs (LxxLxxN). The C-terminal 

domain is the intracellular part of TLRs, known as Toll/IL-1 receptor (TIR) domain, 

which shows homology with the IL-1 receptor. Homology in the TIR domain is confined 

to three conserved boxes that contain amino acids crucial for signaling (24, 36, 42, 43). 

This part of TLR is required for the interaction and recruitment of many other adaptor 

molecules (44). Recently, the crystal structure of several TLRs with their ligands have 

been assembled, showing that they form heterodimer complexes such as TLR1-TLR2 or 

homodimers like TLR3-TLR3 after interaction with their specific ligand. These dimers 

assume a horseshoe-like structure that is required for ligand binding and the initiation of 

downstream signaling pathways (45, 46, 47).  

Based on the primary sequences of TLRs, they can be divided in different 

subfamilies each recognizing specific PAMPs derived from various pathogenic bacteria, 

fungi and parasitic-protozoa.  TLRs are expressed in distinct compartments of the cell.  

TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11 are expressed on the cell surface whereas 

TLR3, TLR7, TLR8 and TLR9 are expressed in intracellular vesicles such as endosomes 

and the ER. TLRs can sense various components of the bacterial cell wall, such as LPS 
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from gram-negative bacteria by TLR4; diacylated or triacylated lipopeptides from 

bacteria recognized by TLR2/TLR6 and TLR1/2, respectively; flagellin by TLR5; and 

unmethylated CpG DNA by TLR9 (44). 

Four adapter molecules are known to be involved in signaling mediated by TLRs: 

Myeloid differentiation 88 (MyD88), TIRAP (also called Mal), TRIF, and TRAM. TLR-

ligand interaction causes the adaptor protein MyD88 to be recruited to the receptor 

complex, which in turn promotes its association with the IL-1R-associated kinases 

IRAK4 and IRAK1. During the formation of this complex, IRAK4 is activated, leading to 

the hyper-phosphorylation of IRAK-1, inducing the interaction of TRAF6 with the 

complex. The IRAK-4·IRAK-1·TRAF6 complex then interacts at the membrane with 

another preformed complex consisting of TAK1, TAB1, and TAB2. This interaction 

induces phosphorylation of TAB2 and TAK1, which then translocate together with 

TRAF6 and TAB1 to the cytosol. Engagement of TLR1, TLR2, TLR4, TLR5, TLR6, 

TLR7, TLR8, TLR9 and TLR11 with their specific ligand results in recruitment of 

MyD88 to the receptor (24). However, TLR3 recruits TRIF after engagement with its 

ligands. Moreover, TLR4 is also able to recruit TRIF after stimulation, making it the only 

TLR that is able to utilize both MYD88 and TRIF dependent pathways.  Due to the 

complex TLRs signaling these pathways are categorized into MyD88-dependent and 

TRIF-dependent pathways (43, 48, 49). These adapters activate other molecules within 

the cell, including certain protein kinases (TBK1, and IKK) that amplify the signal, and 

ultimately lead to the induction or suppression of genes. Recruitment of these adaptors 

triggers the as activation of JNKs, p38 and ERK1/2 MAP kinases, which ultimately lead 

to the activation of transcription factors such as AP-1, NF-B and IRFs. These 

http://en.wikipedia.org/w/index.php?title=IKKi&action=edit&redlink=1
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transcription factors induce the transcription of inflammatory cytokines, type 1 

interferons and chemokines (44).  

Mitogen-activated protein kinases and their signaling 

The mitogen activated protein kinase (MAPK) signal transduction pathways are 

critical cascades involved in various physiological processes (50, 51). MAPK pathways 

are composed of three kinases that establish a sequential activation pathway comprising a 

MAP kinase kinase (MKKK), a MAPK kinase (MKK) and a MAP kinase (52, 53, 54). 

These are serine-threonine protein kinases that are activated by diverse stimuli. The 

stress-activated protein kinase (SAPKs) group of MAPKs includes members of the c-Jun 

NH2-terminal kinase (JNK) and p38 MAPK families (55, 56, 57). Three members of the 

JNK family have been identified, JNK1, JNK2 and JNK3. Each JNK gene is located on a 

different chromosome. In mice, JNK1 is on chromosome 14B, JNK2 is on chromosome 

11B1.3, and JNK3 on chromosome 5. JNK3 is primarily expressed in the brain, heart, 

and testis but not in hematopoietic cells. JNK1 and JNK2 are expressed more 

ubiquitously; however their level of expression in T and B cells are very low prior to their 

activation. There are four isoforms of JNK1 (JNK1JNK1JNK1 and JNK1) 

described; however the relative contribution of these isoforms to overall JNK activity 

remains unknown (55, 58). Alternative splicing of JNK mRNA results in up to ten 

different protein products, varying in size from 46 KDa to 55 KDa (59, 60, 61).  JNKs are 

activated by dual phosphorylation on Thr 183 and Tyr 185 by upstream MAPK kinase 

(MAPKK), specifically by SEK1 (also known as MKK4) and MKK7 (58). They then 

phosphorylate their respective substrates on serine or threonine residues. (62).  
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JNKs are considered the predominant protein kinase family that phosphorylates 

serine 63 and serine 73 within the trans-activation domain of c-Jun (63, 64). This 

phosphorylation potentiates c-Jun transcriptional activity by releasing the repressor 

complex histone deacetylase-3, which physically interacts with the N-terminal region of 

c-Jun (65). Additional substrates have been identified such as JunD and ATF2 that are 

members of the activator protein 1 (AP-1) transcription complex (66). AP-1 transcription 

factors are DNA binding heterodimers composed of Jun (c-Jun, JunB and JunD), Fos (c-

Fos, FosB, Fra-1, Fra-2, Fosb2 and deltaFosB2), Maf, and ATF subunits (67). These 

transcription factors belong to the bZIP (basic-zipper) family and, as such, their 

dimerization is mediated by their leucine zipper domain. The recognition of the AP-1 site 

is mediated through the basic region (68). c-Jun is a major component of the AP-1 

transcription factor. Its binding to specific sites on DNA results in activation and 

induction of many target genes involved in cell death, inflammation, cell differentiation, 

development and cancer (69, 70). 

JNKs were originally identified by their ability to phosphorylate c-Jun in response 

to UV-irradiation; however, they are now recognized as critical regulators of other 

aspects of mammalian physiology such as cell proliferation, cell survival, cell death, 

DNA repair, and metabolism. In addition, JNK substrates have been identified in other 

cellular compartments, indicating that the action of JNK extends beyond transcriptional 

events, and may regulate other processes such as tumor development (71, 72). JNKs are 

important in a variety of different diseases such as infectious and autoimmune diseases as 

well as the initiation, progression and resolution of immune responses in vivo (73). 
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The activation of JNK during immune responses can be triggered by multiple cell 

surface receptors, including antigen receptors, TLRs, and cytokine receptors. The JNK 

pathway is important in the thymus during T-cell development and contributes to 

apoptosis during negative selection; it also plays a role during CD4
+
 T cell effector 

function (74, 75, 76, 77). Although both JNK1 and JNK2 appeared to have an identical 

function, neither enzyme compensates for the deficiency of the other, indicating that they 

perform unique functions (54). 

Methylation-controlled J protein (MCJ) 

Molecular chaperones are a ubiquitous class of proteins that interact with short 

stretches of hydrophobic amino acids, typically exposed in partially unfolded proteins. 

Through such interactions, chaperones function in physiological processes that are 

essential for maintenance of normal cell activity and responses to different stimuli such 

as facilitating protein folding, protein translocation across membranes and remodeling of 

mulitmeric protein complexes (78). Hsp70 and J-proteins, which form different 

complexes, are among the most ubiquitous of the chaperones. Most eukaryotic and 

prokaryotic genomes encode multiple Hsp70s and J-proteins, suggesting their importance 

in cell function (78).   

J-proteins contain a conserved 70 amino acid signature region; the J-domain, 

named after the E-coli protein, DnaJ. The DnaJ protein family is one of the largest with 

members with diverse cellular localization patterns such as the Golgi, ER and 

mitochondria that are critical for the de novo folding of nascent polypeptides, the 

interaction with signal transduction proteins, and the cell response to stress (79). The 
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DnaJ J-domain contains four  helices, with helices II and III forming a coiled-coil motif 

around the hydrophobic core. The most highly conserved amino acids of the J-domain, 

the histidine-proline-aspartate (HPD) tri-peptide located in the loop between helix II and 

III, is critical for the ATPase activity of these cochaperones (78). Methylation-controlled 

J protein (MCJ) is a newly identified member of the DnaJ protein family of cochaperones 

whose expression is primarily controlled by methylation (80). It is a Golgi compartment 

and mitochondrial-associated, type II transmembrane DnaJ protein.  In addition to the 

DnaJ family, there are two other cochaperones that have been identified based on the 

presence of the Bag domain or the tetratricopeptide repeat clamp domain (81, 82).  

Cochaperones have a modular design in which a chaperone binding domain, such as 

DnaJ, is bound to other non-conserved sequences that can interact with specific proteins 

and mediate activities such as clathrin un-coating and cytoskeletal functions (83, 84). 

Moreover, DnaJ cochaperones also play a role in ubiquitin-dependent proteolysis by 

either tagging substrates for degradation or by facilitating the unfolding of proteins, 

which allows their proteolytic degradation (85).  

MCJ has some unique features among the members of the DnaJ family. MCJ is 

comprised of 150 amino acids (aa), which is a rather small protein (16 to 17 kDa) 

compared to other members (~40 kDa). The DnaJ domain is located in the C-terminus of 

MCJ, while it is commonly located in the N-terminus in other DnaJ proteins (80). 

Moreover, a possible trans-membrane domain distinguishes MCJ from most other DnaJ 

proteins that are in the cytosol and interact with chaperones through the DnaJ domain, 

indicating that MCJ is atypical compared to other members of the DnaJ family (86).  
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The mcj gene is expressed in normal ovarian epithelial cells but not expressed or 

expressed at very low levels in many ovarian tumors and ovarian carcinoma cell lines 

(80). The region present within the first exon and first intron of MCJ gene constitutes a 

CpG island which can be hypermethylated, leading to its repression. High levels of 

Methylation in the CpG island correlate with poor responses of tumors to chemotherapy 

and over all poor survivor rate (87). While certain amount of interest has been given to 

the regulation of MCJ gene expression, no information about the biology and function of 

MCJ in immune cells is known. However, it has been shown that MCJ is involved in the 

regulation of ABCB1 pump gene expression and chemotherapeutic resistance in cancer 

cell lines, through the control of c-Jun protein stability. 

Regulation of TNF expression and secretion 

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine produced by several 

cell types, including macrophages. The cytokine was first discovered as an anti-tumor 

factor. Rapid production and secretion of TNF in response to inflammatory signals is 

central in development of strong innate and adaptive immune responses, by binding of 

TNF to its receptor TNFRI, and activating numerous signaling pathways that are 

important inactivation of immune responses such as MAP kinases and NF-B and also by 

increasing vascular permeability which results in recruitment of immune cells; however, 

excessive and prolonged secretion of TNF can cause significant problems (88). Newly 

synthesized TNF quickly accumulates in the Golgi complex after stimulation and are 

transported to intermediate compartments before its delivery to the cell membrane. TNF 

biological activity is regulated by post-transcriptional events. There are two forms of 
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TNF: the full-length, type II trans-membrane protein, and the soluble form resulting from 

the porteolytic cleavage by the metaloprotease TNF-converting enzyme (TACE), that 

releases the active C-terminal portion from the cell surface (89, 90). 

TACE is a member of the ADAM (A Disintegrin and A Metalloprotease) family 

of proteases. Similar to other ADAM proteins, TACE is a multi-domain type I trans-

membrane protein, which contains a zinc-dependent catalytic domain and a disintegrin-

cysteine rich sequence. TACE is constitutively expressed in most cells, with a long half 

time of 8 hours when translocated to the plasma membrane (90, 91). TACE activity is 

normally repressed by its physiological inhibitor, tissue inhibitor metalloproteinase 3 

(TIMP3) that is a secreted protein.  Among the four TIMPs, TIMP3 is the only one that 

binds to the extracellular matrix and contains an amino acid sequence (PFG) that 

uniquely inhibits TACE activity (90, 92). TIMP3 is induced by molecules involved in 

inflammation, such as PMA. TACE has emerged as a candidate to target TNF production 

for the treatment of many inflammatory diseases. Although important, little is known 

regarding the physiological and tissue-specific roles of TIMP-3-regulated and TACE-

mediated TNF shedding (92, 93). The inducible deletion of c-Jun and JunB in epidermal 

cells in adult mice results in psoriasis-like inflammatory disease mediated by increased 

TNF secretion. These Jun proteins control TNF shedding in these cells by direct 

transcriptional activation of TIMP-3 (94). These and previous findings place Jun proteins 

as essential regulators of TNF production through the regulation of its transcription and 

surface shedding.



15 
 

 

 
Pathogenic species  

(B. burgdorferi sensu lato) 
Tick vector Location 

B. burgdorferi I. scapularis, I. pacificus&I. ricinus NE, NC & W USA, Europe 

B. garinii I. ricinus, I. persulcatus Europe & Asia 

B. afzelii I. ricinus, I. persulcatus Europe & Asia 

 

Table 1.1 Pathogenic B. burgdorferi, their respective tick vectors and geographic 

distribution 

 

B. burgdorferi sensu lato is comprised of the three genospecies of B. burgdorferi 

that cause human Lyme disease. There are other species of Borrelia that have been 

identified that are not able to cause infections or are minimally pathogenic. 
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Figure 1.1 The lifecycle of Ixodes scapularis 

 

The complete lifecycle of Ixodes ticks requires 2 years. Tick eggs are laid in the 

spring, and hatch as larvae in the summer. Larvae feed on small animals in the summer 

and early fall. The larvae may become infected with B. burgdorferi when feeding on 

these animals. Once a tick becomes infected, it can transmit the bacteria to other hosts. 

After this initial feeding, the larvae change into nymphs. Nymphs feed on rodents and 

other small mammals in late spring and early summer. It is at these times that nymphs 

can feed on humans and transmit the disease.  Nymphs molt into adult ticks in the fall, 

feeding and mating on large animals such as deer. In early spring adult females lay their 

eggs on the ground completing their two-year lifecycle.  
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CHAPTER II 

MATERIALS AND METHODS 

Cells 

JNK1- (24) and JNK2-deficient (68) C57BL/6 (B6) mice were used to purify 

splenic macrophages by positive selection, using a biotinylated antibody (Ab) against 

CD11b, CD8
+
 and CD4

+
 T cells (BD Pharmingen, La Jolla, CA).  The purity of the cells, 

as determined by flow cytometry, was >85%. The macrophage cell line RAW264.7 

(ATCC, Manassas, VA) was grown in RPMI medium (Sigma, St. Louis, MO) 

supplemented with 10% fetal calf serum. MCJ-deficient and C57BL/6 (B6) mice were 

used to purify bone marrow derived macrophages. 

All procedures that involved animals were in accordance with institutional 

guidelines for animal care at the University of Massachusetts at Amherst. 

Plasmids, small interfering RNA (siRNA), and transfections 

Plasmids containing a mutant (dominant-negative) version of human JNK1 

(dnJNK), constructed by replacement of Thr183 and Tyr185 by Ala and Phe, respectively 

(57), or the luciferase gene downstream of 2x AP-1 (27) or 5x NF-B (Stratagene, La 

Jolla, CA) response elements were used. The plasmids were transfected into 3 x10
6
 to 5 x 

10
6
 RAW264.7 cells using DEAE-Dextran (Promega, Madison, WI) according to the 

manufacturer’s protocol. The plasmid pBluescript SK(-) (SK) was used as a negative 

control in transfections with the plasmid containing dnJNK.siRNA targeting jnk1 mRNA 

(Ambion, Austin, TX) was used to transfect 5 x 10
5
 RAW264.7 cells using the siPort 
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Amine transfection agent (Ambion) following the manufacturer’s instructions. Control 

siRNA (Ambion) containing a random mixture of oligonucleotides was used in parallel. 

After 48 h, the cells were assessed for jnk1 mRNA by reverse transcriptase (RT) PCR 

(Table 1) and stimulated as described below.1x10
6
 RAW264.7 cells were transfected 

with an siRNA plasmid targeting MCJ or an HA-MCJ plasmid over expressing MCJ, 

using Lipofectamin 2000 (Invitrogen) according to the manufacturer’s protocol. Cells 

were incubated in the presence of hygromycin B (Invivogen, San Diego, CA) for two 

weeks and colonies were selected and further grown. siRNA targeting TIMP3 was used 

to transfect 1x10
6
 RAW264.7 and siMCJ cells using Lipofectamin 2000.  

In vitro Stimulations 

Low-passage B. burgdorferi N40 lysates were obtained from mid-log phase 

cultures by sonication. The protein concentration was determined by the Bradford method 

(Bio-Rad, Hercules, CA). The TRL1/TLR2 agonist N-palmitoyl-S-[2, 3-bis 

(palmitoyloxy)-(2RS)-propyl]-Cys-[S]-Ser-[S]-Lys4trihydrochloride (PAM3-CSK4) was 

purchased from Invivogen (San Diego, CA). In vitro stimulations were performed using 

10 µg/ml of a B. Burgdorferi lysate or 1 µg/ml of PAM3-CSK4.Live B. burgdorferi was 

grown in BSK-H medium (Sigma, St. Louis, MO), counted using dark filed microscopy 

and used at 10 or 25 MOI for stimulation of cells. The phosphorylation of STAT-1 in 

response to IFN stimulation of RAW264.7 cells was determined by stimulation with 100 

ng/ml of recombinant murine IFN (R&D Systems, Minneapolis, MN) for 30 min. 

Phospho-Tyr
701

 and total STAT1 (Cell Signaling, Danvers, MA) were then detected by 

immunobloting. 
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JNK activity determination 

Five million RAW264.7 or primary CD11b
+
 cells were incubated with 10 µg/ml 

of a B. burgdorferi lysate for the indicated times. The cells were washed and lysed, and 

JNK activity was determined using a JNK activity assay kit (Cell Signaling) according to 

the manufacturer's protocol. Briefly, JNK was immunoprecipitated from the stimulated 

cell extracts with a c-Jun fusion protein bound to agarose. The immunoprecipitate was 

incubated in kinase buffer (25mM Tris (pH 7.5), 5mM b-Glycerophosphate, 2mM DTT, 

0.1mM Na3VO4, and 10mM MgCl2) for 30 min at 30°Cand reaction was terminated 

with 3x SDS sample buffer. Phospho-c-Jun was then detected by immunoblotting using a 

rabbit phospho-c-Jun polyclonal Ab. 

Cytokine ELISA 

The levels of tumor necrosis factor (TNF) produced by B. Burgdorferi-stimulated 

primary macrophages and RAW264.7 cells were determined by capture enzyme-linked 

immunosorbent assay (ELISA), as described previously (95). 

Antibodies 

Anti-IB (Santa Cruz Biotechnology), anti-TLR1, and anti-TLR2 (Invivogen, 

San Diego, CA), Anti-TACE (eBioscience), Anti-Phospho-STAT1 (Cell signal), Anti-

STAT (Cell signal), Anti-c-Jun (Santa Cruz Biotechnology), Anti-Jun D (Santa Cruz 

Biotechnology), Anti-c-Fos (Santa Cruz Biotechnology), Anti-ATF-2 (Santa Cruz 

Biotechnology), Anti-TNF (BD biosciences), Anti-MCJ (produced by Dr. Mercedes 

Rincón, UVM). 
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Western blotting 

Immunoblotting was performed with stimulated and unstimulated cell extracts by 

lysing cells in lysis buffer (pH 7.4) containing 1% Triton X-100, 150 mM NaCl, 5 mM 

EDTA, 1 mM EGTA, 1 mM β-glycerol phosphate, 2.5 mM NaF, 2 mM sodium 

orthovanadate, 0.2 % sodium deoxycholate, 1 mM phenyl-methanesulfonyl fluoride 

(PMSF) and protease inhibitors, and protein levels were measured using the Bradford 

method. For TLR1 and TLR2 Western blots, a 7% polyacrylamide gel was used; for 

detection of MCJ and other low molecular weight proteins, a15% gel was used. 

Flow cytometry and microscopy 

Intracellular levels of TNF were determined by flow cytometry in siMCJ and 

RAW264.7 cells by incubating them with 25 MOI of B. burgdorferi and 1µl of Golgi 

plug for 6 hours followed by scraping and washing with PBS 1% FCS. Cells were 

incubated with cyotfix/cytoperm (BD Bioscience) for 20 min at 4
o
C and resuspended in 

50 µl of perm/wash solution and incubated with an TNF-Alexa 647 antibody or isotype 

control for 30 min at 4
o
C. Cells were washed and resuspended in 500µl of PBS + 1% 

FCS. Cells were analyzed using FACS. Surface levels of TLR2 were determined in 

RAW264.7 and siMCJ cells by incubating 1x10
6
 cells in 100 µl of PBS + 1% FCS with 

an anti-TLR2 antibody (1/100 dilution) conjugated with PE for 30 min at 4
o
C. The cells 

were washed and re-suspended in 500 µL of PBS + 1% FCS and analyzed in a LSRII 

flow cytometer (BD Bioscience). For microscopy 5x10
4
 cells were placed in a chamber 

slide over night, washed and fixed with 1% para-formaldehyde. The cells were 

permeabilized with PBS containing 0.01% triton-X100, blocked with 1% BSA and 
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stained with the appropriate antibody for 1 hour, then washed 5 times with PBS and 

stained with a secondary antibody conjugated with alexa fluor 568. Cells were analyzed 

by ApoTome microscopy. 

Real-time and RT-PCR 

Total RNA was isolated from primary macrophages and RAW264.7 cells using 

the TRIzol reagent (Invitrogen, Carlsbad, CA) accordingto the instructions of the 

manufacturer. PCR was performed to determine the expression of tlr1, tlr2, and the 

glyceraldehyde-3-phosphate dehydrogenase gene (gapdh) using 95°C denaturation, 55°C 

(tlr1 and tlr2) or 60°C (gapdh) annealing, and 72°Cextension temperatures with the 

primers listed in Table 1.2. 

Real-time RT-PCR to quantify tlr1 and tlr2 gene expression in dnJNK-transfected 

cells and BMMs from WT and MCJ-/- was performed using the primers listed in Table 

1.2, and 2 µl of cDNA in a final volume of 20 µl. The reaction mixture contained SYBR 

green (Quanta Biosciences, Gaithersburg, MD) and ROX (as a reference dye). The 

reaction was performed at an annealing temperature of 55°C. Relative expression of the 

gene was determined by amplifying ß-actin (Applied Biosystems, Foster City, CA) and 

was referred to control (SK)-transfected cells, according to the following formula where 

CT represents the threshold cycle for each gene: 



Induction(n fold)2[(CTtlr1CTactin)dnJNK(CTtlr1CTactin)SK] 
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 Real-time RT-PCR was also performed to quantify mcj, tlr1, tlr2, tnf, tace and 

timp3 gene expression in RAW264.7, siMCJ and HA-MCJ cells using 2 µl of cDNA and 

the protocol described above with an annealing temperature of 60 °C.  
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Primers used in the study 

Gene/target Sequencea Purpose 

tlr1 
5’-CGC AAA CCT TAC CAG AGT G-3’ 

5’-GAC TGG CGT ATG CCA AAC TA-3’ 

RT-PCR 

tlr1 
5’-CTG GAG TCT GTT GTA GGA C-3’ 

5’-GAC TGG CGT ATG CCA AAC TA-3’ 

Real-time PCR 

tlr2 
5’-AAG TGA AGA GTC AGG TGA TGG ATG TCG-3’ 

5’-GCA GAA TCA ATA CAA TAG AGG GAG ACG C-3’ 

RT-PCR 

Real-time PCR 

jnk1 
5’-TGT GGA ATC AAG CAC CTT CAC TCT GCT G-3’ 

5’-GCA AAC CAT TTC TCC CAT AAT GCA CCC-3’ 

RT-PCR 

gadph 
5'-CCA TCA CCA TCT TCC AGG AGC GAG-3’ 

5’-CAC AGT CTT CTG GGT GGC AGT GAT-3’ 

RT-PCR 

tlr1promoter 
5’-AAG AGC TCC TGA GGT AAG GGG AAA CAG AG-3’ 

5’-AAC CCG GGA AGA AAT TCA AGC ACT TCC TTG-3’ 

PCR 

tlr1promoter 

5’-AAT CAA CTT GTC AAA AAA GAC GCA TCC ATC 

CTG TAA CCA GCA CA-3’ 

5’-TGT GCT GGT TAC AGG ATG GAT GCG TCT TTT 

TTG ACA AGT TGA TT-3’ 

Site-directed 

mutagenesis 

tlr1-AP-1 (_230, _236) 5’-TAG TAA ACT GAC TGT AGT GA-3’ 
EMSA 

tlr1-AP-1 (_471, _480) 5’-GCA CAT GAA TGA TCT TCC CT-3’ 
EMSA 

tlr1-AP-1 (_502, _508 5’-AAA GAC GTG ATT AAC ATC CAT-3’ 
EMSA 

AP-1 consensus 5’-CGC TTG ATG ACT CAG CCG GAA-3’ 
EMSA 

tnfα 
5’-AGC CCA CGT CGT AGC AAA CCA C-3’ 

5’-ATC GGC TGG CAC CAC TAG TTG GT-3’ 

Real-time PCR 

timp-3  
5’-GGC CTC AAT TAC CG TAC CA -3’ 

5’-CTG ATA GCC AGG GTA CCC AAA A -3’ 

Real-time PCR 

tace 
5_-TGG GAC ACA ATT TTG GAG CA -3’ 

5’-CCT CCT TGG TCC TCA TTT GG-3’ 

Real-time PCR 

mcj 
5’-AAG TAA TCA CGG CAA CAG CAA GGA-3’ 

5’-GAA GGC TGC CAG GCT TTT ATT-3’ 

Real-time PCR 

 

Table 2.1 Sequences of the forward (F) and reverse (R) primers used for analysis                                       

of gene expression by PCR 
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Construction of tlr1-luc and tlr1(mut)-luc plasmids 

The proximal DNA fragment corresponding to 1 kb of the human tlr1 gene 

promoter region was sub-cloned upstream of the promoterless firefly luciferase (luc) gene 

in the vector pGL3-basic (Promega). The 1-kb promoter fragment was generated by PCR 

(Table 1) using genomic DNA isolated from HeLa cells as a template. The fragment was 

cloned into the pBAD-TOPO (Invitrogen) vector and sub-cloned using the SmaI and SacI 

restriction sites into the pGL3 vector, generating the plasmid pGL3-tlr1-luc. The 

construct was sequenced across both junctions to confirm the nucleotide sequence and the 

right orientation. Empty pGL3 was used as a control. The pGL3-tlr1(mut)-luc plasmid, a 

derivative of pGL3-tlr1-lucwith the AP-1-binding site deleted (nucleotides –502 to–508 

relative to the transcription start site, Figure 1.10), was constructed using the QuikChange 

II XL site-directed mutagenesis kit (Stratagene) according to the manufacturer's 

instructions. The primers used for the deletion of the 7 bp are listed in Table2. The 

mutations were confirmed by sequencing. 

Nuclear extracts and electrophoretic mobility shift assay (EMSA) 

Mini nuclear extracts were obtained as described previously (96) from 1x10
6
 

RAW264.7 cells unstimulated or stimulated with10 µg/ml of a B. burgdorferi lysate for 

16 h. Binding reactions were performed using 2 µg of nuclear protein in the presence of a 

specific 
32

P end-labeled double-stranded oligonucleotide as described previously (96) in 

the absence or presence of unlabeled oligonucleotides. The oligonucleotides used in this 

study are listed in Table 1.2. Supershift/competition assays were performed using 1 µl of 

http://iai.asm.org/cgi/content/full/75/10/5027#R26
http://iai.asm.org/cgi/content/full/75/10/5027#R26
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anti-c-Jun (N), c-Fos (4), JunD (329), ATF-2 (C-19), and CREB (H-74) Abs (Santa Cruz 

Biotechnology). 

Cytokine intracellular staining 

Intracellular staining was performed by incubating RAW264.7 cells for 6 hours 

with 25 MOI of B. burgdorferi and 1µl of Golgi plug. The cells were stained for the 

surface marker F4/80, then washed and re-suspended in cytofix/cytoperm solution for 20 

min to be fixed and permeabilized. Cells were stained in wash/perm solution for 30 min 

with anti-TFN antibody, washed and re-suspended in PBS + 1% FCS. 

Bone marrow derived macrophages (BMDM) 

Upon sacrifice, mouse legs were removed and tissue was eliminated from the 

pelvic and femoral bones. The bones were separated from the knee and dipped into 70% 

ethanol for 10 seconds to remove any contaminants. The ends of each bone were cut and 

the bone marrow was extracted using 25g needles and RPMI medium. The cells were 

eliminated of red blood cells and resuspended in RPMI supplemented with 20% of L292 

conditioned medium. The cells were incubated 6 to 8 days in conditioned media, washed, 

and incubated 24 h in normal RPMI prior to the experiments. 

TACE activity 

To measure cellular TACE activity, 1x10
6
 cells were washed and resuspended in 

400 µl of PBS + 1% FCS. 100 µl of cells were incubated in a glass cuvette with 10µM of 

TNF FRET (21) peptide (ANASPEC San Jose, CA). Cleavage of the FRET peptide by 

TACE results in the release of fluorescence that was measured in a TD20/20 luminometer 
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equipped with a fluorescent module (Turner Biosystems). Background florescence was 

measured at time zero just after addition of the FRET peptide with subsequent 

measurements at different time points after incubation at 37 °C. Florescence 

measurements were related to time zero measurements. Specific TACE activity was 

determined by subtraction of parallel measurements in cells treated with the inhibitor 

TAPI-2 (ENZO Life Sciences, Plymouth Meeting, PA). 

Statistical analyses 

Data are presented as the means and standard errors of at least three independent 

experiments or means and standard deviations for experiments performed in triplicate. 

The means of independent experiments were compared with two-way analysis of 

variance, followed by Bonferroni posttests, using the software Prism version 4.0. The 

means were considered statistically different when p was ≤ 0.05. 
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CHAPTER III 

RESULTS 

The role of JNK1 in macrophages and its involvement in the mechanism that 

regulates tlr1 gene transcription 

JNK activity regulates TNF production in response to B. burgdorferi 

The role played by the JNK pathway in phagocytic cell responses to pathogens 

mediated by TLRs is poorly understood. To address whether the interaction between B. 

burgdorferi antigens and phagocytic cells results in the activation of JNK, we stimulated 

the macrophage cell line RAW264.7 with a B. burgdorferi lysate. The cells were 

stimulated for 0, 20, 40, 60, 80 and 120 minutes and the activation of JNK was analyzed 

by Western blot of the phosphorylated form of c-Jun, a substrate of JNK. JNK activity 

was evident after 40 minutes of stimulation and decayed after 80 minutes (Fig. 3.1A).  

Total levels of c-Jun were also measured to ensure equal protein loading. We also 

analyzed JNK activity in primary macrophages isolated form C57Bl/6 mice. Purified 

splenic macrophages were stimulated with 10 g/ml of a B. burgdorferi lysate for 40 

minutes and JNK activity was analyzed by Western blotting. Activation of primary 

macrophages also resulted in the activation of JNK (Fig. 3.1B). These data indicated that 

the interaction of spirochetal antigens with phagocytic cells results in the activation of the 

JNK MAP kinase pathway.  

We then addressed the involvement of JNK activity in macrophage cytokine 

production in response to B. burgdorferi antigens. RAW264.7 cells were transfected with 

a dominant negative form of JNK1 (dnJNK1) (97), and stimulated with a B. burgdorferi 
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lysate or the TLR1/TLR2 agonist PAM3-CSK4, and the supernatants were analyzed 16 

hours after stimulation for the presence of TNF. Repression of JNK activity resulted in 

the reduction of TNF production compared to control transfected cells (Fig. 3.2A). We 

also purified primary macrophages from spleens of B6 mice; they were stimulated with a 

B. burgdorferi lysate or PAM3-CSK4 in the presence of increasing concentrations of the 

JNK1 specific inhibitor SP600125 (98) (Fig. 3.2B), showing specific contribution of 

JNK1activity to cytokine production by macrophage in response to B. burgdorferi. These 

results indicate that JNK1 activity is involved in B. burgdorferi-induced TNF production 

by macrophages. 
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Figure 3.1 JNK activity in RAW264.7cells and primary macrophages 

(A) RAW264.7cells (B) and purified splenic CD11b
+
cells were stimulated with a 

B. burgdorferi lysate for the indicated times (top) or 40 min (bottom) prior to assaying 

JNK activity in vitro with c-Jun as a substrate. Phospho-c-Jun was then detected by 

immunoblotting. 

 

 

 

 

A 

B 
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Figure 3.2 JNK activity regulates TNF production in response to B. burgdorferi 

(A) RAW264.7 cells were transfected with a plasmid containing dnJNK1 or a 

plasmid control (SK) and stimulated with a B. burgdorferi lysate (Bb) or PAM3-CSK4 for 

16 h. TNF levels in the stimulation supernatants were then quantified by ELISA. The 

results shown are the average plus standard error (SE) of three independent 

experiments.*, p< 0.001 and p< 0.01 for B. burgdorferi and PAM3-CSK4 stimulation, 

respectively. (B) RAW264 cells were stimulated with 10 µg/ml of a B. burgdorferi lysate 

(Bb) or 1 µg/ml of PAM3-CSK4 in the presence of increasing concentrations of the JNK 

inhibitor SP100625.TNF was quantified in the stimulation supernatants after 16 h. 

A B 
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TLR1/2-mediated responses are dependent on JNK activity 

Toll-like receptors (TLRs) play critical roles during the initiation of innate 

immunity and the development of specific cell-mediated immune responses (24). TLR 

engagement results in the activation of the mitogen-activated protein p38 and c-Jun N-

terminal kinases (JNK) (99). It has been shown that the interaction of B. burgdorferi 

lipoproteins with immune cells increase the expression of TLR1 and TLR2 (100). To 

substantiate the contribution of JNK activity on TLR1/TLR2-induced signaling events in 

macrophages, we analyzed the activation of JNK-dependent and independent 

transcription factors. JNK activity results in the phosphorylation of c-Jun and the 

formation of AP-1 complexes (54). To assess the contribution of JNK on macrophage 

responses to B. burgdorferi mediated by c-Jun, RAW264.7 cells were co-transfected with 

a plasmid containing the luciferase gene under the influence of AP-1 or NF-B response 

elements plus a plasmid containing dnJNK or a control plasmid. Cells were stimulated 

with a B. burgdorferi lysate and luciferase activity was measured after 16 hours. As 

expected, the repression of JNK activity during B. burgdorferi stimulation resulted in 

decreased AP-1 transcriptional activity (Fig. 3.3 A). As a control, we also analyzed the 

activation of JNK-independent signaling pathways in response to B. burgdorferi antigens 

by assessing NF-B transcriptional activity. Surprisingly, the repression of JNK activity 

also resulted in reduced NF-B transcriptional activity (Fig. 3.3B). No reports have 

associated JNK activity and the activation of NF-B. Since the repression of JNK activity 

during stimulation with TLR ligands results in lower TNF production, and this cytokine 

activates NF-B (101), we analyzed I-Bdegradation, by transfecting RAW264.7 cells 

with dnJNK or a control plasmid and stimulation with a B. burgdorferi lysate at time 
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points in which the production of the cytokine is not evident. Cells transfected with 

dnJNK plasmid resulted in decreased degradation of I-B compared to controls (Fig. 

3.4A). The results were confirmed by band quantitation of the I-B band using the 

software ImageJ (Fig. 3.4B). 

In order to assess whether the repression of JNK in phagocytic cells results in 

both TLR-dependent and independent cell responses, we determined the effect of JNK 

repression in response to IFN-induced signals. RAW264.7 cells were transfected with 

dnJNK or a control plasmid and stimulated with rmIFN for 30 minutes. Phospho-STAT1 

and total STAT1 levels were measured by immunoblot. The phosphorylation of STAT1 

induced by IFN was not affected by the presence of the dnJNK-containing plasmid 

inRAW264.7 cells (Fig. 3.5), indicating that JNK affects TLR1/2-mediated, but not TLR-

independent responses in macrophages.  
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Figure 3.3 JNK regulates macrophage responses to B. burgdorferi 

RAW264.7 cells were co-transfected with a plasmid containing the luciferase 

gene under the influence of AP-1 (A) or NF-B (B) response elements plus a plasmid 

containing the dnJNK form or a plasmid control (SK). The cells were then stimulated 

with a B. burgdorferi lysate (Bb) for 16 h, and luciferase activity was assayed. The results 

shown are the average standard error of four and three independent experiments, 

respectively. *, p< 0.001 (AP-1-luc) and p< 0.05 (NF-B-luc). 
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Figure 3.4 Inhibition of JNK results in decreased degradation of IB

RAW264.7 cells were transfected with a plasmid containing the dnJNK form or a 

plasmid control (SK) and stimulated with a B. burgdorferi lysate for the indicated times. 

The cells were then lysed and assessed for IBα content by immunoblotting (A). Band 

quantitation was performed with the Java-based software ImageJ (B). The experiment 

shown is representative of three performed. 
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Figure 3.5 JNK does not affect TLR independent responses 

RAW264.7 cells were transfected with a plasmid containing the dnJNK form or a 

plasmid control (SK) and stimulated with recombinant murine IFN- for 30 min. 

Phospho-STAT1 and totalSTAT-1 levels were determined by immunoblotting. 
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JNK1 regulates the expression of the tlr1 gene 

The interaction of TLRs with their specific ligands leads to the activation of 

different cell signaling components. Lipidated proteins of B. burgdorferi bind 

heterodimers of TLR-1 and TLR-2, leading to the up regulation of inflammatory genes 

and surface receptors. To assess the hypo-responsiveness of these cells to B. burgdorferi 

antigens and to test whether JNK is involved in the regulation of expression of the 

components involved in TLR-mediated responses, we analyzed tlr1 and tlr2 levels in 

macrophages. cDNA was generated from RAW264.7 cells transfected with dnJNK and 

control plasmids and expression levels of tlr1 and tlr2 were assessed by PCR. Cells 

transfected with dnJNK showed lower expression levels of tlr1 compared to controls; 

however the presence of dnJNK did not have any effect on tlr2 gene expression (Fig. 

3.6A). Furthermore, we determined tlr1 and tlr2 gene expression using qPCR in 

RAW264.7 cells transfected with the dnJNK or control plasmids. The level of tlr1 gene 

expression was greatly reduced in cells transfected with dnJNK while no difference was 

observed in the level of tlr2 gene expression (Fig. 3.6B). To assess TLR1 protein levels, 

we transfected RAW264.7 cells with the dnJNK and control plasmids. Protein levels 

were determined by Western blotting and protein input was assessed by immunobloting 

with anti-Actin. Correlating with gene expression levels, TLR1 protein levels were 

reduced in cells with repressed JNK activity compared to control cells, while TLR2 

protein levels were unaffected by repressed JNK activity (Fig. 3.6C). 
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To further demonstrate the regulation of tlr1 gene expression by JNK, we 

analyzed the level of expression of both tlr1 and tlr2 genes in primary macrophages. 

Macrophages were purified from spleens of WT, JNK1 and JNK2-deficient mice. As 

expected, tlr2 mRNA levels were not affected by the lack of either JNK1 or JNK2, while 

tlr1 mRNA levels were reduced in JNK1-, but not JNK2-deficient macrophages (Fig. 

3.6D).  Furthermore, we transfected RAW264.7 cells with siRNA specific for jnk1or a 

control siRNA mixture (siNC) and extracted RNA to determine the mRNA levels of tlr1 

and tlr2. Equal input was determined by amplification of glyceraldehyde-3-phosphate 

dehydrogenase (gapdh) mRNA. The silencing of JNK1-encoding mRNA in RAW264.7 

cells resulted in lower tlr1 gene expression compared to controls (Fig. 3.6E), suggesting 

that JNK1 activity specifically regulates the expression of TLR1.  

To assess the contribution of the JNK isoforms on TNF production in the 

presence of B. burgdorferi, we stimulated JNK1 and JNK2-deficient CD11b
+
 cells with 

B. burgdorferi lysate for 16 hours and the supernatants were analyzed by ELISA. Both 

JNK1 and JNK2 deficient macrophages produced lower levels of TNF, compared to 

wild-type macrophages (Fig. 3.7A and B), indicating that JNK1 and JNK2 regulate the 

production of TNF through different mechanisms that does not involve the regulation of 

TLR1 in the case of JNK2. Furthermore, RAW264.7 cells were transfected with siRNA 

against JNK1 or a control siRNA and stimulated with a B. burgdorferi lysate or 

PAM3CSK4 for 16 hours and supernatants were assessed for TNF by ELISA. The cells 

transfected with siJNK1 produced significantly lower levels of TNF compared to control 

cells (Fig. 3.7C). In correlation, the induction of TNF by the TLR4, TLR9, and TLR5 
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agonists lipopolysaccharide, poly(dI-dC), and flagellin, respectively, was lowered in cells 

transfected with the plasmid containing dnJNK (Fig. 3.7D).  

To demonstrate whether JNK1 regulates TLR1/2-mediated responses solely 

through the control of TLR1 expression; RAW264.7 cells were co-transfected with a 

plasmid that drives the constitutive expression of TLR1 (UNO), plus a plasmid 

containing the dnJNK form or a control plasmid. Twenty four hours after transfection, the 

cells were stimulated with a B. burgdorferi lysate or PAM3CSK4 and TNF levels in the 

supernatants were measured. The ectopic expression of TLR1 prevented the inhibition of 

TNF production in the presence of the dnJNK plasmid in response to B. burgdorferi 

antigens and PAM3CSK4 (Fig. 3.8), confirming that JNK1 controls TLR1/2-mediated 

signals in macrophages solely by regulating the expression of TLR1.  
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Figure 3.6 JNK1 regulates the expression of the tlr1 gene and TLR1 protein 

(A) RAW264.7 cells were transfected with a plasmid containing a dnJNK form or 

a plasmid control (SK), and total RNA was extracted and assessed by RT-PCR or (B) 

real-time RT-PCR for the expression of tlr1 andtlr2 mRNAs. Equal input of RNA was 

assessed by the amplification of the housekeeping gene gapdh. (C) The cells were also 

used to determine the levels of TLR1 and TLR2 by Western blotting. Protein input was 

assessed by immunobloting with an anti-actin Ab. (D) CD11b
+ 

cells were purified from 

B6 (WT) and JNK1- and JNK2-deficient mice. RNA was extracted and subjected to RT-

PCR for the expression of tlr1and tlr2. RNA input was assessed by the amplification of 

gapdh mRNA. (E) RAW264.7 cells were transfected with JNK1 siRNA or an siRNA 

control (siNC) and used to extract RNA to determine the mRNA levels of jnk1, tlr1, and 

tlr2. Equal input was determined by amplification of gapdh mRNA. 
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Figure 3.7 Contribution of the JNK isoforms to TNF production in response to B. 

burgdorferi 

 

(A) (B) Purified CD11b
+
 cells from B6 (WT) and JNK1- and JNK2-deficient 

mice were unstimulated (Unst.) or stimulated with a B. burgdorferi lysate (Bb). The 

levels of TNF were determined in the stimulation supernatants after 16 h. (C) RAW264.7 

cells were transfected with siRNA oligonucleotides specific for JNK1 or control 

oligonucleotides (siNC). Forty-eight hours later, the cells were stimulated for 16 h with a 

B. burgdorferi lysate (Bb) or PAM3-CSK4 and assessed for TNF by ELISA. The results 

represent the average plus standard error (SE) of three independent experiments. *, p< 

0.05. (D) dnJNK1-transfected RAW264.7 cells were stimulated with lipopolysaccharide 

(LPS), poly (dI-dC), and flagellin, and TNF was measured16 h later. 
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Figure 3.8 JNK1 regulates TLR1/2-mediated responses solely through the control of 

TLR1 expression 

RAW264.7 cells were co-transfected with a plasmid encoding TLR1 under the 

influence of a constitutively expressed promoter (UNO) or a control plasmid (GL3) plus 

a plasmid containing the dnJNK form or the empty plasmid (SK). All cells were 

transfected with the same amount of plasmid. The cells were then stimulated with a B. 

burgdorferi lysate (Bb) or PAM3CSK4. TNF levels in the supernatants were determined 

16 h after stimulation. The results shown represent the average plus SE of three 

independent experiments. *,p< 0.05 compared to control-, UNO plus control-, or UNO 

plus dnJNK-transfected cells stimulated with B. burgdorferi and PAM3-CSK4. 

 

 

 

 

 

 

 

 



42 
 

JNK1 regulates tlr1 promoter activity 

To further demonstrate that JNK activity regulates tlr1 gene transcription, we 

cloned the proximal 1 kb promoter region of the tlr1 gene (Fig. 3.9) upstream of a 

promoterless luciferase gene. RAW264.7 cells were co-transfected with a plasmid 

containing 1 kb proximal tlr1 promoter, and the dnJNK plasmid or a plasmid control, 

cells were then stimulated with a B. burgdorferi lysate, PAM3CSK4 or left unstimulated 

and Luciferase activity was measured. The transfection of RAW264.7 cells with this 

construct resulted in basal levels of promoter activity while the activity of the promoter 

was enhanced by the stimulation of the cells (Fig. 3.10A). The co-transfection of 

RAW264.7 cells with the dnJNK-containing plasmid resulted in the repression of 

promoter activity (Fig. 3.10A), confirming that JNK is involved in the regulation of 

TLR1 activity. The increased Luciferase expression correlated with augmented TLR1 

protein levels in RAW264.7 cells that had been stimulated with a B. burgdorferi lysate 

(Fig. 3.10B).  

Three putative AP-1 binding sites were identified that could serve as potential 

AP-1 binding sites in the tlr1 promoter (Fig. 3.9). Double stranded oligonucleotides that 

spanned these regions were used for EMSAs (Table 2.1). From these three sites only the 

oligonucleotide based on the sequence found at -502 to -508 showed binding of nuclear 

extract preparations of unstimulated and B. burgdorferi stimulated RAW264.7 cells (Fig. 

3.11A). We observed two binding complexes at this site. The lower complex increased in 

B. burgdorferi-stimulation RAW264.7 compared to unstimulated cells and was competed 

when the binding reaction contained anti-c-Jun and anti-c-Fos Abs (Fig. 3.11B). This 

complex was also competed by unlabeled double stranded oligonucleotides 
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corresponding to the AP-1 consensus binding site and coincided with the complex 

obtained with a consensus AP-1 binding site oligonucleotide (Fig. 3.11C). The presence 

of ATF-2 and JunD antibodies inhibited the formation of both complexes, while 

antibodies to CREB did not compete (Fig. 3.11B). These results suggested that this 

region serves as a docking area for two complexes that contain ATF-2 plus JunD, and c-

Jun plus c-Fos. These data also suggested that the upper complex is involved in the 

constitutive expression of the tlr1 gene, while the lower complex is formed in response to 

stimulation with B. burgdorferi antigens. Since ATF-2 and JunD are substrates of JNK 

(96), this interpretation is in agreement with the control of basal levels of tlr1 gene 

expression by JNK. Overall, these data demonstrated the presence of functional AP-1 

binding sites in the proximal promoter region of the tlr1 gene.  

We further tested the contribution of the -502 to -508 binding site to the 

regulation of tlr1 gene expression mediated by JNK. We first deleted this binding site 

from the tlr1 promoter region, and then cloned the deletion mutant upstream of the 

luciferase gene generating the plasmid tlr1(-502,-508) [tlr1 (mut)]-luciferase. 

RAW264.7 cells were then co-transfected with plasmids containing tlr1-luc or tlr1 (mut)-

luc with dnJNK or a control plasmid. Cells were rested for 48 hours and stimulated with a 

B. burgdorferi lysate or PAM3CSK4, and luciferase activity was measured. The deletion 

of the AP-1 binding site on the tlr1 proximal promoter region resulted in decreased 

promoter activity that was not enhanced by stimulation (Fig. 3.12). Furthermore, 

compared to the wild-type promoter, the mutant form was not affected by the co-

expression of the dominant negative form of JNK (Fig. 3.12). Overall, these data 

demonstrate that JNK1 activity regulates the expression of TLR1 in macrophages.
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Figure 3.9 Structure of the human tlr1 gene 

The 1-kb proximal promoter and the gene encoding TLR1 are shown. The 

proximal promoter sequence is shown in the magnified box, with the three putative AP-1 

binding sites highlighted. The sequence corresponds to nucleotides 5956071to 5955050 

of contig NT016297 (NCBI/NIH). 
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Figure 3.10 JNK1 regulates tlr1 promoter activity 

(A) RAW264.7 cells were co-transfected with a plasmid containing the luciferase 

gene downstream of the 1-kb proximal tlr1 promoter and the dnJNK plasmid or a plasmid 

control (SK) and stimulated with a B. burgdorferi lysate (Bb) or PAM3-CSK4or left 

unstimulated (Unst.). Luciferase activity (AU, arbitrary units) was measured after 16 h of 

stimulation. The data presented correspond to the average plus standard deviation of 

triplicate determinations of one of four experiments performed. *, p< 0.05. (B)Western 

blot of RAW264.7cells stimulated with 10 µg/ml of a B. burgdorferi lysate for 16 h using 

anti-TLR1 Ab. Equal protein input was assessed with anti-Actin Ab 
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Figure 3.11 Regulation of tlr promoter binding is mediated by JNK 

(A) EMSA showing nuclear extracts binding to oligonucleotides (oligo) 

containing putativeAP-1 binding sites in the proximal 1-kb tlr1 promoter. The reactions 

were performed in the absence or presence of an excess (100x) of unlabeled (cold) 

oligonucleotides. (B) EMSA of nuclear extracts of RAW264.7 cells unstimulated and 

stimulated with a B. burgdorferi lysate for 30 min. The reactions were performed in the 

absence or the presence of Abs against c-Jun, JunD, c-Fos, CREB, and ATF-2 and in the 

absence or presence of unlabeled (cold) oligonucleotides corresponding to the tlr1 

promoter or the AP-1 consensus binding sequence. The arrows indicate the constitutive 

and B. burgdorferi-enhanced complexes formed. (C) EMSA of tlr1-derived and 

consensus AP-1 binding oligonucleotides with nuclear extracts from unstimulated or B. 

burgdorferi-stimulated RAW264.7 cells 
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Figure 3.12 Contribution of the 502 to 508 binding site to the regulation of tlr1gene 

expression mediated by JNK 

RAW264.7 cells were co-transfected with plasmids containing tlr1- or 

tlr1(502,508) [tlr1(mut)]-luciferase and a plasmid containing dnJNK or a plasmid 

control (SK). After48 h, the cells were stimulated with a B. burgdorferi lysate (Bb) 

orPAM3-CSK4or left unstimulated (Unst.). Luciferase activity was measured 16 h post 

stimulation. 
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Figure 3.13 JNK1 regulation of tlr1 gene expression model 
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The contribution of MCJ to the regulation of macrophage responses to B. 

burgdorferi  

MCJ expression in innate immune cells results in regulation of c-Jun levels 

MCJ is a co-chaperone that belongs to the DnaJ family. The mcj gene is expressed 

in normal ovarian epithelial cells but not expressed or expressed at very low levels in 

many ovarian tumors and ovarian carcinoma cell lines (80). MCJ regulates the expression 

of ABCB1 pumps mediated by c-Jun in the MCF-7 breast cancer cell line, and loss of 

MCJ is involved in cancer resistance to chemotherapeutic drugs. Regulation and 

involvement of MCJ in these processes has been linked directly to its ability to regulate 

the stability of the c-Jun protein. However, the function of MCJ in innate immune cells, 

specifically in macrophages, is unknown. Since JNK regulates innate immune cell 

responses to B. burgdorferi through c-Jun, and MCJ regulates c-Jun protein levels in 

cancer cells, we were interested in determining the possible functions of MCJ in 

macrophages.  

We first determined whether MCJ is expressed in macrophages. MCJ levels were 

determined by purifying CD11b
+
, CD4

+
 and CD8

+
 T cells from the spleens of wild type 

C57/B6 mice. Base on the information obtained from our collaborator (Dr. Mercedes 

Rincón, UVM) CD4
+
 and CD8

+
T cells were used as negative and positive controls, 

respectively and compared to CD11b
+
 cells (macrophages). The cells were lysed and 

Western blot was performed using 15% SDS-PAGE to detect MCJ. MCJ protein was 

detected in CD11b
+
 cells and at higher levels in CD8

+
 T cells; however MCJ protein was 

not detectable in CD4
+
 T cells (Fig. 3.14A). We next performed ApoTome fluorescence 

microscopy to detect MCJ. RAW264.7 cells were grown in chamber slides, fixed, 
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permeablized and stained with a rabbit anti-mouse MCJ antibody followed by anti rabbit 

IgG conjugated to Alexa Fluor-568. MCJ was readily detected in CD11b
+
 and CD8

+
 T 

cells; however, MCJ was detected at extremely low levels in CD4
+
 T cells probably due 

to other contaminating cells in the preparation (Fig. 3.14B). RNA was also extracted from 

these cells and qRT-PCR was performed using mcj-specific primers. The expression 

levels of mcj correlated with the protein levels and microscopy results (Fig. 3.14C). 

These data demonstrated that MCJ is expressed in macrophages. To assess the role that 

MCJ plays in macrophages, we first generated stably transfected RAW264.7 cells with a 

plasmid expressing siRNA against MCJ (siMCJ), or a plasmid encoding MCJ with 

Hemagglutinintag (HA) (HA-MCJ). We first assessed whether cells with repressed MCJ 

or cells that over-express the cochaperone showed variation in c-Jun protein levels, 

similarly to what has been described in cancer cells. RAW264.7 and siMCJ cells were 

lysed and Western blot was performed for c-Jun. c-Jun protein levels were elevated in 

cells with repressed MCJ compared to control cells (Fig. 3.15A). In correlation, cells 

over-expressing MCJ had lower levels of c-Jun compared to control cells (Fig. 3.15B). 

We confirmed these data by generating Bone marrow derived macrophages (BMDM) 

from WT and MCJ-deficient mice. MCJ-deficient cells contained higher levels of c-Jun 

compared to WT controls (Fig. 3.15C). Equal loading for these experiments was verified 

using actin protein levels. Overall these data confirmed that MCJ regulates c-Jun protein 

levels (86). 
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Figure 3.14 MCJ is expressed in macrophages 

(A) Immunoblot of purified CD4
+
 (negative control), CD8

+
 (positive control) and 

CD11b
+ 

cells to determine the presence of MCJ protein. (C) qRT-PCR with RNA 

extracted fromCD4
+
, CD8

+
 and CD11b

+
 to determine mcj gene expression levels. (B) The 

cells were fixed, permeabilized and stained with a rabbit anti-mouse MCJ antibody. The 

nuclei were stained with DAPI. 
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Figure 3.15 MCJ regulates c-Jun protein levels in macrophages 

(A) Immunoblot analysis of RAW264.7 and siMCJ cells was performed to 

determine the c-Jun protein levels. c-Jun levels were also determined by immunoblot 

analysis in (B) HA-MCJ and(C) MCJ-/- BMDM s. 7% gel was used to run the proteins. 

Equal loading was measures by determining the levels of Actin protein. 
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MCJ modulates immune receptor expression and regulates macrophage responses 

to B. burgdorferi 

 

 

To determine whether MCJ is involved in the regulation of macrophage responses 

to B. burgdorferi, we first analyzed AP-1 transcriptional activation in response to B. 

burgdorferi stimulation using an AP-1-luciferase reporter plasmid. RAW264.7 and 

siMCJ cells were transfected with an AP-1-LUC plasmid and stimulated with live B. 

burgdorferi (Bb) at 25 MOI for 16 hours, washed and lysed to measure luciferase 

activity. siMCJ cells showed increase luciferase activity compared to control cells (Fig. 

3.16A). We next transfected HA-MCJ cells with the AP-1-luciferase plasmid and 

assessed luciferase levels in these cells. Over expression of MCJ resulted in reduced 

levels of AP-1 transcriptional activity compared to control cells (Fig. 3.16B). These 

results indicate that MCJ regulates c-Jun-mediated responses in macrophages. 

To further investigate the role that MCJ plays in macrophage responses to B. 

burgdorferi, we generated BMDM from WT and MCJ-deficient mice and extracted 

RNA. Since AP-1 regulates the expression of the tlr1 gene, we then assessed the 

expression levels of the tlr1 gene by qPCR. Normalization of gene expression was 

performed using actin primers. The expression levels of thetlr1gene were elevated in 

MCJ-deficient cells compared to B6 controls (Fig. 3.17A). We next determined the 

contribution of MCJ to tlr1gene expression in siMCJ and RAW264.7 cells. As expected, 

tlr1 expression levels were higher in siMCJ cells than controls (Fig. 3.17B). The 

expression of the tlr1 gene was also measured in HA-MCJ cells using qRT-PCR.  HA-

MCJ cells expressed lower levels of tlr1 compared to control cells (Fig. 3.17C). These 

results were complemented with the analysis of TLR1 protein levels by Western blot. 
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MCJ-/- cells had higher levels of TLR-1 thanWT macrophages (Fig. 3.17D). The same 

result was obtained with siMCJ cells compared to RAW264.7 macrophages (Fig. 3.17E). 

Consistently, the TLR-1 protein levels in HA-MCJ cells were lower compared to controls 

(Fig. 3.17F). The results of TLR-1 protein levels in MCJ-/-, siMCJ and HA-MCJ 

correlated with the tlr1 gene expression level of these cells. These data show that MCJ 

regulates TLR-1 expression in macrophages. 
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Figure 3.16 MCJ regulates AP-1 activity in responses to B. burgdorferi 

RAW and siMCJ (A) cells or HA-MCJ cells (B) were transfected with an AP-1-

luc plasmid and stimulated with live B. burgdorferi for 16 hours. Luciferase activity was 

then measured in cell lysates. The data correspond to the average of triplicate 

determinations. *, p< .05  

B 
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Figure 3.17 tlr1 gene and protein levels are regulated by MCJ 

Real-time RT-PCR for the expression of tlr1 mRNAs in (A) MCJ-/- BMDM, (B) 

siMCJ and (C) HA-MCJ cells. Equal input of RNA was assessed by the amplification of 

the housekeeping gene actin. (D) MCJ-/- BMDM, (E) siMCJ and (F) HA-MCJ cells were 

also used to determine the levels of TLR1 by immunobloting. Protein input was assessed 

by immunobloting with an anti-actin Ab. The data correspond to the average of triplicate 

determinations. *, p< .05  
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MCJ regulates tnf gene expression and its release from macrophages in response to 

B. burgdorferi 

TNF is one of the cytokines produced by innate immune cells in response to TLR 

ligation. We have shown that MCJ is involved in regulating macrophage responses that 

are c-Jun dependent. To assess whether MCJ has any effect on the production of TNF by 

macrophages, we first measured tnf gene expression in WT and MCJ-deficient BMDM; 

we also determined tnf gene expression in RAW264.7 and siMCJ cells. The cells were 

incubated for 16 hours with (25 MOI) and without B. burgdorferi and RNA was extracted 

from these cells to generate cDNA. qRT-PCR was performed on each condition using 

TNF-specific primers. MCJ-deficient macrophages produced increased levels of tnf 

compared to WT controls (Fig. 3.18A). The results from RAW264.7 and siMCJ cells 

followed the same trend as those obtained with WT and MCJ-/- macrophages showing 

higher levels of tnf gene expression in the presence of repressed MCJ expression (Fig. 

3.18 B). In correlation, tnf gene expression in HA-MCJ cells was reduced compared to 

control cells (Fig. 3.18 C). 

We next analyzed intracellular levels of TNF. Unstimulated and B. burgdorferi 

stimulated RAW264.7 and siMCJ cells were incubated with Golgi plug and TNF was 

stained using an anti-TNF conjugated with Allophycocyanin (APC) conjugated antibody. 

Unstimulated siMCJ cells expressed higher levels of TNF compared to RAW264.7 cells, 

and TNF levels increased substantially in siMCJ cells stimulated with B. burgdorferi 

compared to stimulated controls (Fig. 3.19 A and B). 

Next we measured the levels of secreted TNF. We plated 1x10
6
 cells per well of 

BMDM that were generated from WT and MCJ-deficient mice. The cells were stimulated 
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with live B. burgdorferi (25 MOI) and the supernatants were collected after 16 hours for 

TNF determination. Surprisingly, MCJ-deficient macrophages produced significantly 

reduced levels of TNF compared to WT cells (Fig. 3.20 A). To confirm this finding we 

performed the same experiment using RAW264.7 and siMCJ cells, showing that TNF 

was significantly (P< 0.001) lower in siMCJ cells compared to controls (Fig. 3.20 B). In 

correlation, HA-MCJ cells produced substantially higher levels of TNF compared to 

controls (Fig. 3.20 C). These results showed that TNF secretion is reduced in the absence 

of MCJ even though the cytokine is produced at higher levels. These findings suggested 

that MCJ may regulate TNF converting enzyme (TACE) expression and/or activity and 

therefore, TNF release from the plasma membrane. We first analyzed TACE expression 

in siMCJ, HA-MCJ and RAW264.7 cells. 1x10
6
 cells were lysed and protein levels were 

measured by Western blot. The levels of TACE were higher in siMCJ cells and reduced 

in HA-MCJ cells compared to controls (Fig. 3.21 A). To confirm these findings, 

RAW264.7 and siMCJ cells were grown in chamber slides, fixed and permeabilized and 

TACE levels were assessed by fluorescence microscopy. siMCJ cells contained higher 

levels of TACE compared to control cells (Fig. 3.21 B). cDNA was also generated from 

1x10
6 

RAW264.7and siMCJ cells as well as WT and MCJ-/- BMDM to perform qRT-

PCR analysis of tace gene expression. siMCJ cells expressed higher levels of tace (Fig. 

3.21 C and D). These results suggested that the level of TACE expression is not a 

contributing factor in the regulation of TNF protein secretion in cells with reduced MCJ 

levels. We next determined TACE enzymatic activity in cells with repressed or absent 

MCJ. 2.5x10
5
 RAW264.7 and siMCJ cells were placed in glass cuvettes with a TNF-

FRET substrate peptide and levels of florescence released was measured and recorded, as 
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indicative of TACE activity. In contrast to higher TACE levels, TACE enzymatic activity 

was decreased in siMCJ cells compared to controls (Figure 3.22). 

 It has been demonstrated that Jun proteins control TNF shedding in the epidermis 

by direct transcriptional activation of tissue inhibitor of metalloproteinase-3 (TIMP-3), an 

inhibitor of TACE (22). Because MCJ regulates c-Jun stability, we analyzed timp-3 

expression in MCJ-/- BMDM and siMCJ cells by qRT-PCR using specific primers. 

Unstimulated MCJ-deficient macrophages and siMCJ cells expressed higher levels of 

timp-3 compared to controls, with a more substantial increase in siMCJ cells stimulated 

with B. burgdorferi (Fig. 3.23 A and B).  To determine whether MCJ-mediated increased 

TIMP-3 expression plays a role in the regulation of TNF release by MCJ, we transfected 

RAW264.7 and siMCJ cells with siRNA specific for timp-3. The cells were rested for 48 

hours, and then stimulated with B. burgdorferi for eight hours. TNF levels were measured 

from control transfected RAW264.7, control transfected siMCJ, and siMCJ cells that 

were transfected with siTIMP-3. As expected, control transfected siMCJ cell secreted 

TNF levels that were reduced compared to control transfected RAW264.7 cells (Fig. 3.24 

A). In contrast, TNF levels were significantly P < 0.01 higher in siTIMP-3 transfected 

siMCJ cells compared to control transfected siMCJ cells. qPCR was performed using 

timp-3 specific primers to ensure that timp-3 gene expression had been repressed by the 

siRNA (Fig. 3.24 B). In order to show that the reduced expression of TIMP-3 had 

resulted in increased TACE activity, we also analyzed fluorescence release from the 

TACE FRET substrate in siMCJ cells transfected with thetimp-3-specific siRNA. As 

expected, siTIMP-3 transfected siMCJ cells had increased TACE activity compared to 

control transfected siMCJ cells (Figure 3.25), functionally demonstrating that the siRNA 
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had resulted in repressed TIMP-3 production. Overall, these data demonstrate that MCJ 

regulates TIMP-3 expression, TACE activity and the release of TNF by macrophages. 
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Figure 3.18 MCJ controls tnf gene expression in macrophages 

(A) Real-time RT-PCR for the expression of tnf mRNAs in (A) MCJ-/- BMDM, 

(B) siMCJ unstimulated or stimulated with B. burgdorferi for 16 hours and (C) 

unstimulated HA-MCJ cells was performed. Equal input of RNA was assessed by the 

amplification of the housekeeping gene actin. *, p< .05  

B A 

C 
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Figure 3.19 Intracellular TNF levels in RAW264.7and siMCJ cells 

(A) Intracellular staining to determine TNF levels in RAW264.7 and siMCJ cells 

Unstimulated and B. burgdorferi stimulated for 6 hours in the presence of Golgi plug. (B) 

Histogram analysis of TNF intracellular staining.  
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Figure 3.20 MCJ regulates the secretion of TNF in macrophages 

TNF levels in the stimulation supernatants from (A) MCJ-/- BMDM, (B) siMCJ 

and (C) HA-MCJ cells were quantified by ELISA. Cells were stimulated with 25 MOI of 

B. burgdorferi for 16 hours. The results shown are the average plus standard error (SE) *, 

p< .01   

A B 

C 
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Figure 3.21 Increased TACE levels in cells with repressed or absent MCJ 

(A) Immunoblot of TACE protein in RAW, HA-MCJ and siMCJ cells. Protein 

input was assessed by immunobloting with an anti-actin Ab. (B) Intracellular staining of 

TACE (PE) levels in RAW and siMCJ cells, and nuclear staining blue (DAPI).(C) Real-

time RT-PCR for the expression of tace mRNAs in (C) siMCJ (D) MCJ-/- BMDM and 

(E) HA-MCJ was performed. Equal input of RNA was assessed by the amplification of 

the housekeeping gene actin. The data correspond to the average of triplicate. *, p< .05  

 

A 

B 
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Figure 3.22 Decreased TACE activity in cells with repressed expression of MCJ 

Enzymatic activity of TACE was determined in Raw and siMCJ cells using FRET 

peptide at indicated time points. 
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Figure 3.23 MCJ regulates timp3gene expression in macrophages 

Real-time RT-PCR for the expression of timp3 mRNAs in (A) MCJ-/- BMDM 

(B) siMCJ cells unstimulated or B. burgdorferi stimulated for 16 hours was performed. 

Equal input of RNA was assessed by the amplification of the housekeeping gene actin.  
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Figure 3.24 Repression of TIMP-3 expression results in increase TNF cytokine 

secretion in cells with reduced MCJ 

(A) RAW264.7 cells were transfected with control siRNA and siMCJ transfected 

with siTIMP3. TNF levels in unstimulated and stimulation supernatants were quantified 

by ELISA. Cells were stimulated with 25 MOI of B. burgdorferi for 16 hours. (B)  qPCR 

analysis of timp3 as a control for transfection efficiency. The results shown are the 

average plus standard error (SE) *, P< 0.001 and p< .01   

A B 
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Figure 3.25 Repression of TIMP-3 expression results in increase TACE activity in 

cells with reduced MCJ 

Enzymatic activity of TACE was determined in siMCJ cells transfected with 

siTIMP3 using FRET peptide at indicated time points. Non specific siRNA transfected 

RAW264.7 and siMCJ cells were used for control. The data correspond to the average of 

triplicate determinations. 
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CHAPTER IV 

CONCLUSIONS 

The interaction of pathogen-associated molecular patterns with the germ line-

encoded TLRs is a fundamental feature of the immune response associated with 

infection. It is becoming evident that these interactions in innate immune cells have 

profound consequences for the ability of the body to mount efficient or detrimental 

responses to pathogens. Thus, deficiencies in TLR1, TLR2, or the adaptor protein 

MyD88 lead to increased B. burgdorferi burdens in mice (37, 102, 103), underscoring the 

importance of these receptors for the efficient control of infection. Moreover, the severity 

of pathology associated with infection with Mycobacterium leprae is associated with the 

host’s capacity to respond to mycobacterial antigens and is related to TLR expression 

(104). In addition, TLR ligands are being considered as potential adjuvants that could 

help boost the response to vaccines compared to the currently limited choices in humans 

(105, 106). TLR-mediated signals are also required for the successful vaccination of 

individuals against infectious diseases. For example, the deficient expression of TLR1 in 

patients that are hyporesponsive to lipidated outer surface protein A of B. burgdorferi is 

associated with decreased responses to the vaccine against the spirochete (37). It is 

therefore imperative to understand the control of these responses, including how the 

expression of TLRs is regulated in innate immune cells. 

Our results demonstrate that JNK activation upon engagement of TLR1/2 

complexes with specific ligands initiates a positive feedback cascade that increases the 

expression of TLR1. They also show that in our model the ectopic expression of the 
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receptor restores the capacity of macrophages to respond to B. burgdorferi and PAM3-

CSK4, indicating that in our system, JNK1 activity contributes exclusively to TLR1 

expression. Experiments with splenic macrophages derived from deficient mice 

demonstrated that JNK1, but not JNK2, activity is involved in the control of TLR1 

expression, while neither JNK1 nor JNK2 regulates the expression of TLR2 in 

RAW264.7 cells or primary macrophages. These results correlate with previous 

observations in the macrophage cell line RAW264.7 that showed no implication of JNK 

in the expression of the tlr2 gene (107). Furthermore, our results show that JNK2 also 

contributes to the induction of TNFin response to B. burgdorferi antigens and the 

TLR1/2 agonist PAM3-CSK4 through a mechanism that does not involve the regulation of 

TLR1. In correlation, the induction of TNF by the TLR4, TLR9, and TLR5 agonists 

lipopolysaccharide, poly (dI-dC), and flagellin, respectively, was lowered in cells 

transfected with the plasmid containing dnJNK (Figure1.8D). These data therefore imply 

non-overlapping functions of the two kinases that have also been demonstrated in T cells 

and other cell types (108, 109, 110, 111) and that have been associated with differential 

binding of both isoforms with their substrates (112). 

Several reports have shown the regulation of TLR expression by different stimuli, 

including B. burgdorferi stimulation and cytokines (100, 104). Similarly, corticotropin-

releasing factor and the urocortins regulate the expression of TLR4 through the activation 

of the transcription factors PU.1 andAP-1 (113), although the exact mechanisms of 

regulation have not been described. The regulation of TLR expression may be stimulus 

dependent, since B. burgdorferi does not affect the expression of the tlr4 gene (data not 

shown). Similarly, the regulation of tlr2 gene expression by NF-B has been documented 
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(107, 114), and NF-B binding sites have been described in the tlr2 promoter (109). 

However, our results indicate that despite lower NF-B activation induced by TLR 

ligands in the absence of JNK activity due to reduced expression levels of TLR1, the 

levels of TLR2 remained unchanged. 

The interaction of B. burgdorferi antigens with macrophages potentially occurs 

through different TLRs: TLR1/TLR2 dimers respond to triacylated lipoproteins, such as 

lipidated OspA (37), while TLR5 and TLR9 probably contribute to the response of 

bacterial lysates through their interaction with flagellin and hypomethylated CpG motifs, 

respectively (116). In turn, these interactions may be physiologically relevant, due to 

bacterial death in vivo and most importantly, phagocytosis (117). Our results strongly 

suggest, however, that the predominant response under our experimental conditions 

occurred through TLR1/TLR2, since (i) the response was mimicked by the use of the 

TLR1/TLR2 agonist PAM3-CSK4 and (ii) the ectopic expression of TLR1 in JNK-

repressed RAW264.7 cells completely restored the responses to both B. burgdorferi 

extracts and PAM3-CSK4. In light of our results, we propose that the interactions of 

spirochetal antigens with TLRs result in the activation of JNK. JNK substrates contribute 

to the up-regulation of the tlr1 gene, which in turn increases the response of macrophages 

to TLR1/TLR2 ligands. Thus, we propose that JNK1 contributes to the response of 

macrophages to B. burgdorferi by regulating the expression of TLR1. 

Several signaling pathways are activated as a result of the ligation of TLRs with 

specific ligands. The specific contribution of each pathway to phagocytic responses is 

still unclear. During infection with B. burgdorferi, p38 mitogen-activated protein kinase 
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controls inflammation (118). Our results indicate that the different signal pathways 

activated as a result of the interactions between TLRs and their ligands are not redundant, 

although they may all be needed for a full response to infectious agents. Since 

macrophage responses to B. burgdorferi are largely dependent on TLR-mediated 

interaction with ligands present in the bacterium, our results can provide the basis for a 

full understanding of the immune response to this prevalent infectious agent. 

Because macrophages are the principal immune cells found during experimental 

infection with B. burgdorferi (119, 120), the interaction between the macrophage and the 

spirochete has important consequences for the pathology observed during the disease.  

These interactions result in the activation of complex signaling events that are important 

for the regulation of macrophage responses to the infectious agent, including the up 

regulation of surface proteins and the production of inflammatory cytokines. However, 

many proteins involved in signaling events and the regulation of immune cell activation 

are unknown or still poorly studied. One such a protein is MCJ. MCJ is a member of the 

DnaJ protein family of cochaperones. Molecular chaperones are a ubiquitous class of 

proteins that interact with short stretches of hydrophobic amino acids, typically exposed 

in partially unfolded proteins. Through such interactions, chaperones function in a broad 

range of physiological process, facilitating protein folding, and their translocation across 

membranes as well as the remodeling of multimeric protein complexes (5). 

Although a certain amount of interest has been given to the regulation of the mcj 

gene, nothing is known about its biology in innate immune cells and the role it may play 

in the regulation of immune responses (86). In this study we first determined that MCJ 
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was expressed in macrophages. We show that MCJ is involved in the regulation of c-Jun 

in macrophages as has been shown in the MCF7 breast cancer cell line (86). We also  

Demonstrate that MCJ modulates macrophage responses through the regulation of c-Jun 

through a complex mechanism. We show that MCJ regulates TLR1 levels in 

macrophages through the control of c-Jun. 

Tumor necrosis factor (TNF) is the main pro-inflammatory cytokine produced and 

secreted by macrophages (88). Newly synthesized TNF quickly accumulates in the Golgi 

complex after stimulation and is transported to intermediate compartments before its 

delivery to the plasma membrane.  TNF biological activity is regulated at post-

transcriptional levels (89, 90). In this study we have determined the contribution of MCJ 

to the regulation of TNF production and secretion. We first demonstrated the 

involvement of MCJ to tnf gene expression and showed that in absence of MCJ, tnf gene 

expression substantially increases in both unstimulated and B. burgdorferi stimulated 

cells. We also established the involvement of MCJ in the secretion of TNF from 

macrophages stimulated with B. burgdorferi. Our data show that the level of tnf gene 

expression and its secretion did not correlate, which prompted us to clarify this 

discrepancy. While intracellular levels of TNF in cells with repressed or absent MCJ was 

increased, correlating with augmented gene expression, the detection of the cytokine in 

stimulation supernatants was significantly diminished. TNF is produced as an inactive 

peptide that is converted to its active and soluble form after cleavage by TACE (91, 92). 

TACE enzymatic activity is regulated by its inhibitor TIMP-3 (92). This suggested that 

MCJ could be affecting TACE activity or its inhibitor TIMP-3. In this study we show that 

TACE activity is reduced in cells lacking MCJ and that this reduction is due to increased 
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expression of TIMP-3, which is regulated by Jun proteins (94). Because TACE cleaves 

several other surface proteins, including L-Selectin, TNF Receptor (P75), Notch1 and 

others (121), our results also suggest that MCJ modulates, through the regulation of 

TIMP-3 expression, other aspects of cellular function, including cell adhesion and inter-

cellular communication. Future work will determine the contribution of MCJ to these and 

other processes. 

In summary, we have demonstrated the contribution of JNK1 and MCJ to the 

regulation of macrophage responses through the activation and stability of c-Jun, 

respectively. In turn, the generation of mature TNF is regulated by c-Jun at several levels 

through the regulation of tlr1, tnf and timp-3 gene expression. Therefore, our results place 

c-Jun as a critical component of the innate immune response to B. burgdorferi. Future 

work will also assess the importance of c-Jun-mediated responses during pathological 

processes, including infection with B. burgdorferi. 
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