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TOWARDS A PRECISE MEASUREMENT OF MATTER CLUSTERING: LYMAN-ALPHA
FOREST DATA AT REDSHIFTS 2-4
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Hernquist1,2, Neal Katz9, David Kirkman1,6,10, David Tytler1,6,

Draft version February 1, 2008

ABSTRACT

We measure the filling factor, correlation function, and power spectrum of transmitted flux in a large
sample of Lyα forest spectra, comprised of 30 Keck HIRES spectra and 23 Keck LRIS spectra. We
infer the linear matter power spectrum P (k) from the flux power spectrum PF (k), using an improved
version of the method of Croft et al. (1998) that accounts for the influence of redshift-space distortions,
non-linearity, and thermal broadening on the shape of PF (k). The evolution of the shape and amplitude
of P (k) over the redshift range of the sample (z ≈ 2−4) is consistent with the predictions of gravitational
instability, implying that non-gravitational fluctuations do not make a large contribution to structure in
the Lyα forest. Our fiducial measurement of P (k) comes from a subset of the data with 2.3 < z < 2.9,
mean absorption redshift 〈z〉 = 2.72, and total path length ∆z ≈ 25. It has a dimensionless amplitude

∆2(kp) = 0.74+0.20
−0.16 at wavenumber kp = 0.03(km s−1)−1 and is well described by a power-law of index

ν = −2.43±0.06 or by a CDM-like power spectrum with shape parameter Γ′ = 1.3+0.7
−0.5×10−3(km s−1)−1

at z = 2.72 (all error bars 1σ). The correspondence to present day P (k) parameters depends on the
adopted cosmology. For Ωm = 0.4, ΩΛ = 0.6, the best-fit shape parameter is Γ = 0.16h Mpc−1, in good
agreement with measurements from the 2dF Galaxy Redshift Survey, and the best-fit normalization
is σ8 = 0.82(Γ/0.15)−0.44. Matching the observed cluster mass function and our measured ∆2(kp) in

spatially flat cosmological models requires Ωm = 0.38+0.10
−0.08 + 2.2(Γ− 0.15). Matching ∆2(kp) in COBE-

normalized, flat CDM models with no tensor fluctuations requires Ωm = (0.29 ± 0.04)n−2.89h−1.9
65 , and

models that satisfy this constraint are also consistent with our measured logarithmic slope. The Lyα
forest complements other observational probes of the linear matter power spectrum by constraining a
regime of redshift and lengthscale not accessible by other means, and the consistency of these inferred
parameters with independent estimates provides further support for a cosmological model based on
inflation, cold dark matter, and vacuum energy.

Subject headings: Cosmology: observations, quasars: absorption lines, large scale structure of universe

1. INTRODUCTION

Over the last few years, the study of the Lyα forest has
been revolutionized by high-resolution spectra (mostly us-
ing the HIRES spectrograph [Vogt et al. 1994] on the
Keck telescope), by measurements of coherent absorption
along lines of sight to quasar pairs (Bechtold et al. 1994;
Dinshaw et al. 1994; Crotts & Fang 1998), and by a new
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theoretical understanding made possible by cosmological
hydrodynamic simulations (e.g., Cen et al. 1994; Zhang,
Anninos, & Norman 1995; Petitjean, Mücket, & Kates
1995; Hernquist et al. 1996; Wadsley & Bond 1996; The-
uns et al. 1998). In these simulations the physical state
of the diffuse intergalactic gas responsible for the Lyα for-
est is relatively simple, implying a direct connection be-
tween Lyα absorption and the underlying density and ve-
locity fields similar to that in some analytic models of the
forest (e.g., McGill 1990; Bi 1993; Bi & Davidsen 1997;
Hui, Gnedin, & Zhang 1997). Several methods have been
proposed for using the forest to measure the amplitude
of mass fluctuations (Gnedin 1998; Gaztañaga & Croft
1999; Nusser & Haehnelt 1999), the matter power spec-
trum (Croft et al. 1998, hereafter CWKH; Hui 1999; Mc-
Donald & Miralda-Escudé 1999; Feng & Fang 2000; Hui
et al. 2000), and the geometry of the universe (Hui 1999;
McDonald & Miralda-Escudé 1999). Observational Lyα
forest data have been used to constrain these quantities by
Croft et al. (1999b, hereafter CWPHK), McDonald et al.
(2000, hereafter M00), and Nusser & Haehnelt (2000). In
this paper we present flux statistics measured from two
large samples of Keck Lyα forest spectra, and we use them
to measure the linear matter power spectrum with an im-
proved version of the method presented in CWKH. The
data sample represents a fourfold increase in total length
of spectra compared to that in CWPHK, and it includes
high resolution spectra that enable us to extend our mea-
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surement to smaller scales. The higher statistical precision
of this data set requires that we address systematic errors
that were not significant in our earlier measurement, and
much of this paper is devoted to assessing and correcting
for these systematic effects.

Our analysis breaks into two parts: a measurement of
the power spectrum of transmitted flux in the Lyα forest,
and an inference of the matter power spectrum from the
flux power spectrum. The theoretical model that moti-
vates our method for the second step is the “Fluctuating
Gunn-Peterson Approximation” (FGPA; see Rauch et al.
1997; CWKH; Weinberg et al. 1998b), which describes the
relation between Lyα opacity and matter density for the
diffuse intergalactic gas that produces most of the Lyα
forest absorption at high redshift. Photoionization heat-
ing by the ultraviolet (UV) background radiation and adi-
abatic cooling by the expansion of the universe combine
to drive most of the gas with ρb < 10 onto a power-law
temperature-density relation,

T = T0ρ
α
b , (1)

where ρb is the baryon overdensity in units of the cosmic
mean (Katz, Weinberg & Hernquist 1996; Hui & Gnedin
1997). The parameters T0 and α depend on the reioniza-
tion history and on the spectral shape of the UV back-
ground; they can be predicted theoretically with the for-
malism of Hui & Gnedin (1997) and constrained observa-
tionally with techniques described by Schaye et al. (1999,
2000), Bryan & Machacek (2000), Ricotti et al. (2000),
and McDonald et al. (2000b). The optical depth for Lyα
absorption is proportional to the neutral hydrogen density
(Gunn & Peterson 1965), which for this gas in photoioniza-
tion equilibrium is proportional to the density times the
recombination rate. This leads to a power-law relation
between the fluctuating gas density and the Lyα optical
depth,

τ ∝ ρ2
bT

−0.7 = Aρβ
b , (2)

A = 0.433

(
1 + z

3.5

)6(
Ωbh

2

0.02

)2(
T0

6000 K

)−0.7

×
(

h

0.65

)−1(
H(z)/H0

3.68

)−1(
ΓHI

1.5 × 10−12 s−1

)−1

,

with β ≡ 2 − 0.7α in the range 1.6 − 1.8. Here ΓHI is
the HI photoionization rate and ρb is in units of the mean
cosmic baryon density. This relation holds to a good ap-
proximation on a pixel-by-pixel basis in spectra extracted
from hydrodynamic simulations, even when the effects of
peculiar velocities and thermal broadening are included
(Croft et al. 1997b; Weinberg et al. 1999b).

The FGPA implies a tight correlation between the ob-
servable quantity F = e−τ and the underlying gas den-
sity ρb, which in turn follows the dark matter density be-
cause pressure gradients are weak in the diffuse, cool gas.
CWKH show that the matter power spectrum P (k) is pro-
portional to the flux power spectrum PF (k) on large scales.
The constant of proportionality depends on the parameter
A, but this can be fixed empirically by matching a single
observational constraint, such as the mean opacity of the
forest at the redshift under consideration. In practice, we
do not use equation (2) itself but a closely related numeri-
cal approximation. To predict properties of the Lyα forest

for a given matter power spectrum, we evolve a collision-
less N-body simulation, assign optical depths in real space
via equation (2), then extract absorption spectra including
the effects of peculiar velocities and thermal broadening.
Throughout this paper, we will use the term FGPA to refer
to this full numerical procedure, not just to equation (2).

Relative to CWPHK, the most important change in
our methodology here is to replace the assumption that
P (k) = b2PF (k) with the more general assumption that
P (k) = b2(k)PF (k), where b(k) is a function calculated
from simulations constrained to match the observed flux
power spectrum. This change allows a more accurate
treatment of the effects of non-linear evolution, peculiar
velocities, and thermal broadening. We have titled our
paper “Towards a Precise Measurement of Matter Cluster-
ing ...” because, while the measurement of PF (k) is quite
precise, the determination of b(k) still suffers from some
systematic uncertainties. The most important of these is
the uncertainty in the mean opacity of the forest, mea-
surement of which requires careful attention to continuum
fitting. Other sources of uncertainty are the values of T0

and α and the numerical limitations of our simulations.
We have tried to provide the information needed to con-
vert our flux power spectrum into a more accurate and
more precise matter power spectrum as observational pa-
rameter determinations improve.

In §2 we present the two observational data samples,
describing the sample selection, the observations, and the
data reduction. In §3 we present statistics of the trans-
mitted flux measured from the data: the flux filling factor,
the flux two-point correlation function, and the flux power
spectrum. In §4 we describe the method used to recover
the matter power spectrum from the flux power spectrum,
and in §5 we enumerate and quantify systematic uncer-
tainties in this procedure. We present our main results
in §6, giving a table of matter power spectrum values as
well as power law fits to the data at several different red-
shifts. In §7 we discuss some implications of our results
for cosmological parameter values and structure formation
scenarios. We provide a fairly comprehensive summary of
our results in §8, and the reader who does not wish to dive
immediately into a long paper may prefer to start with this
summary.

2. DATA

We use data from two sets of quasar spectra. One is a
moderate resolution and signal-to-noise Lyα forest survey,
carried out with the Low Resolution Imaging Spectrome-
ter (LRIS; Oke et al. 1995) on the Keck II telescope and
specifically designed for the task of measuring mass fluc-
tuations and constraining cosmology. The exposure times
for these observations are quite short, the aim of the sur-
vey being to provide as many quasar spectra as possible to
cut down cosmic variance. The other data set consists of
high resolution quasar spectra taken with the Keck HIRES
spectrometer. The HIRES data enable us to probe smaller
scales, they allow more accurate continuum fitting because
they have more data points close to the unabsorbed con-
tinuum, and they avoid potential biases associated with
highly smoothed data (see §3.3). We now describe both
data sets in more detail.
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Fig. 1.— Histograms of the data. The horizontal bar above
the histograms shows the length of a Lyα forest spectrum with a
midpoint at z = 2.7. Shading marks the boundaries of the different
redshift subsamples (see Table 1).

Table 1

The data subsamples.

Subsample HIRES HIRES LRIS LRIS
〈z〉 length 〈z〉 length

( km s−1) ( km s−1)

A 2.13 180000
B 2.47 389000 2.47 367000
C 2.74 375000 2.74 469000
D 3.03 255000 3.02 199000
E 3.51 278000

Fiducial 2.72 1016000 2.72 1049000

2.1. HIRES sample

The HIRES data were obtained as part of the effort to
measure the mean cosmic baryon density Ωbh

2 by com-
paring the ratio of deuterium to hydrogen with the pre-
dictions of primordial nucleosynthesis (e.g., Tytler, Fan &
Burles 1996; Burles & Tytler 1997, 1998, Burles, Kirkman
& Tytler 1999). The reader is referred to these papers, as
well as Kirkman & Tytler (1997), for details of observa-
tional techniques and data reduction procedures.

The sample used here consists of 30 Keck HIRES spec-
tra, with QSO emission redshifts ranging from 2.19 to 4.11.
The resolution is 8 km s−1 FWHM, and the spectra have
been rebinned onto 2.1 km s−1 pixels. A Legendre poly-

nomial continuum was fit to the echelle orders, using the
IRAF task CONTINUUM, before they were combined to
form a continuous spectrum. Averaging over all spectra,
the mean 1σ uncertainty in the flux values of pixels relative
to the continuum in the Lyα forest region is 4%.

The region that we use from each spectrum spans the
wavelength range from Lyβ to 5000 km s−1 blueward of
Lyα (to avoid the effect of any ionizing radiation arising
from close proximity to the quasar). We show the redshift
distribution of these Lyα forest data in Figure 1a, where
we can see that redshifts from 1.6 to 4.1 are represented
and that the peak in the histogram lies between z = 2.5
and z = 3. We have divided the dataset into different
redshift subsamples, which are marked on Figure 1a and
summarized in Table 1. The boundaries between the sub-
samples are at z = 2.3, 2.6, 2.9, and 3.2. The bulk of our
analysis will be performed on a fiducial sample, which is
the sum of data in subsamples B,C and D. This fiducial
sample comprises the bulk of the data, and it has a rela-
tively small redshift range in order to minimize the effects
of evolution internal to the sample. It is centered roughly
on the peak of the z distribution, and the fiducial HIRES
sample is comparable in size and mean redshift to the full
LRIS sample discussed below.

2.2. LRIS sample

Large aperture telescopes are commonly used to probe
to faint magnitudes with long exposures. Another possi-
ble application of their light gathering power is to build
up a large sample of shallower exposures. This sort of
approach is useful for the statistical study of large-scale
structure, where it is important to minimize “cosmic vari-
ance.” In choosing the present LRIS data sample, our in-
tention was to use the Keck telescope to carry out a quick
survey comprising a relatively large number of quasar spec-
tra. Because a high signal-to-noise ratio is not neces-
sary for flux clustering measurements [at least for scales

∼< 0.1(km s−1)−1; see CWKH, and §3.3], it is possible to
obtain useful spectra of bright z ∼ 3 quasars with a few
minutes integration time.

Because of the limited blue response of the instru-
ment detectors, we were restricted to quasar targets with
z > 2.7. These were drawn from the quasar catalogue of
Veron-Cetty & Veron (1998), and chosen to be as bright as
possible. Of our targets, we were able to obtain spectra for
23, objects with V magnitudes ranging from 15.8 to 18.7,
with the majority between 17.0 and 18.0. The highest red-
shift quasar in our sample is at z = 3.37 and the lowest
at z = 2.75. The histogram of regions in the Lyα for-
est (running from Lyβ emission to 20 Å blueward of Lyα
emission) is shown in Figure 1b. Our fiducial LRIS Lyα
forest sample comprises all the LRIS data from z = 2.3 to
z = 3.2. Our fiducial flux statistics will be measured by
combining results from this sample and the HIRES data
sample that covers the same redshift range. We have also
subdivided the data to make subsamples with the same
redshift boundaries as those of HIRES subsamples B,C,
and D. Details are given in Table 1. Four of the quasars
are also in the HIRES dataset and were used for compar-
ison purposes (see below and §3.3).

The grating used for the LRIS observations was ruled
with 900 lines/mm, with the blaze at 5500 Å. The FWHM
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Fig. 2.— Determination of δF (λ), for the quasar Q1017+1055. (a) LRIS spectrum (wiggly line), the continuum fitted over 100Å regions
(upper smooth curve), and the spectrum smoothed with a 50Å Gaussian (lower smooth curve). (b) Fluctuations δF (λ) derived using the
continuum fitted spectrum and the smoothed spectrum. The continuum fitted curve is slightly higher where the two are distinguishable.
(c) Fluctuations δF (λ) from the HIRES spectrum of Q1077+1055. (d) A zoom of the central 150Å showing the two variations of the LRIS
spectrum, the HIRES spectrum, and (grey curve) the HIRES spectrum smoothed to the resolution of the LRIS data.

resolution of the data was 2 Å, sampled with 0.85 Å pixels.
The data were taken on Dec. 10, 1998, with some spectra
also taken during director’s observing time in Jan. 1999
and Feb. 1999. The integration times were between 10 and
30 minutes per object. Data reduction was carried out us-
ing standard IRAF packages for longslit spectroscopy. The
signal-to-noise ratio of the resulting spectra varies between
10 and 50, with the majority having S/N of ∼ 40 per pixel.
Figure 2 (discussed below) displays a typical example from
our LRIS spectra.

In our analysis of flux statistics, we will be interested
in the mean flux 〈F 〉 and the fluctuations about the mean
δF (λ) ≡ F (λ)/〈F 〉 − 1. We use F (λ) to denote the trans-
mitted flux, i.e., the ratio of the flux at a given wavelength
λ to the unabsorbed quasar continuum flux at λ. In order
to find F (λ), and hence 〈F 〉, it is necessary to make an es-
timate of the unabsorbed continuum level. The quantity
δF (λ) is much less sensitive to the exact assumed contin-
uum level, as 〈F 〉 has already been divided out. In the
present paper, we will not attempt to make accurate de-
terminations of 〈F 〉 from our data. Instead, we will use 〈F 〉
results from the literature and show how our results (for
example for the amplitude of the matter power spectrum)
would change for given future determinations of 〈F 〉.

In order to calculate δF (λ), we have two choices. The
first is to estimate a continuum level by fitting a line that
passes through apparently unabsorbed regions of the spec-
trum. This has already been done in a semi-automated
way for the HIRES data as described in §2.1 (see also
Burles & Tytler 1998). For the LRIS data, which has

much lower spectral resolution, our δF (λ) results are more
likely to be sensitive to the continuum fitting technique
used. We therefore compare two techniques applied to the
LRIS data. The first is the automated technique described
in CWPHK. This involves fitting a third-order polynomial
through the datapoints in a given length of spectrum, re-
jecting points that lie 2σ below the fit line, and iterating
until convergence is reached. We implement this procedure
using 100 Å fitting segments.

The second method for estimating δF (λ) is to calculate
the mean flux level of the spectrum directly, rather than
first fitting the continuum to scale unabsorbed flux to F =
1. The mean level must be estimated from a region much
larger than the length scales for which we are interested
in measuring variations in δF (λ). This can be done either
by fitting a low order polynomial to the spectrum itself
(Hui et al. 2000) or by smoothing the spectrum with a
large radius filter. We do the latter, using a 50 Å Gaussian
filter. The value of δF (λ) is then given by C(λ)/CS(λ)−1,
where C(λ) is the number of counts in the spectrum at a
wavelength λ and CS(λ) is the smoothed number of counts.

Figure 2 illustrates these two methods of determining
δF (λ). Figure 2a shows the LRIS spectrum of the z = 3.16
quasar Q107+1055, along with the fitted continuum (up-
per smooth curve) and the 50Å smoothed spectrum (lower
smooth curve). Figure 2b compares δF (λ) estimated us-
ing the fitted continuum and using the smoothed spec-
trum. The two methods yield nearly indistinguishable re-
sults, with small differences appearing in regions where
the spectrum is apparently close to the unabsorbed contin-
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uum. Figure 2c shows δF (λ) from the (continuum-fitted)
HIRES spectrum of Q107+1055. Figure 2d blows up the
central 150Å of the spectrum, superposing the two LRIS
δF (λ), the HIRES δF (λ), and the HIRES δF (λ) smoothed
to the spatial resolution of the LRIS data. The smoothed
HIRES spectrum matches the LRIS spectrum almost per-
fectly, providing further evidence of the robustness of the
δF (λ) determination. In §3.3 we will compare the HIRES
and LRIS flux power spectra for the four quasars common
to both samples. We will also show that the two methods
of determining δF (λ) from the LRIS spectra yield simi-
lar power spectrum results. We will adopt the smoothed
spectrum method as our standard, since it does not involve
splitting a spectrum into discrete segments and is simpler
to implement in a robust manner.

As in CWPHK, we scale the individual pixel widths in
the spectra to the size they would have at the mean red-
shift of the sample in question. In the present work, we
do this assuming that the evolution of H(z) follows that
in an EdS universe, which should be a good approxima-
tion at these high redshifts (see also M00). We also follow
Rauch et al. (1997) and CWPHK in scaling the optical of
pixels depths by a factor of (1 + z)4.5 to the mean z of
the sample, in order to mitigate the effects of evolution.
We have done this only for the HIRES data, since for the
LRIS data we are already calculating δF (λ) with respect
to the local mean. The effects of both of these rescalings
on the flux power spectrum are investigated in §3.3.

3. STATISTICS OF THE TRANSMITTED FLUX

In the fluctuating intergalactic medium (IGM) view of
the Lyα forest described in §1, the most natural statistical
descriptors of the forest are those that treat each spec-
trum of transmitted flux as a continuous one-dimensional
field, rather than a collection of lines. Many such statistics
have been discussed in the literature, including the one-
point flux probability distribution, the threshold-crossing
frequency, and the filling factor of saturated regions (e.g.,
Miralda-Escudé et al. 1996, 1997; Cen 1997; Croft et al.
1997a; Rauch et al. 1997; Croft & Gaztañaga 1999; The-
uns, Schaye, & Haehnelt 1999; Weinberg et al. 1999b;
M00). These measures are analogous to, and in some cases
borrowed from, those used to study large-scale structure in
the galaxy distribution. They encode information about
the underlying matter distribution and about the temper-
ature and physical state of the IGM.

In this section we focus on the statistics that are most
relevant to determination of the matter power spectrum,
namely the flux power spectrum and its Fourier transform,
the flux correlation function. As mentioned in §1, the in-
ference of the matter power spectrum depends on the value
of the mean transmitted flux 〈F 〉, or, equivalently, the ef-
fective mean optical depth

τeff ≡ − ln〈F 〉. (3)

We will not undertake a direct measurement of τeff here,
but we will examine a statistic, the flux filling factor, that
provides an indirect handle on τ eff . Although determina-
tion of the matter power spectrum is our long-term goal,
the measurements of flux statistics in this section can also
stand as direct tests of theoretical predictions for the Lyα
forest, derived from numerical simulations or analytic ap-
proximations. The flux correlation function and flux power

Fig. 3.— (a) The filling factor FF of regions below a flux thresh-
old of 0.5, computed as a function of redshift from the HIRES data.
Error bars (1σ) are calculated using a jackknife estimator. (b) Con-
fidence intervals (68%, 95%, 99.7%) on parameters c1 and c2, deter-
mined by fitting the functional form FF= c1 exp (c2z) to the data
points in (a). Best fit values (cross) are c1 = 0.0291, c2 = 0.719.
In (a), the shaded bands show the region corresponding to the 68%
confidence interval on (c1, c2).

spectrum have been measured for an independent sample
of Keck HIRES spectra by M00.

3.1. Filling factor

In terms of the discussion in §1, the role of τeff in our
analysis is to allow us to determine the constant A in equa-
tion (2), given a model of the density fluctuations (ρ/ρ) ob-
tained from N-body simulations. However, observational
determinations of τeff are sensitive to the details of contin-
uum fitting because a significant fraction of the mean opac-
ity arises in long stretches of weak absorption close to the
unabsorbed continuum. The filling factor FF, the fraction
of a spectrum that lies below a specified flux threshold,
offers another diagnostic for A that is less sensitive to the
continuum level, and we will use it as a consistency check
on our adopted value of τ eff . While the filling factor of sat-
urated regions (F ≈ 0) would be the least sensitive to con-
tinuum determination, it is also not sufficiently sensitive
to A to be useful for our purposes. Instead, we measure
the filling factor of regions with F ≤ 0.5, which is likely
to be almost as insensitive to continuum uncertainty (see,
e.g., figure 2b, and figure 5 of Nusser & Haehnelt 2000).

For this statistic, we use the HIRES data only, as we are
interested in unsmoothed spectra. We split the data into
12 redshift bins of width ∆z = 0.2, spanning z = 1.7 to
z = 4.1. We calculate the FF for F = 0.5 for each redshift
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range and plot the results in Figure 3a, as a function of
redshift. The error bars are computed using a jackknife es-
timator (Bradley 1982), which we will employ for error es-
timation on other statistics as well. For a statistic X esti-
mated from a data sample, the jackknife estimate of the 1σ
uncertainty on X is obtained by dividing the sample into

N subsamples and computing σ =

[∑N
i=1

(
Xi − X̂

)2
]1/2

,

where X̂ is the estimate from the full data sample and Xi

is the value estimated by leaving out subsample i. For Fig-
ure 3a, we split the data for each redshift bin into N = 5
subsamples to estimate the error bars.

A rapid increase in FF with redshift can be seen from
the plot. By z ≃ 4.0, half of each spectrum lies below
the F = 0.5 level, as opposed to ≃ 10% at z = 1.8. In
order to present the results in a form which is easy to use,
we carry out a χ2 fit to the function FF= c1 exp (c2z).
The best fit line is shown on Figure 3a. We find that
c1 = 0.0291 ± 0.0006 and c2 = 0.719 ± 0.008 (these are
1σ errors for the parameters taken individually). The χ2

for these parameters is 6.9 (for 10 degrees of freedom).
The errors on c1 and c2 are highly correlated, as can be
seen in panel (b) of Figure 3. The shaded band of panel
(a) shows the values of FF(z) that result from varying
the parameters c1 and c2 so that they sample the entire
joint 68% confidence interval on their values. Using this fit
information gives fractional errors on FF of 4.9% at z = 2,
2.0% at z = 3 and 5.8% at z = 4. At the redshift of the
fiducial sample (z = 2.72), the error is 2.1% and the FF
is 0.205. Of course these error values are derived from the
fit, and their use implies the assumption that the FF is
changing smoothly with z in accordance with the shape
given by the fit. This assumption has been used by others
for studying the evolution of the mean flux level with z
(e.g., Press, Rybicki & Schneider 1993, hereafter PRS).

3.2. Flux correlation function

The flux correlation function, ξF (r), is a simple statis-
tic to calculate. Its usefulness has been emphasized by
Zuo & Bond (1994) and Cen et al. (1998), amongst oth-
ers, and ξF (r) has been measured from a sample of eight
Keck HIRES spectra by M00. We will also use it for a
consistency check on our 3-d P (k) inversion, in §3.3.3 be-
low. We estimate ξF (r) from our quasar data using the
estimator ξF (r) = 〈δF (x)δF (x + r)〉. We present results
for the fiducial sample in Table 2. The errors were again
calculated using a jackknife estimator, and although we
only give the diagonal terms in the covariance matrix, the
full matrix (which has large off-diagonal terms) is available
from the authors on request. In Table 2, we have averaged
the results from the LRIS and HIRES samples on large
scales (r > 250 km s−1), where the finite LRIS resolution
is not important. On smaller scales, only the HIRES re-
sults are used. Table A6 (see Appendix) gives ξF (r) for
the different redshift subsamples.

We plot ξF (r) for the different redshift subsamples in
Figure 4, with results for the fiducial sample shown as the
solid curve in each panel. There is a measurable clustering
signal out to r ∼ 2000 km s−1 (note that we are plotting
both axes with a log scale). In the same way that the flux
power spectrum in simulations appears to have much the
same shape as the (linear) matter power spectrum (e.g.,

Table 2

The flux correlation function, ξF (r), for the
fiducial sample (〈z〉 = 2.72).

r ξF (r)
( km s−1)

11.4 0.184 ± 0.007
14.9 0.174 ± 0.007
19.4 0.172 ± 0.008
25.3 0.157 ± 0.007
32.9 0.144 ± 0.007
42.9 0.127 ± 0.007
56.0 0.104 ± 0.006
72.9 (8.5 ± 0.6) × 10−2

95.0 (6.6 ± 0.5) × 10−2

124 (5.0 ± 0.5) × 10−2

161 (3.7 ± 0.4) × 10−2

210 (2.7 ± 0.4) × 10−2

274 (1.9 ± 0.3) × 10−2

357 (1.4 ± 0.3) × 10−2

466 (9.4 ± 2.1) × 10−3

607 (6.2 ± 2.2) × 10−3

791 (4.1 ± 2.1) × 10−3

1030 (2.6 ± 2.0) × 10−3

1340 (−7.9 ± 17.7) × 10−4

1750 (−1.8 ± 1.6) × 10−3

CWKH), we expect the shape of ξF (r) to reflect that of
the underlying matter correlation function, at least over
some range of scales. A comparison of ξ(r) for flux and
mass has been carried out by Cen et al. (1998).

On the largest scales, and particularly at high redshift,
ξF (r) could in principle be influenced by UV background
fluctuations or by continuum fitting errors. However, Fig-
ure 4 implies that any such effects are not strong, since
the shape of ξF (r) in the different panels does not appear
to change significantly from one redshift to the next. This
consistency is expected if ξF (r) is mainly determined by
the underlying matter distribution, but it seems coinciden-
tal if the fluctuations that are quantified by ξF (r) are gen-
erated by some other mechanism. However, the possibility
that UV background fluctuations could reproduce this be-
haviour merits further study, since, for example, clustered
sources and absorbing material could conceivably yield a
ξF (r) related to that of the matter distribution. For work
that shows that this is unlikely to occur on the scales of
interest to us here, see, e.g., Zuo (1992) and CWPHK.

Predicting the evolution of ξF (r) in a given cosmolog-
ical model involves a combination of change in length
units, growth of matter clustering, and evolution of the
mean opacity. We leave such predictions to future work,
which should also investigate the consistency of higher-
order statistics of the flux with the FGPA predictions.
For the time being, we note that the amplitude of ξF (r)
decreases as we move to lower redshift, as the rapidly de-
creasing value of τ eff counteracts the effect of gravitational
clustering. This means that a good knowledge of τ eff is
needed to make measurements of the amplitude of matter
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Fig. 4.— The flux correlation function of the various data subsamples. The solid line in each case is the fiducial combined sample, with
the length scaled so that the comoving lengths stay the same in an EdS model. The multiplicative factor used is [(1+ zi)/(1 + zF )]1/2, where
zi, zF are the mean redshifts of subsample i and the fiducial sample respectively. Filled circles represent the HIRES data and open circles
the LRIS data. Error bars have been omitted from the latter, for clarity.

fluctuations (see §5.4). On small scales (r ∼< 200 km s−1),

the shape of ξF (r) reflects the broadening of individual ab-
sorption features by Hubble flow, peculiar velocities, and
thermal motions (Zuo & Bond 1994; Hernquist et al. 1996).

3.3. Flux power spectrum

3.3.1. Definitions

To compute the one-dimensional flux power spectrum,
PF,1D(k), we must decompose the absorption spectra into
Fourier modes and measure their variance as a function of
wavenumber. In CWKH and CWPHK, we accomplished
this task using a Fast Fourier Transform (FFT). This ap-
proach requires mapping the spectra onto equally spaced
bins using spline interpolation. M00 calculated PF,1D(k)
by an alternative technique, the Lomb periodogram, which
does not require the assumption of periodic boundary con-
ditions and which works for unequally spaced bins (see
Press et al. 1992). In the present paper we also adopt this
approach to derive our fiducial results (using the Lomb
code from Press et al. 1992). We compare results obtained
using this method and the FFT below.

The power spectrum along a line of sight is an in-
tegral over the power spectrum of the corresponding 3-
dimensional field (Kaiser & Peacock 1991). Since we are
ultimately interested in the 3-dimensional matter power
spectrum, we want to work with the corresponding prop-
erty of the flux. We will define the 3D flux power spectrum
PF (k) by the relation

PF (k) = −2π

k

d

dk
PF,1D(k), (4)

so that PF (k) is the power spectrum of the 3D “flux field”
that would have a line-of-sight power spectrum PF,1D(k)
if it were isotropic. In practice, peculiar velocities and
thermal motions make the flux field anisotropic (Hui 1999;
McDonald & Miralda-Escudé 1999), but this anisotropy
has relatively little impact on the inferred matter power
spectrum over the scales provided by our analysis, and our
procedure for estimating the matter P (k) will account for
it automatically. In place of PF (k), we will show in our
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Fig. 5.— Dependence of the flux power spectra ∆2
F
(k) on spec-

tral resolution and continuum fitting method. (a) We use the four
quasar spectra common to the LRIS and HIRES samples and show
the power spectrum derived from the HIRES observations (circles)
and the LRIS observations with 50Å Gaussian smoothing for deter-
mination of the mean level (triangles). Open circles correspond to
negative values of ∆2

F
(k). Lower panel shows the difference from

the mean of the two power spectra in units of the mean. Error
bars represent 1σ jackknife errors derived from the four spectra. (b)
Comparison of LRIS results using two methods of continuum fitting,
smoothing with a 50Å Gaussian (triangles) and fitting over a 100Å
region with a 3rd order polynomial (circles). Here we use all 23
LRIS spectra in the LRIS sample, and the error bars represent jack-
knife errors derived by partitioning those 23 spectra into 50 subsets
of equal length (see §3.3.2).

plots the quantity

∆2
F(k) ≡ 1

2π2
k3PF (k), (5)

which is the contribution to the variance of the flux from
an interval d ln k = 1. The reader should note that this
definition of ∆2

F(k) differs from that in CWKH and CW-
PHK by the factor (1/2π2). Also, with this convention our
definition of PF,1D(k) is larger than that given in M00 by
a factor of 2.

3.3.2. Tests for systematic errors

We first compare ∆2
F(k) measured from the four quasars

for which we have both LRIS and HIRES spectra. These
are Q0636+6801, Q0940-1050, Q1017+1055, and Q1107+4847.
In the top panel of Figure 5a, we show ∆2

F(k) measured
from the LRIS spectra, where δF (r) was calculated using
the (50 Å) Gaussian smoothing method for finding the lo-
cal mean flux. We also show the HIRES results. In the
lower panel, we plot the difference between the two mea-
surements of ∆2

F(k), in units of the mean ∆2
F(k) for the

two sets of spectra. The error bars were calculated by ap-
plying a jackknife estimator to the four spectra in each
set. We can see that there are some differences in detail
between the two sets of ∆2

F(k) results, but they appear
to be consistent within the errors, at least on large scales.
On small scales, the LRIS results are systematically lower,
as we expect because of the lower resolution of the spec-
tra. We shall see later (§3.3.4) that smoothing the spectra

can potentially have effects on the inversion from 1D to 3D
clustering on fairly large scales. As a test of any systematic
differences, we have tried a least-squares fit of a horizontal
straight line to the first ten points in the lower panel of
Figure 5a. We find that any uniform bias on these scales is
consistent with zero within the errors (we find 0.08± 0.11
at 1 σ).

In Figure 5b, we carry out a similar test of the two differ-
ent ways of analyzing the LRIS spectra, measuring δF (r)
using a fitted continuum versus smoothing the spectrum
to define the mean. Because we are just using the LRIS
data for this, we carry out the test using all 23 spectra.
A horizontal fit to the first 10 points yields a mean bias
between the two of −0.005± 0.030 at 1σ.

Previously, M00 presented PF,1D(k) measured from a
sample of Keck HIRES spectra. In order to compare our
results to theirs, we have prepared a sample of our HIRES
data that has the same redshift boundaries as one of the
data samples in M00, z = 2.67 to z = 3.39. The M00
sample with these boundaries has 〈z〉 = 3.0, and ours
has 〈z〉 = 2.98. The M00 spectra are a sample of eight
with extremely high signal-to-noise ratio, and which have
a FWHM of 6.6 km s−1, binned into 2.4 km s−1 pixels.
The equivalent of ∼ 2.5 full spectra contribute to the M00
results for the redshift range we use here, compared to
∼ 13 (total length 6.4 × 105 km s−1) for the comparison
sample of our data.

In Figure 6, we show PF,1D(k) from M00 and our
comparison sample. We can see that on scales k <
0.1(km s−1)−1, there is good agreement between the two
measurements, and the larger number of spectra in our
sample is reflected in a smoother curve and smaller error
bars. We have calculated these error bars with a jack-
knife estimator, as we did for the ξF results (see §3.2),
except that when partitioning the data we use 50 sub-

Fig. 6.— Comparison of the 1D flux power spectrum from M00
(open circles) and from our HIRES spectra (filled circles), for sub-
samples covering the redshift range z = 2.67 to z = 3.39. The mean
redshift of the M00 data is 3.0 and that of our subsample 2.98. Be-
cause of differing Fourier conventions, we have multiplied the M00
results by a factor of 2.
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Fig. 7.— Dependence of ∆2
F
(k) on S/N ratio of the quasar

spectra. Open circles show the 3D flux power spectrum from M00,
and filled circles show the measurement from our HIRES subsample
with the same redshift boundaries. Stars and squares show ∆2

F
(k)

derived from the half of the HIRES subsample with highest and
lowest S/N, respectively.

sets. The error bars on the M00 points come from boot-
strap resampling, which should yield similar results to the
jackknife technique. In Figure 6, we show only scales
k < 0.1(km s−1)−1, as on smaller scales, we find that the
results diverge. This is likely to be due to the lower S/N
of our data. We investigate the effects of S/N on ∆2

F(k)
below. The M00 data are also of slightly higher resolution
(our data have FWHM of 8.0 km s−1, 20% broader than
M00).

Although we would like to have as large a dynamic range
possible in our flux power spectrum measurements, k =
0.1(km s−1)−1 represents the scale below which M00 have
found that their results are sensitive to whether known
metal lines are removed or not. Since we do not attempt
this procedure, which would introduce additional uncer-
tainties, we are limited to points with k < 0.1(km s−1)−1

even without consideration of S/N and spectral resolution.
In order to test the effect of noise on ∆2

F(k), we split the
M00 comparison sample into two. Spectra with a mean 1σ
error in F per pixel > 0.040 are in the high noise subsam-
ple. This subsample has a mean error per pixel of 0.074
and 〈z〉 = 3.0. The low noise subsample, comprising the
rest of the data, has a mean noise per pixel of 0.026 and
〈z〉 = 2.96. The total lengths of spectra in the high and
low noise subsamples are approximately equal. We show
the ∆2

F(k) results in Figure 7, together with ∆2
F(k) for

the M00 data. The noise level of the data (which is dom-
inated by Poisson distributed photon noise) does affect

the level of power on scales k ∼> 0.15(km s−1)−1. How-

ever, we will limit our measurement of the matter P (k)
to scales k < 0.05(km s−1)−1 anyway because of sepa-
rate uncertainties related to the flux to mass reconstruc-
tion. On these scales, any systematic bias associated with
S/N is small, with low S/N points being slightly lower for

Fig. 8.— Tests of different ways of computing the power spec-
trum and of scaling the data. Open circles show the 3D flux power
spectrum of M00 and filled circles the results of our standard treat-
ment, for the comparison HIRES subsample with the same redshift
boundaries. For these data points, and for those in the rest of the
paper, we scale pixel sizes and optical depths to the sample mean
redshift and estimate PF (k) using the Lomb periodogram. Stars
show the result with no scaling to the mean redshift. Squares show
the result of scaling the data but estimating PF (k) with an FFT
instead of the Lomb periodogram.

k ∼> 0.03(km s−1)−1.
In Figure 8 we test details of the power spectrum estima-

tion method, again using the HIRES subsample designed
for comparison to M00. Filled circles, repeated from Fig-
ure 7, show results of our standard treatment. Stars show
∆2

F(k) computed using the same power spectrum estima-
tor (the Lomb periodogram) but no scaling of pixel sizes
or optical depths to the mean redshift (see §2.2). There
appear to be only small and non-systematic differences
between these two treatments. The differences are even
smaller when we compare the fiducial results to those ob-
tained from FFT measurements of the power spectrum
(squares). We are therefore confident that no problems
have been introduced by the use of an FFT in previous
papers. However, the Lomb periodogram is better moti-
vated, so we adopt it here.

3.3.3. Test of inversion from the 1D to the 3D flux
power spectrum

We would also like to test our method of deriving the
3D flux power spectrum from the 1D flux power spectrum,
since one might worry that the differentiation required by
equation (4) leads to biases in the presence of noise. A
simple test, illustrated in Figure 9, is to check that PF (k)
and ξF (r) form the expected Fourier transform pair:

ξF (r) =
1

(2π)3

∫ ∞

0

PF (k)
sin (kr)

kr
4πk2dk, (6)

PF (k) =

∫ ∞

0

ξF (r)
sin (kr)

kr
4πr2dr. (7)
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Table 3

The flux power spectrum, for the fiducial sample
(〈z〉 = 2.72).

k PF,1D(k) PF (k)
( km s−1)−1 ( km s−1)−1 ( km s−1)−3

0.00199 41.1 ± 4.4 (2.50 ± 3.19) × 107

0.00259 36.3 ± 3.6 (1.97 ± 1.15) × 107

0.00337 29.7 ± 2.8 (1.26 ± 0.54) × 107

0.00437 24.8 ± 2.1 (3.45 ± 2.32) × 106

0.00568 25.5 ± 1.6 (1.45 ± 0.96) × 107

0.00738 21.8 ± 1.6 (2.31 ± 0.43) × 107

0.00958 18.7 ± 1.2 (8.79 ± 1.57) × 105

0.0124 15.1 ± 0.9 (5.17 ± 0.75) × 105

0.0162 12.0 ± 0.6 (3.01 ± 0.53) × 105

0.0210 8.69 ± 0.33 (1.64 ± 0.23) × 105

0.0272 6.30 ± 0.27 (7.77 ± 0.68) × 104

0.0355 4.00 ± 0.14 (4.07 ± 0.27) × 104

0.0461 2.28 ± 0.12 (1.72 ± 0.08) × 104

0.0598 1.17 ± 0.06 6340± 410
0.0777 0.561 ± 0.036 2050± 110
0.101 0.239 ± 0.021 600 ± 35
0.131 0.114 ± 0.015 135 ± 9
0.170 0.0712± 0.013 28.5 ± 2.7
0.221 0.0533± 0.013 8.14 ± 0.81
0.287 0.0400± 0.010 3.74 ± 0.86

Points in the upper panel show ∆2
F(k) estimated from our

full fiducial sample (B+C+D, HIRES and LRIS), with our
standard methodology. The solid curve shows the Fourier
transform of the flux correlation function (eq. 7), where we
have used the linear power spectrum of the LCDM model
described in §4.2 to extrapolate ξF (r) beyond the observed
r limits. The dashed curve shows the Fourier transform
when the integral is simply truncated at the observational
limits rmin and rmax. The lower panel of Figure 9 displays
an analogous comparison between the directly measured
ξF (r) and the Fourier transform (eq. 6) of PF (k).

These comparisons show that the two totally differ-
ent methods for inferring three-dimensional clustering give
very similar results. There is also little impact on Fourier
transform estimates of PF (k) or ξF (r) from scales where
we have no direct measurements. The agreement found in
Figure 9 justifies our earlier assertion that equation (4)
defines a quantity close to the power spectrum of the
three-dimensional “flux field,” despite the presence of some
redshift-space anisotropy (see Hui 1999; McDonald &
Miralda-Escudé 1999). We adopt this approach in pref-
erence to the inversion of ξF (r), which is rather difficult
to handle numerically, particularly on the smallest scales.

3.3.4. Smoothing bias

There is another, somewhat subtle effect that influences
the inversion from 1D to 3D when using low resolution
spectra. Finite spectral resolution smooths the 1D power
spectrum by convolution with the square of the instru-
ment response function. Because the 3D power spectrum
is obtained by differentiation (eq. 4), this steepening of the

Fig. 9.— (a) Comparison of the flux power spectrum measured
directly from the fiducial (B+C+D, 〈z〉 = 2.72) sample (points)
with that estimated by carrying out a Fourier transform of the flux
correlation function of the fiducial sample (lines). The different lines
show two different ways of extrapolating the measured ξF (r) when
carrying out the numerical integral. The solid line shows an extrap-
olation which uses the LCDM shape, and the dashed line uses a
truncated form for ξF (r) (see text). (b) Comparison of the flux cor-
relation function ξF (r) measured directly from the fiducial sample
(points) with that estimated by carrying out a Fourier transform of
the flux power spectrum of the fiducial sample (lines). Again the
lines show two different ways of carrying out the extrapolation, solid
being LCDM and dashed a truncated PF (k) (see text).

1D power spectrum artificially boosts the amplitude of the
3D power spectrum, even on scales that are significantly
larger than the smoothing scale.

We show the effect of this “smoothing bias” on linear
theory power spectra in Figure 10. Here we have multi-
plied PF,1D by a Gaussian filter, to simulate observational
smoothing, then used equations (4) and (5) to find ∆2

F(k).
We show results for two different power spectrum shapes,
characterized by the shape parameter Γ (see §4.2). The
amount of bias depends on the shape, but the two we
show are fairly close to the observed shape, at least on
large scales, and the bias seen in both should be repre-
sentative. We find that on the largest scale we observe,
2×10−3(km s−1)−1, the boost in ∆2

F(k) with the 2 Å spec-
tral resolution typical of our LRIS data is 3%, while for
much lower resolution of 6 Å it would be 20%. This artifi-
cial amplification increases to a maximum of 14% for the
smallest scale we make use of for the 2 Å case, and would
be 32% for 6Å. On the very smallest scales, smoothing sup-
presses ∆2

F(k). On the scales where we use the LRIS data,
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Fig. 10.— Test of “smoothing bias”, the effect of smoothing a
spectrum (for example due to finite spectral resolution) on the inver-
sion from 1D to 3D. Solid lines show the linear theory power spectra
∆2(k) of CDM models with shape parameter (see §4.2) Γ = 0.05
(thick) and Γ = 0.5 (thin). Dashed lines show the result of deriving
the 3D power spectrum from the corresponding 1D power spectra
smoothed with a Gaussian filter of σ = 50 km s−1, approximately
equivalent to 2Å FWHM spectral resolution. Dotted lines show the
result for σ = 150 km s−1 (6Å FWHM) smoothing. The derived
∆2(k) is suppressed on small scales by smoothing, but it is boosted
on intermediate scales because of the differentiation required to go
from 1D to 3D.

k < 0.014(km s−1)−1, they contribute about half the sig-
nal of the fiducial sample, so with no correction we would
expect a bias of 1.5%−7% on these scales. To remove this
effect, we adjust the LRIS contributions to PF (k) using
correction factors derived from the fractional differences
between the lower curves in Figure 10; however, we limit
the maximum correction to 10%, since the value close to
the smoothing scale is sensitive to the assumed form of the
input spectrum. Since the maximum corrections to PF (k)
are only a few percent, the uncertainties in the corrections
are much smaller than the 1σ error bars on the affected
data points, which are ∼> 15%. The agreement of ∆2

F(k)
derived from HIRES and LRIS spectra of the same quasars
(Figure 5), for which we applied no correction to the LRIS
∆2

F(k), is further evidence that smoothing bias is a minor
issue in the context of this data set. However, it could be
important for data of substantially lower spectral resolu-
tion. Because the degree of bias depends on the precise
form of the spectral response function and on the shape of
the underlying power spectrum, a rigorously accurate cor-
rection is difficult, and alternative analysis methods should
be considered for lower resolution data.

3.3.5. The flux power spectrum and its covariance matrix

Figure 11 presents the principal results of this section,
the flux power spectrum ∆2

F(k) of the fiducial sample and
the various redshift subsamples. The values of PF,1D(k)
and PF (k) for the fiducial sample are listed in Table 3,
and the values of PF,1D(k) for the redshift subsamples
are listed in Table A7 of the Appendix. We average
the contributions of the LRIS and HIRES data on scales
k < 0.014(km s−1)−1 for ∆2

F(k) and k < 0.006(km s−1)−1

for PF,1D(k), which is more strongly affected by the spec-

tral resolution. We also average the 1σ error bars and
divide them by

√
2. We do not account for the fact that

four spectra appear in both samples, so our error bars on
these large-scale datapoints may be systematically under-
estimated by as much as ∼ 1 −

√
49/53 = 4%. We use

only the HIRES data on smaller scales.
The error bars in Figure 11 and Tables 3 and A7 are

computed using a jackknife estimator, with 50 data sub-
sets in each case. Although the flux correlation function
ξF (r) has strongly covariant errors, we might expect the
errors on the ∆2

F(k) data points to be close to independent,
at least if they reflect the behavior of the linear matter
power spectrum. M00 found that the covariance matrix of
PF,1D(k) measured from their data is extremely noisy but
consistent with the off-diagonal elements being zero.

Figure 12 illustrates the covariance matrix Cij of ∆2
F(k)

for our fiducial HIRES data (with 〈z〉 = 2.72), again es-
timated by the jackknife technique. We have divided out
the diagonal elements, so that the symbol area is propor-
tional to Cij/(CiiCjj)

1/2. It is obvious from the plot that
Cij is fairly close to diagonal, at least for the elements
with i and j ∼< 13. The matrix is also quite noisy, with the
uncertainty on Cij increasing as we move towards small
i and j (larger scales), where there are fewer modes to
average over. On the smallest scales we find significantly
positive non-diagonal elements. These scales are smaller
than the smallest ones we shall be using to reconstruct the
matter power spectrum. On larger scales some of the off-
diagonal elements appear to be small but negative. This
behavior was also seen in the CWPKH covariance matrix,
and if it is statistically significant it is probably caused by
the differencing needed to compute PF (k) from PF,1D(k).
Given that the covariance matrix is noisy and that anti-

Fig. 12.— The covariance matrix of the flux power spectrum
of the fiducial HIRES sample. The symbol area is proportional to
Cij/(CiiCjj )1/2, with negative elements shown by open symbols.
The flux power spectrum values which correspond to this covariance
matrix are given in Table 3. The elements span scales of 0.00199
(km s−1)−1 (element 1) to 0.287 (km s−1)−1 (element 20).
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Fig. 11.— The flux power spectrum of the various data subsamples. The solid line in each case is the fiducial combined sample, with the
length scaled so that the comoving lengths stay the same in an EdS model. The filled points are the HIRES data and the open circles the
LRIS data. Error bars have been omitted from the latter, for clarity.

covariance caused by negative elements would decrease er-
ror bounds, we will adopt the conservative position of us-
ing only the diagonal elements in our analysis of the matter
power spectrum.

The error bars in Figure 11 are much larger than those
on ξF (r) in Figure 4 because in this case they are nearly
uncorrelated. The shape of ∆2

F(k) remains roughly the
same at all redshifts on large scales, while the relative
amount of power on small scales appears to decrease with
decreasing redshift, presumably due to increasing non-
linearity and peculiar velocities. The overall amplitude
of ∆2

F(k) drops towards lower redshifts, as for ξF (r). This
drop is driven by the decrease of τeff as the universe ex-
pands. We will show in §6.3 that, once the evolution of τeff

is taken into account, these ∆2
F(k) results yield a marginal

detection of the expected signature of gravitational growth
of the underlying matter fluctuations.

4. FROM FLUX TO MASS: METHOD

4.1. Overview

CWKH proposed a method for recovering the linear
matter power spectrum P (k) from measurements of the

Lyα forest flux power spectrum, and CWPHK applied this
method to a sample of 19 moderate resolution quasar spec-
tra. The method that we use to recover P (k) in this paper
has evolved from that used by CWKH and CWPHK, but
it is significantly better. Specifically, our current method
is to assume that

PF (k) = b2(k)P (k) (8)

and that the values of b(k) can be calibrated using numer-
ical simulations that are tuned to match the observed τ eff

and PF (k). In this language, the method used in CWKH
and CWPHK assumed b = constant, and CWKH defined
PF (k) from the “Gaussianized” flux rather than the flux
itself. The b = constant assumption is reasonably accurate
on large scales, where, at least according to hydrodynamic
simulations, the shape of the flux power spectrum is similar
to that of the linear matter power spectrum. This similar-
ity of shape is expected if the matter density and flux are
related by a local transformation (see, e.g., Coles 1993;
Gaztañaga & Baugh 1998; Scherrer & Weinberg 1998;
M00 Appendix C), as they are in the Fluctuating Gunn-
Peterson Approximation. However, the method adopted
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Fig. 13.— Flowchart for matter power spectrum reconstruction.

here is obviously more general, and it can account for the
effects of redshift-space distortions, non-linear evolution,
and thermal broadening, which change the shape of PF (k).
This improvement in method is justified by the larger size
and dynamic range of our current data set, since with the
previous method the accuracy of our recovered P (k) would
be limited by the accuracy of the b = constant approxi-
mation. As in the previous method, there are systematic
uncertainties in the transformation from PF (k) to P (k)
because there are uncertainties in the parameter values to
adopt for the calibrating simulations; we will discuss these
systematic uncertainties in §5. Our current approach is, in
some sense, intermediate between that of CWPHK, who
determined the amplitude of P (k) using simulations with
the initial P (k) shape inferred from the Lyα forest data
themselves, and that of M00, who did not attempt an in-
version of P (k) but estimated P (k) parameter constraints
by scaling the predictions of a hydrodynamic simulation.
However, our approach here also includes new features not
present in either of these previous methods.

The results of previous investigations (CWPHK; M00;
Phillips et al. 2001) imply that the shape of the linear
matter power spectrum P (k) on Lyα forest scales is in
reasonable agreement with that of a low density CDM
model. We therefore adopt this power spectrum shape
for the “normalizing simulations” that we use to calculate
the function b(k). We obtain outputs from the simulations
corresponding to a number of different P (k) amplitudes.
For each output amplitude, we create artificial spectra us-
ing the FGPA, adjusting the parameter A of equation (2)
so that the spectra match an observationally determined
value of τeff . From these spectra, we calculate the flux

power spectrum P sim
F (k), the corresponding ∆2

F(k), and

b(k) =

[
P sim

F (k)

P sim(k)

]1/2

, (9)

where P sim(k) is the linear matter power spectrum of the
simulation. The amplitude of the predicted flux power
spectrum increases monotonically with the amplitude of
P (k), since stronger density fluctuations produce stronger
fluctuations of Lyα optical depth. To decide which b(k)
results apply to the observational data, we choose the sim-
ulation output that has ∆2

F(k) in best agreement with the
observed ∆2

F(k) (interpolating between outputs to get a
finer grid of amplitudes). We then divide the observed flux
power spectrum by the (interpolated) b2(k) corresponding
to this output to obtain our observational estimate of the
linear matter power spectrum:

P obs(k) =
P obs

F (k)

b2(k)
. (10)

Figure 13 summarizes these steps. We discuss the nor-
malizing simulations and normalization procedure in more
detail in §§4.2 and 4.3, below.

4.2. Normalizing simulations

The linear matter power spectrum P (k) that we use in
our normalizing simulations is consistent with that of a
low density, inflationary CDM model with a cosmological
constant (LCDM for short). The analytic form we use is
taken from the work of Bardeen et al. (1986):

P (q) = B
qn[ln(1 + α1q)/α1q]

2

[1 + α2q + (α3q)2 + (α4q)3 + (α5q)4]
1

2

, (11)

where q ≡ k/Γ, and B is a normalization constant. We
use the same coefficients as M00, α1 = 2.205, α2 = 4.05,
α3 = 18.3, α4 = 8.725, and α5 = 8.0, which were calcu-
lated for a baryon fraction Ωb = 0.05 by Ma (1996). We
set Γ = 0.26 and n = 0.95. For the transfer function coef-
ficients of Bardeen et al. (1986), the equivalent Γ would be
approximately 0.24. When scaling the simulated spectra
to observational units (km s−1), we assume a cosmology
with Ωm(z = 0) = 0.4 and ΩΛ(z = 0) = 0.6.

As mentioned earlier, we choose this P (k) shape because
previous work has shown that such a power spectrum is
consistent with the Lyα forest results on the relevant scales
(CWPHK; M00; Phillips et al. 2001). This adoption of
a smooth, theoretically motivated initial power spectrum
represents a change in technique from CWPHK, where the
normalizing simulations were run using the P (k) shape
measured from the flux power spectrum as input. The
new approach has the advantage that errors in the shape
of the PF (k) from the normalizing spectra are not corre-
lated with those in the observed PF (k) (which is the case
with the previous technique), and that it is much easier
to allow a scale-dependent b(k). However, we should em-
phasize that the power spectrum derived from the data has
very little dependence on the shape of the power spectrum
assumed in the normalizing simulations, since we use the
simulations only to calculate b(k), which should be insen-
sitive to small changes in the power spectrum shape. We
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justify our choice of P (k) for the normalizing simulations
retrospectively below, by showing that the flux power spec-
trum ∆2

F(k) derived from these simulations yields a good
fit (with an acceptable χ2) to the observed ∆2

F(k).
The normalizing simulations themselves are run with

a P3M N-body code (Efstathiou & Eastwood 1981; Efs-
tathiou et al. 1985), with the gravitational softening length
set to be 0.8 force mesh cells as high force resolution is
not needed. We run ten simulations with different ran-
dom phases. Each one evolves 1603 particles using a 2563

force mesh in a box 27.77 h−1Mpc on a side. These pa-
rameters yield the same mass and force resolution as the
normalizing simulations in CWPHK, which were shown
to be adequate by tests in that paper (see also Figure 14
below). The simulations are run with a background EdS
cosmology and evolved so that the expansion factor a in-
creases by a factor 9.0 from the initial conditions to the
most evolved output, in equal steps of ∆a = 0.1.

Spectra are extracted from the simulation outputs as
described in CWKH. Densities are converted to real-space
optical depths using the FGPA (eq. 2). These optical
depth profiles are then used to compute redshift-space
spectra including the effects of peculiar velocities and ther-
mal broadening. We determine the gas temperature as a
function of density assuming a power-law relation (eq. 1),
with fiducial values for the two parameters of T0 = 15000
K and α = 0.6. The relatively high temperature (in CW-
PKH we used T0 = 5600K) is motivated by evidence
that the high-z IGM is hotter than we previously assumed
(Theuns et al. 1999; Bryan & Machacek 2000; Ricotti et al.
2000; Schaye et al. 2000; McDonald et al. 2001). The value
of α in turn determines the value of the index β = 2−0.7α
in the FGPA. The effect of T0 is largely degenerate with
that of the other parameters that enter into the combina-
tion A of equation (2), but higher T0 does lead to more
thermal broadening and thus to a depression of ∆2

F(k) on
small scales. A crucial step of our procedure is to adjust
the value of A so that the spectra extracted for a particular
set of simulation outputs match our adopted observational
estimate of τeff . Physically we can think of this step as
fixing the photoionization rate ΓHI, which is only weakly
constrained by direct measurements, to reproduce the ob-
served mean opacity given our assumed values of T0, Ωb,
h, and H(z)/H0. For our fiducial results, we adopt the τeff

value given by PRS, which is τ eff = 0.349 at z = 2.72. In
§5, we will discuss the uncertainties in our derived P (k) as-
sociated with the uncertainties in the appropriate choices
of T0, α, and τ eff . The uncertainty in τ eff turns out to be
the most important, but the uncertainties in T0 and α are
also significant.

We extract 1000 spectra from each box for a total of
10,000 per output time. Averaging over a large number
of simulations is important to remove fluctuations, as the
cosmic variance error on the mean ∆2

F(k) estimated from a
small volume can be considerable. We can see this cosmic
variance in Figure 14, where we show ∆2

F(k) for our nor-
malizing simulations and for some comparison simulations
run with a full cosmological hydrodynamic code. The hy-
drodynamic simulations were run with parallel TreeSPH
(Davé, Dubinski & Hernquist 1997) by Romeel Davé (see
Davé et al. 1999) and by Jeffrey Gardner (see Gardner
et al. , in preparation), and they include the effects of gas
dynamics, shocks, heating of gas by the UV background,

Fig. 14.— The flux power spectrum ∆2
F
(k) derived from the

average of ten normalizing simulations, each with 1603 particles in
a 27.77 h−1Mpc box, interpolated to a matter fluctuation ampli-
tude of σ8(z = 0) = 0.74 (thick solid line). Dotted and dashed lines
show results of three TreeSPH simulations with the same matter
fluctuation amplitude. Two of these simulations (thin dashed and
dotted lines) have 643 particles in an 11.11 h−1Mpc box, the same
particle density as our normalizing simulations, and the difference
between them illustrates the effect of cosmic variance in this small
simulation volume. The third simulation (thick dashed line) has the
same phases as the first 643 simulation but eight times more parti-
cles. Points with error bars show ∆2

F
(k) derived from the fiducial

observational sample at z = 2.72; filled points indicate the scales
that we will use for normalization of the matter power spectrum.

radiative cooling, and star formation.
The LCDM model simulated in the TreeSPH simula-

tions is very close to the model adopted in our dissipa-
tionless normalizing simulations. The TreeSPH simula-
tions were output at z = 3, but in order to compare to
our fiducial sample (〈z〉 = 2.72), the km s−1 length scales

were multiplied by
√

3.72/4, so that the same comoving
lengths (in this case for EdS scaling, which is accurate
at these redshifts) could be compared against each other.
This use of an earlier output also means that the effective
mass fluctuation amplitude is lower (equivalent to a model
with σ8 = 0.74 rather than the σ8 = 0.79 that was actu-
ally used). We show results from two TreeSPH simulations
that have 643 particles in an 11.11 h−1Mpc box and from
one simulation with a factor of eight higher mass resolu-
tion, using 1283 particles in an 11.11 h−1Mpc box. The
former simulations have the same particle density as our
dissipationless normalizing simulations. One of the 643

simulations has the same phases as the 1283 run, and Fig-
ure 14 shows that on large scales their ∆2

F(k) results match
well. This agreement indicates that at the 643 resolution
the Lyα forest predictions have converged well enough for
our normalizing simulations to yield the correct amplitude
of ∆2

F(k), at least on the large scales where we will normal-
ize the matter power spectrum (§4.3). The other 643 run
is identical to the first, except that the initial conditions
were generated with different random phases. The large
differences in ∆2

F(k) are therefore due to cosmic variance,
and they show that inferences of the matter P (k) ampli-
tude should rely on normalizing simulations with a much
larger volume (c.f., M00). The solid line in Figure 14 shows
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Fig. 15.— Flux power spectra from four different outputs of
the normalizing simulations, compared to ∆2

F
(k) of the fiducial

observational sample at z = 2.72. The linear matter fluctuation
amplitudes corresponding to the four outputs are (bottom to top)
σ8(z = 2.72) = 0.08, 0.14, 0.24, 0.41. (For Ωm = 0.4, ΩΛ = 0.6,
values at z = 0 are larger by a factor of 3.11.) Filled circles denote
the data points used in determining the best-fit fluctuation ampli-
tude, which corresponds to σ8(z = 2.72) = 0.23, with a 1σ fitting
uncertainty of ±9%.

∆2
F(k) derived from our normalizing simulations, interpo-

lated to have the same amplitude (σ8 = 0.74) as the SPH
simulations. It lies between the two sets of SPH curves,
indicating that the combination of dissipationless simula-
tions with the FGPA is accurate enough for our purposes,
to the extent that we can test. Equally important, the
∆2

F(k) curve is smooth, showing that the total volume sam-
pled (∼ 150 times that of the TreeSPH simulation box) is
large enough to eliminate the uncertainty associated with
cosmic variance.

The points with error bars in Figure 14 show ∆2
F(k) from

our fiducial observational sample, merely for illustrative
purposes at this stage. The results are roughly consistent
with these σ8 = 0.74 LCDM simulations. (The quantity
σ8 is the rms mass fluctuation amplitude in spheres of
comoving radius 8 h−1Mpc, at z = 0 unless the redshift is
otherwise specified.)

4.3. Normalization

Figure 15 shows the flux power spectrum from four out-
puts of our normalizing simulations. The simulated spec-
tra are scaled to the same τ eff and the same velocity units
at each output, so the difference in ∆2

F(k) just reflects
the different amplitude of the underlying matter fluctu-
ations. We obtain ∆2

F(k) on a finer grid of amplitudes
by interpolating between these outputs, in log space (the
outputs are close enough that interpolating linearly gives
essentially the same result, within 2%). We then find the
amplitude that best matches the observed ∆2

F(k) values
by χ2 minimization. We only consider large scale points,
k ≤ 0.0272(km s−1)−1, in this amplitude determination,
so that we remain in the regime where our simulation re-
sults are not affected by their finite resolution (Figure 14)
and where the shape of the flux power spectrum is not
sensitive to the adopted temperature of the IGM (see §5.4

below).
In our adopted LCDM cosmology, the best-fitting am-

plitude corresponds to σ8 = 0.23 at z = 2.72, or σ8 = 0.72
at z = 0. (We will discuss the amplitude in more general
terms in §6 and §7.) The value of χ2 for the best-fitting
∆2

F(k) is 8.5, for 10 degrees of freedom, indicating that
our error bars on ∆2

F(k) are realistic and that the LCDM
power spectrum shape is fairly close to the one implied
by the observations. If we change the IGM temperature
parameter from our fiducial value of T0 = 15, 000 K to
T0 = 5000 K while keeping α = 0.6, then the fit becomes
slightly worse (χ2 = 10), but the change is small because
we are restricting the analysis to large scales. With T0, α,
and τeff fixed to their fiducial values, we find the 1σ uncer-
tainty in the overall matter fluctuation amplitude (∝ σ8)
of the normalizing simulations to be ±9%.

Figure 16 shows the biasing function b(k) derived from
the normalizing simulation outputs (see eq. 9). There
are two instructive points to note from this figure. First,
b(k) drops as the matter fluctuation amplitude increases.
Similar behavior can be seen in the one-point analysis of
Gaztañaga & Croft (2000), who show that for low mass
fluctuation amplitudes the bias tends to the value pre-
dicted by perturbation theory. However, at higher fluc-
tuation amplitudes, saturation reduces the sensitivity of
flux fluctuations to mass fluctuations: the non-linear map-
ping of density to flux forces F into the range zero to
one, δF grows more slowly than δρ, and the bias de-
creases as δρ increases. Second, our large volume sim-
ulations show the redshift-space distortion of the shape
of PF (k) (i.e., a scale-dependent b(k)), which was pre-
dicted based on linear theory calculations by Hui (1999)
and McDonald & Miralda-Escudé (1999). The shape of
the distortion follows these predictions qualitatively, with

Fig. 16.— The bias b(k) ≡
√

PF (k)/P (k) between the flux

power spectrum and the linear matter power spectrum, measured
from the normalizing LCDM simulations, for different mass fluctu-
ation amplitudes. These are, from bottom to top, σ8(z = 2.72) =
0.41, 0.24, 0.14, and 0.08. Horizontal dashed lines show a χ2 fit to the
points with k < 0.025, purely for illustrative purposes. The dotted
curve shows b(k) interpolated to the amplitude σ8(z = 2.72) = 0.23
that best fits the observed flux power spectrum. We use this b(k)
to infer P (k) from our measured flux power spectrum.
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a suppression on large scales and a boost on intermedi-
ate (k ∼ 0.03(km s−1)−1) scales. At higher k we find a
substantial suppression of PF (k), presumably caused by
a combination of thermal broadening, non-linear effects,
and the simulations’ finite numerical resolution.

The dotted curve in Figure 16 shows b(k) interpolated
to our best-fit matter fluctuation amplitude. This is the
function that we will use to determine P obs(k) via equa-
tion (10). The use of normalizing simulations to com-
pute b(k) allows us to account for the distortion of the
shape of PF (k) caused by redshift-space distortions and
non-linearity. The distortion in the shape is considerable
(b(k) changes by up to ∼ 30% between different scales),
although the effects are largest for low k, where the statis-
tical uncertainties are already large, and for high k, where
we will not attempt to recover the matter power spectrum
anyway.

There is an overall multiplicative uncertainty in b(k) be-
cause of the range in the amplitudes of normalizing simula-
tions that yield an acceptable match to our measured flux
power spectrum. In the neighborhood of our best-fitting
fiducial model, the average value of b(k) in the wavenum-
ber range that we use for normalization scales as b ∝ σ−0.7

8 ,
so the ±9% uncertainty in σ8 implies a ±6% uncertainty
in b. This in turn contributes a 12% uncertainty in the
overall amplitude of P obs(k) = P obs

F (k)/b2(k), in addition
to the error bars on individual points that come from the
jackknife error bars on PF (k). Here we are following CW-
PHK in dividing our error bars into an overall normaliza-
tion uncertainty and error bars on individual points. This
division simplifies our analysis, especially when we con-
sider the additional uncertainties related to τ eff , T0, and
α; we will show in §5 that these primarily affect the overall
amplitude of P (k) rather than the shape.

5. SYSTEMATIC UNCERTAINTIES IN THE MATTER
POWER SPECTRUM

5.1. Overview

Our determination of the flux power spectrum PF (k)
in §3.3 is essentially a pure measurement. There are sys-
tematic uncertainties in this measurement associated with
continuum fitting, scaling of pixel sizes and fluxes, inver-
sion from 1D to 3D, and so forth, but we have argued in
§3.3 that these uncertainties are small compared to the
statistical uncertainties of this finite sample.

The inference of the linear matter power spectrum P (k)
from PF (k) requires the biasing function b(k), which we
calculate (as described in §4) using simulations that in-
corporate a number of assumptions. The uncertainties in
these assumptions are the main source of systematic un-
certainties in the derived matter power spectrum.

Specifically, we compute b(k) from P3M simulations as-
suming that the underlying cosmological model is LCDM,
that the gas traces the dark matter in the low density
IGM, that all of the gas lies on the temperature-density
relation (eq. 1), that the parameters τ eff , T0, and α have
specified values, that the photoionizing background and
temperature-density relation are spatially uniform, and
that metal lines and damping wings have a negligible im-
pact on PF (k). In this section, we will discuss the un-
certainties associated with each of these assumptions in
turn. Because these uncertainties affect the full function

b(k), they can lead to uncertainties in the shape and am-
plitude of P (k). In practice, we will restrict our attention
to a range of k for which we expect the systematic un-
certainties in shape to be small compared to the statisti-
cal uncertainties arising from the finite sample size. Our
principal concern will therefore be the uncertainty in the
overall scaling of b(k), which we will characterize by the
ratio bfid/b, where b is the average value of b(k) and bfid is
the average value of b(k) for our fiducial normalizing simu-
lations, which have the parameters defined in §4.2 and the
matter power spectrum amplitude σ8(z = 2.72) = 0.23.
The inferred amplitude of P (k) is directly proportional to
(bfid/b)2. (Note that higher b implies a lower amplitude,
since we start from the observed flux power spectrum and
infer the matter power spectrum from it.)

We have already concluded in §4.3 that the statistical
uncertainty in bfid/b, resulting from the finite size of our
data sample, is ±6% at the 1σ level. We will argue in this
section that the main systematic uncertainties in bfid/b
come from the uncertainty in the true value of τeff and
the uncertainties in the true values of T0 and α. We will
therefore devote most of our effort to quantifying these
uncertainties and to showing how our P (k) results should
be scaled as new, more precise determinations of these
parameters become available.

One powerful test for systematic errors is to see whether
the derived P (k) scales with redshift as it should according
to gravitational instability theory. This test is especially
important as a way of checking for other possible sources
of fluctuations in the Lyα forest. We will discuss this test
in §6.3.

5.2. Cosmological Model

The most important assumption underlying our P (k) re-
covery method is that structure in the universe formed by
gravitational instability from Gaussian primordial fluctu-
ations. Gaussian fluctuations are predicted by most ver-
sions of inflation, and there is empirical support for the
Gaussian assumption from many quarters, including mi-
crowave background anisotropy statistics (e.g., Kogut et
al. 1996), moments and topology of the galaxy density field
(e.g., Bouchet et al. 1993; Gaztañaga 1994; Canavezes et
al. 1998), and agreement between the predicted and ob-
served 1-point flux distribution of the Lyα forest (e.g.,
Rauch et al. 1997; Weinberg et al. 1999b; M00).

Given the Gaussian assumption, the important fea-
tures of the cosmological model that we assume for de-
termining b(k) are the shape and amplitude of P (k) at
z = 2.72, in km s−1 units. The amplitude is constrained
by matching our flux power spectrum data. The shape
of the LCDM P (k) is consistent with our data and with
other data (e.g., Peacock & Dodds 1994), and because
the quantity we compute from the normalizing simula-
tions is b2(k) = PF (k)/P (k) rather than PF (k) itself, the
results are not very sensitive to the assumed shape any-
way. The uncertainty in b(k) associated with our adop-
tion of the LCDM model for the normalizing simulations
should therefore be negligible, unless there is significant
non-Gaussianity of the primordial fluctuations that has
somehow escaped detection in the studies cited above.

There is one significant caveat to this statement. If
the primordial (linear) matter power spectrum is strongly
suppressed on some scale shorter than the scale of non-
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linearity (where ∆2(k) ≈ 1, roughly knl ∼ 0.02(km s−1)−1

in our fiducial case), then non-linear transfer of power
from large scales to small scales will dominate the growth
of PF (k) on these scales (White & Croft 2000). For
k > knl, therefore, our derived b(k) depends on our as-
sumption that the matter power spectrum varies smoothly
with scale, as it does in LCDM and other standard vari-
ants of the inflationary CDM scenario. Models in which
the small scale power is truncated because of warm dark
matter (e.g., Sommer-Larsen & Dolgov 2001) or broken-
scale invariance in inflation (e.g., Kamionkowski & Liddle
2000) should be tested directly with numerical simulations
against the measured PF (k), as in White & Croft (2000)
and Narayanan et al. (2000). For standard variants of in-
flationary CDM, including models with CDM and an ad-
mixture of massive neutrinos (Croft, Hu, & Davé 1999a),
one can compare the predicted linear matter power spec-
trum to our derived linear matter power spectrum.

5.3. Simulations

To compute b(k) we use the N-body+FGPA method de-
scribed in §1 and §4.2, rather than full hydrodynamic sim-
ulations. Evidence that this approximation is adequate
for our purposes is provided by CWKH and by Figure 14.
The main failing of the N-body approximation is the ab-
sence of shock heating, which in full hydrodynamic sim-
ulations pushes some gas off of the temperature-density
relation, reducing its Lyα optical depth. However, for the
flux power spectrum at these redshifts, shock heating has
little effect — it occurs in dense regions with small vol-
ume filling factor, and if the gas is only moderately heated
then the absorption remains saturated even at this higher
temperature. The N-body approximation also ignores the
effects of gas pressure, but these should be unimportant
on the scales where we attempt to recover P (k), though
they may become important at higher k.

Comparison of the two dashed lines in Figure 14 sug-
gests that the finite numerical resolution of our normaliz-
ing simulations may start to have a noticeable effect at k ∼>
0.03(km s−1)−1. To determine the overall normalization

of b(k), we use only data points with k < 0.03(km s−1)−1,
though we continue our calculation of P (k) to somewhat
smaller scales, k = 0.05(km s−1)−1, where finite simula-
tion resolution could be having a small effect.

As explained in §4.2, we run our simulations with an
Einstein-de Sitter background cosmology for convenience,
though we adopt an LCDM power spectrum and scale co-
moving h−1Mpc to km s−1 assuming LCDM parameters.
Our use of the EdS background means that redshift-space
distortion effects are computed assuming Ωm = 1, but
since Ωm is very close to one in all cosmological models at
high z (and Ω0.6

m is even closer), this makes negligible dif-
ference to the results (for further discussion and numerical
tests, see CWKH).

We have used ten independent simulation volumes in
our estimate of b(k) (Figure 16), and there is a small con-
tribution to the statistical uncertainty in P (k) because of
this finite number of simulations. We estimate this con-
tribution from the dispersion in b(k) among the ten real-
izations and add it in quadrature to the individual P (k)
error bars that result from the finite number of observed
spectra (estimated by the jackknife method as described

in §3.3.5). This contribution increases the 1σ error bars
by ∼ 1% on the largest scales (where the statistical uncer-
tainties are already large) and by ∼ 15% on the smallest

scales at which we calculated P (k), 0.05(km s−1)−1.
It is worth reiterating that we use the N-body+FGPA

method to compute b(k) because it allows us to carry out
many large volume simulations with different cosmologi-
cal parameters and IGM parameters. Large volumes are
needed for accurate computation of b(k), and large num-
bers of simulations are needed to reduce the variance in
the numerical estimate of b(k). Our tests imply that the
systematic uncertainties introduced by the use of this ap-
proximation and by our finite numerical resolution are
small compared to the other uncertainties in P (k) over
the range of scales where we attempt to derive it (includ-
ing the uncertainties that we discuss below). However, in
the future it might become computationally practical to
carry out full hydrodynamic simulations in the necessary
numbers. With such simulations, it might be possible to
reduce the systematic uncertainties in b(k) at small scales,
allowing recovery of P (k) over a wider dynamic range.

Recently Gnedin & Hamilton (2002) have independently
run normalizing simulations to infer the matter power
spectrum from our measurement of the Lyα flux power
spectrum. Using PM simulations with higher mass reso-
lution and a smaller volume, and an independent spectral
extraction code, they find nearly identical results when
they assume the same cosmology. They also show that
the inferred b(k) is indeed insensitive to the assumed cos-
mological model and initial P (k), except for a moderate
increase in the inferred amplitude in open (zero-Λ) mod-
els with Ωm ∼< 0.3, for which Ωm is still significantly below
unity at z ∼ 3. The good agreement between these inde-
pendent calculations increases our confidence that any sys-
tematic errors associated with the normalizing simulations
are fairly small. Gnedin & Hamilton (2002) also show that
peculiar velocities induce correlations in the line-of-sight
power spectrum at neighboring k values, which should be
taken into account in a full maximum likelihood analysis
that uses our results.

5.4. Mean optical depth

As discussed in §4.2, an important input to our normal-
izing simulations is the value of the effective mean optical
depth τ eff . This observational constraint allows us to fix
the parameter A of equation (2) for a given simulation
output, which in turn determines the relation between the
mass density field and the Lyα optical depth. Although
the measurement of the flux power spectrum is not sen-
sitive to continuum fitting uncertainties (see §3.3.2), the
measurement of τ eff is very sensitive to continuum deter-
mination because a significant fraction of the mean opacity
arises in long stretches of weak absorption that are close
to the unabsorbed continuum. In principle, the systematic
biases of a local continuum fitting method on τ eff can be
calibrated using numerical simulations (see, e.g., Rauch et
al. 1997), but it is difficult to do this accurately because
the simulation boxes are smaller than the scales over which
continua are fitted. In this paper, therefore, we do not at-
tempt to determine τ eff from our data but adopt the value
found by PRS (see §4.2), which we check below using our
filling factor measurements. An accurate determination of
τeff from a large sample of HIRES data will be the subject
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Fig. 17.— Influence of the assumed mean optical depth, τeff , and
the assumed parameters of the temperature-density relation, T0 and
α, on the inferred amplitude of the matter power spectrum (which
is proportional to [bfid/b]2). The thick solid line with filled circles
shows the dependence of bfid/b on the value of τeff for our fiducial
parameters, T0 =15000 K, α = 0.6. For higher τeff , less matter clus-
tering is required to match the observed flux power spectrum. Thick
dashed and dotted lines show the effect of changing T0 to 5000 K
and 25000 K, respectively, with α = 0.6. Thin lines with open points
show results for α = 0.2 with the corresponding T0 values. Points
have been slightly displaced in the x-direction, for clarity. Triangles
indicate the values of τeff required to match our measured filling
factor (see Fig. 3) for three different SPH simulations of the LCDM
model, each occupying an 11.11 h−1Mpc box, with horizontal error
bars coming from the 1σ error bars on the filling factor. The top
two triangles represent two 643-particle simulations with different
phases, and the lowest represents a 1283 simulation with the same
phases as the lower 643 simulation. The y-axis position of these
points is arbitrary.

of a future paper.
We have investigated the dependence of the inferred

P (k) amplitude on τeff by carrying out our normalization
procedure for different values of τeff . In Figure 17, the
thick solid line shows the dependence of bfid/b on τ eff for
our fiducial parameters of the temperature-density rela-
tion; note that we plot the quantity that is proportional to
the rms mass fluctuation amplitude, and hence to

√
P (k).

Error bars show the 1σ uncertainty in the mean caused
by our finite number of simulations. Our fiducial choice of
τ eff = 0.349 at z = 2.72, based on PRS, yields bfid/b = 1
by definition. A higher τ eff requires a higher value of A
in equation (2), which in turn increases the bias between
flux and mass. The inferred power spectrum amplitude
is therefore lower when τ eff is higher. Our results for the
fiducial temperature-density relation are reasonably well
described by the formula

bfid

b
=

(
τ eff

0.349

)Cτ

(12)

with Cτ = −1.7, which is accurate to within the mea-
surement uncertainty of the simulations over the range
τ eff = 0.26 − 0.44 (the full range shown in Figure 17).
Equation (12) can be used to scale the amplitude of our

inferred matter power spectrum in light of new measure-
ments of τeff , at least if they are not very far from the PRS
value.

PRS give a fitting formula for τeff(z), and their quoted
uncertainties in the fit parameters imply a 1σ uncertainty
of approximately ±5% in τ eff at z = 2.72. The three cen-
tral points in Figure 17 cover this range of τ eff . A 5%
uncertainty in τ eff corresponds to a ±9% uncertainty in
the matter fluctuation amplitude (see equation 12). We
therefore adopt ±9% as the contribution of the observa-
tional uncertainty in τ eff to the 1σ error bar on the inferred
matter fluctuation amplitude.

In addition to their own internal error estimate, two
lines of argument suggest that the PRS determination of
τeff is not too far from the true value. The first is the in-
dependent measurement of τ eff by Rauch et al. (1997) and
M00 from Keck HIRES spectra. (There are eight spectra
in the M00 sample, seven of which are also in the Rauch et
al. sample.) M00 report τ eff = 0.380± 9% at z = 3.0 (the
Rauch et al. value is very similar), with the error bar esti-
mated by bootstrap analysis of the data. The PRS formula
implies τeff = 0.448 at z = 3, 18% higher than M00’s cen-
tral value. The two measurements differ by slightly more
than their estimated 1σ uncertainties, but the local con-
tinuum fitting approach used for the HIRES data tends
to systematically depress τ eff , and correcting for this ef-
fect based on simulated spectra brings the two estimates
closer together (Rauch et al. 1997). The PRS approach of
extrapolating the quasar continuum from redward of the
Lyα emission line does not suffer from this bias, though it
has systematic uncertainties of its own. Recently Bernardi
et al. (2002) have applied an improved version of the PRS
technique to a sample of ∼ 1000 quasar spectra from the
Sloan Digital Sky Survey, and they find excellent agree-
ment with PRS (and a much smaller statistical error) ex-
cept in a narrow redshift range 3.0 < z < 3.2, where they
find a ∼ 10% local dip in τeff . The good agreement of
the PRS and Bernardi et al. (2002) determinations sug-
gests that the error bar we associate with the uncertainty
in τeff may be overly conservative, but one should be cau-
tious until the difference between the continuum extrapo-
lation approach and the local continuum fitting approach
is completely understood.

The second line of argument is based on the filling fac-
tor (FF) measurement described in §3.1. With the help of
simulations, we can ask what what value of τ eff is compat-
ible with our measurement, a filling factor of 0.205±0.004
for regions of the spectra with F < 0.5 at z = 2.72. The
three triangles in Figure 17 represent the values of τ eff

for which the three TreeSPH simulations described previ-
ously (see Figure 14 and the associated discussion) repro-
duce the measured FF. Horizontal error bars represent the
1σ uncertainty associated with the ±0.004 uncertainty in
FF. The upper two points represent the two 643-particle
simulations; the 4% difference between them is the effect
of cosmic variance for the 11.11 h−1Mpc simulation vol-
ume. The lower point represents the 1283-particle simu-
lation, which has the same phases as the 643 simulation
represented just above it; the factor of eight increase in
particle number reduces τ eff by less than 3%. Based on
these results, we can conclude that our adopted value of
τeff = 0.349 is compatible with our measured FF, a consis-
tency that would be lost if we changed τ eff by a substantial
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factor. The relation between τ eff and the filling factor de-
pends on the matter power spectrum itself (and on the as-
sumption of primordial Gaussianity), but the flux power
spectra of the TreeSPH simulations are reasonably close
to our measured flux power spectrum (Figure 14), imply-
ing that the model adopted in the simulations should be
adequate for calibrating this relation.

As this discussion illustrates, it might be possible to use
the FF measurement itself in place of τ eff when determin-
ing the value of A in the normalizing simulations. This ap-
proach would remove the dependence of the inferred P (k)
amplitude on a quantity (τ eff) that is sensitive to contin-
uum fitting uncertainties. We have not followed this route
here because the computation of FF might be sensitive
to the limited resolution of our normalizing simulations,
and because we have not tested the adequacy of the N-
body+FGPA approximation itself for this purpose. We
also have not investigated the influence of T0 and α on the
relation between FF and τeff . However, an approach that
uses the filling factor instead of τ eff might become useful in
the future, as higher resolution hydrodynamic simulations
become computationally easier.

5.5. The temperature-density relation

There have been several recent attempts to determine
the parameters of the IGM temperature-density relation
(a.k.a. “equation of state”) by comparing the predicted
and observed widths of Lyα forest absorption features.
Simulations with standard photoionization heating and a
high reionization redshift do not match the observed line
width distribution (e.g., Theuns et al. 1999; Bryan et al.
1999), and several mechanisms have been proposed to re-
solve this discrepancy (e.g., Madau & Efstathiou 1999;
Nath, Sethi & Shchekinov 1999; Abel and Haehnelt 1999).
Although the widths of most features are dominated by
Hubble flow rather than thermal motions (Weinberg et al.
1997a), the narrowest features occur at velocity caustics
and have widths determined by thermal broadening, so
the cutoff in the distribution of line widths as a function of
column density provides a diagnostic for the temperature-
density parameters (Bryan & Machacek 2000; Schaye et
al. 1999). Ricotti et al. (2000), Schaye et al. (2000), and
McDonald et al. (2001) have used variations on this theme
to estimate values of T0 and α. At z = 3, McDonald et al.
(2001) find α ≈ 0.3±0.3 and T0 ≈ 18, 000 K (extrapolated
from their quoted estimate of T at overdensity 1.4). Schaye
et al. (2000) find slightly lower temperature (T0 ≈ 16, 000
K at z = 2.7) and Ricotti et al. (2000) somewhat higher
(T0 ≈ 25, 000 K at z = 2.75), with similar best fit values
of α. Zaldarriaga, Hui, & Tegmark (2001a) obtain results
similar to those of McDonald et al. (2001) with a different
technique, based on the flux power spectrum. The statis-
tical and systematic uncertainties in these determinations
are still rather large, so we must assess the influence of
these uncertainties on our P (k) determination. While the
relation between the matter and flux power spectra is not
strongly sensitive to T0 or α (see CWKH), there is enough
dependence to influence the inferred P (k) at the level of
precision achievable with our data set.

The influence of T0 and α on b(k) is subtle because we
always adjust the constant A in the FGPA (eq. 2) so that
the normalizing simulations match the adopted τ eff . The
direct effect of thermal broadening on PF (k) is confined to

small scales (the thermal broadening width bth at 15,000
K is 16 km s−1). However, by changing the structure of
the flux distribution on small scales, thermal broadening
can alter the value of A required for a given matter dis-
tribution. The parameter α has a direct impact on the
flux–density relation in the FGPA (eq. 2), but this effect
is again mediated by the requirement of matching τ eff .

The various lines in Figure 17 show the relation between
bfid/b and τ eff for different temperature-density parame-
ters. The thick solid line (discussed in §5.4) corresponds
to our fiducial choice: T0 = 15, 000 K, motivated roughly
by the observational results cited above, and α = 0.6,
the asymptotic slope that should be approached long after
reionization (Hui & Gnedin 1997). The thick dashed and
dotted lines have T0 = 5000 K and 25,000 K, respectively,
with α = 0.6. Thin lines correspond to α = 0.2, with the
same temperatures. Comparison of these lines shows that
the inferred P (k) amplitude is lower for a hotter IGM tem-
perature or a steeper temperature-density relation (higher
α).

We can use the results in Figure 17 to parameterize the
dependence of the mass fluctuation amplitude on T0 and α,
as we did for the dependence on τ eff in equation (12). We
use a slightly different form in order to ensure reasonable
behaviour for values of T0 and α close to zero. For τ eff =
0.349 and α = 0.6, the T0 dependence is roughly

bfid

b
=

(
1 + T0/15000 K

2

)CT

(13)

with CT ≈ −0.5. We measure no statistically significant
dependence of our results on α. CT is less well determined
than Cτ because we have only a sparse grid of T0 and α
values. Since Cτ = −1.7, the power spectrum normaliza-
tion is obviously much more sensitive to τeff than to T0 or
α. However, the fractional uncertainty in T0 is still larger
than the fractional uncertainty in τeff , so it still makes a
significant contribution to the overall uncertainty in the
amplitude of P (k).

To assign the uncertainty in bfid/b, we will assume that
the range of parameter values considered in Figure 17,
T0 = 5000 − 25, 000 K, α = 0.2 − 0.6, represents the 95%
confidence range on the true values, based on the papers
cited above, on figure 5 of White & Croft (2000), and on
Figure 18 discussed below. This assumption is probably
overly conservative with respect to T0, but it perhaps un-
derestimates the viable range of α, which is a more difficult
parameter to pin down observationally. From the points
in Figure 17 at τ eff close to 0.349, we then estimate that
the resulting uncertainty in bfid/b is +10%,−7%, at the
1σ (68% confidence) level.

The values of T0 and α also affect the shape of the
flux power spectrum (for a given matter power spectrum)
on small scales. Figure 18 shows the flux power spec-
trum ∆2

F(k) of the normalizing simulations for each of the
six parameter combinations illustrated previously in Fig-
ure 17. In each case we choose the overall normalization
to get the best fit to points with k ≤ 0.03(km s−1)−1,
interpolating between the simulation outputs. On large
scales, the shape of ∆2

F(k) is almost independent of T0

and α (at least with respect to the large obseravtional er-
ror bars). For k ∼> 0.05(km s−1)−1, however, there is a
strong dependence, with hotter models having less small
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Fig. 18.— Influence of the IGM temperature-density parame-
ters on the shape of the flux power spectrum in the normalizing
simulations. The six lines have the same meaning as those in Fig-
ure 17: solid, dashed, and dotted for T0 = 15, 000 K, 5000 K, and
25,000 K, respectively; thick for α = 0.6, thin for α = 0.2. The
flux power spectrum of the fiducial observational sample is shown
by points. The normalization of the matter power spectrum is cho-
sen separately in each case to yield the best fit to the points with
k ≤ 0.03(km s−1)−1 (solid points).

scale power as expected. These differences in the shape
of ∆2

F(k) would translate into scale-dependent changes in
the function b(k). We therefore restrict our estimate of the

matter power spectrum to k < 0.05(km s−1)−1, so that the
inferred shape is insensitive to the uncertainties in T0 and
α.

It is clear from Figure 18 that our fiducial choice of pa-
rameters yields the best match to the observed shape of
∆2

F(k) on small scales. We do not regard this agreement as
a solid determination of T0 (which has more influence on
the shape than α), since we are relying on moderate reso-
lution N-body simulations rather than high resolution hy-
drodynamic simulations and have not explored the trade-
offs between the IGM parameters and the assumed shape
of the matter power spectrum on these scales (see White
& Croft 2000). However, the result is reassuringly con-
sistent with the estimates cited above. On the basis of
this match to the observed ∆2

F(k), one could argue that
we have overestimated the uncertainty in the P (k) nor-
malization associated with T0 and α — it may not be the
temperature-density relation itself that matters but only
the sum total of all physical and numerical effects on the
small scale power in the flux, which then determines the
value of A that is required to match the observed τ eff for
a given mass distribution. We will adopt the more conser-
vative position described above, for which the uncertainty
contributed by the temperature-density relation is simi-
lar to that contributed by the finite sample size and the
uncertainty in τ eff . Setting the temperature-density con-
tribution to zero would reduce our error bar on bfid/b by
about 20%.

By using the N-body + FGPA method for our nor-
malizing simulations, we implicitly assume that uncertain-

ties in T0 and α influence the inferred matter P (k) only
through their effects on the flux-overdensity relation (2)
and through thermal broadening. Zaldarriaga et al. (2001;
hereafter ZHT), who compare results from a grid of sim-
ulations to the 1-d flux power spectrum measurements of
M00, suggest that gas pressure effects may introduce addi-
tional uncertainty in the inferred shape of P (k) by depress-
ing the flux power spectrum on small scales. We believe
that such effects are unlikely to be significant in our anal-
ysis, for several reasons. First, we infer the matter P (k)

only at k ≤ 0.05(km s−1)−1, while much of the weight in
the ZHT likelihood analysis comes from smaller scale data
points, with 0.05(km s−1)−1

∼< k ∼< 0.15(km s−1)−1. Sec-
ond, our larger number of spectra yields better determina-
tion of the P (k) shape on large scales, where any pressure
effects are negligible, and we see no change in the inferred
P (k) slope as we go from large scales to small scales (see
Figure 21 below). Finally, we suspect that the ZHT ap-
proach exaggerates the possible effects of gas pressure be-
cause it parameterizes these effects as a Gaussian smooth-
ing of arbitrary strength, constrained only by the shape
of the flux power spectrum itself. Our SPH simulations
and the simulations of Meiksin & White (2000) using the
hydro-PM technique (Gnedin & Hui 1998) show no signs
of significant gas pressure effects at k < 0.05(km s−1)−1

(however, these simulations do not examine scenarios with
late heating from HeII reionization). More generally, we
suspect that gas pressure effects on the flux power spec-
trum are always small relative to the effects of thermal
broadening and therefore add little additional uncertainty
to the matter power spectrum. Experiments by McDonald
(2002), using the hydro-PM technique support this point
of view. McDonald (2002) finds that for an uncertainty
of 4000K in temperature (slightly less than our 5000K 1
σ error bar), the uncertainty in ∆2

F(k) is less than 2% on
the large scales we consider. Further investigation with
hydro-PM and full hydrodynamic simulations will be re-
quired to settle the issue entirely. For now, we assign no
additional uncertainty to our results associated with gas
pressure effects.

5.6. UV background and temperature fluctuations

Our normalizing simulations assume that the UV back-
ground (UVBG) is spatially uniform, i.e., that the pho-
toionization rate Γ in equation (2) is constant. Fluctu-
ations in the UVBG could in principle be an additional
source of structure in the Lyα forest, beyond that due to
density fluctuations. UVBG fluctuations and their influ-
ence on the Lyα forest have been studied theoretically by
Zuo (1992), Fardal & Shull (1993), and Haardt & Madau
(1996), among others.

CWPHK calculated the impact of UVBG inhomogeneities
on the flux power spectrum ∆2

F(k), using a simplified
model and the assumption that the background is pro-
duced by a population of clustered quasars. They found
(as expected based on earlier work) that the fluctuations
induced in the Lyα forest are small in amplitude and oc-
cur mainly on large scales. For example, UVBG fluctua-
tions contribute < 1% of the signal in ∆2

F(k) at z = 2.5

for k = 2 × 10−3(km s−1)−1. The reason for this small
impact is simple: through most of the volume occupied
by the IGM, the photoionization rate reflects the summed



21

contribution of many distant quasars rather than a few
nearby quasars. The UVBG fluctuations from more nu-
merous sources (e.g., galaxies) would be smaller still (see
the analytic argument in CWPHK, following Kovner &
Rees 1989). Based on these results, we expect UVBG
fluctuations to have a negligible impact on our P (k) mea-
surement at the fiducial redshift z = 2.72, at least on the
scales that we are able to probe with this data set.

At high redshifts, the universe becomes more optically
thick, so that the effective number of sources seen by a
given point in space is smaller and fluctuations increase.
Simulations of stellar reionization of hydrogen by Gnedin
(2000) make ab initio predictions for the UVBG fluctua-
tions expected in this case, at least down to z = 4. Gnedin
& Hamilton (2002) report that the inhomogeneity of the
background in this simulation changes the Lyα flux power
spectrum by less than 1%, so it appears that UVBG fluc-
tuations are unimportant for this purpose even at z = 4.
However, more complete theoretical calculations that in-
clude the effects of inhomogeneous HeII reionization at
lower redshift are still desirable.

Another possible source of structure in the Lyα forest
is spatially coherent variation in the temperature-density
relation. Fluctuations in T0 and α could arise during
inhomogeneous heating of the IGM, for example during
HeII reionization. They would be damped on a Hubble
timescale by the competition between adiabatic and pho-
toionization heating, which establishes the temperature-
density relation itself (Hui & Gnedin 1997). However, if
the IGM is heated at relatively low redshift then signif-
icant fluctuations could potentially survive to the epoch
probed by our observations. We do not know of any direct
theoretical predictions of such temperature fluctuations.

Several lines of empirical argument suggest that UVBG
fluctuations and temperature fluctuations have much less
impact on the Lyα forest than the density fluctuations that
we are trying to measure. The first is the approximate con-
sistency between the inferred matter power spectrum and
other statistical properties of the forest like the flux distri-
bution function (Rauch et al. 1997; Weinberg et al. 1999b;
M00), implying reasonable agreement with the model of
density fluctuations induced by gravitational instability
from Gaussian initial conditions. The second is the con-
stancy of the shape of the flux correlation function (Fig-
ure 4) and flux power spectrum (Figure 11) over the range
of redshifts probed by our five data subsamples, 〈z〉 = 3.51
to 〈z〉 = 2.13. A nearly constant shape is expected if these
statistics reflect structure in the underlying mass distribu-
tion, but it would be quite surprising if UVBG fluctuations
or temperature fluctuations were having a significant im-
pact, since the quasar space density and the mean opacity
to photoionizing radiation vary substantially over this in-
terval, and temperature fluctuations would be expected to
evolve if they were present. A third argument is presented
by Zaldarriaga, Seljak, & Hui (2001b), who have devised a
statistical diagnostic for distinguishing gravitationally in-
duced power from non-gravitational fluctuations. Apply-
ing their method to a spectrum of Q1422+231, they con-
clude that non-gravitational fluctuations contribute less
than 10% of the observed power. Finally, we will show in
§6.3 that the evolution of the amplitude of ∆2

F(k) is consis-
tent with the predictions of gravitational growth of mass
fluctuations. In contrast, we would expect the contribu-

tion of other sources to decrease towards lower redshift
rather than increase, so they would spoil this agreement if
they were significant in any of our subsamples. Given the
theoretical expectations and these empirical arguments,
we will not assign any additional uncertainty to our P (k)
estimates to account for UVBG or temperature fluctua-
tions.

5.7. Metal lines and damping wings

Metal lines in the Lyα forest region of spectra are rare
compared to Lyα lines, so their filling factor in spectra
is small. Their effect on a measurement of ∆2

F(k) can be
checked in two ways, by attempting to remove them or by
adding simulated lines to spectra. The first of these tests
was carried out by M00, who showed that any changes in
∆2

F(k) are confined to scales k > 0.1(km s−1)−1. This is as
we might expect, given that the metal lines are rare, sharp
features in the absorption spectrum. Our data are not
useful for measurements on these scales because the power
there is dominated by shot noise (see Figure 7), so we do
not need to take this effect into account. CWPHK carried
out the second test, adding simulated CIV lines to their
observed spectra. They found a small effect on relatively
large scales, at wavenumbers related to harmonics of the
CIV doublet spacing. For reasonable assumptions about
the metallicity of the IGM, the magnitude of the effect was
∼ 1%, small enough to be hidden in the cosmic variance
noise of the M00 analysis, and not likely to be a significant
factor here.

Damped Lyα systems are another potential problem,
since the FGPA (eq. 2) does not allow for the effect of
damping wings. However, the filling factor of damped
Lyα systems is again very small (∼ 0.1 systems per unit
redshift), so they are unlikely to make a significant contri-
bution to ∆2

F(k). Direct empirical evidence for this point
comes from CWPHK, who show that including or exclud-
ing damped absorption regions makes little difference to
∆2

F(k) even in a sample selected to have damped Lyα ab-
sorbers in each spectrum.

Constancy of the measured shape of ξF (r) and ∆2
F(k)

(see Figures 4 and 11) provides further evidence that metal
lines and damped Lyα systems do not alter the flux power
spectrum, since the opacity of metal lines and damped
systems relative to the low column density forest varies
substantially with redshift and they would add power pri-
marily on small scales.

6. MATTER POWER SPECTRUM RESULTS

6.1. The linear matter power spectrum at z=2.72

Table 4 presents this paper’s primary result, the lin-
ear matter power spectrum P (k) at 〈z〉 = 2.72 estimated
from our fiducial data sample. These values of P (k) are
obtained by dividing the values of PF (k) in Table 3 by
(the square of) our fiducial estimate of b(k) shown by the
dotted line in Figure 16. We have used only points with
k < 0.05 km s−1, so that the inferred shape should be in-
sensitive to the assumed values of the IGM temperature
parameters (see §5.5 and Figure 18). The error bars on in-
dividual points represent the same fractional uncertainty
as the error bars on PF (k) reported in Table 3, except that
we have added the small additional contribution from sta-
tistical errors in b(k) caused by the finite number of nor-
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malizing simulations (see §5.3). The PF (k) error bars were
derived by applying a jackknife estimator to 50 separate
subsamples drawn from the fiducial data set, as described
in §3.3.5. The covariance matrix of these errors is ap-
proximately diagonal on these scales (see Figure 12), and
the estimates of off-diagonal terms are noisy, so we do not
quote them. A plot comparing the measured P (k) to CDM
model predictions appears in Figure 21, which we discuss
in §7 below.

Table 4

The linear matter P (k), for the fiducial sample
(〈z〉 = 2.72).

k P (k)
( km s−1)−1 ( km s−1)−3

0.00199 (4.84 ± 6.20)× 108

0.00259 (3.14 ± 1.85)× 108

0.00337 (1.67 ± 0.72)× 108

0.00437 (3.90 ± 2.63)× 107

0.00568 (1.46 ± 0.96)× 107

0.00738 (2.28 ± 0.45)× 107

0.00958 (8.38 ± 1.58)× 106

0.0124 (4.64 ± 0.74)× 106

0.0162 (2.48 ± 0.47)× 106

0.0210 (1.35 ± 0.20)× 106

0.0272 (6.86 ± 0.64)× 105

0.0355 (3.83 ± 0.28)× 105

0.0461 (1.90 ± 0.11)× 105

Note: We give the 1σ error on P (k). An additional error
should also be assigned to the normalization of all points,

which is +29%,−25% in P (k) (1σ, see text).

While the uncertainty in the shape of b(k) is small over
the range of scales in Table 4, there is uncertainty in the
amplitude of b(k) contributed by the various sources dis-
cussed in §3.3.5 and §5. This normalization error could be
treated as a set of off-diagonal terms in the P (k) error co-
variance matrix, but we think it is simpler to regard it as
an overall multiplicative uncertainty in the amplitude of
P (k). The 1σ uncertainty in the average value of b(k) con-
tributed by the finite size of the data set (cosmic variance)
is 6% (§4.3). The 1σ uncertainty contributed by the error
bar on τeff is 9% (§5.4). The 1σ uncertainty contributed
by the uncertainty in the IGM temperature parameters is
8.5% (§5.5). Summing these error contributions in quadra-
ture leads to a 1σ error bar of ±13.5% on the rms mass
fluctuation amplitude, or +29%, −25% on the amplitude
of P (k). At the 1σ level, therefore, the P (k) values in
Table 4 can be multiplied coherently by a factor F in the
range 0.75 − 1.29.

The cosmic variance uncertainty is estimated directly
from our data, and the range of T0 and α that we have
used to assign an associated error bar is probably conser-
vative. The most plausible source for an error in the P (k)
amplitude that is substantially larger than our quoted 1σ
uncertainty would be an error in our adopted value of τeff

that is larger than the 5% 1σ uncertainty we have assigned
based on PRS. We think that a large departure from the

PRS τ eff is unlikely for the reasons given in §5.4, but we
cannot rule out the possibility. Another possible source
of systematic error beyond that reflected in our error bar
is numerical limitations of our normalizing simulations —
finite resolution and use of the N-body+FGPA method in
place of full hydrodynamic simulations. We think that the
uncertainty associated with these limitations is unlikely to
be significant for the reasons discussed in §5.2 and §5.3, but
confirmation of our b(k) estimate with large numbers of
high resolution hydrodynamic simulations would be valu-
able once it becomes computationally feasible.

As discussed in §5.2 and White & Croft (2000), the
main effect that might cause errors in the derived shape
of b(k) outside those quoted in the Table is truncation
of the true linear P (k) below the scale of non-linearity,
k ∼ 0.02(km s−1)−1.

6.2. Parameterized fits to P (k)

Over the range of scales that we probe, our derived
matter power spectrum can be adequately described by
a power-law or by some other smooth functional form.
For many applications, it is simpler to work with such
parameterized descriptions than with the individual P (k)
data points. Following CWPHK, we describe the ampli-
tude of the power spectrum by quoting its value at a pivot
wavenumber kp, chosen so that the errors in amplitude are
approximately independent of the errors in the logarithmic
slope or other shape descriptor. For this data set (which
probes higher wavenumbers than the CWPHK data set),

we adopt kp = 0.03(km s−1)−1.
For power-law fits, our parameterized form is

P (k) = Pp

(
k

kp

)ν

, (14)

where Pp = P (kp) and we use ν to avoid confusion with
the inflationary spectral index n (see equation 11). We
determine the parameters by a maximum likelihood fit to
the P (k) data points, using a diagonal χ2 and assuming
that the relative likelihood L obeys −2 lnL = χ2. We
account for the additional normalization error on Pp by
convolving the likelihoods in the Pp − ν plane along the
Pp direction with a likelihood distribution derived from
the normalization error bar. We assume that the latter
distribution is Gaussian in the log of the mass fluctuation
amplitude (i.e., a Gaussian with specified fractional error
rather than absolute error). The mass fluctuation ampli-
tude is proportional to

√
Pp. With these assumptions, the

likelihood convolution is then

L(Pp, ν) =

∫ ∞

0

L′(x, ν) exp



−1

2

(
log
√

Pp − log
√

x

log(1 + σa)

)2


 dx,

(15)
where L′(Pp, ν) is the likelihood before the convolution and
σa is the 1σ fractional normalization error on the fluctua-
tion amplitude (13.5% for the fiducial sample). In practice,
the normalization error dominates over the uncertainty in
the amplitude of the power-law fit, i.e., L′(x, ν) is effec-
tively a δ-function. Since kp is chosen so that errors in ν
and Pp are uncorrelated, the result of equation (15) in the
Pp direction is very close to a log-normal distribution in√

Pp with dispersion σa.
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In place of Pp, we quote the dimensionless quantity

∆2(kp) =
1

2π2
k3

pPp, (16)

the contribution to the mass fluctuation variance from
an interval d ln k = 1 about kp = 0.03(km s−1)−1. For

the fiducial sample we obtain ∆2(kp) = 0.74+0.20
−0.16 and

ν = −2.43 ± 0.06 (see Table 5). The absolute value of
χ2 for the best fitting parameter values is 6.9 for 11 de-
grees of freedom, indicating that the power-law shape is
an adequate description of the data.

The solid curves in Figure 19 show the value of ∆χ2

as a function of ν (left panel) or ∆2(kp) (right panel),
in each case with the other parameter fixed at its best-
fit value. Because the errors on ν and ∆2(kp) are nearly
independent, one can simply add the ∆χ2 associated with
each parameter separately to get the value of ∆χ2 for any
combination of ν and ∆2(kp). The ∆χ2 curve for ∆2(kp)
is well described by the equation

∆χ2 =

[
log(∆2(kp)/0.74)

2 log(1.135)

]2
, (17)

and the ∆χ2 curve for ν is adequately described by

∆χ2 =

(
ν + 2.43

0.06

)2

. (18)

These formulae can be used to compute joint confidence
intervals on ∆2(kp) and ν for cosmological model tests.

As an alternative parameterized description, we fit the
fiducial P (k) data with the generic shape predicted by
inflationary CDM models, equation (11), taking as free
parameters the amplitude ∆2(kp) and the shape param-

eter Γ′ specified in (km s−1)−1 at z = 2.72. We set the
inflationary spectral index n = 1. We use the same pivot
wavenumber, kp = 0.03(km s−1)−1, that we used for the
power-law fit. The parameters Γ′ and ∆2(kp) can be re-

lated to the quantities Γ (in h Mpc−1) and σ8 at z = 0, as
discussed in §7 below. However, this relation is cosmology
dependent, while the fit in terms of Γ′ and ∆2(kp) is not.
We should note that our data do not yield a significant de-
tection of curvature of the power spectrum; they constrain
Γ′ because the slope at scale kp depends on the location
of the peak of P (k), which is determined by Γ′.

The constraint on ∆2(kp) is essentially identical for the
power-law and CDM-like fits, as demonstrated by the
agreement of the dotted and solid curves in the right
panel of Figure 19. The constraint on Γ′ (middle panel) is
asymmetric, since the slope of the CDM spectrum changes
more rapidly towards lower k than towards higher k. We
find Γ′ = 1.3+0.7

−0.5 × 10−3(km s−1)−1 at the 1σ level and

Γ′ = 1.3+1.6
−0.9 × 10−3 at 2σ. The errors on ∆2(kp) and Γ′

are again nearly uncorrelated, so one can add the ∆χ2

values from the two 1-dimensional curves to obtain the
∆χ2 for a combination of values. We discuss cosmological
constraints based on this fit in §7 below.

6.3. Evolution of P (k)

Figure 11 demonstrates substantial evolution of the ob-
served flux power spectrum over the redshift range covered

by our data set, 〈z〉 = 3.51 (subsample E) to 〈z〉 = 2.13
(subsample A). However, most of this evolution is driven
by the change in the mean optical depth. In this section,
we test whether the evolution of the inferred matter P (k)
is consistent with the predictions of gravitational instabil-
ity theory.

We determine the matter power spectrum for the five
subsamples using the same normalizing simulations de-
scribed in §4.2, except that at each redshift we use the
appropriate scaling of comoving distances to km s−1 and
match the mean optical depth implied by the PRS fitting
formula at the subsample’s mean redshift. These optical
depth values are τeff = 0.192, 0.274, 0.355, 0.460, 0.679
for subsamples A to E, respectively. We fit power-laws
to the resulting P (k) data points as we did for the fidu-
cial sample in §6.2. In computing the contribution of τ eff

to the normalization uncertainty, we assume fractional er-
rors in τ eff of 5%, which we convert to uncertainties in
the mass fluctuation amplitude using equation (12) with
Cτ = −0.5, −0.75, −3.0, −1.5, −2.0, for subsamples A
to E. (These values of Cτ , derived using the simulations,
are themselves rather uncertain.) This procedure is likely
to underestimate the true uncertainty in the P (k) ampli-
tude due to τ eff , since the PRS data cover only the range
z > 2.5 and we are using their fitting formula to extrap-
olate the behavior of τeff to lower redshift. Also, we have
not carried out the filling factor analysis for the individual
subsamples, so we do not have this additional supporting
evidence for the adopted values of τ eff . For the normal-
ization uncertainty associated with the IGM temperature
parameters, we have assumed the same fractional error as
for the fiducial sample. We assume constant values of T0

and α in the normalizing simulations; incorporating red-
shift evolution of these parameters might be worthwhile
in the future, as they become better constrained observa-
tionally.

Figure 20 shows likelihood contours of the power-law
fits in the ∆2(kp) − ν plane, with kp = 0.03(km s−1)−1

in each case. The three contours enclose 68%, 95% and
99.7% of the joint probability (∆χ2 = 2.3, 6.2, 11.8), and
crosses mark the best-fit parameter values. The bottom
right panel shows likelihood contours for the fiducial sam-
ple, which are, of course, tighter than those of the indi-
vidual subsamples. The absolute values of χ2 for the best
fitting parameter values are 14.9, 6.8, 6.9, 10.8, and 7.1 for
subsamples A to E, respectively. The number of degrees of
freedom is 11 in each case, so the power-law descriptions
are statistically acceptable. Values of the fit parameters,
and 1σ and 2σ error bars, appear in Table 5.

In each panel of Figure 20, a filled circle marks the slope
and amplitude predicted by scaling the best-fit parameters
of the fiducial sample to the subsample’s mean redshift
according to gravitational instability theory. Since P (k)
represents the linear theory power spectrum, and we do
not detect significant curvature of P (k) over our range of
k, the predicted slope is the same at all redshifts. The
scaling of the amplitude includes both the linear growth
factor and the change in comoving scale at fixed kp. We
compute both effects assuming Ωm = 1, which should be
a good approximation at these redshifts.

There are several features to note from Figure 20 and
Table 5. First, the slope measured from each subsample is
consistent with that of the fiducial sample at the 1σ level,



24

Fig. 19.— Constraints on fit parameters for the matter power spectrum of the fiducial sample. Panel (a) shows ∆χ2 vs. ν for power-law
fits, with ∆2(kp) fixed at its best-fit value. Panel (b) is similar but for the parameter Γ′ of CDM-like fits. Panel (c) shows ∆χ2 vs. ∆2(kp)
for power-law fits with ν fixed to its best-fit value (solid curve) and CDM-like fits with Γ′ fixed to its best-fit value (dotted curve, nearly
obscured).

confirming the expected constancy of the shape of P (k).
Second, the best-fit amplitude grows steadily from 〈z〉 =
3.51 (subsample E) to 〈z〉 = 2.47 (subsample B), before
dropping slightly (by less than 1σ) between 〈z〉 = 2.47 and
〈z〉 = 2.13 (subsample A). The best-fit value of ∆2(kp) is a
factor of 5.7 higher for subsample A than for subsample E.
Third, the measured growth is roughly consistent with the
gravitational instability prediction, but not perfectly so.
The scaled amplitude of the fiducial sample is consistent
with the measurements from subsamples A-C at the ∼ 1σ
level, but it is ∼ 2σ from the results of subsamples D
and E. We suspect that this marginal discrepancy arises
because we have underestimated the contribution of τeff

uncertainty to the error bars for the individual subsamples.
The dip in τ eff at z ∼ 3.1 found by Bernardi et al. (2002)
could contribute to the low apparent amplitude of P (k)
for subsample D, since we have assumed smooth evolution
of τ eff .

Figure 20 provides evidence for growth of the amplitude
of mass fluctuations over the redshift range z = 3.5 − 2.1,
though it does not constitute a high-precision confirma-
tion of the gravitational instability prediction. A strong
application of the gravitational evolution test will require
better determinations of τ eff as a function of redshift. It
would also benefit from a larger set of quasar spectra, since
the statistical normalization error bars for our individual
subsamples are fairly large. Nonetheless, the approximate
consistency between our results and the gravitational in-
stability prediction supports the view that structure in the
Lyα forest is dominated by structure in the underlying
mass density field. Other effects, such as ionizing back-
ground fluctuations or temperature fluctuations, would be
expected to decrease towards low redshift, as the IGM
becomes more transparent and moves closer to equilib-
rium. They are therefore likely to predict ∆2(kp) evolu-
tion opposite in sign to what we observe. Future theo-
retical work that incorporates radiative transfer will help

us understand these predictions quantitatively for differ-
ent hydrogen and helium reionization scenarios. For the
time being, we also note that it is unlikely that the flux
power spectrum associated with other effects should have
the same shape as that associated with mass fluctuations,
so the constancy of the measured P (k) slope suggests that
these effects are not significant even at the highest red-
shifts probed by this sample.

Table 5

Power-law fit parameters for P(k) (see
Equation 14).

Subsample ∆2(kp) ± 1σ ± 2σ ν ± 1σ ± 2σ

A 1.21+0.62
−0.43

+1.62
−0.71 −2.22+0.22

−0.19
+0.50
−0.36

B 1.15+0.39
−0.29

+0.97
−0.53 −2.45+0.10

−0.09
+0.21
−0.18

C 0.66+0.22
−0.17

+0.55
−0.30 −2.51+0.10

−0.09
+0.21
−0.18

D 0.32+0.13
−0.10

+0.33
−0.16 −2.27+0.19

−0.16
+0.42
−0.31

E 0.21+0.09
−0.07

+0.24
−0.12 −2.40+0.21

−0.17
+0.47
−0.32

Fiducial 0.74+0.20
−0.16

+0.49
−0.28 −2.43+0.06

−0.06
+0.13
−0.12

6.4. Comparison to previous results

We can use results of the power-law fits of §6.2 to com-
pare our new measurement of P (k) at z = 2.72 to the
results of CWPHK at z = 2.5. Here we have used a
pivot wavenumber kp = 0.03(km s−1)−1, whereas CW-
PHK, working with lower resolution spectra, used kp =

0.008(km s−1)−1. We therefore extrapolate our measure-
ment in k using the best fit Γ′ model (§6.2), as well as
scaling the amplitude to z = 2.5 assuming linear growth
(for an EdS cosmology) between z = 2.72 and 2.5. We
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Fig. 20.— Evolution of the matter power spectrum, measured from the data subsamples described in Table 1. In each panel, contours
show the 1, 2, and 3σ confidence intervals on the parameters ∆2(kp) and ν of power-law fits to the inferred matter power spectrum, and
crosses mark the best-fit parameter values. Filled circles show the best-fit parameters derived from the fiducial sample (see panel f), scaled
to the mean redshift of the subsample according to the gravitational instability prediction.

find ∆2(0.008(km s−1)−1) = 0.42+0.12
−0.1 (1 σ errors), com-

pared to the CWPHK result of ∆2(0.008(km s−1)−1) =
0.57+0.26

−0.18. Our new P (k) amplitude is therefore within 1σ
of that of CWPHK. The sign of the difference (our new am-
plitude is lightly lower) is likely to be partly due to the fact
that CWPHK used a much lower gas temperature in their
normalizing simulations, T0 = 6000 K, which is probably
inconsistent with current observations (e.g., McDonald et
al. 2001). Here we have used T0 = 15, 000 K, and we have
included a contribution from T0 uncertainty to the error
bar on P (k), which CWPHK did not do. The local loga-
rithmic slope of our model extrapolation is ν = −2.35 at
kp = 0.008(km s−1)−1, compared to ν = −2.25 ± 0.18 for
CWPHK. The slope is thus in good agreement (0.6σ) with
the previous measurement, and part of the slight difference
can be accounted for by our correction for redshift-space
distortions, which was not incorporated into the CWPHK
method.

Other differences between the CWPHK result and ours
include the data sample size, and the correction for smooth-
ing bias. Tests in §3.3.4 show that smoothing bias can

boost the flux power spectrum by as much as 10% on
small scales for 2Å resolution data; the CWPHK analysis
included some spectra with resolution as coarse as 2.3 Å.
On the scales where the measurements overlap, the error
bars on our individual P (k) data points are larger than
one might have expected given the error bars found by
CWPHK for a smaller data set. In both cases, these er-
ror bars are estimated internally from the data, and we
expect that the estimates from the larger data set are
more reliable. For example, here we have been able to
use 50 subsamples of the data set to generate jackknife er-
ror estimates, whereas CWPHK used only 10 subsamples.
Smoothing bias may also have made the CWPHK error
bars artificially small. The good agreement between our
current results and those of CWPHK supports CWPHK’s
assumption that the statistical uncertainties in their data
dominated over systematic uncertainties associated with
redshift-space distortions or the temperature-density re-
lation. However, the improvements to the P (k) determi-
nation method introduced here, which account for these
systematic effects, are clearly needed to take advantage of
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our larger, higher resolution data set. Relative to CW-
PHK, our current determination of P (k) has significantly
smaller statistical uncertainties and better quantified and
understood systematic uncertainties.

Other estimates of linear matter clustering from Lyα
forest flux statistics include those of Nusser & Haehnelt
(2000) and M00. The former measure the fluctuation am-
plitude on the Jeans scale, using an analytic fit to the flux
distribution function. Using this information on the small-
est scales, they find results that appear to be 1− 2σ lower
in amplitude that ours. The interpretation does, however,
depend on assumptions that relate the actual Jeans scale
to that derived using linear perturbation theory (Gnedin &
Hui 1998). M00 use a single, hydrodynamic simulation of
a Λ-dominated CDM model and the flux power spectrum
of eight HIRES spectra to infer the best fitting P (k) ampli-
tude, within the context of that model. Guided by the sim-
ulation result, they fit their observed one-dimensional flux
power spectrum to infer P (k), finding ∆2(kp) = 0.72±0.09

at kp = 0.04(km s−1)−1, for z = 3. Scaling our results as
we did for the CWPHK comparison, we find an equivalent
∆2(kp) = 0.73+0.20

−0.15. The slope we find is ν = −2.56, com-
pared to M00’s ν = −2.55± 0.10. We thus find essentially
perfect agreement in both slope and rms mass fluctua-
tion amplitude. Figure 6 shows good agreement between
M00’s 1-d flux power spectrum and that measured from a
subset of our HIRES data with the same redshift range.
This said, however, there is an important difference in our
analyses. We adopt the PRS estimate of τeff instead of
the slightly lower value found by M00. Equation (12) im-
plies that if we scaled our fiducial τ eff (at z = 2.72) by
the ratio of the values found by M00 and PRS at z = 3,
then we would derive an rms matter fluctuation ampli-
tude 30% higher than M00. The agreement between our
results is therefore somewhat fortuitous. The conversion
between flux and mass amplitudes in each case is different,
but this is cancelled out by the different τeff values used.
Among the numerous other differences in our procedures,
one possible concern with the M00 method is that they
rely on one 10 h−1Mpc simulation for their normalization,
which could leave a significant cosmic variance error (see
Figure 14). As M00 state explicitly, their quoted error bar
applies in the context of a particular cosmological model
and does not include contributions from uncertainties in
τ eff , the temperature-density relation, or the cosmological
model. Given the differences in modeling approach, agree-
ment of these two studies at the level seen is impressive.

7. COSMOLOGICAL IMPLICATIONS

Figure 21 compares our fiducial P (k) measurement
(from Table 4) to the linear matter power spectra of three
CDM models. Note that the data points can be shifted
up and down coherently at the 1σ level by the amount
indicated by the normalization error bar in the lower left.
The model power spectra are computed using the CDM
transfer function of equation (11). The amplitude of P (k)
is specified by σ8, the rms mass fluctuation in 8 h−1Mpc
spheres at z = 0. The theoretical power spectra have been
scaled to redshift z = 2.72 and converted to km s−1 units
using the parameters of the corresponding cosmological
model.

The highest amplitude model (dashed line) is a COBE-

Fig. 21.— Comparison of the linear matter power spectrum in-
ferred from the fiducial Lyα forest sample to the predictions of three
inflationary CDM models. Points with error bars show the inferred
P (k); at the 1σ level these points can be shifted coherently by the
normalization error bar shown in the lower left. Dotted and dashed
lines show, respectively, COBE-normalized and cluster normalized
CDM models with Ωm = 1. The solid line shows a low-Ωm model
with a cosmological constant. While the models represented by the
solid and dotted lines have quite different power spectrum shapes
in comoving h−1Mpc units, they have similar shapes here because
of the different values of H(z)/H0 for the two cosmologies.

normalized (Bennett et al. 1996), Ωm = 1 model with
scale-invariant (n = 1) inflationary fluctuations, h = 0.5,
Γ = Ωmh = 0.5, and σ8 = 1.2. It is ruled out at high
significance. Although this model is well known to fail
other cosmological tests, in particular to produce exces-
sively massive clusters at z = 0 (e.g., White, Efstathiou,
& Frenk 1993), most of those failures reflect the combi-
nation of high fluctuation amplitude with Ωm = 1, while
the failure here is almost entirely one of the fluctuation
amplitude (see equation 21 below). The lowest amplitude
model (dotted line) is an Ωm = 1 model with Γ = 0.25,
a shape closer to that favored by galaxy large-scale struc-
ture (see, e.g., Peacock & Dodds 1994). We achieve this
low Γ by setting h = 0.25 with n = 1, though a simi-
lar power spectrum shape would arise with larger h and a
tilted (n < 1) inflationary spectrum or boosted relativis-
tic neutrino background. The normalization, σ8 = 0.5,
is close to the value required to match both COBE-DMR
anisotropies and the cluster mass function at z = 0 (see,
e.g., Cole et al. 1997). This model predicts a power spec-
trum amplitude that is too low to match the Lyα forest
results, by about 2.5σ.

The solid line shows the power spectrum of a flat,
Ωm = 0.4, ΩΛ = 0.6 model, with h = 0.65 and a slightly
tilted (n = 0.93) inflationary spectrum, and a normaliza-
tion σ8 = 0.70. M00 conclude that this model reproduces
the shape and amplitude of their measured flux power
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spectrum, and it is clear from Figure 21 that it provides an
excellent fit to our inferred matter P (k). As discussed in
the previous section, our fiducial value of τ eff is different
from M00’s, so this near perfect agreement is somewhat
fortuitous. The amplitude is 12.5% (about 1σ) lower than
the amplitude σ8 = 0.80 that Eke et al. (1996) estimate is
needed to match the cluster mass function for Ωm = 0.4,
and it is 18% lower than the amplitude σ8 = 0.85 im-
plied by COBE normalization for these parameters (com-
puted using the CMBFAST code of Zaldarriaga, Seljak,
& Bertschinger [1998], assuming no tensor contribution).
Thus, the shape of our measured P (k) is similar to that
of currently popular CDM models, and the amplitude is
compatible with other estimates but on the low side, a
point that we will return to below.

We can make a more systematic comparison to the in-
flationary CDM predictions using the parameterized fit in
terms of Γ′ and ∆2(kp) from §6.2. These quantities can be
related to the values of Γ (in h−1Mpc) and σ8 at z = 0,
but the relation depends on cosmological parameters be-
cause of the dependence of the linear growth factor and
the Hubble ratio H(z)/H0 on cosmology. The scaling of Γ
is quite straightforward,

Γ = Γ′(1+z)−1H(z) = 0.16

(
Γ′

1.3 × 10−3

)( H
4.6

)
h Mpc−1,

(19)
where we have introduced the notation H ≡ H(z =
2.72)/H0 and scaled the formula to our best-fit value of
Γ′ in (km s−1)−1 and to the value H = 4.6 appropriate
for Ωm = 0.4, ΩΛ = 0.6. The Hubble ratio at z = 2.72
is H = 4.0 for Ωm = 0.3, ΩΛ = 0.7, H = 5.4 for
Ωm = 0.4, ΩΛ = 0, and H = 7.2 for Ωm = 1, ΩΛ = 0.
Equation (19) is based on the Ma (1996) transfer function
coefficients (eq. 11); for the Bardeen et al. (1986) coeffi-
cients, 0.16 should be changed to 0.15. Recent estimates of
the galaxy power spectrum from the 2dF Galaxy Redshift
Survey find best-fit parameter combinations Ωmh = 0.20
and Ωb/Ωm = 0.15 for a CDM model with scale-invariant
initial fluctuations (Percival et al. 2001). Incorporating
Sugiyama’s (1995) approximation for the suppression of
small scale power by baryons, these parameter combina-
tions imply Γ ≈ Ωmh exp[−(2h)1/2Ωb/Ωm − Ωb] ≈ 0.16.
Thus, for H ≈ 4.6, the shape parameter inferred from the
Lyα forest P (k) is in excellent agreement with that in-
ferred from the galaxy power spectrum today, though our
1σ error bar on Γ′ is nearly 50%, so the constraint from
equation (19) is not particularly tight.

The constraint on Γ′ is derived assuming a scale-invariant
(n = 1) inflationary spectrum, so equation (19) implicitly
incorporates the same assumption. Since we do not have
a significant detection of curvature in P (k), the effects
of Γ and n are degenerate, and one can only identify Γ
with the above parameter combination of CDM models
for a specified value of n. To a fairly good approximation,
one can account for the degeneracy by replacing Γ with
Γ + 1.4(1 − 1/n) on the left-hand side of equation (19).
For example, a model with Γ = 0.26 and n = 0.93 has
almost the same P (k) shape as a model with Γ = 0.16,
n = 1, on the scales probed by our measurement.

While the scaling of Γ′ is determined by the evolution
of H(z), relating ∆2(kp) to σ8 is somewhat trickier. The
wavenumber at z = 0 that corresponds to the same co-

moving scale as kp is

k0 = kp(1 + z)−1H(z) = 3.710

( H
4.6

)
h Mpc−1. (20)

Since ∆2 and P (k) refer to the linear power spectrum,
∆2(k0) = D−2

L ∆2(kp), where DL is the linear growth fac-
tor at z = 2.72 for the cosmological model under consider-
ation. However, the ratio of σ8 to [∆2(k0)]

1/2 depends on
the shape of the power spectrum and on the value of k0,
and there is no exact equation relating the two quantities.
Empirically, we find that the fitting formula

σ8 = 0.82

(
∆2(kp)

0.74

)1/2(
0.322

DL

)( H
4.6

)−0.25

×
(

Γ

0.15

)−0.44−0.06 ln(Γ/0.15)+0.05(4.6/H−1)

(21)

describes our results with an accuracy of 1% over the pa-
rameter range 3.5 ≤ H ≤ 7.0 and 0.05 ≤ Γ ≤ 0.5. We
have scaled equation (21) to our best-fit value of ∆2(kp),
to Γ = 0.15, and to the values of DL and H that apply for
Ωm = 0.4, ΩΛ = 0.6. For specified DL, H, and Γ, the 1σ
uncertainty in our estimate of σ8 is ∼ 13.5%, the same as
our 1σ uncertainty in [∆2(kp)]

1/2 (see §6.2). Because de-
creasing Ωm raises DL but lowers H, the inferred σ8 is not
very sensitive to the value of Ωm in flat cosmological mod-
els: for Ωm = 0.5, 0.3, 0.2, the factor 0.82 in equation (21)
changes to 0.84, 0.80, and 0.76, respectively. The value of
σ8 is more sensitive to Γ, which determines the ratio of
power on the ∼ 8 h−1Mpc scale to the power at k0. Equa-
tion (21) applies for n = 1, and other (n, Γ) combinations
that yield the same slope of P (k) on the scale of the Lyα
forest data do not necessarily yield the same σ8, as one
can see from the example in Figure 21.

Following the lines of Weinberg et al.’s (1999a) analy-
sis of the CWPHK result, we can constrain the value of
Ωm by combining our measurement of P (k) at z = 2.72
with the constraint on Ωm and σ8 implied by the clus-
ter mass function or temperature function at z = 0 (see,
e.g., White et al. 1993; Eke et al. 1996; Viana & Liddle
1996; Pierpaoli, Scott, & White 2001). Figure 22 compares
our fiducial power spectrum to those of cluster-normalized
models with Γ = 0.15 (top panels) and Γ = 0.25 (bottom
panels). For each value of Ωm, we determine σ8 from the
Eke et al. (1996) cluster normalization constraint, then
scale the power spectrum back to z = 2.72. Both DL and
H depend on ΩΛ as well as Ωm, so the scaling is different
for flat models (left panels) and open models (right pan-
els). The error bar on the open circle in each panel shows
the +29%,−25% 1σ uncertainty in the Lyα P (k) normal-
ization, while the error bar on the filled circle next to it
shows the ∼ 15% uncertainty in the cluster normalization
(8% in σ8) quoted by Eke et al. (1996).

For flat models with Γ = 0.15, the best match to the Lyα
P (k) is obtained for Ωm between 0.3 and 0.4. For higher
Ωm, the amplitude at z = 0 is lower and DL(z = 2.72)
is smaller, so the predicted power spectrum is too low.
Conversely, the predicted P (k) amplitude is too high for
lower Ωm. The implied value of Ωm is higher in open
models, mainly because they have a larger value of DL(z =
2.72). The best-fit Ωm is also higher for Γ = 0.25, since in
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Fig. 22.— Comparison of the matter P (k) inferred from the Lyα forest to the predictions of cluster normalized models with different
values of Ωm. In each panel, points with error bars show our fiducial P (k), which has the 1σ normalization uncertainty marked on the open

circle at the upper right. Model power spectra satisfy the cluster normalization constraint of Eke et al. (1996): σ8 = 0.52Ω−0.52+0.13Ωm
m for

ΩΛ = 1 − Ωm (left panels) and σ8 = 0.52Ω−0.46+0.10Ωm
m for ΩΛ = 0 (right panels). The error bar on the filled circle at upper right indicates

the quoted ∼ 15% uncertainty in the cluster normalization of P (k). Upper panels show power spectra with shape parameter Γ = 0.15, lower
panels Γ = 0.25.

this case there is less contribution to σ8 from large scales,
and the power on the scales probed by the Lyα data must
be higher to compensate.

To make the Ωm constraints more quantitative, we com-
pute the values of ∆2(kp) and Γ′ for different combinations
of Ωm and Γ, then compute ∆χ2(Ωm, Γ) by comparing to
the parameter constraints in §6.2 (Figure 19). We account
for uncertainty in cluster normalization itself by adding
in quadrature our ∼ 13.5% error bar on the rms fluctua-
tion amplitude and the 8% error bar quoted by Eke et al.
(1996). Specifically, we compute the contribution to ∆χ2

from ∆2(kp) using equation (17) with 1.135 replaced by
1.157. Figure 23 shows contours of ∆χ2 in the Γ − Ωm

plane for flat models (left) and open models (right). All
models assume an inflationary index n = 1. Points show
the best-fit value of Ωm at each Γ. Solid contours show
∆χ2 = 1, 4, and 9, so they give the 1, 2, and 3σ confidence
limits on Ωm for a specified value of Γ. Dotted contours
show ∆χ2 = 2.3, 6.7, and 11.8, corresponding to 68%,
95%, and 99.7% confidence intervals on the joint values of
the two parameters.

For Γ ∼ 0.1 − 0.25, the best-fit Ωm values are well de-
scribed by the dashed lines in Figure 23,

Ω̂m = 0.38 + 2.2(Γ − 0.15) ΩΛ = 1 − Ωm, (22)

Ω̂m = 0.49 + 1.9(Γ − 0.15) ΩΛ = 0. (23)

For Γ = 0.15, the value of Ωm with 1σ and 2σ er-
ror bars is Ωm = 0.38+0.10+0.23

−0.08−0.14 for ΩΛ = 1 − Ωm and

Ωm = 0.49+0.07+0.20
−0.07−0.15 for ΩΛ = 0. The dependence of Ω̂m

on Γ is stronger than that in Weinberg et al. (1999a) be-
cause our higher resolution data give their best P (k) con-
straint at a scale smaller than that of the CWPHK data.
The best-fit Ωm values are also higher than those in Wein-
berg et al. (1999a), by about 1σ, because of the lower
power spectrum amplitude implied by our data relative
to CWPHK. If we used the recent Pierpaoli et al. (2001)
formulation of the cluster constraint in place of Eke et
al.’s, the zero points in equation (22) and (23) would be
nearly identical while the Γ dependence would be slightly
stronger. However, some authors have recently argued for
a substantially lower normalization of the cluster (Ωm, σ8)
constraint (e.g., Bahcall et al. 2002; Reiprich & Bohringer
2002; Seljak 2002; Viana, Nichol, & Liddle 2002), which
would imply lower values for Ωm when combined with the
Lyα P (k). For example, Seljak’s (2002) normalization

would imply a best-fit value Ω̂m = 0.26 for flat cosmol-
ogy with Γ = 0.15.

Cosmic shear measurements offer another route to nor-
malizing the present day matter power spectrum, with a
dependence on Ωm that is similar to that from cluster nor-
malization (Bacon et al. 2002; Hoekstra, Yee, & Gladders
2002; Refregier et al. 2002; van Waerbeke et al. 2002).



29

Fig. 23.— Constraints in the Γ − Ωm plane from the combination of cluster normalization with the Lyα forest P (k), for models with
ΩΛ = 1 − Ωm (left) and ΩΛ = 0 (right). Points show the best-fit value of Ωm at each Γ; the dashed lines are the linear fits to these points
listed in eqs. (22) and (23). Solid curves show contours of ∆χ2 = 1, 4, 9, giving the 1, 2, and 3σ confidence intervals on Ωm for specified Γ.
Dotted curves show contours of ∆χ2 = 2.3, 6.7, 11.8, corresponding to 68%, 95%, and 99.7% joint confidence levels for 2-parameter fits.

These results agree fairly well with those of Eke et al.
(1996), so they lead to similar estimates of Ωm. For exam-
ple, if we take the constraint σ8 = 0.45Ω−0.55

m with a 12%
fractional uncertainty (Hoekstra et al. 2002; we have sym-
metrized and halved their quoted 95% error bar to obtain a
1σ error bar), we obtain Ωm = 0.34+0.10+0.22

−0.07−0.13 (flat models)

and Ωm = 0.46+0.07+0.20
−0.06−0.14 (open models) for Γ = 0.15. The

Γ dependences are slightly shallower than those of equa-
tions (22) and (23), with slopes of 1.8 and 1.6, respectively.
The best-fit σ8 values in the other papers listed above are
∼ 10% higher, so they would require Ωm values ∼ 20%
higher.

A different combination of cosmological parameters is
constrained by combining the Lyα P (k) measurement with
COBE-DMR measurements of large-angle CMB anisotropies,
as done for the CWPHK data by Phillips et al. (2001).
While the cluster normalization comparison primarily con-
strains the value of Ωm, the CMB comparison depends on
all of the parameters that control the COBE P (k) normal-
ization and the shape of the matter transfer function, since
the COBE and Lyα forest measurements tie down P (k) at
very different scales. Phillips et al. (2001) show that the
main parameters of inflationary CDM models have nearly
degenerate effects on the amplitude and slope of P (k) at
the scales probed by the Lyα forest, and that matching
COBE and the Lyα forest P (k) leads to constraints of the
form

ΩmhαnβΩγ
b = k ± ǫ. (24)

The tabulations of α, β, γ, k, ǫ in Phillips et al. (2001)
cannot be immediately adapted to our new measurement
because we have a different mean redshift and, more im-
portantly, a different kp. While we have not repeated the
full analysis of Phillips et al. (2001), we have calculated
the constraints imposed by matching our new measure-
ment of ∆2(kp) for COBE normalized, flat models with
ΩΛ = 1 − Ωm. We find

(
Ωm

0.4

)(
h

0.65

)1.90 ( n

0.895

)2.89
(

Ωbh
2

0.02

)−0.25

= 1.0±0.14 (1σ)

(25)

for models with no tensor fluctuations and

(
Ωm

0.4

)(
h

0.65

)1.83 ( n

0.936

)4.49
(

Ωbh
2

0.02

)−0.24

= 1.0±0.14 (1σ)

(26)
for models with the tensor fluctuation amplitude implied
by power-law inflation models, T/S = 7(1 − n). We com-
puted these constraints using CMBFAST (Zaldarriaga et
al. 1998) to obtain COBE normalized CDM transfer func-
tions. The 1σ error bar reflects a 10% uncertainty in the
COBE normalization added in quadrature to our 13.5%

normalization uncertainty in
[
∆2(kp)

]1/2
.

The no-tensor model with the fiducial parameter choices
of equation (25) has σ8 = 0.79 at z = 0. The logarithmic
slope at kp is ν = −2.55, about 1.8σ below our best-fit
slope of −2.43. For the tensor model with the fiducial
parameters of equation (26), σ8 = 0.74, and the slope at
kp is ν = −2.51, ∼ 1.3σ below our best fit. The predicted
values of σ8 and ν are not sensitive to moderate changes in
the parameter values provided the constraints (25) or (26)
are satisfied.

Confirming and strengthening the results of CWPHK
and M00, our estimate of the Lyα P (k) supports one of the
key predictions of the inflationary CDM scenario, a matter
power spectrum that bends steadily towards P (k) ∝ kn−4

on small scales. Specifically, CDM spectra that are nor-
malized to match COBE and the amplitude of the Lyα
P (k) match our inferred slope at the 1 − 2σ level, after
traversing ∼ 3 − 4 orders of magnitude in length scale
(see Tegmark & Zaldarriaga 2002 for an impressive illus-
tration). The Lyα forest is the only observable probe of
the linear matter power spectrum on these scales, so this
is a fundamental and (except for the CWPHK and M00
predecessors) new test of the CDM paradigm. However,
as discussed in §5.2, we have not investigated models in
which the initial, linear power spectrum is truncated on
scales that are small enough to be significantly non-linear
at the observed epoch z ∼ 2.7, such as models with warm
dark matter or broken scale-invariance of the type dis-
cussed by Kamionkowski & Liddle (2000). Our inference
of the linear P (k) will not be correct in such models on
scales k ∼> 0.02, so they should be tested directly by sim-
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ulating the flux power spectrum itself (Narayanan et al.
2000; White & Croft 2000).

While the slope of the Lyα P (k) provides a basic test of
the inflationary CDM scenario, the amplitude is more sen-
sitive to the values of cosmological parameters. From the
results discussed above, we can see that the parameters re-
quired to fit our measured amplitude are in generally good
agreement with those implied by other cosmological obser-
vations, such as the cluster mass function, cosmic shear,
CMB anisotropies, large scale galaxy clustering, and the
Type Ia supernova Hubble diagram. However, the ampli-
tude is on the low side of expectations, so in combination
with the first two observations it tends to favor relatively
high values of Ωm (∼ 0.3 − 0.4 instead of ∼ 0.2 − 0.3),
which in combination with COBE normalization favors
some degree of tilt (n < 1) for the inflationary fluctua-
tion spectrum. The error bars are still too large to draw
strong conclusions on this point, however, since a model
with Ωm = 0.3, ΩΛ = 0.7, n = 1, and h = 0.65 agrees
perfectly with the COBE constraint (eq. 25) and is within
1σ of the cluster/cosmic shear constraint. For reference,
COBE-normalized LCDM models with n = 1 inflation-
ary spectra and Ωbh

2 = 0.02 predict ∆2(kp) = 0.81, 1.14,
1.63 for (Ωm, h) = (0.3, 0.65), (0.3, 0.7), (0.4, 0.65), respec-
tively, which can be compared to our measured value of
∆2(kp) = 0.74+0.20+0.49

−0.16−0.28.
The analyses discussed here — model comparisons and

combinations with cluster or COBE constraints — give
only a few illustrations of the cosmological applications
of our P (k) measurement. For example, the Lyα P (k)
can also constrain the mass of light neutrinos through
their influence on the power spectrum shape (Croft et al.
1999a). A more general approach is to incorporate the con-
straints on ∆2(kp) and ν or Γ′ into global analyses that
consider many observational constraints simultaneously, as
done with the CWPHK data by, e.g., Novosyadlyj et al.
(2000) and Wang et al. (2000). Wang, Tegmark, & Zal-
darriaga (2001) and Tegmark & Zaldarriaga (2002) have
incorporated the results reported here into such global
analyses. The Lyα forest complements other cosmologi-
cal constraints because it probes fluctuations in a regime
of lengthscale and redshift that is difficult to approach in
any other way.

8. SUMMARY

We have analyzed a sample of 53 quasar spectra cover-
ing the Lyα forest in the redshift range z = 2−4, focusing
on a fiducial sample with range z = 2.3 − 2.9 and mean
absorption redshift 〈z〉 = 2.72. The HIRES and LRIS
spectra contribute about equally to the total path length
∆z ≈ 25 of the fiducial sample, but the HIRES spectra al-
low us to measure structure down to smaller scales, where
there are more independent modes. We have measured
the flux filling factor, the flux correlation function, and
the flux power spectrum, for the fiducial sample and for
five subsamples of the data set that cover separate ranges
in redshift. The results, illustrated in Figures 3, 4, and
11 and tabulated in Tables 2, 3, A6, and A7, can be com-
pared directly to the predictions of numerical simulations
or analytic models of the Lyα forest for different cosmolo-
gies. The analysis in §3 implies that the uncertainties in
these measurements are dominated by the finite size of the
data set rather than systematic uncertainties. Our mea-

surement of the 1-dimensional flux power spectrum agrees
well with that of M00 (see Figure 6), but our error bars are

smaller on scales k ∼< 0.1(km s−1)−1 because of the larger
number of spectra used.

We have recovered the matter power spectrum P (k)
from the 3-d flux power spectrum PF (k) using a modified
version of the method introduced by CWKH, as described
in §4. The central assumptions of this method are that
structure in the universe formed by gravitational instabil-
ity from Gaussian initial conditions and that the diffuse
intergalactic gas responsible for the Lyα forest traces the
underlying mass distribution in the relatively simple way
found in hydrodynamic cosmological simulations. Specifi-
cally, we use numerical simulations to calibrate the func-
tion b(k) =

√
PF (k)/P (k), requiring that these simula-

tions reproduce the observed PF (k) and the observed value
of the mean opacity τ eff (which we take from PRS). Rela-
tive to CWKH and CWPHK, the key improvement in the
method is allowing for scale dependence of b(k) (instead
of b = constant), thereby accounting more accurately for
the effects of redshift-space distortions, non-linearity, and
thermal broadening. This improvement in method is war-
ranted by the greater statistical precision of this data set.

We have restricted our measurement of P (k) to a range
of scales where we expect the statistical uncertainty in in-
dividual P (k) data points to dominate over uncertainty
in the shape of b(k). The statistical uncertainty in PF (k)
leads to a 6% 1σ fractional uncertainty in the overall am-
plitude of b(k), and hence to a 6% normalization uncer-

tainty in σ ∝
√

P (k), for the fiducial sample. There are
also systematic uncertainties in the amplitude of b(k) as-
sociated with uncertainties in τ eff and the parameters T0

and α of the IGM temperature-density relation (see §5.4
and §5.5). We estimate that the τ eff and T0, α uncertain-
ties contribute 9% and 8.5% fractional errors, respectively,
to the amplitude of b(k). Adding the statistical and sys-
tematic error bars in quadrature, we obtain a 1σ error bar
of 13.5% on the rms fluctuation amplitude of the fiducial
sample, or +29%,−25% on the normalization of P (k). We
also determine P (k) for the five redshift subsamples, with
error bars for each subsample comparable to the error bar
for the totality of the data in CWPHK.

The matter power spectrum deduced from the fidu-
cial sample (§6.1) can be adequately described by a two-
parameter fit (§6.2) that gives the logarithmic slope ν
or CDM shape parameter Γ′ and the dimensionless am-
plitude ∆2(kp) ≡ k3

pP (kp)/2π2 at a wavenumber kp =

0.03(km s−1)−1 (2π/k ∼ 1 − 2 h−1Mpc comoving, see
eq. 20). Best-fit values and 1σ uncertainties are ν =
−2.43 ± 0.06, Γ′ = 1.3+0.7

−0.5 × 10−3(km s−1)−1, ∆2(kp) =

0.74+0.20
−0.16, and the errors in ∆2(kp) are uncorrelated with

those in ν or Γ′. These parameter constraints (and the
likelihood functions in Figure 19) can be incorporated into
global likelihood analyses of cosmological parameter val-
ues (e.g., Novosyadlyj et al. 2000; Wang et al. 2000; Wang
et al. 2001). Extrapolating to the redshift and wavenum-
bers of the CWPHK and M00 measurements, we find good
agreement in the logarithmic slope and an rms fluctuation
amplitude that is ∼ 15% lower than that of CWPHK (a
difference of < 1σ), and the same as that of M00 (§6.4).
The slope measurement confirms the generic prediction of
inflationary CDM models of a P (k) slope bending asymp-
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totically towards kn−4 on small scales. The parameters Γ′

and ∆2(kp) can be related to the quantities Γ and σ8 at
z = 0, in a cosmology dependent way (see eqs. 19 and 21).
For Ωm = 0.4, ΩΛ = 0.6, Γ = 0.16+0.09

−0.06, in good agree-
ment with measurements of the galaxy power spectrum
shape from the 2dF Galaxy Redshift Survey (Percival et
al. 2001). The shape parameter Γ and the inflationary in-
dex n have nearly degenerate effects on the shape of P (k)
over the range of our measurement, and the values of Γ′

and Γ quoted above assume n = 1. The effective combina-
tion of parameters constrained by our measurement of the
P (k) shape is, to a fair approximation, Γ + 1.4(1 − 1/n).

When we measure ∆2(kp) and the logarithmic slope ν
for the five redshift subsamples, we find consistent values
of ν at each redshift and growth of ∆2(kp) that is com-
patible at the 1 − 2σ level with the predictions of gravi-
tational instability (§6.3). These results do not constitute
strong confirmation of the predicted gravitational growth
of P (k), but they do imply that fluctuations in the Lyα
forest do not have a major contribution from sources other
than density fluctuations (e.g., large-scale variations in the
ionizing background or IGM temperature). Other mech-
anisms would be unlikely to mimic the shape of the mat-
ter power spectrum, and their contribution is likely to de-
crease over the redshift interval z = 4 to z = 2 rather than
increase.

The power spectrum of the fiducial sample is well matched
by an inflationary CDM model with Ωm = 0.4, ΩΛ = 0.6,
h = 0.65, n = 0.93, and σ8 = 0.7 (see Figure 21). The
measured amplitude is in good agreement with the pre-
dictions of CDM models with parameter values favored
by independent observations, though it lies on the low
side of the expected range of values. To obtain consis-
tency between our measurement and Eke et al.’s (1996)
cluster mass function constraint on the present day power
spectrum normalization, we require Ωm = 0.38+0.10+0.23

−0.08−0.14
(1σ, 2σ) for models with ΩΛ = 1 − Ωm and Γ = 0.15,
and higher values of Ωm for open models or higher Γ (see
eqs. 22 and 23, Figure 23). Combination with Hoekstra
et al.’s (2002) cosmic shear constraint yields a similar re-
sult, Ωm = 0.34+0.10+0.22

−0.07−0.13. COBE-normalized, flat CDM
models match our measured P (k) amplitude for Ωm ≈ 0.3,
h = 0.65, and n = 1, or for higher (lower) Ωm if h or n
are slightly lower (higher) (see eqs. 25 and 26). Models
with Ωm significantly below 0.3 are difficult to reconcile
simultaneously with the Lyα P (k), COBE, and the Eke et
al. (1996) estimate of the cluster normalization constraint.

There are several ways to reduce the systematic uncer-
tainty in inferring P (k) from our flux power spectrum
measurement. The most straightforward is to improve
the measurement of τ eff , in order to check the PRS value
adopted here (which may be systematically in error) and
reduce the τ eff error bar. The results in §5.4 can be used to
scale our estimated P (k) and its error bar for new determi-
nations of τ eff . Tighter constraints on T0 and α would also
reduce the P (k) error bar, and the impact of new determi-
nations can be judged approximately using the results in
§5.5. Finally, replacing our normalizing simulations with
higher resolution, full hydrodynamic simulations would re-
move one source of systematic uncertainty in our results
and might allow extension of the P (k) recovery to smaller
scales. Such an approach is computationally demanding,

but it might become feasible in the near future, especially
if the hydrodynamic simulations are designed specifically
to model the Lyα forest rather than galaxy formation.

Larger data samples can improve the precision of the
PF (k) measurement and extend its dynamic range in
wavenumber and in redshift. At high k, moderate numbers
of high-resolution spectra are enough to yield high statis-
tical precision. On large scales, one needs many spectra
to reduce cosmic variance, but these do not need to be
high resolution. The LRIS sample used here illustrates
the power of 10-m class telescopes for probing large-scale
structure in the Lyα forest; quadrupling this sample would
require only a few nights of observing. The Sloan Digi-
tal Sky Survey (York et al. 2000) will obtain thousands of
high-redshift quasar spectra with ∼ 2.5Å resolution, which
should be an ideal sample for measuring PF (k) on large
scales. With a high enough surface density of quasars, one
can measure the 3-dimensional power spectrum by cor-
relating flux on different lines of sight, obtaining a new
diagnostic for redshift-space distortions and cosmological
geometry (see McDonald 2002). Such 3-dimensional anal-
yses may be the best way to extend PF (k) measurements
to very large scales, since they provide more baselines on
these scales and should be less sensitive to continuum fit-
ting errors.

The shape of PF (k) on small scales depends on the ther-
mal state of the IGM as well as the underlying density
fluctuations. In this regime, measurements of PF (k) and
its evolution may provide useful tests of inhomogeneous
reionization models or simulations that incorporate metal
enrichment and IGM feedback from galactic winds. The
most valuable cosmological tests will come from improving
the precision of P (k) on the scales measured here and ex-
tending the analyses to larger scales so as to constrain the
shape of P (k) over a wider dynamic range. Combination of
the Lyα forest power spectrum with CMB anisotropies and
cluster masses already yields interesting new constraints
on cosmological parameter values. Over the next year or
two, anticipated improvements in these and other mea-
sures of cosmic structure should zero in on a small allowed
region in the parameter space of simple cosmological mod-
els that incorporate a power-law inflationary spectrum,
cold dark matter with a standard baryon component, and
a cosmological constant. Alternatively, the tightening of
complementary constraints could show that these models
are not yet complete, and that the real universe incorpo-
rates more complicated physics of inflation, dark matter,
or vacuum energy.
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Davé, R., Dubinski, J., & Hernquist, L. 1997, NewAst, 2, 71
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Davé, R., Hernquist, L., Katz, N. & Weinberg, D. H., 1999, ApJ,

511, 521
Dinshaw, N., Impey, C. D., Foltz, C. B., Weymann, R. J., & Chaffee,

F. H. 1994, ApJ, 437, L87
Efstathiou, G., Davis, M., White, S.D.M., & Frenk, C.S., 1985,

ApJS, 57, 241
Efstathiou, G., & Eastwood, J.W., 1981, MNRAS, 194, 503
Eke, V.R., Cole, S., & Frenk, C.S., 1996, MNRAS, 282, 263
Fardal, M., & Shull, M., 1993, ApJ, 415, 524
Feng, L.-L., & Fang, L.-Z., 2000, ApJ, in press, astro-ph/0001348
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Weinberg, D.H., Miralda-Escudé, J., Hernquist, L., & Katz, N.,
1997b, ApJ, 490, 564

Weinberg, D. H., et al. 1999b, in Evolution of Large Scale Structure:
From Recombination to Garching, ed. A.J. Banday, R. K. Sheth,
& L. N. Da Costa, (Twin Press: Vledder NL), p. 346, astro-
ph/9810142

White, M., & Croft, R.A.C, 2000, ApJ, 539, 497
White, S.D.M., Efstathiou, G., & Frenk, C.S., 1993, MNRAS, 262,

1023
York, D. G. et al. 2000, AJ, 120, 1579
Zaldarriaga, M., Seljak, U., & Bertschinger, E. 1998, ApJ, 494, 491
Zaldarriaga, M., Hui, L., & Tegmark, M. 2001a, ApJ, 557, 519 (ZHT)
Zaldarriaga, M., Seljak, U., & Hui, L. 2001b, ApJ, 551,48
Zhang Y., Anninos P., & Norman M.L. 1995, ApJ, 453, L57
Zuo, L. 1992, MNRAS, 258, 36
Zuo, L., & Bond, J.R., 1994, ApJ, 423, 73

APPENDIX

TABULATED FLUX STATISTICS AT 5 REDSHIFTS

http://arXiv.org/abs/astro-ph/0202503
http://arXiv.org/abs/astro-ph/9612148
http://arXiv.org/abs/astro-ph/9709303
http://arXiv.org/abs/astro-ph/9708213
http://arXiv.org/abs/astro-ph/9810142
http://arXiv.org/abs/astro-ph/9810142


34

Table A6

The flux correlation function, ξF (r), for the different redshift subsamples (see Table 1)

r Subsample A Subsample B Subsample C Subsample D Subsample E
( km s−1) ξF (r) ξF (r) ξF (r) ξF (r) ξF (r)

11.4 (9.8 ± 1.1) × 10−2 0.162 ± 0.010 0.181 ± 0.013 0.220± 0.015 0.355± 0.022
14.9 (9.2 ± 1.1) × 10−2 0.152 ± 0.009 0.172 ± 0.013 0.209± 0.014 0.334± 0.021
19.4 (9.1 ± 1.0) × 10−2 0.150 ± 0.011 0.165 ± 0.013 0.200± 0.014 0.318± 0.020
25.3 (8.3 ± 1.0) × 10−2 0.137 ± 0.009 0.154 ± 0.013 0.186± 0.013 0.295± 0.018
32.9 (7.2 ± 0.9) × 10−2 0.129 ± 0.010 0.139 ± 0.012 0.166± 0.012 0.262± 0.017
42.9 (6.6 ± 0.8) × 10−2 0.112 ± 0.009 0.122 ± 0.013 0.141± 0.011 0.225± 0.015
56.0 (5.3 ± 0.8) × 10−2 (9.6 ± 0.9) × 10−2 0.101 ± 0.011 0.120± 0.011 0.187± 0.014
72.9 (4.2 ± 0.7) × 10−2 (7.8 ± 0.8) × 10−2 (8.3 ± 1.1) × 10−2 (9.4 ± 1.0) × 10−2 0.151± 0.012
95.0 (3.1 ± 0.6) × 10−2 (6.0 ± 0.7) × 10−2 (6.5 ± 1.1) × 10−2 (7.1 ± 0.9) × 10−2 0.120± 0.011
124 (2.1 ± 0.6) × 10−2 (4.5 ± 0.7) × 10−2 (5.0 ± 1.1) × 10−2 (5.3 ± 0.8) × 10−2 (9.5 ± 1.0) × 10−2

161 (1.4 ± 0.5) × 10−2 (3.4 ± 0.6) × 10−2 (3.8 ± 1.1) × 10−2 (4.2 ± 0.8) × 10−2 (7.5 ± 0.8) × 10−2

210 (9.9 ± 3.5) × 10−3 (2.2 ± 0.6) × 10−2 (2.8 ± 1.1) × 10−2 (3.6 ± 0.7) × 10−2 (5.6 ± 0.8) × 10−2

274 (7.2 ± 3.0) × 10−3 (1.5 ± 0.3) × 10−2 (2.4 ± 0.6) × 10−2 (2.0 ± 0.5) × 10−2 (4.1 ± 0.9) × 10−2

357 (1.4 ± 3.0) × 10−3 (1.1 ± 0.3) × 10−2 (1.9 ± 0.6) × 10−2 (9.9 ± 4.1) × 10−3 (3.1 ± 1.0) × 10−2

466 (−6.0 ± 28.5)× 10−4 (5.9 ± 2.8) × 10−3 (1.3 ± 0.6) × 10−2 (6.6 ± 4.4) × 10−3 (2.0 ± 0.8) × 10−2

607 (3.2 ± 2.7) × 10−3 (1.9 ± 2.7) × 10−3 (9.0 ± 5.4) × 10−3 (4.9 ± 3.9) × 10−3 (1.1 ± 0.8) × 10−2

791 (2.9 ± 2.5) × 10−3 (1.4 ± 2.5) × 10−3 (7.2 ± 5.0) × 10−3 (3.0 ± 3.0) × 10−3 (1.7 ± 0.8) × 10−2

1030 (2.2 ± 2.2) × 10−3 (6.4 ± 21.7) × 10−4 (2.5 ± 4.9) × 10−3 (3.3 ± 3.5) × 10−3 (1.7 ± 0.8) × 10−2

1340 (−2.7 ± 1.7)× 10−3 (−1.1 ± 2.2) × 10−3 (−5.6 ± 43.1) × 10−4 (9.9 ± 39.7)× 10−4 (1.5 ± 0.8) × 10−2

1750 (−1.3 ± 22.4)× 10−4 (−2.8 ± 1.9) × 10−3 (1.9 ± 3.2) × 10−3 (−6.3 ± 3.3) × 10−3 (8.1 ± 9.2) × 10−3

Table A7

The one-dimensional flux power spectrum, for the different redshift subsamples (see Table 1)

Subsample A Subsample B Subsample C Subsample D Subsample E
k PF,1D(k) PF,1D(k) PF,1D(k) PF,1D(k) PF,1D(k)

( km s−1)−1 ( km s−1)−1 ( km s−1)−1 ( km s−1)−1 ( km s−1)−1 ( km s−1)−1

0.00199 15.9 ± 7.5 42.1 ± 7.3 42.3 ± 6.8 46.6 ± 15.0 50.1 ± 10.3
0.00259 18.6 ± 5.3 31.9 ± 4.0 38.8 ± 4.8 37.5 ± 9.1 70.8 ± 13.9
0.00337 17.5 ± 6.0 27.5 ± 2.9 33.9 ± 4.3 26.7 ± 5.1 43.4 ± 9.8
0.00437 9.19 ± 4.30 25.3 ± 2.9 22.1 ± 2.7 28.2 ± 4.8 57.2 ± 13.8
0.00568 14.9 ± 4.0 24.5 ± 2.8 24.4 ± 2.2 30.7 ± 4.5 52.4 ± 10.2
0.00738 12.9 ± 3.2 20.4 ± 2.6 20.8 ± 3.1 19.8 ± 3.7 40.2 ± 4.0
0.00958 11.0 ± 1.5 17.0 ± 2.5 17.6 ± 1.7 26.0 ± 5.1 31.1 ± 5.5
0.0124 8.15 ± 1.32 13.4 ± 1.0 14.0 ± 1.0 16.3 ± 2.2 25.6 ± 3.3
0.0162 6.37 ± 1.42 10.4 ± 0.8 11.7 ± 1.3 13.6 ± 1.1 23.9 ± 4.0
0.0210 5.71 ± 0.63 6.65 ± 0.52 8.51 ± 0.62 10.8 ± 1.1 15.7 ± 1.5
0.0272 3.40 ± 0.52 5.09 ± 0.35 5.96 ± 0.43 9.02 ± 0.71 12.3 ± 1.0
0.0355 2.18 ± 0.22 3.34 ± 0.21 3.78 ± 0.27 5.44 ± 0.54 8.37 ± 0.63
0.0461 1.25 ± 0.25 1.69 ± 0.12 2.38 ± 0.18 2.83 ± 0.35 5.47 ± 0.48
0.0598 0.642 ± 0.153 0.904± 0.059 1.13 ± 0.076 1.75 ± 0.14 3.16 ± 0.29
0.0777 0.370 ± 0.110 0.446± 0.040 0.541 ± 0.0455 0.758 ± 0.131 1.42 ± 0.16
0.101 0.173 ± 0.066 0.212± 0.025 0.215 ± 0.0211 0.338 ± 0.097 0.637± 0.135
0.131 0.107 ± 0.043 0.105± 0.013 0.0938 ± 0.0143 0.166 ± 0.081 0.328± 0.157
0.170 0.0705± 0.0376 0.0642± 0.0124 0.0574 ± 0.0119 0.114 ± 0.077 0.201± 0.141
0.221 0.0593± 0.0340 0.0473± 0.0111 0.0409 ± 0.0112 0.0986± 0.0826 0.142± 0.114
0.287 0.0469± 0.0230 0.0382± 0.0099 0.0290 ± 0.0098 0.0628± 0.0517 0.0983± 0.0844
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